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Abstract Microbes are integral part of our environment. They have enormous 
industrial and medicinal applications. Even they play a crucial role during digestion 
where they are present in the form of gut flora. Genomic sequences are a prerequi-
site for molecular taxonomic characterization of novel microbes, and traditional 
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microbiology is dependent on clone cultures for DNA extraction of a specific 
microbe population. As a result vast varieties of species are missed since most of the 
microbes cannot be cultured in laboratory conditions. Metagenomics skips the 
requirement of culturing the microbes in lab as it studies genetic material which is 
directly taken from environmental samples.

Microorganisms are of great significance due to their applications in health, agri-
culture, and industry. Direct DNA sequencing of environmental samples has given 
opportunity to gather information about the microorganisms that were unexplored 
so far. Screening of useful bacteria that survive in different environmental condi-
tions like heavily polluted soil, disease-affected tissues or cells, oil-contaminated 
water bodies, heavy metal-contaminated fields, etc. can be done easily by combin-
ing environmental and metagenomics approaches. The data obtained from environ-
mental sample sequencing may be of great use in discovery of new drugs and 
antibiotics, new bacterial species, plant growth promoters, bioremediation as well 
as in many other industrial applications. The number of metagenomic studies has 
increased significantly in recent years, and it is believed that this trend will continue 
its pace due to huge applicability. This chapter also provides significant elaborations 
about methodology and tools, experimental design strategies, online resources, and 
databases applicable in metagenomic data analysis.

4.1  Introduction

During the evolution of life on earth, microbes have played an important role and 
have done much more for human beings for the sustenance and survival. As these 
microbes have adapted to the earth’s environment, they are found everywhere, viz., 
on earth, inside earth, in water, and in air. To understand their impact on global ecol-
ogy, it is most important to understand their diversity and life. According to esti-
mates, about 99% of the microbes are not culturable in pure culture. It acts as the 
major debacle in understanding the microbial genetics and community ecology. 
These microbial communities are responsible for biological activities carried out in 
all environments including the ocean (DeLong 2005), soils, and human-associated 
habitats (Ravel et al. 2011). Although metagenomics is quite a young and emerging 
field, it has helped in understanding the microbial diversity which was not possible 
by using traditional and classical methods of microbiology. Metagenomics has 
emerged as the most powerful and reliable technique for genome analysis of the 
entire community of microbes overruling the need to isolate and culture individual 
microbial species (Arrial et  al. 2009). It has wide potential in discovering novel 
enzymes for industrial applications, antibiotics against many harmful microbes for 
curing diseases, and organisms for experimental purposes.

Major metagenomics themes are (a) marker metagenomics that surveys micro-
bial community structure by targeting the highly conserved 16S rRNA gene; (b) 
functional metagenomics that takes the total environmental DNA, from which it 
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infers the metabolic potential of the microbial community; and (c) identification of 
novel enzymes. Metagenomics uses two approaches: targeted metagenomics and 
shotgun sequencing. Targeted metagenomics is most commonly used to identify the 
phylogenetic diversity and the relative abundance in a given sample. This technique 
is mainly used to investigate the diversity of small subunit of rRNA (16S/18S rRNA) 
within a sample. It is often used to understand the impact of environmental contami-
nant that alters the microbial community structure. For conducting the study related 
to targeted metagenomics, the environmental DNA is extracted from the source, the 
particular gene of interest is amplified using PCR primers, and further these amplified 
results are sequenced using next-generation sequencing. Targeted metagenomics is 
useful in identifying the diversity of single gene of interest, but it is limited by the 
type of PCR primers used for the analysis (Shakya et al. 2013; Parada et al. 2016; 
Klindworth et al. 2013; Prosser 2015).

Similarly in shotgun metagenomics sequencing, the genomic complement of an 
environmental community is studied by using genome sequencing. Basically in this 
approach, the DNA is extracted from the environmental sample and fragmented to 
prepare sequencing libraries and further sequenced for the determination of total 
genomic content of that sample. Shotgun sequencing is often restricted by the depth 
of the sequencing.

Functional metagenomics has played a major role in understanding the role of 
microbial community in microbial ecology and global geochemical cycles. 
Furthermore it is a unique way to identify the novel enzymes from the environmental 
sample (Uchiyama and Miyazaki 2009). Therefore the functional metagenomics 
played major role in protein and nucleic acid database through addition of novel 
functional annotation. However major drawback of this technique includes a low hit 
rate of positive clones, low throughput, and time-consuming screening (Hosokawa 
et al. 2015).

Currently metagenomics is a powerful technique to have industrial applications 
in identification of novel biocatalysts, discovering novel antibiotics, and 
 bioremediation. The application of metagenomics is increasing rapidly, and these 
are being listed below.

4.2  Application of Metagenomics and the Impact 
on Environmental Biotechnology

The new field of metagenomics is expected to bring fruitful result for the research-
ers working in the area of microbiology in mainly two ways: in first application it 
will provide knowledge about those bacteria which are still not cultivated so far 
(about 99% are uncultured in the pure culture). Secondly it will provide access to 
whole microbe community residing in variety of natural environment. Furthermore 
as we know that microbes are quite essential component of our life for the suste-
nance and these microbes play very crucial role in industries which are backbone 
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of our present economy planet. Direct access to the genetic makeup of microbes 
of the whole ecosystem community will provide new basis for fundamental 
research and new tool for application in environment, agriculture, human health, 
bio-industry, etc. (Fig. 4.1).

