
Atsuo Inomata
Kan Yasuda (Eds.)

 123

LN
CS

 1
10

49

13th International Workshop on Security, IWSEC 2018
Sendai, Japan, September 3–5, 2018
Proceedings

Advances in Information
and Computer Security

Lecture Notes in Computer Science 11049

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Atsuo Inomata • Kan Yasuda (Eds.)

Advances in Information
and Computer Security
13th International Workshop on Security, IWSEC 2018
Sendai, Japan, September 3–5, 2018
Proceedings

123

Editors
Atsuo Inomata
Tokyo Denki University
Tokyo
Japan

Kan Yasuda
Nippon Telegraph and Telephone
Corporation

Tokyo
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-97915-1 ISBN 978-3-319-97916-8 (eBook)
https://doi.org/10.1007/978-3-319-97916-8

Library of Congress Control Number: 2018950103

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 13th International Workshop on Security, IWSEC 2018, was held at Sakura Hall of
Tohoku University in Sendai, Japan, during September 3–5, 2018. The workshop was
co-organized by ISEC (the Technical Committee on Information Security in Engi-
neering Sciences Society of IEICE), CSEC (the Special Interest Group on Computer
Security of IPSJ), and Cyberscience Center, Tohoku University.

This year, the workshop received 64 submissions, out of which two papers were
withdrawn before the review process, and two other papers were withdrawn during the
process. After extensive reviews and shepherding, we eventually accepted 18 regular
papers and two short papers. Each submission was anonymously reviewed by four
reviewers, and four (out of the 18) regular papers were accepted after revision under
shepherding. These proceedings contain revised versions of the accepted papers.

The Best Paper Award was given to “Chosen Message Attack on Multivariate
Signature ELSA at Asiacrypt 2017” by Yasufumi Hashimoto, Yasuhiko Ikematsu, and
Tsuyoshi Takagi, and the Best Student Paper Award was given to “Estimated Cost for
Solving Generalized Learning with Errors Problem via Embedding Techniques” by
Weiyao Wang, Yuntao Wang, Atsushi Takayasu, and Tsuyoshi Takagi. In addition to
the presentations of the accepted papers, the workshop also featured a poster session,
SCIS/CSS invited talks, and two keynote talks. The keynote talks were given by
Naofumi Homma and by Vasaka Visoottiviseth.

A number of people contributed to the success of IWSEC 2018. We would like to
thank all authors for submitting their papers to the workshop, and we are also deeply
grateful to the members of the Program Committee and to the external reviewers for
their in-depth reviews and detailed discussions. We must mention that the selection
of the papers was an extremely challenging task. Last but not least, we would like to
thank the general co-chairs, Atsushi Fujioka and Masayuki Terada, for leading the
Organizing Committee, and we would also like to thank the members of the Organizing
Committee for ensuring the smooth running of the workshop.

June 2018 Atsuo Inomata
Kan Yasuda

IWSEC 2018
13th International Workshop on Security

Organization

Sendai, Japan, September 3–5, 2018

co-organized by
ISEC in ESS of IEICE

(Technical Committee on Information Security in Engineering Sciences Society
of the Institute of Electronics, Information and Communication Engineers)

and
CSEC of IPSJ

(Special Interest Group on Computer Security of Information Processing
Society of Japan)

and
Cyberscience Center, Tohoku University

General Co-chairs

Atsushi Fujioka Kanagawa University, Japan
Masayuki Terada NTT DOCOMO, Inc., Japan

Advisory Committee

Hideki Imai University of Tokyo, Japan
Kwangjo Kim Korea Advanced Institute of Science and Technology,

South Korea
Christopher Kruegel University of California, Santa Barbara, USA
Günter Müeller University of Freiburg, Germany
Yuko Murayama Tsuda College, Japan
Koji Nakao National Institute of Information and Communications

Technology, Japan
Eiji Okamoto University of Tsukuba, Japan
C. Pandu Rangan Indian National Academy of Engineering, India
Kai Rannenberg Goethe University Frankfurt, Germany
Ryoichi Sasaki Tokyo Denki University, Japan

Program Co-chairs

Atsuo Inomata Tokyo Denki University, Japan
Kan Yasuda Nippon Telegraph and Telephone Corporation, Japan

Organizing Committee

Hiroaki Anada University of Nagasaki, Japan
Nuttapong Attrapadung National Institute of Advanced Industrial Science

and Technology, Japan
Keita Emura National Institute of Information and Communications

Technology, Japan
Takuya Hayashi National Institute of Information and Communications

Technology, Japan
Makoto Iguchi Kii Corporation, Japan
Shuji Isobe Tohoku University, Japan
Satoru Izumi Tohoku University, Japan
Ryo Kikuchi Nippon Telegraph and Telephone Corporation, Japan
Takaaki Mizuki Tohoku University, Japan
Shiho Moriai National Institute of Information and Communications

Technology, Japan
Ken Naganuma Hitachi, Ltd., Japan
Yoshitaka Nakamura Future University Hakodate, Japan
Tetsushi Ohki Shizuoka University, Japan
Yuji Suga Internet Initiative Japan Inc., Japan
Nobuyuki Sugio NTT DOCOMO, Inc., Japan
Keisuke Tanaka Tokyo Institute of Technology, Japan
Yohei Watanabe The University of Electro-Communications, Japan
Sven Wohlgemuth Hitachi, Ltd., Japan
Takeshi Yagi NTT Security (Japan) KK, Japan
Dai Yamamoto Fujitsu Limited, Japan
Toshihiro Yamauchi Okayama University, Japan

Program Committee

Mohamed Abid University of Gabes, Tunisia
Mitsuaki Akiyama Nippon Telegraph and Telephone Corporation, Japan
Nuttapong Attrapadung National Institute of Advanced Industrial Science

and Technology, Japan
Josep Balasch KU Leuven, Belgium
Gregory Blanc Telecom SudParis, France
Olivier Blazy Université de Limoges, France
Yue Chen Palo Alto Networks, USA
Celine Chevalier Université Pantheon-Assas, France
Sabrina De Capitani

di Vimercati
DI - Università degli Studi di Milano, Italy

Herve Debar Telecom SudParis, France
Itai Dinur Ben-Gurion University, Israel
Josep Domingo-Ferrer Universitat Rovira i Virgili, Catalonia
Dawu Gu Shanghai Jiao Tong University, China
Florian Hahn SAP, Germany

VIII Organization

Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Atsuo Inomata Tokyo Denki University, Japan
Akira Kanaoka Toho University, Japan
Yuichi Komano Toshiba Corporation, Japan
Noboru Kunihiro The University of Tokyo, Japan
Maryline Laurent Telecom SudParis, France
Zhou Li RSA Labs, USA
Atul Luykx Visa Inc., USA
Frederic Majorczyk DGA-MI/CentraleSupelec, France
Florian Mendel Graz University of Technology, Austria
Bart Mennink Radboud University, The Netherlands
Kirill Morozov University of North Texas, USA
Ivica Nikolic Nanyang Technological University, Singapore
Yin Minn Pa Pa PwC Japan, Japan
Reza Reyhanitabar KU Leuven, Belgium
Yusuke Sakai National Institute of Advanced Industrial Science

and Technology, Japan
Yu Sasaki Nippon Telegraph and Telephone Corporation, Japan
Dominique Schroeder Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Yannick Seurin Agence Nationale de la Securite des Systemes

d’Information, France
Willy Susilo University of Wollongong, Australia
Katsuyuki Takashima Mitsubishi Electric Corporation, Japan
Mehdi Tibouchi Nippon Telegraph and Telephone Corporation, Japan
Giorgos Vasiliadis Qatar Computing Research Institute HBKU, Qatar
Sven Wohlgemuth Hitachi, Ltd., Japan
Takeshi Yagi NTT Security (Japan) KK, Japan
Kan Yasuda Nippon Telegraph and Telephone Corporation, Japan
Rui Zhang Chinese Academy of Sciences, China

Additional Reviewers

Anglès-Tafalla, Carles
Azaiez, Ikbel
Ben Amor, Arij
Benletaief, Nedra
Blanco-Justicia, Alberto
Cheng, Chen-Mou
de Saint Guilhem, Cyprien
Del Vasto, Luis
Deneuville, Jean-Christophe
Ding, Ning
Dobraunig, Christoph

Dramé-Maigné, Sophie
Eichlseder, Maria
Fech, Katharina
Gaborit, Philippe
Grujic, Milos
Hassan, Fadi
Hiromasa, Ryo
Jebri, Sarra
Kaaniche, Nesrine
Kakvi, Saqib A.
Kim, Jon-Lark

Organization IX

Lai, Russell W. F.
Lequesne, Matthieu
Long, Yu
Malavolta, Giulio
Matsuda, Takahiro
Matsuo, Kazuto
Morita, Hiraku
Ogata, Wakaha
Ricci, Sara
Ronge, Viktoria

Schläffer, Martin
Schuldt, Jacob
Shen, Yaobin
Shu, Jiang
Viguier, Benoît
Wouters, Lennert
Xu, Rui
Yamada, Shota
Yasuda, Takanori
Zhang, Chi

X Organization

Contents

Cryptanalysis

Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017 . . . 3
Yasufumi Hashimoto, Yasuhiko Ikematsu, and Tsuyoshi Takagi

Key Recovery Attack on McNie Based on Low Rank Parity Check Codes
and Its Reparation . 19

Terry Shue Chien Lau and Chik How Tan

Inference Attacks on Encrypted Databases Based on Order Preserving
Assignment Problem . 35

Sota Onozawa, Noboru Kunihiro, Masayuki Yoshino,
and Ken Naganuma

Implementation Security

Entropy Reduction for the Correlation-Enhanced Power Analysis
Collision Attack . 51

Andreas Wiemers and Dominik Klein

Safe Trans Loader: Mitigation and Prevention of Memory Corruption
Attacks for Released Binaries . 68

Takamichi Saito, Masahiro Yokoyama, Shota Sugawara,
and Kuniyasu Suzaki

Public-Key Primitives

Estimated Cost for Solving Generalized Learning with Errors Problem
via Embedding Techniques. 87

Weiyao Wang, Yuntao Wang, Atsushi Takayasu, and Tsuyoshi Takagi

(Short Paper) How to Solve DLOG Problem with Auxiliary Input. 104
Akinaga Ueda, Hayato Tada, and Kaoru Kurosawa

(Short Paper) Parameter Trade-Offs for NFS and ECM 114
Kazumaro Aoki

Security in Practice

Is Java Card Ready for Hash-Based Signatures? . 127
Ebo van der Laan, Erik Poll, Joost Rijneveld, Joeri de Ruiter,
Peter Schwabe, and Jan Verschuren

Detecting Privacy Information Abuse by Android Apps from API Call Logs . . . 143
Katsutaka Ito, Hirokazu Hasegawa, Yukiko Yamaguchi,
and Hajime Shimada

Verification of LINE Encryption Version 1.0 Using ProVerif 158
Cheng Shi and Kazuki Yoneyama

The Anatomy of the HIPAA Privacy Rule: A Risk-Based Approach
as a Remedy for Privacy-Preserving Data Sharing . 174

Makoto Iguchi, Taro Uematsu, and Tatsuro Fujii

Secret Sharing

Improvements to Almost Optimum Secret Sharing with Cheating Detection . . . 193
Louis Cianciullo and Hossein Ghodosi

XOR-Based Hierarchical Secret Sharing Scheme. 206
Koji Shima and Hiroshi Doi

Symmetric-Key Primitives

Integer Linear Programming for Three-Subset Meet-in-the-Middle Attacks:
Application to GIFT . 227

Yu Sasaki

Symbolic-Like Computation and Conditional Differential Cryptanalysis
of QUARK . 244

Jingchun Yang, Meicheng Liu, Dongdai Lin, and Wenhao Wang

Lightweight Recursive MDS Matrices with Generalized Feistel Network 262
Qiuping Li, Baofeng Wu, and Zhuojun Liu

Provable Security

How to Prove KDM Security of BHHO. 281
Hayato Tada, Akinaga Ueda, and Kaoru Kurosawa

From Identification Using Rejection Sampling to Signatures
via the Fiat-Shamir Transform: Application to the BLISS Signature. 297

Pauline Bert and Adeline Roux-Langlois

Universal Witness Signatures . 313
Chen Qian, Mehdi Tibouchi, and Rémi Géraud

Author Index . 331

XII Contents

Cryptanalysis

Chosen Message Attack on Multivariate
Signature ELSA at Asiacrypt 2017

Yasufumi Hashimoto1, Yasuhiko Ikematsu2(B), and Tsuyoshi Takagi2

1 Department of Mathematical Science, University of the Ryukyus, Okinawa, Japan
hashimoto@math.u-ryukyu.ac.jp

2 Department of Mathematical Informatics, University of Tokyo, Tokyo, Japan
{ikematsu,takagi}@mist.i.u-tokyo.ac.jp

Abstract. One of the most efficient post-quantum signature schemes is
Rainbow whose hardness is based on the multivariate quadratic polyno-
mial (MQ) problem. ELSA, a new multivariate signature scheme pro-
posed at Asiacrypt 2017, has a similar construction to Rainbow. Its
advantages, compared to Rainbow, are its smaller secret key and faster
signature generation. In addition, its existential unforgeability against
an adaptive chosen-message attack has been proven under the hardness
of the MQ-problem induced by a public key of ELSA with a specific
parameter set in the random oracle model. The high efficiency of ELSA
is derived from a set of hidden quadratic equations used in the process
of signature generation. However, the hidden quadratic equations yield
a vulnerability. In fact, a piece of information of these equations can be
recovered by using valid signatures and an equivalent secret key can be
partially recovered from it. In this paper, we describe how to recover an
equivalent secret key of ELSA by a chosen message attack. Our experi-
ments show that we can recover an equivalent secret key for the claimed
128-bit security parameter of ELSA on a standard PC in 177 s with 1326
valid signatures.

Keywords: Post-quantum cryptography
Multivariate public-key cryptography · Chosen message attack
Rainbow · ELSA

1 Introduction

Shor [14] proposed quantum algorithms to factor large integers and to find dis-
crete logarithms over a finite field of large order in polynomial time. This means
that if large-scale quantum computers will be realized in the future, most cur-
rently used public key cryptosystems, such as RSA, DSA and ECC, will be
insecure. The aim of Post-Quantum Cryptography (PQC) is to develop cryp-
tosystems that are secure against attacks by future quantum computers [1]. At
PQCrypto 2016, the National Institute of Standards and Technology (NIST)
started the standardization process of post-quantum cryptography, and there
are currently 69 proposals of post-quantum cryptography [10].
c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-319-97916-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_1&domain=pdf

4 Y. Hashimoto et al.

Multivariate public key cryptosystems (MPKCs) [5] are considered to be
promising candidates for PQC. The early MPKCs are the Matsumoto-Imai
scheme [9] and the Moon Letter scheme [15], and many MPKCs have been
proposed until now. Among them, some schemes UOV [7] and HFEv− [11,12]
have survived in this two decades, and seem efficient enough. Actually, several
MPKCs are submitted to the NIST PQC standardization. Especially, Rainbow
[6], a multi-layered version of the UOV scheme, has been remarked well because
of its efficiency, modest computational cost, high security and simplicity.

The ELSA [13] signature scheme, studied in this paper, is a variant of
Rainbow proposed at Asiacrypt 2017 by Shim et al. and is more efficient than
Rainbow; that is, its secret key is smaller and its signature generation is faster.
Shim et al. actually succeeded in reducing the complexity of signature gener-
ation from O(n3) for Rainbow to O(n2), where n is the number of variables
used in a public key, without weakening the security against known attacks. The
trick to reducing the complexity is choosing the secret keys sparsely and attach-
ing several hidden quadratic equations in the process of signature generation
(see Sect. 2.3). Furthermore, ELSA has an existential unforgeability against an
adaptive chosen-message attack (EUF-CMA), which was proven under the hard-
ness of the MQ problem induced by the public key of ELSA with a specific
parameter set in the random oracle model. Note that EUF-CMA security for
Rainbow was proven recently [4].

In this paper, we propose a chosen message attack on ELSA, under the con-
dition that we can obtain valid signatures by repeatedly accessing a signing
oracle. Recall that ELSA possesses hidden quadratic equations for accelerat-
ing the signature generation, that are not used in Rainbow. Once the hidden
quadratic equations are recovered, an attacker can obtain an equivalent secret
key of ELSA and forge a signature for an arbitrary message by its equivalent
secret key. We show that a piece of information in the hidden quadratic equa-
tions can be recovered from at most n2 valid signatures given by the chosen
message attack. Our attack is very efficient, more precisely, its complexity is
O(n2ω), where n is the number of variables and 2 ≤ ω < 3 is the linear algebra
constant. We implemented our attack on Magma [3], and succeeded in recovering
an equivalent secret key with 1326 valid signatures in 177 s for the parameters
selected in [13] as 128-bit security.

Our paper is organized as follows: in Sect. 2, we briefly summarize the ELSA
scheme and its previous security analysis given in [13]. In Sect. 3, we discuss
our new attack and give a detailed algorithm to obtain an equivalent secret key
of ELSA. In Sect. 4, we preform the complexity analysis of our new attack and
present a Magma implementation of our algorithm. We conclude our paper in
Sect. 5.

2 The ELSA Signature Scheme

We briefly explain the basic concept of multivariate signature schemes and
summarize the construction of the ELSA scheme and its previous security
analysis following [13].

Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017 5

2.1 Multivariate Signature Scheme

Let n,m ≥ 1 be integers, q a power of prime, and Fq a finite field of order q.
In a multivariate signature scheme, the public key P : Fn

q → F
m
q is a quadratic

map, namely P(x1, . . . , xn) = t(P1(x1, . . . , xn), . . . ,Pm(x1, . . . , xn)) given by

Pl(x1, . . . , xn) =
∑

1≤i≤j≤n

α
(l)
ij xixj +

∑

1≤i≤n

β
(l)
i xi + γ(l)

for 1 ≤ l ≤ m, where α
(l)
ij , β

(l)
i , γ(l) ∈ Fq. For such a signature scheme, the public

key P is generated by P = T ◦ F ◦ S with invertible affine maps T : Fm
q → F

m
q ,

S : Fn
q → F

n
q and a quadratic map F : Fn

q → F
m
q that can be feasibly inverted.

Thus the secret key consists of T ,F and S.
To generate a signature of a message m ∈ F

m
q , one computes z = T −1(m),

finds y with F(y) = z, and then computes w = S−1(y). A signature for m is
given by w. The verification involves checking whether P(w) = m.

2.2 Key Generation of ELSA

We now describe the construction of ELSA [13].
Let l, k, u, r be positive integers and set n = l + k + u + r and m = k + u.

Denote the sets of l, k, u, r and n variables by

xL := (xL,1, . . . , xL,l), xK := (xK,1, . . . , xK,k),
xU := (xU,1, . . . , xU,u), xR := (xR,1, . . . , xR,r),

x := t(xL,xK ,xU ,xR) = t(xL,1, . . . , xR,r).

First, we explain the construction of the central map of ELSA consisting of
two layers. Let Li(x) = Li(xL,xK ,xR), Rij(x) = Rij(xL,xK) (1 ≤ i ≤ r, 1 ≤
j ≤ k) be linear polynomials and Φj(x) = Φj(xL) (1 ≤ j ≤ k) quadratic
polynomials. The first layer (F1, . . . ,Fk) of the central map of ELSA is

Fj(x) :=
∑

1≤i≤r

Li(xL,xK ,xR)Rij(xL,xK) + Φj(xL), (1 ≤ j ≤ k).

To construct the second layer, let Ri,k+j(x) (1 ≤ i ≤ r, 1 ≤ j ≤ u), L′
j(x) =

L′
j(xL,xK ,xR) (1 ≤ j ≤ u) be linear polynomials and Φk+j(x) = Φk+j(xL,xK)

(1 ≤ j ≤ u) quadratic polynomials. The second layer (Fk+1, . . . ,Fm) is

Fk+j(x) :=
∑

1≤i≤r

Li(xL,xK ,xR)Ri,k+j(x) + Φk+j(xL,xK) + L′
j(xL,xK ,xR),

for 1 ≤ j ≤ u. The central map of ELSA is given by

F := t(F1, . . . ,Fk,Fk+1, . . . ,Fm) : Fn
q → F

n
q .

Next let us explain the secret and public keys of ELSA. Randomly choose two
invertible affine maps T : Fm

q → F
m
q and S : Fn

q → F
n
q and fix a linear polynomial

6 Y. Hashimoto et al.

L(x) = L(xL) and r elements ξ1, . . . , ξr ∈ F
×
q to generate a signature in ELSA

efficiently (see Sect. 2.3).
Secret Key. The invertible affine maps T ,S, the quadratic map F , the linear
polynomial L, and the constants ξ1, . . . , ξr ∈ F

×
q .

Public Key. The quadratic map P = t(P1, . . . ,Pm) := T ◦ F ◦ S : Fn
q → F

m
q .

2.3 Signature Generation and Verification of ELSA

Here, we describe signature generation and signature verification of ELSA.
Signature Generation. For a message m ∈ F

m
q , compute z = t(z1, . . . , zm) =

T −1(m). Next, find y ∈ F
n
q with F(y) = z and L(y)Li(y) = ξi (1 ≤ i ≤ r).

Finally, compute w = S−1(y) ∈ F
n
q . The signature for m is w.

Signature Verification. Check whether P(w) = m or not.

In the process of the signature generation, y ∈ F
n
q is found as follows.

How to Find y ∈ F
n
q

First, randomly choose yL ∈ F
l
q with L(yL) �= 0 and find a solution yK to the

system of k linear equations in xK :
∑

1≤i≤r

ξiRij(yL,xK) = L(yL)(zj − Φj(yL)), (1 ≤ j ≤ k). (1)

Next, find a solution yR to the system of r linear equations in xR:

Li(yL,yK ,xR) = L(yL)−1ξi, (1 ≤ i ≤ r). (2)

Finally, find a solution yU ∈ F
u
q to the system of u linear equations in xU :

∑

1≤i≤r

ξiRi,k+j(yL,yK ,xU ,yR) = L(yL)(zj − Φk+j(yL,yK) − L′
j(yL,yK ,yR))

(3)

for 1 ≤ j ≤ u. In this way, we find y = t(yL,yK ,yU ,yR) ∈ F
n
q such that

F(y) = z.
Note that Eqs. (1)–(3) are derived from

L(xL)Fj(x) = L(xL)zj , L(xL)Li(xL,xK ,xR) = ξi. (4)

Thus we see that y computed above satisfies F(y) = z and L(yL)Li(yL,yK ,
yR) = ξi for i = 1, . . . , r. Since w = S−1(y) ∈ F

n
q , the signature w obtained

above satisfies

L(S(w)) · Li(S(w)) = ξi

for i = 1, . . . , r. We also have L(S(w)) �= 0.
Equation (1) for 1 ≤ j ≤ k can be written as

xKA + c = L(yL) [zK − b(yL)] , (5)

Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017 7

where A is a k × k matrix over Fq, c is an element of Fk
q , zK := (z1, . . . , zk) and

b(yL) = (Φ1(yL), . . . , Φk(yL)) ∈ F
k
q . Since the entries of A do not depend on

yK , the process of finding yK of (5) can be implemented as

yK = L(yL) [zK − b(yL)] A1 − cA1,

where A1 := A−1. This means that, if we have A1 as a part of the secret key and
l is small enough, yK can be computed in O(k2) = O(n2) time. We can easily
check that Eqs. (2) and (3) are similar. Then, by choosing Φk+j sparsely as in
[13], one can find yR,yU in O(n2) time. As a result, the complexity O(n2) of
the signature generation of ELSA is smaller than that the O(n3) complexity of
Rainbow (see [13, Sect. 5]).

2.4 Previous Security Analysis and Parameter Selection

In this subsection, we give a short survey of the security analysis of ELSA dis-
cussed in [13] and recall the 128-bit security parameter based on that security
analysis.

Direct Attack. The direct attack generates a dummy signature of a given
message by directly solving a system of quadratic equations P(x) = m. It is
known that, if the polynomial system P(x) −m is semi-regular, the complexity
of the hybrid method [2] between the Gröbner basis attack and the exhaustive
attack is

� min
k≥0

qk ·
(

m

(
n − k + dreg − 1

dreg

))w

, (6)

where dreg is the degree of regularity given as the first non-positive coefficient
of (1 − t)m/(1 − t)m−k, and 2 ≤ w < 3 is the linear algebra constant. In [13],
the authors chose (6) with w = 2 as a lower bound of security against the direct
attack.

Rainbow Band Separation (RBS). Let ϕ : F
n
q → F

n
q be the affine map

such that ϕ(x) = (xL,xK ,xU , L1(x), . . . , Lr(x)) and put F ′ := F ◦ ϕ−1. A
similar argument to the one in [13, Sect. 3.2] shows that the coefficient matrices
F ′
1, . . . , F

′
m of F ′

1(x), . . . ,F ′
m(x), i.e. F ′

j(x) = txF ′
jx + (linear polynomial), can

be written as follows:

F ′
j =

⎛

⎜⎜⎝

∗l 0 0 ∗
0 0k 0 ∗
0 0 0u 0
∗ ∗ 0 0r

⎞

⎟⎟⎠ (1 ≤ j ≤ k), and F ′
j =

⎛

⎜⎜⎝

∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u ∗
∗ ∗ ∗ ∗r

⎞

⎟⎟⎠ (k + 1 ≤ j ≤ m).

(7)

Due to these, we see that there exist vectors t = t(t1, . . . , tm) ∈ F
m−1
q and

s = t(s1, . . . , sn) ∈ F
n
q such that

∑

1≤i≤m

siPi

((
In−1 t
0 1

)
x
)

= tx

⎛

⎝
∗l+k+u−2 0 ∗
0 01 0
∗ 0 ∗r+1

⎞

⎠x + (linear polyn.).

8 Y. Hashimoto et al.

Such (t, s) is part of an equivalent secret key. To recover (t, s), the attacker has
to solve a system of cubic polynomial equations of t, s. Though it is not easy to
estimate its complexity in general, the authors of [13] concluded that ELSA is
secure enough against RBS attack under a suitable parameter selection.

Rank Attacks. Let P1, . . . , Pm be the coefficient matrices of P1(x), . . . ,Pm(x);
that is, each Pi is the symmetric matrix of size n such that Pi(x) = txPix +
(linear polynomial inx). The rank attack recovers an equivalent secret key by
finding α1, . . . , αm ∈ Fq such that the rank of α1P1 + · · · + αmPm is small. By
checking the coefficient matrices F ′

1, . . . , F
′
m of F ′

1(x), . . . ,F ′
m(x) given in (7)

carefully, the authors of [13] estimated the complexities of the rank attacks as
follows:

Min-Rank attack: O(qmin{l+k+1,l+2r−k+1,l+2r+1,2l+k+1} · (polyn.)).

High-Rank attack: O(qu · n3

6).

Kipnis-Shamir’s (UOV) Attack. Kipnis and Shamir [8] proposed a polyno-
mial time attack to recover an equivalent secret key of the oil and vinegar signa-
ture scheme, and Kipnis, Patarin and Goubin [7] generalized it to the unbalanced
oil and vinegar signature scheme (UOV). It is known that this attack is also pos-

sible when the coefficient matrices are in the form
(

0o ∗
∗ ∗v

)
and its complexity

is O(qmax{v−o,0} · (polyn.)). The authors of [13] concluded that the complexity
of Kipnis-Shamir’s attack on ELSA is

O(qmin{r−u,k+u,l+r,n−2u−1} · (polyn.))

by studying the structure of the coefficient matrices F ′
1, . . . , F

′
m of F ′

1(x),
. . . ,F ′

m(x) given in (7) and the process of this attack carefully.

The 128-bit Security Parameter Recommendation. Based on the secu-
rity analyses above, the authors of [13] proposed the following 128-bit security
parameter

ELSA-128 : (q, l, k, u, r, n,m) = (28, 6, 28, 15, 30, 79, 43).

See [13, Table 4] for a performance comparison with other signature schemes.

3 Our Attack on ELSA

In this section, we describe a chosen message attack on ELSA. Indeed, we show
how to recover an equivalent secret key from the information associated with
Eq. (4) by launching a chosen message attack. We also explain the construction
of the equivalent secret key and a method for forging a signature from it.

Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017 9

3.1 Chosen Massage Attack

A chosen message attack is a standard security notion in signature schemes. Let
O be a signing oracle which computes the signature w ∈ F

n
q from a message

m ∈ F
m
q using the secret key of ELSA. The chosen message attack tries to gen-

erate a valid pair of a message m′ and signature w′ by repeatedly accessing the
signing oracle O, where P(w′) = m′ for the public key P. The authors of ELSA
[13] proved that ELSA is existentially unforgeable against the chosen message
attack. However, we show that there is a way to recover an equivalent secret key
by launching a chosen message attack. Recall that the signature generation of
ELSA uses Eq. (4) in order to accelerate the signature generation. The reduced
problem used in ELSA is different from that used in Rainbow, namely, ELSA
has a special structure of using Eq. (4), which leaks the information related to
the secret key. We propose an attack that recovers the information associated
with Eq. (4) from the signatures w given in the chosen message attack.

In a weaker setting, the attacker is not allowed to choose the message m
before asking the signing oracle, which is sometimes called the known message
attack. We show that our attack is also feasible in this setting.

3.2 How to Recover the Information Associated with Eq. (4)

As shown in Sect. 2.3, we use the hidden quadratic equations L(x)Li(x) = ξi in
(4) to generate a signature in ELSA. In our attack, we recover the space

LS := Span
Fq

{L1(S(x)), . . . , Lr(S(x))} ⊂ Fq[x] (8)

from N valid signatures, where N := max{n + 1, 1
2 (n − r + 2)(n − r + 3)}.

Let W ⊂ F
n
q be the set of signatures generated by the ELSA scheme. From

Sect. 2.3, it is clear that w ∈ W satisfies L(S(w)) · Li(S(w)) = ξi for 1 ≤ i ≤ r.
Since L(S(w)) �= 0, we have

ξiLj(S(w)) − ξjLi(S(w)) = 0, for 1 ≤ i, j ≤ r. (9)

Let Lij(x) := ξiLj(S(x)) − ξjLi(S(x)) and L0
S := Span

Fq
{Lij(x)}i,j . It is easy

to see that L0
S ⊂ LS and the set of linear forms {L12(x), . . . , L1r(x)} is a basis

of L0
S , namely, dimFq

L0
S = r − 1.

We first recover L0
S . Due to (9), we can expect that

L0
S = {f(x) ∈ Fq[x] | deg f ≤ 1, f(w) = 0 for all w ∈ W} . (10)

Since the number of coefficients of a linear polynomial f in n variables is n+1, we
can consider that n + 1 valid signatures are equivalent to recovering L0

S . In fact,
we succeeded recovering L0

S from n+1 valid signatures in all of 100 experiments
under the following parameters: Example-1 and Example-2 defined below, and
ELSA-128 in Sect. 2.4.

Example-1: (q, l, k, u, r, n,m) = (28, 4, 15, 5, 20, 44, 20),

Example-2: (q, l, k, u, r, n,m) = (28, 5, 20, 10, 25, 60, 30),

ELSA-128: (q, l, k, u, r, n,m) = (28, 6, 28, 15, 30, 79, 43).

10 Y. Hashimoto et al.

Once the subspace L0
S is recovered, choose a basis {L1, . . . ,Lr−1} of L0

S and
find an invertible affine map S1 : Fn

q → F
n
q such that

(Li ◦ S1)(x) = xR,i, (1 ≤ i ≤ r − 1). (11)

Since L1(x), . . . ,Lr−1(x) are linear sum of L1(S(x)), . . . , Lr(S(x)), we can easily
check that for such S1, there exists an r × (l + k + u) matrix M of rank 1
such that

(ϕ ◦ S ◦ S1)(x) =
(

∗l+k+u ∗
M ∗r

)
x.

Let w ∈ W and set w′ := S−1
1 (w) ∈ F

n
q . Since (Li ◦ S1)(w′) = Li(w) = 0

by (9), the xR,i-component of w′ is zero for 1 ≤ i ≤ r − 1. Namely, we can
write w′ = (w′

L,w′
K ,w′

U , 0, . . . , 0, w′
R,r). Define the quadratic polynomial in

variables x:

Q(x) := (L ◦ S ◦ S1)(xL,xK ,xU , 0, . . . , 0, xR,r)·
(L1 ◦ S ◦ S1)(xL,xK ,xU , 0, . . . , 0, xR,r) − ξ1.

More precisely, Q(x) is a quadratic polynomial in (n−r+1)-variables xL,xK ,xU ,
xR,r. Then we have

Q(w′) = (L ◦ S ◦ S1)(w′
L,w′

K ,w′
U , 0, . . . , 0, w′

R,r)·
(L1 ◦ S ◦ S1)(w′

L,w′
K ,w′

U , 0, . . . , 0, w′
R,r) − ξ1

= (L ◦ S ◦ S1)(w′) · (L1 ◦ S ◦ S1)(w′) − ξ1

= (L ◦ S)(w) · (L1 ◦ S)(w) − ξ1

= 0. (12)

Therefore, Q(x) vanishes at S−1
1 (w) for any w ∈ W and is a quadratic polyno-

mial in (n − r + 1)-variables xL,xK ,xU , xR,r. Note that Q(x) is invariant up to
a constant factor, even if we exchange L1, ξ1 in the definition of Q(x) with other
Li, ξi. Thus, we can expect that

FqQ(x) =
{
f ∈ Fq[xL,xK ,xU , xR,r]

∣
∣deg f ≤ 2, f(w′) = 0 for all w′ ∈ S−1

1 (W)
}
.

Here, FqQ(x) is the vector space generated by Q(x). Since the number of coef-
ficients of a quadratic polynomial f in (n − r + 1)-variables xL,xK ,xU , xR,r is
N ′ := 1

2 (n − r + 2)(n − r + 3), we can consider that N ′ valid signatures are
equivalent to recovering FqQ(x). In fact, we succeeded recovering FqQ(x) from
N ′ valid signatures in all of 100 experiments under the same three parameters
above.

Finally, we have the following:

Proposition 1. Set N := max{n + 1, 1
2 (n − r + 2)(n − r + 3)}. The following

subspaces (a) and (b) of Fq[x] can be recovered from N valid signatures:

(a) LS , (b) L0
S + Fq(L ◦ S)(x).

Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017 11

Proof. From the above arguments, L0
S and Q(x) (up to a constant factor) can be

recovered from N valid signatures. By the definition of Q(x), we can decompose

Q(x) = D1(x)D2(x) + c,

where D1(x),D2(x) are linear polynomials in x and c ∈ Fq, and we have

{D1(x),D2(x)} = {(L◦S◦S1)(xL,xK ,xU , xR,r), (L1◦S◦S1)(xL,xK ,xU , xR,r)}.

Since LS = L0
S + Fq(L1 ◦ S)(x), either

L0
S + Fq(D1 ◦ S−1

1)(x) or L0
S + Fq(D2 ◦ S−1

1)(x)

is equal to LS . Moreover, the other is equal to L0
S +Fq(L ◦ S)(x). Therefore, we

have
{
L0

S + Fq(D1 ◦ S−1
1)(x),L0

S + Fq(D2 ◦ S−1
1)(x)

}
=

{
LS ,L0

S + Fq(L ◦ S)(x)
}
.

Thus, we can recover two subspaces (a) and (b) from N valid signatures. ��
From Proposition 1, we have two subspaces, i.e., LS and L0

S + Fq(L ◦ S)(x).
At this stage, we cannot determine which one is LS . However, it is not hard to
construct an attack on ELSA.

3.3 Equivalent Secret Key of ELSA and Forging a Signature

We construct an equivalent secret key of ELSA by deforming the central map F
as follows. Let ϕ : Fn

q → F
n
q be the invertible affine map such that

ϕ(x) = t (xL,xK ,xU , L1(x), . . . , Lr(x)) . (13)

Put F ′ := F ◦ ϕ−1. Thus we have

P = T ◦ F ◦ S = T ◦ F ′ ◦ (ϕ ◦ S).

By a similar argument as [13, Sect. 3.2], it is easy to see that F ′(x) = t(F ′
1(x), . . . ,

F ′
m(x)) can be written as

F ′
j(x) =

∑

1≤i≤r

xR,iR
′
ij(xL,xK) + Φ′

j(xL)

= tx

⎛

⎜⎜⎝

∗l 0 0 ∗
0 0k 0 ∗
0 0 0u 0
∗ ∗ 0 0r

⎞

⎟⎟⎠x + (linear polyn.), (1 ≤ j ≤ k), (14)

F ′
j(x) =

∑

1≤i≤r

xR,iR
′
ij(x) + Φ′

j(xL,xK)

= tx

⎛

⎜⎜⎝

∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u ∗
∗ ∗ ∗ ∗r

⎞

⎟⎟⎠x + (linear polyn.), (k + 1 ≤ j ≤ m), (15)

for linear polynomials R′
ij and quadratic polynomials Φ′

j .
We define an equivalent secret key of ELSA:

12 Y. Hashimoto et al.

Definition 1. If two invertible affine maps T̄ : Fm
q → F

m
q and S̄ : Fn

q → F
n
q

satisfy the following conditions, then the pair (T̄ , S̄) is called an equivalent secret
key of the ELSA scheme.
1. P ′ = t(P ′

1, . . . ,P ′
m) := T̄ ◦ P ◦ S̄.

2. For 1 ≤ j ≤ k,

P ′
j(x) = P ′

j(xL,xK ,xR) =
∑

1≤i≤r

xR,i · (linear polyn .in xL,xK ,xR)

+ (quadratic polyn. in xL,xR).
3. For k + 1 ≤ j ≤ m,

P ′
j(x) =

∑

1≤i≤r

xR,i · (linear polyn. in x) + (quadratic polyn. in xL,xK ,xR).

From (14) and (15), it is enough to find a pair (T̄ , S̄) such that

(ϕ ◦ S ◦ S̄)(x) =

⎛

⎜⎜⎝

∗l 0 0 ∗
∗ ∗k 0 ∗
∗ ∗ ∗u ∗
0 0 0 ∗r

⎞

⎟⎟⎠x, (T̄ ◦ T)(y) =
(

∗k 0
∗ ∗u

)
y,

where y = t(y1, . . . , ym).
Once an equivalent secret key (T̄ , S̄) is found, we can forge a signature w for

each message m ∈ F
m
q in the complexity O(n3). First compute

m̄ = t(m̄1, . . . , m̄m) := T̄ (m).

Then, randomly choose yL ∈ F
l
q and yR ∈ F

r
q. After that, find a solution yK ∈ F

k
q

of the system of k linear equations in xK :

m̄j = P ′
j(yL,xK ,yR), (1 ≤ i ≤ k).

Next, find a solution yU ∈ F
u
q of the system of u linear equations in xU :

m̄j = P ′
j(yL,yK ,xU ,xR), (k + 1 ≤ j ≤ m)

and compute w = S̄(yL,yK ,yU ,yR), which is a signature of the message m.

3.4 How to Recover an Equivalent Secret Key

In Sect. 3.2, we showed how to recover the space LS in (8) from N valid signa-
tures. In this subsection, we explain how to recover an equivalent secret key of
the ELSA scheme from the space LS .

We assume the following:

(i) Choose either (a) or (b) in Proposition 1, and assume it is LS in (8),
(ii) all linear and quadratic polynomials Li, Rij , Φj in Sect. 2.2 are homogeneous,
(iii) the linear polynomials L′

j(xL,xK ,xR) (1 ≤ j ≤ u) in Sect. 2.2 are zero, and
(iv) the secret key T ,S are linear maps.

Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017 13

Note that our attack described below can be easily modified without the assump-
tions (i), (ii), (iii) and (iv).

Choose a basis {L1, . . . ,Lr} of the space LS and an invertible linear map
S ′ : Fn

q → F
n
q such that

(Li ◦ S ′)(x) = xR,i, (1 ≤ i ≤ r). (16)

Since Li(x) is a linear combination of L1(S(x)), . . . , Lr(S(x)), we have

(ϕ ◦ S ◦ S ′)(x) =

⎛

⎜⎜⎝

(
∗l 0
0 0k

)
0 ∗
0 ∗

0 0
∗ ∗

0u 0
0 ∗r

⎞

⎟⎟⎠ .

We now denote the matrix above in the right-hand-side by
(

A B
0 C

)
with matrices

A,B,C of the sizes (l + k + u) × (l + k + u), (l + k + u) × r, r × r, respectively.
Due to (14) and (15), we can easily check that

P ′ = t(P ′
1, . . . ,P ′

m) := P ◦ S ′ = T ◦ F ′ ◦ (ϕ ◦ S ◦ S ′)

is given by

P ′
j(x) = tx

⎛

⎜⎜⎝
tA

⎛

⎝
∗l ∗ 0
∗ ∗k 0
0 0 0u

⎞

⎠ A
∗
∗
∗

∗ ∗ ∗ ∗r

⎞

⎟⎟⎠x, (1 ≤ j ≤ m).

Thus, there exists an invertible (l + k + u) × (l + k + u) matrix S2 such that

P ′
j(

(
S2 0
0 Ir

)
x) = tx

⎛

⎜⎜⎝

∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u ∗
∗ ∗ ∗ ∗r

⎞

⎟⎟⎠x, (1 ≤ j ≤ m) (17)

and it holds AS2 =

⎛

⎝
∗l ∗ 0
∗ ∗k 0
∗ ∗ ∗u

⎞

⎠. This means that the linear map S ′′ : Fn
q → F

n
q

defined by S ′′(x) =
(

S2 0
0 Ir

)
x satisfies

(ϕ ◦ S ◦ S ′ ◦ S ′′)(x) =
(

AS2 B
0 C

)
x =

⎛

⎜⎜⎝

∗l ∗ 0 ∗
∗ ∗k 0 ∗
∗ ∗ ∗u ∗
0 0 0 ∗r

⎞

⎟⎟⎠x. (18)

The following lemma follows immediately from (14), (15) and (18).

14 Y. Hashimoto et al.

Lemma 1. Set S̃ := S ◦ S ′ ◦ S ′′. We obtain

Fj(S̃(x)) = F ′
j(ϕ ◦ S̃(x)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tx

⎛

⎜⎜⎜⎝

∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u 0
∗ ∗ 0 ∗r

⎞

⎟⎟⎟⎠x, (1 ≤ j ≤ k)

tx

⎛

⎜⎜⎜⎝

∗l ∗ 0 ∗
∗ ∗k 0 ∗
0 0 0u ∗
∗ ∗ ∗ ∗r

⎞

⎟⎟⎟⎠x, (k + 1 ≤ j ≤ m).

From this lemma, it is clear that if 1 ≤ j ≤ k, then the variables xU do not
appear in F ′

j(ϕ ◦ S̃(x)). Also if k + 1 ≤ j ≤ m, then xU appear in F ′
j(ϕ ◦ S̃(x)).

From this fact, we have the following corollary:

Corollary 1. Let T̄ : Fm
q → F

m
q be an invertible linear map and define P ′′ =

(P ′′
1 , . . . ,P ′′

m) := T̄ ◦ P ◦ (S ′ ◦S ′′) = (T̄ ◦ T) ◦F ′ ◦ (ϕ ◦ S̃). If the variables xU do
not appear in P ′′

j (x) for any 1 ≤ j ≤ k, then each P ′′
j (x) is a linear combination

of F ′
1(ϕ ◦ S̃(x)), . . . ,F ′

k(ϕ ◦ S̃(x)). Thus we have

T̄ ◦ T (y) =
(

∗k 0
∗ ∗u

)
y.

In (18), we now write ϕ◦ S̃(x) = (ϕ◦S ◦S ′ ◦S ′′)(x) =

⎛

⎜⎜⎝
A′ 0 ∗

0 ∗
∗ ∗
0 0

∗u ∗
0 ∗r

⎞

⎟⎟⎠x with

the matrix A′ of the sizes (l + k) × (l + k). Since P ′′
j (x) (1 ≤ j ≤ k) is a linear

combination of F ′
1(ϕ ◦ S̃(x)), . . . ,F ′

k(ϕ ◦ S̃(x)), from (14), we can easily check
that

P ′′
j (x) = tx

⎛

⎜⎜⎝

tA′
(

∗l 0
0 0k

)
A′ 0 ∗

0 ∗
0 0
∗ ∗

0u 0
0 ∗r

⎞

⎟⎟⎠x, (1 ≤ j ≤ k).

Thus, there exists an invertible (l + k) × (l + k) matrix S3 such that

tS3
tA′

(
∗l 0
0 0k

)
A′S3 =

(
∗l 0
0 0k

)

Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017 15

and it holds A′S3 =
(

∗l 0
∗ ∗k

)
. If we define the linear map S ′′′ : F

n
q → F

n
q by

S ′′′(x) =
(

S3 0
0 Iu+r

)
x and S̄ := S ′ ◦ S ′′ ◦ S ′′′, then we have

(ϕ ◦ S ◦ S̄)(x) =

⎛

⎜⎜⎝
A′ 0 ∗

0 ∗
∗ ∗
0 0

∗u ∗
0 ∗r

⎞

⎟⎟⎠

(
S3 0
0 Iu+r

)
x

=

⎛

⎜⎜⎝
A′S3

0 ∗
0 ∗

∗ ∗
0 0

∗u ∗
0 ∗r

⎞

⎟⎟⎠x =

⎛

⎜⎜⎝

∗l 0 0 ∗
∗ ∗k 0 ∗
∗ ∗ ∗u ∗
0 0 0 ∗r

⎞

⎟⎟⎠x.

From this and Corollary 1, the pair (T̄ , S̄) satisfy Definition 1 in Sect. 3.3. Thus
we recovered an equivalent secret key from the space LS in (8).

In Algorithm 1, we describe the detailed algorithm of our proposed attack in
this section. Note that our attack needs N = max{n, 1

2 (n − r + 2)(n − r + 3)}
valid signatures for ELSA with parameter (q, l, k, u, r, n,m).

4 Complexity Analysis and Experimental Results

This section analyzes the complexity of our attack on ELSA and describes an
experiment on it.

4.1 Complexity Analysis for Our Proposed Attack

We will use Algorithm 1 to analyze the complexity of our attack described in
Sect. 3,

Proposition 2. The complexity of our proposed attack (Algorithm1) is O(n2ω),
where 2 ≤ ω < 3 is the linear algebra constant.

Proof. In Step 1, we solve a linear system of size n + 1 to compute

{f(x) ∈ Fq[x] | deg f ≤ 1, f(wi) = 0, i = 1, . . . , n + 1} .

This complexity is O(nω). Similarly, in Step 2, we solve a linear system of size
N . Thus the complexity is O(Nω) = O(n2ω). In Step 3, we must compute the
intersection of the kernel of P̃i (1 ≤ i ≤ m) of size l + k + u. This complexity is
O((l+k+u)ω+1) = O(nω+1). In Step 4, we solve a linear system of size m (< n).
In Step 5, we compute the intersection of the kernel of P̃ ′

i (1 ≤ i ≤ m) of size
l + k. This complexity is O((l + k)ω+1) = O(nω+1). Therefore, the complexity of
our attack is O(n2ω). ��

Proposition 2 shows that our attack is efficient enough to break ELSA. As
shown in the next subsection, we implemented our attack on Magma and suc-
ceeded in recovering an equivalent secret key efficiently. If we reset 128-bit secu-
rity parameter for the ELSA scheme based on Proposition 2, then the number n
of variables should be larger than 220, which is no longer practical.

16 Y. Hashimoto et al.

Algorithm 1. The detailed algorithm of our proposed attack in §3
Input: The public key P(x) = t(P1(x), . . . ,Pm(x)) ∈ Fq[x]m of ELSA with param-

eter (q, l, k, u, r, n,m) and N valid signatures w1, . . . ,wN ∈ F
n
q , where N :=

max
{
n + 1, 1

2
(n − r + 2)(n − r + 3)

}
.

Output: An equivalent secret key (T̄ , S̄) of Definition 1 in §3.3.
1: Compute a basis {L1(x), . . . ,Lr−1(x)} of the r − 1 dimensional vector space over

Fq:
{f(x) ∈ Fq[x] | deg f ≤ 1, f(wi) = 0, i = 1, . . . , n + 1} .

Choose an invertible affine map S1 : Fn
q → F

n
q such that

(Li ◦ S1)(x) = xR,i, (1 ≤ i ≤ r − 1).

2: Choose a non-zero polynomial Q(x) of the one-dimensional vector space:

{
f ∈ Fq[xL,xK ,xU , xR,r]

∣
∣ deg f ≤ 2, f(S−1

1 (wi)) = 0, 1 ≤ i ≤ N
}
.

