
Agile Development and Operation of Complex
Systems in Multi-technology and

Multi-company Environments: Following
a DevOps Approach

Gorka Benguria(&), Juncal Alonso(&) , Iñaki Etxaniz(&),
Leire Orue-Echevarria(&) , and Marisa Escalante(&)

TECNALIA, Parque Tecnológico de Bizkaia Ed: 700, 48160 Zamudio, Spain
{Gorka.Benguria,Juncal.Alonso,Inaki.Etxaniz,Leire.

Orue-Echevarria,Marisa.Escalante}@tecnalia.com

Abstract. Big innovation and research projects usually require merging con-
tributions form organizations with expertise in different domains. Managing and
participating in multi-company projects that use multiple state-of-the-art tech-
nologies constitute a challenging activity due to many factors such as integration
inexperience, evolving components, tentative requirements, independent teams
or independent management centers. In the late nineties and in the early years of
2000, several methodologies arose with the focus on fast releases of working
software, commonly known as agile, that aimed to address many of the chal-
lenges that this kind of projects face. However, in most cases, these method-
ologies were not fully adoptable as the automation investment was too high and
it was not recoverable during the duration of the project. The global servitization
trend and the appearance of approaches, such as DevOps, to support the con-
tinuous and fast adjustment of those services to stay in business has also
impacted innovation and research projects. On one hand, matured technologies
that reduce the automation investment have arisen. On the other hand, whenever
it makes sense, services which benefit from the application of DevOps
approaches are required to be implemented. This paper explains the imple-
mentation of DevOps approaches to support the agile development in the con-
text of innovation and research projects. It also describes two practical
implementation cases where such approaches were implemented and how they
evolved in the course of the time.

Keywords: DevOps � Continuous integration � Continuous delivery
Agile

1 Introduction

Globalization and the increase of competition is pushing organisations to deliver new
products and features at increasing rate to stay attractive for their customers base. In the
software domain, this implies to be able to faster and more frequent release features to
the final users. To increase the releasing capability, software organisations have been

© Springer Nature Switzerland AG 2018
X. Larrucea et al. (Eds.): EuroSPI 2018, CCIS 896, pp. 15–27, 2018.
https://doi.org/10.1007/978-3-319-97925-0_2

http://orcid.org/0000-0002-9244-2652
http://orcid.org/0000-0002-0648-4689
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97925-0_2&domain=pdf

forced to adopt DevOps [1, 2] approaches to reduce the time required to develop,
integrate, test, and deploy. The DevOps philosophy attempts to use automated systems
to bridge the information gap between project team entities (Development and Oper-
ations teams) with the main objective of fostering their collaboration in the develop-
ment and operation stages of a software application [3]. The DevOps philosophy
incorporates some principles, methods and practices related with the agile method-
ologies [4] such as continuous delivery, continuous integration and collaboration.

Agile methodologies [5, 6] have afforded many companies a much-needed tool in
the digital era: a collaborative and flexible way to develop software. Considering Agile
manifesto [7] as compendium of principles, it can be concluded that they represent an
attitude towards change that is common for both Agile and DevOps. In essence,
DevOps is Agile applied beyond the software team. A DevOps approach takes agile a
step further and applies it beyond the plan, design, build, and test stages of software
development to the rest of the software lifecycle: deployment, release, operation, and
monitoring [8].

Innovation and research projects usually require involving different organizations
with expertise in different areas. The number of organizations is variable depending on
the scope and domain of the project (for example, fi-ware project [9] was participated
by close to 90 companies), but usually the number varies between five and ten. These
organizations work together during years towards a common objective. During that
time, a subset of these organizations can be required to work together to produce and
validate a software solution that solves a set of needs. This kind of collaboration has
some challenges to consider:

• Non-collocated Information Technology (IT) teams from different organizations
with different technologies, cultures, languages, working calendars, priorities,
quality standards, etc.