4.2.1  Industrial Enzymes

There is an increasing demand of novel enzymes for industrial applications, and 
metagenomics is playing an important role in providing these biomolecules (Lorenz 
et al. 2002; Schloss and Handelsman 2003) specially enzymes that are used in wide 
range of applications (Kirk et al. 2002). These are required in minute amount to 
synthesize huge amount of key molecules that are used in producing active pharma-
ceuticals as these are the major building block of those products (Patel et al. 1994). 
There are many industrial enzymes which have a very wide application in industries 
and act as their backbone like cellulases, xylanases, lipases, amylases, etc.

Cellulases have attracted industrialists due to their wide application and crucial 
enzyme activities that are inherited in various forms within them such as endoglu-
canases (EC 3.2.1.4), exoglycosidase, and β-glucosidases (EC 3.2.1.21). Today 
cellulase is the third most widely used enzyme in industries (Wilson 2009). Cellulases 
are mainly used in animal feed and improving the digestibility. Furthermore de- 
inking of paper is another evolving application of this enzyme (Soni et al. 2008). 
Metagenomics has played a vital role in extracting cellulase from natural environ-
ments like compost soil, soil from cold region, rumen samples and many more. Even 
few workers have reported that cellulases are isolated from sugarcane soil and 
buffalo rumen (Alvarez et al. 2013; Duan et al. 2009).

Fig. 4.1 Various aspects of applications of metagenomics (also known as environmental and com-
munity genomics) in different fields of biological science
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Xylaneses are key enzymes that are widely used in degradation of xylan and 
are helpful in breaking of hemicellulose, regarded as essential component of cell 
wall. Xylaneses have wide spectrum of application in industries such as clarification 
of juices (Sharma 2012), detergents (Kumar et al. 2004), production of pharmaco-
logically active polysaccharides for the antimicrobial agent use (Christakopoulos 
et  al. 2001), antioxidants (Katapodis et  al. 2003), and production of surfactants 
(Kashyap et al. 2014). Xylanases are produced by a wide range of microbes from 
different sources that have many application in industries. It is reported that xylaneses 
are present in insect gut that could be used for conversion of biomass into ferment-
able sugar which could be used for production of biofuels (Brennan et al. 2004; Lee 
et al. 2006; Jeong et al. 2012). This enzyme was reported in the saccharification of 
reed and could be used efficiently in the conversion of biomass to fermentable sugar 
for biofuel production (Wang et al. 2012).

Lipases are mainly triacylglycerol acylhydrolases that are actively involved in 
the conversion of triglycerides into diglycerides, monoglycerides,  glycerols and 
fatty acids. Being resistant to varying environmental conditions like temperature, 
pH, organic solvent etc., they have great prospects in industries. It is widely found 
in many plant and animal sources and also reported in some microbes such as 
bacteria, fungus, and yeast, and these have varying application in oil industries, 
pharmaceutical industries, dairy industries etc. (Cardenas et al. 2001).

Amylases are mostly regarded as starch-degrading enzymes. They are quite 
abundant in plants, animals, and microbes. These have wide application in indus-
tries like food, fermentation, and pharma for hydrolysis of starch. AmyI3C6 com-
monly known as cold-adapted alpha amylase from the metagenomic libraries of 
cold and alkaline environment can be useful as it showed potent activity against 
two commercially known detergents. A novel amylase was isolated from a soil 
metagenome that showed 90% activity at low temperature which proved its poten-
tial for industrial exploitation (Sharma et al. 2010).

4.2.2  Bioactive Compounds and Antibiotics

Nowadays a major worldwide health-related problem involves treating infections 
which are resistant to antibiotics. These resistant microbes are able to cause severe 
mortality and impose a large budget on healthcare (Carlet et al. 2011). Earlier these 
antibiotics were used for treating human infection, but they became popular in 
agriculture and food industry as well as many other related sectors, thus finally 
imposing high impact on human health (Radhouani et  al. 2014). In the current 
scenario, antibiotics are considered as the pillars of the modern medicine (Ball 
et al. 2013). This bacterial resistance against widely used common antibiotics has 
forced researchers to discover novel antibiotics against these microbial infectious 
diseases.

Today metagenomics is playing a very vital role in discovery of bioactive com-
pounds and antibiotics. It is considered as an alternative way of isolating antibiotics 
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from environmental samples as well as to trace the mechanism of bacterial gene 
resistance. The combined approach of metagenomics and next-generation sequenc-
ing has paved way for success in study of antimicrobial resistance and microbial 
genomes (Forsberg et al. 2012; McGarvey et al. 2012). Generally, the bacterial gene 
resistance is mainly developed due to the horizontal gene transfer or spontaneous 
mutation in target gene (Hassan et al. 2012). The transfer of antibiotic resistance 
gene involves the mobility of genetic material to other bacterial species or the same 
group (Thomas and Nielsen 2005).

Metagenomics is putting effort to sort out the drug resistance genes in microor-
ganisms against various class of antibiotics. Its another application is identification 
of bioactive molecules having antimicrobial properties (MacNeil et  al. 2001; 
Gillespie et al. 2002; Lim et al. 2005). Today, antibiotic resistance of microbes is an 
alarming worldwide problem and emerging as a major threat (Čivljak et al. 2014) as 
these microbes are developing resistance against many traditional antibiotics, and 
on the other hand, many researchers are discovering many novel antimicrobial com-
pounds from different environmental sources including microorganisms, plants, and 
animals likewise (Roy et al. 2013; de Souza Candido et al. 2014). It is reported that 
uncultivated soil microbes have potential of novel biomolecules which could be 
very well exploited in any biotechnological application (Wilson and Piel 2013). 
In this way we can conclude that these soil microbes can be an alternative source 
of bioactive molecules. Various active biomolecules which are identified by 
metagenomic approach include teicoplanin, friulimicin, azinomycin, rapamycin, 
borregomycin, etc.