Decompose Q(x) as follows:

Q(x) = D1(xL,xK ,xU , xR,r)D2(xL,xK ,xU , xR,r) + c,

where D1 and D2 are linear polynomials in xL,xK ,xU , and xR,r and c ∈ Fq. Set

D(x) := D1(xL,xK ,xU , xR,r). (19)

Choose an invertible affine map S ′ : Fn
q → F

n
q such that

(Li ◦ S ′)(x) = xR,i, (1 ≤ i ≤ r − 1), (D ◦ S−1
1 ◦ S ′)(x) = xR,r.

3: Compute the coefficient matrix P̃ ′
j of size l + k + u associated with the quadratic

polynomial (Pj ◦ S′)(xL,xK ,xU) for 1 ≤ j ≤ m. Find an invertible matrix S2 of

size l + k + u such that tS2P̃
′
jS2 =

(
∗l+k 0
0 0u

)
for 1 ≤ j ≤ m. If there is no such

matrix, then return to Step 2 and reset (19)

D(x) := D2(xL,xK ,xU , xR,r).

Let S ′′ : Fn
q → F

n
q be the invertible linear map such that S ′′(x) =

(
S2 0
0 Ir

)
x.

4: Compute an invertible linear map T̄ : Fm
q → F

m
q such that the variables xU do not

appear in P ′′
j (x) for any 1 ≤ j ≤ k, where P ′′ = (P ′′

1 , . . . ,P ′′
m) := T̄ ◦ P ◦ (S ′ ◦ S ′′).

Namely, P ′′
j (x) = P ′′

j (xL,xK ,xR) for 1 ≤ j ≤ k.

5: Compute the coefficient matrix P̃ ′′
j of size l + k associated with P ′′

j (xL,xK) for
1 ≤ j ≤ k. Find an invertible matrix S3 of size l + k such that for 1 ≤ j ≤ m,

tS3P̃
′′
j S3 =

(
∗l 0
0 0k

)
. Let S ′′′ : F

n
q → F

n
q be the invertible linear map such that

S ′′′(x) =

(
S3 0
0 Iu+r

)
x. Finally compute S̄ := S ′ ◦ S ′′ ◦ S ′′′.

Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017 17

4.2 Experimental Results of Our Proposed Attack

The experimental results of Algorithm 1 in Sect. 3 are presented in Table 1. The
experiments were performed using Magma V2.21-6 [3] running on a 1.6 GHz
Intel

R©
CoreTM i5 processor with 8 GB of memory.

We experimented with three different parameters: Example-1, Example-2,
and ELSA-128. ELSA-128 is the 128-bit security parameter in Sect. 2.4. For
each parameter, we measured the time taken to generate an equivalent secret
key with our algorithm, and to forge a signature using the equivalent secret key.
Table 1 presents the average timing of 100 experiments for each parameter. Here,
N := max{n+1, 1

2 (n−r+2)(n−r+3)} is the number of valid signatures needed
to recover an equivalent secret key of ELSA with parameter (q, l, k, u, r, n,m).

Table 1. Experimental results (second) of our attack against ELSA with parameter
(q, l, k, u, r, n,m) and N = max{n + 1, 1

2
(n − r + 2)(n − r + 3)} is the number of valid

signatures.

Parameters (q, l, k, u, r, n,m) N Algorithm 1 Forging a signature

Example-1 (28, 4, 15, 5, 20, 44, 20) 351 7.928 0.021

Example-2 (28, 5, 20, 10, 25, 60, 30) 703 40.19 0.069

ELSA-128 (28, 6, 28, 15, 30, 79, 43) 1326 176.68 0.101

For example, the number of valid signatures in ELSA-128 required in our
attack is 1326. We succeeded in recovering an equivalent secret key in 176.68 s
and forging a signature in 0.101 s.

5 Conclusion

We studied the security of ELSA [13], an efficient variant of Rainbow. ELSA uses
special hidden quadratic equations to accelerate signature generation. However,
such hidden quadratic equations weaken the security. In fact, we proved that
such hidden quadratic equations can be recovered from sufficiently many valid
signatures, and an equivalent secret key of ELSA can be obtained from the
hidden quadratic equations. Our attack implemented on Magma with a standard
personal computer succeeded in recovering an equivalent secret key in about 177 s
with 1326 valid signatures for the claimed 128-bit security parameter of ELSA.

Finally, we stress that the original Rainbow has no hidden quadratic equa-
tions discussed in this paper. Our attack is thus unusable on Rainbow.

Acknowledgements. This work was supported by JST CREST (Grant Number
JPMJCR14D6). The first author was also supported by JSPS Grant-in-Aid for
Scientific Research (C) no. 17K05181.

18 Y. Hashimoto et al.

References

1. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7

2. Bettale, L., Faugère, J.C., Perret, L.: Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In: ISSAC 2012, pp. 67–74 (2012)

3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symb. Comput. 24, 235–265 (1997)

4. Ding, J., Chen, M.C., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow, NIST, Post-
Quantum Cryptography Standardization, Round 1 Submissions. https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

5. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems.
Springer, Boston (2006). https://doi.org/10.1007/978-0-387-36946-4

6. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

7. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

8. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055733

9. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/
10.1007/3-540-45961-8 39

10. NIST, Post-Quantum Cryptography Standardization. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/

11. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-bit long digital signatures.
In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 21

12. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv-based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 14

13. Shim, K.-A., Park, C.-M., Koo, N.: An existential unforgeable signature scheme
based on multivariate quadratic equations. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10624, pp. 37–64. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 2

14. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

15. Tsujii, S., Itoh, T., Fujioka, A., Kurosawa, K., Matsumoto, T.: A public-key cryp-
tosystem based on the difficulty of solving a system of non-linear equations. Syst.
Comput. Jpn. 19(2), 10–18 (1988)

https://doi.org/10.1007/978-3-540-88702-7
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-0-387-36946-4
https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BFb0055733
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
https://doi.org/10.1007/3-540-45353-9_21
https://doi.org/10.1007/978-3-662-48797-6_14
https://doi.org/10.1007/978-3-319-70694-8_2
https://doi.org/10.1007/978-3-319-70694-8_2

Key Recovery Attack on McNie
Based on Low Rank Parity Check Codes

and Its Reparation

Terry Shue Chien Lau(B) and Chik How Tan

Temasek Laboratories, National University of Singapore,
5A Engineering Drive 1, #09-02, Singapore 117411, Singapore

{tsltlsc,tsltch}@nus.edu.sg

Abstract. Recently, Galvez et al. submitted McNie, a new public key
encryption scheme to NIST as a candidate for the standard of post-
quantum cryptography. They claimed that their parameters achieve 128-
bit security with small key size by using Quasi-Cyclic Low Rank Parity
Check codes (QC-LRPC) and block circulant matrices as the public key
and secret key for the encryption. However, McNie based on QC-LRPC
has several limitations in its design. In addition, Gaborit suggested an
attack against the McNie encryption, which reduces the security levels
of Galvez et al.’s proposals. Moreover, McNie based on LRPC codes
has decryption failure. We propose a key recovery attack which recovers
the secret key of their encryption of the claimed security level for all
the proposed parameters. Even Galvez et al. revised their parameters
against Gaborit’s attack, we are still able to recover the secret key for the
revised parameters by our key recovery attack. We propose a new McNie
encryption based on Gabidulin codes with appropriate choices of secret
key. Our McNie based on Gabidulin codes has error free decryption.

Keywords: Code-based cryptography · McEliece · Niederreiter
Key recovery attack · Public-key encryption

1 Introduction

In December of 2017, NIST published the Round 1 submissions for the Post-
Quantum Cryptography. A new compact McEliece-Niederreiter cryptosystem
called McNie was proposed by Galvez et al. [10]. Galvez et al. claimed that
their proposal of McNie based on Quasi-Cyclic Low Rank Parity Check codes
(QC-LRPC) provides smaller key sizes by employing Quasi-Cyclicity of matrices
for 128-bit, 192-bit and 256-bit security level compared of those of RSA. For
instance, they claimed that their proposal of McNie based on a 4-Quasi-Cyclic
[60, 30] LRPC code over F237 achieve 128-bit security with key size of 347 bytes.

There are two parts in McNie cryptosystem, the McEliece part which pro-
duces ciphertext c1, and the Niederreiter part which produces ciphertext c2. The
sender first encrypts the message by multiplying the plaintext m ∈ F

l
qm with a

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 19–34, 2018.
https://doi.org/10.1007/978-3-319-97916-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_2&domain=pdf

20 T. S. C. Lau and C. H. Tan

given l × n matrix G′ and add a random error vector e ∈ F
n
qm of rank weight at

most r, producing c1 = mG′ +e. For the Niederreiter part, the sender computes
a syndrome c2 = mF , where F is a given l × (n − k) matrix and l > n − k. F
and G′ are related by F = G′P−1HTS where P is a random n × n permuta-
tion matrix, H is an (n − k) × n parity check matrix for an r-error correcting
code C with a known efficient decoding algorithm, and S is a random invertible
(n − k) × (n − k) matrix over Fqm . Note that P , H and S are secret key used to
compute eP−1HT = c1P

−1HT −c2S
−1. Since (eP−1)HT is a syndrome for the

code C, eP−1 could be obtained by decoding (eP−1)HT , then we can recover e
from eP−1P . Finally, we solve the linear system mG′ = c1 − e to recover m.

To reduce the public key size, Galvez et al. suggested two proposals for the
code which McNie is based on. Their first proposal, namely the 3-Quasi-Cyclic
LRPC codes considered n to be a multiple of 3, P to be the identity matrix,
G′ in systematic 3-Quasi-Cyclic form (refer to Definition 4 for definition), H to
be a parity check matrix for an LRPC code of weight d and FT in systematic
2-Quasi-Cyclic form. Such setting requires 3 vectors of length n

3 each to generate
G′ and H, which gives a public key size of nm log2(q) bits. Similarly, their second
proposal, namely the 4-Quasi-Cyclic LRPC codes considered n to be a multiple
of 4, P to be the identity matrix, G′ in systematic 4-Quasi-Cyclic form, H to
be a parity check matrix for an LRPC code of weight d and FT in systematic
3-Quasi-Cyclic form. Such setting requires 5 vectors of length n

4 each to generate
G′ and H, which gives a public key size of 5

4nm log2(q) bits. In both proposals
above, the matrices S and H are required to be block-circulant matrices (refer
to Definition 4 for definition) for G′ and FT to be in systematic Quasi-Cyclic
form. In addition, since LRPC decoding is probabilistic, therefore McNie based
on LRPC has decryption failure.

Our Contribution. In this paper, we show that Galvez et al.’s proposal of
McNie using QC-LRPC codes with secret key S and H being block-circulant
matrices has several weaknesses in security. More precisely, we first include an
attack by Gaborit [5] that reduces l, the number of unknowns in m into l−(n−k),
the number of unknowns in m′. This attack reduces the general complexity of
both combinatorial and algebraic attack on c1. More importantly, we propose a
key recovery attack that helps us to recover the secret key S and H. We show
that we are able to recover the secret key of the claimed security level for all the
parameters suggested by Galvez et al. Even Galvez et al. revised their parameters
against Gaborit’s attack, we are still able to recover the secret key for the revised
parameters by our key recovery attack. As a result, the parameters for McNie
using QC-LRPC codes has to be modified to meet the required security. Finally,
we propose a new McNie encryption based on Gabidulin codes with appropriate
secret key P and S. Our proposal overcomes the limitations of McNie based on
LRPC codes, and has error free decryption.

Organization of the Paper. The rest of the paper is organized as follows: we
first review in Sect. 2 some preliminaries for rank metric, circulant matrix and
block-circulant matrices. We also introduce the hard problems which our repa-
ration of McNie is based on, and give the known generic attacks on the problem.

Key Recovery Attack on McNie Based on Low Rank Parity Check Codes 21

In Sect. 3 we describe briefly the McNie public-key encryption scheme based on
QC-LRPC codes proposed by Galvez et al., and discuss some of its limitations. In
Sect. 4, we include the Gaborit’s attack [5]. In Sect. 5, we propose our key recov-
ery attack on the McNie based on QC-LRPC codes by recovering the secret key,
and show that all the parameters suggested do not achieve the claimed security.
In Sect. 6, we propose a new McNie encryption based on Gabidulin codes with
an appropriate choice of P and S. We also show that our proposal is IND-CPA
secure under Decisional Rank Syndrome Decoding assumption. We provide some
parameters for the proposal based on the Gabidulin codes. Finally, we give our
final considerations of this paper in Sect. 7.

2 Preliminaries

In this section we recall the definition of rank metric for rank code. We also intro-
duce the hard problems in coding theory - Decisional Rank Syndrome Decoding
problem which McNie encryption is based on and give the existing generic attacks
on the Rank Syndrome Decoding problem.

2.1 Background

Let Fqm be a finite field with qm elements and let {β1, . . . , βm} be a basis of Fqm

over the base field Fq.

Definition 1. A linear code of length n and dimension k is a linear subspace C
of the vector space F

n
qm .

Given a matrix M over a field F, the rank of M , rk(M) is the dimension of the
row span of M as a vector space over F. The row span of a matrix M over F is
denoted as 〈M〉F. We define the rank metric of a vector on F

n
qm :

Definition 2. Let x = (x1, . . . , xn) ∈ F
n
qm and M ∈ F

k×n
qm . The rank of x

in Fq, denoted by rkq(x) is the rank of the matrix X = (xij) ∈ F
m×n
q where

xj =
∑m

i=1 xijβi. The column rank of M over Fq, denoted by colrkq(M) is the
maximum number of columns that are linearly independent over Fq.

We now define circulant matrix and k-partial circulant matrix induced by x:

Definition 3. Let x = (x0, . . . , xn−1) ∈ F
n
qm . The circulant matrix, Cirn(x)

induced by x is defined as Cirn(x) =
(
x(i−j) mod n

) ∈ F
n×n
qm . The k-partial

circulant matrix, Cirk(x) induced by x is the first k rows of Cirn(x).

Definition 4. An [m′n, s′n] block-circulant matrix M ∈ F
m′n×s′n
qm is a matrix

of the form M =

⎛

⎜
⎝

M11 . . . M1s′

...
. . .

...
Mm′1 . . . Mm′s′

⎞

⎟
⎠ where each Mij is an n × n circulant

matrix for 1 ≤ i ≤ m′, 1 ≤ j ≤ s′. A systematic s-Quasi-Cyclic matrix Msys ∈

22 T. S. C. Lau and C. H. Tan

F
(s−1)n×sn
qm is a matrix of the form Msys =

⎛

⎜
⎝

In 0 M1

. . .
...

0 In Ms−1

⎞

⎟
⎠ where each Mi

is an n × n circulant matrix for 1 ≤ i ≤ s − 1.

2.2 Hard Problems in Coding Theory

We describe the hard problems which McNie is based on.

Definition 5. Rank Syndrome Decoding Problem (RSD). Let H be a
full rank (n − k) × n matrix over Fqm , s ∈ F

n−k
qm and w an integer. The Rank

Syndrome Decoding Problem RSD(q,m, n, k, w) needs to determine x ∈ F
n
qm such

that rkq(x) = w and HxT = sT .

Recently, the RSD problem has been proven to be hard with a probabilistic
reduction to the Hamming setting [9].

Given G ∈ F
k×n
qm a full rank parity check matrix of H in an RSD problem and

y ∈ F
n
qm . Then the dual version of RSD(q,m, n, k, w) is to determine m ∈ F

k
qm

and x ∈ F
n
qm such that rkq(x) = w and y = mG + x.

Notation. If X is a finite set, we write x
$← X to denote assignment to x of an

element sampled from the uniform distribution on X.

We now give the definition of Decisional version of RSD problem in its dual form.

Definition 6. Decisional RSD Problem (DRSD). Let G be a full rank k×n
matrix over Fqm , m ∈ F

k
qm and x ∈ F

n
qm of rank r. The Decisional RSD Problem

DRSD(q,m, n, k, w) needs to distinguish the pair (mG+x, G) from (y, G) where

y
$← F

n
qm .

It is shown that DRSD is hard in the worst case [6]. Therefore, DRSD is
eligible to be a candidate of hard problems in coding theory.

2.3 Generic Attacks on RSD

Combinatorial Attack. The combinatorial approach depends on counting the
number of possible supports of size r for a rank code of length n over Fqm , which
corresponds to the number of subspaces of dimension r in Fqm . The complexities
of the best combinatorial attacks proposed in [1,7,15] is lower bounded by
{

(n − k)3m3qmin{r (k+1)m
n −m,(r−1)k}, r3m3q(r−1)(k+1), (k + r)3r3q(m−r)(r−1)

}
.

Algebraic Attack. The nature of the rank metric favors algebraic attacks using
Gröbner bases and became efficient when q increases. There are mainly three
approaches to translate the notion of rank into algebraic setting: considering
directly the RSD problem [13]; reducing RSD problem into MinRank [2]; using
linearized q-polynomials [7]. The complexities of the best algebraic attacks pro-
posed in [7,12] is lower bounded by

{
k3m3qr� km

n �, r3k3qr� (r+1)(k+1)−(n+1)
r �}.

Key Recovery Attack on McNie Based on Low Rank Parity Check Codes 23

3 McNie Public-Key Encryption Scheme

In this section, we recall the general algorithm specification of the McNie public-
key encryption proposed by Galvez et al. [10]. Furthermore, we include their
proposed encryption using 3-Quasi-Cyclic and 4-Quasi-Cyclic LRPC codes.

3.1 McNie Encryption

Rank Metric Public Key Encryption. A public-key encryption scheme PE
= (SPE,KPE, EPE,DPE) consists of four algorithms, where SPE is a set up algorithm,
KPE is a key generation algorithm, EPE is an encryption algorithm and DPE is a
decryption algorithm.

We now present the original McNie public-key encryption scheme [10].

Setup, SPE Generates global parameters m,n, l, k, r such that l > n − k. The
plaintext space is F

l
qm . Outputs parameters = (m,n, l, k, r).

Key Generation, KPE Generates S
$← GLk(Fqm), an (n− k)×n parity check

matrix H for an r-error correcting code C over Fqm with a known efficient decod-
ing algorithm C.Dec(·), a random n×n permutation matrix P , a random matrix

G′ $← F
l×n
qm with dimension l. Outputs public key κpub =

(
F = G′P−1HTS,G′)

and secret key κsec = (S,H, P).

Encryption, EPE(κpub = (F,G′),m) Let m ∈ F
l
qm be the message to be

encrypted. Generates e
$← F

n
qm such that rkq(e) ≤ r. Computes c1 = mG′ + e

and c2 = mF . Outputs c = (c1, c2) as the ciphertext.

Decryption, DPE (κsec = (S,H, P), c) Computes c1P−1HT −c2S
−1 = (mG′+

e)P−1HT − (mG′P−1HTS)S−1 = eP−1HT . Since rkq

(
eP−1

)
= rkq (e) ≤ r,

then the algorithm C.Dec(·) can decode correctly and retrieve eP−1. Multiply(
eP−1

)
P to get e. Finally, obtain m by solving mG′ = c1 − e.

3.2 McNie Based on LRPC Codes

We now give the definitions of LRPC codes, Quasi-Cyclic codes and Quasi-Cyclic
LRPC codes.

Definition 7. LRPC Codes. An [n, k, d]-Low Rank Parity Check (LRPC)
code of rank d, length n and dimension k over Fqm is a code such that the
code has for parity check matrix, an (n − k) × n matrix H = (hij) such that
the coefficients hij generate a vector subspace, V of Fqm with dimension at
most d. We call this dimension the weight of H. We denote one of V ’s bases by
{F1, . . . , Fd}.

24 T. S. C. Lau and C. H. Tan

Probabilistic Decoding. Let the error vector e belongs to a vector space
E of dimension r, and the syndrome s = (s1, . . . , sn−k) with syndrome space
S = 〈s1, . . . , sn−k〉Fq

. The decoding of LRPC codes has a failure probability
q−(n−k+1−rd). Moreover, there is a nonzero probability that dim(∩Si)
= r where
Si = F−1

i S = 〈F−1
i s1, . . . , F

−1
i sn−k〉Fq

. Therefore, the decoding algorithm of
LRPC codes is probabilistic.

Definition 8. Quasi-Cyclic Codes. An [n, k] linear code is an [n, k]-Quasi-
Cyclic code if there is some integer n0 such that every cyclic shift of a codeword
by n0 places is again a codeword.

When n = n0p for some integer p, it is possible to have both the generator
and parity check matrices composed by p × p circulant blocks.

Definition 9. Quasi-Cyclic LRPC. An [n, k, d]-Quasi-Cyclic Low Rank Par-
ity Check (QC LRPC) code of rank d, is an [n, k]-Quasi-Cyclic code which has
for parity check matrix, an (n−k)×n matrix H = (hij) such that the coefficients
hij generate a vector subspace, V of Fqm with dimension at most d.

McNie Based on 3-Quasi-Cyclic LRPC. n has to be a multiple of 3 and
l = k = 2n

3 . The secret key H is a parity check matrix for an [n, 2n
3]-QC LRPC

code of weight d, where H is an
[
n
3 , 3

(
n
3

)]
block-circulant matrix, and S is an

n
3 × n

3 circulant matrix. The public key G′ is a systematic [2n, 3n] block-circulant
matrix and FT is a systematic [n, 2n] block-circulant matrix.

McNie Based on 4-Quasi-Cyclic LRPC. n has to be a multiple of 4, l = 3n
4

and k = 2n
4 . The secret key H is a parity check matrix for an [n, 2n

4]-QC LRPC
code of weight d, where H is a

[
2
(
n
4

)
, 4

(
n
4

)]
block-circulant matrix, and S is a[

2
(
n
4

)
, 2

(
n
4

)]
block-circulant matrix. The public key G′ is a systematic [3n, 4n]

block-circulant matrix and FT is a systematic [2n, 3n] block-circulant matrix.

Some Limitations of McNie Based on LRPC. Since LRPC codes has
probabilistic decoding, McNie based on LRPC is a non-deterministic encryp-
tion scheme, i.e., with decryption failure. Furthermore, if the plaintext m for
encryption has rank t, then solving c2 = mF is equivalent to solving an
RSD(q,m, l, l − (n − k), t). In other words, if t is small, then the adversary is
able to recover m easily by solving RSD(q,m, l, l − (n − k), t).

4 Gaborit’s Attack on General McNie

We describe briefly Gaborit’s attack on the general McNie encryption, which
reduces m = (m1, . . . ,ml) ∈ F

l
qm to m′ = (mn−k+1, . . . ,ml) ∈ F

l−(n−k)
qm . We

refer readers to [5] for complete idea of the attack.

Gaborit’s Attack. Denote the matrix F =
(

F1

F2

)

where F1 ∈ F
(n−k)×(n−k)
qm

and F2 ∈ F
(l−(n−k))×(n−k)
qm , then c2 = mF = (m1, . . . ,mn−k)F1 + m′F2, giving

Key Recovery Attack on McNie Based on Low Rank Parity Check Codes 25

us (m1, . . . ,mn−k) = c2F
−1
1 − m′F2F

−1
1 . Substituting this into c1, we have

c1 = mG′ + e = (c2F−1
1 −m′F2F

−1
1 ,m′)G′ + e, resulting in a linear system of

n equations with l − (n− k) unknowns in m′ and n unknowns in e to be solved.
As a result, the actual complexity is reduced for the suggested parameters of

McNie based on QC-LRPC codes. Taking account of Gaborit’s attack, Galvez et
al. revised their parameters for McNie using 3-Quasi-Cyclic and 4-Quasi-Cyclic
LRPC codes [11] in Table 1.

Table 1. Revised parameters for 3-Quasi-Cyclic and 4-Quasi-Cyclic LRPC

3-Quasi-Cyclic LRPC

n k l d r m q Failure 1 Failure 2 Security achieved Key size

120 80 80 3 8 53 2 2−17 2−42 128 0.795 KB

138 92 92 3 10 67 2 2−17 2−54 192 1.156 KB

156 104 104 3 12 71 2 2−17 2−46 256 1.385 KB

4-Quasi-Cyclic LRPC

92 46 69 3 10 59 2 2−17 2−38 128 0.848 KB

112 56 84 3 13 67 2 2−18 2−30 192 1.173 KB

128 64 96 3 16 73 2 2−17 2−18 256 1.460 KB

The “Failure 1” [8] refers to the probability of failure in decryption that the
n − k syndromes does not generate the product space P = 〈E.F 〉 for recovering
the error vector e. “Failure 2” [8] refers to the probability that dim(∩Si)
= r
where Si = F−1

i S = 〈F−1
i s1, . . . , F

−1
i sn−k〉Fq

.

5 Our Key Recovery Attack on McNie Based on
QC-LRPC Codes

In this section, we will first describe our idea to transform the quadratic system
F = G′P−1HTS into a liner system for a general McNie system. Then, we will
apply our idea for both the 3-Quasi-Cyclic and 4-Quasi-Cyclic cases and reduce
the problem to solve for H and S into an RSD problem. Our key recovery attack
shows that both the original parameters in [10] and revised parameters in [11]
do not achieve the claimed security.

5.1 Our Idea - Transforming Quadratic System into Linear System

Recall that G′ and F = G′P−1HTS are both known to the adversaries. Note
that P is an identity matrix. Now consider

F = G′HTS. (1)

26 T. S. C. Lau and C. H. Tan

We have a quadratic system consisting l×(n−k) equations and (n−k)×(2n−k)
unknowns to be solved ((n − k) × n unknowns from H and (n − k) × (n − k)
unknowns from S). The complexity of solving (1) is large, as l < n < 2n − k.

However, since S is an invertible matrix, we can rewrite the system (1) into
the following new system:

FS−1 = G′HT . (2)

Now, instead of having a quadratic system as in (1), we have a linear system (2)
consisting l × (n − k) equations and (n − k) × (2n − k) unknowns to be solved
((n − k) × n unknowns from H and (n − k) × (n − k) unknowns from S). This
reduces the difficulty of solving S and H from a quadratic system to a linear
system. In general, linear system (2) is not easy to be solved when the number
of unknowns is greater than the number of equations in the linear system, i.e.,
(n − k) × (2n − k) > l × (n − k).

5.2 Attack Against 3-Quasi-Cyclic LRPC Codes

Recall the settings in 3-Quasi-Cyclic LRPC codes with l = k = 2n
3 , P = In,

G′ =
(

In
3
0n

3
G1

0n
3

In
3

G2

)

, H = (H1 H2 H3) and F =
(

In
3

F ′

)

where H1,H2,H3, G1, G2

are n
3 × n

3 circulant matrices and F ′ = (HT
2 +G2H

T
3)(H1+H3G

T
1)−1 is an n

3 × n
3

circulant matrix. Consider the system of the form (2), we have

FS−1 =
(

In
3

F ′

)

S−1 =
(

S−1

F ′S−1

)

,

G′P−1HT =
(

In
3
0n

3
G1

0n
3

In
3

G2

)
⎛

⎝
HT

1

HT
2

HT
3

⎞

⎠ =
(

HT
1 + G1H

T
3

HT
2 + G2H

T
3

)

. (3)

Let hi be the vector that induces the circulant matrix Hi for i = 1, 2, 3. Since

FS−1 = G′P−1HT ⇔
(

S−1

F ′S−1

)

=
(

HT
1 + G1H

T
3

HT
2 + G2H

T
3

)

,

by substituting S−1 = HT
1 + G1H

T
3 , we have

F ′S−1 = F ′(HT
1 + G1H

T
3) = HT

2 + G2H
T
3

⇒ 0n
3 ×n

3
= F ′HT

1 − HT
2 + (F ′G1 − G2)HT

3 = (F ′,−In
3
, F ′G1 − G2)

⎛

⎝
HT

1

HT
2

HT
3

⎞

⎠ .

Let H = (F ′,−In
3
, F ′G1 − G2). By viewing the matrices H1, . . . , H3 as vector,

we can rewrite the equations 0n
3 ×n

3
as

0n
3

= (h1,h2,h3)HT . (4)

Since the coefficients of H generate a vector subspace with dimension at most
d, the vector h = (h1,h2,h3) is then a vector with rkq(h) = d. Solving (4) to
recover h is now equivalent to an RSD(q,m, n, 2

(
n
3

)
, d) problem.

Key Recovery Attack on McNie Based on Low Rank Parity Check Codes 27

5.3 Attack Against 4-Quasi-Cyclic LRPC Codes

Recall the settings in 4-Quasi-Cyclic LRPC codes, l = 3n
4 and k = n

2 . Taking P =

In, G′ =

⎛

⎝
In

4
0n

4
0n

4
G1

0n
4

In
4
0n

4
G2

0n
4
0n

4
In

4
G3

⎞

⎠, H =
(

H1 H2 H3 H4

H5 H6 H7 H8

)

and S̄ =
(

S1 S2

S3 S4

)

where

G1, . . . , G3, S1, . . . , S4,H1, . . . , H8 are n
4 × n

4 circulant matrices. Then compute

F̄ = G′P−1HT S̄ and reduce F̄ into column echelon form, F = F̄E =

⎛

⎝
In

4
0n

4

0n
4

In
4

F ′ F ′′

⎞

⎠

where F ′ and F ′′ are n
4 × n

4 circulant matrices. Then we have F = F̄E =

G′P−1HT S̄E. Let S = S̄E and S−1 :=
(

Ŝ1 Ŝ2

Ŝ3 Ŝ4

)

. Consider the system of the

form (2), we have

FS−1 =

⎛

⎝
In

4
0n

4

0n
4

In
4

F ′ F ′′

⎞

⎠
(

Ŝ1 Ŝ2

Ŝ3 Ŝ4

)

=

⎛

⎝
Ŝ1 Ŝ2

Ŝ3 Ŝ4

F ′Ŝ1 + F ′′Ŝ3 F ′Ŝ2 + F ′′Ŝ4

⎞

⎠ , (5)

G′P−1HT =

⎛

⎝
In

4
0n

4
0n

4
G1

0n
4

In
4
0n

4
G2

0n
4
0n

4
In

4
G3

⎞

⎠

⎛

⎜
⎜
⎝

HT
1 HT

5

HT
2 HT

6

HT
3 HT

7

HT
4 HT

8

⎞

⎟
⎟
⎠ =

⎛

⎝
HT

1 + G1H
T
4 HT

5 + G1H
T
8

HT
2 + G2H

T
4 HT

6 + G2H
T
8

HT
3 + G3H

T
4 HT

7 + G3H
T
8

⎞

⎠ .

Let hi be the vector that induces the circulant matrix Hi for i = 1, . . . , 8. Since
FS−1 = G′P−1HT , we have

⎛

⎝
Ŝ1 Ŝ2

Ŝ3 Ŝ4

F ′Ŝ1 + F ′′Ŝ3 F ′Ŝ2 + F ′′Ŝ4

⎞

⎠ =

⎛

⎝
HT

1 + G1H
T
4 HT

5 + G1H
T
8

HT
2 + G2H

T
4 HT

6 + G2H
T
8

HT
3 + G3H

T
4 HT

7 + G3H
T
8

⎞

⎠ ,

by substituting Ŝ1 = HT
1 + G1H

T
4 and Ŝ3 = HT

2 + G2H
T
4 , we have

F ′Ŝ1 + F ′′Ŝ3 = F ′(HT
1 + G1H

T
4) + F ′′(HT

2 + G2H
T
4) = HT

3 + G3H
T
4

⇒ 0n
4 ×n

4
= F ′HT

1 + F ′′HT
2 − HT

3 + (F ′G1 + F ′′G2 − G3)HT
4

= (F ′, F ′′,−In
4
, F ′G1 + F ′′G2 − G3)

⎛

⎜
⎜
⎝

HT
1

HT
2

HT
3

HT
4

⎞

⎟
⎟
⎠ . (6)

Let H = (F ′, F ′′,−In
4
, F ′G1 +F ′′G2 −G3). By viewing the matrices H1, . . . , H4

as vector, we can rewrite (6) as

0n
4

= (h1,h2,h3,h4)HT . (7)

Since the coefficients of H generate a vector subspace with dimension at most
d, the vector h1 = (h1, . . . ,h4) is then a vector with rkq(h1) = d. Solving (7)
to recover h1 is now equivalent to an RSD(q,m, n, 3

(
n
4

)
, d) problem.

28 T. S. C. Lau and C. H. Tan

Similarly, we can repeat the procedure above for Ŝ2 and Ŝ4 to obtain

0n
4

= (h5,h6,h7,h8)HT . (8)

Let h2 = (h5, . . . ,h8). Then, solving (8) to recover h2 is now equivalent to an
RSD(q,m, n, 3

(
n
4

)
, d) problem.

5.4 Recovering Plaintext from Our Recovered H̄ and S̄

Suppose that vectors h̄i are recovered and H̄i are generated by h̄i, then we
can determine a matrix S̄−1, satisfying F = G′H̄T S̄. We can use H̄ and S̄ to
compute c1H̄

T − c2S̄
−1 = (mG′ + e)H̄T − (mG′H̄T S̄)S̄−1 = eH̄T . Since H̄ is

a parity check matrix of LRPC code and H̄ is known, we can decode eH̄T and
recover e, thus retrieving m by solving mG′ = c1 − e.

5.5 Actual Security Level of Proposed Parameters

Table 2 shows the key recovery attack complexity (KRA) in solving the problem
RSD(q,m, n, 2

(
n
3

)
, d) and RSD(q,m, n, 3

(
n
4

)
, d) using formulas in Sect. 2.3. For

all the original and revised parameters of 3-Quasi-Cyclic and 4-Quasi-Cyclic
LRPC codes suggested by Galvez et al., our key recovery attack is able to recover
the secret key H and S of the proposed security level (Claimed Security).

Table 2. Complexity to recover the secret key of 3-Quasi-Cyclic and 4-Quasi-Cyclic
LRPC using key recovery attack (KRA)

Original parameters in [10]

3-Quasi-Cyclic LRPC 4-Quasi-Cyclic LRPC

n k l d r m q Claimed

security

KRA n k l d r m q Claimed

security

KRA

84 56 56 3 4 29 2 80 59 48 24 36 2 4 29 2 80 42

96 64 64 3 4 29 2 80 59 56 28 42 2 4 37 2 80 47

93 62 62 3 5 37 2 128 68 60 30 45 3 5 37 2 128 76

105 70 70 3 5 37 2 128 69 72 36 54 3 5 37 2 128 76

111 74 74 3 7 41 2 192 73 76 38 57 3 7 41 2 192 82

123 82 82 3 7 41 2 192 74 84 42 63 3 7 41 2 192 82

111 74 74 3 7 59 2 256 93 76 38 57 3 7 53 2 256 99

141 94 94 3 9 47 2 256 81 88 44 66 3 8 47 2 256 91

Revised parameters in [11]

120 80 80 3 8 53 2 128 87 92 46 69 3 10 59 2 128 107

138 92 92 3 10 67 2 192 103 112 56 84 3 13 67 2 192 119

156 104 104 3 12 71 2 256 107 128 64 96 3 16 73 2 256 127

For instance, our key recovery attack can recover all the secret key for the
revised parameters of 3-Quasi-Cyclic LRPC of claimed security level of 256-bit in
2107 complexity. This implies that to achieve the claimed security, it is required
to adjust the parameters, resulting in increase in the key size of the encryption
scheme.

Key Recovery Attack on McNie Based on Low Rank Parity Check Codes 29

6 A New Proposal - McNie Based on Gabidulin Codes

In this section we use Gabidulin code as the r-error correcting code over a finite
field Fqm for the McNie encryption. We consider an l-partical circulant induced
by u of rkq(u) = n as the G′ in the encryption. Now, we give the definition for
Moore matrix and Gabidulin codes.

Definition 10. A matrix G ∈ F
k×n
qm is called a Moore matrix if there exists

g = (g1, . . . , gn) ∈ F
n
qm such that G =

(
g
[i−1]
j

)

i,j
for 1 ≤ i ≤ k and 1 ≤ j ≤ n,

where [i] := qi is the ith Frobenius power. If g = (g1, . . . , gn) ∈ F
n
qm with

rkq(g) = n, then the [n, k]-Gabidulin code Gabn,k(g) over Fqm of dimension k
with generator vector g is the code generated by the matrix G.

The error-correcting capability of Gabn,k(g) is r =
n−k
2 �. There exist efficient

deterministic decoding algorithms for Gabidulin codes up to the rank error cor-
recting capability (for example [4]). Therefore, our McNie based on Gabidulin
codes has error free decryption.

6.1 McNie Based on Gabidulin Codes

Setup, SPE Generates global parameters m, n, l, k, k′, r, t1 and t2 such that
m ≥ n > l > n − k, l = k′ + r, and t1 + t2 ≤ r =

⌊
n−k
2

⌋
. The plaintext space is

F
k′
qm . Outputs param = (m,n, l, k, k′, r, t1, t2).

Key Generation, KPE Generates a vector g
$← F

n
qm such that rkq(g) = n.

Computes a parity check matrix H ∈ F
(n−k)×n
qm of Gabn,k(g) with an efficient

syndrome decoding algorithm Gabn,k(g).SDec(·). Generates a vector u
$← F

n
qm

such that rkq(u) = n. Constructs a l-partial circulant matrix, G′ = Cirl(u).

Generates P1
$← F

n×t2
qm and P2

$← F
n×(n−t2)
q such that P = (P1 | P2) is invertible.

Generates S
$← GLn−k(Fqm) such that F̄ = G′PHTS could be reduced into

column echelon form, i.e., there exists E ∈ GLn−k(Fqm) such that F = F̄E =(
In−k

F̂

)

, where F̂ ∈ F
(l−(n−k))×(n−k)
qm . Outputs public key κpub = (F,G′) and

secret key κsec = (ES := E−1S−1, g, P).

Encryption, EPE(κpub = (F,G′),m) Let m ∈ F
k′
qm be the message to be

encrypted. Generates s
$← F

r
qm such that rkq(s) = r. Generates e

$← F
n
qm such

that rkq(e) ≤ t1. Outputs c = (c1, c2) = ((m‖s)G′ + e, (m‖s)F) as the cipher-
text.

Decryption, DPE (κsec = (ES , g, P), c) Using P , H and ES = E−1S−1, com-

putes c1PHT − c2ES = ((m‖s)G′ + e)PHT − (m‖s)(G′PHTSE)E−1S−1 =
ePHT . Since rkq (eP) ≤ rkq(eP1) + rkq(eP2) ≤ t2 + t1 ≤ r and (eP)HT is a
syndrome of Gabn,k(g), computes e = Gabn,k(g).SDec(ePHT)P−1 = ePP−1.
Retrieves m by solving the system (m‖s)G′ = c1 − e.

30 T. S. C. Lau and C. H. Tan

Remark 1. Let G′ =
(

G1

G2

)

, since F =
(

In−k

F̂

)

= G′PHTSE, the secret key

ES could be calculated from G1, H and P , i.e., ES = G1PHT . Therefore we do
not need to store ES as a part of the secret key.

6.2 Practical Security

We consider different attacks on our McNie reparation and discuss the complex-
ity of the attacks:

1. Gaborit’s Attack: The complexity of combinatorial and algebraic attacks on
c1 are calculated based on the complexities in Sect. 2.3, by replacing the term
“k” in the complexity with “l − (n − k)”.

2. Key Recovery Attack: Our F = G′PHTS is a cubic multivariate system of
equations. Although we can transform F = G′PHTS into FS−1 = GPHT ,
it is a quadratic multivariate system of equations, which has large solving
complexity. Moreover, our H is not block-circulant matrix and the entries in
H is not of low rank, therefore this attack is not applicable.

3. Recovering Plaintext of Low Rank: In our proposal, we have rkq(m‖s) ≥ r
and c2 = (m‖s)F . Since rkq(m‖s) ≥ r, we set our parameters in a way that
the adversary will take more complexities than the security level to recover
the plaintext.

4. Overbeck’s Attack: In Overbeck’s attack [16] on Gpub = S(X | G)P where
S ∈ GLk(Fqm), X ∈ F

k×t1
qm , P ∈ GLn+t1(Fq), and G is a k × n Moore

matrix. Consider the code C̄ generated by ḠT =
(
GT

pub, . . . , (G
[n−k−1]
pub)T

)
,

since G
[i]
pub = S[i](X [i] | G[i])P , then ker(C̄) = n+t1−1. An alternative column

scrambler matrix P̄ over Fq could be computed, giving GpubP̄
−1 = S(Z | G∗)

where G∗ is a Moore matrix. In our construction, FT = STHPT (G′)T and
(FT)[i] = (ST)[i]H [i](PT)[i]((G′)[i])T , the matrix (PT)[i]((G′)[i])T is not over
Fq, thus we are not able to determine an alternative column scrambler matrix
P̄ over Fq so that FT P̄−1 = STH∗, then Overbeck’s attacks fails.

5. Otmani et al.’s Attack: In Otmani et al.’s attack [14], they need to trans-
form the public key matrix Gpub into the form above, so that it could be
attacked by Overbeck’s attack. Let A = STHPT and FT = A(G′)T in
our construction. Assume A is known, the adversary wants to transform PT

into the form Q =
(

Q1 0
Q2 Q4

)

where Q4 is a matrix over Fq. Let S̄ = ST

and P̄ = PT =
(

P11 P12

P21 P22

)

, where P11 and P12 are over Fqm , P21 and

P22 are over Fq. Rewrite A = S̄H

(
It2 P ′

0 In−t2

)(
It2 −P ′

0 In−t2

)(
P11 P12

P21 P22

)

=

S̄H

(
It2 P ′

0 In−t2

)(
P ′
11 0

P21 P22

)

= S̄(H1 | H1P
′ + H2)

(
P ′
11 0

P21 P22

)

where P ′ =

P12P
−1
22 and P ′

11 = P11 − P ′P21. Then A = S̄(H̄Moore + X), where H̄Moore =

Key Recovery Attack on McNie Based on Low Rank Parity Check Codes 31

(H2P21 | H2P22) and X = (H1P
′
11 +H1P

′P21 | H1P
′P22) of full column rank.

Since X is of full column rank, therefore [14, Proposition 6] cannot be applied.
Therefore Otmani et al.’s attack on A is not applicable.

6.3 IND-CPA Secure Encryption

The desired security properties of a public-key encryption scheme is indistin-
guishability under chosen plaintext attack (IND-CPA). This is normally defined
by a security game which is interacting between a challenger and an adversary
A. The security game is described as follows:

Set up: Given a security parameter, the challenger first runs the key gener-
ation algorithm and send κpub to A.
Challenge: A chooses two equal length plaintexts m0 and m1; and sends
these to the challenger.
Encrypt challenge messages: The challenger chooses a random b ∈ {0, 1},
computes a challenge ciphertext c = EPE(κpub,mb) and returns c to A.
Guess: A outputs a bit b′ ∈ {0, 1}. A wins if b′ = b.

The advantage of an adversary A is defined as AdvIND−CPA
PE,A (λ) =

∣
∣Pr[b′ = b] − 1

2

∣
∣. A secure public-key encryption scheme against chosen plaintext

attack is formally defined as follows:

Definition 11. A public-key encryption scheme PE = (SPE,KPE, EPE,DPE) is
(t, ε)-IND-CPA secure if for any probabilistic t-polynomial time adversary A has
the advantage less than ε, that is, AdvIND−CPA

PE,A (λ) < ε.

We will show that our encryption has indistinguishability under chosen plaintext
attack (IND-CPA). Denote En,w := {x : x ∈ F

n
qm , rkq(x) = w}. We first describe:

The Decisional Rank Syndrome Decoding (DRSD) assumption. Let D
be a distinguishing algorithm that takes as input a vector in F

n−k
qm and a matrix

Q ∈ F
n×(n−k)
qm , and outputs a bit. The DRSD advantage of D is defined as

AdvDRSDQ,n,k(D) =
∣
∣
∣Pr

[
e

$← En,w,u = eQ : D(Q,u) = 1
]

− Pr
[
z

$← F
n−k
qm : D(Q,z) = 1

]∣
∣
∣ .

The DRSD assumption is the assumption that the advantage AdvDRSDQ,n,k(D) is
negligible for any D, i.e., AdvDRSDQ,n,k(D) < εQ.

Consider the dual problem of RSD problem, we define:

The Decisional Rank Syndrome Decoding Dual (DRSDD) Assump-
tion. Let D be a distinguishing algorithm that takes as input a vector in F

n
qm

and a matrix M ∈ F
k×n
qm , and outputs a bit. The DRSDD advantage of D is

defined as

AdvDRSDDM,n,k(D) =
∣
∣
∣Pr

[
v

$← F
k
qm ,e

$← En,w,x = vM + e : D(M,x) = 1
]

− Pr
[
y

$← F
n
qm : D(M,y) = 1

]∣
∣
∣ .

32 T. S. C. Lau and C. H. Tan

The DRSDD assumption is the assumption that the advantage AdvDRSDDM,n,k(D) is
negligible for any D, i.e., AdvDRSDDM,n,k(D) < εM .

We state the assumptions for which our encryption is based on:

Assumption 1. Let (F,Cirl(u)) be the public key in our encryption, where
F ∈ F

l×(n−k)
qm and Cirl(u) ∈ F

l×n
qm . The DRSDF assumption is the assumption

that AdvDRSDF,l,l−(n−k)(D) is negligible for any D, i.e., AdvDRSDF,l,l−(n−k)(D) < εF . The
DRSDDCirl(u) assumption is the assumption that AdvDRSDDCirl(u),n,l(D) is negligible
for any D, i.e., AdvDRSDDCirl(u),n,l(D) < εCirl(u).

We will now prove that our encryption is IND-CPA secure under DRSDF and
DRSDDCirl(u) assumptions.

Theorem 1. Under the DRSDDCirl(u) and DRSDF assumptions, our proposed
public-key encryption scheme McNie PE is IND-CPA secure.

Proof. To prove the security of the scheme, we are using a sequence of games.
Let CEF be an algorithm that inputs a matrix A and output (B,C) where B is
the column echelon form of A and C is an invertible matrix such that B = AC.

Game G0: This is the real IND-CPA attack game against an adversary A in the
definition of semantic security. We run the following attack game algorithm:

P
$←

{
(P1|P2) : P1 ∈ F

n×(n−t2)
q , P2 ∈ F

n×t2
qm , (P1|P2) ∈ GLn(Fqm)

}
,

S
$← GLn−k(Fqm), u $← {u : u ∈ F

n
qm , rkq(u) = n}, G′ ← Cirl(u),

(F,E) ← CEF(G′PHTS), ES ← E−1S−1,
κpub ← (F,G′), κsec ← (ES , g, P)

(m0,m1)
$← A(κpub)

b
$← {0, 1}, s $←

{
s : s ∈ F

l−k′
qm , rkq(s) = r

}
,

e
$← {

x : x ∈ F
n
qm , rkq(x) ≤ r

}
,

c1 ← (mb‖s)G′ + e, c2 ← (mb‖s)F
b̂ ← A(κpub, c1, c2)
if b̂ = b then return 1 else return 0

Denote S0 the event that A wins in Game G0. Then AdvIND−CPA
PE,A (λ) =

∣
∣Pr[S0] − 1

2

∣
∣.

Game G1: We now make one small change to G0. In this game, we pick a random
vector y $← F

n
qm and replace c1 in G0 for EPE(κpub, (mb‖s)) by c1 ← y. We denote

S1 the event that A wins in Game G1. Under the DRSDDCirl(u) assumption, the
two games G1 and G0 are indistinguishable with |Pr[S1] − Pr[S0]| < εCirl(u).

Game G2: We now make one small change to G1. In this game, we pick a random
vector z

$← F
n−k
qm and replace c2 in G1 for EPE(κpub, (mb‖s)) by c2 ← z. We

denote S2 the event that A wins in Game G2. Under the DRSDF assumption,
the two games G2 and G1 are indistinguishable with |Pr[S2] − Pr[S1]| < εF .

Key Recovery Attack on McNie Based on Low Rank Parity Check Codes 33

As the ciphertext challenge c = (c1, c2) is perfectly random, b is hidden to
any adversary A without any advantage, we have Pr[S2] = 1

2 . Therefore, we
have AdvIND−CPA

PE,A (λ) = |Pr[S0] − 1/2| = |Pr[S0] − Pr[S2]| ≤ |Pr[S0] − Pr[S1]| +
|Pr[S1] − Pr[S2]| < εCirl(u) + εF . Under the DRSDDCirl(u) and DRSDF

assumption, our proposed public-key encryption scheme McNie PE is IND-CPA
secure. ��

6.4 Proposed Parameters

We propose the parameters of our McNie based on Gabidulin codes. Denote
“Sec.” as the achieved security, by considering all the complexities for attacks in
Sect. 2.3. The public key size (denoted as “PK”) is (l−(n−k))(n−k)m+nm

8 log2(q)
bytes. While the secret key size (denoted as “SK”) is nm+n(n−t2)+nt2m

8 log2(q)
bytes. The ciphertext size (denoted as “CT”) is (2n−k)m

8 log2(q) bytes (Table 3).

