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Abstract. This paper describes how data quality can be used to gain
trust between components in distributed control systems by adding infor-
mation about quality to data values. Especially numeric uncertainty is
a helpful tool for making highly informed decisions. To illustrate the
benefits and challenges, several use-cases are discussed in the context of
industrial and automotive settings. The target audience are architects
and developers of cyber-physical systems in industrial and automotive
domains, researchers in such domains and software developers who are
writing software for embedded or distributed control systems which also
use uncertain sensor measurements.
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1 Introduction

In the past, control systems were isolated and closed systems which have been
under control of one manufacturer or closed and protected environments. This
paradigm changed with the recent upcoming of ubiquitous and distributed
devices, the Internet of Things (IoT), and Cyber-Physical Systems (CPS). Con-
trol systems now are often distributed and may be highly dependent on other
systems which are developed by other companies. This leads to many excit-
ing kinds of problems. In order to cope with many of those problem fields,
standards were established to harmonize technical compatibility (e.g. commu-
nication, data formats, and protocols) as well as warranty, safety and contract-
ing issues (safety and quality standards like ISO61508, ISO26262, ISO25012,
AUTOSAR, ASPICE, Functional Safety, 6σ). While safety and quality stan-
dards cover the whole development and production process until delivery, the
newest trend shifts the actual binding time of decisions far beyond delivery to
the actual usage and runtime of a product [24,26]. Amorim et al. describe in
their papers [1,2] how to do this by using contracts consisting of demands and
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guarantees between components and evaluating them at runtime. In their con-
tracts they depend on using attributes which can be evaluated during runtime.
The challenge is now to evaluate information about the environment during run-
time. In order to do this, the notion of data quality comes into play. The ISO
25012 [15] defines characteristics of data quality and in this paper, we espe-
cially look at accuracy, precision, consistency and credibility. We illustrate this
in use-cases which use the measurement uncertainty of sensors as an attribute
for data quality. These use-cases concern not only safety but also other depend-
ability attributes like availability and reliability. The main idea is to evaluate
the quality of a sensor via its uncertainties of measured values. This data quality
attribute should be used and propagated over the whole signal path of a system
in order to make informed decisions and to have more information about a sys-
tems’ state available at runtime. If the sensor has small measurement errors and
is not biased, the measured data has high quality and can be trusted. In such a
way a consumer of a value can decide dynamically at runtime if the values are
trustworthy and react based on changes of data quality e.g. when a sensor gets
dirty or faulty.

We want to encourage and motivate developers and architects to be involved
in this culture of quality based thinking in order to increase business value in
changing environments and contexts. This corresponds to the main values and
principles of the Software Process Improvement Manifesto (SPI Manifesto) [23],
which is a guide for exchanging wisdom and experiences in all areas of software
process improvement.

The remaining paper is structured as follows: Sect. 2 gives an overview over
the related work and background. The main part of the paper focuses on the
use-cases for uncertainties beginning from Sect. 3 to Sect. 9. The paper closes
with a conclusion in Sect. 10.

2 Background and Related Work

Uncertainty in Measurements. According to the ISO GUM Standard “Error is
an idealized concept and errors cannot be known exactly.” [17]. Measuring the
reality is a task which always involves some kind of uncertainty. Measurement
devices cannot be infinitely precise or measured objects may change, and it may
even be impossible to measure everything exactly. In lack of infinitely precise
measurements, we try to tackle uncertainty by equipping our sensors and values
with tolerance ranges or limits. Such tolerances tell us how precise our values
can be. The ISO GUM (JCGM 100:2008) standard and all additions define how
to express uncertainty in measurements [17–21].