• Disperse development effort to be leveraged with research, reporting, dissemination,
and other parallel production-oriented activities.

• Tentative requirements, integration inexperience and evolving components.
• Solutions or demonstrations should be repeatable long after the project’s end based

on commercial or audit requests.

With the global servitization trend, innovation and research projects are required to
implement services with similar challenges that match most of the situations given also
in projects with distributed teams. This increase the development and operation com-
plexity as it introduces additional requirements to the applications such as servers,
domains, networks, platforms, authorization, authentication, certificates, and so on.
Fortunately, more and more features of those services are being packaged as easily
reusable open source assets, which enable an easier and faster management of that
complexity.

Nowadays, provided that the required resources are available, it is feasible and
affordable to deploy a service together with its corresponding platform in few minutes.
However, a few years ago, this was simply cumbersome.

The current paper presents a DevOps approach implemented in Tecnalia to enable
the agile development of applications, especially service oriented ones, in multi-
technology and multi-company environments.

16 G. Benguria et al.

2 A DevOps Framework for Agile Development

Agile methodologies include characteristics that make them interesting for innovation
and research projects. For example, one of the principles of the agile methodologies is
to “Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale” [7]. This may help in the clarification of
tentative requirements and integration approach. Besides, it may also help with the
evolution of the components.

But on the other hand, agile methodologies have certain principles that make them
incompatible with this kind of projects. For example, the principles related to “Business
people and developers must work together daily throughout the project” and “The most
efficient and effective method of conveying information to and within a development
team is face-to-face conversation” are totally incompatible with the facts that the teams
are not collocated and that the effort should be leveraged with other activities.

Therefore, more than establishing a DevOps Framework to enable an agile
methodology at project level, our objective was to establish a DevOps Framework that
enable the organizations participating in the project to be agile in their own terms.

2.1 DevOps Framework Approach

In the same way that there is no standard definition of DevOps, there is no agreement
about what a DevOps framework should consist of. For us, a DevOps framework is a
set of tools that facilitate the transition and interactions between the application
development and its exploitation.

The DevOps framework that we are currently using in different projects such as
OPERANDO [10], CITADEL [11] or DECIDE [12] was not designed as a holistic
solution to be applied in all projects of Tecnalia. Indeed, this approach started in
OPERANDO based on the lessons learned from a previous project, MOVEUS [13].

MOVEUS [13] was a project in the smart cities domain that provided a set of
mobility services that encouraged sustainable transport. In that project, Tecnalia was
the partner responsible for the infrastructure. During the development, more than thirty
servers were used, some were virtual, some were physical. Servers were split between
two environments, integration and piloting. Integration was supported with an on-
premise Open Stack cluster for cost constraint requirements, while piloting was sup-
ported in AWS [2] for reliability and performance requirements. From that project there
were several lessons learned:

• Infrastructure migration can happen, and it will happen several times
• Following the installation guidelines is time consuming, and finding problems is

very common
• The domain strategy is important as the number of servers and environments grow
• An improper use of cloud services may generate many expenses
• Non-root users are configured by default with contracting capabilities by AWS
• The virtual machines created using the AWS images cannot be exported later on
• The storage of the application and the demonstrations is an issue in the long term
• Integration infrastructure also requires some reliability

Agile Development and Operation of Complex Systems 17

So, when the project OPERANDO started in which Tecnalia was also in charge of
the infrastructure, it was decided to change the approach to be able to deal with some of
the abovementioned problems. Our principles were as presented next.

The first set of requirements for our framework were to use reliable platforms in all
environments, to control the expenses on the selected cloud environments, to support
the replication of the platform, and to facilitate the deployment of new features. From
those requirements, the first version that included a subset of the components of
OPERANDO was developed. From that version and through a very simple process
(Fig. 1), the platform continued to evolve.