Table 3. Proposed parameters of McNie on Gabidulin codes

m n k l t1 t2 q Sec. PK SK CT

43 38 14 37 9 3 2 128 1.88KB 0.98KB 0.33KB

44 40 14 38 10 3 2 129 1.94KB 1.07KB 0.36KB

50 45 19 44 10 3 2 192 3.21KB 1.36KB 0.44KB

52 47 19 45 11 3 2 198 3.40KB 1.48KB 0.49KB

57 52 20 51 13 3 2 257 4.70KB 1.80KB 0.60KB

59 54 22 51 13 3 2 257 4.88KB 1.94KB 0.63KB

7 Conclusion

McNie based on QC-LRPC has limitations such as decryption failure and possi-
ble recovery of low rank plaintext of their claimed security level. We show that
McNie based on QC-LRPC codes with the proposed parameters is not secure of
the claimed security. Our key recovery attack can successfully recover the secret
key for all the given original and revised parameters. As such, their parameters
must be adjusted to achieve the required security level, resulting in higher key
size. We overcome the weaknesses of McNie based on QC-LRPC, by proposing
McNie based on Gabidulin codes, which has error free decryption. Our pro-
posal has IND-CPA security under DRSDDCirl(u) and DRSDF assumptions. We
can explore the possibility to apply Fujisaki-Okamoto transformation [3] similar
with the approach in [10] to convert our encryption into IND-CCA2 in the random
oracle model.

34 T. S. C. Lau and C. H. Tan

References

1. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.P.: Improvement of Generic
Attacks on the Rank Syndrome Decoding Problem (2017). <hal-01618464>

2. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 16

3. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptology 26(1), 80–101 (2013)

4. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy
Peredachi Informatsii 21(1), 3–16 (1985)

5. Gaborit, P.: Attack on McNie. In: Post-Quantum Cryptography, Round 1
Submmisions, McNie, Official Comments. https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/
McNie-official-comment.pdf

6. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption
from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 7

7. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decod-
ing problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

8. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low Rank Parity Check codes and
their application to cryptography. In: The Proceedings of Workshop on Coding
and Cryptography (WCC) 2013, Borgen, Norway, pp. 168–180 (2013)

9. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance
problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)

10. Galvez, L., Kim, J., Kim, M.J., Kim, Y., Lee, N.: McNie: Compact McEliece-
Niederreiter Cryptosystem. https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/round-1/submissions/McNie.zip

11. Galvez, L., Kim, J., Kim, M.J., Kim, Y., Lee, N.: New McNie parameters. In:
Post-Quantum Cryptography, Round 1 Submmisions, McNie, Official Comments.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-1/official-comments/McNie-official-comment.pdf

12. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44448-3 4

13. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. In: Pro-
ceedings of YACC 2006, pp. 142–152 (2006)

14. Otmani, A., Kalachi, H.T., Ndjeya, S.: Improved Cryptanalysis of Rank Metric
Schemes Based on Gabidulin Codes. CoRR abs/1602.08549 (2016)

15. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric
and its cryptography applications. Probl. Inf. Trans. 38(3), 237–246 (2002)

16. Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin
codes. J. Cryptology 21(2), 280–301 (2008)

https://doi.org/10.1007/978-3-540-85174-5_16
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/McNie-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/McNie-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/McNie-official-comment.pdf
https://doi.org/10.1007/978-3-319-63697-9_7
https://doi.org/10.1007/978-3-319-63697-9_7
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/McNie.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/McNie.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/McNie-official-comment.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/official-comments/McNie-official-comment.pdf
https://doi.org/10.1007/3-540-44448-3_4

Inference Attacks on Encrypted
Databases Based on Order Preserving

Assignment Problem

Sota Onozawa1, Noboru Kunihiro1, Masayuki Yoshino2(B),
and Ken Naganuma1,2

1 The University of Tokyo, Tokyo, Japan
2 Hitachi, Ltd., Tokyo, Japan

masayuki.yoshino.aa@hitachi.com

Abstract. In ACM CCS 2015, Naveed et al. proposed attacks using
plaintext auxiliary data for databases encrypted by ordered preserv-
ing encryption or more general property preserving encryptions. Their
attacks are based on the Hungarian algorithm for solving the linear sum
assignment problem (LSAP). In this work, we define a new assignment
optimization problem with an additional condition of order structure and
propose a search algorithm for finding its exact solution. We apply the
new algorithm to attack an encrypted database in the same situation as
Naveed et al. and found that our proposed method improves the success
probability of the attacks compared with the attacks of Naveed et al.

Keywords: Linear sum assignment problem
Order-preserving encryption · Inference attacks · Encrypted databases

1 Introduction

The migration of the computing environment to the cloud is a critical issue,
particularly for online applications [15]. Curious administrators on the cloud can
snoop on all data, even if the data are encrypted by a standard encryption scheme
such as AES. The administrators possess the secret keys to decrypt the encrypted
data. One approach to reduce the damage caused by cloud compromises is to
encrypt sensitive data using something like CryptDB [8], which is an encrypted
database (EDB) equipped with functions of encrypted SQL operations such as
join, sort, and addition.

EDBs are created by incorporating property-preserving encryption (PPE)
into a relational database (RDB). PPE has the characteristic that certain plain-
text properties are maintained when converting to ciphertext.The PPE includes a
deterministic encryption (DTE) and an order-preservation encryption (OPE) [1–
3] that preserves the order relation of a plaintext in a ciphertext as well. The
searchable encryption (SE) technique is also utilized in the creation of EDBs.

CryptDB is the first EDB using PPE based on open source RDB such as
MySQL or Postgres [8]. In CryptDB, DTE, OPE, and SE are used: the DTE for
c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 35–47, 2018.
https://doi.org/10.1007/978-3-319-97916-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_3&domain=pdf

36 S. Onozawa et al.

encrypted equality match, the OPE typically for encrypted range search, and the
SE for encrypted word search. CryptDB has been used by several organizations,
and a few companies developed encrypted database inspired by CryptDB [19–21].

To evaluate its security, Naveed et al. [9] proposed a known plaintext attack
method against the property preserved cryptosystem used in cryptDB. In their
attack scenario, the attacker has an encrypted data set of a target DB that
was encrypted by PPE and a plaintext data set having a similar background
distribution. The attacker guesses the plaintext of the encrypted DB on the
basis of the frequency, the order structure, and both sets of encrypted data.

In the present work, we focus on this attack method based on the linear sum
assignment problem (LSAP) and its solution searching algorithm, called the
Hungarian algorithm, and define a new optimization problem, namely, an order
preserving assignment problem (OPAP), that considers the order structure. We
show an exact solving algorithm for OPAP and use it to improve the method
proposed by Naveed et al. We should point out that our new algorithm for OPAP
is faster than the Hungarian algorithm, therefore not only improvement of the
attack but also our new algorithm for OPAP are contribution of our work.

1.1 Related Works

Many works for PPE and security analysis have been performed on encryp-
tion schemes, including OPE and order-revealing encryption (ORE) [5–7]. They
include a range search function that discloses the corresponding order relation
for each query. The cloud ordinarily receives most queries, so the function and
security level of OPE and ORE are essentially the same. Lewi et al. [11] demon-
strated attacks against two-dimensional data using order information leakage
from ORE, and Horst et al. showed an attack against the newly proposed OPE
[4] by focusing on its configuration method [10].

CryptDB [8] has been proposed as an encrypted DB using PPE. Naveed et
al. [9] proposed a known plaintext attack method against a property preserved
cryptosystem used in cryptDB. They assumed an attacker who had a plain-
text with a background distribution similar to the attack target and attacked
using frequency information, order information, and cumulative density func-
tion information. Their attack method is mainly based on the LSAP and its
solving algorithm (the Hungarian algorithm). This algorithm outputs an exact
solution at O(n3) step, but because order is not considered, there are cases where
plaintext guess results with collapsed order structure are output.

Grubbs et al. [17] formulated an optimization problem with the ordered struc-
ture, which is added to LSAP, and improved the attack proposed by Naveed et
al. by using a classical algorithm that gives an approximate solution to it. In this
paper, we formulate a similar optimization problem and propose an algorithm
giving its exact solution.

Inference Attacks on Encrypted Databases Based on OPAP 37

1.2 Our Contribution

As stated above, the LSAP does not take the order structure into account, so
we formulate a new optimization problem with it and give its exact solution
algorithm, which is asymptotically optimized. The proposed method not only
speeds up the inference attack but also improves the success probability of the
attack.

We assume that database is encrypted by deterministic order preserving
encryptions, which is the same scenario such as [9,17]. Database encrypted by
probabilistic order preserving encryptions, which is proposed by Kerschbaum et
al. [18], is out of scope in this paper.

Our contribution is summarized as follows.

1. To deal with attacks against ordered preservation encryption, we modify the
LSAP and formulate a new optimization problem, OPAP, that considers order
structure.

2. We describe an exact solution search algorithm using dynamic programming
for OPAP. The number of steps in this algorithm is asymptotically optimal.

3. We experimentally demonstrate that using our search algorithm improves the
success probability compared to Naveed’s attacks for some data sets.

4. We provide a new evaluation method using Levenshtein distance for attacks
against order preserving encryption and demonstrate that our proposed
method is an improvement on the conventional method.

The reason for using an evaluation based on Levenshtein distance is as follows.
For an order preserving encryption’s ciphertext Enc(28), an attacker A guesses
the plain text as 29 and an attacker B guesses it as 35. Both attackers A and B
fail to make a correct guess, but attacker A makes a “better” guess than B. Our
stance is that the difference from the true value of plaintext should be evaluated
even if the estimated value deviates, so to this end, we provide an evaluation
method for the speculation result of the attacker using Levenshtein distance.

2 Previous Research

2.1 Preliminary

We denote message space and ciphertext space by M and C, respectively. We also
denote the ciphertext of message sequence m = (m1, . . . ,mk) by c = (c1, . . . , ck),
where mi ∈ M and ci ∈ C. The attacker applies an inference attack using
both frequency information and order information derived from the ciphertext
of OPE, which leaks order relation and equality: Enc(m1)�Enc(m2) if m1 �m2

with an order notation � such as � ∈ {<,=, >}.
Let D be a totally ordered set. We write data d as d = (d1, . . . , dk) (di ∈ D,

1 ≤ i ≤ k). The histogram Hist (d) = (h1, . . . , hn) is on a |D|-dimensional vector,
where hi is the frequency of the i-th element of the vector. For example, if we
calculate the histogram of d = (1, 1, 2, 3, 5, 1, 3) in D = {1, 2, 3, 4, 5} ,Hist (d) is
given by (3, 1, 2, 0, 1).

38 S. Onozawa et al.

Next, we define the cumulative distribution function (CDF) of d. By defining
fi :=

∑i
j=1 hj , we have CDF (d) = (f1, . . . , fn). For example, if we calculate

the CDF of d = (1, 1, 2, 3, 5, 1, 3) in D = {1, 2, 3, 4, 5}, CDF (d) is (3, 4, 6, 6, 7).

2.2 Inference Attack

In addition to the encrypted database most inference attack needs an auxiliary
data, therefore we assume that our adversary has access to auxiliary data. Aux-
iliary data is standard in any practical adversarial model since the adversary
can always consult public information sources to carry out the attack. Their
success depends on how well-correlated the auxiliary data is with the encrypted
database. The choice of auxiliary data is therefore an important consideration
when evaluating an inference attack.

One of the most fundamental elements of an inference attack is the frequency
analysis, which assigns encrypted data to auxiliary data in order of frequency.
Numerical ordered data such as the age can be stored in EDB, so a census data
including the age is a good candidate for auxiliary data (as in the scenario of
the cumulative attack proposed by Naveed [9]).

Inference attacks on OPE can utilize both frequency and order information.
The simplest attack using order information leaked from ciphertext is an attack
called the sort attack, which assigns a ciphertext to a plaintext by order of
plaintext. This attack always succeeds if all ciphertext are obtained as encrypted
data. In other words, the success rate of this attack is high, but only if the given
ciphertext covers most of the ciphertext space.

The attack is detailed below and works as follows. Given an ciphertext
sequence c generated by OPE over C and auxiliary data z over M, the
attacker computes the histogram Hist (c) and Hist (z), and the CDFs (c) and
CDFs (z), respectively. It then finds the permutation X that simultaneously
matches both the sample frequencies and the CDFs as closely as possible. In
order words, the cumulative attack recovers the plaintext by minimizing the
following equation, which we call cost function.

|M|∑

i=1

(
|Hist (c)i − 〈Xi,Hist (z)〉|2 + |CDF (c)i − 〈Xi,CDF (z)〉|2

)

Here, Xi denotes the vector at the i-th row of matrix X, which is an n×n matrix.
There is only one 1 per row and column; the other components are 0. Hist (c)i
denotes the i-th component of the histogram, and 〈Xi,Hist (z)〉 denotes the
inner product of Xi and Hist (z). The histogram quantifies frequency informa-
tion and the CDF quantifies order information. If the j-th component of Xi is
1, the i-th term of the cost function is given as

∣
∣
∣Hist (c)i − Hist (z)j

∣
∣
∣
2

+
∣
∣
∣CDF (c)i − CDF (z)j

∣
∣
∣
2

.

This is the sum of the squared errors of the histogram and CDF when assigning
the i-th smallest ciphertext to the j-th smallest plaintext. If the attacker once

Inference Attacks on Encrypted Databases Based on OPAP 39

obtains the permutation matrix X minimizing the cost function, he can obtain
the assignment between ciphertext and plaintext, which minimizes errors of the
histogram and CDF.

The cumulative attack is a minimization problem with variable matrix X
such that

argmin
X∈P

|M|∑

i=1

(
|Hist (c)i−〈Xi,Hist (z)〉|2+|CDF (c)i −〈Xi,CDF(z)〉|2

)
, (1)

where P is the set of the entire n × n permutation with n = |C|.
In [9], Naveed et al. reduce the minimization of the cost function to the linear

sum assignment problem (LSAP) and then use the Hungarian algorithm [12,13]
to solve the LSAP. This attack runs in O(n3). The LSAP is formulated for n×n
cost matrix C = (cij) , (0 ≤ cij), as

minimize
n∑

i=1

n∑

j=1

cijXij

subject to
n∑

i=1

Xij = 1, 1 ≤ j ≤ n

n∑

j=1

Xij = 1, 1 ≤ i ≤ n

Xij ∈ {0, 1}, 1 ≤ i, j ≤ n.

The cumulative attack is reduced to LSAP by setting the cost matrix C =
(cij), as

cij =
∣
∣
∣Hist (c)i − Hist (z)j

∣
∣
∣
2

+
∣
∣
∣CDF (c)i − CDF (z)j

∣
∣
∣
2

.

To set Hist, let C
′ be a set of ciphertext that appears in encrypted data c.

If |C′| = |C|, the attacker recovers all encrypted data by sequentially assigning
ciphertext to plaintext using only the order information. We consider only the
case that |C′| := l < |C|. Note that the cost matrix is uniquely determined when
the histogram is determined. If the histogram can be determined appropriately,
the cost matrix will also determined. On the other hand, the attacker cannot
know all the positions of ciphertext in C in advance. If the attacker knows
the correct positions of all ciphertext, he can recover all encrypted data by
sequentially assigning ciphertext to plaintext.

We assume that Naveed et al. consider 0s to be padded at the position con-
taining lower frequency counts in auxiliary data in the histogram, although the
details are not written in [9]. Consequently, if the auxiliary data has a property
in which a larger value appears less frequently, the following setting of Hist,

Hist (c) = (h1, . . . , hl, 0, . . . , 0) ,

will be obtained. The performance heavily relies on where the 0s are padded.

40 S. Onozawa et al.

2.3 Drawback of the Cumulative Attack

The cumulative attack has the following drawback.

The output may conflict with the order of plaintext due to lack of order
constraints; therefore, the success rate is low if the amount of given ciphertext

is small.

In addition to the above drawback there is other drawback. Suppose the
attacker obtains the plaintext such that cj → mj and ci → mj for ciphertext
ci < cj and plaintext mj < mi by the cumulative attack. This output contradicts
the order relation, and it is always incorrect. The nature of the cumulative attack
does not prohibit this kind of inconsistent output, which leads to a low success
rate, especially when the amount of ciphertext is small. Our research aim is to
develop a method to overcome this problem.

3 New Optimization Problem

We resolve the problem in the cumulative attack by introducing a new opti-
mization problem in the place of LSAP. This problem is obtained by appending
order constraints to LSAP, and it overcomes the issue where the order of output
contradicts the order of correct plaintext. In our new optimization problem, the
input matrix does not need to be a square matrix, so it is unnecessary to pad
the histogram of encrypted data with 0 . . . 0.

In the cumulative attack, the assignment is obtained by solving the LSAP,
while in our method, we reduce the assignment to an optimization problem with
order constraint and find the X that minimizes the cost function.

3.1 Order Preserving Assignment Problem

We introduce an order constraint by the following equations:

If Xij = 1 then Xi′j′ �= 1 (i < i′, j′ < j) (2)
If Xij = 1 then Xi′j′ �= 1 (i′ < i, j < j′) (3)

Equation (2) represents a constraint that ciphertext smaller than ci are not
assigned to plaintext larger than mj when ciphertext ci is assigned to plain-
text mj . Equation (3) represents a constraint that ciphertext larger than ci
are not assigned to plaintext smaller than mj when ciphertext ci is assigned
to plaintext mj . We introduce an optimization problem obtained by appending
the constraints of Eqs. (2) and (3) to LSAP. We call this an order preserving
assignment problem (OPAP).

Inference Attacks on Encrypted Databases Based on OPAP 41

The OPAP is defined for m × n matrix C = (cij) and
(0 ≤ cij , 1 ≤ i ≤ m, 1 ≤ j ≤ n), and is formulated as follows.

minimize
m∑

i=1

n∑

j=1

cijXij

subject to
n∑

j=1

Xij = 1, 1 ≤ i ≤ m

Xij ∈ {0, 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n

If Xij = 1 then Xi′j′ �= 1 (i < i′, j′ < j)
If Xij = 1 then Xi′j′ �= 1 (i′ < i, j < j′)

3.2 Solving Order Preserving Assignment Problem

In this subsection, we propose an algorithm to solve OPAP. In a nutshell, the
OPAP given for the entire cost matrix is reduced to the OPAP for the submatrix
of the cost matrix. First, we give the algorithm for solving the OPAP.

Algorithm 1. Algorithm for Solving OPAP
1: function Optimize(C):
2: Input: m × n cost matrix C
3: Output: Solution of the order preserving assignment problem
4: if C has one row then
5: OUTPUT argminC
6: else if C is n × n square matrix then
7: OUTPUT En

8: else
9: A ← 0m×n

10: A[1 : m − 1][1 : n − 1] ←Optimize(C[1 : m − 1][1 : n − 1])
11: A[m][n] ←1
12: B ← 0m×n

13: B[1 : m − 1][1 : n] ←Optimize(C[1 : m − 1][1 : n])
14: OUTPUT argmin

X∈{A,B}

∑n
i=1

∑n
j=1 CijXij

15: end if

We first explain lines 4 to 7. If there is one row in the cost matrix, the mini-
mum value of the row is the minimum assignment. If the cost matrix is square,
the assignment of diagonal entries is the only assignment, since the assignment
of diagonal entries is the smallest assignment.

Next, we explain the lines after 8. Suppose the cost matrix C is m×n matrix,
where m < n. We denote the i × j submatrix of C by C[1:i][1:j] and the solution
of the order preserving assignment problem by X[1:i][1:j]. The solution A or B of
the order preserving problem for C is then given as

42 S. Onozawa et al.

A =
(
X[1:m−1][1:n−1] 0

0 1

)

, (4)

B =
(
X[1:m−1][1:n]0

)
. (5)

Our algorithm calculates the cost functions of A and B and finds an assignment
with small values. This property then becomes the solution for the cost matrix C.

3.3 Toy Example for Solving OPAP

We explain how to solve the OPAP given the following cost matrix.

C =

⎛

⎝
12 11 13 17 19 5
8 9 4 7 12 5
7 8 6 5 4 2

⎞

⎠

C[1:2,1:3] =

(
12 11 13
8 9 4

)

.

We compare the minimum sum of C[1:2,1:2] and
the minimum sum of C[1:1,1:2] + C[2,3] for solving C[1:2,1:3]. Since C[1:2,1:2] is a
square matrix, the order preservation assignment only has diagonal entries. The
assignment is then given by the diagonal entries. Since C[1:1,1:2] has one row, the
minimum value of the elements is a solution. Therefore, we compare the values
for two assignments (1, 1), (2, 2) and (1, 2), (2, 3) and set the smaller one as
the solution of C[1:2,1:3], where (k, l) is an assignment of k rows and l columns.
The minimum assignment is (1, 2), (2, 3) and the minimum value is 15.

Next, we obtain the minimum assignment of C[1:2,1:4]:

C[1:2,1:4] =

⎛

⎝12 11 13 17

8 9 4 7

⎞

⎠ .

This problem is solved by comparing the minimum sum of C[1:2,1:3] and
the minimum sum of C[1:1,1:3] + C[2,4]. Note that we have a minimum assign-
ment of C[1:2,1:3] in the above procedure. Since C[1:1,1:3] has one row, the mini-
mum value of the elements is a solution. We then compare the two assignments,
(1, 2), (2, 3) and (1, 2), (2, 4), to solve C[1:2,1:4]. Therefore, the minimum assign-
ment of C[1:2,1:4] is given by (1, 2), (2, 3). Similarly, solutions of C[1:2,1:5] are
obtained as (1, 2) and (2, 3).

Next, we find the solution of C[1:3,1:4]:

C[1:3,1:4] =

⎛

⎜
⎝

12 11 13 17
8 9 4 7
7 8 6 5

⎞

⎟
⎠ .

Inference Attacks on Encrypted Databases Based on OPAP 43

We compare the minimum sum of C[1:3,1:3] and the minimum sum of
C[1:2,1:3] + C[3,4]. Since C[1:3,1:3] is a square matrix, the assignment of diago-
nal entries is the smallest. Also, C[1:2,1:3] has the minimum assignment (1, 2),
(2, 3) that we solved in the above procedure. When we compare
(1, 1), (2, 2), (3, 3) and (1, 2), (2, 3), (3, 4), we obtain (1, 2), (2, 3), (3, 4) as
the minimum assignment of C[1:3,1:4]. Since we already obtained the mini-
mum assignment of C[1:3,1:4] and C[1:2,1:4], we have the minimum assignment
of C[1:3,1:5]. Solutions of C are calculated from the solutions of C[1:3,1:5] and
C[1:2,1:5]. That is, the solution of C is given by (1, 2), (2, 3), (3, 6).

4 Experiments Using Datasets

In [9], Naveed et al. show that the cumulative attack can recover most of the
encrypted data when the encrypted data are large enough. Here, we experiment
on situations where recovery with the cumulative attack is difficult: namely,
when the amount of ciphertext is small.

4.1 Datasets

In this experiment, we use the UCI Machine Learning Repository Adult Data
Set [14], which includes 48, 842 units of data. This dataset consists of 32, 561
training sets and 16, 281 test sets. We sample the auxiliary data from the training
sets and sample the target data to be attacked from the test sets. We design two
scenarios:

Scenario 1: This scenario, which is optimistic, has a lot of auxiliary data and
little encrypted data (no. of encrypted data: 1,000, no. of auxiliary data:
32,561).

Scenario 2: This scenario, which is pessimistic, has less auxiliary data and
encrypted data (no. of encrypted data: 1,000, no. of auxiliary data: 1,000).

In the case that a similar data set is public, the attacker has lots of auxiliary
data but less encrypted data. In addition to the situation of public data sets, we
design a situation with less auxiliary data, which treats closed data sets such as
sensitive data. In [9], Naveed et al. consider scenarios using past accidental data
leakages in which auxiliary data may be less.

We select age column on the Adult Data Set as a target. The age column is
ranged from [17, 18, . . . , 90, more than 90],then |D| = 75.

We prepare 500 databases in accordance with this database setting, attack
them, and evaluate the output. The evaluation of the attack in scenario 1 ran-
domly samples 1, 000 encrypted data from test sets and generates 500 databases.
Moreover, we attack 500 databases by using training sets as auxiliary data. For
the evaluation of the attack in scenario 2, 1, 000 units of encrypted data are
randomly sampled from the test sets and 1, 000 units of auxiliary data are ran-
domly sampled from the training sets, and we generate 500 databases. Finally,
we evaluate each of the 500 databases and graph the overall results.

44 S. Onozawa et al.

4.2 Evaluation Metrics

We evaluate the performance of the algorithms using two metrics. The first one
is the same as [9], which is the rate at which encrypted data can be correctly
recovered. The second one is the Levenshtein distance [16] between the output
and the correct solution, which is considered the similarity between them. The
Levenshtein distance between two strings is the minimum number of single-
character edits (insertions, deletions, or substitutions) required to change one
string into another.

The reason we newly consider the Levenshtein distance is as follows. The eval-
uation metrics of [9] are considered only when the data is completely matched,
but there are many situations where attacks are considered successful if correct
results are obtained to a certain extent. For example, an attack can be considered
effective in many cases even if the values are recovered differently one by one.
We use the Levenshtein distance for measuring the performance in such cases.

4.3 Experimental Results for Scenario 1

Figure 1 compares the proposed method with the previous method based on the
recovery rate of encrypted data divided by 10%. Unlike the previous method the
number of databases the proposed method can recover more than 80% of is 400
out of 500.

Fr
ac

tio
n

of
 re

co
rd

s r
ec

ov
er

ed

Count of database

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%
Proposal
Cumulative attack

0 50 100 150 200 250 300 350 400 450 500

Fig. 1. Histogram of recovery rate.

Next, we discuss the evaluation based on Levenshtein distance. The average
of the output and the correct result of the previous method is 14.65 and of
the proposed method is 4.266. As shown in Fig. 2, the proposed method has an
improved performance on the Levenshtein distance.

4.4 Experimental Results for Scenario 2

Next, we discuss the results of experiments where there are few encrypted data
and auxiliary data. Figure 3 compares the recovery rate results for the proposed
and previous methods. As shown here, the number of recoverable databases

Inference Attacks on Encrypted Databases Based on OPAP 45

Fig. 2. Evaluation based on Levenshtein distance in Scenario 1.

of 70% or more and less than 90% in the proposed method is inferior to the
previous method. This is because the previous method partially replaces the
order, and the possibility that the output partially matches is larger than that of
the proposed method. However, the proposed method shows better performance
than the previous method for the recovery rate of 90% or more.

Fr
ac

on
of

 re
co

rd
s r

ec
ov

er
ed

Count of database

0%

10%

20%

30%

40%

50%

60%

70%

80%
Proposal
Cumulative attack

0 50 100 150 200 250 300 350 400 450 500

Fig. 3. Histogram of recovery rate.

Next, we compare the results using Levenshtein distance between the pro-
posed and previous methods, as shown in Fig. 4. The average Levenshtein dis-
tance is 14.43 for the previous method and 5.14 for the proposed method.
This demonstrates that the performance of the proposed method is significantly
improved compared with the previous method.

Fig. 4. Evaluation of Levenshtein distance in Scenario 2.

46 S. Onozawa et al.

5 Conclusion

We proposed a new optimization problem and demonstrated an algorithm for
solving it. This algorithm enabled us to improve the performance of the cumula-
tive attack. Experimental results showed that the recovery rate of the proposed
method exceeds that of the previous method. Additionally, the proposed method
had a better performance than the previous method in many cases in the eval-
uation based on Levenshtein distance.

For future works, we plan to apply the proposed attack to database encrypted
by probabilistic order preserving encryptions and evaluate the probability of
recovering plaintext not only in theory but also in experiment.

Acknowledgments. This research was partially supported by JST CREST Grant
Number JPMJCR1302, Japan.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the SIGMOD, pp. 563–574 (2004)

2. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Proceedings of the EUROCRYPT, pp. 224–241 (2009)

3. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In Proceedings of the
CRYPTO, pp. 578–595 (2011)

4. Karras, P., Malhotra, S., Bhatt, R., Nikitin, A., Antyukhov, D., Idreos, S.: Adaptive
indexing over encrypted numeric data. In Proceedings of the SIGMOD, pp. 171–183
(2016)

5. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Proceedings of the EUROCRYPT, pp. 563–594 (2015)

6. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical Order-Revealing Encryp-
tion with Limited Leakage. In: Proceedings of the FSE, pp. 474–493 (2016)

7. Lewi, K., Wu, D.J.: Order-Revealing Encryption: New Constructions, Applications,
and Lower Bounds. In: Proceedings of ACM CCS 2016, pp. 1167–1178 (2016)

8. Popa, R.A., Redeld, C., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting
confidentiality with encrypted query processing. In: Proceedings of the SOSP 2011,
pp. 85–100 (2011)

9. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of the ACM CCS 2015, 644–655 (2015)

10. Horst, C., Kikuchi, R., Xagawa, K.: Cryptanalysis of comparable encryption in
SIGMOD 2016. In: Proceedings of SIGMOD 2017, pp. 1069–1084 (2017)

11. Betül Durak, F., DuBuisson, T.M., Cash, D.: What else is revealed by order-
revealing encryption? In: Proceedings of the ACM CCS, pp. 1155–1166 (2016)

12. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2, 83–87 (1955)

13. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5(1), 32–38 (1957)

Inference Attacks on Encrypted Databases Based on OPAP 47

14. UCI Machine Learning Repository: Adult Data Set. https://archive.ics.uci.edu/
ml/datasets/adult

15. Privacy Rights Clearinghouse. Chronology of data breaches. http://www.
privacyrights.org/data-breach

16. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001)

17. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-
abuse attacks against order-revealing encryption. IEEE Symp. Secur. Priv. 2017,
665–672 (2017)

18. Kerschbaum, F.: Frequency-hiding order-preserving encryption. ACM Conf. Com-
put. Commun. Secur. 2015, 656–667 (2015)

19. Google, Encrypted BigQueqy. https://github.com/google/encrypted-bigquery-
client

20. Sap AG, SEEED. https://www.sics.se/sites/default/files/pub/andreasschaad.pdf
21. Microsoft, Always Encrypted SQL Server. https://docs.microsoft.com/en-us/

sql/relational-databases/security/encryption/always-encrypted-database-engine?
view=sql-server-2017

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client
https://www.sics.se/sites/default/files/pub/andreasschaad.pdf
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine?view=sql-server-2017

Implementation Security

Entropy Reduction
for the Correlation-Enhanced Power

Analysis Collision Attack

Andreas Wiemers and Dominik Klein(B)

Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn, Germany
{andreas.wiemers,dominik.klein}@bsi.bund.de

Abstract. Side Channel Attacks are an important attack vector on
secure AES implementations. The Correlation-Enhanced Power Anal-
ysis Collision Attack by Moradi et al. [MME10] is a powerful collision
attack that exploits leakage caused by collisions in between S-Box com-
putations of AES. The attack yields observations from which the AES
key can be inferred. Due to noise, an insufficient number of collisions,
or errors in the measurement setup, the attack does not find the correct
AES key uniquely in practice, and it is unclear how to determine the
key in such a scenario. Based on a theoretical analysis on how to quan-
tify the remaining entropy, we derive a practical search algorithm. Both
our theoretical analysis and practical experiments show that even in a
setting with high noise or few available traces we can either successfully
recover the full AES key or reduce its entropy significantly.

1 Introduction

Kocher’s [Koc96] groundbreaking paper on side channel attacks has led both
science and industry to focus on attacking and hardening their implementa-
tions [AARR03]. Due to its popularity and de-facto standard w.r.t. symmetric
cryptographic algorithms, AES [BCO04,GMO01,KJJ99,Nat01,QS01] is of par-
ticular interest. Despite its theoretical cryptographic strength, a secure AES
implementation that does not leak information about processed data remains to
be a challenge. A popular counter-measure to minimize leakage about the AES
key is masking. Different masking schemes exist, but the general idea of mask-
ing is that whenever secret data is about to enter critical stages of operation,
some reversible operation that makes the data appear to be random is applied.
Any cryptanalysis of intermediate data of the processing step is thus worth-
less. After leaving the critical stage of operation, the operation is reversed and
the processed result can be used. Appropriate masking schemes can successfully
prevent several attacks.

One particular class of attacks against AES are collision attacks. In collision
attacks, one exploits the fact that sometimes leakage of the device can indi-
cate that the same intermediate value has been processed during some critical
stage of operation. By using this observation, one can gather information about
c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 51–67, 2018.
https://doi.org/10.1007/978-3-319-97916-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_4&domain=pdf

52 A. Wiemers and D. Klein

secret data and cryptanalyze the device. In particular attacks that detect inter-
nal collisions are of interest. This kind of attack method was originally applied
to DES [LMV04,SWP03], but later applied to AES [Bog08,SLFP04] as well.

A very powerful kind of collision attack against AES was applied in [MME10],
and later improved in [CFG+11], and reconsidered in [MS16]. The attack works
by feeding data into a device in order to create collisions. A major important
observation by [MME10] is that since the S-Box in AES is mathematically the
same for every key byte (as opposed to i.e. DES), in most implementations the S-
Box is also the same for every key byte. For example in a software implementation
there is likely only one S-Box procedure that is called for every key byte, and in
the case of a hardware implementation there is a single S-Box circuit that is used
to process every key byte. This implies that for two same processed values, the
resulting power consumption should be the same as well. Their idea is to create
collisions such that this leakage between S-Box computations of different key
byte positions is exploitable. This makes the attack very powerful—it is shown
in [MME10] that a device with S-Boxes that are masked using the Canright
S-Box implementation [Can05,CB08] can be broken with a reasonable amount
of available traces. It is important to note here that in general the leakage of the
device attacked in [MME10] was minimal, and in particular a typical state-of-
the-art template attack [CRR03] was close to impossible to execute. In particular
the amount of trace data needed to mount a successful attack was magnitudes
lower for the correlation attack than for a template attack.

The attack gives some information about the correct AES key. However, the
attack might not find the correct AES key uniquely in practice. There are several
reasons for this: Noise, an insufficient number of collisions, errors in the mea-
surement setup, or simply the device itself, i.e. the design and implementation
of the cryptographic co-processor for a hardware implementation, or the proces-
sor design and execution flow in a software implementation. Moreover, it is not
clear a priori how to find a set of key candidates that fit to the observations
of the attack. A naive approach, i.e. enumerating all possible key candidates is
computationally infeasible due to the large search space.

It is also unclear how to assess the leakage of the device; in particular it leaves
open the question how many measurements (traces) are required to successfully
mount the attack. Obviously, if the key uniquely identified for a certain amount
of traces, this gives an upper bound. However what if less measurements are
available?

In this paper we provide an algorithm to recover the AES key in the above
scenario. The theoretical motivation of the algorithm is the basis for our analysis
on how to quantify the remaining entropy, which can be used to assess the leakage
of a device. Both our theoretical analysis and practical experiments show that
even in a fuzzy setting with high noise or few available traces, we can either
successfully recover the full AES key or reduce its entropy significantly.

This paper is structured as follows. In Sect. 2, we first briefly recall the attack
by Moradi et al. as formulated in [MME10] and then introduce our algorithm in
Sect. 3. For the algorithm we give a thorough theoretical justification in Sect. 4.

Entropy Reduction for the Correlation-Enhanced Power Analysis 53

Then in Sect. 5 we analyze the success rate of the algorithm, i.e. its impact on
the entropy of a vulnerable system w.r.t. its leakage, and give upper and lower
bounds of the remaining entropy. Our theoretical findings are verified by pro-
viding experimental data in Sect. 6. The algorithm presented here can be seen
as a particular form of a key-search algorithm. In Sect. 7 we show how our algo-
rithm relates to known existing key search algorithms, and to the generalization
of [MME10] described in [MS16]. Finally, we conclude our presentation in Sect. 8.

2 Correlation-Enhanced Power Analysis Collision Attack

Let K1, . . . ,K16 be the correct key which is used in the first round of an
AES encryption. We denote by small letters k1, . . . , k16 candidates for the key.
We briefly recall the Correlation-Enhanced Power Analysis Collision Attack as
described in [MME10].

During the measurement phase we record N power consumption traces of the
first round of an AES-128 encryption1. These traces consists of 16 single S-Box
computations. The measurement of each single S-Box computation is given as
a vector of T numbers. We denote by bi,w,t this power consumption trace of a
single S-Box computation i of a known plaintext pw,i, 1 ≤ i ≤ 16, 1 ≤ w ≤ N ,
1 ≤ t ≤ T . As a first step we compute the average value Mi,β,t over all w
with β = pw,i. Secondly, for any i, j and t we derive the empirical correlation
coefficient Ci,j,α,t between Mi,β,t and Mi,β⊕α,t for any byte value α, where we
treat β as a random variable uniformly distributed on all 256 byte values. At
last, we set ci,j(α) for the maximum of all Ci,j,α,t, where t runs over all time
points.

The idea of this approach is as follows: If the measurement bi,w,t is slightly
dependent on the input byte pw,i ⊕ Ki of the S-Box computation i, the average
Mi,β,t depends on β ⊕ Ki even more significantly. Now the input bytes β ⊕ Ki

of S-Box i and β ⊕ Kj ⊕ α of S-Box j are the same for the choice α = Ki ⊕ Kj .
Therefore, we can hope that the correlation Ci,j,α,t has—at least for some t—a
significantly higher value for the correct choice Ki ⊕ Kj of α.

3 Recovering the AES Key

In this section we formulate our algorithm for computing candidates for the full
AES key. We assume that we have given 120 · 256 values in the form

ci,j(α)

for 1 ≤ i < j ≤ 16, where α runs over all byte values. If for each i, j the value
ci,j(Ki ⊕ Kj) is always the highest among all ci,j(α), then it is easy to derive
the full key. Here we are interested in the situation, where for each i, j, the value

1 The attack can be extended to other key sizes in a straight-forward manner by
targeting a second AES round [MME10].

54 A. Wiemers and D. Klein

ci,j(Ki ⊕ Kj) has only a tendency of being large compared to other ci,j(α) with
α �= Ki ⊕ Kj . The idea of our approach is to consider the ad-hoc evaluation
function

B =
∑

i<j

ci,j(ki ⊕ kj)

for any key candidate (k1, · · · , k16) and choose the key candidate with the highest
value in B. Since this is not feasible in a straightforward manner, we instead try
to compute B via partial sums. To this end, we fix an integer W , resp. integers
g2, · · · , g16.

Algorithm 1. Recovering the AES Key
1: Set k1 = 0, S1 = {k1} and B1 = 0.
2: for s = 1, . . . , 15 do
3: for each key candidate k1, . . . , ks in Ss do
4: for each value of the next key bytes ks+1 do
5: compute the evaluation function

Bs+1 = Bs((k1, . . . , ks)) +
∑

1≤i≤s

ci,s+1(ki ⊕ ks+1)

6: end for
7: end for
8: select subset of candidates k1, . . . , ks, ks+1 w.r.t. some criteria and store in Ss+1:
9: Variant I: Select W candidates k1, . . . , ks, ks+1 with largest Bs+1

10: Variant II: Select all k1, . . . , ks, ks+1 with Bs+1 ≥ gs+1

11: end for
12: return

Remarks and Observations. We note some properties of Algorithm 1: Since
Bs and B only depend on ⊕-sums of key bytes, we can choose one key byte
as a fixed value. Here, we set k1 = 0. The success probability of both variants
of our algorithm for finding the correct key depends on the input parameters
W , resp. g2, · · · , g16. Obviously, if we choose gs = Bs((Ki ⊕ Kj)), Variant II of
Algorithm 1 is guaranteed to output the correct key. However, in this case Ss

might become too large to store in practice. The parameter W can be treated as
a measure of the workload (i.e. the number of computational steps) of Variant
I of Algorithm 1. Both variants of the algorithm assume a fixed order of key
byte positions. The result of the algorithm depends on that assumed order of
the key bytes. One can repeat the algorithm with different orders, though. As s
grows, the order becomes less important. We investigate the effect of the order
on the success of the algorithm in Sect. 6. The choice of the order could take into
account the actual distribution of the values ci,j(α). Those i, j with significantly
high values in ci,j(α) could be considered first. In a practical setting, visual
inspection of Ci,j,α,t could give a hint, cf. for example Figs. 3a and b. In general

Entropy Reduction for the Correlation-Enhanced Power Analysis 55

however, we are more interested in the situation where ci,j(Ki ⊕ Kj) is not
automatically the highest value among the ci,j(α), but is only larger on average
over all i, j.

4 Theoretical Justification

In this section, we give a justification of the evaluation function B. To this
end, we treat ci,j(α) for any i, j, α as a realization of a normally distributed
random variable. Note that technically, this assumption is not correct. First,
correlation values are bound in [−1, 1] and thus cannot be normally distributed.
Second, we do not consider correlation values directly, but instead ci,j(α) is
a maximum of Ci,j,α,t over several time points t. We can easily force ci,j(α)
to be normally distributed by fixing one single time-point, and apply Fisher’s z
transformation on the correlation values. In practice however, we can see that the
correlations Ci,j,α,t for wrong α (cf. Figs. 3a, b) lie within [−0.25, 0.25]. Fisher’s
z transformation is almost identical for values in that interval, so that we do
not consider this transformation in our case. In addition we observe (cf. Figs. 5a,
b) that the distribution of ci,j(α) is not perfectly symmetrical, but minimally
skewed. This can theoretically be justified by the fact that ci,j(α) is a maximum
of Ci,j,α,t over several time points t. All in all, the deviation of the distribution
ci,j(α) from a normally distributed random variable is very small and is thus
neglected in the following.

We assume the easiest scenario: For any i, j, α with α �= Ki ⊕ Kj the means
and the standard deviations are equal and are denoted by a, resp. σ. Further-
more, for the correct α = Ki ⊕ Kj the means are equal and are denoted by b
and in addition, the standard deviations are equal to σ. For any key candidate
k = (k1, · · · , k16) we can check whether for all key candidates k̃

ci,j(k̃i ⊕ k̃j) ≈ a, if k̃i ⊕ k̃j = ki ⊕ kj

ci,j(k̃i ⊕ k̃j) ≈ b, if k̃i ⊕ k̃j �= ki ⊕ kj

As a likelihood measure for any key candidate we seek a function in the single
probability density functions as

1√
2πσ

exp(− (ci,j(k̃i ⊕ k̃j) − a)2

2σ2
), resp.

1√
2πσ

exp(− (ci,j(k̃i ⊕ k̃j) − b)2

2σ2
)

The cumulative probability density function of two independent random vari-
ables is just the product of the single probability density functions. Therefore,
we are led to use as an evaluation function the product over all single probability
density functions. Taking logarithms we get

56 A. Wiemers and D. Klein

∑

k̃

⎡

⎢⎢⎣
∑

i<j,

k̃i⊕k̃j=ki⊕kj

(ci,j(k̃i ⊕ k̃j) − a)2 +
∑

i<j,

k̃i⊕k̃j �=ki⊕kj

(ci,j(k̃i ⊕ k̃j) − b)2

⎤

⎥⎥⎦

An equivalent evaluation function is therefore
∑

i<j

ci,j(ki ⊕ kj).

5 Success Rate of the Algorithm (Variant II)

In this section we want to give theoretical estimates of the success rate and
workload for the second variant of the algorithm. The purpose of this section is
to find relations between those theoretical estimates and basic properties of the
distributions of ci,j(α). To make the derivation as simple as possible, we restrict
ourselves to the scenario in the last section, i.e. ci,j(α) for any i, j, α is treated
as a realization of a normally distributed random variable with mean a, resp.
b, and standard deviation σ. Furthermore, for any key candidate the evaluation
function

Bs =
∑

i<j≤s

ci,j(ki ⊕ kj)

is considered as a sum of independent random variables. Therefore, Bs is a
normally distributed random variable. For a randomly chosen key candidate we
have the expectation value

E(ci,j(ki ⊕ kj)) =
255
256

a +
1

256
b ≈ a

since b is assumed to be only slightly larger than a. Therefore, the mean and stan-

dard deviation of Bs are
(

s
2

)
a, resp.

√(
s
2

)
σ. For the correct key, Bs((K1, . . . ,Ks))

is normally distributed with mean
(

s
2

)
b.

For having Bs near to its mean value, we want to avoid small values in
(

s
2

)
.

In practice, we set in Variant II of the algorithm gs = −∞ for s ≤ 4. For the
ease of presentation we want to assume

Bs((K1, . . . ,Ks)) ≥
(

s

2

)
b for s ≥ 5

Therefore, we set here gs =
(

s
2

)
b.

5.1 An Upper Bound of the Remaining Entropy

Variant II of the algorithm only finds key candidates for which Bs ≥ gs for all
s, 5 ≤ s ≤ 16. In every step, the set Ss is a subset of all key candidates for

Entropy Reduction for the Correlation-Enhanced Power Analysis 57

which the condition Bs ≥ gs is fulfilled. The size As of this larger set can be
approximated by

#Ss ≤ As = 2(s−1)8 P
(

Bs ≥
(

s

2

)
b

)

and log2(A16) is an upper bound for the remaining entropy.2 A16 ≈ 1 means
that the correct key has been found more or less uniquely, and maxs As is an
upper bound for the workload of variant II of Algorithm 1. The inequality of
integrals ∫ ∞

x

e−t2/2dt ≤
∫ ∞

x

t

x
e−t2/2dt =

1
x

e−x2/2

can be used to give an upper bound for the standardized normal distribution
N0,1:

N0,1(x,∞) ≤ 1
x
√

2π
e−x2/2

We set
τ =

b − a

σ
and derive

As = 2(s−1)8 P

⎛

⎝Bs − (
s
2

)
a

σ
√(

s
2

) ≥ τ

√(
s

2

)⎞

⎠

≤ 2(s−1)8 1

τ
√

2π
(

s
2

)e− 1
2 (s2)τ2

=
1

τ
√

2π
(

s
2

)2(s−1)8− 1
2 ln(2) (s2)τ2

This approximation of log2(As) has roughly the form of a parabola in s. The
condition A16 ≈ 1 corresponds to the equation

τ =
b − a

σ
≈

√
2 ln(2) ≈ 1.2

Some results are provided in Table 1. This can be interpreted in that we can
expect that for b−a

σ ≥ 1, Variant II of Algorithm 1 is successful with workload
≤ 236 and remaining entropy ≤ 29.

5.2 A Lower Bound of the Remaining Entropy

We want to analyze variant II of Algorithm 1 step by step. We expect that the
size of #Ss+1 can be approximated by a conditional probability of the form

#Ss+1 ≈ #Ss28P
(

Bs+1 ≥
(

s + 1
2

)
b | Bs ≥

(
s

2

)
b,

Bs−1 ≥
(

s − 1
2

)
b, . . . , B5 ≥

(
5
2

)
b

)

2 Since one key byte cannot be determined by the algorithm, the accurate remaining
entropy is more properly log2(A16) + 8.

58 A. Wiemers and D. Klein

Table 1. Upper bounds for the remaining entropy

b−a
σ

log2(A16) log2(A4) maxs≥5 log2(As)

1.4 0 24 15

1.2 0 24 23

1.1 10 24 29

1.0 29 24 36

0.9 45 24 46

Table 2. Bounds for the remaining entropy

τ = b−a
σ

log2(A16) log2(A4) maxs≥5 log2(As) Lower bound of
log2(#S16)

Lower bound of
maxs≥5 log2(#Ss)

1.4 0 24 15 0 14

1.2 0 24 23 0 21

1.1 10 24 29 2 26

1.0 29 24 36 21 32

0.9 45 24 46 37 41

Note that

Xs =
Bs − (

s
2

)
a

σ

is the sum of
(

s
2

) N0,1-distributed independent random variables. Therefore, Xs

represents a Gaussian random walk. We write the conditional probability in the
form

P
(

Bs+1 ≥
(

s + 1
2

)
b | Bs ≥

(
s

2

)
b,Bs−1 ≥

(
s − 1

2

)
b, . . . , B5 ≥

(
5
2

)
b

)

= P
(

Xs+1 ≥
(

s + 1
2

)
τ | Xs ≥

(
s

2

)
τ,Xs−1 ≥

(
s − 1

2

)
τ, . . . ,X5 ≥

(
5
2

)
τ

)

The probability

P
(

Xs+1 ≥
(

s + 1
2

)
τ,Xs ≥

(
s

2

)
τ,Xs−1 ≥

(
s − 1

2

)
τ, . . . ,X5 ≥

(
5
2

)
τ

)

can be interpreted as the probability of a Gaussian random walk with at least
linear growth at special steps. We get a lower bound of the conditional probability
if we omit the conditions on all s′ < s.