4.2.3  Bioremediation

The process to degrade and detoxify environmental contaminants through microbe- 
mediated process is known as bioremediation (Chakraborty et al. 2012). It involves 
removal of biological and anthropogenic contaminants through natural process, so 
it is considered as the most effective approach (Lovley 2003). Bioremediation 
approaches can be classified into three main classes, (a) natural attenuation, (b) 
biostimulation, and (c) bioaugmentation.

In natural attenuation native organisms are used for detoxifying contaminants 
through using natural process. This process is quite effective in terms of cost, and 
no need of altering additives is required for this. In biostimulation the rate of biore-
mediation is increased through using native organisms but needs to remove some 
environmental constraints. This approach required addition of some nutrients to 
achieve fast rate of bioremediation. Sometimes this approach failes to achieve their 
faster rate of bioremediation by using native organism due to their inability to 
degrade contaminant of concern. To overcome this problem, some nonnative organ-
isms or enzymes are added to enhance the rate of bioremediation which is known as 
bioaugmentation. This approach is considered as most invasive as nonnative organ-
ism. In some cases bioaugmentation is considered as most convenient mean of 
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remediation (Payne et al. 2011; Salanitro et al. 2000). The major drawback of 
bioaugmentation is that nonnative organism can’t survive under the condition found 
in the contaminated ecosystem.

In the present scenario, metagenomic approach is widely used for environmental 
monitoring and bioremediation. Metagenomics approaches that are often used for 
monitoring the environmental microbes are targeted metagenomics or shotgun 
metagenomics. Targeted metagenomics is widely exploited to study the phyloge-
netic diversity and relative abundance of a particular gene in the environment. This 
approach is used to study the diversity of the rRNA sequence in the sample (16S/18S 
rRNA). It is often used to study the impact of environmental contaminant in micro-
bial community structure. The major advantage of targeted metagenomics is that it 
provides the information about microbial community present in the set of sample 
and change in microbial diversity before and after perturbation.

Likewise in the shotgun metagenomics, the total genomic complement of the 
environmental community is probed by using genome sequencing. In this approach, 
environmental DNA is extracted and fragmented to prepare genomic libraries and 
further sequenced to determine the total genomic content. Using this approach 
potential of a microbial community can be identified. Recently metatranscriptomics 
and metaproteomics are being widely used to apply over environmental system. In 
metatranscriptomics ribonucleic acid (RNA) is extracted from the sample and con-
verted to complementary deoxyribonucleic acid (cDNA) in a similar function as in 
metagenomics. The metaproteomics approach does not involve the nucleic acid 
sequencing but high-resolution mass spectrometry combined with enzymatic digest 
of the proteins and liquid chromatography (Hettich et al. 2013). Metaproteomics 
provides an information about the kind of protein present inside the environmental 
sample including posttranslational modification in proteins that may impact their 
activity.

Many industries are responsible for increased level of hydrocarbons in the envi-
ronment due to the incomplete combustion of fossil fuel. Generation of these 
anthropogenic compounds into the environment results into the accumulation of 
large amount of aromatic hydrocarbons which leads to contamination of ecosystem 
(Jacques et al. 2007). Microorganisms are involved in many biogeochemical cycles 
and have potential of degradation of hydrocarbons (Alexander 1994). Metagenomics 
can be helpful in degradation of aromatic compounds by screening and identifying 
suitable organisms in a metagenomic library obtained from oil source (Sierra-García 
et al. 2014). Many genes and their pathways were identified for the degradation of 
phenol and aromatic compound by using metagenomic approach (Silva et al. 2013). 
Some bacterial population having capacity for the degradation of polycyclic aro-
matic compound (PAH) were isolated from cold environment by identifying their 
functional target (Marcos et al. 2006).

As we know that oil spillage has badly affected many parts of the natural marine 
ecosystem (National Academy of Science 2005) due to  increased anthropogenic 
activity (Hazen et  al. 2016; Atlas and Hazen 2011). In this context Deepwater 
Horizon oil spill is considered as the worst marine oil spill in the USA and consid-
ered as major threat for marine ecosystem biology (King et  al. 2015). The first 
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application of metagenomics was to understand the mechanism behind the oil bio-
degradation in marine environment. The targeted metagenomics was applied to find 
out the microbial community in the surface water and reported as Cycloclasticus, 
Alteromonas, Halomonas, and Pseudoalteromonas (Redmond and Valentine 2012; 
Gutierrez et al. 2013). However they also reported that deep water is primarily com-
posed of psychrophilic oil-degrading microbes related to Oceanospirillales, 
Colwellia, and Cycloclasticus (Hazen et al. 2010). Shotgun metagenomics approach 
was used for sample collected during Deepwater Horizon oil spill which revealed 
diverse group of genes responsible for chemotaxis and hydrocarbon degradation 
(Mason et  al. 2012). The results of the single amplified genome showed genes 
involved in degradation of n-alkanes and cycloalkanes. Thus metagenomics 
sequencing approach helps in understanding the mechanism behind the oil degrada-
tion by microbial community in marine environment.