Uncertainty in Distributed Control Systems. Distributed control systems cover
many areas like control systems, embedded systems, or cyber-physical systems
(CPS) as they are called nowadays. They all involve some kind of uncertainty.
Classic literature about this topic is e.g. “Distributed Systems” by Tannenbaum
et al. [29], or “Distributed Systems Architecture” by Puder et al. [28]. Accord-
ing to Amorim et al. “CPS usually operate in uncertain environments and are
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often safety-critical” [1]. This dangerous combination of uncertainty and safety-
critical devices could lead to threatening situations causing harm, injuries and
the death of humans as well as substantial damage of properties and financial
losses. According to the HAZOP model, data errors in control systems are cat-
egorized as Provision Errors, Timing Errors, and Value Errors [4,11,12]. To
handle these kinds of errors, contracts with requirement definitions can be used
[3]. For example, in the ConSerts M model [1,2], every component provides guar-
antees to the consuming component, while requesting demands to the serving
components. In such a way it is possible to define safety contacts at design time
which are evaluated at runtime and acted upon via safety mechanism through
self-adaptive systems [14].

Uncertainty in Probabilistic Programming. Basically every measured value can
be represented as random variable, which is done in probabilistic programming.
Such random variables have continuous or discrete probability distributions
which are used for inference, arithmetic and conditionals in a program. They
have some generic mechanisms in common [25]: (i) a probabilistic model, (ii)
propagation rules, and (iii) inference techniques. Andy Gordon wrote a survey
about the current state of probabilistic programming [13]. Bornholt et al. pub-
lished several papers about their implementation approach of such mechanisms
[5–7]. Another aspect of this is approximate computing, which creates software
with just enough precision as needed. Darulova et al. investigated many aspects
of approximate computing and created a framework for compiling programs with
uncertainties, to be faster and use less memory [8–10,16].

3 Use-Case 1: Quality Evaluation Based on Uncertainty

“Researchers in computer systems either do not know about measurement bias
or do not realize how severe it can be.” [27].

Using uncertainty for measured values allows for informed decisions, better
evaluation of the environment and sophisticated safety arguments, which can
contain lower and upper bounds for safety margins (Fig. 1).

Fig. 1. Quality evaluation based on uncertainty in Sensor Data: which of the two
sensors is more trustworthy?
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Very often decisions and calculations are done with data directly coming
from a sensor or other systems, and are trusted to be 100% correct. Contracts
and design arguments protect us from getting biased or uncertain data, but
do we really know for sure even during runtime? Mytkowicz et al. [27] showed
that experimental measurements of computer systems regarding performance are
always flawed by not using diverse environments and could potentially lead to
wrong claims by not considering measurement bias. That is why they proclaim
a call to action to consider measurement bias in computer systems. While this
mainly applies to experimental measurements, it is also important for sensors,
which exhibit even more uncertainty, which can’t be reproduced as easily as
in experimental environments. In safety, redundancy and diversification are key
concepts for reducing failure rates and common cause failures. We propose to
expand these concepts to allow better informed decisions about systems.

Wrong decisions potentially could lead to endangering human life, harm and
injuries, but also enormous financial damage. For example, autonomous self-
driving cars constantly monitor the environment and decide in adaptive control-
loops which action is the most appropriate. Such decisions are guided by data
from multiple sensors in order to drive safely and avoid accidents.

This use-case exhibits following forces or challenges:

– Sensor Data is always uncertain (as is every measurement). Therefore, it could
be inaccurate, and without modeling these uncertainties this could lead to
wrong assumptions and decisions.

– Exact tolerances are often unknown. Of course, you could assume the worst-
case tolerances from the data sheet of a sensor, but oftentimes they are way
overrated, and still one cannot guarantee during runtime that they are still
satisfied.

– Decisions based on inaccurate or oversimplified data could lead to wrong
results (injuries, fatalities, ...). Assuming a measured value is infinite precise
is very dangerous and careless.

The goal in the context of this use-case is to make safe and informed deci-
sions with the help of error-margins and safety assumptions to avoid and mitigate
injuries and erroneous behavior. For this, we need systems which have mecha-
nisms for defining uncertainties, for propagating them, and finally for decision-
making with known guarantees and confidence.