#Ss+1 ≥ Vs28P

⎛

⎝Bs +
∑

1≤i≤s

ci,s+1(ki ⊕ ks+1) ≥
(

s + 1
2

)
b | Bs ≥

(
s

2

)
b

⎞

⎠

for s ≥ 5 and #S5 = A5. Since
(
5
2

)
= 10, we use for #S5 = A5 the formula

#S5 = 232N0,1

(√
10

b − a

σ
,∞

)

Entropy Reduction for the Correlation-Enhanced Power Analysis 59

The probability P
(
Bs +

∑
1≤i≤s ci,s+1(ki ⊕ ks+1) ≥ (

s+1
2

)
b | Bs ≥ (

s
2

)
b
)

only

depends on s and τ = b−a
σ . This probability and therefore all lower bounds

of #Ss+1 can be calculated numerically. Table 2 extends Table 1 above. We can
expect that the remaining entropy and the workload of variant II of Algorithm 1
are within the limits of this table.

5.3 Probability of the Event Bs(K1, . . . ,Ks)) ≥ (s
2

)
b

We consider the event

Bs((K1, . . . ,Ks)) ≥
(

s

2

)
b for all s = 16, 15, . . . , 5

Note, that the probability of this event does not depend on b and σ, it is just
a real number. On first sight, one could believe that the probability of this
event is 2−12. But since Bs−1((K1, . . . ,Ks−1)) is a subsum of Bs((K1, . . . ,Ks)),
the probability of Bs(K1, . . . ,Ks)) ≥ (

s
2

)
b is larger than 1

2 if we already know
that Bs−1((K1, . . . ,Ks−1)) ≥ (

s−1
2

)
b. We compute an approximation of this

probability by a simulation of normally distributed random variables. We get

P
(

Bs((K1, . . . ,Ks)) ≥
(

s

2

)
b for all s = 16, 15, . . . , 5

)
≈ 0.15.

To this end, the assumption Bs(K1, . . . ,Ks)) ≥ (
s
2

)
b for all s is not too restrictive.

(a) c0,1(α) (b) c0,9(α)

Fig. 1. Correlation of ci,j(α) vs # of traces. The correct value of α is shown in black.

6 Experiments

Experimental Setup. Our setup consists of an AES-128 based software imple-
mentation running on an Atmel ATMEGA328P-PU. The S-Boxes are realized
as lookup tables and stored in the program memory of the ATMEGA. The S-
Boxes are masked using the method presented in [AG01]. This masking is known

60 A. Wiemers and D. Klein

to be not leakage-free, and as shown in [CFG+11,MME10], also Canright S-
Boxes [Can05] are susceptible to correlation attacks. Hence we anticipate that
our results are representative. Moreover, the masking used [AG01] is straightfor-
ward to implement. The ATMEGA was setup on a custom prototype board, and
powered by a lab-grade power supply at 3.3 Volt. We used a LeCroy HDO6104 to
record the power consumption of the ATMEGA with a resistor against ground.
We recorded N traces of AES-128 encryption. The plaintext was chosen at ran-
dom, and we attacked the masked subbytes procedure of the first AES round
(Fig. 2).

Fig. 2. Number of traces vs. ranking positions of ci,j(α) for correct α.

Practical Results. We recorded 10000 traces with randomly generated plain-
text values. Our implementation follows closely [MME10] and we compute the
correlation w.r.t. each possible value of one Ci,j,α,t. Figure 3a shows the resulting
correlation of C0,1,α,t for one AES round, i.e. in our setup t = 0, ..., 25809. Cor-
relation peaks at the end of the S-Box for the correct value are clearly visible.
However a correlation peak is not apparent for every pair of key byte positions
i, j; for example considering the correlation values C9,11,α,t as depicted in Fig. 3b,
no clear peak is observable for the correct value α. Nevertheless when ranking
all possible values c9,11(α), the correct value is still at position 18. Fewer traces
result in less collisions and more noise, and the rankings become more fuzzy. To
give two examples, the rankings for the correct value of α for 2500 and 10000
traces are as shown in Fig. 4a and b. If more traces are available, the correlation
values ci,j(α) for the correct value α become very distinct from those for incor-
rect values of α, as illustrated in Fig. 1a and b. For N = 10000, the correct value

Entropy Reduction for the Correlation-Enhanced Power Analysis 61

Table 3. Full key recovery for W = 1500 using Algorithm 1 (Variant I).

1500 ... 3500 4000 4500 5000 5500 6000 6500

1 → 16 – � � � � � �
16 → 1 – – – – – – –

random – 1/5 3/5 3/5 3/5 3/5 3/5

7000 7500 8000 8500 9000 9500 10000

1 → 16 – � � � � � �
16 → 1 – – – – – – –

random 3/5 4/5 3/5 4/5 5/5 5/5 5/5

of α often shows on rank 1, but there are some outliers. For N = 2500, there are
few rankings with position 1.

For Variant II of Algorithm 1 one needs to choose appropriate input val-
ues g2, · · · , g16. This requires prior knowledge about the quality of the rankings
ci,j(α). If such knowledge is not available, appropriate values could also be esti-
mated by manual analysis of the rankings ci,j(α) and/or by visual inspection of
Ci,j,α,t. For example the comparison of Fig. 3a and b indicates that for c0,1(α)
the ranking for the correct value of α is very likely at one of the top positions,
whereas for c9,11(α) this is likely not the case. On the other hand, Variant I of
Algorithm 1 requires no prior knowledge at all. Also, if Variant I succeeds, we
can always choose the bound gs+1 in step s for Variant II in such a way that the
choice of Variant I is simulated. This is why we have here chosen to implement
Variant I of the algorithm.

As mentioned in Sect. 3, the success of the algorithm depends on the order
in which the next key byte position is chosen, the parameter W of candidates
that are kept in each iteration, and of course the number of available traces N .
As mentioned in Sect. 2, in particular the order of choosing the next key byte
position is important, as the next example illustrates:

Example 1. For simplicity, suppose we have only a key consisting of three bytes,
and suppose one key byte can take only value 0 or 1. Let ci,j(α) be as follows:

c0,1(0) = 0.4 c0,1(1) = 0.1 c1,2(0) = 0.4
c1,2(1) = 0.1 c0,2(0) = 0.1 c0,2(1) = 0.8

Suppose that we set W = 2. Assume the order 0 < 1 < 2. We start with
S1 = {0, 1}. Since c0,1(0) > c0,1(1) and 0 ⊕ 0 = 0 as well as 1 ⊕ 1 = 0, we yield
the set S2 = {00, 11}. Algorithm 1 terminates with S3 = {001, 110}. On the
other hand, it is not difficult to verify that for the key byte order 2 < 1 < 0,
Algorithm 1 terminates with the set S3 = {100, 011}. Note also that Algorithm 1
is nondeterministic in general: If we set W = 1 in the second step during the run
with order 0 < 1 < 2, we have B((00)) = B((11)) = 0.4, and it is open which
partial key to keep.

62 A. Wiemers and D. Klein

(a)C0,1,α,t (b)C9,11,α,t

Fig. 3. Correlation Ci,j,α,t for each timepoint t within one trace. The correct value of
α is denoted in black.

(a) N = 10000 (b) N = 2500

Fig. 4. Ranking positions for correct α.

(a) N = 10000 (b) N = 2500

Fig. 5. Distribution of ci,j(α) for incorrect values of α.

Entropy Reduction for the Correlation-Enhanced Power Analysis 63

We executed Algorithm 1 for N = 1500 up to N = 10000 in steps of 500
traces, and for both W = 1500 and W = 10000. As for the dependency on the
order, we considered the natural order of starting at key byte position 1 and
moving upward to position 16 (denoted by 1 → 16 in the following), the reverse
order of starting at position 16 and moving down to 1 (denoted by 16 → 1), and
on five randomly chosen orders for each value of N . Tables 3 and 43 show results
for the full recovery of the key for N = 1500...10000 and the various orders. As
one can see, the full key is in the computed set with good probability if at least
4000 traces are available. The probability can be increased, if a larger parameter
W = 10000 is chosen. For less than 4000 traces, Table 5 shows the maximum
number of correctly recovered key bytes in the computed set. For example, when
choosing the order 1 → 16, then in the case of 2500 traces, the computed set
contains a key where 12 key bytes are correctly identified. In other words, the
entropy is significantly reduced, and it is not difficult to devise an algorithm that
exploits the fact that one can assume that a certain amount of key byte position
are correctly identified.

Table 4. Full key recovery for W = 10000 using Algorithm 1 (Variant I).

1500 ... 3500 4000 4500 5000 5500 6000 6500

1 → 16 – � � � � � �
16 → 1 – – – – � � �
random – 1/5 3/5 3/5 3/5 3/5 3/5

7000 7500 8000 8500 9000 9500 10000

1 → 16 – � � � � � �
16 → 1 � � – � � � �
random 3/5 4/5 3/5 4/5 5/5 5/5 3/5

In order to further interpret these results, we investigated the distribution
ci,j in α for all (i, j). For each (i, j) we computed the expected value as well the
standard deviation, which were very similar. Figure 5a and b show histograms of
all 255·120 ci,j with incorrect value α for N = 10000 and N = 2500, respectively.
Expected value and standard deviation are 0.139 ± 0.0374 for N = 10000 and
0.146 ± 0.0363 for N = 2500. As derived above, we expect a theoretical bound
b−a
σ ≈ √

2 ln(2) ≈ 1.2. This is the smallest value b, for which we can expect
that the evaluation function B succeeds. For our experimental data we yield
b−a
σ = 0.336−0.139

0.0374 ≈ 5.3 for N = 10000 and b−a
σ = 0.195−0.146

0.0363 ≈ 1.3 for N =
2500. Apparently, the parameters for N = 2500 are very close to the theoretical
threshold. This fits with our theoretical observations in previous sections and
the experimental data. Aside from the above results, we also experimentally

3 Note that the miss for N = 8000 and 16 → 1 in Table 4 is precisely due to the
nondeterministic behavior of Algorithm 1, as illustrated in Example 1.

64 A. Wiemers and D. Klein

verified our findings using a hardened security controller with a hardware based
AES implementation, and the results were comparable. However, we refrain from
providing more specific data here.

7 Related Work

Suppose we are given a key K1, ...,Kn with n independent subkeys, and a side
channel attack yields for each Ki ranks for possible key values. Using these
ranks, one can define a probability measurement function for each subkey. The
key enumeration problem [VCGRS13] is then to enumerate complete keys from
the most probable to the least probable one, in order to find the key of a device as
quickly as possible. A direct solution is to enumerate all possible keys, compute
their probability (multiplying the probabilities of the subkeys) and then sort all
keys according to their probability. As this is infeasible in practice, more efficient
algorithms have been proposed [VCGRS13].

In our scenario, we do not have ranks (resp. probability measurement func-
tions) for all sixteen Ki. Rather, we obtain 120 ranks for each Ki ⊕ Kj for
1 ≤ i, j ≤ 16. Our task is to reconstruct the key from these values. Algo-
rithms that solve the key enumeration problem are thus not directly applica-
ble. One naive way to still apply existing key search algorithms in our scenario
would be to (1) select a number of Ki ⊕ Kj with their ranks which have a
low remaining entropy, i.e. select K1 ⊕ K2,K2 ⊕ K3, . . . ,K15 ⊕ K16. (2) recover
K1 ⊕ K2,K2 ⊕ K3, . . . ,K15 ⊕ K16 using an efficient key enumeration algorithm,
and for each candidate (3) search among the remaining 256 possibilities for the
correct key.

Note that it is not clear how to effectively select Ki⊕Kj . One could for exam-
ple simply take K1 ⊕ K2,K2 ⊕ K3, . . . ,K15 ⊕ K16. How to assess the leakage
then? The problem of key ranking [GGP+15,MOOS15,MMOS16] is concerned
with quantifying the time complexity required to brute force a key given the
leakages, especially if the number of keys to enumerate is beyond practical com-
putational limits. Applying e.g. the algorithm of [MMOS16] for our test set of
traces with N = 4000 when we interpret K1 ⊕ K2,K2 ⊕ K3, . . . ,K15 ⊕ K16 as
our key, the estimated rank is approximately 250. However with our algorithm
we are able to recover the actual AES key within less than two minutes (cf.
Table 3). Directly recovering the key (and not Ki ⊕ Kj) by making use of all
Ki ⊕ Kj was the motivation for our algorithm. We anticipate however, that by
either employing voting techniques [Bog08] or by a more sophisticated choice of
Ki ⊕Kj and repeating steps (1)–(3) one could obtain similar results as with our
algorithm, but we did not further pursue this direction.

In [MS16] the attack of [MME10] is generalized into Moments-Correlating
Collision DPA. There, moments are correlated with samples rather than
moments with moments, as done in the original attack. Using that, they derive
a measure Nsr (Eq. 1 in [MS16]) that provides a metric to quantify the number
of measurements needed to perform a key recovery with a given success rate.
Note however that this measure quantifies the leakage w.r.t. Ki ⊕ Kj . As seen

Entropy Reduction for the Correlation-Enhanced Power Analysis 65

Table 5. Partial key recovery for W = 1500 using Algorithm 1 (Variant I).

1500 2000 2500 3000 3500

1 → 16 3 5 12 13 14

16 → 1 2 2 4 1 5

random #1 1 5 3 7 9

random #2 1 5 2 5 14

random #3 2 3 5 12 5

random #4 2 3 5 7 8

random #5 2 2 1 8 12

in the experiments, the leakage can be quite unsteady, i.e. the correct value of α
is in the lower ranks for some i, j, but for other combinations the rank is much
higher. Here we provide an algorithm that still works in this scenario and reveal
the correct key, and our measure τ thus gives a indicates on whether the key can
be recovered or not.

8 Conclusion and Future Work

We have shown how to reduce the remaining key entropy of the attack intro-
duced by [MME10] by providing a practical, easy-to-implement algorithm. Our
theoretical analysis shows that this algorithm exploits the leakage in a natu-
ral way. Moreover, we provide a way to assess the leakage of a device w.r.t.
the attack, which could be used e.g. in a Common Criteria security evaluation.
Our practical evaluation supports the theoretical analysis. In particular we show
that using our algorithm, a full recovery of the AES key is possible with only
few available traces. That is, the key can be recovered in a setting where no
visual clues w.r.t. the correct ranking are available and the attack as described
by [MME10] would not have been applicable. A practical comparison with the
metric derived in [MS16] remains future work.

Acknowledgements. We would like to thank Sven Freud for creating the circuit
board for power analysis, and Tobias Senger for his help with implementing the masking
scheme. We also thank the anonymous reviewers for their helpful comments.

References

[AARR03] Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—
channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36400-5 4

[AG01] Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure
against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.)
CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44709-1 26

https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/3-540-44709-1_26

66 A. Wiemers and D. Klein

[BCO04] Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leak-
age model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol.
3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28632-5 2

[Bog08] Bogdanov, A.: Multiple-differential side-channel collision attacks on
AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 30–44. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85053-3 3

[Can05] Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg
(2005). https://doi.org/10.1007/11545262 32

[CB08] Canright, D., Batina, L.: A very compact “Perfectly Masked” S-box for
AES. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.)
ACNS 2008. LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68914-0 27

[CFG+11] Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.:
Improved collision-correlation power analysis on first order protected
AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 49–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9 4

[CRR03] Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç,
K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 3

[GGP+15] Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Sim-
pler and more efficient rank estimation for side-channel security assess-
ment. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 6

[GMO01] Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete
results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44709-1 21

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48405-1 25

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.
org/10.1007/3-540-68697-5 9

[LMV04] Ledig, H., Muller, F., Valette, F.: Enhancing collision attacks. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 176–190.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-
5 13

[MME10] Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power
analysis collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15031-9 9

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-85053-3_3
https://doi.org/10.1007/978-3-540-85053-3_3
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/978-3-540-68914-0_27
https://doi.org/10.1007/978-3-642-23951-9_4
https://doi.org/10.1007/978-3-642-23951-9_4
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-662-48116-5_6
https://doi.org/10.1007/978-3-662-48116-5_6
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-28632-5_13
https://doi.org/10.1007/978-3-540-28632-5_13
https://doi.org/10.1007/978-3-642-15031-9_9

Entropy Reduction for the Correlation-Enhanced Power Analysis 67

[MMOS16] Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and
estimation of the key rank distribution in the context of side channel
evaluations. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10031, pp. 548–572. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 20

[MOOS15] Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting Keys in
Parallel After a Side Channel Attack. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 13

[MS16] Moradi, A., Standaert, F.: Moments-correlating DPA. In: Proceedings of
2016 TIS SEC Workshop, pp. 5–15 (2016)

[Nat01] National Institute of Standards and Technology: FIPS PUB 197.
Advanced Encryption Standard, Technical report (2001)

[QS01] Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): mea-
sures and counter-measures for smart cards. In: Attali, I., Jensen, T.
(eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45418-7 17

[SLFP04] Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on
AES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 163–175. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-28632-5 12

[SWP03] Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks
and its application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS,
vol. 2887, pp. 206–222. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39887-5 16

[VCGRS13] Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An
optimal key enumeration algorithm and its application to side-channel
attacks. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707,
pp. 390–406. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35999-6 25

https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.1007/978-3-662-53887-6_20
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-540-28632-5_12
https://doi.org/10.1007/978-3-540-28632-5_12
https://doi.org/10.1007/978-3-540-39887-5_16
https://doi.org/10.1007/978-3-540-39887-5_16
https://doi.org/10.1007/978-3-642-35999-6_25
https://doi.org/10.1007/978-3-642-35999-6_25

Safe Trans Loader: Mitigation and
Prevention of Memory Corruption

Attacks for Released Binaries

Takamichi Saito1(B), Masahiro Yokoyama1, Shota Sugawara1,
and Kuniyasu Suzaki2

1 Meiji University, Kawasaki, Kanagawa, Japan
saito@cs.meiji.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. A variety of countermeasures against memory corruption
attacks have been proposed to implement within compilers, linkers, oper-
ating systems, and libraries. However, according to our survey, a certain
number of executable binaries in Linux distributions are not protected by
the countermeasures, even when the countermeasures are applied to these
binaries. Further, the countermeasures have some problems including the
way of application, the scope of attacks, and the runtime overhead. For
example, some require source code or need to update the kernel or spe-
cific libraries. These requirements are not acceptable for everyone. In this
paper, we propose an application-level loader called Safe Trans Loader
(STL) that mitigates or prevents memory corruption attacks. The STL
can be applied to already released executable binaries in an operational
phase. Note that the STL replaces vulnerable library functions with safe
substitute functions when it loads the protected binary. These safe sub-
stitute functions mitigate or prevent stack-based buffer overflow attacks,
heap-based buffer overflow attacks, and use-after-free attacks. Since the
STL has minimal dependencies on the execution environment, it does
not require specific changes to the existing operating system or library.
Further, through our evaluation, the runtime overhead of the STL is only
1.24%.

Keywords: Memory corruption · Stack-based buffer overflow
Heap-based buffer overflow · Use-after-free · Mitigation
Prevention · Loader

1 Introduction

Various countermeasures against memory corruption attacks such as stack-based
buffer overflow (SBF) attacks, heap-based buffer overflow (HBF) attacks, and
use-after-free (UAF) attacks have appeared. Some of these countermeasures such
as address space layout randomization (ASLR) [25], data execution prevention
(DEP) [20], and stack smashing protection (SSP) [24], have been implemented in
major OSs and compilers; usually, these countermeasures are enabled by default.
c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 68–83, 2018.
https://doi.org/10.1007/978-3-319-97916-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_5&domain=pdf

Safe Trans Loader 69

To investigate the effectiveness of these countermeasures, we selected three
32-bit Linux distributions, i.e., CentOS, openSUSE, and Ubuntu. In each of
these distributions, we examined the application status of four countermeasures;
relocation read-only (RELRO), SSP, position-independent executable (PIE), and
automatic fortification. These countermeasures are offered by GNU Compiler
Collection (GCC). In the study, the ELF binaries are retrieved from directories
set to the root user’s default PATH environment variable.

From our survey shown in Table 1, we revealed that there were a certain
number of binaries that the countermeasures are not applied. For example, only
3% binaries are applied Full RELRO in openSUSE. Further, we examined how
the 79 vulnerable library functions are used in each Linux distribution. These 79
vulnerable functions are expected to be replaced with substitute safer functions
of glibc 2.25 by automatic fortification of GCC. In brief, we revealed that 75%
of the Linux binaries used at least one vulnerable library function. Reasons here
can be divided into two cases. First, some binaries have no risk of memory cor-
ruption. Second, some vulnerable library functions do not meet the requirement
of replacement by automatic fortification, even when they should be replaced.
The latter one is the problem to be solved. In this case, vulnerabilities including
CVE-2009-2957 and CVE-2017-14493 are not removed from the binaries.

Table 1. Appreciation situations of countermeasures on GCC

Countermeasure Ubuntu 14.04
(1,159 binaries)

CentOS 7.3
(1,601 binaries)

openSUSE 13.2
(2,207 binaries)

Partial RELRO 83% 75% 97%

Full RELRO 13% 25% 3%

SSP 74% 91% 65%

PIE 15% 26% 11%

Automatic fortification 74% 85% 65%

As above, some released binaries are not safe because countermeasures do
not work effectively. However, even when users try to apply countermeasures
to such binaries, it is challenging to recompile because users often can not have
the source code. Besides, many countermeasures that do not require compilation
need to change the settings of the user’s environment. Therefore, it is crucial for
users that the countermeasure is easy to apply to released binaries.

In addition of the countermeasures against memory corruption attacks, soft-
ware diversity [16,34,35] and control flow integrity [30,39,40] are proposed as
countermeasures against code reuse attacks [4,28]. However, these countermea-
sures have the following issues.

70 T. Saito et al.

Inability to be applied during the operational phase
From the viewpoint of the software life cycle, most countermeasures need
to be used during the development phase. More specifically, the applica-
tion of countermeasures in compilers and linkers requires recompilation,
and it cannot be applied to executable binaries without source code.

Having a necessity to change the execution environment
If we want to use countermeasures implemented in an OS, we likely need
to change the OS. If we cannot change the OS, we cannot get the bene-
fits of these countermeasures. Further, countermeasures implemented in
libraries makes interoperability problems when we use it to be replaced.

Inability to select a binary to apply
Most countermeasures can be applied either to all binaries or not at all.
This implies that we cannot select a specific binary and apply counter-
measures. For examples, it is difficult for a novice user to use some coun-
termeasure such as Libsafe because he/she need to know the mechanism
of a dynamic library.

High runtime overhead
According to Szekeres et al., countermeasures typically require being at
most 5% to 10% runtime overhead in order to be widespread [29].

In this study, we propose the Safe Trans Loader (STL) as an application-level
loader that can prevent memory corruption attacks. The STL replaces vulnerable
library functions with safe substitute functions at load time. We implemented a
prototype of the STL for executable and linkable format (ELF) binaries in 32-bit
Linux OSs, and evaluated it. The contributions of this paper are summarized as
follows:

– The STL can be individually applied to already released executable binaries
in the operational phase. Since the STL works at the application level, it can
be applied without changing the execution environment.

– The STL prevents three major types of attacks, i.e., SBF attacks, HBF attacks
and UAF attacks. In other words, the STL integrates conventional counter-
measures against each attack that are scattered on many layers into one
application-level loader (for example, Libsafe is a library-based countermea-
sure against only SBF attacks). Because of using application-level loader app-
roach, even novice users can apply all countermeasures easily at one time.

– The runtime overhead of the STL is approximately 1.24% on average, and it
meets the requirement of [29].

2 Threat Model

We assume SBF, HBF, and UAF attacks that execute arbitrary code as our
threat models. The purpose then is to mitigate or prevent these attacks through
the application of the STL.

More specifically, SBF and HBF attacks refer to attacks caused by vulnera-
ble library functions including strcpy(), memcpy(), gets(), and other similar

Safe Trans Loader 71

such functions. Our researches have revealed that there are a certain number of
binaries which is not applied countermeasures and that binaries still used these
vulnerable library functions. In particular, the use of vulnerable functions poses
a potential threat, e.g., vulnerabilities are reported as CVE-2017-14492 [9] and
CVE-2017-14493 [10] even today. Further, to mitigate sophisticated memory cor-
ruption attacks, it is desirable to apply multiple compiler-based countermeasures
to executable binaries. Therefore, we define our threat model as SBF and HBF
attacks against binaries with the potential threats or known vulnerabilities, and
binaries without countermeasures.

The thread model of UAF attacks is almost the same as that of the SBF and
HBF attacks. The purpose of the STL is to mitigate exploitation of dangling
pointers and execution of arbitrary code. Therefore, we define our threat model
as UAF attacks against binaries with known vulnerabilities, and binaries without
countermeasures.

3 Proposed Method

3.1 Design of STL

Figure 1 illustrates how the STL is applied to an executable binary. The STL
loads a protected binary at the application level on behalf of the OS-level loader.
When loading the protected binary, if a vulnerable library function is found
in the protected binary, STL replaces it with a safer function that includes
countermeasures against each attack. In our prototype of the STL, we scoped
34 vulnerable library functions in glibc such as strcpy(), gets(), and so on.
Table 2 shows the list of these vulnerable library functions. Note that we selected
these vulnerable library functions listed by [26,32], and the functions replaced
by automatic fortification.

Fig. 1. Illustrating how the STL is applied to an executable binary

72 T. Saito et al.

Table 2. 34 vulnerable library functions in glibc

No Function name Related
vulnerability

No Function name Related
vulnerability

1 strcpy SBF, HBF 18 recv SBF, HBF

2 strncpy SBF, HBF 19 mbstowcs SBF, HBF

3 stpcpy SBF, HBF 20 wcstombs SBF, HBF

4 strcat SBF, HBF 21 getwd SBF, HBF

5 strncat SBF, HBF 22 getcwd SBF, HBF

6 memcpy SBF, HBF 23 readlink SBF, HBF

7 gets SBF, HBF 24 poll SBF, HBF

8 fgets SBF, HBF 25 scanf SBF

9 read SBF, HBF 26 fscanf SBF

10 fread SBF, HBF 27 sscanf SBF

11 realpath SBF, HBF 28 vscanf SBF

12 sprintf SBF, HBF 29 vsscanf SBF

13 snprintf SBF, HBF 30 vfscanf SBF

14 vsprintf SBF, HBF 31 malloc HBF

15 vsnprintf SBF, HBF 32 realloc HBF

16 memmove SBF, HBF 33 calloc HBF

17 memset SBF, HBF 34 free HBF, UAF

3.2 Operational Flow of the STL

The STL receives the path to the protected binary at runtime. The STL loads
the protected binary in the following steps:

(1) Reading the protected binary
To obtain the information about the protected binary required for the steps
that follow, the STL reads the protected binary into its own heap area.

(2) Analyzing the ELF header of the protected binary
After reading the protected binary into its own heap area, the STL analyzes
the ELF header of the binary, thereby obtaining the information necessary
for loading.

(3) Mapping the protected binary
The STL scans the program headers of the protected binary from the offset
obtained in step (2). During this scan, if the STL finds a program header
corresponding to a LOAD segment, it maps the LOAD segment into its own
virtual memory based on the information described in the program header.
Similarly, if the STL finds a program header corresponding to a DYNAMIC
segment, it loads the shared library based on the information described in the
program header and performs the relocation of the library. At this time, if the
shared library has already been loaded by the OS-level loader when the STL

Safe Trans Loader 73

was loaded, the shared library is not loaded, instead of being shared with the
STL. During this relocation, the STL replaces functions by overwriting each
entry within the .got.plt section with the address of the corresponding safer
function.

(4) Creating shadow memory
In a safer function against HBF attacks, checking the boundary of the desti-
nation buffer in the heap area is performed. To do this, the size information
of the buffer is required. Therefore, the STL creates shadow memory that
stores the size information of the buffer.

(5) Starting the execution of the protected binary
The STL frees the heap area where the protected binary was read in step
(1), then jumps to the entry point of the protected binary obtained in step
(2). When the vulnerable library function is called during the execution of
the protected binary, the corresponding safer function replaced in step (3) is
executed.

Figure 2(a) shows an overview of the virtual memory after the steps (1)
through (5) are successfully performed.

Fig. 2. Virtual memory overview of STL

3.3 Safer Functions

3.3.1 Functions Against SBF Attacks
In a safer function against SBF attacks, checking the boundary of the destination
buffer in the stack area is performed. To accomplish this, the safer function
calculates the limit size of the buffer using the frame pointer, an approach that
refers to Libsafe [3].

When the safer function is called, first of all, the frame pointers in the stack
frame are traced, and the stack frame where the destination buffer exists is

74 T. Saito et al.

identified. Next, the limit size of the destination buffer is calculated; this limit
size spans from the address of the destination buffer, which is passed as an
argument to the function, to the position of the frame pointer in the stack
frame. After that, the size of the character string to be written is compared with
the limit size. If the size of the character string does not exceed the limit size,
the write operation is performed. Otherwise, execution of the protected binary
stops.

As a result, even if a character string whose size exceeds the limit size is given
to the safer function, overwriting data following the frame pointer is prevented,
as illustrated in Fig. 2(b).

3.3.2 Functions Against HBF Attacks
In a safer function against HBF attacks, checking the boundary of the desti-
nation buffer in the heap is performed. To accomplish this, the safer function
uses shadow memory, an approach referring to AddressSanitizer [27]. Address-
Sanitizer [27] associates 8 bytes of the memory block in the stack or heap with
1 byte of shadow memory to store various information of the memory block.
This requires an area of approximately 512 MB, not small in a 32-bit environ-
ment. Our proposed method associates 8 bytes of the memory block in the heap
with 1 bit of shadow memory to store only the size information. Therefore, at
the beginning of execution, the STL creates shadow memory of approximately
48 MB. The size information is denoted by setting each 1 bit of shadow memory
corresponding to the start address and the end address of a memory block when
the memory block is allocated. The size information means the writable range
of a memory block in the heap.

In our proposed method, when the dynamic memory allocator is called, the
corresponding safer function is executed. This safer function allocates a mem-
ory block in the heap and stores the size information of the memory block into
shadow memory. Similarly, when an HBF vulnerable function is called, the cor-
responding safer function is executed. The safer function first calculates the
address of shadow memory that stores the size information of the destination
buffer in following two steps. First, for every 64 bytes of the memory block in
the heap, the address of corresponding 1 byte in shadow memory is calculated
as

(Address of the destination buffer � 6) + 0x30000000.

Second, the position of 1 bit (in the 1 byte) denoting the size information for
every 8 bytes of the 64 bytes in the heap is calculated.

After this calculation, the size information is obtained from shadow memory.
Then, the size of the character string to be written is compared with the size
obtained from shadow memory. If the size of the character string does not exceed
the size of the destination buffer, the write operation is performed, as illustrated
in Fig. 2(c). Otherwise, execution of the protected binary stops. Note that in the
safer function called instead of the free(), clearing the size information in the
corresponding shadow memory is also performed.

Safe Trans Loader 75

3.3.3 Functions Against UAF Attacks
According to [36], UAF attacks exploit the property of reusing a memory block
shortly after it is released by free(). Focusing on this property, our safer func-
tion delays the release of memory blocks until free() is called a specific number
of times.

When the safer function is called instead of the free(), first, the pointer
passed as the argument to free() is saved in a queue defined on the STL.
This queue manages pointers to memory blocks to be released. When the safer
function is called from the second time, if there is room in the queue, the pointer
is added to the queue. If there is no room in the queue, the oldest pointer is then
released. By delaying the memory release, as the memory block is not available
for reuse immediately, thus UAF attacks can be mitigated.

3.4 Limitations

In our proposed countermeasure against SBF attacks, when local variables are
placed between the destination buffer and the frame pointer on the stack, rewrit-
ing local variables cannot be detected. To solve this problem, it is necessary to
combine local variable protection of SSP. The defense method of SBF includes
the process of specifying a stack frame to which a destination buffer belongs by
tracing a frame pointer; therefore, it is sometimes impossible to mitigate such
an attack on an executable binary that does not have a frame pointer. In our
proposed countermeasure against HBF attacks, the STL can successfully prevent
overwriting that exceed the allocated memory block; however, the STL cannot
prevent overflows inside memory blocks, such as structures. Finally, in our pro-
posed countermeasure against UAF attacks, delaying calls of free() may be
bypassed if attacks are made in consideration of the number of the delay times.

Note that attacks on a vulnerability caused by functions statically linked and
functions defined by programmers themselves are out of protection scope of our
proposed method.

4 Evaluation

4.1 Environment

In evaluating our prototype of the STL, we performed our measurements using
a 32-bit Ubuntu 14.04 LTS distribution on an Intel Xeon E5620@2.40 GHz with
8 GB of RAM. Also, note that we used GCC4.8.4 and glibc2.19.

4.2 Effectiveness Against Attacks

Summarized in Table 3, we selected seven vulnerable applications, including
three sample programs and four real-world applications, to verify the effective-
ness of our proposed method. Sample programs were developed by referring to

76 T. Saito et al.

example code presented on the Common Weakness Enumeration (CWE) web-
site [11–13]. We inputted data that overwrites the return address of vulnera-
ble applications as SBF attacks. Similarly, as HBF attacks, we inputted data
that overwrites beyond the boundary of an allocated memory block. Also, as
UAF attacks, we attempted to reuse memory blocks that immediately after the
released and then to abuse a dangling pointer. As a result, the STL prevented
all attacks to these binaries.

Table 3. Evaluation against real-world exploits

Vulnerability CVE Binary Vulnerable function Mitigation

SBF N/A Sample program strcpy �
SBF 2013-4256 [8] Network Audio

System1.9.3
strcat �

SBF 2017-14493 [10] dnsmasq2.70 memcpy �
HBF N/A Sample program strcpy �
HBF 2009-2957 [7] dnsmasq2.49 strncat �
HBF 2017-14492 [9] dnsmasq2.70 sprintf �
UAF N/A Sample program free �

4.3 Runtime Overhead

To determine how much runtime overhead the STL imposes on target appli-
cations, we measured overhead in SPEC CPU2006. Table 4 shows the runtime
performance overhead of the STL; the Original/STL column shows the execu-
tion time of each binary when it is executed being not applied/applied the STL.
Most of the execution time is the processing time that is taken when SPEC CPU
inputs test data to each binary. So it is considered that the overhead whose range
is from −1 to 1 is due to the tolerance of this processing time. From this table, the
overhead of the STL was 1.24% on average. The worst slowdown was observed to
be 4.60% for perlbench. As factors of this overhead, the initialization processing
time of the STL and processing time of replacing safer functions can be con-
sidered. More specifically, initialization processing here refers to the time taken
to perform steps (1) through (5) of the operational flow described in Sect. 3.2
above. Regarding initialization processing of the STL, the time taken for this
processing was measured while executing each binary. As the largest time was
7.644 ms for xalancbmk among the benchmarks, we found that initialization
processing time does not significantly affect the overhead on SPEC CPU2006.

Regarding the processing time of the safer function, the number of calls of
24 safer functions was measured while executing each binary. The total number
of calls per second of the 24 safer functions was 1,524,712 times for perlbench,
which had the longest runtime overhead, and 979 times for mcf, which had the
smallest runtime overhead.

Safe Trans Loader 77

From these results, we conclude that the runtime overhead of the STL is
primarily due to the processing time required by the countermeasure functions.

Table 4. Runtime overhead for each binary on SPEC CPU2006

Benchmark Original [s] STL [s] Overhead [%]

400.perlbench 819.836245 857.567272 +4.602264

401.bzip2 1702.466336 1702.084314 −0.022439

403.gcc 752.265223 786.510522 +4.552291

429.mcf 434.128381 429.883889 −0.977704

445.gobmk 1044.364834 1044.893538 +0.050624

456.hmmer 2696.668994 2697.087355 +0.015514

458.sjeng 1184.304631 1180.371794 −0.332080

462.libquantum 2041.778502 2054.988188 +0.646970

464.h264ref 1856.133358 1921.322944 +3.512118

471.omnetpp 756.754092 785.687587 +3.823368

473.astar 1127.723652 1120.250665 −0.662661

483.xalancbmk 1494.22282 1527.536706 +2.229513

Average 15910.64707 16108.18477 +1.241544

4.4 Memory Overhead

To determine how much memory overhead the STL imposes on target applica-
tions, we also measured memory overhead using SPEC CPU2006. Memory usage
was measured by referring to the output of /proc/<PID>/status, in particular,
the VmPeak and VmHWM fields, which we obtained every second. The VmPeak
and VmHWM fields are used to obtain peak values for virtual memory size and
resident set size, respectively.

Table 5 summarizes our measurement results. The table shows that the aver-
age increases of VmPeak and VmHWM were 89 MB and 48 MB, respectively,
and the increase of VmHWM was smaller than that of VmPeak. Also, the table
shows that the increases in VmPeak and VmHWM for gcc and libquantum were
larger than others. We concluded this is caused by a decrease in memory usage
efficiency due to the delayed free() calls that is a countermeasure against UAF
attacks. When we turned off this delay countermeasure and measured memory
overhead, the increases in VmPeak for both gcc and libquantum dropped to
approximately 49 MB.

5 Related Work

5.1 Countermeasures Against Buffer Overflow

SSP detects SBF attacks by inserting a “canary” underneath the frame pointer,
then checking whether the canary has been altered at the end of functions.

78 T. Saito et al.

Table 5. Memory utilization for each binary on SPEC CPU2006

Benchmark VmPeak [MB] VmHWM [MB]

Original STL Increase Original STL Increase

400.perlbench 551 604 54 550 566 17

401.bzip2 853 906 53 850 863 13

403.gcc 812 1085 274 810 1054 244

429.mcf 840 888 48 839 843 4

445.gobmk 23 75 51 22 28 6

456.hmmer 27 75 48 26 29 3

458.sjeng 177 225 48 176 180 4

462.libquantum 98 370 272 97 328 230

464.h264ref 66 119 53 63 69 7

471.omnetpp 104 154 50 103 109 6

473.astar 300 352 52 291 306 15

483.xalancbmk 316 375 59 313 334 21

Average 347 436 88 345 393 48

Bounds checking [2,15,17,21,38] saves the object size and memory address at the
time of object generation, then detects all buffer overflow attacks by checking the
size of the object at the time of use. However, as these countermeasures require
source code, they cannot be applied to already distributed binaries. Further,
bounds checking techniques are strong, but runtime overhead is high.

AddressSanitizer [27] detects out-of-bounds memory accesses on the heap,
stack, and global objects at runtime by using shadow memory that stores the
information regarding object sizes. AddressSanitizer requires specified memory
allocators and code instrumentation at compile-time and also imposes high run-
time overhead.

There are some library-based countermeasures that require no source code
to apply. For example, SafeStr [31] provides some safe string-manipulation func-
tions. Programmers perform secure coding by using this library. Also Libsafe [3]
is a library-based countermeasure that, unfortunately, is no longer in active
development and is not maintained. Further, when Libsafe is applied to a binary
with the setuid bit set, environment variable LD PRELOAD is ignored; therefore
functions cannot be replaced. As a workaround for this problem, Libsafe provides
an application method for the entire system, but this method requires chang-
ing the settings of the execution environment. Moreover, Libsafe itself cannot
prevent HBF attacks such as AddressSanitizer.

StackArmor [6] statically rewrites a binary before execution and mitigates
SBF attacks by randomly arranging the data on the stack at runtime. However,
it has high overhead.

Safe Trans Loader 79

5.2 Countermeasures Against Use-After-Free

CETS [22], DANGNULL [19], and FreeSentry [37] are compiler-based coun-
termeasures against abusing of dangling pointers. CETS allocates an area for
managing reference information when allocating a memory area. By confirm-
ing such reference information when accessing the memory area with a pointer,
CETS detects dangling pointers at execution time. DANGNULL and FreeSentry
both manage reference information regarding pointers, updating such reference
information each time a pointer operation is performed. If a dangling pointer
occurs as a result of pointer manipulation, these countermeasures nullify the
pointer. However, similar to bounds checking, as these compiler-based counter-
measures require source code, they cannot be applied to already distributed
binaries. AddressSanitizer also detects UAF bugs by using shadow memory.

In addition to above, Cling [1] and Dieharder [23] are used as secure memory
allocators in libraries. Cling mitigates attacks that exploit dangling pointers by
limiting the reuse of freed memory areas only to specific conditions. Dieharder
mitigates attacks that exploit dangling pointers by allocating memory from ran-
dom positions on the heap. Similar to Libsafe, which we described in the previous
section when these countermeasures are applied to binaries with the setuid bit
set, the environment variable LD PRELOAD is ignored; therefore, functions cannot
be replaced.

5.3 Other Countermeasures

Other countermeasures include Taint Analysis [5,14], Software Diversity [16,34,
35], Code-pointer integrity (CPI) [18], Control-flow integrity (CFI) [30,39,40],
RELRO, DEP [20]. But these countermeasures require source code. Besides,
CFI prevents the execution of illegal instructions by verifying the validity of
indirect branch and return address, but can not avert memory destruction itself.
ASLR [25] mitigates memory corruption attacks by randomizing stacks, heaps,
and shared libraries at the execution time, but can not prevent the attack itself.

6 Discussion

6.1 Comparison

Table 6 compares our proposed method with existing countermeasures regard-
ing their range of defenses, an overhead, and an application method. The STL
mitigates three types of memory corruption attacks, i.e., SBF, HBF, and UAF
attacks with low overhead. Some countermeasures conduct stricter memory
checks than the STL does, but they have problems that they cannot be applied to
distributed binaries or that they have high runtime overhead. We conclude that
the STL is a practical and useful countermeasure regarding mitigating variable
attacks at low cost during the operational phase.

80 T. Saito et al.

Table 6. Comparing STL with other countermeasures

Countermeasure Attacks Distributed binary Runtime overhead

SBF HBF UAF

STL (our proposed) � � � � 1.24%

SSP � 1%

Libsafe [3] � � 0%

StackArmor [6] � 16%

AddressSanitizer [27] � � � 73%

Bounds checking [38] � � 49%

CETS [22] � 48%

DANGNULL [19] � 80%

FreeSentry [37] � 42%

Cling [1] � � −4%

DieHarder [23] � � 20%

6.2 Consideration from the Viewpoint of Software Life Cycle

In general, countermeasures can be applied in software development phase and
operation phase. As countermeasures applied in the development phase, there
are some methods at coding time. For example, they are methods using safe
libraries [31] and methods using source code analysis tools [33] to prevent the
vulnerability from being created. But these countermeasures are not perfect. Fur-
thermore, even if software developers take extreme caution, they can not avoid
containing vulnerabilities in distributed binaries, and there are cases where vul-
nerabilities are discovered during the operation phase. Besides, as shown in the
Sect. 1, threats may still exist in executed binaries to which countermeasures in
compilers are not applied or even in applied binaries. Therefore, countermeasures
applied in the development phase have limitations.

On the other hand, as countermeasures applied in the operation phase, there
are methods that applied to the software activation time or at the dynamic link-
ing time. The advantage of the countermeasures applied in the operation phase
is that users can apply countermeasures by themselves to the software which is
already released with vulnerabilities or whose vulnerabilities are discovered after
the release. Moreover, in case of our approach, unlike other countermeasures in
the operation phase, the STL can be individually applied for each software, so
there is little influence on the entire system such as OS switching and library
exchange. Furthermore, the STL can be one of the solutions in the case where
the patch is not provided due to the termination of the system support or the
case where the failure occurs when the patch is applied.

Safe Trans Loader 81

7 Conclusions

In our approach, even a novice user can select a target binary separately to apply
the STL. Moreover, it can be applied to already released executable binaries in
the operational phase. The STL can mitigate or prevent attacks by replacing
target functions with substitute functions at runtime for each binary. Further,
we evaluated the performance of the STL using the SPEC CPU2006, finding
that the runtime overhead of the STL was approximately 1.24% on average. Our
Future tasks include solving the limitation described in Sect. 3.4, and verifying
the effectiveness of UAF attacks of the STL using real-world binaries.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
18K11305. We are deeply grateful to Y. Kaneko, T. Uehara, Y. Sumida, Y. Hori, T.
Baba, H. Miyazaki, B. Wang, R. Watanabe, and S. Kondo for this work.

References

1. Akritidis, P.: Cling: a memory allocator to mitigate dangling pointers. In: Proceed-
ings of the 19th USENIX Conference on Security. In: USENIX Security 2010, p.
12 (2010)

2. Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy bounds checking: an efficient
and backwards-compatible defense against out-of-bounds errors. In: Proceedings
of the 18th Conference on USENIX Security Symposium, SSYM 2009, pp. 51–66
(2009)

3. Baratloo, A., Singh, N., Tsai, T.: Transparent run-time defense against stack
smashing attacks. In: Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC 2000, p. 21 (2000)

4. Bittau, A., Belay, A., Mashtizadeh, A., Mazières, D., Boneh, D.: Hacking blind.
In: Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP 2014,
pp. 227–242 (2014)

5. Bosman, E., Slowinska, A., Bos, H.: Minemu: the world’s fastest taint tracker. In:
Proceedings of the 14th International Conference on Recent Advances in Intrusion
Detection, RAID 2011, pp. 1–20 (2011)

6. Chen, X., Slowinska, A., Andriesse, D., Bos, H., Giuffrida, C.: StackArmor: com-
prehensive protection from stack-based memory error vulnerabilities for binaries.
In: NDSS (2015)

7. CVE: CVE-2009-2957. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2009-2957

8. CVE: CVE-2013-4256. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2013-4256

9. CVE: CVE-2017-14492. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2017-14492

10. CVE: CVE-2017-14493. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2017-14493

11. CWE: CWE-121: Stack-based buffer overflow. http://cwe.mitre.org/data/
definitions/121.html

12. CWE: CWE-122: Heap-based buffer overflow. http://cwe.mitre.org/data/
definitions/122.html

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2957
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2957
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4256
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4256
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14492
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14492
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14493
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-14493
http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/122.html
http://cwe.mitre.org/data/definitions/122.html

82 T. Saito et al.

13. CWE: CWE-416: Use after free. http://cwe.mitre.org/data/definitions/416.html
14. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: a detection tool to defend

against return-oriented programming attacks. In: Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, ASIACCS
2011, pp. 40–51 (2011)

15. Dhurjati, D., Adve, V.: Backwards-compatible array bounds checking for C with
very low overhead. In: Proceedings of the 28th International Conference on Soft-
ware Engineering, ICSE 2006, pp. 162–171 (2006)

16. Hiser, J., Nguyen-Tuong, A. Co, M., Hall, M., Davidson, J.W.: ILR: where’d my
gadgets go? In: Proceedings of the 2012 IEEE Symposium on Security and Privacy,
SP 2012, pp. 571–585 (2012)

17. Jones, R.W.M., Kelly, P.H.J.: Backwards-compatible bounds checking for arrays
and pointers in C programs. In: Proceedings of the 3rd International Workshop on
Automatic Debugging (AADEBUG 1997), no. 1, pp. 13–26 (1997)

18. Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-
pointer integrity. In: Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2014, pp. 147–163 (2014)

19. Lee, B., et al.: Preventing use-after-free with dangling pointers nullification. In:
NDSS (2015)

20. Microsoft: A Detailed Description of the Data Execution Prevention (DEP) Feature
in Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and Win-
dows Server 2003. https://support.microsoft.com/en-us/help/875352/a-detailed-
description-of-the-data-execution-prevention-dep-feature-in

21. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: SoftBound: highly com-
patible and complete spatial memory safety for C. SIGPLAN Not. 44(6), 245–258
(2009)

22. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: CETS: compiler enforced
temporal safety for C. SIGPLAN Not. 45(8), 31–40 (2010)

23. Novark, G., Berger, E.D.: DieHarder: securing the heap. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, CCS 2010, pp.
573–584 (2010)

24. OSDev: Buffer overflow protection. https://wiki.osdev.org/Stack Smashing
Protector

25. PaX: ASLR (Address Space Layout Randomization) - of PaX (2003). http://pax.
grsecurity.net/docs/aslr.txt

26. Seacord, R.: Secure Coding in C and C++. SEI Series in Software Engineering
(2013)

27. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a fast
address sanity checker. In: Proceedings of the 2012 USENIX Conference on Annual
Technical Conference, USENIX ATC 2012, p. 28 (2012)

28. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.:
Just-in-time code reuse: on the effectiveness of fine-grained address space layout
randomization. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy, SP 2013, pp. 574–588 (2013)

29. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: Pro-
ceedings of the 2013 IEEE Symposium on Security and Privacy, SP 2013, pp. 48–62
(2013)

30. Tice, C., et al.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
Proceedings of the 23rd USENIX Conference on Security Symposium, SEC 2014,
pp. 941–955 (2014)

http://cwe.mitre.org/data/definitions/416.html
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://wiki.osdev.org/Stack_Smashing_Protector
https://wiki.osdev.org/Stack_Smashing_Protector
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

Safe Trans Loader 83

31. US-CERT: SafeStr (2006). https://www.us-cert.gov/bsi/articles/knowledge/
coding-practices/safestr

32. Viega, J., McGraw, G.: Building Secure Software: How to Avoid Security Prob-
lems the Right Way (Paperback). Addison-Wesley Professional Computing Series.
Addison-Wesley, Reading (2011)

33. Wagner, D., Foster, J.S., Brewer, E.A., Aiken, A.: A first step towards automated
detection of buffer overrun vulnerabilities. In: Network and Distributed System
Security Symposium, pp. 3–17 (2000)

34. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS 2012, pp. 157–168
(2012)

35. Williams-King, D., et al.: Shuffler: fast and deployable continuous code re-
randomization. In: Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI 2016, pp. 367–382 (2016)

36. Yamauchi, T., Ikegami, Y.: HeapRevolver: delaying and randomizing timing of
release of freed memory area to prevent use-after-free attacks. In: Chen, J., Piuri,
V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 219–234. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46298-1 15

37. Younan, Y.: Freesentry: protecting against use-after-free vulnerabilities due to dan-
gling pointers. In: 22nd Annual Network and Distributed System Security Sympo-
sium, NDSS 2015, San Diego, California, USA, 8–11 February 2015

38. Younan, Y., Philippaerts, P., Cavallaro, L., Sekar, R., Piessens, F., Joosen, W.:
Paricheck: an efficient pointer arithmetic checker for C programs. In: Proceed-
ings of the 5th ACM Symposium on Information, Computer and Communications
Security, ASIACCS 2010, pp. 145–156 (2010)

39. Zhang, C., et al.: Practical control flow integrity and randomization for binary
executables. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy,
SP 2013, pp. 559–573 (2013)

40. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Proceedings of
the 22nd USENIX Conference on Security, SEC 2013, pp. 337–352 (2013)

https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/safestr
https://www.us-cert.gov/bsi/articles/knowledge/coding-practices/safestr
https://doi.org/10.1007/978-3-319-46298-1_15

Public-Key Primitives

Estimated Cost for Solving Generalized
Learning with Errors Problem via

Embedding Techniques

Weiyao Wang1(B), Yuntao Wang1,2, Atsushi Takayasu1,3, and Tsuyoshi Takagi1

1 Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan
weiyao wang@mist.i.u-tokyo.ac.jp

2 Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
3 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. Estimating for the computational cost of solving learning
with errors (LWE) problem is an indispensable research topic to the
lattice-based cryptography in practice. For this purpose, the embedding
approach is usually employed. The technique first constructs a basis
matrix by embedding an LWE instance. At this stage, Kannan’s and Bai-
Galbraith’s embeddings are believed to be the most efficient approaches
for the standard and the binary LWE with secret vectors in Z

n
q and

{0, 1}n, respectively. Indeed, both methods work well with sufficiently
many LWE samples. After the embedding phase, solving the unique
shortest vector problem (uSVP) in the lattice spanned by the basis
matrix results in solving the LWE. Recently, there are several lattice-
based schemes whose secret vectors have special distributions, e.g., small
elements and/or sparse vectors, have been proposed to realize efficient
implementations. In this paper, to capture such settings and more, we
study the LWE problem in a general setting. We analyze the LWE prob-
lem whose secret vectors are sampled from arbitrary distributions. Fur-
thermore, we also study the problem when the number of samples is
restricted. We believe that our work provides more general understand-
ing of the hardness of LWE. Moreover, we propose a half-twisted embed-
ding that contains the existing two embedding methods as special cases.
This proposal enables us to analyze the hardness of LWE in a generic
manner and sometimes provides improved attacks.