4.2.4  Applications in Agriculture

The productivity of agriculture is severely affected by presence of organic and inor-
ganic anthropogenic pollutants that play a very significant role in abiotic stress. 
These kinds of abiotic stresses are responsible for reduction in crop yield. To 
improve the quality of such soil contaminated by anthropogenic pollutants, biore-
mediation is required. Microorganisms of soil metagenome are quite capable of 
producing biosurfactants which can remove many anthropogenic pollutants which 
may be either hydrocarbons or heavy metals (Sun et al. 2006). Biosurfactants are 
capable of removing hydrocarbons and heavy metals through the combination of 
soil washing and cleanup technology (Pacwa-Płociniczak et  al. 2010; Liu et  al. 
2010a, b; Partovinia et al. 2010; Gottfried et al. 2010; Coppotelli et al. 2010; Kang 
et al. 2010). Some studies have revealed that biosurfactants isolated Lactobacillus 
pentosus had reduced the octane hydrocarbons from soil (Moldes et al. 2011). Some 
biosurfactant-producing species like Burkholderia isolated from oil-contaminated 
metagenome may act as a potential candidate for the reduction (bioremediation) of 
pesticides (Wattanaphon et al. 2008). Some studies have also revealed that biosur-
factants are more efficient in removal of organic insoluble pollutant from soil than 
surfactants (Cameotra and Bollag 2003; Straube et al. 2003). The soil samples from 
such fields shall be subjected to metagenomics analysis, library preparation and 
subsequent analysis for identifying biosurfactant-producing microbes.

Besides application of biosurfactants for removal of many anthropogenic mole-
cules which are either hydrocarbon or heavy metals, these may also be applicable in 
removal of plant pathogens due to their antimicrobial nature, thus promoting sus-
tainable agriculture. Biosurfactants which are produced by rhizobacteria have 
antagonistic properties (Nihorimbere et al. 2011). For sustainable agriculture, bio-
surfactants and chemical surfactants are useful in controlling parasitism, antibiosis, 
competition, induced systemic resistance, and hypovirulence (Singh et al. 2007). In 
fact the application of surfactants in agriculture is mainly for enhancing the antago-
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nistic activity of microbes and microbial products (Kim et al. 2004). Some studies 
have also revealed that these surfactants when applied in combination of certain 
fungus like Myrothecium verrucaria are found to be useful in the control of weed 
(Boyette et al. 2002).

Additionally, biosurfactants are also useful for inhibition of many phytopatho-
gens. Biosurfactant isolated from Pseudomonas and Bacillus is reportedly used for 
the control of soft rot caused by Pectobacterium and Dickeya spp. and thus has 
been  helpful in protection of economically valuable crops (Krzyzanowska et  al. 
2012). Many studies have reported that antipathogenic agents like rhamnolipids 
have the ability to kill zoospore of plant pathogens that are being resistant against 
many commercial pesticides (Sha et al. 2011, Kim et al. 2011). Some researchers 
have proposed that rhamnolipids also stimulate immunity in plants against various 
infectious agents (Vatsa et al. 2010). The lipopeptide biosurfactant of Bacillus ori-
gin was reported to inhibit growth of some phytopathogenic fungi like Fusarium 
spp., Aspergillus spp., and Bipolaris sorokiniana. Such biosurfactant of Bacillus 
origin can be very well exploited for their function as biocontrol agent (Velho et al. 
2011). Surfactin isoform and this lipopeptide biosurfactant produced by Brevibacillus 
brevis strain HOB1 have reported potent antibacterial and antifungal properties 
which could be utilized for control of phytopathogens (Haddad 2008). Pseudomonas 
fluorescens biosurfactants are well reported for their antifungal property (Nielsen 
et al. 2002). Biosurfactants produced by the Pseudomonas fluorescens has potential 
in inhibition of certain fungal pathogens like Pythium ultimum (causes damping off 
and root rot of plants), Fusarium oxysporum (wilting in crop plants), and 
Phytophthora cryptogea (responsible for rotting of fruits and flowers) (Hultberg 
et  al. 2008). Biosurfactants produced by Bacillus subtilis isolated from soil 
 metagenome are found useful in the control of Colletotrichum gloeosporioides 
which is a causative agent of anthracnose on papaya leaves (Kim et al. 2010). A 
common plant pathogen Pseudomonas aeruginosa is found to be inhibited by the 
biosurfactants of staphylococcus of oil-contaminated soil metagenome (Eddouaouda 
et al. 2012). The abovementioned evidences support the claim that biosurfactants 
produced by many microbes could be very useful for control of various kinds of 
phytopathogens. Furthermore, these biosurfactants are emerging as an alternative 
source of commonly used pesticides and insecticides which are currently in agricul-
tural practices. Metagenomics has great prospects in identifying many phytopatho-
gens, plant growth-promoting microbes and biosurfactant-producing microbes as 
well.

4.2.5  Applications in Human Health

Human beings are always surrounded by microbes as they not only surface over 
them but also live within their body. The microbes which are residing inside the 
human flora are not fully characterized (less than 1%). Furthermore there are certain 
microbes in our environment which are causative agents of many infectious 
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diseases. These infectious microbes are mainly characterized by laboratory-based 
surveillance and syndromic surveillance which are strictly relying on the non-labo-
ratory data. Detecting these causative agents of infectious diseases is failed in 
approximately 40% gastroenteritis cases and 60% in encephalitis cases when con-
ventional approach is used (Finkbeiner et al. 2008; Ambrose et al. 2011).