Most of the changes that had to be performed in a later stage consisted of minor
adjustments. Nevertheless, certain changes involved the introduction of new require-
ments such as adding monitoring capabilities over the framework, supporting guide-
lines over the platform (with the knowledge necessary to adjust them), supporting
pilots or making the infrastructure instantiable to other projects.

2.2 DevOps Framework Configuration Process

The DevOps Framework is adapted to each project following the generic process
described in the Fig. 2.

Fig. 1. DevOps framework approach

Fig. 2. DevOps framework configuration process

18 G. Benguria et al.

All these activities can be grouped into four categories: Knowledge Management,
Environments establishment, Transitions configuration and Feedback Management.

2.3 Knowledge Management

The first set of activities are oriented to ensure that the knowledge of the project is
reliably stored and provided in the best way possible to all participants: developers,
pilot owners, managers or external contributors.

The main requirement pursued by the knowledge management is to support the
replication of the platform. This support should enable, even external people, to
replicate the platform from scratch.

The Knowledge management in our approach is made differently depending on the
project assets being managed. Application development projects make use of different
assets which are subject of storage in the long term. Among others, the following can
be cited:

• Code, including configuration, formal specifications, scripts, …
• Sensible information such as access passwords, private certificates, and licenses

keys.
• Documents such as guidelines or reports, etc.
• Data for testing, such as anonymized data from pilots.
• External compiled libraries.
• Images of virtual machines and containers.
• Releases.

The Knowledge management in our DevOps framework include two mandatory
components: the version control system and the knowledge storage.

The version control system is supported by Git [14]. It is of course possible to use
other technologies such as subversion [15] or cvs [16]. However, git was selected
because nowadays it is the one that is most widely used (about 87% as demonstrated in
the last Stack Overflow Survey [17]). Depending on the project, different Git imple-
mentations such as Github [18], BitBucket [19] or Gitlab [20] can be used. Depending
on the implementation between external SaaS (Software as a service) [21] or on-
premise installation can also be chosen.

The first component in our DevOps framework, the version control system, is used
as the communication channel from development to operation. Developers store the
code along with the necessary resources for their components in the version control
system and the operators retrieve them from there. In addition to that, the version
control system is also used to store the code and scripts necessary to quickly build the
different environments required to develop and deploy the application.

The second component in our DevOps framework, the knowledge storage, is
focused on collecting the guidelines to help project participants during their develop-
ment and deployment activities. The knowledge storage aims to contain information
about how the technologies have been used and configured in order to support all
aspects of the application. As a guidelines repository, we require a central content

Agile Development and Operation of Complex Systems 19

management system with strong search capabilities. With that thought in mind, a
WordPress CMS [22] linked to a Solr [23] indexing system to enhance the WordPress
searching mechanisms was implemented.

These two mechanisms cover most, but not all, of the assets of an application
development project. The remain assets are stored locally. These include sensitive
information, big binary data sets for testing, external compiled libraries, images (of
virtual machines and containers). However, depending on their relevance to the project
additional mechanisms such as keepass [24] for sensible information, or archiva [25]
for external libraries, could be established.

2.4 Establishment of Environments

The establishment of environment is another set of activities that needs to be covered.
This involves the identification of environments, the configuration of environments and
the configuration of platforms.

Development and operation constitute two different environments, but depending
on the characteristics of the application, it can make sense to introduce additional
environments to ensure aspects such as the interoperability, performance or the
behavior in a real environment. Figure 3 shows an example of environments between
development and production.

In Innovation and research projects the environments shown above vary slightly. In
this case, instead of having staging and production environments, these kinds of pro-
jects present a (or several) piloting environment. The current DevOps Framework
deployed in Tecnalia provides support in the provisioning of the development, inte-
gration and piloting environments.