4 Use-Case 2: Predictive Maintenance

The evaluation of uncertainty and measurement tolerances could potentially
increase the prediction accuracy for predictive maintenance. By establishing
degradation models which reason about how failure and quality of a compo-
nent are related, a manufacturer can predict how long the product lifetime will
be based on the current state of quality in the product evaluated during runtime.
In such a way it would be possible to avoid unnecessary maintenance efforts, but
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Fig. 2. Usage of quality information for predictive maintenance: as soon as the quality
of the sensor is under a predefined limit, maintenance actions should be done before
the component fails.

just replacing or reconditioning those parts where and when the attention really
is needed (Fig. 2).

Think of the trivial example of motor oil. We have long periodic maintenance
intervals because modern engines are working much cleaner as ever before. Nev-
ertheless, motor oil is still replaced in regular intervals (either time span or driven
distance) although it may not be necessary in many cases. A sensor which mea-
sures the viscosity or contamination of the oil could give feedback about its state
and inform the driver when it is time to be changed.

The challenges in this context are:

– Sensors may get damaged, polluted and fail over time. The precision and
quality of the produced data also decreases with such decay processes.

– Periodically scheduled maintenance may be inefficient, because parts could
still be fully functional even after some time and would be replaced prema-
turely.

– The other side of periodic maintenance is when parts fail or decay earlier
than the cycle has foreseen this may go unnoticed until the maintenance
time. In such cases maintenance should have been earlier to ensure correct
functionality of the components.

The goal in this use-case is to safe costs for unnecessary maintenance while
ensuring that all safety goals are met and the functionality of all components
is ensured. Just doing maintenance when it is really needed has many advan-
tages to the whole ecosystem of products. The predictive maintenance model
and its evaluation during runtime also has another very beneficial side effect:
By continuously monitoring the health state of the components we can detect
early or unexpected failures during runtime. By knowing and monitoring the
quality level (especially the sensor tolerances) one can predict the failure rate
more accurately during runtime. By using a model for failure-rates based on the
runtime tolerances we can predict the point in time when the sensor will fail.
Based on that, maintenance should be planned.
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5 Use-Case 3: Sensor Fusion

Use data quality, e.g. uncertainty, to combine several input values in order to
get results with even higher quality, accuracy and less uncertainty. Also, use it
to give the most accurate data more weight than the inaccurate (Fig. 3).

Fig. 3. Sensor fusion by combining the individual sensor value and their according
probability distributions. The result has higher quality and lower uncertainty than
every single sensor.

Sensor fusion is a huge area in control systems which is researched for many
decades now but still makes huge advancements when it comes to new tech-
nologies and how to combine them. For more information about Sensor Fusion
we propose the book by Klein: “Sensor and data fusion: a tool for information
assessment and decision-making” [22]. In this use-case we concentrate on the
fusion of data signals which are semantically similar (measuring the same infor-
mation), e.g. distance, energy consumption, or signal strength. The only things
which differ for similar measurements are the actual measured value, and the
uncertainties exhibited by the sensor and the measurement. This makes it easier
to combine the values by just combining their respective measurements seen as
random variables with uncertainties. Equations for combining multiple indepen-
dent input values with normal distributions (μ is the expected value or mean, σ
is the standard deviation):

X0, . . . , Xn ∼ N (μi, σ
2
i ) : X̂ =

1
n

∑
Xi ∼ N

(
1
n

∑
μi,

1
n2

∑
σ2
i

)

It is noteworthy, that for the above equations we assumed independent ran-
dom variables. This is not the case all the time, because the sensors try to
measure the same “true” value, and are therefore correlated to each other. If
the “true” value changed, all sensor values are expected to change accordingly
– therefore, they are dependent and for sensor fusion also the covariances of the
sensors should be considered. Another assumption here is that all sensor uncer-
tainty is described using normal distributions for their measurements. When
they have different distributions, this should be considered accordingly in order
to maintain their probability properties.