The Human Microbiome Project enabled the scientific community to know about 
the sophisticated sequencing technologies and association of microbiome toward 
human health and disease (Peterson et al. 2009). Metagenomics has the potential to 
detect both known and novel microorganisms using culture-independent sequenc-
ing and analysis of all nucleic acids taken from the sample. The whole genome 
sequences of the pathogens can be detected using the advance bioinformatics tools 
which further help in drawing inferences about antibiotic resistance, virulence and 
evolution.

In the present scenario, metagenomics is playing a very crucial role in investigat-
ing novel species and strains (Wan et al. 2013; Mokili et al. 2013; Xu et al. 2011), 
outbreaks (Loman et al. 2013; Greninger et al. 2010), and complex diseases (Wang 
et al. 2012; Cho and Blaser 2012). As with the advancement of the next-generation 
sequencing and its cost-effectiveness, it could become an essential approach in 
investigation of infectious diseases at very low abundance and can be performed 
from clinical samples (Seth-Smith et al. 2013) or from single cells (McLean et al. 
2013). The metagenomics approaches which are used for the detection of these 
infectious or pathogenic agents include deep amplicon sequencing and shotgun 
sequencing.

In deep amplicon sequencing, certain gene families are reported in every known 
member species in a particular taxonomic group. It employs the amplification of 
certain taxonomic markers such as rRNA genes. By using next-generation sequenc-
ing, many different amplicons in a sample can be sequenced, and the resulting 
sequences are compared with the reference standard to identify the species/genus 
associated with each sequence. The deep amplicon sequencing is capable of identi-
fying the novel microorganisms. In the case of bacterial deep amplicon sequencing, 
they use specific primers that are specific to the conserved genes such as 16S, rRNA, 
chaperonin-60 (Links et al. 2012), and RNA polymerase (rpoB) (Wu et al. 2011). 
Likewise in protozoan and fungal deep amplicon sequencing approach, they only 
target 18S rRNA gene regions (Leng et al. 2011; Sirohi et al. 2012; Iliev et al. 2012). 
Major advantage of the deep amplicon sequencing lies in an enhancement of the 
assay’s sensitivity for the microorganisms, with higher resolution. However the 
major drawback of this approach is the inaccurate estimation of the microbial com-
munity composition, which requires prior knowledge of pathogenic agent.

In shotgun metagenomics, all microbes are taken into account after sequencing 
all the nucleic acids extracted from a specimen. Extracted nucleic acids from the 
specimen are sequenced using next-generation approach, and their results are com-
pared with their reference database. The database used in shotgun metagenomics 
are usually much larger than those used in deep amplicon sequencing and contain 
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all the known sequences as compared to the set of sequence from a single gene fam-
ily. The major advantage of shotgun metagenomics over deep amplicon sequencing 
is that it is less biased and generates data that better reflect the sample’s true popula-
tion structure. Besides pathogen detection using shotgun metagenomics approach, 
it also has the potential to generate complete or nearly complete pathogen genome 
assemblies from the sample (Seth-Smith et al. 2013; McLean et al. 2013). These 
results provide an estimation of microbial phenotypes and microbial genotypes by 
determining the presence or absence of antimicrobial resistance and epidemic 
dynamics (Bertelli and Greub 2013).

Although metagenomics has immense potential to exploit genomics based infor-
mation for identifying microbiomes that are relevant to the public health. Additionally 
it is of use in hospitals and healthcare facilities to identify unknown or novel patho-
gens as well as  for characterization of normal and disease associated microbial 
communities. Through metagenomics approach, it became quite easier to identify 
the 78 species from the biofilm from the hospital sink with new bacterial phylum 
(McLean et  al. 2013). Thus in the present scenario, metagenomics approach has 
proved itself as the most powerful tool for the detection of novel microorganisms.

4.2.6  Environmental Applications

Various kinds of microbes are living in our environments which are helpful in many 
ways. They play a very important role in decomposing dead material present in the 
environment and making it free from pollutants. There are certain microbes which 
are able to degrade oil whenever it spills over water surface. Many microbes also 
have the ability of cleaning the ground water. Here metagenomics may play very 
important role in identifying particular species which are concerned with water 
treatment purpose. Oil-consuming microbes that are present in sea are suitable 
examples of microbial bioremediation of water. Many other bacteria that are present 
in the soil have qualities of consuming heavy metals and may be helpful in reducing 
soil toxicity. Identification of these microbes is a major hurdle in further research 
and analysis in this regard. So this area is a hot cake for metagenomics and environ-
mental scientists as well.

4.3  Methods and Tools

The steps involved in metagenomics analysis have been shown in the flowchart 
given in Fig. 4.2, and each part is explained in detail along with the tool used in 
particular methods. Figure 4.2 shows flowchart for experiment design, sampling, 
sample fractionation for obtaining DNA, that is further analyzed using different 
computational tools to find out solution to various research problems.
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4.3.1  Experimental Design

Experimental design plays a major role in getting accurate, reliable, and high- 
quality data. Researchers working in the field of metagenomics need to focus on 
number of replication of data, cost-effectiveness for the sequencing, and accuracy 
of methods that are used to perform the metagenomics data analysis. In order to 
obtain accurate and qualitative results in the field of metagenomics, there should be 
minimum standards during experimental design. While designing the experiment, 
one must consider the biological and technical replicates, budget should be fixed for 
sequencing, best protocols should be searched for high yield and good quality of 
DNA, and sequencing platform should also be discussed. The place should be 
clearly defined in the terms of certain parameters, from where the sample has to be 
taken (Cooke et al. 2017).