The support for the development environment is focused on two aspects: speed in
setting it up and standardization. The first aspect, speed in setting it up aims to reduce
the time required to configure a machine to start with the development. Depending on
the complexity, a development environment may require multiple tools, each with

Fig. 3. Environments in an application development

20 G. Benguria et al.

different installation and activation procedures. Installing, activating, and configuring
them, one by one could take days. Whenever possible, portable and activation inde-
pendent technologies are prioritized. The objective is to create a folder that contains all
the tools required to start working in the project properly configured. This has reduced
the development environment setup to less than one hour. Standardization aims to share
exactly the same development environment among all the developers with the goal of
avoiding the “it works on my machine” syndrome. The portable approach, where we
even include the java version, largely reduced this effect among the development
environments. Technologies that have been packaged in the development environment
for windows 64 bits include eclipse [26], mysql [27], git [18], squirrel [28], nodejs [29],
Vagrant [30], Cygwin [31], Maven [32], gradle [33] or notepad ++ [34]. The only
installation requirement is VirtualBox [35] but only in case Vagrant is needed.

The support for the integration environment is focused on the assurance that all
components can be built and work seamlessly together from scratch. The integration
environment is configured in a way that every 24 h, it is reset and all the components
built again taking the last version stored in the master branch. After building the
components, the environment is able to start all of them automatically and run some
integration tests to ensure that they interoperate as expected. For the integration
environment, we make use of the Docker [36] technology. Docker is a container
technology that allows to simulate multiple independent operating systems over the
same machine. This reduces heavily the infrastructure requirements in the integration
environments. For instance, in the project MOVEUS previously referred, more than ten
servers in AWS were used. This could have been reduced notably if Docker had been
used. As a comparison, in OPERANDO only one server with 25 containers is used.

Finally, we have the piloting environment. The support in this environment is
focused on the assistance to external companies in the instantiation of the components
of the project in their own premises. In previous projects, the transference of the
technical developments required getting the compiled libraries somehow and make
them work in some preconfigured platform. This was highly error prone. As part of our
DevOps Framework we provide two elements: a Docker registry from which the
companies can download the last version of the components of the project packaged as
Docker images, and a script that configures and runs those Docker images in a Docker
server.

Another activity performed in relation to the establishment of the environments has
been the configuration of platforms. In innovation and research projects involving
multiple companies, components are often programmed with different technologies that
require a diverse terrain of platforms. The DevOps framework of Tecnalia includes an
increasing set of preconfigured elements to be integrated in different environments, and
platforms such as tomcat, mono, nodejs, python [37], mysql, mongodb [38], Hadoop
[39], cas [40], ldap [41], liferay [42], jhipster [43], Jenkins [44], …

2.5 Transitions Configuration

Transitions Configuration support the automation of the deployment of new features
from the development environment to the operation one. In our DevOps Framework we
provide support for the transition between development, integration and piloting.

Agile Development and Operation of Complex Systems 21

To support these transitions, we use a continuous integration software and build
automation tools. Specifically, as continuous integration software, we use Jenkins and
as a build automation tool, we use Maven.

Nevertheless, the focus in our case is on the transition between the development
and the integration environments. As shown in Fig. 4, Jenkins includes tasks for the
provisioning of pre-requisites to compile the components, tasks to package the com-
ponents (services and integration tests) as Docker images, tasks to run the services, and
tasks to perform the integration tests over the running services.

Each of these Jenkins tasks is specified in a Jenkinsfile stored in the version control
system (in our case, git). The task is split in stages as shown in Fig. 5 for a task on
service package. Among those stages, we can see stages in charge of gathering the
source code provided by the developers, stages in charge of gathering the DevOps
source code that describe how to build the necessary infrastructure for the component,
stages to compile the code, stages to create the Docker image with the platform and
with the component, and stages in charge of pushing the created Docker image into the
Docker registry for their later use by the pilots.