1 Introduction

Shor’s proposal [26] of a quantum algorithm for computing integer factoriza-
tions and discrete logarithms in polynomial time means that most of the current
public key cryptographic schemes will become vulnerable after the advent of
practical quantum computers. Therefore, researches on post-quantum crypto-
graphic schemes and their practical implementations have received a remarkable
amount of attention in the last few years. One of the most promising candidates
is lattice-based cryptography, whose security is usually based on the learning with

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 87–103, 2018.
https://doi.org/10.1007/978-3-319-97916-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_6&domain=pdf

88 W. Wang et al.

errors (LWE) problem [22]. Let n denote the lattice dimension and q denote the
prime modulus. The LWE problem with m samples is defined in terms of a uni-
formly random matrix A ∈ Z

m×n
q , a random secret vector s ∈ Z

n
q , and an error

vector e ∈ Z
m
q . Given (A, c := As+e mod q) ∈ (Zm×n

q ,Zm
q), the goal is to find

a secret vector s. In general, the secret vector s and error vector e are sampled
from a uniform distribution in Z

n
q and a discrete Gaussian distribution over the

integers, respectively.
Towards a practical implementation, we want to study the concrete hardness

of the LWE problem. Among the several algorithms for solving the LWE, such
as BKW [3] and algebraic methods [2], the embedding method is believed to be
the most adaptable approach. The method first constructs a basis matrix B
by setting an LWE instance (A, c) as its elements, and then solves the unique
shortest vector problem (uSVP) in the lattice spanned by B. The latter process,
i.e., solving the uSVP, is usually performed with the BKZ algorithm [23], which
is a blockwise generalization of the LLL algorithm [19]. The BKZ algorithm
utilizes a β-dimensional SVP solver, where β is called the blocksize. Since the
BKZ is an approximate SVP algorithm, the process does not always succeed.
The BKZ algorithm becomes inefficient for the larger blocksize while it outputs
shorter vectors. To study the concrete hardness of the LWE, we want to use
as small a blocksize as possible. Thus far, several significant progress have been
made to study the trade-off between the size of the blocksize β and the success
probability of solving uSVP with the BKZ algorithm [4,6,15].

In this paper, we rather study the first process of the embedding approach,
i.e., given an LWE instance (A, c), constructing the matrix B. There are two
major embedding methods. Kannan’s embedding [17] aims at solving the “stan-
dard” LWE whose secret vector s is uniformly at random in Z

n
q . Given an LWE

instance, Kannan’s embedding constructs a matrix BKan ∈ Z
(m+1)×(m+1)
q . The

other method is Bai-Galbraith’s embedding [7] that focuses on a binary LWE
whose secret vector s is uniformly at random in {0, 1}n. Bai-Galbraith’s embed-
ding applies a twist to Kannan’s embedding and constructs a matrix BBG ∈
Z
(n+m+1)×(n+m+1)
q . The additional dimension n enables attackers to solve uSVP

more efficiently by exploiting the fact that the elements of the secret s are small.
To solve the LWE, we should use an appropriate embedding method, where

the choice sensitively depends on the LWE distribution. The security of stan-
dard public key encryption schemes, e.g., Regev encryption [22] and dual-Regev
encryption [16], is based on the standard LWE. To achieve more efficient imple-
mentations, recent lattice-based schemes rely on the LWE problem with specific
distributions of secret vectors s. For example, some schemes [5,8,9] use the same
distribution as that of the error vectors e, while other schemes [6,10,13,14,21]
use sparse distributions from small domains like binary LWE. Hence, in this
paper, we study the LWE problem with general distributions.

Moreover, our work has an additional orthogonal extension that is rarely
studied in other papers; i.e., there is a restriction on the number of LWE samples
m. Previous analyses of embedding techniques assumed that there are sufficiently
many samples, and utilized optimal numbers of them. Hence, we do not as yet

Estimated Cost for Solving Generalized Learning with Errors Problem 89

understand the hardness of LWE very much when only a few samples are given.
Furthermore, such a restriction reflects practical scenarios: we cannot usually
obtain sufficiently many samples for the same secret vector s. To capture this
scenario, Bindel et al. recently studied [8] the hardness of LWE with a restricted
number of samples when the secret vectors and error vectors have the same
distributions.

Our Contributions. In this paper, we provide updated analyses on the hard-
ness of LWE in general settings. As we claim, our definition extends the standard
one in two ways. First, the secret vectors s follow a distribution χs of mean 0
and standard deviation σs, and the error vectors e follow a distribution χe of
an analogous definition. The extension covers several existing variants of LWE
as special cases. Second, the number of LWE samples m is a priori bounded.

To estimate the hardness of the LWE in general settings, we follow embed-
ding approaches. A naive attempt would be to apply Kannan’s embedding or
Bai-Gralbraith’s embedding with a matrix BKan ∈ Z

(m+1)×(m+1)
q or BBG ∈

Z
(n+m+1)×(n+m+1)
q , and then compare the estimated costs of solving the uSVP.

Instead, we unify these analyses by introducing a half-twisted embedding. Given
an LWE instance (A, c) and a twist factor nT, the half-twisted embedding con-
structs a matrix BHT ∈ Z

(nT+m+1)×(nT+m+1)
q . The twist factor nT bridges Kan-

nan’s matrix BKan and Bai-Galbraith’s matrix BBG. When we do not apply any
twists, i.e., nT = 0, the half-twisted embedding becomes the same as Kannan’s
embedding, i.e., BHT = BKan. When we apply full-twists, i.e., nT = n, the
half-twisted embedding becomes the same as Bai-Galbraith’s embedding, i.e.,
BHT = BBG. Hence, we use our half-twisted embedding method and study the
hardness of LWE in a generic manner.

In this paper, we follow Alkim et al.’s estimate [6] to study the computational
cost of solving uSVP. Since our definition has more parameters than the standard
one, we carefully determine the minimum BKZ blocksize β and an optimal twist
factor nT. As predicted, the twist factor becomes nT = 0 for a large standard
deviation σs and nT = n otherwise. However, during the analysis, we find an
additional benefit of the half-twisted embedding. For some parameters, e.g., the
small number of samples m, the twist factor becomes optimal when 0 < nT < n.
Therefore, our half-twisted embedding technique reduces the computational cost
of solving LWE with certain parameters.

Next, we show some numerical results of Frodo, which is an LWE-based
scheme. The original Frodo scheme uses the same distribution of secret vectors
s as error vectors e. However, we also consider this case when the standard
deviation of the secret vectors is large. We find that the numerical results support
our theoretical analysis. For example, when σs/σe = 2, our analysis shows that
the half-twisted embedding provides an improved attack when the number of
samples m ∈ (846, 1609). Our numerical results update the bit-security of the
cases in which the number of samples m = 872, 900, 1200, and 1400.

Organization. We start in Sect. 2 with some basic notions of lattices and the
BKZ algorithm. In Sect. 3, we formally define the LWE problem studied in this

90 W. Wang et al.

paper, and review embeddings and Alkim et al.’s estimate to study the complex-
ity of solving the problem. After that, we propose the half-twisted embedding
in Sect. 4 and analyze the hardness of LWE in a general setting with the help of
some numerical examples in Sect. 5.

2 Lattices and BKZ Algorithm

Here, we recall lattices and the BKZ algorithm which we will use for solving
the LWE problem. Let R and Z denote the sets of real numbers and integers,
respectively. Let Zq := Z/qZ denote the ring of integers modulo q. Let Im denote
an m × m identity matrix, and let 0 be an zero vector or zero matrix.

2.1 Lattices and Lattice Problems

Lattices. A full rank d-dimensional lattice Λ is an additive discrete subgroup
of Rd, and one can be generated from a matrix B = {b1, ...,bd}� ∈ R

d×d, where
bi’s are linearly independent column vectors. The matrix B is called a basis of
Λ, and we write Λ(B) for a lattice generated by a basis B. The same lattice
Λ(B) can be represented using different bases, and one can be obtained from
another by multiplying it by unimodular matrix.

The volume of Λ(B) is defined as Vol(Λ) = det Λ = |det(B)|, which is
independent of bases. We define b∗

1 = b1 and b∗
i = bi − ∑i−1

j=1 μi,jb∗
j which are

the corresponding Gram-Schmidt vectors, where μi,j = 〈bi,b∗
j 〉/〈b∗

j ,b
∗
j 〉.

Let j and k be two integers which satisfy 1 ≤ j ≤ k ≤ d. The sublattice is
defined as a lattice whose basis is B[j,k] = {πj(bj), ..., πj(bk)}� ∈ R

(k−j+1)×d,
where πj(·) is the orthogonal projection over (b1, ...,bj−1). Let Λ(B[1,k]) denote
the lattice generated by first k basis vectors {b1, ...,bk}, and let Λ(B[j,k]) denote
the (k − j + 1)-rank sublattice that is the projection of Λ(B[1,k]) onto first j − 1
basis vectors.

The successive minima λi(Λ(B)) denotes the smallest radius of a zero-
centered ball that contains i linearly independent vectors. By this definition,
the norm of the shortest vector can be represented by λ1(Λ(B)). The Gaussian
Heuristic predicts

λ1(Λ(B)) ≈
√

d

2πe
Vol(Λ(B))1/d . (1)

Lattice Problems. As we mentioned, the LWE problem can be reduced to a
lattice problem. Let γ ≥ 1, where γ is a real number.

Given a basis of Λ, the γ-shortest vector problem (SVPγ) asks us to find
s ∈ Λ(B) such that 0 < ‖s‖ ≤ γ · λ1(Λ). Given a basis of Λ with λ2(Λ(B)) >
γ · λ1(Λ(B)) guaranteed, the γ-unique shortest vector problem (uSVPγ) asks us
to find the non-zero shortest vector s ∈ Λ. Moreover, given a basis of Λ(B) and a
target vector t ∈ R

d such that the distance between t and Λ(B) can be bounded
by λ1(Λ(B))/γ, the γ-bounded distance decoding (BDDγ) problem asks us to find
vector b ∈ Λ(B) closest to t. Lattice problems are harder to solve for smaller γ.

Estimated Cost for Solving Generalized Learning with Errors Problem 91

2.2 BKZ Algorithm

Two kinds of algorithm can be used to solve SVPγ and uSVPγ : exact algo-
rithms and approximate algorithms. Exact algorithms, such as the enumeration
algorithm [25] and the sieve algorithm [1], output the exact shortest vector but
require (super) exponential time. In contrast, approximate algorithms, such as
the LLL algorithm [19], output relatively short vectors in practical time. In
high-dimensional spaces, approximate algorithms are usually feasible. The BKZ
algorithm proposed by Schnorr and Euchner [23] trades off computing time with
output quality using exact algorithms and the LLL algorithm as its subroutines.

The BKZ algorithm takes a basis B and a blocksize β and outputs a BKZ-β
reduced basis by repeatedly applying an exact β-rank SVP solver (e.g. sieve or
enumeration) to each local block B[j,k] for j = 1 to d−1 and k = min(j+β−1, d).
The BKZ algorithm treats the SVP solver as a subroutine to find the shortest
vector in each sublattice Λ(B[j,k]), and outputs x = (xj , ..., xk) ∈ Z

k−j+1 such
that ‖πj(Σk

i=jxibi)‖ = λ1(Λ(B[j,k])).

Output Quality of BKZ Algorithm. We can increase the output quality of
the BKZ algorithm by setting a larger β. To evaluate the output quality of BKZ
algorithms, the root Hermite factor is defined as δ = (‖b1‖/Vol(Λ(B))1/d)1/d,
where ‖b1‖ is a short vector outputted by an approximate algorithm. Hermite-
factor regime [12] assumes that a BKZ-β reduced basis B satisfies ‖b1‖ ≈ δd

0 ·
Vol(Λ(B))1/d , where δ0 = (((πβ)1/ββ)/(2πe))1/(2(β−1)).

Furthermore, the geometric series assumption (GSA) [24] assumes that the
BKZ-β reduced basis B satisfies

‖b∗
i ‖ = αi−1 · ‖b1‖, (2)

where α is a GSA constant.
Under the GSA and Hermite factor, we can easily get α = δ

−2d/(d−1)
0 ≈ δ−2

0 .

Complexity of BKZ Algorithm. As we claim, the BKZ algorithm calls a
β-rank SVP solver as its subroutine. By choosing different SVP solvers, its com-
plexity estimates can be varied. In this paper, we consider two exact algorithms:
the enumeration algorithm with classical computing and the sieve algorithm with
quantum computing. There exists a trade-off between space and time complex-
ity. The sieve algorithm proposed by Ajtai et al. [1] has exponentially large space
complexity 2O(β), whereas the enumeration algorithm proposed by Schnorr and
Euchner [25] only has polynomial space. In contrast, the sieve algorithm has
smaller time complexity 2O(β) compared with the enumeration algorithm which
has the time complexity 2O(β2).

If we choose the sieve algorithm, the time complexity of the BKZ algorithm
can be estimated as β2c0β , where c0 = 0.265 for quantum sieving [18]. This
estimate is considered to be a lower bound. For the enumeration algorithm with
classical computing, we use an alternative estimate formula 2c1β log2 β+c2β+c3 ,
where c1 = 0.18728, c2 = −1.0192, c3 = 16.1 [20].

92 W. Wang et al.

2.3 Applying BKZ Algorithm to uSVPγ

Since the BKZ algorithm is an approximate algorithm, we may fail to solve
uSVPγ if BKZ cannot output the shortest vector. In 2008, Gama and Nguyen [15]
examined the gap between λ1(Λ) and λ2(Λ), and they observed the BKZ algo-
rithm can output the shortest vector with high probability when λ2(Λ)/λ1(Λ) ≥
τδd

0 , where τ < 1 depends on the blocksize β of the algorithm.

3 LWE Problem and Complexity Analysis

We define the generalized LWE problem in Sect. 3.1. In Sect. 3.2, we show how
to reduce an LWE problem to a uSVPγ by using Kannan’s and Bai-Galbraith’s
embeddings. In Sect. 3.3, we recall how to estimate the complexity of the LWE
problem by using Alkim et al.’s estimate.

3.1 Definition of Generalized LWE Problem

As we claimed, the standard LWE problem proposed by Regev [22] chooses secret
vectors s ∈ Z

n
q uniformly. In contrast, the binary LWE chooses the secret vector

s uniformly from {0, 1}.
Regev [22] shows a quantum reduction from GapSVP (or SIVP) to LWE.

Therefore, LWE-based schemes are secure under the assumption that GapSVP
(or SIVP; two worst-case lattice problems), is hard to solve by quantum com-
puters. Brakerski et al. [11] proved that the binary LWE problem is also a hard
problem. We will extend the standard-LWE problem and the binary LWE prob-
lem to our generalized LWE setting.

Definition 1 (Generalized LWE problem). Let n ∈ Z denote the dimension
of the LWE problem. Let m ∈ Z denote the sample number and q ∈ Z denote the
modulus. Let χs and χe denote two independent probability distributions on Zq

with mean 0 and standard deviations σs ∈ R and σe ∈ R, respectively.
Let A ∈ Z

m×n
q be a matrix whose entries are sampled uniformly. Let s ∈ Z

n
q

be a secret vector whose entries are sampled from χs, and let e ∈ Z
m
q be an

error vector whose entries are sampled from χe. Finally, Let c ∈ Z
m
q which is

calculated by c := As + e mod q ∈ Z
m
q .

The LWE problem is to recover vector s from (A, c) ∈ Z
m×n
q × Z

m
q .

3.2 Reduction from LWE to uSVPγ

As claimed above, we can solve the LWE problem by reducing it to a uSVPγ

and then applying the BKZ algorithm. In this section, we recall two embeddings
to reduce an LWE problem to a uSVPγ .

Estimated Cost for Solving Generalized Learning with Errors Problem 93

Kannan’s Embedding. In 1987, Kannan [17] proposed an embedding tech-
nique which reduces the LWE problem to the uSVPγ problem. Using it, we
transform the LWE problem into a BDD problem in which the target vector
t = cT and the basis of Λ(BBDD) is

BBDD :=
[
In A′

0 qIm−n

]

∈ Z
m×m
q , (3)

where [In|A′] denotes the reduced row echelon matrix of A�, which can be
easily calculated by Gaussian elimination. Next, we reduce the BDD problem to
a uSVPγ in a lattice Λ(BKan) with a basis matrix

BKan :=
[
BBDD 0
c� 1

]

=

⎡

⎣
In A′

0
0 qIm−n

c� 1

⎤

⎦ ∈ Z
(m+1)×(m+1)
q , (4)

Recall that the lattice Λ(BKan) contains all linear combinations of the vectors
in BKan. The equation c = As + e mod q can be written as c = As + e + qk,
where k ∈ Z

m
q . There exists a row vector [−s�| − k�|1] ∈ Z

(m+1)
q such that the

shortest vector in Λ(BKan) is [−s�| −k�|1] ·BKan = [e�|1] ∈ Z
(m+1)
q . Therefore,

we have λ1(Λ(BKan)) =
√

ν2‖s‖ + ‖e‖ + 1 ≈ √
n + m + 1σe.

Therefore, there exists a vector v such that v · BKan = [e�|1], where
e = c − As. The norm of vector [e�|1] is

√‖e‖2 + 1 ≈ √
mσe. If this norm

is smaller than the norm of the shortest vector estimated by Gaussian Heuristic,
this LWE instance can be solved, and there exist a gap between the first and
second successive minima λ2(Λ(BKan))/λ1(Λ(BKan)), which simply corresponds
to the definition of uSVPγ .

We estimate λ1(Λ(BKan)) as
√‖e‖2 + 1 ≈ √

mσe. The lattice Λ(BKan)’s vol-
ume is qm−n, and λ2(Λ(BKan)) can be estimated by Gaussian Heuristic:

λ2(Λ(BKan)) ≈ λ1(Λ(BBDD)) ≈ GH(Λ(BKan)) =

√
m + 1
2πe

q(m−n)/(m+1).

This result indicates that [e�|1] is an unusually short vector compared with
other short vectors. Corresponding to LWE problem’ parameters, a larger q or a
smaller σ will enlarge λ2(Λ(BKan))/λ1(Λ(BKan)), and a larger γ for uSVPγ can
be applied, which leads an easier LWE problem.

Bai-Galbraith’s Embedding. In 2014, Bai and Galbraith [7] proposed
another embedding that can solve binary LWE more efficiently. Unlike Kannan’s
embedding, Bai-Galbraith’s reduced an LWE problem to a uSVPγ problem in a
lattice BBG with a basis matrix

BBG :=

⎡

⎣
νIn A� 0
0 qIm−n 0
0 c� 1

⎤

⎦ ∈ Z
(n+m+1)×(n+m+1)
q , (5)

94 W. Wang et al.

where ν is an embedding factor to re-balance the norm of the shortest vector.
Usually, we pick ν = σe/σs.

The basic idea of Bai-Galbraith’s method is to enlarge the gap between first
and second successive minima by constructing a matrix with larger volume. The
analysis is similar to Kannan’s one. There exists a row vector [−s�| − k�|1] ∈
Z
(m+1)
q such that the shortest vector in Λ(BBG) is [−s�| − k�|1] · BBG =

[−νs�|e�|1] ∈ Z
(m+1)
q , whose norm is λ1(Λ(BBG)) =

√
ν2‖s‖ + ‖e‖ + 1 ≈√

n + m + 1σe. If σs < σe, the volume of the lattice Vol(Λ(BBG)) can be enlarge
to νnqm, and λ2(Λ(BBG)) can be estimated by Gaussian Heuristic:

λ2(Λ(BBG)) ≈
√

n + m + 1
2πe

(νnqm)1/(n+m+1). (6)

3.3 Complexity Analysis Using Alkim et al.’s Estimate

After reducing the LWE problem to a uSVPγ , we should estimate the cost of
the BKZ algorithm to solve this uSVPγ . Since the BKZ algorithm is an approx-
imation algorithm, it requires a proper blocksize β in order to solve uSVPγ with
a high success probability.

Alkim et al.’s Estimate. In 2016, Alkim et al. predicted [6] that a uSVPγ

can be solved if the geometric series assumption and Hermite-factor assumption
hold and √

β/d‖v‖ ≈
√

βσe ≤ δ2β−d
0 Vol(Λ(B))1/d , (7)

where δ0 = (((πβ)1/ββ)/(2πe))1/(2(β−1)), and v denotes the unique shortest
vector in lattice.

The basic idea of Alkim et al.’s estimate relies on some predictions which
have been examined in practice.

First, we write the shortest vector v in the normalized d-dimension basis
(b∗

1/‖b∗
1‖, b∗

2/‖b∗
2‖, ..., b∗

d/‖b∗
d‖). Alkim et al.’s estimate requires it to obey a

spherical distribution, which is a uniform distribution on a ‖v‖ radius ball. After
that, we can estimate that ‖πd−β(v)‖ ≈ √

β/d‖v‖. Therefore, the left side of
inequality (7) estimates the norm of πd−β(v).

Second, by using GSA and Hermite-factor regime in Sect. 2.2, the right side
of inequality (7) estimates the norm of b∗

d−β+1. Alkim et al.’s estimate predicts
that the projection of the shortest vector can be recovered on index d − β + 1
with high probability if ‖πd−β(v)‖ ≤ ‖b∗

d−β+1‖ holds.
Finally, Alkim et al.’s estimate predicts that we can recover the shortest

vector soon after its projection is found. Moreover, this prediction has been
theoretically proved by Albrecht et al. [4].

As we mentioned, Alkim et al.’s estimate has been widely used to calculate
the complexity of solving LWE problems. There are some parameters with which
Alkim et al.’s estimate cannot be satisfied even if we choose the largest blocksize
β. Here, we write mKs for the smallest number of samples used for a Kannan’s
embedding; it will be used in the analysis that follows.

Estimated Cost for Solving Generalized Learning with Errors Problem 95

Complexity of LWE Problems. As we claimed in Sect. 2, the complexity of
the BKZ algorithm can be estimated from the blocksize β. Therefore, attackers
should choose the smallest blocksize β that satisfies inequality (7). Accordingly,
the complexity of LWE problems can be estimated using the complexity of the
BKZ algorithm with a blocksize β recommended by Alkim et al.

4 Half-Twisted Embedding

In this section, we introduce the half-twisted embedding by combining Kannans
and Bai-Galbraiths embeddings. For the LWE problem in Definition 1, we need
to recover the secret vector s ∈ Z

n from A ∈ Z
m×n and c ∈ Z

m
q , where n is the

dimension of the LWE problem and m is the number of samples. Let a positive
number nT ∈ [0, n] denote a twist factor which bridges Kannans embedding and
Bai-Galbraiths embedding. We divide A = [ABG|AKan] into matrices ABG ∈
Z

m×nT and AKan ∈ Z
m×(n−nT), and divide s = [sBG|sKan] into vectors sBG ∈ Z

nT
q

and sKan ∈ Z
(n−nT)
q .

Our method is divided into two parts:

1. Applying Kannan’s embedding to AKan.
Notice that AKan is a (n−nT)-column matrix. Kannan’s embedding constructs
an (m + 1)-dimensional lattice from AKan. The basis CKan is

CKan =

⎡

⎣
I(n−nT) AKan

′
0

0 qIm−(n−nT)

cT 1

⎤

⎦ ∈ Z
(m+1)×(m+1)
q , (8)

where [I(n−nT)|AKan
′] denotes the reduced row echelon form of A�

Kan, which
can be easily calculated by Gaussian elimination.

2. Applying Bai-Galbraith’s embedding to ABG.
ABG is a nT-column matrix. Bai-Galbraith’s embedding constructs an (nT +
m + 1)-dimensional lattice from ABG. The basis CBG is

CBG =
[

νInT
A�

BG 0
0 CKan

]

∈ Z
(nT+m+1)×(nT+m+1)
q , (9)

where ν = σe/σs is Bai-Galbraith’s embedding factor.

By using our embedding, we can reduce the LWE problem to a uSVPγ prob-
lem in a lattice Λ(BHT) with a basis matrix BHT = CBG.

BHT =

⎡

⎢
⎢
⎣

νInT
A�

BG 0

0
I(n−nT) AKan

′
0

0 qIm−(n−nT)

0 cT 1

⎤

⎥
⎥
⎦ ∈ Z

(nT+m+1)×(nT+m+1)
q . (10)

Our matrix construction is just a variant of traditional embeddings. Our
embedding is equivalent to Kannans embedding for nT = 0, and it is the same

96 W. Wang et al.

as Bai-Galbraiths embedding for nT = n. Therefore, our method can be used to
analyze which embedding is more efficient or find some intermediate condition
that may perform better.

The lattice Λ(BHT) contains a vector [−νsBG|e|1] with an expected norm√
nT + m + 1σe. This lattice has volume νnTqm−(n−nT). Then λ2(Λ(BHT)) can

be estimated by Gaussian Heuristic:

λ2(Λ(BHT)) ≈
√

nT + m + 1
2πe

(νnTqm−(n−nT))1/(nT+m+1). (11)

This result denotes that [νsBG|e|1] is an unusual short vector compared with the
other short vectors i any solvable LWE instances.

5 Generalized Analysis of LWE Problem

We will start by applying Alkim et al.’s estimate to the half-twisted embedding
in Sect. 5.1. In Sect. 5.2, we show that the half-twisted embedding is good for a
generalized analysis of the LWE problem. In Sect. 5.3, we show some numerical
results of our analysis.

5.1 Applying Alkim et al.’s Estimate to Half-Twisted Embedding

Here, we construct a formula for estimating the complexity of the half-twisted
embedding by using Alkim et al.’s estimate in Sect. 3.3. The hardness of the
LWE problem depends on the largest number of samples mlimit, dimension n,
modulus q, standard deviation of the secret vector σs and standard deviation of
the error vector σe. Alkim et al.’s estimate tries to find the smallest blocksize
β of the BKZ algorithm for given fixed parameters (q, σs, σe). The half-twisted
embedding divides up the dimension n into nT and (n−nT). Therefore, our goal
is to construct the formula F (m,nT, β) depending on the number of samples m,
twist factor nT and blocksize β.

By applying Alkim et al.’s estimate, we have

√
βσe ≤ δ2β−d

0 Vol(Λ(BHT))1/d = δ2β−m−nT−1
0 (σe/σs)

nT
nT+m+1 q

m−(n−nT)
nT+m+1 , (12)

where δ0 = (((πβ)1/ββ)/(2πe))1/(2(β−1)). We can obtain F (m,nT, β) from this
inequality, where

F (m,nT, β) =
(

1
2

+
(β + 1)(nT + m + 1 − 2β)

2(β − 1)β

)

log β +
m + 1

nT + m + 1
log σe

+
nT

nT + m + 1
log σs − nT + m − n

nT + m + 1
log q − nT + m + 1

2β
log π

− nT + m − 1
2(β − 1)

log 2e + log 2πe. (13)

Estimated Cost for Solving Generalized Learning with Errors Problem 97

Therefore, given mlimit, n, q, σs, σe, we can find a pair of {m,nT, β} such that
the blocksize β of the BKZ algorithm becomes the smallest one with respect to
F (m,nT, β). We adjust the number of samples m and the twist factor nT to min-
imize the blocksize β in the inequality F (m,nT, β) ≤ 0. In practice, we only have
to consider the boundary condition and get an implicit function F (m,nT, β) = 0,
which is much easier for us to analyze.

5.2 Analysis on Half-Twisted Embedding

Here, we analyze the complexity of the half-twisted embedding by using formula
(13). Formula (13) is relatively complicated, and our analysis will start from an
assumption and show the conditions under which our half-twisted embedding
works better than Kannan’s and Bai-Galbraith’s embeddings.

First, we say that an embedding method performs better in the sense of the
following definition.

Definition 2. Consider the following three embeddings:

(a) Kannan’s embedding in Sect. 3.2
(b) Bai-Galbraith’s embedding with factor ν = σe/σs in Sect. 3.2
(c) Half-twisted embedding in Sect. 4

We say that one embedding “performs better” if Alkim et al.’s estimate in
Sect. 5.1 outputs a smaller blocksize β of the BKZ algorithm than other embed-
dings.

Recall that the embedding techniques reduce the LWE problem to a uSVPγ ,
and the most efficient algorithm for solving the unique SVP is a BKZ algorithm
of blocksize β. In Sect. 2.2, we show that the complexity of BKZ algorithm mainly
depends on the blocksize β. For any LWE problem, we can estimate its com-
plexity from the blocksize recommended by Alkim et al.’s estimate. Therefore, a
smaller blocksize means the LWE problem is easier to solve, so we can say that
this method performs better.

In Sect. 5.1, we got formula (13) which is complicated for analyzing. To sim-
plify our calculation, we will base our analysis on the following assumption.

Assumption 1. F (m,nT, β) in Eq. (13) satisfies the following conditions (a)
∂2β

∂m∂nT
> 0, (b) ∂F (mKs,0,mKs+1)

∂nT
< 0, where mKs denotes the smallest number of

samples used for Kannan’s embedding.

In the following, we will explain that when two conditions (a) and (b) hold
in the setting of LWE problem setting. Recall that the smallest such number
under condition (b) for Kannan’s embedding was discussed in Sect. 3.3.

First, let us deal with condition (a). We write Fm, FnT
, Fβ for the partial

derivative of function (13), and we write FnTm for the second-order partial deriva-
tive. In an actual calculation, we can get Fβ < 0. Let {mADPS, 0, β} be the pair of

98 W. Wang et al.

parameters based on Alkim et al.’s estimate without any restriction on the num-

ber of samples. Then, for an LWE instance that satisfies σs/σe < q
2(n+1)

n+mADPS+1 , it
is very easy to get ∂FnT

/∂β < 0, since FnTm > 0. Finally, we have

∂2β

∂m∂nT
= −FnTmFβ − (∂FnT

/∂β)Fm

F 2
β

> 0 (14)

Next, we deal with condition (b). Since mKs denotes the smallest number
of samples for Kannan’s attack, an enumeration should be used for this LWE
instance, which means β = mADPS + 1. Then, we have F (mKs, 0,mKs + 1) = 0.
Another condition FnT

(mKs, 0,mKs + 1) < 0 can be easily achieved by setting
σs < q/

√
mKs + 1. In practice, mKs is a large number, so we get

FnT
(mKs, 0,mKs + 1) ≈

1
2 log(mKs + 1) − log(qσs) − F (mKs, 0,mKs + 1)

(mKs + 1)
< 0.

(15)

Therefore, Assumption 1 holds for an LWE instance satisfying σs <

min
(

q
2(n+1)

n+mADPS+1 σe, q/
√

mKs + 1
)

.

Now we can state Theorem 1 under this assumption.

Theorem 1. Under Assumption 1, the half-twisted method performs better for
a number of samples m in the interval (mlow,mup) if σe < σs holds, where mlow

and mup can be computed from F (m,nT, β), σs, σe and q.

Proof. Let mlimit denote the largest number of samples we can choose for an
attack. Consider an LWE instance defined as in Definition 1 with the parameter
settings χs, χe, m, n, and q. We can easily get

∂β

∂m
− ∂β

∂nT
= −Fm − FnT

Fβ
= − log σe − log σs

(nT + m + 1)Fβ
. (16)

Since σe < σs, we have ∂β
∂m < ∂β

∂nT
.

By Assumption 1, since ∂β
∂nT

= −FnT
(mKs, 0,mKs+1)/Fβ(mKs, 0,mKs+1) < 0,

we can decrease β by increasing nT. Therefore, there exist at least one m such
that Bai-Galbraith’s embedding or ours performs better than Kannan’s one.

We suppose that only Kannan’s and Bai-Galbraith’s embeddings will be rec-
ommended, which means (13) outputs only nT = 0 or nT = n. This hypoth-
esis can be easily rejected from the continuity of (13). Therefore, there exist
at least one m such that our embedding performs better than Kannan’s and
Bai-Galbraith’s embedding.

Here, we prove that such an m exists in the interval (mlow,mup). We assume
that there exists a pair {mup, 0, βup} which satisfies ∂β/∂nT = 0. Consider the
case that m = mup. By Assumption 1, we have ∂2β

∂m∂nT
> 0. Therefore, when

we simply decrease m, nT will be increased so as to find a better pair for
smaller β. As nT increases to n, ∂β/∂nT becomes negative even if we continue to

Estimated Cost for Solving Generalized Learning with Errors Problem 99

decrease m. Therefore, there is an interval (mlow,mup). For all m ∈ (mlow,mup),
our method can attack this LWE instance with a smaller blocksize.

If we don’t have any pair {m, 0, β} that satisfies ∂β/∂nT = 0, all pairs must
satisfy ∂β/∂nT > 0 by continuity. Therefore, Kannan’s method performs better
for all pairs. This is contradict to Assumption 1.
�

Now we show our analysis for the general cases. We suppose an LWE instance
with a sufficient number of samples in the sense of the following definition.

Definition 3. Consider a half-twisted embedding for an LWE instance.
We say that the number of samples m of is “sufficient” for an LWE instance

if the Alkim et al.’s estimate in Sect. 5.1 outputs a blocksize β ≤ nT + m + 1.

Fig. 1. Numerical result for case of σs/σe = 2. The other settings are the same as in
Table 1. The horizontal axis represents the number of samples, and the vertical axis
represents the best blocksize β to choose. The red area represents the improvement.
mlow and mup are from Theorem 1, and mKs is as defined in Sect. 3.3. (Color figure
online)

Corollary 1 which follows directly from our Theorem 1.

Corollary 1. Consider an LWE instance with a sufficient number of samples.

If σe = σs, all embeddings performs same.
If σe > σs, Bai-Galbraith’s embedding performs better.
If σe < σs holds, under Assumption 1,
(a) Kannan’s embedding performs better for m > mup,

100 W. Wang et al.

(b) the half-twisted embedding performs better for mlow < m < mup,
(c) Bai-Galbraith’s embedding performs better for other cases m < mlow

where mlow and mup are defined as in Theorem1.

Proof. For any LWE instance with σe > σs, we can easily get ∂β
∂m > ∂β

∂nT
from

(16). Since m can easily be decreased, we have ∂β
∂m ≤ 0. Therefore, nT should be

chosen as large as possible since ∂β
∂nT

< 0.
For any LWE instance with σe < σs, the corollary follows directly from

Theorem 1.
�

5.3 Numerical Results of Our Analysis

Here, we show some numerical results of the half-twisted embedding for an LWE
instance of Theorem 1 that satisfies σe < σs and m ∈ (mlow,mup).

Table 1. Numerical result. βKan and βBG are recommend parameters for Kannan’s
and Bai-Galbraith’s embedding. “q-sieve” denotes the bit complexity estimated by the
sieve algorithm, and “enum” denotes the bit complexity estimated by the enumeration
algorithm. “bitsold” is estimated by using Kannan’s and Bai-Galbraith’s embedding,
and “bitsnew” additionally considers our half-twisted embeddings.

σs/σe mlow mup m βKan βBG βHT q-sieve/enum

bitsold bitsnew

1 852 1716 1672 581 581 581 164/424 164/424

1200 730 581 581 164/424 164/424

900 – 581 581 164/424 164/424

872 – 581 581 164/424 164/424

2 846 1609 1672 581 629 581 164/424 164/424

1600 585 629 585 165/427 165/427

1400 618 629 597 174/460 168/439

1200 730 629 610 176/471 171/452

900 – 630 629 177/472 176/471

872 – 631 630 177/473 177/472

20 829 1329 1672 581 789 581 164/424 164/424

1600 585 789 585 165/427 165/427

1200 730 792 702 203/573 196/544

1000 – 816 792 226/663 220/638

900 – 843 838 234/692 232/687

872 – 853 851 236/703 236/700

In order to analyze parameter sizes used in practice, we choose Frodo’s
paranoid parameter [9] q = 32771 ≥ 215, n = 864, σe =

√
1.75, and calculate

Estimated Cost for Solving Generalized Learning with Errors Problem 101

mup,mlow by using the formula shown in Sect. 5.3. Frodo is a key exchange pro-
tocol that chooses the secret vector from the same distribution of error vectors,
which means σs = σe. In Frodo, the number of samples can be between 0 and
n + 8. Therefore, it is a limited sample case. Moreover, we enlarge the stan-
dard deviation of the secret vector to analyze some unusual cases. These cases
decrease the success probability but make the problem harder.

Figure 1 plots the case of σs/σe = 2. The red area represents our improve-
ment. It is clear that we get a speed-up around the intersection of the two
embeddings by using the half-twisted embedding. Our estimate seems smoother
as a result of it combining Kannan’s and Bai-Galbraith’s embeddings.

Table 1 shows that out techniques get a smaller β. βKan and βBG are optimal
β for the two original embedding techniques. We propose βHT for solving LWE
problem by using our technique. We show the bit complexity of the BKZ algo-
rithm with blocksize β using the estimate in Sect. 2.2. “q-sieve” in the table is
the bit complexity of the BKZ algorithm estimated by the sieve algorithm, and
“enum” is the bit complexity of the BKZ algorithm estimated by the enumer-
ation algorithm. “bitsold” is estimated by using Kannan’s and Bai-Galbraith’s
embedding, and “bitsnew” additionally considers our half-twisted embedding. We
also find that sometimes nT < n is chosen when m = mlow. This result can be
explained in terms of the discrete property of β. Since we have to choose a larger
integer β > βlow in almost all cases, nT can be made smaller without reducing
the success probability.

6 Conclusion

We proposed half-twisted embedding and estimated the cost of the LWE problem
in a generic manner using Alkim et al.’s estimate. If the number of LWE samples
m is restricted, the half-twisted embedding updates the complexity estimate for

an LWE problem which satisfies σe < σs < min
(

q
2(n+1)

n+mADPS+1 σe, q/
√

mKs + 1
)

in Sect. 5.2. Moreover, for an LWE problem with known parameters, we showed
which embedding provides an attack with lower complexity compared with other
embeddings.

Our analysis still has some drawbacks. Although Alkim et al.’s estimate is
believed to be reliable, our analysis should be experimentally verified. However,
some of our heuristics hold only for high dimensional cases, which means a further
study will require the large-scale computing. Moreover, our analysis considers
only three embeddings. We will consider more methods for solving LWE problem
as our future work.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
JP17H06571, and JST CREST Grant Number JPMJCR14D6, Japan. The second
author is supported by a JSPS fellowship for Young Scientists (JP17J01987).

102 W. Wang et al.

References

1. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the STOC 2001, pp. 601–610. ACM (2001)

2. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Algebraic algo-
rithms for LWE problems. ACM Commun. Comput. Algebra 49(2), 62 (2015)

3. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity
of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

4. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected
cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 11

5. Alkim, E., et al.: Revisiting TESLA in the quantum random oracle model. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 9

6. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange–a
new hope. In: Proceedings of the USENIX Security 2016, pp. 327–343. USENIX
Association (2016)

7. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 21

8. Bindel, N., Buchmann, J.A., Göpfert, F., Schmidt, M.: Estimation of the hardness
of the learning with errors problem with a restricted number of samples. IACR
Cryptology ePrint Archive 2017/140 (2017)

9. Bos, J.W., et al.: Frodo: take off the ring! practical, quantum-secure key exchange
from LWE. In: Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security 2016, pp. 1006–1018. ACM (2016)

10. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: IEEE Symposium
on Security and Privacy 2015, pp. 553–570. IEEE Computer Society (2015)

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé.: Classical hardness of
learning with errors. In: STOC 2013, pp. 575–584 (2013)

12. Chen, Y.: Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. Ph.D. thesis, Paris 7 (2013)

13. Cheon, J.H., Kim, D., Lee, J., Song, Y.S.: Lizard: cut off the tail! // practical post-
quantum public-key encryption from LWE and LWR. IACR Cryptology ePrint
Archive 2016/1126 (2016)

14. Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. IACR Cryptology ePrint Archive 2012/688
(2012)

15. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the STOC 2008, pp. 197–206. ACM
(2008)

17. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987)

18. Laarhoven, T.: Search problems in cryptography: from fingerprinting to lattice
sieving. Ph.D. thesis, Eindhoven University of Technology (2015)

https://doi.org/10.1007/978-3-319-70694-8_11
https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3

Estimated Cost for Solving Generalized Learning with Errors Problem 103

19. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

20. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
SODA 2015, 276–294 (2015)

21. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the STOC 2005, pp. 84–93. ACM (2005)

23. Schnorr, C.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

24. Schnorr, C.: Lattice reduction by random sampling and birthday methods. In:
Proceedings of the STACS 2003, pp. 145–156. ACM (2003)

25. Schnorr, C., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

26. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12

(Short Paper) How to Solve DLOG
Problem with Auxiliary Input

Akinaga Ueda(B), Hayato Tada, and Kaoru Kurosawa

Ibaraki University, Mito, Japan
{17nm703x,kaoru.kurosawa.kk}@vc.ibaraki.ac.jp

Abstract. Let G be a group of prime order p with a generator g. We first

show that if p − 1 = d1 . . . dt and g, gx, gx
(p−1)/d1

, . . . , gx
(p−1)/(d1...dt−1)

are given, then x can be computed in time O(
√
d1+ . . .+

√
dt) exponenti-

ations. Further suppose that p− 1 = de11 . . . dett , where d1, . . . , dt are rel-
atively prime. We then show that x can be computed in time O(e1

√
d1 +

. . . + et
√
dt) exponentiations if g and gx

(p−1)/di
, . . . , gx

(p−1)/d
ei−1
i are

given for i = 1, . . . , t.

Keywords: Discrete logarithm · Auxiliary inputs · Cheon algorithm

1 Introduction

Let G be a group of prime order p with a generator g. The discrete logarithm
problem (DLP) is to find x from g and gx, and its hardness is a basis of many
cryptographic schemes. It is well known that the DLP is solved in time O(

√
p)

exponentiations [3].
On the other hand, “the DLP with auxiliary inputs” is a problem to find x

from g, gx and gxe
1 , . . . , gxe

t . The examples include weak DH problem [5], strong
DH problem [6], bilinear DH inversion problem [7] and bilinear DH exponent
problem [8]. Their hardness is the basis of recent schemes with advanced func-
tionalities such as traitor tracing schemes [5], short signature schemes [6], ID-
based encryption schemes [7] and broadcast encryption schemes [8].

In the DLP with auxiliary inputs, however, the auxiliary inputs gxe
1 , . . . , gxe

t

could weaken the difficulty. From this point of view, Cheon [2] showed two algo-
rithms for this problem. For p − 1 = ed, his first algorithm can find x from
(g, gx, gxd

) in time
O(

√
p/d +

√
d)

exponentiations. If e ≈ d ≈ √
p, it can find x in time O(p1/4) exponentiations.

For p − 1 = d1 . . . dt such that d1, . . . , dt are relatively prime, his second
algorithm can find x from g and

gx(p−1)/d1
, . . . , gx(p−1)/dt (1)

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 104–113, 2018.
https://doi.org/10.1007/978-3-319-97916-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_7&domain=pdf

(Short Paper) How to Solve DLOG Problem with Auxiliary Input 105

in time
O(

√
d1 + . . . +

√
dt)

exponentiations. If d1 ≈ . . . ≈ dt ≈ p1/t, then it can find x in time O(p1/2t)
exponentiations.

In this paper, we show a generalization Cheon’s two algorithms. In Cheon’s
first algorithm, we observe that the auxiliary input is written as

gxd

= gx(p−1)/e
,

where p−1 = ed. Our first algorithm is a generalization such that p−1 = d1 . . . dt

and the auxiliary input is

gx(p−1)/d1
, . . . , gx(p−1)/(d1...dt−1)

.

(Here d1, . . . , dt are not necessarily relatively prime.) It can find x in time

O(
√

d1 + . . . +
√

dt)

exponentiations. If d1 ≈ . . . ≈ dt ≈ p1/t, then x can be found in time O(t · p1/2t)
exponentiations. Cheon’s first algorithm is obtained as a special case for t = 2.

In Cheon’s second algorithm, the auxiliary is given by Eq. (1), where p− 1 =
d1 . . . dt and d1, . . . , dt are relatively prime. Our second algorithm is a general-
ization such that

p − 1 = de1
1 . . . det

t ,

where d1, . . . , dt are relatively prime, and the auxiliary input is

gx(p−1)/di
, . . . , gx(p−1)/d

ei−1
i ,

for i = 1, . . . , t. It can output x in time

O(e1
√

d1 + . . . + et

√
dt)

exponentiations. If

e1 ≈ . . . ≈ et ≈ e and d1 ≈ . . . ≈ dt ≈ p1/et,

then x can be found in time O(et · p1/2et) exponentiations. Cheon’s second algo-
rithm is obtained as a special case for e1 = . . . = et = 1.

den Boer [1] showed that if p − 1 is a product of small primes and we can
have access to the DH oracle, then the DLP is solved efficiently. He applied
Pohlig-Hellman algorithm to the “DLP over the exponent” by utilizing the DH
oracle. Cheon solved the “DLP over the exponent” by utilizing the auxiliary
inputs instead of the DH oracle. We follow the same approach.

2 Discrete Logarithm Problem over the Exponent

Let G be a group of prime order p with a generator g. Let α be an element
in Zp of order n. The discrete logarithm problem (DLP) over the exponent is
to find x from g, α and y = gαx

. This problem can be solved in time O(
√

n)
exponentiations [2] (Tables 1 and 2).