Experimental Design

Sampling

Sampling fractionation

DNA Extraction

DNA Sequencing

Quality Control

Assembly of data

Annotation of data

Statistical Analysis of data

Data storage

Data sharing

Fig. 4.2 Flowchart of 
experimental and 
computational methods 
that are used to retrieve the 
genomics information 
which is further analyzed 
by different bioinformatics 
tools. This analysis helps 
in screening and 
identification of uncultured 
microbes that are directly 
taken from environmental 
samples
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4.3.2  Sampling

After the experimental design, sample is collected from different sources, i.e., soil, 
air, water, biopsy, plants, etc. which is known as sampling. The quality of data we 
obtained from metagenomics depends on sampling (Thomas et  al. 2012). While 
describing the biodiversity, the sample should represent whole population (Wooley 
et al. 2010) and it should also represent habitat. While collecting the samples, one 
should know about the time (i.e., day, date, and year of sample collection), number 
of samples, and volume of samples needed to describe the environmental condi-
tions. Strategy of sampling method and variability of experimental methods should 
be clear. For collection of representative sample, it is very important to know the 
amplitude of variation in habitat environment, for example, soil communities with 
varying soil types like clay, silt and sand particles, plant matter in various stages of 
decomposition, and variety of invertebrates. So, while sampling one must consider 
the scale i.e. size of habitat, biological variation, experimental variability, reproduc-
ibility, repository and singletons.(The New Science of Metagenomics).

4.3.3  Sample Fractionation

Sample fractionation is a process of lysing the cell to extract the genomic DNA. It is 
done for obtaining the genomic DNA from abundant as well as rare representative of 
each taxonomic groups possessing different thickness of cell wall and cell membrane. 
During sample fractionation or cell lysis, genomic DNA is also exposed to different 
types of nucleases. So, it’s very important to deactivate or inactivate the nucleases by 
adding strong denaturing agents to keep our genomic DNA safe (Virgin and Todd 
2011; Claesson et al. 2012; Yatsunenko et al. 2012). Cell lysis can be performed by 
thermal, chemical, mechanical, and enzymatic methods (Felczykowska et al. 2015).

4.3.4  DNA Extraction

DNA extraction is a crucial step for analyzing the genome of unculturable microbe. 
So, it’s very important to select a qualitative and quantitative DNA extraction 
method for getting high yield and good quality of DNA (Felczykowska et al. 2015). 
The sample contains DNA in various packages like virus particles, eukaryotic DNA, 
and prokaryotic DNA including free DNA. This may be suspended in liquid, bound 
to solid, or trapped in the biofilm or tissue. So, extraction methods are selected on 
the basis of medium present and interest of population. Basically, there are two 
methods for extraction of DNA, i.e., direct method and indirect method. In the first 
method, cells are lysed within the sample, and then DNA is extracted, e.g., viruses, 
and later one includes separation of sample from noncellular material before 
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lysis. The yield of DNA product is nearly 100 times lower in the indirect method of 
DNA extraction than direct, but the bacterial diversity of DNA recovered by indirect 
means was distinctly higher. (LaMontagne et al. 2002; Van et al. 1997; Ogram et al. 
1987; Berry et al. 2003; Jacobsen and Rasmussen 1992).

4.3.5  DNA Sequencing

Generally, there are three types of sequencing methods, viz., amplicon sequencing, 
shotgun sequencing, and metagenomics sequencing. Amplicon sequencing is used 
for characterization of microbiota diversity and it is the most commonly used tech-
nique. It targets the small subunit of ribosomal RNA (16s) locus, which acts as 
marker which gives information about phylogeny and taxonomy (Pace et al. 1986; 
Hugenholtz and Pace 1996). This sequencing method is used to characterize a large 
range of microbial diversity in the human gut (Yatsunenko et al. 2012), Arabidopsis 
thaliana roots (Lundberg et al. 2012), ocean thermal vents (McCliment et al. 2006), 
hot springs (Bowen DeLeon et al. 2013), and Antarctic volcano mineral soils (Soo 
et al. 2009). Due to certain limitations of amplicon sequencing, shotgun sequencing 
came in the picture. Novel and highly diverged species were difficult to study using 
amplicon sequencing (Acinas et al. 2004).

Shotgun sequencing has capability to overcome the limitations of previous 
approach. This approach relies on extracting DNA from cells in community and 
fragmenting it into tiny parts (i.e., reads) that are used to align against the known 
genome and 16S rRNA. Hence, it provides opportunity to explore microbiota com-
munity with two aspects (Sharpton 2014). Shotgun sequencing has also limitation 
like large data handling, reads may not present in the whole genome, and sometimes 
two reads of the same gene don’t overlap (Schloss 2008; Sharpton et  al. 2011). 
Advancement in shotgun sequencing enables it to answer the above-raised ques-
tions and has been used for identification of new viruses (Yozwiak et al. 2012) as 
well as characterization of uncultured bacteria (Wrighton et al. 2012). This advanced 
metagenomics sequencing has been used to characterize the microbes associated 
with roots (Bulgarelli et al. 2013; Vorholt 2012) and also used for identification of 
taxa that are associated with the human gut (Morgan et al. 2012).