The usage of Maven, apart from building java components, is to fill some gaps or
difficulties that we faced with Jenkins. In particular, we use Maven to enable the use of
Docker in Jenkins. To save time in the deployment of the DevOps Framework, we
decided to use Jenkins packaged in Docker, which is as easy to deploy as:

Docker run -p 8080:8080 Jenkins
Since we found the installation of a Docker inside so complex, we decided to use

the Maven plugin for Docker from frabric4io [45]. Moreover, it facilitated the usage of

Fig. 4. Jenkins tasks categories

Fig. 5. Jenkins tasks stages

22 G. Benguria et al.

common properties when instantiating the Docker components such as service end-
points. We aggregated all of them in a common Maven project that is referenced in
each of the service and integration test running tasks.

2.6 Management of Feedback

The final set of activities are those related with the management of feedback. This
covers the collection of information from the different environments. Currently, the
support for the management of feedback in our DevOps Framework is limited. Two
mechanisms have been implemented: Automatic monitoring mechanisms and a ticket
based system to be able collect feedback from testing activities.

Automatic monitoring mechanisms are based on state of practice of monitoring
platforms, that collect information about the services running at the integration plat-
form. Figure 6 shows how Nagios is used to monitor the status of the services of the
OPERANDO project in the integration platform.

For the ticket based system, different technologies depending on the project and the
preferences of the participants are being used. Among others, Jira and GitLab issues.

3 Practical Implementation of DevOps Philosophy in
Multi-technology Environments

The DevOps Framework introduced previously has been applied in different projects
during the last two years. The DevOps Framework applied in each project present
differences taking into consideration the continuous improvement of the platform.

3.1 OPERANDO Ecosystem

OPERANDO project aims to implement and validate an innovative privacy enforce-
ment framework that will enable the Privacy as a Service (PaS) business paradigm and
the market for online privacy services.

OPERANDO project is being carried out by nine companies from seven different
countries. The architecture requires to leverage technologies such as Back end REST
technologies (Jaxrs/Python Flask/Spring), single sign on mechanisms (cas), directory
services for access control (ldap), relational databases (Mysql), non-relational databases

Fig. 6. Nagios monitoring of integration platform

Agile Development and Operation of Complex Systems 23

(e.g. MongoDB), front end technologies (Html 5/css/Javascript/.Net), Reporting
frameworks (Birt [46]) or Monitoring Frameworks (Nagios [47]).

The OPERANDO Ecosystem was the first project in which the DevOps Framework
was applied. The project duration has been three years and is almost at its closure. We
have been applying and adjusting the DevOps Framework for a timeframe of two and a
half years. During this period, a lot of feedback and improvement suggestions about the
DevOps Framework that has led to some fine-tuning has been acquired. This includes:

• The developer project should not be bothered with DevOps details as DevOps
details should be contained in a separate project. i.e.: how the code is packaged in a
Docker container.

• During the project, we were required to migrate the integration environment twice.
The first time, the migration time needed was two weeks which was acceptable
when comparing to MOVEUS, that took several months. In any case, lessons
learned were gathered and the migration process improved. The second migration
took just a couple of hours.

• Developers require feedback, therefore, we implemented a new profile of observer
users to enable them to check the results of their deployment in the integration
platform. However, that was not enough as they also required logs access which
was later on integrated.

• Developers want to test things quickly. They require a certain degree of control over
the integration process to enable them to trigger the compilation process at any time.
They also require to be able to take a look inside the component. This is a more
complex issue that is currently under analysis.

3.2 CITADEL Ecosystem

CITADEL project is focused on transforming Public Administrations (PAs) to deliver
more efficient, inclusive and citizen-centric public services. For this, the project cap-
tures data to understand how satisfied citizens are with digital public services, identifies
new or unsatisfied needs and allows citizens to take active part in the creation of new
public services to increase their uptake.

CITADEL project is composed of eleven organizations from four countries. The
architecture requires to leverage technologies such as user registries for citizens, single
sign on mechanisms (OpenId Connect), directory services for access control (ldap),
front-end technologies (Html 5/css/Javascript), Back-end REST technologies [48]
(Jaxrs), databases (Mysql), and Intranet Portals (Liferay) in an integrated set of ser-
vices, named ecosystem in the jargon of the project.