106 A. Ueda et al.

Table 1. Our first algorithm

Cheon Proposed

p − 1 p − 1 = ed p − 1 = d1 . . . dt

The auxiliary input
(exp part)

xd = x(p−1)/e x(p−1)/d1 , . . . , x(p−1)/(d1...dt−1)

Time O(
√
d +

√
e)

If |d| = |e|, O(p1/4)
O(

√
d1 + . . . +

√
dt)

If |d1| = . . . = |dt|, O(t · p1/2t)

Table 2. Our second algorithm

Cheon Proposed

p − 1 p − 1 = d1 . . . dt p − 1 = de11 . . . dett

The auxiliary input
(exp part)

xp−1/d1 , . . . , xp−1/dt (xp−1/d1 , . . . , xp−1/d
e1
1),

. . . , (xp−1/dt , . . . , xp−1/d
et
t)

Time O(
√
d1 + . . . +

√
dt)

If |d1| = . . . = |dt|, O(t · p1/2t)
O(e1

√
d1 + . . . + et

√
dt)

If |d1| = . . . = |dt| and
|e1| = . . . = |et|, O(et · p1/2et)

2.1 Deterministic Algorithm

We can use Baby-step Giant-step algorithm to solve the DLP over the expo-
nent as follows. Let s = �√n�. Then x is written as x = sk+r for some 0 ≤ k < s
and 0 ≤ r < s. Then it holds that

y = gαx

= gαsk+r

,

and
yg−αr

= gαsk

. (2)

Therefore we first compute two lists such that

B = (yg−α0
, yg−α1

, . . . , yg−αs

)

G = (gαs

, gα2s
, . . . , gαs(s−1)

)

Next we find B ∩ G, which is a solution of Eq. (2). Hence this problem can be
solved by in time O(

√
n) exponentiations.

2.2 Probabilistic Algorithm

The DLP probabilistically can be solved by using Pollard’s kangaroo method
with distinguished points [4]. One can use this method to solve the DLP over
the exponent. The advantage is that it needs smaller amount of memory than
the Baby-step Giant-step algorithm.

(Short Paper) How to Solve DLOG Problem with Auxiliary Input 107

3 Generalization of Cheon’s First Algorithm

Let G be a group of prime order p with a generator g. Consider p such that

p − 1 = d1d2 . . . dt. (3)

Suppose that

B1 = gx(p−1)/d1 (4)

B2 = gx(p−1)/(d1d2)
(5)

...
Bt−1 = gx(p−1)/(d1...dt−1)

(6)

are given as auxiliary inputs in addition to g and

y = gx. (7)

In this section, we show that x can be computed in time O(
√

d1 + . . . +
√

dt)
exponentiations. If

|d1| ≈ . . . ≈ |dt|,
then we can compute x in time O(t · p1/2t) exponentiations. Cheon’s first algo-
rithm is obtained as a special case of our algorithm for t = 2.

Lemma 1. If w ∈ Zd1...dt
, then there exist unique a0, . . . , at−1 such that

w = a0 + a1d1 + a2(d1d2) + . . . + at−1(d1 . . . dt−1) (8)

and

0 ≤ a0 < d1,

0 ≤ a1 < d2,

...
0 ≤ at−1 < dt.

Proof. For k = 1, . . . , t − 1, let Dk = d1 . . . dk.

(1) Let a0 be a0 = w mod d1. Such a0 is unique and 0 ≤ a0 < d1.
(2) Suppose that a0, . . . , ak are uniquely determined in such a way that

w = a0 + . . . + akDk mod Dk+1.

Then w is written as

w = a0 + . . . + akDk + Qk+1Dk+1

108 A. Ueda et al.

for some Qk+1. Now define ak+1 as

ak+1 = Qk+1 mod dk+2.

Such ak+1 is unique and 0 ≤ ak+1 < dk+2. Then Qk+1 is written as

Qk+1 = ak+1 + cdk+2

for some c. Therefore it holds that

w = a0 + . . . + akDk + (ak+1 + cdk+2)Dk+1

= a0 + . . . + akDk + ak+1Dk+1 mod Dk+2

Consequently by induction, the lemma follows. 	

A random element of Z∗

p is a primitive element of GF (p) with probability

φ(p − 1)
p − 1

>
1

6 log log(p − 1)
,

where φ is Euler totient function [2]. Therefore we can easily take a primitive
element of Zp.

Theorem 1. Let p − 1 = d1d2 . . . dt. Suppose that B1, . . . , Bt−1 of Eqs. (4)–
(6) are given as auxiliary inputs in addition to g and y = gx. Then x can be
computed in time O(

√
d1 + . . . +

√
dt) exponentiations.

Proof. Let α be a primitive element of GF (p). Then x is written as

x = αw mod p

for some w ∈ Zp−1. From Lemma 1, w is written like Eq. (8). Our algorithm finds
a0, . . . , at−1 of Eq. (8) step by step.

(Step 0). We first compute a0 as follows. From Eq. (8), we have w = a0 + d1s
for some s. Therefore

x(p−1)/d1 = αw(p−1)/d1

= α(a0+d1s)(p−1)/d1

= αa0(p−1)/d1

= βa0
1

where β1 = α(p−1)/d1 . Then it holds that

B1 = gx(p−1)/d1 = gβ
a0
1 .

Hence by applying an algorithm for the DLP over the exponent to the above
equation, we can find a0 in time O(

√
d1) exponentiations because the order

of β1 = α(p−1)/d1 is d1.

(Short Paper) How to Solve DLOG Problem with Auxiliary Input 109

(Step k). For k = 1, . . . , t − 2, do the following. Suppose that we have found
a0, . . . , ak−1. Then from Lemma 1, w is written as

w = A + ak(d1 . . . dk) + s(d1 . . . dk+1)

for some unknown s, where A = a0 + a1d1 + . . . + ak−1(d1 . . . dk−1). Hence it
holds that

x = αw = αA+ak(d1...dk)+s(d1...dk+1).

Therefore

x(p−1)/(d1...dk+1) = α{A+ak(d1...dk)+s(d1...dk+1)}×(p−1)/(d1...dk+1)

= γ · αak(p−1)/dk+1

= γ · (βk+1)ak

where γ = αA(p−1)/(d1...dk+1) and βk+1 = α(p−1)/dk+1 . Then it holds that

(Bk+1)1/γ = (gx(p−1)/(d1...dk+1)
)1/γ = g(βk+1)

ak
.

Hence by applying an algorithm for the DLP over the exponent to the above
equation, we can find ak in time O(

√
dk+1) exponentiations because the order

of βk+1 = α(p−1)/dk+1 is dk+1.
(Step t − 1). Suppose that we have found a0, . . . , at−2. Then we compute at−1

as follows. From Eq. (8), we have

w = A + at−1(d1 . . . dt−1)

for some known A. Hence it holds that

x = gw = αA+at−1(d1...dt−1).

and

xα−A = αat−1(d1...dt−1)

= αat−1(p−1)/dt

= β
at−1
t

where βt = α(p−1)/dt . Therefore we have

yα−A

= gxα−A

= gβ
at−1
t

Finally by applying an algorithm for the DLP over the exponent to the above
equation, we can find at−1 in time O(

√
dt) exponentiations because the order

of βt = α(p−1)/dt is dt.

Finally we compute w from a0, . . . , at−1, and then x = αw mod p. Conse-
quently we can compute x in time O(

√
d1 + . . . +

√
dt) exponentiations. 	

110 A. Ueda et al.

4 Generalization of Cheon’s Second Algorithm

Let G be a group of prime order p with a generator g. Consider p such that

p − 1 = de1
1 . . . det

t ,

where d1, . . . , dt are relatively prime. Suppose that for i = 1, . . . , t,

Bi,1 = gx(p−1)/di (9)
...

Bi,ei
= gx(p−1)/d

ei
i (10)

are given as auxiliary inputs in addition to g. In this section, we show that x
can be computed in time O(e1

√
d1 + . . . + et

√
dt) exponentiations. If

|d1| ≈ . . . ≈ |dt| and |e1| = . . . = |et| = e,

then we can compute x in time O(et · p1/2et) exponentiations. Cheon’s second
algorithm is obtained as a special case for e1 = . . . et = 1.

In what follows, let α be a primitive element of GF (p). Define [x] as [x] = gx.

Lemma 2. Consider p such that p − 1 = de × f . Suppose that g, α and

B1 = [(αw)(p−1)/d], . . . , Be = [(αw)(p−1)/de

] (11)

are given. Then we can compute u = w mod de in time O(e
√

d) exponentiations.

Proof. Since u = w mod de, we can write w as

w = u + sde (12)

for some s. Therefore for i = 1, . . . , e, it holds that

Bi = [(αw)(p−1)/di

]

= [(αu+sde

)(p−1)/di

]

= [(αu)(p−1)/di

]

Also u is written as

u = a0 + a1d + . . . ae−1(de−1) (13)

from Lemma 1, where 0 ≤ ai < d for i = 0, . . . , e − 1. We will find these
a0, . . . , ae−1 step by step as in the proof of Theorem1.

For k = 0, . . . , e − 1, do the following. Suppose that we have found
a0, . . . , ak−1. Then from Eq. (12), w is written as

w = u + sde = A + ak(dk) + s′(dk+1)

(Short Paper) How to Solve DLOG Problem with Auxiliary Input 111

for some unknown s′, where A = a0 + a1d + . . . + ak−1d
k−1. Hence, we have

x = αw = αA+ak(d
k)+s′(dk+1).

Therefore

Bk+1 = [x(p−1)/dk+1
]

= [α{A+ak(d
k)+s′(dk+1)}×(p−1)/dk+1

]
= [γ · αak(p−1)/d]
= [γ · βak]

where γ = αA(p−1)/dk+1
and β = α(p−1)/d. Then it holds that

(Bk+1)1/γ = [βak].

Hence, by applying an algorithm for the DLP over the exponent to the above
equation, we can find ak in time O(

√
d) exponentiations because the order of

β = α(p−1)/d is d.
Therefore we can find u of Eq. (13) in time O(e

√
d) exponentiations. 	

Theorem 2. Let
p − 1 = de1

1 . . . det
t

where d1, . . . , dt are relatively prime. Suppose that Bi,1, . . . , Bi,ei
of Eqs. (9)–

(10) are given for i = 1, . . . , t as auxiliary inputs in addition to g. Then x can
be computed in time O(e1

√
d1 + . . . + et

√
dt) exponentiation.

Proof. Let α be a primitive element of GF (p). Then x is written as

x = αw mod p

for some w ∈ Zp−1. For i = 1, . . . , t, let

wi = w mod dei
i .

Then we can compute wi in time O(ei

√
di) exponentiations from Lemma2.

Further we can compute w from w1, . . . , wt by using Chinese remainder theo-
rem. Therefore we can compute w in time O(e1

√
d1+. . .+et

√
dt) exponentiations.

Hence we can find x in time O(e1
√

d1 + . . . + et

√
dt) exponentiations. 	

5 Example

Let p − 1 = 5 · 7 · 8 and p = 281. Suppose that

B1 = gx(p−1)/5

B2 = gx(p−1)/5·7

112 A. Ueda et al.

are given as auxiliary inputs in addition to g and y = gx. Let α be a primitive
element of GF (281). Then x is written as

x = αw mod 281

for some w ∈ Z280. From Lemma 1, w is written as

w = a0 + a1 · 5 + a2 · 5 · 7,

where

0 ≤ a0 < 5,

0 ≤ a1 < 7,

0 ≤ a2 < 8.

1. We first compute a0 as follows. w is written as

w = a0 + 5 · s

for some s. Therefore

x(p−1)/5 = αw(p−1)/5

= α(a0+5s)(p−1)/5

= αa0(p−1)/5

= βa0
1

where β1 = α(p−1)/5. Then it holds that

B1 = gx(p−1)/5
= gβ

a0
1 .

Hence by applying an algorithm for the DLP over the exponent to the above
equation, we can find a0 in time O(

√
5) exponentiations because the order of

β1 = α(p−1)/5 is 5.
2. We compute a1 as follows. w is written as

w = a0 + a1 · 5 + 5 · 7 · s

for some s. Therefore

x(p−1)/5·7 = αw(p−1)/5·7

= α(a0+a1·5+5·7·s)(p−1)/5·7

= γ · αa1(p−1)/7

= γ · (β2)a1

where γ = αa0(p−1)/(5·7) and β2 = α(p−1)/7. Then it holds that

B
1/γ
2 = (gx(p−1)/(5·7)

)1/γ = g(β2)
a1

.

Hence by applying an algorithm for the DLP over the exponent to the above
equation, we can find a1 in time O(

√
7) exponentiations because the order of

β2 = α(p−1)/7 is 7.

(Short Paper) How to Solve DLOG Problem with Auxiliary Input 113

3. We compute a2 as follows. We have w = a0 + a1 · 5 + a2 · 5 · 7. Hence it holds
that

x = gw = αa0+a1·5+a2·5·7.

and

xα−(a0+a1·5) = αa25·7

= αa2(p−1)/8

= βa2
3

where β3 = α(p−1)/8. Therefore we have

yα−(a0+a1·5)
= gxα−(a0+a1·5)

= gβ
a2
3

Finally by applying an algorithm for the DLP over the exponent to the above
equation, we can find a2 in time O(

√
8) exponentiations because the order of

βt = α(p−1)/8 is 8.

Therefore we can compute w in time O(
√

5 +
√

7 +
√

8) exponentiations.
Then x is obtained from x = αw mod p. Consequently we can compute x in time
O(

√
5 +

√
7 +

√
8) exponentiations.

References

1. den Boer, B.: Diffie-Hellman is as strong as discrete log for certain primes. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 530–539. Springer, New
York (1990). https://doi.org/10.1007/0-387-34799-2 38

2. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3),
457–476 (2010)

3. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

4. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Comput.
32(143), 918–924 (1978)

5. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 85(2), 481–484 (2002)

6. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

7. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without
random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 14

8. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

https://doi.org/10.1007/0-387-34799-2_38
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16

(Short Paper) Parameter Trade-Offs
for NFS and ECM

Kazumaro Aoki(B)

NTT Secure Platform Laboratories, Nippon Telegraph and Telephone Corporation,
3-9-11 Midoricho, Musashino-shi, Tokyo 180-8585, Japan

aoki.kazumaro@lab.ntt.co.jp

Abstract. This paper analyzes two factoring algorithms, NFS (Number
Field Sieve) and ECM (Elliptic Curve Method). The previous results only
minimize their running times, however, we may need to minimize the
storage size or running time with smaller success probability. We provide
these trade-offs, L[s] (s ≤ 1/3) memory requires L[1 − 2s] running time
for NFS, for example. This can be interpreted that NFS requires much
more running time when reducing memory complexity.

Keywords: Number Field Sieve · NFS · Elliptic Curve Method
ECM · Time complexity · Memory complexity · Success probability

1 Introduction

The security of RSA, which is one of the most famous digital signature algorithm,
depends on the difficulty of the integer factoring problem. After the publication
of RSA signature, efforts to solve the integer factoring problem are increased.
In the future, a quantum computer could be realized, and the integer factoring
problem might be solved in a polynomial time by Shor’s algorithm [1]. However,
under the current technologies, the number field sieve (NFS) [2, pp. 11–42] is
the fastest algorithm to factor a composite whose digit is greater than around
100 digits, which is about 350 bits. Since the current practical implementation
of RSA adopts a modulus as 2048 bits or higher, it is important problem to
estimate the behaviors of the number field sieve as much as precise.

The running time of the number field sieve is estimated as LN [1/3, (64/9)1/3]
using so-called L subexponential notation defined in Sect. 2.1. After the develop-
ment of NFS, many improvements are shown. Coppersmith shows asymptotically
faster modification [3], but the folklore says that it will be faster the standard NFS
when the size of factoring target is larger than 2048 bits. For substeps of NFS, non-
monic rational side polynomial selection [4], bucket sieving [5], self-tuning filtering
to construct a matrix [6], and the partially parallel use of block Wiedemann [7] are
developed, but none of them does not show the subexponential improvement of
the time and memory complexity. To realize the running time for standard NFS,
NFS requires the memory complexity of LN [1/3, (8/9)1/3]. The running time can
be reduced by parallel computation, while a step in the number field sieve requires
c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 114–123, 2018.
https://doi.org/10.1007/978-3-319-97916-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_8&domain=pdf

(Short Paper) Parameter Trade-Offs for NFS and ECM 115

that a storage should be prepared in a small area and this storage cannot be dis-
tributed to the world. Of course, there might be a study that can distribute the
storage, but these kinds of studies do not seem to succeed. Therefore, though the
computational resources are increasing, we can assume that we cannot use the
number field sieve to factor a large composite due to the limit of available memory.
Fortunately, there exists a trade-off that the number field sieve can require smaller
memory by increasing running time. This paper evaluate the trade-off between
required memory and running time.

2 Preliminaries

2.1 Notation

Let N be a composite to be factored, and L be a subexponential representation
function as

LN [s, c] = exp((c + o(1))(log N)s(log log N)1−s).
Note that 0 ≤ s ≤ 1 and o(1) converges to 0 when N → ∞. Moreover, LN [s, c]
may be abbreviated as LN [s]. Let π(x) be the number of primes less than or
equal to x, and Ψ(x, y) be the number of y-smooth positive integers less than or
equal to x, where we call x as y-smooth when all prime factors of x are less than
or equal to y.

Let the error function and the complementary error function [8, Eqs. 7.1.1
and 7.1.2] are shown as follows.

erf(x) =
2√
π

∫ x

0

exp(−t2)dt erfc(x) = 1 − erf(x)

2.2 Formulas

This paper uses Canfield-Erdös-Pomerance and Prime theorems [9, Sects. 1.4.5,
1.1.5, and 1.4.1].

Ψ(x, x1/u) = xu−u(1+o(1)) π(x) =
x

log x
(1 + o(1))

∑
p: prime

p ≤ x

1
x

≈ log log x

LN [s, c] satisfies following equations.

N = LN [1, 1]
LN [s, c1] + LN [s, c2] = LN [s,max{c1, c2}]
LN [s, c](log N)O(1) = LN [s, c]

LN [s1, c1]LN [s2, c2] = LN [max{s1, s2}, c] where c =

⎧⎨
⎩

c1 s1 > s2
c2 s1 < s2
c1 + c2 s1 = s2

LLN [s1,c1][s2, c2] = LN [s1s2, cs2
1 c2] (0 < s2 ≤ 1, 0 ≤ c1)

π(LN [s, c]) = LN [s, c]
Ψ(x1, x2)

x1
= LN [s1 − s2,−c1

c2
(s1 − s2)] (xi = LN [si, ci] for i = 1, 2)

116 K. Aoki

The complementary error function can be written as

erfc(x) =
exp(−x2)

x
√

π

U−1∑
n=0

(−1)n (2n − 1)!!
2n

x−2n + EU (x),

and the absolute value of its error term is evaluated as

|EU (x)| ≤ exp(−x2)
x
√

π

(2U − 1)!!
2U

x−2U

[8, Eqs. 7.1.23 and 7.1.24]. When U = 1, we have

erfc(x) =
exp(−x2)

x
√

π
+ E1(x) and |E1(x)| ≤ exp(−x2)

2x
√

π
x−2.

2.3 NFS Algorithm

This section introduces the notations used in this paper. Refer [2, pp. 11–42].

Polynomial Selection. Let the polynomials for the algebraic side and the
rational side as f(x) =

∑d
i=0 cix

i ∈ Z[x] and x − M . Using the shared solution
M , the polynomial for the algebraic side is generated by M -adic expansion for
N to compute the coefficients ci (i = 0, 1, . . . , d) such that f(M) ≡ 0 (mod N).

Sieve. We use näıve line sieve. Let the limit be H and we use the following
sieving region.

− H ≤ a < H 0 ≤ b < H (1)

Let the norms for rational and algebraic sides as the left side of the following
equations: |a + bM | =

∏
p: prime
p ≤ BR

pep and |bdf(−a/b)| =
∏

p: prime
p ≤ BA

pfp . We call the

pair (a, b) relation that satisfies the above equations. We are required to find the
relations more than π(BR) + π(BA).

The sieve itself runs for each b, (1) compute the first sieving address a, and
(2) add log p for each prime p to memory of the corresponding address. We
assume other parts than the one described above as negligible complexity.

Linear Algebra. This step computes non-trivial solution of the linear system
that is generated from the sieve, and its system is defined by the matrix whose
size is roughly (π(BR)+π(BA))× (π(BR)+π(BA)), and its elements is in {0, 1}.

Square Root. The method [2, pp. 95–102] is an example of this step.

(Short Paper) Parameter Trade-Offs for NFS and ECM 117

2.4 Running Time Evaluation of NFS

Let the following parameters whose notation is shown in the previous section
and use L as follows.

M = LN [sM , cM] H = LN [sH , cH] BR = LN [sBR , cBR] BA = LN [sBA , cBA]

Note that we assume 0 < sM , sH , sBR , sBA < 1.

Polynomial Selection. We can choose M ≈ N1/d, and we only computes M -
adic expansion. Therefore, the running time is (log N)O(1). The same amount
can be derived for the required memory. Because this complexity is always lower
than the required complexity for the following steps including sieve and linear
algebra, we ignore the complexity for polynomial selection.

Note that the degree of the polynomial is d = log LN [1 − sM , 1
cM

].

Sieve. The time complexity for the computation of the first sieve step is

H(π(BR) + π(BA)) × (log N)O(1),

since we use modp arithmetic for each b (0 ≤ b < H) to compute the first
address for all elements in factor bases. The log p addition can be done in time

H(log log BR + log log BA)(log N)O(1),

since the number of additions is log log BR + log log BA on average for each a in
−H ≤ a < H. In total,

H(π(BR) + π(BA) + H(log log BR + log log BA)) × (log N)O(1).

Therefore, the time complexity is

LN [sH , cH](LN [sBR , cBR] + LN [sBA , cBA] + LN [sH , cH]),

and the memory complexity is

LN [sBR , cBR] + LN [sBR , cBR] + LN [sH , cH]

since we can reuse the memory for each factor base and b.

Linear Algebra. We can use an algorithm for sparse matrix, block Wiedemann
algorithm [10] for example, and the time complexity is O((π(BR) + π(BA))2),
and the memory complexity is O(π(BR) + π(BA)). Therefore, the total time
complexity is

LN [sBR , 2cBR] + LN [sBA , 2cBA],

and the total memory complexity is

LN [sBR , cBR] + LN [sBA , cBA].

118 K. Aoki

Square Root. Since we use only O(d2) arithmetic operations at most for each
prime that is in the factor bases, the time and memory complexity is

LN [sBR , cBR] + LN [sBA , cBA].

Since this amount is always less than the complexity for linear algebra, we ignore
the complexity for computing square roots.

Summary. To summarize all time complexity, we have

LN [sH , cH](LN [sBR , cBR] + LN [sBA , cBA] + LN [sH , cH])
+LN [sBR , 2cBR] + LN [sBA , 2cBA],

and memory complexity is

LN [sH , cH] + LN [sBR , cBR] + LN [sBA , cBA].

Constraint. In the linear algebra step, we need to find non-trivial solutions. We
expect (a, b) in the sieving region that |a+bM | is BR-smooth and |bdf(−a/b)| is
BA-smooth as described in Sect. 2.4. The probability that a pair (a, b) is smooth
is

Ψ(HM,BR)
HM

Ψ(MHd, BA)
MHd

,

since the sizes of norms satisfy

|a + bM | ≤ (H + 1)M ≈ HM

|bdf(−a/b)| = |
d∑

i=0

cia
dbd−i| ≤ (d + 1)MHd ≈ MHd,

and the number of elements in the sieving region (1) is 2H2 ≈ H2. Thus,

H2Ψ(HM,BR)
HM

Ψ(MHd, BA)
MHd

> π(BR) + π(BA)

should be satisfied since the number of relations (a, b) is roughly

H2 Ψ(HM,BR)
HM

Ψ(MHd, BA)
MHd

.

Let

HM = LN [sH , cH]LN [sM , cM] = LN [sNR , cNR]
MHd = LN [sM , cM]LN [1 − sM + sH , cH/cM] = LN [sNA , cNA]

and we have

LN [sH , 2cH]LN [sNR − sBR ,−cNR

cBR

(sNR − sBR)]

× LN [sNA − sBA ,−cNA

cBA

(sNA − sBR)]

≥ LN [sBR , cBR] + LN [sBA , cBA].

(Short Paper) Parameter Trade-Offs for NFS and ECM 119

Therefore, the following inequality is the constraint to success NFS.

LN [sH , 2cH]

≥ LN [sNR − sBR ,
cNR

cBR

(sNR − sBR)]

× LN [sNA − sBA ,
cNA

cBA

(sNA − sBR)] × (LN [sBR , cBR] + LN [sBA , cBA])

Standard Evaluation. Let the success probability is almost 1 (or a constant
that does not depend on N), and we minimize the running time. Then, we need
to specify the parameters as

sM = 2/3, sH = sBR = sBA = 1/3,
cM = (1/3)1/3, cH = cBR = cBA = (8/9)1/3,

and we have

Time: LN [1/3, (64/9)1/3]
Memory: LN [1/3, (8/9)1/3].

2.5 ECM Algorithm

Refer to the original paper [11] for details.

3 Evaluation of the Trade-Offs for NFS

3.1 Running Time and Success Probability

This section studies the success probability which is based on the evaluation
in Sect. 2.4 with smaller time complexity. The time complexity depends on the
sieve and linear algebra, and reaches the smallest when these complexities are
the same. The time of sieve depends on the size of sieving region and the number
of elements in the factor bases. Therefore, to reduce the time complexity requires
to reduce the size of factor bases, and also requires to reduce the sieving region
with the same order of the reduction of factor bases. The success probability can
be derived using the constraints in Sect. 2.4.

Let the probability that both rational and algebraic norms will be smooth
for a point (a, b) in the sieving region be as follows.

pBR =
Ψ(HM,BR)

HM
pBA =

Ψ(MHd, BA)
MHd

Using the size of sieving region 2H2, we expect to get 2H2pBRpBA relations on
average. We assume that the number of relations follows the binomial distri-
bution B(2H2, pBRpBA). When 2H2 is large enough, we can approximate the
distribution as the normal distribution N(μ, σ2) with the following average and
variance.

120 K. Aoki

μ = 2H2pBRpBA σ2 = 2H2pBRpBA(1 − pBRpBA)

Since the constraint requires that the number of relations should be larger than
the size of factor bases, the success probability is 1

2 erfc(x) = exp(−x2)
x
√

π
+ E1(x),

where x = π(BR)+π(BA)−μ
σ . Consider the case that x = LN [sx, cx] is subexpo-

nential (sx > 0). The success probability LN [ss, cs] cannot be written in subex-
ponential size (0 ≤ ss < 1, cs ≤ 0). That is, the success probability will be
worse than subexponential size. To keep the success probability subexponentially
small, the numerator of x holds as π(BR) + π(BA) ≈ μ. This means

LN [sBR , cBR] + LN [sBA , cBA]

= LN [sH , 2cH]LN [sNR − sBR ,−cNR

cBR

(sNR − sBR)]

× LN [sNA − sBA ,−cNA

cBA

(sNA − sBR)].

This equals to the constraint in Sect. 2.4. In summary, the success probability
will be worse than subexponential order when the time complexity is subexpo-
nentially reduced.

3.2 Time Complexity and Memory Complexity

This section estimates the increase of the time complexity with success proba-
bility of almost 1 when the memory complexity is reduced.

We first study that the dominant term of the memory complexity. For the
sieve step, we consider that we do not prepare sieving memory and factor the
norms by ECM for each (a, b). The asymptotic time complexity is not change
for this case. ECM can derive factor p with the time complexity of Lp[1/2,

√
2].

The sieve step only requires to find factors of rational and algebraic norms up to
BR and BA. The relation can be verified in

LN [
sBR

2
,
√

2cBR] + LN [
sBA

2
,
√

2cBA]

for each (a, b). Therefore, the time complexity of the sieve step is

2H2(LN [
sBR

2
,
√

2cBR] + LN [
sBA

2
,
√

2cBA])

= LN [sH , 2cH](LN [
sBR

2
,
√

2cBR] + LN [
sBA

2
,
√

2cBA]).

Because the matrix used in linear algebra is generated during the NFS algo-
rithm and it depends on N , a big increase of the time complexity is required
whenever redoing the sieve step whenever we need the matrix. That is, the matrix
should be stored in memory, and its size is O(π(BR) + π(BA)). When this size
of memory is prepared, the factor bases can be stored in the same area, and the
memory for sieve step is automatically prepared.

(Short Paper) Parameter Trade-Offs for NFS and ECM 121

We estimate s-part in the memory complexity LN [s, c]. Following Sect. 2.4,
the memory complexity is LN [max{sBR , sBA}] and the time complexity is
LN [max{sH , sBR , sBA}]. The constraint in Sect. 2.4, requires as follows.

LN [sH] ≥ LN [max{sNR − sBR , sNA − sBA , sBR , sBA}]

Since
sNR = max{sH , sM} sNA = max{sM , 1 − sM + sH},

we have

sH ≥ max{sH − sBR , sM − sBR , sM − sBA ,

1 − sM + sH − sBA , sBR , sBA}.

That is, sH should be larger or equal to all elements in the set for the right hand
side “max.” To simplify these inequalities and to minimize the running time, we
have

sBR = sBA = s, sH = 1 − 2s, and sM = 1 − s

for the memory complexity LN [s] (0 ≤ s ≤ 1/3), and its corresponding time
complexity is LN [1 − 2s]. This trade-off is worth for 1/4 < s ≤ 1/3 since ECM
only requires the memory complexity of polynomial size.

Secondly, we evaluate the trade-off when the memory complexity is LN [1/3, c]
(0 < c ≤ (8/9)1/3). The time complexity is

LN [1/3,max{2cH , 2cBR , 2cBA}]

using Sect. 2.4 and the first half of this section, and the memory complexity is

LN [1/3,max{cBR , cBA}] = LN [1/3, c].

Using the constraint in Sect. 2.4, we have

LN [1/3, 2cH]

≥ LN [1/3,
cM

3cBR

]LN [1/3,
cM + cH

cM

3cBA

] × (LN [1/3, cBR] + LN [1/3, cBA])

= LN [1/3,
cM

3cBR

+
cM + cH

cM

3cBA

+ max{cBR , cBA}].

Therefore, we need to satisfy the following.

2cH ≥ cM

3cBR

+
cM + cH

cM

3cBA

+ max{cBR , cBA}

If we set c = cBR ≥ cBA , cBA in the right hand side only appears in the denomina-
tor, and it is natural to set c = cBA since we want to set small cH for minimizing
the time complexity. On the other hand, if we set c = cBA ≥ cBR , cBR in the
right hand side only appears in the denominator, we can choose c = cBR . For

122 K. Aoki

both cases, the time complexity is minimized when we choose c = cBR = cBA .
Thus,

2cH ≥ cM

3c
+

cM + cH
cM

3c
+ c =

2cM + cH
cM

3c
+ c ≥ 2

√
2cH

3c
+ c.

To simplify this inequality, we have 4c2H − (4c + 8
9c2)cH + c2 ≥ 0. That is,

cH ≥ c
2 + 1

9c2 + 1
3

√
1
c + 1

9c4 . In conclusion, the time complexity is

LN [1/3, c +
2

9c2
+

2
3

√
1
c

+
1

9c4
]

for the memory complexity of LN [1/3, c] (0 < c ≤ (8/9)1/3).

4 Evaluation of the Trade-Offs for ECM

The full paper shows the details and the results are shown in Sect. 5.2.

5 Summary of the Results

5.1 NFS

– The success probability will be exponentially lower when the time complexity
reduces as subexponential.

– When the memory complexity is LN [s] (0 ≤ s ≤ 1/3), the time complexity
is LN [1 − 2s]. Note that this result is worth for 1/4 < s ≤ 1/3, due to the
existence of ECM.

– When the memory complexity is LN [1/3, c] (0 < c ≤ (8/9)1/3), the time

complexity is LN [1/3, c +
2

9c2
+

2
3

√
1
c

+
1

9c4
].

5.2 ECM

– When the time complexity is Lp[s, c] (s < 1/2), the success probability is
Lp[1 − s,− 1−s

c].
– When the time complexity is Lp[1/2, c] (1/

√
2 ≤ c ≤ √

2), the success proba-
bility is Lp[1/2,−(

√
2 − c)].

– When the time complexity is Lp[1/2, c] (0 < c ≤ 1/
√

2), the success proba-
bility is Lp[1/2,− 1

2c].

(Short Paper) Parameter Trade-Offs for NFS and ECM 123

6 Conclusion

The integer factoring problem relates to the security of cryptography such as
RSA. We studied NFS which is the fastest algorithm and ECM which is fast
algorithm that does not require large amount of memory. The time complexi-
ties of these algorithms were evaluated and minimized the running time as the
following condition.

– No limitation of memory usage
– No consideration for parallel computation
– Success probability is almost 1.

Therefore, for the real world, we cannot use the large amount of memory, and
we need to know the success probability with smaller time complexity. This
paper evaluates the success probability or time complexity with these condi-
tions. The results show that we need much more time complexity when reducing
the required memory for NFS. However, our results only show that the upper
bound of the average complexity, and actual behavior of the complexity may be
different, and experimental verification is expected. We wish that our results are
useful when we choose a good parameter set for integer factoring experiments
and security evaluation for cryptography with success probability.

References

1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science (FOCS
1994), pp. 124–134. IEEE Computer Society (1994)

2. Lenstra, A.K., Lenstra Jr., H.W. (eds.): The Development of the Number Field
Sieve. LNM, vol. 1554. Springer, Heidelberg (1993). https://doi.org/10.1007/
BFb0091534

3. Coppersmith, D.: Modifications to the number field sieve. J. Cryptology 6(3), 169–
180 (1993)

4. Kleinjung, T.: On polynomial selection for the general number field sieve. Math.
Comput. 75(256), 2037–2047 (2006)

5. Aoki, K., Ueda, H.: Sieving using bucket sort. In: Lee, P.J. (ed.) ASIACRYPT
2004. LNCS, vol. 3329, pp. 92–102. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30539-2 8

6. Papadopoulos, J.: A self-tuning filtering implementation for the number field sieve,
CADO workshop on integer factorization. http://cado.gforge.inria.fr/workshop/

7. Aoki, K., Franke, J., Kleinjung, T., Lenstra, A.K., Osvik, D.A.: A kilobit special
number field sieve factorization. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 1–12. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-76900-2 1

8. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions With Formu-
las, Graphs, and Mathematical Tables. Applied Mathematics Ser. vol. 55. National
Bureau of Standards (1964). Tenth Printing, December 1972, with corrections

9. Crandall, R., Pomerance, C.: Prime Numbers. A Computational Perspective.
Springer, New York (2001). https://doi.org/10.1007/0-387-28979-8

10. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Math. Comput. 62(205), 333–350 (1994)

11. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. 126(3),
649–673 (1987)

https://doi.org/10.1007/BFb0091534
https://doi.org/10.1007/BFb0091534
https://doi.org/10.1007/978-3-540-30539-2_8
https://doi.org/10.1007/978-3-540-30539-2_8
http://cado.gforge.inria.fr/workshop/
https://doi.org/10.1007/978-3-540-76900-2_1
https://doi.org/10.1007/978-3-540-76900-2_1
https://doi.org/10.1007/0-387-28979-8

Security in Practice

Is Java Card Ready for Hash-Based
Signatures?

Ebo van der Laan1, Erik Poll2, Joost Rijneveld2(B), Joeri de Ruiter2,
Peter Schwabe2, and Jan Verschuren1

1 Netherlands National Communication Security Agency (NLNCSA),
The Hague, The Netherlands

{ebo.laan,jan.verschuren}@nlncsa.nl
2 Digital Security Group, Radboud University, Nijmegen, The Netherlands

{erikpoll,joeri}@cs.ru.nl, joost@joostrijneveld.nl, peter@cryptojedi.org

Abstract. The current Java Card platform does not seem to allow for
fast implementations of hash-based signature schemes. While the under-
lying implementation of the cryptographic primitives provided by the
API can be fast, thanks to implementations in native code or in hard-
ware, the cumulative overhead of the many separate API calls results
in prohibitive performance for many common applications. In this work,
we present an implementation of XMSSMT on the current Java Card
platform, and make suggestions how to improve this platform in future
versions.

Keywords: Post-quantum cryptography · Hash-based signatures
Java Card · XMSSMT

1 Introduction

Over the past years, cryptographic schemes that promise resilience against quan-
tum cryptanalysis have been getting more and more attention. With the start of
NIST’s Post-Quantum Standardization project [17] in 2017, the focus is starting
to shift from an academic niche towards real-world use.

The most immediate concern with respect to quantum attacks is long-term
confidentiality of data: an adversary that records ciphertext today may come
back to decrypt it later, when sufficiently large quantum computers are available.
Attacks against authentication, on the other hand, would require access to a
quantum computer today. Nevertheless, one should be careful not to dismiss work
towards practical applications of post-quantum authentication as premature. In
this work, we show that even though standardization of post-quantum signature
schemes is underway, widespread application still requires bridging serious gaps.

This work has been supported by the European Commission through the ICT pro-
gram under contract ICT-645622 (PQCRYPTO), and by the Netherlands Organi-
sation for Scientific Research (NWO) through Veni 2013 project 13114. Date: June
14, 2018.

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 127–142, 2018.
https://doi.org/10.1007/978-3-319-97916-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_9&domain=pdf

128 E. van der Laan et al.

Perhaps the first images that come to mind when considering cryptographic
software in the real world are large data centers full of servers that terminate
TLS, full disk encryption on laptops, or intricate PKI systems. It is easy to
forget that most people carry several cryptographic devices in their pockets:
smart cards. With estimates of over 10 billion1 “secure elements” sold globally
in 2018 [7], this is undeniably an important market.

Smart cards are often used as authentication token – in an asymmetric-
key setting, the card then stores the private key and uses it to generate sig-
natures. We examine a practical use case: setting up VPN connections using
the popular OpenVPN application, for which we implemented a state-of-the-
art post-quantum signature scheme. Specifically, we implement the hash-based
signature scheme XMSSMT [10,11] (described in Sect. 2) on the Java Card plat-
form. XMSSMT is a stateful signature scheme; a smart card implementation can
conveniently record this state alongside the key material, hiding the complexity
of the statefulness from the applications that use the functionality offered by
the card. Section 3 describes the Java Card platform and OpenVPN use case in
more detail.

We are not the first to implement hash-based signatures on a smart card.
In 2013, Hülsing, Busold and Buchmann implemented a variant of XMSS on an
Infineon-produced smart card [6]; their work makes even on-card key generation
practical – something that cannot possibly be said of our implementation. This
is done by building upon earlier work [18] where so-called ‘BDS traversal’ [5]
was used on an 8-bit AVR, and expanding it to the multi-tree scheme that
would later evolve into XMSSMT . Crucially, their work uses low-level access
to the underlying hardware, which is not publicly available or portable across
manufacturers.

As alluded to earlier, and as is reflected by the question in the title of this
paper, the results of this work are somewhat demoralizing. With signatures tak-
ing just shy of a minute (and a subsequent preparation step well over a minute
and a half), for many use cases this is impractical; see Sect. 4.2 for a more
detailed analysis. The main contribution of this work is clearly not to present
speed records, but instead to provide a proof-of-concept and directions on how
to improve the situation. Section 4 discusses our implementation of XMSSMT ;
the issues we identify carry over into Sect. 5, where we provide suggestions for
future improvements that could help make hash-based signature schemes more
practical on the Java Card platform. The Java Card API has been extended
in the past to support new protocols (notably the SAC/PACE protocol used in
passports [3,14]), so we can expect future extensions when applications begin to
require support for post-quantum cryptography.

Availability of Software. We place all software presented in this paper into the
public domain to maximize reusability of our results. It is available for download
at https://joostrijneveld.nl/papers/javacard-xmss.

1 Half of these are SIM cards; financial and governmental applications make up most
of the remainder.

https://joostrijneveld.nl/papers/javacard-xmss

Is Java Card Ready for Hash-Based Signatures? 129

2 XMSSMT

In [11], Hülsing, Rausch and Buchmann propose XMSSMT , the current state of
the art in (stateful) hash-based signatures. This scheme does not stand on its
own, though, as hash-based signatures go back all the way to the 1970 s when
they were first described by Merkle [16]. These schemes are characterized by
their very conservative security assumptions, relying only on the existence of
a secure one-way function; the provably minimal assumption required for any
signature scheme to exist [19].

As research is progressing and the need for post-quantum cryptography is
becoming more urgent, standardization efforts are starting to take shape. This
is not only limited to the aforementioned project by NIST, but also ISO and
the IETF have shown interest. The latter is relevant in particular, since at the
time of writing a ‘Request For Comments’ describing XMSS and XMSSMT [10]
has just been published. Our implementation is compatible with XMSSMT as
specified in RFC 8391, and we refer to this document for a detailed technical
specification. We limit the description in this section to that which is required
as a preliminary for the discussions in the remainder of this paper.

2.1 WOTS+

Before describing XMSSMT , it is useful to separately define WOTS+ [9], a vari-
ant of the Winternitz One-Time Signature (WOTS) scheme.

Parameters. WOTS+ is a one-time signature scheme: a private key must not
be used to sign more than one n-byte message, where n is a parameter defined
at the time of key generation. Additionally, a parameter w signifies a trade-off
between signature size and computation time.

To describe the resulting scheme, we use derived values �1, �2 and �, defined
as �1 := � 8n

log2(w)�, �2 := � log2(�1·(w−1))
log2(w) � + 1, and � := �1 + �2. For the remainder

of this paper, we fix the parameters2 n = 32 and w = 16. This leads to �1 = 64
and �2 = 3, and thus � = 67.

Keys. A WOTS+ private key consists of � random values of n bytes. In practice,
these are derived from an n-byte seed using a pseudo-random generator. The
corresponding public key is derived by applying a so-called chaining function F
to the values in private key w − 1 times. The result consists of the � chain heads
(i.e. the last computed nodes) of n bytes each.

This public key can be compressed to an n-byte value by interpreting the �
heads as leaf nodes of a hash tree. Note that this tree is almost a binary tree; this
so-called �-tree is constructed by hashing two neighboring nodes to construct a
parent node on a higher layer, and simply raising the last node to the next layer

2 One could consider w = 4, to speed up the computation at the cost of additional
signature size. While the RFC [10] does not specify a specific parameter set, it does
explicitly mention w = 4 as an option for this purpose.

130 E. van der Laan et al.

if the number of nodes on that layer is odd. The root of this tree is the de facto
WOTS+ public key, and we will refer to it as such.

Signatures. Assuming an n-byte message m, this is split into �1 chunks of
log2(w) bits, which are interpreted as integers m1 to m�1 . The chaining function
F is then applied mi times to the i-th value of the private key, and the out-
put is included as part of the signature. Given a message m and such outputs,
verification means completing the chains by applying the chaining function an
additional w − 1 − mi times and checking that these values combine to form the
public key.

The careful reader will have noticed two issues: there were � (and not �1) chain
heads that make up the public key, and given a signature on a message m, it is
easy to forge a signature for some messages m′ by simply applying the chaining
function m′

i−mi times3. To remedy this, WOTS+ signatures include a checksum,
computed by signing the base-w representation of C = Σ�1

i=1(w − 1 − mi), i.e.
(C1, . . . , C�2). This prevents forgery, since an increase in any mi results in a
decrease in C and thus at least one Cj .

Functions. In the above description, we have left the chaining function F
unspecified, and have not defined how the hash tree is constructed. These func-
tions are instantiated using a tweaked variant of SHA-256 in the parameter sets
we consider in this work4. To ensure collision resilience and to mitigate multi-
function and multi-target attacks [13], each application of this function not only
hashes the above-described input, but additionally includes a domain separator,
a unique ‘address’ and a key, as well as applying a mask.

For ease of exposition, we omit the specifics of these constructions here, and
only touch upon the relevant aspects in Sect. 5.

2.2 Hash Trees

Having established WOTS+ as a one-time signature scheme, we now expand this
into the many-time signature scheme XMSS [4]. In essence, XMSS consists of
many instances of WOTS+ and a hash tree to authenticate them.

Keys. Consider a binary hash tree of height h, i.e., a tree with 2h leaf nodes.
We associate a WOTS+ key pair with each leaf, allowing for 2h signatures. The
XMSS private key simply provides a seed from which to generate the WOTS+

private keys; the WOTS+ public keys are then derived by applying the chaining
function, as described above. Then, by computing a binary hash tree on top of
the WOTS+ public keys, one derives the XMSS public key: the root node of the
tree.

Signatures. By the above construction, it is straight-forward to see that an
XMSS signature mostly consists of a WOTS+ signature, complemented by an

3 This requires that m′
i ≥ mi for all i, but this is sufficiently likely even for random m.

4 A common and often more natural instantiation relies on the Keccak-based
SHAKE [2].

Is Java Card Ready for Hash-Based Signatures? 131

index to indicate which WOTS+ private key was used. However, the verifier does
not hold the corresponding WOTS+ public key required to verify the signature.
Instead they compute what the WOTS+ public key should be, based on the
presented signature – note that this process is exactly the same as verifying a
WOTS+ signature, omitting actual comparison to the public key. This effectively
gives the verifier one leaf node in the hash tree. To compare to the root node
(i.e. the XMSS public key), the verifier requires nodes along the path to the root
of the tree. This path is referred to as the ‘authentication path’, and it can be
seen that the signer must include h additional nodes. See Fig. 1.

Fig. 1. The authentication path to authenticate the fifth leaf is shown in grey [12].

The State. When introducing the notion of many WOTS+ key pairs linked to
one XMSS public key, it is crucial to prevent re-using these one-time key pairs.
Conceptually, this is trivially accomplished by iterating through the leaf nodes
sequentially. It is important to remark, however, that this implies maintaining
a persistent and changing state across different signing operations. Depending
on the specific usage scenario, this may or may not be a problem – it adds
complexity in settings where a key is used by multiple processes or needs to
be kept in sync across servers, but is not a concern when a key is embedded
in a single system. The latter scenario describes the use case discussed in this
paper. In [6], the authors demonstrate that there is a strong synergy between this
property and achieving forward security (but this is not part of the ‘standard’
XMSS scheme).

2.3 Chaining Trees

In order to be able to perform many signatures using the same public key, one
could instantiate XMSS with a large tree. This comes at a considerable cost,
as the signer needs to compute all leaf nodes when generating a signature. Spe-
cialized tree traversal algorithms [5] move a large part of this cost to the key
generation, but it remains a limiting factor. This is mitigated in XMSSMT , the
multi-tree variant of XMSS. As the name suggests, this scheme makes use of a
structure of trees.

On the bottom layer, a WOTS+ key pair is used to sign the message. Along
with the WOTS+ signature, the signer supplies an authentication path to the
root of that subtree. Rather than interpreting this root as the public key, it is
signed using a WOTS+ leaf of a new tree, one layer ‘above’ the current layer.
This signature is authenticated by a path leading to the next root node, et cetera.

132 E. van der Laan et al.

Considering d layers of trees of height h/d, this allows for 2h signatures
while only requiring h/d leafs on each layer to be computed to construct the
authentication path (as well as opening up a whole new range of time-memory
trade-offs with tree traversal [5]).

Note that this trade-off leads to increased signature sizes. While an XMSS
signature consists roughly of a WOTS+ signature (i.e. 67·32 bytes) and a number
of intermediate nodes (say, 20 ·32 bytes), an XMSSMT signature consists of mul-
tiple WOTS+ signatures. For the sake of simplicity, we now consider XMSSMT

to be a direct generalization of XMSS, i.e. XMSS is the specific class of instances
where d = 1.

3 Java Card Platform and Limitations

Java Card defines a standardized, vendor-independent programming platform
for multi-application smart cards produced by different manufacturers. While
the specification is controlled by Oracle, many of the large smart-card manufac-
turers5 collaborate in the ‘Java Card Forum’ [8] in defining the platform. The
platform has proven popular, with over 20 billion cards sold at the time of its
twentieth anniversary in 2016 [20]. Java Card is often found in SIM cards and
passports.

As the name suggests, Java Card is based on Java, but with many language
features restricted due to the limited resources. This shows prominently in the
limited availability of types – a Java Card platform is only required to support
8-bit bytes and 16-bit shorts. Similarly, Java Card inherits the class-based
object-oriented style of Java, but using objects is discouraged because of size
constraints; moreover, garbage collection is optional for Java Card.