4.3.6  Quality Control

The sequencing data obtained from NGS technology is first subjected to quality 
control  studies. It is the process of sorting out and screening low-quality reads, 
which affect the downstream analysis (Zhou et al. 2014). The accuracy of microbial 
biodiversity can be improved by quality filtering (Handelsman 2004). There are 
several tools available for quality control as shown in Table 4.1.
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4.3.7  Assembly

Assembly means reconstruction of genome from smaller fragment of DNA, i.e., 
reads obtained through sequencing (Reich et  al. 1984). Basically, there are two 
types of assemblies, i.e., de novo assembly in which the genome is constructed from 
reads data and the second is comparative assembly which is used to reconstruct the 
genome using a closely related organism (Medvedev et al. 2007). For the de novo 
assembly, three algorithm-based strategies are used named as greedy (Pop and 
Salzberg 2008), overlap layout consensus (Myers 1995), and De Bruijn graph 
(Zerbino and Velvet 2008; Pevzner et al. 2004). Improved de novo assemblies have 
been generated with the help of a known reference genome to form a comparative 
assembly like OSLay (optimal syntenic layout of unfinished assemblies) (Richter 
et al. 2007), Projector 2 (Van et al. 2005) and ABACAS (algorithm-based automatic 
contiguation of assembled sequences) (Assefa et al. 2009).

4.3.8  Annotation

Functional annotation of metagenomics data obtained after the assembling of reads 
involves  predicting the gene, biological function, gene pathway annotation, and 
metabolic pathway annotation. The tools used for different functional annotations 
are shown in Table 4.2.

Table 4.1 List of online tools that are useful for assessing the overall quality of a sequencing run 
and are widely used in next-generation sequencing (NGS) data production environments as an 
initial quality control (QC) checkpoint

I. FastQC (fast quality 
control)

Checks quality of data in terms of base quality, guanine and 
cytosine (GC) content, and sequencing length (http://www.
bioinformatics.bbsrc.ac.uk/projects/fastqc/)

II. FastX ToolKit Toolkit preprocessing of raw data is done, which includes 
read length trimming, identical read collapsing, adapter 
removing, and format conversion (http://hannonlab.cshl.edu/
fastx_toolkit/)

III. PRINSEQ (PReprocessing 
and INformation of 
SEQuences)

It is a web interface and provides more detail options for 
quality checking (Schmieder and Edwards et al. 2011)

IV. NGS QC Toolkit (next- 
generation sequencing 
quality control)

This tool performs quality control and consults NGS data 
quality control using Roche 454 and illumine platform (Patel 
and Jain. 2012)
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4.4  Metagenomics Databases and Online Resources

There are many databases and online tools for analyzing and retrieving metage-
nomics data. Table 4.3 shows the name along with link of such databases/servers. 
The European Bioinformatics Institute (EBI) Metagenomics enables us to submit, 
analyze, visualize, and compare our data (Mitchell et al. 2015). MG-RAST is a 
metagenomics analysis server for annotation of sequence fragments, their phyloge-
netic classification, functional classification of samples, and comparison between 
multiple metagenomes. It also computes an initial metabolic reconstruction for the 
metagenome and allows comparison of metabolic reconstructions of metagenomes 
and genomes (Wilke et al. 2016). MEGAN (Huson et al. 2011) is a comprehensive 
toolbox for analyzing microbiome data. One can perform the different analytics 
using this tool like taxonomic analysis, functional analysis, etc. QIIME (Quantitative 
Insights Into Microbial Ecology) is a freely available bioinformatics tool for per-
forming microbiome analysis from raw DNA sequencing data. One can perform 
demultiplexing and quality filtering, OTU (operational taxonomic unit) picking, 
taxonomic assignment, phylogenetic reconstruction, and diversity analyses and 
visualizations (Caporaso et al. 2010). Mothur is an open-source, expandable soft-
ware to fill the bioinformatics needs of the microbial ecology community (Schloss 
et al. 2009). RDP (ribosomal database) provides quality-controlled, aligned, and 

Table 4.2 List of tools and servers useful in metagenomics analysis. Some of them are freely 
available and compatible with Windows/Linux for functional annotation of metagenomics data and 
few are paid. Function of tool is shown in the first column and corresponding name is shown in the 
second column.

Annotation Tools

Gene prediction Metagenome annotator (Noguchi et al. 2008)
Frag Gene Scan (Rho et al. 2010)
Gene Mark(Zhu et al. 2010)
Orphelia (Hoff et al. 2009)
Gliommer MG (Kelley et al. 2012)

Functional 
annotation

IGM/M: The integrated microbial genomes and metagenomes (Markowitz 
et al. 2012)
CAMERA: A community resource for metagenomics (Seshadri et al. 2007)
MG-RAST: Metagenomics and rapid annotation using subsystems 
technology (Glass et al. 2010)
METAREP: Metagenomics reports (Goll et al. 2010)
RMMCAP: Rapid analysis of multiple metagenomes with a clustering and 
annotation pipeline (Li 2009)
Smash community(Arumugam et al. 2010)
MEGAN4: MEtaGenome ANalyzer (Huson et al. 2011)
Comet (Linger et al. 2011)
Web MGA: Metagenomic analysis (Wu et al. 2011)
Amphora net (Kerpesi et al. 2014)
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annotated bacterial and archaeal 16S rRNA sequences, fungal 28S rRNA sequences, 
and a suite of analysis tools to the scientific community.

RDP is an online tool which is used to study the new fungal 28S rRNA sequence 
collection. RDP tools are now freely available in packages for users to incorporate 
in their local workflow (Cole et al. 2009). SILVA (from Latin silva) is an online 
freely accessible tool to check the quality of reads and aligned (16S/18S, small 
subunit ribosomal RNA) and large subunit (23S/28S, LSU) ribosomal RNA (rRNA) 
sequence data of bacteria, archaea, and eukarya (Quast et  al. 2013). Real Time 
Metagenomics is an online freely available tool which performs annotation of 
metagenomes by relating the individual sequence reads with a database of known 
sequences and assigning a unique function to each read. They generated a novel 
approach to annotate metagenomes using unique k-mer oligopeptide sequences 
from 7 to 12 amino acids long (Edwards et al. 2012).