The duration of the CITADEL project is also three years. We have been applying
the DevOps Framework during almost one year. During that period, we have learned
some additional lessons that will drive future improvements. These include:

• “it works on my machine” Syndrome also happens between environments; there-
fore, it could be interesting to bring the real (or almost real) infrastructure to the
development environment. We are exploring the usage of Vagrant to enable the
instantiation of the integration containers in the developers’ machines. This may
require powerful development equipment.

24 G. Benguria et al.

• The continuous creation and destruction of Docker images and container leave
behind garbage that should be automatically cleared out. Thus, we need garbage
collection mechanisms for Docker.

• Development with http to avoid the creation of certificates is bringing more prob-
lems than benefits. Therefore, we need to consider certificates when configuring
platforms and at the same time, we need to support its creation.

• As we increase the number of independent DevOps Frameworks, we are more in
need of a homogeneous and integrable ways to monitor them. For this we are
exploring monitoring alternatives such as Grafana [49] that allow to easily define
dashboards for each of the frameworks, environments and services.

4 Conclusions and Future Work

The current paper documents practical implementations of the DevOps approach in
diverse software-based environments, where multi-disciplinary distributed teams are
co-developing and co-deploying software assets (often using immature technologies) to
achieve a medium TRL [50] solution (usually TRL 5-6). The peculiarities of these
collaborative developments imply several challenges and shortcomings that can be
addressed setting up a proper DevOps approach with the corresponding enabling
technologies and tools.

The solution proposed by the authors covers the “traditional” DevOps cycle,
focusing mainly on the continuous integration, and continuous deployment phases of
the Software Development Life Cycle (SDLC). Nevertheless, the advent of cloud-
computing offerings, which is witnessing a growing trend by the increasing diversity of
cloud service offerings leading to hybrid and multi-cloud infrastructures, are available
for complex software applications which can profit from these variaty of offers and
features. This new situation opens up a world of possibilities for increasing the effi-
ciency of software applications by selecting a combination of the most appropriate
resources on-demand and re-adapting the application on-the-fly to meet the working
conditions of the software. The presented DevOps approach, can be therefore, adapted
to support this upcoming scenario, where “multi-cloud” based applications can be (re-)
adapted, considering their Non-Functional Requirements. This can be achieved trough
the extension of the “traditional” DevOps cycle in what the authors call “Extended
DevOps”. The authors will extend the concepts and approach presented in this paper in
the context of the DECIDE [12] project which proposes an extension of the “tradi-
tional” DevOps approach on the two axis: Dev and Ops.

For the Dev axis, the authors propose to extend the development phase with pre-
vious and subsequent activities that cover: (1) the architectural design for multi-cloud
applications (at generic level and specific to non-functional requirements), (2) the
election of the best deployment configuration based on theoretical simulations. For the
Ops axis, the extension will cover: (3) The orchestration of heterogenous cloud
resources (4) The continuous re-deployment of software components to maintain the
working conditions.

Agile Development and Operation of Complex Systems 25

Acknowledgements. The projects leading to this paper have received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreements
No. 731533, 726755 and 653704.

References

1. DevOps, Wikipedia, 18 April 2018
2. What is DevOps? - Amazon Web Services (AWS), Amazon Web Services, Inc. https://aws.

amazon.com/devops/what-is-devops/. Accessed 23 Apr 2018
3. “DevOps” an Extension of Agile Methodology – How It will Impact QA? AFourTech :

Software Development Company | Software Testing Services, 25 Apr 2014
4. Navigating DevOps - What it is and why it matters to you and your business (2017)
5. Sutherland, J., Schwaber, K.: The Scrum Papers: Nut, Bolts, and Origins of an Agile