The APIs for Java and Java Card differ vastly. The Java Card API is
extremely limited, but does provide a range of high-level methods for standard
cryptographic use cases (e.g. signature generation, key storage, block encryp-
tion). This enables developers to quickly construct applets to perform basic cryp-
tographic operations. The implementation of the API is left to the smart-card
manufacturer, allowing implementations in native code or directly in hardware.
This is crucial for performance: the Java Card VM introduces considerable over-
head, so implementing cryptographic primitives in Java Card bytecode would be
unacceptably slow. Still, considerable overhead remains when calling these API
functions, and this turns out to be a recurring theme in the rest of this paper.

An important consideration is the limited amount of memory. Typical Java
Cards have in the order of tens of KiB persistent memory (EEPROM or
Flash), but the transient (RAM) memory is typically only a few KiB, which
is a serious bottleneck. Memory sizes can vary significantly between cards, so
memory requirements should be carefully taken into account when developing
applications.
5 At the time of writing, the Java Card Forum consists of Gemalto, Giesecke & Devri-

ent, IDEMIA, Infineon, jNet ThingX, NXP Semiconductors and STMicroelectron-
ics [8].

Is Java Card Ready for Hash-Based Signatures? 133

Java Card is compatible with the ISO 7816 standard. This means that com-
munication is done using APDUs (Application Protocol Data Units). These tra-
ditionally support a payload of up to 256 bytes, although recent cards support
extended-length APDUs allowing longer payloads.

In this work, we focus on compatibility with Java Card version 2.2.2 to 3.0.4.

3.1 Considerations for the OpenVPN Use Case

This work was done as part of a project involving a Java Card applet to pro-
vide authentication when establishing a VPN connection, tightly integrated into
OpenVPN. The projected benefit of this was twofold: increased security and
increased usability. Smart cards typically provide much more secure storage of
the key material. By selecting the Java Card platform, the cross-platform applet
can be easily combined with existing deployed systems. The tight integration
with OpenVPN aims to improve the user experience: we avoid third-party mid-
dleware (which would be required for the use of more generic solutions, such as
hardware tokens relying on standards like PKCS#11) and store the configuration
files for OpenVPN on the card to simplify the setup process for the user.

This use case implies a set of assumptions and limitations. There is some
margin in terms of signing time, as signing operations are fairly infrequent and
users would expect some latency when establishing a connection. More impor-
tantly, the required throughout is low: after signing once, typical usage scenarios
suggest a period of time during which the card is connected and powered, but
not used to produce a new signature. Furthermore, we note that key generation
can be done during issuance, and even outside of the card (assuming a secure
issuance environment – this is a reasonable assumption given that initialization
also involves, e.g., PIN codes). In principle, there is a nice match between these
properties and the XMSSMT signature scheme. There are many time-memory
trade-offs that can be flexibly tweaked, and there is ample opportunity for pre-
computation either during key generation or idle time. However, it is important
to reiterate that memory (in particular the fast RAM) is a scarce resource on
the card. The next section details these trade-offs.

4 Implementation

When designing a smart card application, it is important to consider natural
‘commands’ that divide up and structure the computation. For a traditional
RSA-2048 or ECC signature, signing a message could be a single command with
a single APDU as response. For XMSSMT , signatures are several kilobytes in size
and must be spread out over multiple 256-byte response APDUs. This behavior
is typical for hash-based signatures on small devices [12]; they are too large to
comfortably fit in RAM but are very sequential in their construction, strongly
suggesting an interface where the signature is streamed out incrementally.

There is much repetition of small subroutines to be found in the scheme.
After initializing the signing routine by computing a message digest, a signature

134 E. van der Laan et al.

consists of a sequence of WOTS+ signatures and authentication paths. Inter-
nally, the WOTS+ signatures can be decomposed further into their separate
chains. The � = 67 chains split naturally into 8 sets of 8 chains for the �1 = 64
message digest chains, and �2 = 3 chains for the checksum. For hashes of 32
bytes and h/d ≤ 8, authentication paths within a subtree fit into one response
APDU, and choosing h/d > 8 is not realistic on this platform because of resource
constraints6. In order to reduce the latency of signature generation, we ensure
that all relevant leaf nodes for the authentication path in each subtree on each
layer are available in memory. We address this later in this section, and for now
only note that maintaining this invariant introduces a preparation step after a
signature is produced (and thus: a leaf node is consumed).

Figure 2 represents these states visually. Note that each state is triggered by
a command APDU, of which only the initial command contains auxiliary data
(i.e. the message). These have been omitted for simplicity.

Fig. 2. State diagram of the signing routine.

Indices. As it is crucial that the smart card cannot be coerced into re-using a
leaf, the first operation should be incrementing the state index. Because Java
Card does not guarantee a native 32-bit integer type, all indices are stored as
tuples of two shorts, interpreted as 15-bit unsigned values (effectively ignoring
the high bit). As a consequence, atomic increments are not possible without use
of expensive transactions, and special care has to be taken in case of overflows –
the conservative approach skips 215 leafs in case of card tear7, rather than rolling
back. Similar considerations apply when deriving indices of ‘next’ and ‘previous’
nodes during state generation. As we have limited h/d previously, internal tree
indices can be represented with a single short.

WOTS+ Leaf Generation. To generate a WOTS+ leaf, an �-tree must be
computed over the heads of all chains. As memory is limited, the natural choice
here is to use the treehash algorithm [16, Sect. 7]. Since � = 67 is not a power of
2, bringing the tree out of balance, there are some special cases to consider. As

6 This would imply either computing or storing hundreds of WOTS+ leaf nodes per
tree layer.

7 The physical attack of interrupting the power supply to the card, e.g., by removing
it from the reader.

Is Java Card Ready for Hash-Based Signatures? 135

the value of � is constant for all parameters we account for, this can be simplified
by manually handling these special cases after performing treehash. Altogether,
this ensures that we require only 416 bytes of RAM for intermediate results when
deriving a WOTS+ public key.

State (Re)generation. At least one WOTS+ computation needs to be per-
formed whenever a message is signed: exactly when signing the message digest.
Without proper state management, however, one would be required to compute
d · 2h/d WOTS+ leafs to derive the authentication paths. Instead, we keep a
persistent array of the leaf nodes of the current tree on each of the d layers.
If the secret key is generated off-card, the leaf nodes of the first trees can be
preloaded; alternatively, they can be computed during issuance. Similarly, the
d − 1 WOTS+ signatures that join the subtrees together can also be precom-
puted and cached. By keeping an additional array of such nodes and signatures
for the ‘next’ tree on every layer8 and computing one new node whenever one is
consumed, it can be easily seen that we are guaranteed to always have all leafs
available before they are consumed. Note that this introduces an imbalance in
signing time cost (as consuming indices that introduce new nodes on multiple
layers adds linear leaf generation cost), but that this computation be performed
after outputting a signature. Careful administration is required to guarantee
that this is not neglected. Intuitively, one might consider decoupling the signing
and preparation step, and allow the signature routine to effectively consume the
nodes up to the point at which they were prepared. While this is certainly pos-
sible, the involved bookkeeping is more complicated than it may seem at first:
memory requirements imply re-using arrays, the leafs currently in use cannot be
overwritten, and the next layer of leafs needs to be completed precisely when
switching to the next subtree. Verifying these conditions combines poorly with
the convoluted arithmetic on tuples of shorts that represent indices.

4.1 Hash Functions

Performance is dominated by the cost of a call to the chaining function in
WOTS+ and the hash function in the binary trees. In essence, these functions
consist of many applications of SHA-256 to small arrays of data (i.e. 32 to 128
bytes) and some xor operations. This is not a particularly common pattern of
operations in traditional cryptography – a signature operation typically requires
just one hash function call to digest the message, often negligible in the overall
performance of the signing operation. Note also that there is significant cost
associated with a single call to a hash function that is constant in the length
of the input, likely representing the overhead of the function call, as shown in
Table 1.

AES-Based Hashing. Instead of using a cryptographic hash function as a
building block for the described functions, a block cipher can be used to con-
struct a similar primitive using common constructions such as Davies-Meyer and
8 This is only required on layers where there is still a ‘next’ tree, which is trivially

false for the top-most tree.

136 E. van der Laan et al.

Table 1. 1000 iterations of SHA-256

Data (bytes) 32 64 128 256

Runtime (seconds) 3.94 5.83 8.02 12.40

Table 2. 1000 iterations of AES-128 in ECB mode

Data (bytes) 16 32 64 128 256 1024

Runtime (seconds) 2.97 3.30 3.96 5.30 7.97 23.87

Matyas-Meyer-Oseas (the latter being used in [6]). Some care would need to be
taken to transform these to a security level equivalent to the second pre-image
resistance derived from SHA-256 in the context of XMSSMT . This would break
compatibility with the RFC [10], but in principle this is not unsurmountable.

Some Java Cards appear to be equipped with an AES implementation in
hardware, speeding up its performance significantly. This is evidenced by an even
larger unbalance between constant and variable costs: encrypting large blocks
of data is only marginally more costly than smaller blocks, as shown in Table 2.
The base cost of a single call to AES is still significant, however, putting the
performance in the same ballpark as SHA-256 on short inputs. Note that these
numbers cannot be directly compared to the cost of SHA-256 as listed in Table 1,
as multiple iterations of AES would be required for one compression block.

There is another avenue to explore when relying on AES as a primitive, as
the Java Card API supports a range of modes of operation for AES. Combining
this with the fact that we process a large amount of data at once suggests
opportunities for parallel data streams; encrypting a large data stream using
AES in ECB mode is functionally equivalent to performing independent AES
encryption in parallel – under the same key. This last restriction is crucial, as
a message-dependent block is used as key, ruling out precisely the constructions
available to turn AES into a compression function. Other modes of operation
suffer a similar faith. As a result, there is no clear way to exploit the available
AES implementation for parallel data streams.

4.2 Memory Usage and Benchmarks

This section outlines the performance when running the applet on a Java Card.
For this, we performed measurements and ran tests on NXP-produced JCOP
cards, as well as a card of unclear origin (ICFabricator=0005). While this is
somewhat indicative of relative performance, we note that measurements may
vary wildly when comparing different cards by different manufacturers. Tables 1
and 2 give the individual benchmarks for the primitives on the cards we used.

For a WOTS+ signature operation with the parameters described in Sect. 2.1,
we measure an average time of approximately 33 s. In the best case, the prepa-
ration step requires one WOTS+ key generation, which requires approximately
a minute.

Is Java Card Ready for Hash-Based Signatures? 137

When we consider a realistic parameter set, where h = 20 and d = 4, i.e.
subtrees with 32 leaf nodes, we notice that the cost of authentication path
generation starts to come into play. In particular, the access to nodes stored
in persistent memory makes this more costly than a back-of-the-envelope com-
putation would predict9. For these parameters, a signature takes roughly 54 s in
the best case: every 32nd signature adds an additional WOTS+ signature gener-
ation, every 256th signature adds two WOTS+ signatures, et cetera. Similarly,
preparation takes 85 s in the best case. Varying to d = 5 results in a slightly
shorter signing time, coming in at 50 s in the best case (but more frequently
requires new WOTS+ signatures).

Besides a small number of bytes to store the keys and index, the requirements
on persistent memory follow from the storage of WOTS+ signatures and leaf
nodes: 32·�·(d−1) bytes for the WOTS+ signatures, and 32·(2·d−1)·2h

d bytes for
the leaf nodes. For d = 4, this comes down to 6432 + 7168 = 13600 = 13.28 KiB.
Similarly, for d = 5, this adds up to 8576+4608 = 13.18 KiB. Note that increasing
d also increases signature size by additional WOTS+ signatures, but decreasing
d while maintaining h = 20 sharply increases the memory requirements for node
storage, as well as the cost of (off-card) key generation.

Considering the signing states described in Sect. 4, in particular in Fig. 2, it
can be easily seen that the signature is output in stages as computation pro-
gresses. With the WOTS+ chain computation taking up most of the computa-
tion, splitting this over eight APDUs levels out communication costs.

5 Java Card API Recommendations and Considerations

In the previous section, we touched upon several issues with implementing
XMSSMT (and hash-based signatures in general) using the current Java Card
API (i.e. version 3.0.5 or below). This section discusses potential extensions to
improve support for hash-based signatures. In the past the Java Card API has
been extended to support new cryptographic algorithms10. If and when hash-
based signatures become widely used in the future, one would expect extensions
of the API for this, either as proprietary extensions of manufactures or ultimately
as extensions of the standard.

An important design choice in such an API is the level of abstraction. One
can opt for low-level methods providing more fine-grained (i.e. more primitive)
operations, or for higher levels of abstractions, where the API methods provide
bigger building blocks, or possibly even a complete signatures scheme11. Below
we present four alternatives with an increasing level of abstraction.
9 A WOTS+ signature costs 536 applications of the chaining function on average,

versus 63 hash function calls in the tree.
10 For example, version 3.0.5 introduces support for SAC/PACE [3,14], a protocol used

in electronic passports.
11 For example, in the case of the PACE protocol, the choice has been made not to

provide a generic API method for elliptic curve point addition, which would enable
applet developers to implement PACE, but rather to provide more higher-level oper-
ations to directly provide PACE as primitive.

138 E. van der Laan et al.

Generally speaking, a more fine-grained API is likely to be easier to imple-
ment for manufacturers and offers more flexibility to applet developers. On
the other hand, higher level, more monolithic API methods make it easier for
developers that are less versed in the relevant cryptography to make the cor-
rect choices, allow for faster implementation in hardware, and enable manufac-
turers to provide more comprehensive side-channel countermeasures. Also, an
API implementation may need memory to record state between API calls and
scratchpad memory to record temporary results. Given that transient memory
is extremely scarce, it is not acceptable that API methods need large amounts
of RAM.

Another factor to take into consideration when making an abstraction level
trade-off is the fact that standardization efforts are still ongoing, and a high-level
API leads to less agility to account for future scheme changes.

5.1 Parallel Hashing

Performance of hash-based signatures is completely dependent on the ability
to efficiently compute many hash digests over small amounts of data. While
this can be sped up by implementing the hash function in hardware, Sect. 4.1
illustrates that this is only part of the solution. More critically, the execution
time depends on being able to exploit the extreme levels of parallelism that are
inherent to hash-based signatures. Here parallelism does not necessarily imply
parallel execution, but rather independent parallel data streams.

The current interface to hash functions is provided in the form of the
MessageDigest class. After instantiating an object for a specific digest
function, say SHA-256, a user can add additional data by calling the
update(byte[] inBuff, short inOffset, short inLength) method, and
obtain the final digest by calling doFinal(byte[] inBuff, short inOffset,
short inLength, byte[] outBuff, short outOffset).

We propose duals of these methods, following an almost identical API:
updateParallel(byte[] inBuff, short inOffset, short inBlockLength,
short numberOfBlocks), and doFinalParallel(byte[] inBuff, short
inOffset, short inBlockLength, short numberOfBlocks, byte[] outBuff,
short outOffset). Here, inBuff provides numberOfBlocks sequential inputs
of inBlockLength bytes, and output is written to outBuff analogously.

Providing an inconsistent number of inputs (i.e. different numberOfBlocks)
for update and doFinal calls could be treated as an error but it may be ben-
eficial to instead fix the numberOfBlocks at the time of construction of the
MessageDigest object. For hash-based signatures this decision is equivalent, as
the relevant hash function calls all require arguments of the same form. Both
options have serious effects on the underlying implementations, as these mod-
ifications suggest maintaining a (runtime-determined) number of intermediate
hash function states. If this proves to be infeasible, a natural restriction would
be to drop the parallel updateParallel method12. While this reduces flexibility
12 It is also possible to reach a similar invariance by fixing numberOfBlocks, but this

still requires multiple hash-function intermediate states in transient memory.

Is Java Card Ready for Hash-Based Signatures? 139

for the applet developer, in particular when memory is constrained and rearrang-
ing input is costly, this allows underlying hardware to sequentially process each
instance of the hash function without maintaining a variable-length intermediate
state in addition to the caller-provided input and output buffers. This does not
contradict the goal of achieving a speedup through internal parallelism, as the
majority of the cost can be attributed to the Java stack on top of the underly-
ing implementation (see Sects. 4.1 and 4.2). As a result, implementations that
would support a parallel update method would still likely opt for a sequential
underlying hashing primitive to reduce area cost.

5.2 Complete WOTS+ Chains

Rather than providing a narrow API that allows a developer to efficiently make
use of the underlying hash function primitive, the parallelism can be made trans-
parent to the implementer through a more abstract API: computing WOTS+

chains and authentication paths.
In the WOTS+ chains, there is a lot of opportunity for shared execution.

Besides the natural ‘horizontal’ parallelism across many chains (which would be
the primary candidate for optimizations discussed in the previous Subsect. 5.1),
there is potential gain in coupling the ‘vertical’ computations that take place
during WOTS+ public key and signature generation. On top of the benefits
achieved from only passing through the Java stack once, rather than repeatedly
for every application of the chaining function, the input to many of the under-
lying SHA-256 compression function calls overlaps significantly. In particular,
for a single WOTS+ key pair, the input to the first compression call is com-
pletely identical across all 16 ·67 = 1072 calls of the chaining function. Note that
this is a consequence of the specific instantiation of the compression function in
XMSSMT as defined in [10], however, and does not immediately carry over to
other function designs (in particular, the SPHINCS+ proposal [1] to the NIST
standardization project [17] does not benefit from this).

Such an API goes beyond a straight-forward parameter for the hash function
specifying the number of iterations, as the iterated function is not simply SHA-
256, but rather the address- and key-aware chaining function. Furthermore, to
make it effective for WOTS+ signature generation, it would require specifying
the length of each individual chain, as well as a variable number of chains (as
an entire WOTS+ signature will likely not fit in RAM on most Java Cards).

This middle ground between abstracting away the parallelism of the hash
functions but still requiring (or, indeed, allowing) the developer to puzzle
together the pieces has its upsides, but is clearly not without added complexities.
We stress that the API of such a hybrid solution needs to be carefully thought
through to be sufficiently fine-grained to provide a benefit over an all-in-one
API (as described later, in Sect. 5.4), yet convenient to use so that it actually
reduces boilerplate code and development overhead when compared to a more
straight-forward parallel hashing API.

140 E. van der Laan et al.

5.3 WOTS+ Nodes and Hash Trees

Another unit of abstraction is a hash tree. In XMSSMT , there are two specific
instances of hash trees: the tree in XMSS, and the �-tree in the WOTS+ nodes.

The computation of WOTS+ nodes can be hidden behind an API with rel-
ative ease. Given its position in the hypertree and the secret seed, the only
relevant output is the root node of the �-tree, easily fitting a single APDU (and
thus appropriate as the result of a single function call). We note that in the
SPHINCS+ proposal, �-trees have been eliminated altogether. It is not incon-
ceivable that future updates to XMSS will include the same change.

Abstracting the hash trees in the hypertree behind a single function is some-
what more complicated. The reason for this is twofold. First and foremost, pre-
venting recomputation of such trees is crucial to make XMSSMT practical, which
implies carefully maintaining a state (either by storing leaf nodes, as is done
in the current implementation, or through more involved tree traversal tech-
niques [5]). This introduces a time/memory trade-off that strongly depends on
the parameter choice – allowing more flexibility in terms of tree height and multi-
tree depth significantly increases complexity of the underlying implementation.
Secondly, as the relevant output comes in the form of an authentication path
of multiple nodes, APDU size (and thus state machine management) becomes
relevant as soon as h > 8.

Conversely, there is much to gain in terms of simplicity for the user if this is
abstracted, as this prevents the users from having to re-implement the treehash
algorithm and make complex state management decisions. We argue that this is
a crucial requirement for non-expert usage.

5.4 Complete XMSSMT Signatures

At the end of the spectrum, we consider an API that abstracts away as much of
the scheme’s internals as possible. Intuitively this matches the current approach
of the Java Card API for public-key primitives; given a parameterized and keyed
object and a message, there is a single API call that produces a signature. To
allow for longer messages, an update mechanism is available similar to how
message digests work (see Sect. 5.1). Crucially, this is made possible by the small
size of signatures; for typical parameters, the resulting signature easily fits in
RAM and even in a single output APDU.

When considering the multiple kilobytes of a typical XMSSMT signature,
such an API suggests writing the signature to persistent memory. This requires
additional EEPROM/Flash and adds the extra cost of slow memory access.
However, this is likely to compare favorably when considering the potential for
performance improvement by implementing the entire scheme natively.

Alternatively, the API could be split up in a similar way as is done in this
implementation; we refer to the states described in Fig. 2 – each state could
represent an API call. This would still require the applet developer to implement
the state machine, but makes conversion to output APDUs more natural.

Is Java Card Ready for Hash-Based Signatures? 141

Perhaps the most compelling argument for this high-level API is usability for
applet developers. XMSSMT , and tree traversal in general, is administratively
notoriously tedious, and wrongly managing indices can easily lead to degraded
security. In particular, a high-level API is required to properly abstract the state
preparation step, as this would otherwise heavily depend on implementation
choices (i.e. what part of the state is cached, and how it is iterated). Ease of use
should not be underestimated as a critical factor towards adoption in real-world
applications.

5.5 Side-Channel Countermeasures

Smart cards are a common target for physical attacks. To remedy this, manufac-
turers commonly implement a wide variety of platform-specific countermeasures.
An API that abstracts away the usage of secret data is paramount for this to
be effective. This requirement aligns well with the considerations of the rest of
this section when considering the simplicity of the API exposed to the applet
developer: a fine-grained API that requires the developer to implement the over-
arching scheme creates many potential pitfalls. To illustrate, the current lack of
API required us to abuse the AESKey object to store sensitive key material in
EEPROM, extracting it into RAM before use (although more recent versions of
Java Card provide the SensitiveArray class for this purpose). Similarly, with-
out API support, the expanded WOTS+ seeds live plainly in transient memory.
While in general hash-based signatures have a history of robustness against side-
channel attacks, it is precisely this usage of the PRF that has recently been under
scrutiny [15].

References

1. Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S., Gazdag, S.-L., Hülsing,
A., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M.M., Mendel, F., Nieder-
hagen, R., Rechberger, C., Rijneveld, J., Schwabe, P.: SPHINCS+. Submission to
NIST’s post-quantum crypto standardization project (2017). https://sphincs.org

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, Jan-
uary 2011. http://keccak.noekeon.org/

3. Advanced Security Mechanisms for Machine Readable Travel Documents and
eIDAS Token. Technical report TR-03110, German Federal Office for Information
Security (BSI), Version 2.20 (2015)

4. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8. https://eprint.iacr.org/2011/484

5. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited.
In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–
78. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3 5.
https://www.cdc.informatik.tu-darmstadt.de/reports/reports/AuthPath.pdf

6. Hülsing, A., Busold, C., Buchmann, J.: Forward secure signatures on smart
cards. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
66–80. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6 5.
https://huelsing.files.wordpress.com/2013/05/xmss-smart.pdf

https://sphincs.org
http://keccak.noekeon.org/
https://doi.org/10.1007/978-3-642-25405-5_8
https://eprint.iacr.org/2011/484
https://doi.org/10.1007/978-3-540-88403-3_5
https://www.cdc.informatik.tu-darmstadt.de/reports/reports/AuthPath.pdf
https://doi.org/10.1007/978-3-642-35999-6_5
https://huelsing.files.wordpress.com/2013/05/xmss-smart.pdf

142 E. van der Laan et al.

7. Eurosmart: Digital security industry to pass the 10 billion mark in 2018 for world-
wide shipments of secure elements. Press Release (2017). http://www.eurosmart.
com/news-publications/press-release/296

8. Java Card Forum: About the JCF (2018). https://javacardforum.com. Accessed
12 Mar 2018

9. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10. https://eprint.iacr.org/2017/965

10. Hülsing, A., Butin, D., Gazdag, S.-L., Rijneveld, J., Mohaisen, A.: XMSS: eXtended
Merkle Signature Scheme. Request for Comments 8391 (2018). https://tools.ietf.
org/html/rfc8391

11. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14. https://eprint.iacr.org/2017/966

12. Hülsing, A., Rijneveld, J., Schwabe, P.: ARMed SPHINCS – computing a 41 KB
signature in 16 KB of RAM. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 446–470. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 17. https://eprint.iacr.org/2015/1042

13. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15. https://eprint.iacr.org/2015/1256

14. Supplemental Access Control for Machine Readable Travel Documents. Technical
report, International Civil Aviation Organization (ICAO), Version 1.1 (2014)

15. Kannwischer, M.J., Genêt, A., Butin, D., Krämer, J., Buchmann, J.: Differential
power analysis of XMSS and SPHINCS. In: Fan, J., Gierlichs, B. (eds.) COSADE
2018. LNCS, vol. 10815, pp. 168–188. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89641-0 10. https://kannwischer.eu/papers/2018 hbs sca.pdf

16. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21. www.merkle.com/papers/Certified1979.pdf

17. NIST: Post-quantum cryptography: NIST’s plan for the future (2016). http://
csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-
presentation.pdf

18. Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast
hash-based signatures on constrained devices. In: Grimaud, G., Stan-
daert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 104–117.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85893-5 8.
https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/REDBP08.pdf

19. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In:
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Com-
puting, pp. 387–394. ACM (1990). https://www.cs.princeton.edu/courses/archive/
spr08/cos598D/Rompel.pdf

20. Safran Identity & Security: The impact of Java Card technology yesterday and
tomorrow: Safran Identity & Security celebrates 20 years with the Java Card
Forum. Press Release. https://www.morpho.com/en/media/impact-java-card-
technology-yesterday-and-tomorrow-safran-identity-security-celebrates-20-years-
java-card-forum-20170302. Accessed 12 Mar 2018

http://www.eurosmart.com/news-publications/press-release/296
http://www.eurosmart.com/news-publications/press-release/296
https://javacardforum.com
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://eprint.iacr.org/2017/965
https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8391
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://eprint.iacr.org/2017/966
https://doi.org/10.1007/978-3-662-49384-7_17
https://eprint.iacr.org/2015/1042
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://eprint.iacr.org/2015/1256
https://doi.org/10.1007/978-3-319-89641-0_10
https://doi.org/10.1007/978-3-319-89641-0_10
https://kannwischer.eu/papers/2018_hbs_sca.pdf
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
http://www.merkle.com/papers/Certified1979.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-presentation.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-presentation.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/pqcrypto-2016-presentation.pdf
https://doi.org/10.1007/978-3-540-85893-5_8
https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/REDBP08.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos598D/Rompel.pdf
https://www.morpho.com/en/media/impact-java-card-technology-yesterday-and-tomorrow-safran-identity-security-celebrates-20-years-java-card-forum-20170302
https://www.morpho.com/en/media/impact-java-card-technology-yesterday-and-tomorrow-safran-identity-security-celebrates-20-years-java-card-forum-20170302
https://www.morpho.com/en/media/impact-java-card-technology-yesterday-and-tomorrow-safran-identity-security-celebrates-20-years-java-card-forum-20170302

Detecting Privacy Information Abuse
by Android Apps from API Call Logs

Katsutaka Ito1(B), Hirokazu Hasegawa2, Yukiko Yamaguchi3,
and Hajime Shimada3

1 Graduate School of Informatics, Nagoya University, Nagoya, Japan
itokatu@net.itc.nagoya-u.ac.jp

2 Information Strategy Office, Nagoya University, Nagoya, Japan
3 Information Technology Center, Nagoya University, Nagoya, Japan

Abstract. In these years, the use of smartphones is spreading. Android
is the most major smartphone OS in the world, and there are a lot of
third-party application stores for Android. Such third-party stores make
it easy to install third-party applications. However, these applications
may access and obtain privacy information, in addition to their major
functions. There is a survey showing that most users do not take good
care of the settings about how their privacy information is handled by
applications. Thus, privacy information abuse by authorized application
is becoming a serious problem. In this paper, we propose a method to
detect applications that access privacy information unrelated to their
functionalities by analyzing API call logs, which can reveal the activities
of the application. In order to record API call logs, we modified the
Android source code, and run the rebuilt system on an emulator. We
analyzed applications’ API call logs with a statistical method, based on
the frequency of privacy information accessing and network activities.

Keywords: Android · API call logs · Privacy information leakage

1 Introduction

As the use of smartphones becomes more general year by year, the users can
improve their life with various types of applications. As reported in International
Data Corporation’s report about the smartphone OS share [1], Android occupies
about 85% in the World. Different from iPhone, Android smartphones can use
many third-party application stores such as 1mobile market1 and stores served by
cellular company easily. Even if the users have poor knowledge about application
security, they can install and utilize various applications freely.

As reported in Information-technology Promotion Agency’s report [2], about
90% smartphone users are fearing about the leakage of privacy information.
However, only less than 20% users are taking care of the privacy information

1 http://www.1mobile.com/.

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 143–157, 2018.
https://doi.org/10.1007/978-3-319-97916-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_10&domain=pdf
http://www.1mobile.com/

144 K. Ito et al.

handling manifests shown at installation or the first launch of applications. It
shows that many people do not pay attention to handling of privacy information
in spite of fear. Meanwhile, there are applications which aim to gather privacy
information regardless of their functionality, especially in third-party applica-
tion stores. Those applications usually obtain authentic permission to privacy
information so that those applications can gather privacy information freely with
using official Android APIs. Many people may give permissions to those types
of applications with no care because they do not confirm manifests as written
by above report. Protecting privacy information from such types of leakage is
becoming important problem.

In this paper, we propose a method to detect those type of applications
based on their behavior. By using API call logs, we can categorize the activity
of application to several categories such as whether application access to pri-
vacy information, drawing something on display and so on. In our proposal, we
firstly classify activities of applications into 4 types such as access to privacy
information, network activity, providing information to users, and others. Then,
we classify application into 3 classes (No-Access, Proper-Access, and Improper-
Access) and calculated statistical value from the number of above activities. We
evaluated 42 of Android applications which we collected at third-party stores.

2 Related Works

There are some researches which aim for detecting and protecting leakage of
privacy information from Android applications. Kim et al. proposed a method
for detecting leakage of privacy information by Dalvik bytecode of Android
applications [3]. They defined analysis rules for Dalvik bytecode in order to
decide whether applications are malicious or not. Their method successfully
detect applications which aim to obtain privacy information in Google Play
Store. Hosoya et al. revealed what permission is required by applications and
what Android APIs are used generally through survey on manifest file [4]. They
alerted that there are some applications which trace user through terminal ID.
Mann et al. proposed a framework for static detection of privacy leaks [5]. They
implemented a framework for tracking information flows based on arguments of
API calls which can touch privacy information with static analysis on Dalvik
bytecode. They firstly define privacy policies for API to generate privacy poli-
cies to enforce which includes what field of API return values include privacy
information. Then, they evaluate bytecode of applications with privacy policies
to enforce in the proposed system and obtain reports.

There are also some researches which aim to detect leakage of privacy infor-
mation through static analysis. Han et al. proposed a method for detecting
malicious applications from system-calls and API calls related with terminal
information (e.g. IMEI number) and detecting malicious applications from K-
means machine learning [6]. In spite of the existence of information which we have
to protect from leakage (e.g. address book), the proposed method is only con-
cerned about terminal information. Hatada et al. proposed a detection method of

Detecting Privacy Information Abuse by Android Apps from API Call Logs 145

PUA(Potentially Unwilling Applications) from DNS queries [7]. In their exper-
iment, they extracted FQDN from DNS request of applications and calculated
the similarity of FQDN lists between two applications for all applications. They
revealed that PUAs request much more FQDN than normal applications and
PUAs tend to access to particular FQDN as same as Android OS accesses. They
also revealed that black list based detecting is less effective in detecting PUAs.
Do et al. proposed a protection method of privacy information leakage by remov-
ing permission already accepted in application installation [8]. In the research,
they removed permissions for an application which is unrelated for specific users
by decompilation of apk file. They remove needless permissions by recompilation
of manifest file and smali code in the apk file. Gibler et al. proposed statically
automatic analysis method of Android applications for privacy leakages [9]. They
proposed an analysis framework for finding potential leakages by mapping rela-
tionship between Android API and permissions in application analysis.

There is a research to protect privacy information leakage by modifying files
in apk files and bytecode. Zhang et al. proposed a method to track sensitive
information flows that are potentially involve in information leakage by inserting
bytecode instructions for application program [10]. This work aims to achieve
both flow-based security for privacy information and low run-time overhead.
They implemented an application-wide static dataflow analysis prototype based
on the Java bytecode optimization framework.

There are some researches which indicate vulnerabilities of Android frame-
work. Davi et al. shows the privilege escalation attack on Android applications
without permission [11]. They showed an application which does not have privi-
lege can obtain privilege through other application by exploiting serialized tran-
sitive permission usage among three applications. Chen et al. implemented a
method to detect system vulnerabilities with an architectural approach [12].
Their proposal is organized with online attack detector and offline vulnerabil-
ity locator linked by a record and replay mechanism. Their system checks the
change of data flow (source or destination address) to detect memory vulner-
abilities. Chen et al. also tried to apply this method to inner Android frame-
works and implemented a live patching system against kernel vulnerabilities of
Android [13].

In our research, we propose a method to detect the leakage of privacy infor-
mation through unmannered applications by calculating statistics of categorized
API calls under application execution. Our method is base on statistical analysis
whose calculation cost is lighter than that of machine learning in classification,
so that it can achieve low run-time overhead.

3 Proposed Method

3.1 Threat Model of This Work

Android operating system has permission framework for applications. Applica-
tions which access to privacy information need to ask user whether they give

146 K. Ito et al.

permission to applications or not. Applications which are aiming to gather pri-
vacy information also ask users whether applications may access to privacy infor-
mation even if those permissions are mostly unrelated with their functionality.
If the user gives authority to those types of applications, they abuse given per-
mission to access to unrelated privacy information with no hesitation by using
legitimate Android APIs. After those types of application gather privacy infor-
mation, they may send the information to servers. However, a lot of people do
not care for the manifest of applications shown at installing or the first launch
as mentioned at Sect. 1 and gives permissions so that accessing to privacy infor-
mation by those types of applications never become an illegal activity. As shown
in Sect. 1, even for those less careful people, they has awareness about privacy
information leakage. Therefore, we try to warn applications’ improper activity
to improve privacy for such types of people. There may be users who agrees with
over privileged manifest against one’s better judgement. Our proposal also can
use for giving warning to those users. The users can get the other decision point
whether they continue to use those applications or not.

3.2 Overview

As the number of third-party applications is large and new ones are made every-
day, it is hard to evaluate all of applications’ dangerousness for accessing to pri-
vacy information in advance. Thus, we propose a method to detect them when
user execute them on Android terminals with a statistic-based algorithm. Firstly,
we explore frequency and tendencies of API calls which is used in improper appli-
cation’s activities.

We show the outline of our works at Fig. 1. In our proposal, we focus on
API call logs which give us information about applications’ activities in order to
estimate appropriateness of each application. We suppose that improper appli-
cations access to privacy information frequently and communicate with servers
via network frequently. Based on the estimation, we focus on analyzing appli-
cations’ activities such as accessing local data and networking. As a prototype
system, we utilized Android emulator to run applications and record API call
logs which is required for our proposal. Gathering activities of those types of pri-
vacy information may arise in API call so that we output them to text files for
each application. After that, we analyze tendencies for API uses from API call
logs by statistic-based method. Finally, we classify applications to three classes
named No-Access, Proper-Access and Improper-Access, through API call logs
according to their appropriateness.

We showed the steps of our proposed method as follows.

1. Install an application on Android on the emulator
2. Run application and record API call log
3. Analyze API call logs
4. Classify application according to appropriateness.

Detecting Privacy Information Abuse by Android Apps from API Call Logs 147

rebuilt Android on the emulator

install

API logs

discriminator
No-Access

Proper-
Access

input

apk files

API log files

Improper-
Access

Fig. 1. Overview of this work

3.3 Classify Applications According to Appropriateness

We aim to detect the improper activities which access to privacy information.
In order to estimate appropriateness of applications, we classified applications
to following three types.

– No-Access
Not access to privacy information

– Proper-Access
Access to privacy information along with application’s functionality

– Improper-Access
Access to privacy information aiming to steal them, regardless of application’s
functionality

We classified applications which do not need permissions for accessing privacy
information as No-Access. We classified applications which need only permis-
sions for their functionality as Proper-Access. Note that legality for permissions
depends on whether we can recognize or estimate the necessity from their func-
tionality in current point. We classified applications which utilizes permissions
not for their functionality as Improper-Access. Note that the Improper-Access
includes access abuse of permissions (e.g. read all privacy information that is
not connected to its functionality).

3.4 Classify Android APIs

In order to classify applications according to appropriateness of access, we clas-
sified APIs before analyzing. In this paper, we used Android 6.0 system which

148 K. Ito et al.

is the most major version of Android OS2. We classify 1634 APIs belonging to
“android” class into four types which are categorized as access to privacy infor-
mation (ACCESS), send something to the network (SEND), display some infor-
mation (RESPONSE), and the other (OTHER). Detailed relationship between
categories and APIs are shown in Table 1.

We chose APIs which need permission from users and accesses to pri-
vacy information as ACCESS. They are written as “dangerous permissions” in
Android reference. We also selected APIs which seems to have relation with the
“dangerous” permission3 (CALENDER, CAMERA, CONTACTS, LOCATION,
MICROPHONE, PHONE, SENSORS, SMS, STORAGE permission groups)
and put them to ACCESS. Based on in API logs which is obtained in pre-
liminary evaluation, we chose APIs which are used to send something to the
network as SEND. Based on in API logs which is obtained in preliminary eval-
uation, we chose APIs which are used when applications present information as
RESPONSE.

Table 1. Proposition of API classification

Classification Number Example

ACCESS 24 android.location.Location

android.content.ContactContract

android.hardware.Camera

...

SEND 3 android.net.NetworkRequest

android.net.LinkAddress

android.net.LinkProperties

RESPONSE 9 android.view.View

android.view.ViewGroup

android.widget.TextView

...

OTHER 1598 android.bluetooth.BluetoothDevice

android.view.InputEvent

android.widget.AnalogClock

...

3.5 Rebuilding Android to Output API Call Logs

To realize the proposed method, we have to record Android API call logs while
running applications. However, we cannot know which API is called from orig-
inal Android terminal. In order to record API call logs, we modified source
2 https://developer.android.com/about/dashboards/index.html (at March 2018).
3 https://developer.android.com/guide/topics/security/permissions.html.

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/topics/security/permissions.html

Detecting Privacy Information Abuse by Android Apps from API Call Logs 149

code of Android which is obtained from Android Open Source Project (AOSP).
Following items are procedures to add API call log recording function including
rebuilding Android.

1. Download and Build
We need Java classes of Android API body. In order to get them, we have to
build Android once after download Android source code.

2. Modify
We added code to output identifier when API has called to 1634 of Android
class API body. Figure 2a shows source code of original. Figure 2b shows
source code after we added code to get log into constructor as shown as red
rectangle part.

3. Build again
In order to get system image, we rebuilt Android after we modified all APIs
source code.

Fig. 2. Modification for recording API call logs

150 K. Ito et al.

4. Run emulator with rebuilt Android
We run Android emulator using rebuilt system image to obtain API call logs
in following experiments.

4 Experimental Configuration

4.1 Environment for Collecting API Logs

We used Android 6.0 emulator which is most widely used version of Android
OS. To reduce complexity comes from difference between host processor and
emulator processor, we used x86 version of Android 6.0. We run emulator in
Android Studio4 on Windows7 and recorded API logs through “logcat” window.
“logcat” is originally used for checking Android application status, and is dis-
played debugging information as shown in Fig. 3. By running applications on the
modified Android system image which rebuilt as mentioned at Sect. 3.5, we can
get API call logs in “logcat” window as shown in Fig. 4.

We recorded API call logs for each application from the moment of launch of
applications to complete trial for confirm series of their functionality. Note that
we have not tried whole functions of the application because it requires too much
time. We terminated log recording after we tried representative function of the
application. Here is examples when we terminate log recording. For a calculator
application, we terminate log recording after performing some arithmetic. For a
note-pad application, we terminate log recording after inputing some letters. For
a searching store application, we terminate log recording after the application
displayed store list according to input. For a camera application, we terminate
log recording after taking a picture.

We modified Android 6.0 in order to record API call logs and recorded API
call logs of 42 applications. In this paper, we modified all of APIs in a straight-
forward way. We hope that Android OS implement the function of output API
call logs for debugging in order to follow update of OS if our detection method
turned out to be effective.

4.2 Applying microG

We utilized Android Open Source Project (AOSP)5 code to this experiment.
However, most of applications which access location information crashed when
we tried to install and run applications. One reason of that is the lack of Google
Services and Playstore. Even though we added Google Services and Playstore
into Android system image file, applications are still crashed. We guess that it
was caused by Safety Net system which is included in Android system. Safety Net
is the system to assess the integrity of the profile of combination between hard-
ware and software. It is also works for the system to decide whether the device
is tampered or not (e.g. detect Rooting) through signature key to application

4 https://developer.android.com/studio/index.html.
5 https://android.googlesource.com/.

https://developer.android.com/studio/index.html
https://android.googlesource.com/

Detecting Privacy Information Abuse by Android Apps from API Call Logs 151

Fig. 3. Original Android on the Emulator and Logs

by author. In addition to tamper detection, Safety Net manages verification of
the certification that the application verifies whether formal Google services and
Playstore are installed or not. In order to avoid detection on Safety Net, we
applied signature spoofing to Android source code and installed microG6 frame-
works instead of Google Services and Playstore. Signature spoofing enable us
to spoof applications that verifies existence of formal Google Services and Play-
store with signed signature. In order to enable microG, we modified four parts
of source code related to package manager of Android and signature spoofing.

4.3 Collecting Applications for Evaluation

We collected 42 applications for evaluation which include sufficient samples for
each of the category defined at Sect. 3.3. Those applications are collected through
6 https://microg.org/.

https://microg.org/

152 K. Ito et al.

Fig. 4. Rebuilt Android on the Emulator and API call logs

APKPure7 and 1mobile market. Detailed collection procedure for each category
is as follows.

As No-Access application samples, we collected 5 applications which do not
need permission to access to privacy information such as calculator and note-pad.
To prove no permission requirement, we only confirmed that those applications’
manifest do not include permission requirement after collection.

As Proper-Access application samples, we collected 30 applications which
use only permission they obtained for its functional reason such as neighbor-
hood searcher which uses location permission and camera which use camera and
storage permission. To prove moderate permission requirement, we carefully con-
firmed relationship between functionality and required permissions.

7 https://apkpure.com/jp/.

https://apkpure.com/jp/

Detecting Privacy Information Abuse by Android Apps from API Call Logs 153

In order to find out Improper-Access application, we searched with key-
words which we frequently hear fake or useless applications are existing cate-
gory. Firstly, we choose applications which functions seem to convenient but it is
impossible by physical reasons. For example, there are applications which appeal
realizing solar charger in any terminal. Both of them are restricted by physi-
cal matter because solar charger requires solar panel hardware and flashlight
does not brights with exceeding hardware limitation. We collected 10 suspicious
applications which also includes permission request for privacy information in
the manifest. Then, we confirmed whether those application really touch privacy.
We found that 3 out of them do not touch privacy information so that we omit
them from candidates. Finally, we used rest 7 applications as Improper-Access
application samples.

To reduce false-positive rate, we did not used applications we cannot judge
the appropriateness of permission obviously.

4.4 Evaluation Criteria

Our goal is to distinguish Improper-Access applications from Proper-Access ones
by using API call logs. We used statistic based algorithm to extract features
based on the classification mentioned described at Sect. 3.4.

We analyzed API call logs mentioned at Sect. 4.1 and calculated the fre-
quency of ACCESS, SEND and RESPONSE for each application we collected.
Firstly, we tried to find tendencies from the difference of averaged frequency
of ACCESS, SEND, and RESPONSE rate between Proper-Access applications
and Improper-Access ones. Secondly, we tried to find tendencies from the differ-
ence of averaged number of both ACCESS divided by RESPONSE and ACCESS
divided by SEND. Thirdly, we tried to find tendencies from the length of API
call logs between Proper-Access applications and Improper-Access ones.

4.5 Prediction Based on APIs Usage

The application categorized to No-Access should gives 0 for ACCESS count
because they do not need permissions to access to privacy information as men-
tioned at Sect. 3.4. If not, we have to consider that there is possibility that the
application has the way to avoid permission control.

We defined Proper-Access and Improper-Access based on whether they need
unnecessary permissions to access to privacy information or abuse of privacy
information or not. We estimated that the ACCESS frequency and the SEND
frequency of Improper-Access applications would become higher value than those
of Proper-Access ones because of collection of various privacy information unre-
lated with their functionality and send them to the other place. In addition, we
predict that the value of both ACCESS divided by RESPONSE and ACCESS
divided by SEND of Improper-Access applications will become higher value than
those of Proper-Access ones because those applications gives comparatively small
number of information reward for users (the less amount of RESPONSE) and
much more amount of accessing and sending of privacy information.

154 K. Ito et al.

5 Experimental Results and Discussion

5.1 Experimental Result

Appearance Ratio and Frequency of ACCESS. We calculated frequency
of categorized API call named ACCESS, SEND, RESPONSE and their average
for each No-Access, Proper-Access, and Improper-Access applications. Tables 2
and 3 shows calculated value. ACCESS, SEND, and RESPONSE show appear-
ance ratio for all APIs and the reminders show calculated frequency. Table 3
shows number of API calls on No-Access, Proper-Access, and Improper-Access
applications under this experiment with minimum, maximum, and average
number.

Table 2. Result of frequency analysis (%)

ACCESS SEND RESPONSE ACCESS/RESPONSE ACCESS/SEND

No-Access 0.00 0.00 1.07 0.00 0.00

Proper-Access 0.28 0.08 3.35 0.08 3.50

Improper-Access 0.09 0.22 1.59 0.06 0.41

Table 3. Length of API call logs (lines)

Min Max Average

No-Access 2,052 8,424 3,640

Proper-Access 931 18,643 9,475

Improper-Access 6,338 13,005 7,868

Omitting Android.graphics Class. While we run applications and gathering
API call logs, we found that most of applications use graphics class APIs so
frequently especially in notification part. For example, while applications are
loading data from the Internet and waiting for finishing communication, the
application shows notification to the display using graphic class APIs. Due to
these types of usage, graphics class API call occupies large part of API calls
(29.5% on average) so that we considered that there is worth for data without
graphic class API call. Tables 4 and 5 show result with omitting APIs which
belong to android.graphics class on calculating frequency of the call.

Table 4. Result of frequency analysis without graphics class APIs (%)

ACCESS SEND RESPONSE ACCESS/RESPONSE ACCESS/SEND

No-Access 0.00 0.00 1.31 0.00 0.00

Proper-Access 0.44 0.11 4.85 0.09 4.00

Improper-Access 0.11 0.28 1.98 0.06 0.39

Detecting Privacy Information Abuse by Android Apps from API Call Logs 155

Table 5. Length of API call logs without graphics class APIs (lines)

Min Max log Average Omitted ratio

No-Access 1,698 7,764 3,205 11.0%

Proper-Access 608 13,451 6,407 32.4%

Improper-Access 5054 10,613 6,360 19.2%

5.2 Factors to Affect Estimation

In the experimental results shown above, No-Access applications really do not
use ACCESS APIs. As we defined No-Access as applications which do not access
to privacy information, it is inevitable result excluding the application tries to
obtain privacy information with exploiting some vulnerability.

The result about the frequency of ACCESS APIs usage is different from
our estimation mentioned at Sect. 4.5. As shown in Tables 2 and 4, the fre-
quency of ACCESS APIs used by Improper-Access applications is lower than
that of Proper-Access applications. We guess that this result comes from that
the Proper-Access applications access privacy information every time in required
point, but the Improper-Access applications roughly read privacy information
(e.g. gather all information at once) so that the Improper-Access application
gives smaller count in API call count viewpoint. The result shows that the fre-
quency of SEND APIs used by Improper-Access applications are more than
twice than that of Proper-Access applications. The frequency of RESPONSE
for Proper-Access applications are more than twice than that of Improper-
Access application. We think that this characteristic comes from the Improper-
Access applications will serve comparatively small amount of information to
users because their first purpose is not for users convenience.

The difference about ACCESS between Proper-Access applications and
Improper-Access applications is about 3 to 4 times. However, the number of
ACCESS divided by SEND applications amplifies this difference so that the dif-
ference becomes about 9 to 10 times. Those results show that Improper-Access
applications frequently send informations to the network so that dividing by
SEND becomes good amplification method for detecting Improper-Access appli-
cations. The Improper-Access applications do not utilize graphic class API call
compared to the Proper-Access application so that omitting graphics class APIs
reduces difference between them. Maybe, the Improper-Access applications do
not utilize notifications compared to the Proper-Access applications so that such
a difference may occur.