The challenges in this context are:
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– A single sensor may be inaccurate and its quality may change during usage
over time.

– Computing simple averages amongst multiple sensor hides the uncertainty
coming from the sensors and therefore gives a wrong image of certainty.

– Better and worse data are mixed together, which should be accounted accord-
ingly.

The goal is to use data from multiple sensors to get more accurate information
about the environment. The combined value should exhibit lower uncertainty
than any single sensor value. Therefore, it is needed to evaluate the quality of
the sensors during runtime and use this quality information for the sensor-fusion.

We propose to weight the sensors according to their uncertainty, in order to
prefer more accurate sensors over the ones which are imprecise. This has two
highly beneficial consequences:

1. Environmental Adaption: When one sensor is better for near distance
measurements (e.g. in low-speed situations) and another is better at far dis-
tance measurements (e.g. high-speed situations), weighting them according
to their precision would result in an automatic adaption to the current envi-
ronment and always using the best source of data for a given situation.

2. Failover: In cases where a sensor fails completely, it can be completely over-
ruled by the still functional working sensors, because its uncertainties would
get very high and therefore its value would be weighted very low. This would
result in failover situation where the system still continues to function, despite
a sensor failing. Of course, this only is possible for systems which are designed
to have redundant signal paths or even diverse sensors, in order to avoid com-
mon cause errors. Amorim et al. described an architecture which makes use
of alternative data sources in case of failures [2].

6 Use-Case 4: Approximate Computing

Perform calculations only with the needed precision to increase performance and
save memory.

Figure 4 shows the time needed for calculating pi with a variant of the
Gregory-Leibniz Series (π = 4

∑∞
k=0

(−1)k

2k+1 ). The figure shows that for increasing
the accuracy (decreasing the error) much more time is needed. For example, if
we need the value to have a precision of 10−3, the algorithm only needs about
0.5 ms, but if we need a precision of 10−4, we would have to let it run for 5 ms
(10 times longer). Of course, in this case, there are much faster methods avail-
able, but it shows how beneficial approximate computing could be for algorithms
which do not have a fast alternative. By aborting the calculation as soon as the
needed precision is reached one can save much computing time [8].

In addition to performance also memory could be saved by using approxi-
mations. Many applications use double or float as data types for their floating-
point variables, but only need precision of a few decimal places. These could be
replaced by fixed point arithmetic which perform much faster while still supply-
ing the needed precision [8–10,16]. The challenges in this context are:
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Fig. 4. Performance benchmarks for calculating π with the Gregory-Leibniz Series. To
increase the accuracy of the solution, much more computing time is needed.

– Exact calculations often take unnecessary long time.
– Approximate calculations may be faster, but you need to balance the precision

to your needs.

For this use-case the goal is to speed up calculations and save memory by
using approximations which only use as much preciseness as is needed. In order
to do that, uncertainty information comes in handy because it could be applied
in two ways: Firstly, the maximum precision depends upon the precision of the
input values, respectively the input sensors. It does not make sense to apply
more exact algorithms when the uncertainty of the input data is already very
high. Secondly, the needed precision in calculations depends upon the ultimately
required precision of the output value. For example, it would be futile to numer-
ically optimize some algorithms to the 10−6 decimal place, while the calculated
output value is then rounded to whole integer numbers.

7 Use-Case 5: Fault Detection

Use quality information (e.g. uncertainty or standard deviation), to detect addi-
tional faults in components which would go unnoticed otherwise.

Using quality information like accuracy or uncertainty gives the possibility
to define additional checks for fault detection. Thresholds on the quality of a
signal can be defined in addition to the range-checks which are defined at design
time according to the data-sheet or interface description of a component (e.g.
the HSI: Hardware-Software-Interface-Specification) (Fig. 5).