Framework, p. 224, April 2012
6. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-

sional (2000)
7. Beck, K., et al.: Agile Manifesto (2001)
8. DevOps Takes Agile Further - What is DevOps? https://www.bcg.com. https://www.bcg.

com/agile/devops/default.aspx. Accessed 19 Apr 2018
9. FI-WARE: Future Internet Core Platform: Project and results. https://cordis.europa.eu/

project/rcn/99929_en.html
10. OPERANDO CONSORTIUM. https://www.operando.eu/servizi/notizie/notizie_homepage.

aspx. Accessed 19 Apr 2018
11. CITADEL H2020 (2016)
12. Home | DECIDE: Multicloud Applications Towards the Digital Single Market. https://www.

decide-h2020.eu/. Accessed 16 Apr 2018
13. MoveUS | ICT cloud-based platform and mobility services available, universal and safe for

all users | MoveUS. http://www.moveus-project.eu/. Accessed 19 Apr 2018
14. Git. https://git-scm.com/. Accessed 20 Apr 2018
15. Apache Subversion. https://subversion.apache.org/. Accessed 20 Apr 2018
16. CVS - Open Source Version Control. http://www.nongnu.org/cvs/. Accessed 20 Apr 2018
17. Stack Overflow Developer Survey 2018, Stack Overflow. https://stackoverflow.com/

insights/survey/2018/?utm_source=so-owned&utm_medium=social&utm_campaign=dev-
survey-2018&utm_content=social-share. Accessed 20 Apr 2018

18. Build software better, together, GitHub. https://github.com. Accessed 20 Apr 2018
19. Bitbucket | The Git solution for professional teams. https://bitbucket.org/. Accessed 20 Apr

2018
20. Gitlab. https://about.gitlab.com/
21. Software as a service, Wikipedia, 10 Apr 2018
22. WordPress. https://en.wordpress.com
23. Apache Solr. http://lucene.apache.org/solr/. Accessed 20 Apr 2018
24. Reichl, D.: KeePass Password Safe. https://keepass.info/. Accessed 20 Apr 2018
25. Archiva – The Build Artifact Repository Manager. https://archiva.apache.org/index.cgi.

Accessed 20 Apr 2018
26. Open Innovation Community - Eclipse IDE | The Eclipse Foundation. http://www.eclipse.

org/. Accessed 23 Apr 2018
27. MySQL. https://www.mysql.com/. Accessed 23 Apr 2018
28. SQuirreL SQL Client Home Page. http://squirrel-sql.sourceforge.net/. Accessed 23 Apr 2018

26 G. Benguria et al.

https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://www.bcg.com
https://www.bcg.com/agile/devops/default.aspx
https://www.bcg.com/agile/devops/default.aspx
https://cordis.europa.eu/project/rcn/99929_en.html
https://cordis.europa.eu/project/rcn/99929_en.html
https://www.operando.eu/servizi/notizie/notizie_homepage.aspx
https://www.operando.eu/servizi/notizie/notizie_homepage.aspx
https://www.decide-h2020.eu/
https://www.decide-h2020.eu/
http://www.moveus-project.eu/
https://git-scm.com/
https://subversion.apache.org/
http://www.nongnu.org/cvs/
https://stackoverflow.com/insights/survey/2018/%3futm_source%3dso-owned%26utm_medium%3dsocial%26utm_campaign%3ddev-survey-2018%26utm_content%3dsocial-share
https://stackoverflow.com/insights/survey/2018/%3futm_source%3dso-owned%26utm_medium%3dsocial%26utm_campaign%3ddev-survey-2018%26utm_content%3dsocial-share
https://stackoverflow.com/insights/survey/2018/%3futm_source%3dso-owned%26utm_medium%3dsocial%26utm_campaign%3ddev-survey-2018%26utm_content%3dsocial-share
https://github.com
https://bitbucket.org/
https://about.gitlab.com/
https://en.wordpress.com
http://lucene.apache.org/solr/
https://keepass.info/
https://archiva.apache.org/index.cgi
http://www.eclipse.org/
http://www.eclipse.org/
https://www.mysql.com/
http://squirrel-sql.sourceforge.net/

29. Node.js Foundation: Node.js, Node.js. https://nodejs.org/en/. Accessed 23 Apr 2018
30. Vagrant by HashiCorp, Vagrant by HashiCorp. https://www.Vagrantup.com/index.html.