4.5  Bioinformatics-Based Data Analysis

Bioinformatics-based data analysis can be done using short reads and assembled 
contigs present in the short read archive (SRA) format (Fig. 4.3). The metagenomics 
SRA data is firstly treated to sort out high-quality reads or sequences. The pretreat-
ment includes:

Table 4.3 List of different tools and servers that are used for metagenomics data analysis. Some 
tools are freely available that can be downloaded and compatible with Windows and Linux, while 
servers are freely available online

Name of Tool Link Reference

EBI metagenomics https://www.ebi.ac.uk/metagenomics/ Mitchell et al. (2015)
MG-RAST http://metagenomics.anl.gov/ Wilke et al. (2016)
MEGAN http://ab.inf.uni-tuebingen.de/software/megan Huson et al. (2011)
QIIME http://qiime.org Caporaso et al. 

(2010)
Mothur http://www.mothur.org Schloss et al. (2009)
RDP 16S database http://rdp.cme.msu.edu Cole et al. (2009)
SILVA rRNA database http://www.arb-silva.de Quast et al. (2013)
Greengenes 16S 
database

http://greengenes.lbl.gov DeSantis et al. 
(2006)

EzTaxon-e http://eztaxon-e.ezbiocloud.net Kim et al. (2012)
UNITE ITS database http://unite.ut.ee Abarenkov et al. 

(2010)
Real-time 
metagenomics

http://edwards.sdsu.edu/RTMg/ Edwards et al. (2012)

IGM/M https://img.jgi.doe.gov/cgi-bin/m/main.cgi Victor et al. (2005)
Metabenchmark http://www.ucbioinformatics.org/

metabenchmark.html
Lindgreen (2016)
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 (a) Removal of adapters and linkers
 (b) Removal of duplicate sequences (dereplication)
 (c) Quality assessment

Before pretreatment of data, quality of data is checked by checking base quality, 
GC content, sequence dereplication levels, and adapter content using FastQC. Quality 
control of metagenomics data is done by RSeQC (quality control of RNA-seq 
experiments) followed by RNA-SeQC (Wang et  al. 2012; De Luca et  al. 2012). 
Once data become clean, then it can be used for functional annotation. After pretreat-
ment of data, assembling of reads is done for getting the functional contigs. Data 
size generated after sequencing can be reduced by metagenome assembly by using 
integrated computational approach (Howe et al. 2014).

Reference-based and de novo-based methods are used for assembling the reads. The previous 
one is used to align the short reads against the related genome, while the latter one is used 
to find out the novelty in genes against the similar reference genome. It requires a large 
memory and high computational methods. Once assembling is done, binning is performed. 
It is a computational process of clustering or assigning the contigs that may represent 
individual genome/taxon or closely related microbes. Homology-based tools are used to 
perform the binning, i.e., MetaPhlAn2, MetaPhyler, and CARMA (Segata et al. 2012; Liu 
et al. 2010a, b; Gerlach and Stoye 2011). Day by day, technology is improving which 
leads to reduction in sequencing cost; hence researchers can access the environmental 

Meta-genomics
Sequencing

Data
Pre-treatment

Assembly

Binning

Raw reads

Clean
reads

Contigs

Genomes

Gene
Ontology

Pathway
Detection

Functional
Annotation

GCNA

Phylogenetic
profile

PPI
Construction

Fig. 4.3 Flowchart for analysis of data generated by different metagenomics experiments. The 
procedure involves use of several computational biology tools for retrieving functional information 
in terms of pathway, interaction network, and gene ontology hidden in the metagenomics data. 
GCNA (gene co-expression network analysis) and PPI (protein-protein interaction network) stud-
ies are useful for identification of interactors
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metagenome, and bioinformatics tools can be integrated with metagenome data to produce 
useful results and findings (Albertsen et al. 2013).

Structural and functional annotation of microbial community can be done by using 
assembled reads and unassembled reads too. It is well proven that unassembled 
short reads contain original information that can explain about functional genes, 
metabolic profile, and quantitative composition of microbial taxa (Davit Bzhalava 
and Joakim Dillner 2013).

4.6  Conclusion

Metagenomics is a continuously increasing and developing field. Modern tools and 
techniques like bioinformatics, NGS technology, and data analysis methods are 
proving to be facilitators of the trending research field. Biological data is continu-
ously increasing its size; hence researchers have golden opportunity to solve or 
retrieve the hidden information present in assembled or unassembled reads using 
modern analytical tools more efficiently. Direct DNA sequencing of environmental 
samples has given opportunity to gather information about the microorganisms that 
were unexplored so far. Screening of useful bacteria that survive in extreme envi-
ronmental conditions, heavily polluted soil, disease-affected tissues or cells, oil- 
contaminated water bodies, heavy metal-contaminated fields, etc. can be done easily 
by combining environmental and metagenomics approaches. The data obtained 
from environmental sample sequencing may be of great use in discovery of new 
drugs and antibiotics, new bacterial species, plant growth promoters, bioremedia-
tion, as well as many other industrial applications. This article presents a detailed 
account of applications of metagenomics especially in the field of environmental 
biotechnology with special focus on methods and tools useful in sample collection, 
sequencing, and analyzing the metagenomics data.
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