The challenges are:

– Sensor Quality (e.g. tolerances) may change over time.
– Safety functions rely on good quality information to e.g. apply boundary or

threshold checking.
– Tolerances coming from data sheets may be exaggerated and represent max-

imum values, which leads to very conservative assumptions.

The goal of this use-case is to have tolerance information available during
runtime in order to be used for safety functionality and to detect faulty and
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Fig. 5. Detect faults by evaluating the uncertainty of a value series.

maybe even harmful situations. When a system would know the tolerances and
uncertainties of the used signals and sensors at runtime, it could easily detect
when something goes out of bounds, or when tolerances of a value suddenly
increase without any reason. This demands that the sensor quality is measured
periodically in order to have recent information available to guarantee the live-
ness and correctness of the error margins.

8 Use-Case 6: Fingerprinting

Use quality information as fingerprints to identify individual components
(Fig. 6).

Fig. 6. Identify systems based on their individual calibration or uncertainty profile.

During production the uncertainties of sensors are measured and their cal-
ibration is set. This configuration of calibration data is a set unique to each
system. By utilizing the initial calibration and uncertainty information one can
calculate a unique fingerprint for the identification of a system and use this as
an identification later on. The challenges of such a use case are:

– Devices and Sensors cannot be trusted a priori.
– Devices and Sensors in combination have a pretty unique configuration of

calibration data, uncertainties and tolerances.
– Authentication mechanism need additional functionality (TPM, certificates,

identities, key-exchange) which may be too expensive.
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The goal is to identify sensors and devices according to their fingerprints
without having to implement additional security features or hardware. This can
be done by utilizing the uncertainty and calibration data of the systems’ sensors
during production and storing this profile information as fingerprint. During
runtime measure the system again and compare to the stored fingerprint. If the
profile is mostly the same, this is a strong indicator that the measured system
actually is the same.

9 Use-Case 7: Graceful Degradation

Degrade functionality of a system based on the quality of the sensors and sophis-
ticated safety assumptions (Fig. 7).

Fig. 7. Depending on the quality of the sensor input data, an autopilot can regulate
the maximum speed for a degraded state.

Graceful degradation is a technique which is applied as safety measure if a
system’s functionality must be ensured but cannot be fully supplied. There can
be two reasons why a degraded system is valuable: Firstly, when the system has
to go into a safe-state, this oftentimes cannot be done immediately, but has to
degrade gracefully over time, so that the driver or user can accustom to the new
situation. Secondly, it is often preferred to have at least a degraded functionality
than no functionality at all. Amorim et al. wrote about graceful degradation and
how it can be applied to situations when the contracts are not fulfilled at runtime
[2]. They depicted the situation where a sensor fails to operate and their solution
was to search for other data sources which can be used despite the possibility
that they may be more inaccurate. If the other inputs can’t provide the needed
ASIL level, the car should still be controllable, but in degraded mode in order
to minimize possible hazards (the maximum speed is reduced).

Despite graceful degradation, also graceful improvement would be possible: if
the uncertainty and data quality gets better, a system could adaptively increase
the functionality. If the constraints are still met due to better sensors with
smaller measurement tolerances, the maximum speed could even be increased
while maintaining the same safety level.
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10 Conclusion

In this paper we showed seven use-cases where the use of uncertainty as indicator
for data quality is very beneficial for the dependability of a system. Trust in the
sensors, the data, and the whole signal path can be increased by evaluating
data quality of the numerical values. Especially using numerical uncertainty is
helpful in making highly informed decisions which could potentially safe lives.
In the future, we plan to investigate each use-case in detail and find appropriate
techniques and integration possibilities for existing systems in real life projects
and scenarios. In the spirit of the SPI manifesto [23] we want to motivate and
encourage manufacturers, developers and software as well as system architects
to apply uncertainty and quality considerations in their systems to change their
daily business for the better.
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