Accessed 13 Apr 2018
31. Cygwin. http://www.cygwin.com/. Accessed 23 Apr 2018
32. Maven – Welcome to Apache Maven. https://Maven.apache.org/. Accessed 13 Apr 2018
33. Gradle Build Tool. https://gradle.org/. Accessed 23 Apr 2018
34. Notepad++ Home. https://notepad-plus-plus.org/. Accessed 23 Apr 2018
35. Oracle VM VirtualBox. https://www.virtualbox.org/. Accessed 23 Apr 2018
36. Docker, Docker. https://www.Docker.com/. Accessed 11 Apr 2018
37. Welcome to Python.org, Python.org. https://www.python.org/. Accessed 23 Apr 2018
38. MongoDB for GIANT Ideas | MongoDB. https://www.mongodb.com/. Accessed 23 Apr

2018
39. Welcome to ApacheTM Hadoop®! http://hadoop.apache.org/. Accessed 23 Apr 2018
40. CAS | Apereo. https://www.apereo.org/projects/cas. Accessed 11 Apr 2018
41. Lightweight Directory Access Protocol, Wikipedia, 02 April 2018
42. Liferay: Software de experiencia digital adaptado a tus necesidades. https://www.liferay.

com/. Accessed 23 Apr 2018
43. JHipster - Generate your Spring Boot + Angular/React applications! https://www.jhipster.

tech/. Accessed 23 Apr 2018
44. Jenkins, Jenkins. https://Jenkins.io/index.html
45. Docker-Maven-plugin: Maven plugin for running and creating Docker images. fabric8

(2018)
46. BIRT Home. http://www.eclipse.org/birt/. Accessed 23 Apr 2018
47. Nagios - The Industry Standard In IT Infrastructure Monitoring. https://www.nagios.org/.

Accessed 13 Apr 2018
48. Representational state transfer, Wikipedia, 13 April 2018
49. Grafana - The open platform for analytics and monitoring. https://grafana.com/. Accessed 13

Apr 2018
50. Technology readiness level, Wikipedia, 04 April 2018

Agile Development and Operation of Complex Systems 27

https://nodejs.org/en/
https://www.Vagrantup.com/index.html
http://www.cygwin.com/
https://Maven.apache.org/
https://gradle.org/
https://notepad-plus-plus.org/
https://www.virtualbox.org/
https://www.Docker.com/
https://www.python.org/
https://www.mongodb.com/
http://hadoop.apache.org/
https://www.apereo.org/projects/cas
https://www.liferay.com/
https://www.liferay.com/
https://www.jhipster.tech/
https://www.jhipster.tech/
https://Jenkins.io/index.html
http://www.eclipse.org/birt/
https://www.nagios.org/
https://grafana.com/

	Agile Development and Operation of Complex Systems in Multi-technology and Multi-company Environments: Following a DevOps Approach
	Abstract
	1 Introduction
	2 A DevOps Framework for Agile Development
	2.1 DevOps Framework Approach
	2.2 DevOps Framework Configuration Process
	2.3 Knowledge Management
	2.4 Establishment of Environments
	2.5 Transitions Configuration
	2.6 Management of Feedback

	3 Practical Implementation of DevOps Philosophy in Multi-technology Environments
	3.1 OPERANDO Ecosystem
	3.2 CITADEL Ecosystem

	4 Conclusions and Future Work
	Acknowledgements
	References