6 Conclusion

We proposed a method to classify Android applications to 3 types based on
accessing privacy information abuse and categorized them based on API call
log by categorizing APIs into 4 types according to their role. We also proposed

156 K. Ito et al.

statistic based application classification method based on API call logs and we
showed the potential to detect applications which access to privacy information
abuse. This research is currently under initial stage so that there are some dif-
fered points from our predictions in evaluation results. This should be analyzed
with increasing number of application samples and consider the validity of our
classification algorithm again.

As a future work, we have to continue to gather API call logs of much more
applications to improve the detection method because current detection method
is too preliminary one. We are planning to extract much more characteristic
from ACCESS, SEND, and RESPONSE rate by calculating standard deviation
and so on. Moreover, we have to try other method such as machine learning to
detect privacy information leakage. After improving detection method, we will
consider to evaluate with much more and various types of applications to proof
effectiveness. In addition, we are planning to apply statistical analysis of API call
logs to other than the detection of privacy information leakage such as detecting
malicious activities for Android frameworks.

References

1. International Data Corporation. Smartphone OS marcket share. https://www.idc.
com/promo/smartphone-market-share/os

2. Information technology Promotion Agency. A survey of awareness of the threat
of information security in 2016. http://www.ipa.go.jp/files/000056568.pdf. (in
Japanese)

3. Kim, J., Yoon, Y., Yi, K., Shin, J.: Scandal: static analyzer for detecting privacy
leaks in android applications. In: Mobile Security Technologies, vol. 12 (2012)

4. Hosoya, R., Tsunoda, Y., Mori, T., Saito, T.: Measurement study of the privacy
information collected by mobile apps. In: Computer Security Symposium, pp. 553–
560, September 2017. (in Japanese)

5. Mann, C., Starostin, A.: A framework for static detection of privacy leaks in
android applications. In: Proceedings of the 27th Annual ACM Symposium on
Applied Computing, pp. 1457–1462 (2012)

6. Han, C., Matsumoto, S., Kawamoto, J., Sakurai, K.: Classified by the API call
record and personal information leakage detection of android malware. Inf. Process.
Soc. Jpn. 3A–4, 1–8 (2016). (in Japanese)

7. Hatada, M., Mori, T.: Detecting android PUAs and classifying its variants with
analysis of DNS queries. In: Computer Security Symposium, pp. 1068–1075,
September 2017. (in Japanese)

8. Do, Q., Martini, B., Choo, K.-K.R.: Enhancing user privacy on android mobile
devices via permissions removal. In: 2014 47th Hawaii International Conference on
System Sciences (HICSS), pp. 5070–5079 (2014)

9. Gibler, C., Crussell, J., Erickson, J., Chen, H.: Androidleaks: automatically detect-
ing potential privacy leaks in android applications on a large scale. In: International
Conference on Trust and Trustworthy Computing, pp. 291–307 (2012)

10. Zhang, M., Yin, H.: Efficient, context-aware privacy leakage confinement for
android applications without firmware modding. In: Proceedings of the 9th ACM
Symposium on Information, Computer and Communications Security, pp. 259–270
(2014)

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
http://www.ipa.go.jp/files/000056568.pdf

Detecting Privacy Information Abuse by Android Apps from API Call Logs 157

11. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: International Conference on Information Security, pp. 346–360
(2010)

12. Chen, Y., Khandaker, M., Wang, Z.: Pinpointing vulnerabilities. In: Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security,
pp. 334–345 (2017)

13. Chen, Y., Zhang, Y., Wang, Z., Xia, L., Bao, C., Wei, T.: Adaptive android kernel
live patching. In: Proceedings of the 26th USENIX Security Symposium (2017)

Verification of LINE Encryption Version
1.0 Using ProVerif

Cheng Shi(B) and Kazuki Yoneyama(B)

Ibaraki University, Hitachi-shi Ibaraki, Japan
{18nm718l,kazuki.yoneyama.sec}@vc.ibaraki.ac.jp

Abstract. LINE is currently the most popular messaging service in
Japan. Communications using LINE are protected by the original encryp-
tion scheme, called LINE Encryption, and specifications of the client-to-
server transport encryption protocol and the client-to-client message end-
to-end encryption protocol are published by the Technical Whitepaper.
Though a spoofing attack (i.e., a malicious client makes another client
misunderstand the identity of the peer) and a reply attack (i.e., a mes-
sage in a session is sent again in another session by a man-in-the-middle
adversary, and the receiver accepts these messages) to the end-to-end
protocol have been shown, no formal security analysis of these protocols
is known.

In this paper, we show a formal verification result of secrecy of appli-
cation data and authenticity for protocols of LINE Encryption (Version
1.0) by using the automated security verification tool ProVerif. Espe-
cially, since it is claimed that the transport protocol satisfies forward
secrecy (i.e., even if the static private key is leaked, security of appli-
cation data is guaranteed), we verify forward secrecy for client’s data
and for server’s data of the transport protocol, and we find an attack to
break secrecy of client’s application data. Moreover, we find the spoofing
attack and the reply attack, which are reported in previous papers.

1 Introduction

1.1 Background

With the development of network communications technology, more and more
people use messaging services to communicate. LINE is currently the most pop-
ular messaging service in Japan. Thus, if there is security vulnerability in LINE,
widespread incidents may be caused due to its popularity. Hence, it is required
that the security of LINE is rigorously analyzed.

In order to ensure the security of LINE, communications in LINE are pro-
tected by a dedicated encrypted communication scheme, called LINE Encryp-
tion, and specifications of the client-to-server transport encryption protocol
(TEP) and the client-to-client message end-to-end encryption protocol (E2EEP)
are published by the Technical Whitepaper [1]. In [1], some informal security
analyses of the TEP and the E2EEP are shown, and it is claimed that the
c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 158–173, 2018.
https://doi.org/10.1007/978-3-319-97916-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_11&domain=pdf

Verification of LINE Encryption Version 1.0 Using ProVerif 159

TEP satisfies forward secrecy such that “In the event that a private key is
leaked, messages that were encrypted before the leak are protected if the com-
munication supports forward secrecy” [2]. Since there are two kinds of messages
(client’s application data encrypted by temporary key keytemp and server’s appli-
cation data encrypted by forward secure key keyFS) in TEP, we need to consider
two kinds of forward secrecy (i.e., forward secrecy for client’s data and forward
secrecy for server’s data).

On the other hand, Espinoza et al. [3] showed a reply attack against the
E2EEP. A man-in-the-middle (MTM) adversary can send an encrypted message
in an old session as the message in the new session without changing the content
of the message. Though the adversary cannot know the content of the message,
the receiver client accepts these two messages as valid. Isobe and Minematsu [4]
showed a spoofing attack against the E2EEP. A malicious client C3 intercepts
the E2EEP between clients C1 and C2, and impersonates C1 to C2. Hence, since
another unknown attack may exist, security of LINE Encryption is still unclear.

On the other hand, since it is difficult to analyze all attacks by hands, such as
the replay attack or the spoofing attack, automated security verification methods
by using formal methods have been studied to formally verify the security of
cryptographic protocols.

1.2 Contribution

In this paper, we give the first formal verification result of the security of
LINE Encryption (Version 1.0) by using the automated security verification tool
ProVerif [5]. Specifically, for TEP, we verify forward secrecy of both client’s appli-
cation data and server’s application data, and server authenticity. For E2EEP,
we verify secrecy of application data and authenticity. For verifications of forward
secrecy, we use reachability to application data for the adversary. For verifica-
tions of authenticity, we use correspondence assertions of some events. We obtain
the following verification results:

For TEP: We find an attack to break forward secrecy for client’s data, but
forward secrecy for server’s data and server authenticity are not broken.

For E2EEP: We find the spoofing attack and the replay attack, but secrecy
of application data is not broken.

Thus, our verification result captures all known attacks to LINE Encryption, and
points out the attack to forward secrecy for client’s data, which is not formally
reported. Therefore, our result clarifies that the automated verification tool is
useful to verify the security of messaging protocols.

2 Preliminaries

2.1 Client-to-Server Transport Encryption Protocol (TEP)

The client and server exchange the following messages in order to establish the
transport key used to protect application data.

160 C. Shi and K. Yoneyama

Static Keys. In order to guarantee that clients only connect to legitimate the
LINE servers, TEP uses static ECC and ECDSA key pairs. The LINE servers
securely stores the private part of each pair, while the corresponding public keys
are embedded in LINE client applications.

– ECDH key pair for key exchange: (staticprivate,staticpublic)
– ECDSA key pair for server identity verification: (signprivate,signpublic)

Client Hello

1. Generate an initial ephemeral ECDH key (c initprivate,c initpublic) and a
client nonce cnonce.

2. Derive a temporary transport key and initialization vector (IV) using the
server’s static key and the initial ephemeral key generated in Step 1 as follows.

lenkey=16
leniv=16
sharetemp=ECDH(c initprivate,staticpublic)
MStemp=HKDFex(c initpublic||cnonce,sharetemp)1

keyivtemp=HKDFexp(MStemp,“legy temp key”,lenkey+leniv)
keytemp=keyivtemp[0:15]
ivtemp=keyivtemp[16:31]

3. Generate an ephemeral ECDH client handshake key (cprivate,cpublic).
4. cpublic and application data appdataclient are encrypted with keytemp and

the client nonce cnonce using the AES-GCM [6] AEAD cipher. The nonce is
calculated by combining a client/server marker marker, a sequence number
numseq, and ivtemp obtained in the handshake process.

5. Send the version statickeyversion, client’s initial ephemeral key c initpublic,2

client nonce cnonce and encrypted data dataenc to the server.

Server Hello

1. Calculate the temporary transport key keytemp and IV ivtemp using the
server’s static ECDH key staticprivate and the client’s initial ephemeral key
c initpublic as follows.

sharetemp=ECDH(staticprivate,c initpublic)
MStemp=HKDFex(c initpublic||cnonce,sharetemp)
keyivtemp=HKDFexp(MStemp,“legy temp key”,lenkey+leniv)
keytemp=keyivtemp[0:15]
ivtemp=keyivtemp[16:31]

1 In [1], it is described as MStemp = HKDFex(cpublic||cnonce, sharetemp). However, it
is a typo. The authors confirmed the typo to the LINE Security Team.

2 In [1], it is described as to send cpublic. However, it is a typo. The authors confirmed
the typo to the LINE Security Team.

Verification of LINE Encryption Version 1.0 Using ProVerif 161

2. Decrypt application data appdataclient with keytemp and ivtemp, and
extract cpublic.

3. Generate an ephemeral key pair (sprivate,spublic) and a server nonce snonce.
4. Derive the forward-secure (FS) transport key keyFS and IV ivFS as follows.

lenkey=16
leniv=16
shareFS=ECDH(sprivate,cpublic)
MSFS=HKDFex(cnonce||snonce,shareFS)
keyivFS=HKDFexp(MSFS,“legy temp key”,lenkey+leniv)
keyFS=keyivFS[0:15]
ivFS=keyivFS[16:31]

5. Generate and sign the handshake state using the server’s static signing key
as follows.

state=SHA256(cpublic||cnonce||spublic||snonce)
statesign=ECDSAsign(state,signprivate)

6. Application data appdataserver is encrypted with keyFS and the nonce
snonce using the AES-GCM AEAD cipher. The nonce is calculated by com-
bining a client/server marker marker, a sequence number numseq, and the
ivFS obtained in the handshake process.

7. Send the ephemeral key spublic, server nonce snonce and encrypted data
data′

enc to the client.

Client Finish

1. Verify the handshake signature. If the signature is valid, proceed to the next
step. If not, abort the connection.

2. Derive keyFS and ivFS as follows.

shareFS=ECDH(cprivate,spublic)
MSFS=HKDFex(cnonce||snonce,shareFS)
keyivFS=HKDFexp(MSFS,“legy temp key”,lenkey+leniv)
keyFS=keyivFS[0:15]
ivFS=keyivFS[16:31]

3. Encrypt all subsequent application data using keyFS and ivFS.

2.2 Message End-to-End Encryption (E2EEP)

Client-to-Client Key Exchange. In order to be able to exchange encrypted
messages, clients must share a common cryptographic secret. When a LINE
client wishes to send a message, it first retrieves the current public key of the
recipient. Next, the client passes its own private key and the recipient’s public
key to the ECDH algorithm in order to generate a shared secret as follows.

SharedSecret=ECDHcurve25519(keyuser1
private,key

user2
public)

=ECDHcurve25519(keyuser2
private,key

user1
public)

162 C. Shi and K. Yoneyama

Message Encryption. The sender client encrypts a message with a unique
encryption key and IV, and sends the encrypted message to the recipient client.

1. The encryption key Keyencrypt and IV IVencrypt are derived from the shared
secret calculated in the above process, and a randomly generate salt as
follows.

Keyencrypt=SHA256(Shared Secret||salt||“Key”)
IVpre=SHA256(Shared Secret||salt||“IV”)
IVencrypt=IVpre[0:15]⊕IVpre[16:31]

2. The generated key and IV are used to encrypt the message payload M using
AES in CBC block mode.

3. The sender calculates a message authentication code (MAC) of the ciphertext
C as follows.

MACplain=SHA256(C)
MACenc=AESECB(Keyencrypt,MACplain[0:15]⊕MACplain[16:31])

4. version,content type,salt,C,MAC enc,sender key ID and recipient
key ID are included in the message sent to the recipient.

5. The recipient derives the symmetric encryption key Keyencrypt, and IV
IVencrypt as described above.

6. The recipient calculates the MAC MAC′
enc of the received cipher text, and

compares it with the MAC MACenc value included in the message. If they
match, the contents of the message are decrypted and displayed. Otherwise,
the message will be discarded.

2.3 ProVerif

ProVerif is a model checking tool that performs automated security verification.
To verify a security requirement of a protocol by ProVerif, we must formalize the
cyptographic primitives, the protocol specification and the security requirement
as input to ProVerif. Here, we briefly explain how to formalize these by using an
example of a symmetric key encryption. For the detail of ProVerif, please see [5].

1. Define communication paths and cryptographic primitives

– Type designates types representing keys, random numbers, etc.

type key (*types of private keys in symmetric key encryption

*)

type coins (*type of random numbers*)

– Free name defines channel name.

free c:channel (*Public communication channel*)

free c:channel [private] (*Secret communication channel*)

– Constructors defines cryptographic primitives such as encryption func-
tions, etc.

Verification of LINE Encryption Version 1.0 Using ProVerif 163

fun senc(bitstring,key):bitstring (*function of symmetric

key encryption*)

– Destructor specifies conditions of functions.

reduc forall m:bitstring,k:key;sdec(senc(m,k),k)=m. (*

decryption condition of symmetric key encryption*)

2. Define participant behaviors within the cryptographic protocol

out(c,A) (*send the message A to channel c*)

in(c,B) (*receive the message B from channel c*)

3. Define public information, confidential information held in advance by each
participant, and give it as input to participants.

new r:coins (*generate a random number*)

((!clientA)|(!serverB)) (*parallel execution of client and server*)

A variety of properties can be analyzed by ProVerif, such as the correspon-
dence assertions (i.e., whether event B occurred before the event A occurred),
the reachability (i.e., whether a specific event occurred), and the observation
equivalence (i.e., whether is able to analyze two processes that perform different
computations but have the same run result).

3 Formalization of LINE encryption

In this section, we give our formalization of LINE Encryption in ProVerif.

3.1 Formalization of TEP

Rules for Signature. Define types of signature key and verification key
required for digital signature, furthermore, the function spk that creates a ver-
ification key from the signing key. When a plaintext (bitstring) and a signing
key are inputted, the function sign generates a signature. When a signature
and a verification key are inputted, if the verification result is correct, define the
checksign outputs true.

type signpublickey. (*verification key *)

type signprivatekey. (*signing key *)

fun spk(signprivatekey):signpublickey. (*generate a verification

key *)

fun sign(bitstring,signprivatekey):bitstring. (*generate a

signature *)

reduc forall m:bitstring,sprikey:signprivatekey;

checksign(sign(m,sprikey),spk(sprikey),m)=true. (*verify signature

*)

164 C. Shi and K. Yoneyama

Rules for ECDH Key Exchange. Define types of the generator, exponents
and the base point, and functions Ggen to convert the base point to the generator
and sca to compute the scalar multiplication, and commutativity by equation.

type G. (*type of generator *)

type scalar. (*type of scalar *)

type basis. (*type of base points *)

fun Ggen(basis):G. (*convert base point to generator *)

fun sca(scalar,G):G. (*scalar multiplication *)

equation forall a:scalar, b:scalar, P:basis;

sca(a,sca(b,Ggen(P)))=sca(b,sca(a,Ggen(P))). (*commutativity*)

Ruless for XOR. Define the function xor to compute the XOR of two inputs,
and the property of XOR by six equation.

fun xor(bitstring,bitstring):bitstring.

equation forall x:bitstring, y:bitstring; xor(xor(x,y),y)=x.

equation forall x:bitstring; xor(x,xor(x,x))=x.

equation forall x:bitstring; xor(xor(x,x),x)=x.

equation forall x:bitstring, y:bitstring; xor(y,xor(x,x))=y.

equation forall x:bitstring, y:bitstring; xor(xor(x,y),xor(x,x))=

xor(x,y).

equation forall x:bitstring, y:bitstring; xor(xor(x,y),xor(y,y))=

xor(x,y).

Parameter. Define key type, random number type, version type, and fixed
values and word “legy temp key” as const.

type key.

type iv.

type coins.

type version.

const legy:bitstring[data].

const len:bitstring[data].

const num:bitstring[data].

const marker:bitstring[data].

Rules for AEAD. Define the function senc to encrypt a plaintext and the
function sdec to decrypt a ciphertext, and the relationship between senc and
sdec by reduc.

fun senc(key,coins,bitstring):bitstring. (*encryption function *)

reduc forall x:bitstring, k:key, r:coins;

sdec(k,r,senc(k,r,x))=x.(*decryption function *)

Verification of LINE Encryption Version 1.0 Using ProVerif 165

Declaration of Channel and Secret. Define the channel and secret informa-
tion by free.

free c:channel. (*the channel *)

free appdata1:bitstring[private]. (*the client’s secret information

*)

free appdata2:bitstring[private]. (*the server’s secret information

*)

Type-Converting Functions. Define implicit functions to convert types for
type adjustments of inputs of functions.

fun HKDFex(bitstring,G):bitstring. (*HKDFex*)

fun HKDFexp(bitstring,bitstring,bitstring):bitstring. (*HKDFexp*)

fun Ggen3(bitstring):key. (*convert bitstring type to key type *)

fun Ggen4(bitstring):iv. (*convert bitstring type to iv type *)

fun Hash(bitstring):bitstring. (*hash function *)

fun Ggen6(bitstring):coins. (*convert bitstring type to randam type

*)

fun Ggen7(iv):bitstring. (*convert iv type to bitstring type *)

Verification of Forward Secrecy. Use reachability to verify forward secrecy.
The attacker is passive, but he/she can obtain all static private keys of
the server. Forward secrecy for client’s (resp. server’s) data require that the
attacker cannot reach client’s (resp. server’s) application data. If the proto-
col has forward secrecy for client’s (resp. server’s) data, attacker(appdata1)
(resp. attacker(appdata2)) will not happen. In other words, appdata1 (resp.
appdata2) cannot be obtained by the passive attacker.

set attacker = passive.

query attacker(appdata1).

query attacker(appdata2).

Verification of Server Authenticity. Using the correspondence assertions,
we can verify authenticity for clients. We define event Client1 corresponding to
encrypting Client’s secret message, and event Server1 corresponding to decrypt-
ing the secret message. If Server1 occurs, then Client1 must occur before
Server1. It corresponds to client authenticity. Also, we define event Server2
corresponding to accepting digital signature verification, and event Client2 cor-
responding to completion of the session. If Client2 occurs, then Server2 must
occur before Client2. It corresponds to server authenticity.

event Client1(key,coins).

event Server1(key,coins).

event Client2(key,iv).

event Server2(key,iv).

query x:key, n:coins;

166 C. Shi and K. Yoneyama

event(Server1(x,n))==>event(Client1(x,n)).

query x:key, n:iv;

event(Client2(x,n))==>event(Server2(x,n)).

Client Subprocess. Define client’s actions.

let Client(ver:version,J:basis,stapu:G,spuk:signpublickey)=

new cinitpr:scalar;

new cnon:coins; (*Generate random number of client*)

let cinitpu=sca(cinitpr,Ggen(J))in

let sharedtemp=sca(cinitpr,stapu)in

let MStemp=HKDFex((cinitpu,cnon),sharedtemp)in (*MStemp*)

let keyivtemp=HKDFexp(MStemp,legy,len)in

let keytemp=Ggen3(breakf(keyivtemp))in (*keytemp*)

let ivtemp=Ggen4(breakb(keyivtemp))in (*ivtemp*)

let nonce=Ggen6(xor((marker,num),Ggen7(ivtemp)))in

new cpr:scalar;

let cpu=sca(cpr,Ggen(J))in

let dataenc=senc(keytemp,nonce,(cpu,appdata1))in (*dataenc*)

event Client1(keytemp,nonce);

out(c,(ver,cinitpu,cnon,dataenc));

in(c,(spu’:G,srand:coins,statesign’:bitstring,dataenc1’:bitstring))

;

let statesign1=Hash((cpu,cnon,spu’,srand))in

if checksign(statesign’,spuk,statesign1)then (*Detect signature *)

let sharedFS’=sca(cpr,spu’)in

let MSFS’=HKDFex((cnon,srand),sharedFS’)in

let keyivFS’=HKDFexp(MSFS’,legy,len)in

let keyFS’=Ggen3(breakf(keyivFS’))in

let ivFS’=Ggen4(breakb(keyivFS’))in

event Client2(keyFS’,ivFS’).

Server Subprocess. Define server’s actions.

let Server(stapr:scalar,stapu:G,J:basis,sprk:signprivatekey)=

in(c,(sver:version,cinitpu’:G,crand:coins,dataenc’:bitstring));

let sharedtemp’=sca(stapr,cinitpu’)in (*shardtemp*)

let MStemp’=HKDFex((cinitpu’,crand),sharedtemp’)in (*MStemp*)

let keyivtemp’=HKDFexp(MStemp’,legy,len)in (*keyivtemp*)

let keytemp’=Ggen3(breakf(keyivtemp’))in (*keytemp*)

let ivtemp’=Ggen4(breakb(keyivtemp’))in (*ivtemp*)

let nonce1=Ggen6(xor((marker,num),Ggen7(ivtemp’)))in

let (cpu’:G,appdata1’:bitstring)=sdec(keytemp’,nonce1,dataenc’)in

(*cpu&app data*)

new snon:coins; (*Generate random number of server*)

new spr:scalar;

let sharedFS=sca(spr,cpu’)in

let MSFS=HKDFex((crand,snon),sharedFS)in (*MSFS*)

Verification of LINE Encryption Version 1.0 Using ProVerif 167

let keyivFS=HKDFexp(MSFS,legy,len)in

let keyFS=Ggen3(breakf(keyivFS))in (*keyFS*)

let ivFS=Ggen4(breakb(keyivFS))in (*ivFS*)

let spu=sca(spr,Ggen(J))in

let state=Hash((cpu’,crand,spu,snon))in (*state*)

let statesign=sign(state,sprk)in (*signature *)

let nonce2=Ggen6(xor((marker,num),Ggen7(ivFS)))in

let dataenc1=senc(keyFS,nonce2,appdata2)in (*dataenc*)

event Server1(keytemp’,nonce1);

event Server2(keyFS,ivFS);

out(c,(spu,snon,statesign,dataenc1)).

Main Process for Verifying Forward Secrecy. Generate the version ver,
base point J, the ECDH private key stapr, and the signing key sprk. The ECDH
public key stapu and public key of signature spuk are exposed in channel c. The
client subprocess and the server subprocess are executed in parallel in phase 0.
In order to verify forward secrecy, the ECDH private key stapr and the signing
key sprk will be exposed in phase 1.

process

new ver:version;

new J:basis;

new stapr:scalar;

new sprk:signprivatekey;

let stapu=sca(stapr,Ggen(J))in out(c,stapu);

let spuk=spk(sprk)in out(c,spuk);

(((!Client(ver,J,stapu,spuk))|(!Server(stapr,stapu,J,sprk)))|phase

1;out(c,(stapr,sprk)))

3.2 Formalization of E2EEP

Rules for ECDH Key Exchange. The process is described in Sect. 3.1, and
we omit it.

Rules for AES-CBC. Define the function senccbc to encrypt a plaintext
and the function sdeccbc to decrypt a ciphertext, and the relationship between
senccbc and sdeccbc by reduc.

type key.

type iv. (*type of keys *)

fun senccbc(bitstring,key,iv):bitstring. (*encryption function *)

reduc forall m:bitstring, k:key, i:iv ; sdeccbc(senccbc(m,k,i),k,i)

=m. (*decryption function *)

168 C. Shi and K. Yoneyama

Rules for AES-ECB. Define the function sencecb to encrypt a plaintext
and the function sdececb to decrypt a ciphertext, and the relationship between
sencecb and sdececb by reduc.

fun sencecb(bitstring,key):bitstring. (*encryption function *)

reduc forall m:bitstring, k:key; sdececb(sencecb(m,k),k)=m. (*

decryption function *)

Parameter. Define random number type, version type and fixed words “Key”
and “IV” by const.

type coins.

type version.

type ID.

const Key:bitstring[data].

const IV:bitstring[data].

Rules for XOR. The process is described in Sect. 3.1, and we omit it.

Declaration of Channel and Secret. Define the channel and secret
information.

free c:channel. (*channel *)

free M:bitstring[private]. (*client’s secret information *)

Hash Function and Type-Converting Functions. Define the hash func-
tion and implicit functions to convert types for type adjustments of inputs of
functions.

fun Hash(bitstring):bitstring. (*hash function *)

fun Ggen1(G,coins,bitstring):bitstring. (*G, coins, bitstring to

bitstring type *)

fun Ggen2(bitstring):key. (*convert bitstring type to key type *)

fun Ggen3(bitstring):iv. (*convert bitstring type to iv type *)

Verification of Secrecy and Authenticity for Replay Attack. Using the
correspondence assertions, we can verify authenticity for clients. We define event
Client1 which Client1 encrypts Client1’s secret message, and event Client2
which Client2 decrypts Client 1’s secret message. If Client2 occurs, then
Client1 must occur only once before Client2. In order to verify replay attack,
we use injective correspondence assertions inj-event to capture the one-to-one
relationship. If it is a non-one-to-one relationship, it may happen that Client2
is executed twice or more, but Client1 is executed only once. In other words, it
corresponds to a replay attack.

Verification of LINE Encryption Version 1.0 Using ProVerif 169

query attacker(M).

event Client1(key,iv).

event Client2(key,iv).

query x:key, i:iv;

inj-event(Client2(x,i))==>inj-event(Client1(x,i)).

Client1 Subprocess for Replay Attack. Define client1’s actions.

let Client1(ver:version,c1cpr:scalar,c1cpu:G,c2cpu:G,J:basis,c1id:

ID,c2id:ID)=

in(c,(c2cpu’:G));

if c2cpu=c2cpu’ then

new salt:coins;

let SharedSecret=sca(c1cpr,c2cpu’)in

let Ken=Ggen2(Hash((SharedSecret,salt,Key)))in

let IVpre=Hash((SharedSecret,salt,IV))in

let IVen=Ggen3(xor(breakf(IVpre),breakb(IVpre)))in

event Client1(Ken,IVen);

let C=senccbc(M,Ken,IVen)in

let MACp=Hash(C)in

let MACe=sencecb(xor(breakf(MACp),breakb(MACp)),Ken)in

out(c,(ver,salt,C,MACe,c1id,c2id)).

Client2 Subprocess for Replay Attack. Define client2’s actions.

let Client2(ver:version,c2cpr:scalar,c2cpu:G,c1cpu:G,J:basis,c2id:

ID)=

out(c,(c2cpu));

in(c,(ver’:version,ran:coins,C’:bitstring,mac:bitstring,id1:ID,id2:

ID));

if c2id=id2 then

let SharedSecret’=sca(c2cpr,c1cpu)in

let Ken’=Ggen2(Hash((SharedSecret’,ran,Key)))in

let MACp’=Hash(C’)in

let MACe’=sencecb(xor(breakf(MACp’),breakb(MACp’)),Ken’)in

if mac=MACe’ then

let IVpre’=Hash((SharedSecret’,ran,IV))in

let IVen’=Ggen3(xor(breakf(IVpre’),breakb(IVpre’)))in

let M’=sdeccbc(C’,Ken’,IVen’)in

event Client2(Ken’,IVen’).

Main Process for Replay Attack. Generate the version ver, base point J,
Client1’s ECDH private key c1cpr and client2’s ECDH private key c2cpr. The
Client1’s ECDH public key c1cpu and client2’s ECDH public key c2cpu are
exposed in channel c. Client1 subprocess and Client2 subprocess are executed
in parallel.

170 C. Shi and K. Yoneyama

process

new ver:version;

new J:basis;

new c1cpr:scalar;

new c2cpr:scalar;

new c1id:ID;

new c2id:ID;

let c1cpu=sca(c1cpr,Ggen(J))in out(c,c1cpu);

let c2cpu=sca(c2cpr,Ggen(J))in out(c,c2cpu);

((!!Client1(ver,c1cpr,c1cpu,c2cpu,J,c1id,c2id))|(!Client2(ver,c2cpr

,c2cpu,c1cpu,J,c2id)))

Verification of Secrecy and Authenticity for Spoofing Attack. Using the
correspondence assertions, we can verify authenticity for clients. Event accept,
which the client1 believes that it has accepted to run the protocol with the client2
and the correct sender key ID. Event term, which the client2 believes that it has
terminated a protocol run with the client1 with the correct sender key ID. When
a spoofing attack occurs, a fake sender key ID is used by an attacker and the
correspondence assertions cannot be correct execution.

query attacker(M).

event accept(ID).

event term(ID).

query i:ID;

event(term(i))==>event(accept(i)).

Client1 Subprocess for Spoofing Attack. Define client1’s actions.

let Client1(ver:version,c1cpr:scalar,c1cpu:G,c2cpu:G,J:basis,c1id:

ID)=

in(c,(c2cpu’:G,c2id’:ID));

if c2cpu=c2cpu’ then

event accept(c1id);

new salt:coins;

let SharedSecret=sca(c1cpr,c2cpu’)in

let Ken=Ggen2(Hash((SharedSecret,salt,Key)))in

let IVpre=Hash((SharedSecret,salt,IV))in

let IVen=Ggen3(xor(breakf(IVpre),breakb(IVpre)))in

let C=senccbc(M,Ken,IVen)in

let MACp=Hash(C)in

let MACe=sencecb(xor(breakf(MACp),breakb(MACp)),Ken)in

out(c,(ver,salt,C,MACe,c1id,c2id’)).

Client2 Subprocess for Spoofing Attack. Define client2’s actions.

let Client2(ver:version,c2cpr:scalar,c2cpu:G,c1cpu:G,J:basis,c2id:

ID)=

Verification of LINE Encryption Version 1.0 Using ProVerif 171

Table 1. Verification results for TEP

Secrecy of app. data Forward secrecy of app. data Server

Client’s data Server’s data Client’s data Server’s data Authenticity

� � × � �
� means that no attack is found. × means that an attack is found.

Table 2. Verification results for E2EEP

Secrecy of message Authenticity

Reply attack Spoofing attack

� × ×
� means that no attack is found. × means that an attack
is found.

out(c,(c2cpu,c2id));

in(c,(ver’:version,ran:coins,C’:bitstring,mac:bitstring,id1:ID,id2:

ID));

if c2id=id2 then

let SharedSecret’=sca(c2cpr,c1cpu)in

let Ken’=Ggen2(Hash((SharedSecret’,ran,Key)))in

let MACp’=Hash(C’)in

let MACe’=sencecb(xor(breakf(MACp’),breakb(MACp’)),Ken’)in

if mac=MACe’ then

let IVpre’=Hash((SharedSecret’,ran,IV))in

let IVen’=Ggen3(xor(breakf(IVpre’),breakb(IVpre’)))in

let M’=sdeccbc(C’,Ken’,IVen’)in

event term(id1).

Main Process for Spoofing Attack. Generate the version ver, base point
J, Client1’s ECDH private key c1cpr, client2’s ECDH private key c2cpr, the
sender key ID c1id and the recipient key ID c2id. The Client1’s ECDH public
key c1cpu, client2’s ECDH public key c2cpu , c1id and c2id are exposed in
channel c. Client1 subprocess and Client2 subprocess are executed in parallel.

process

new ver:version;

new J:basis;

new c1cpr:scalar;

new c2cpr:scalar;

new c1id:ID;

new c2id:ID;

out(c,c2id);

out(c,c1id);

let c1cpu=sca(c1cpr,Ggen(J))in out(c,c1cpu);

let c2cpu=sca(c2cpr,Ggen(J))in out(c,c2cpu);

((!Client1(ver,c1cpr,c1cpu,c2cpu,J,c1id))|(!Client2(ver,c2cpr,c2cpu

,c1cpu,J,c2id)))

172 C. Shi and K. Yoneyama

4 Verification Results

In this section, we show the verification results. To summarize, we obtain the
following verification results as in Table 1 for TEP and Table 2 for E2EEP. Next,
we describe the found attack against forward secrecy for client’s data of TEP,
and the found reply attack and spoofing attack for E2EEP.

4.1 Attack to Break Forward Secrecy for Client’s Data of TEP

1. An attacker who monitors channel c can knows the version, initial ephemeral
ECDH public key c initpublic, clint nonce cnonce and ciphertext dataenc,
which the client sends to the server.

2. The attacker obtains the static private keys staticprivate and signprivate.
3. By using c initpublic and staticprivate, the attacker generates temporary

transport key keytemp and initialization vector (IV) ivtemp.
4. By using ivtemp the attacker generates nonce1.
5. By using nonce1 and keytemp, the attacker decrypts appdataclient.

Therefore, the attacker can obtain application data from the client by using the
static private key of the server without interrupting the communication between
the client and the server. It corresponds to breaking forward secrecy for client’s
data.

4.2 Replay Attack to E2EEP

1. An attacker can knows the static public information that the sender key
ID sender key ID, ECDH public key keyuser1

public, the recipient key ID
recipient key ID and ECDH public key keyuser2

public.
2. The attacker starts two sessions by initiating client2, and receives two ECDH

public key keyuser2
public.

3. The attacker sends the client2’s ECDH public key keyuser2
public to client1.

4. Client1 returns version, content type, salt, C, MAC, sender key ID
and recipient key ID to the attacker.

5. The attacker sends version, content type, salt, C, MAC, sender key ID
and recipient key ID to client2 in the first session.

6. The attacker sends version, content type, salt, C, MAC, sender key ID
and recipient key ID send to client2 in the second session.

Since MAC is valid both for the first session and the second session, client2
completes both sessions. It corresponds to the reply attack.

4.3 Spoofing Attack to E2EEP

1. An attacker can know the static information that the sender key ID sender
key ID, ECDH public key keyuser1

public, the recipient key ID recipient
key ID and ECDH public key keyuser2

public.

Verification of LINE Encryption Version 1.0 Using ProVerif 173

2. The attacker starts a session by initiating client2, and receives ECDH public
key keyuser2

public.
3. The attacker randomly generates a fake sender key ID sender key ID’.
4. The attacker sends client2’s ECDH public key keyuser2

public and the recipient
key ID recipient key ID to client1.

5. Client1 returns version, content type, salt, C, MAC, sender key ID
sender key ID and recipient key ID recipient key ID to the attacker.

6. The attacker sends version, content type, salt, C, MAC, the fake sender
key ID sender key ID’ and recipient key ID recipient key ID to client2.

Since MAC does not depend on the sender key ID, client2 accepts MAC if the
sender key ID is replaced. Hence, the attacker can impersonate the fake sender
to client2. It corresponds to the spoofing attack.

5 Summary

We verified the security of LINE Encryption (Version 1.0), (i.e., the TEP and
the E2EEP) by ProVerif. In LINE documents [1,2], it is claimed that the TEP
satisfies forward secrecy (i.e., even if the static private key is leaked, security of
encrypted application data before leakage is guaranteed). However, it is not clear
if both client’s and server’s data must be protected. We clarify actual forward
secrecy of the TEP by showing an attack to break forward secrecy for client’s
data. In addition, we found a replay attack and a spoofing attack of E2EEP.

Since all known attacks (the reply attack and the spoofing attack) and a
new attack (breaking forward secrecy for client’s data) are found, our result
shows usefulness of ProVerif to verify security of messaging protocols like LINE.
Finally, we note that the found attack for forward secrecy for client’s data is not
serious because the LINE security team says that client’s data does not contain
any sensitive information in the current implementation of LINE encryption.
However, it may be potential vulnerability if an engineer use the TEP for another
implementation.

References

1. LINE Encryption Overview (Ver. 1.0). https://scdn.line-apps.com/stf/linecorp/en/
csr/line-encryption-whitepaper-ver1.0.pdf

2. LINE Encryption Status Report, 24 August 2018. https://linecorp.com/en/
security/encryption report

3. Espinoza, A.M., Tolley, W.J., Crandall, J.R., Crete-Nishihata, M., Hilts, A.: Alice
and Bob, who the FOCI are they?: analysis of end-to-end encryption in the LINE
messaging application. In: FOCI @ USENIX Security Symposium (2017)

4. Isobe, T., Minematsu, K.: Spoofing attack and forgery attack against LINE’s end-
to-end encryption. In: SCIS 2018 (2018). (in Japanese)

5. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 1.98. http://prosecco.
gforge.inria.fr/personal/bblanche/proverif

6. McGrew, D., Viega, J.: The Galois/Counter Mode of Operation (GCM).
Manuscript, May 2005. NIST website

https://scdn.line-apps.com/stf/linecorp/en/csr/line-encryption-whitepaper-ver1.0.pdf
https://scdn.line-apps.com/stf/linecorp/en/csr/line-encryption-whitepaper-ver1.0.pdf
https://linecorp.com/en/security/encryption_report
https://linecorp.com/en/security/encryption_report
http://prosecco.gforge.inria.fr/personal/bblanche/proverif
http://prosecco.gforge.inria.fr/personal/bblanche/proverif

The Anatomy of the HIPAA Privacy
Rule: A Risk-Based Approach

as a Remedy for Privacy-Preserving
Data Sharing

Makoto Iguchi(B), Taro Uematsu, and Tatsuro Fujii

Kii Corporation, Tokyo 107-0052, Japan
{makoto.iguchi,taro.uematsu,tatsuro.fujii}@kii.com

Abstract. This paper explores the effectiveness of a risk-based approach
methodology in constructing systematic standards for privacy-conscious
data sharing and disclosure. We consider the HIPAA (Health Insurance
Portability and Accountability Act of 1996) Privacy Rule as an example
and show that the data disclosure methods defined in the HIPAA Privacy
Rule are well-constituted, by assessing the privacy risks of each disclosure
method. We further explore factors that contribute to the success of
the HIPAA Privacy Rule and discuss how we can leverage these factors
as a reference for constructing privacy-conscious and systematic data
disclosure rules and regulations in other domains.

1 Introduction

With the growth of the digital economy, the sharing of data among multiple
parties has become common practice. Data sharing is traditionally performed
among parties within the same organization, but now we are seeing data shar-
ing activities being performed among different organizations, and even with the
public.

Although such a data sharing model enables us to utilize data to its fullest
extent, it introduces new risks. This is particularly true when the shared tar-
get consists of personal data. Appropriate safety measures, such as data de-
identification and contract signing, need to be applied in order to prevent pos-
sible privacy infringements. One problem is that appropriate safety measures
are often not apparent. For example, some existing regulations state that data
must be de-identified before being shared with the public, but an actual method
for de-identifying the data is not explicitly defined in the regulations. To enjoy
the benefits of data sharing, it is essential to introduce some straightforward
standards with concrete definitions of the required safety measures.

The goal of this paper is to demonstrate that a risk-based approach method-
ology, which is sometimes regarded as a case-by-case approach, is useful for
constructing straightforward rules and standards for realizing privacy-conscious

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 174–189, 2018.
https://doi.org/10.1007/978-3-319-97916-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_12&domain=pdf

The Anatomy of the HIPAA Privacy Rule 175

data sharing. We will briefly introduce existing risk-based approaches in the con-
text of data sharing in Sect. 2. In Sect. 3, we will present a simplified risk-based
approach framework. We will employ this framework in Sect. 4 to analyze the
HIPAA (Health Insurance Portability and Accountability Act of 1996) Privacy
Rule and clarify how the risk-based approach contributes to the construction of
easy-to-follow data sharing methodologies. Section 5 explores what can be learnt
from the HIPAA Privacy Rule analysis, and finally Sect. 6 concludes the paper.

2 Related Work

Applying the concept of a risk-based approach in the domain of data secu-
rity and privacy protection assessment is a well-known technique. Various risk-
based approach methodologies for assessing security risks to data’s confidential-
ity, integrity, and availability have been proposed by many parties, including
standard-setting bodies like the International Organization for Standardization
(ISO) [1], non-regulatory agencies like the National Institute of Standards and
Technology (NIST) [2], and online communities such as the Open Web Applica-
tion Security Project (OWASP) [3].

As the sharing of data among different organizations and with the public has
become more popular, the risk-based approach has been extended for assessing
the privacy risks of data that are intentionally disclosed externally [4]. The pro-
posed methodologies include a framework issued by the Commission Nationale
de l’Informatique et des Libertés (CNIL) [5], a code of practice issued by the
Information Commissioner’s Office (ICO) [6], guidelines published by the ISO [7]
and the Information and Privacy Commissioner of Ontario [8], and a study con-
ducted by El Emam [9].

The main contribution of this paper is not to introduce a new risk-based
approach. We do propose a risk-based approach framework for assessing data
privacy risks in this paper, but rather the framework is merely presented as a
tool for analyzing the HIPAA Privacy Rule. The originality of this paper lies
in the re-evaluation of the HIPAA Privacy Rule in the context of a risk-based
approach and in the extraction of factors that contribute to the construction of
easy-to-follow safety rules and standards.

3 Risk-Based Approach Framework

In this section, we will formulate a risk-based approach framework for quantify-
ing privacy risks of shared data. The framework is later employed in Sect. 4 to
analyze the HIPAA Privacy Rule.

As previously mentioned in Sect. 2, applying a risk-based approach to assess-
ing data privacy risks is a well-known technique. Various risk-based methods
have been proposed for evaluating data security and privacy risks. Although
these all aim towards the same goal, their assessment approaches are slightly
different.

176 M. Iguchi et al.

We study existing methodologies and formulate a simplified risk-based app-
roach framework based on this study. In this framework, data privacy risks are
assessed through the following steps:

Step 1: Clarify a privacy risk.
Step 2: Assess the magnitude of the risk as the severity level.
Step 3: Assess the feasibility of the risk occurring as the likelihood level.
Step 4: Assess the overall data privacy risk based on its severity and likelihood

levels.

3.1 Step 1: Clarifying a Privacy Risk

The first step is to clarify a data privacy risk that needs to be assessed. In this
paper, we define a data privacy risk as the probability of the shared data being
compromised and resulting in harm (i.e., physical, material, or moral damages)
to the data subject. The clarification step involves the analysis of “how” the
shared data could be compromised and “who” could compromise the shared
data.

The analysis of “how” is performed by predicting how malicious data recip-
ients will compromise the data and infringe on the privacy of the data subject.
As explored in various studies [10–13], malicious data recipients compromise
data by (1) linking the data with other data, (2) re-identifying an original data
subject, and (3) misusing the data to harm the data subject. The result of the
analysis is used to score the data’s severity level in Step 2.

The analysis of “who” is performed by evaluating the data recipients and
how the data sharing is performed. Factors such as the attributes of the data
recipients and method used for sharing the data should be taken into consider-
ation. The result of this analysis is used to score the data’s likelihood level in
Step 3.

3.2 Step 2: Assessing Severity Level

The severity level indicates the extent of damage that will be triggered if the
shared data is compromised. This is determined by the data’s identification and
prejudicial levels.

Identification Level. The identification level evaluates how easy it is to re-
identify the data subject. If the re-identification is easy, we consider the data to
be high risk and set a high score on the data’s identification level.

Some of the factors that need to be addressed when assessing the identifica-
tion level are as follows:

– The amount of personally identifiable information (PII) in the shared data:
Identifying a data subject from data containing many PII items (e.g., first

The Anatomy of the HIPAA Privacy Rule 177

name, last name, and birthday) is usually considered to be easier than iden-
tifying a subject from data with little PII (e.g., first name only). The iden-
tification level of the former type of data should thus be scored higher than
that of the latter type.

– The availability of auxiliary data: If there are auxiliary data that are easily
obtainable and can be linked to the shared data, the risk of the data subject
being re-identified could be higher than when such data are not available.

– De-identification techniques applied to shared data: Various techniques such
as randomization, generalization, and pseudonymization have been proposed
for reducing the re-identification risk of data [14,15]. If any of these tech-
niques are applied to shared data, this should be incorporated in assessing
the identification level.

In this paper, we use the following simple three-grade evaluation scale for
the identification level.

– HIGH: Identifying the data subject is extremely easy.
– MEDIUM: Identifying the data subject is not easy, but not impossible.
– LOW: Identifying the data subject is virtually impossible.

Prejudicial Level. The prejudicial level evaluates how much damage would be
caused if the shared data is compromised. For example, the risk for data that
contains a customer’s credit card number together with the security code should
be assessed as higher than that of data containing only the customer’s email
address. The prejudicial level of the former type of data should thus be scored
higher than that of the latter type.

When assessing the prejudicial level, the following damage type should be
addressed [5]:

– Physical damage, such as loss of amenity, disfigurement, or economic loss
related to physical integrity.

– Material damage, such as loss incurred or lost revenue concerning a data
subject’s assets.

– Moral damage, such as physical or emotional suffering.

As for the severity level, we use the following simple three-grade evaluation
scale for the prejudicial level.

– HIGH: The data subject may encounter significant consequences, which they
may not overcome (e.g., loss of life).

– MEDIUM: The data subject may encounter some inconveniences, which they
should be able to overcome with some difficulties (e.g., financial loss).

– LOW: The data subject will not be affected or may encounter a few negligible
inconveniences, which they will overcome with no problem (e.g., receiving
SPAM messages).

178 M. Iguchi et al.

Fig. 1. Severity level matrix

Determining the Severity Level. The severity level of shared data is deter-
mined by the data’s identification and prejudicial levels using the matrix shown
in Fig. 1.

As shown in Fig. 1, a HIGH identification or prejudicial level score alone does
not yield a HIGH severity level. For example, the data “Mr. John Smith (age xx)
who lives in YYY drinks a glass of water every day” has a HIGH identification
level score, but its severity level is LOW because the prejudicial level score is
LOW. Likewise, the data “A woman who lives somewhere in Japan will pass
away if she takes a drug X after drinking some alcohol” has a HIGH prejudicial
level score, but its severity level is LOW because the identification level score is
LOW.

The severity level assessed here will be used in Step 4 when we evaluate the
overall data privacy risk.

3.3 Step 3: Assessing Likelihood Level

The likelihood level indicates the probability of shared data being compromised.
The likelihood level is determined by the data’s threat and vulnerability levels.

Threat Level. The threat level evaluates the probability of data recipients
attempting to compromise shared data.

To assess the threat level, the following attributes of the data recipients
should be taken into account:

– Size: If the data is disclosed to a large number of people, then the probabil-
ity of the shared data being compromised is higher than when the data is
disclosed to a handful of people.

The Anatomy of the HIPAA Privacy Rule 179

– Motive: If the data recipients have some particular motivation to compromise
the shared data, then this fact must be considered when assessing the threat
level.

– Trust: If the trustworthiness of the data recipient is questionable for certain
reasons, then the threat level should be set as high.

Again, we use the following simple three-grade evaluation scale for the threat
level.

– HIGH: The chance of data recipients attempting to compromise the shared
data is high.

– MEDIUM: The chance of data recipients attempting to compromise the
shared data is remote.

– LOW: The chance of data recipients attempting to compromise the shared
data is low.

Vulnerability Level. The vulnerability level scores how weak the shared data
is. In other words, the vulnerability level quantifies the levels of safeguards imple-
mented for preventing the occurrence of data compromise.

The vulnerability level can be evaluated by checking how the following safe-
guards are implemented.

– Administrative safeguards: The policies and procedures implemented to pre-
vent data privacy infringement (e.g., documentation, training, and contract-
ing).

– Physical safeguards: The control to ensure that the shared data is physically
protected (e.g., locating a secure zone).

– Technical safeguards: The technology and policies implemented to protect
data privacy (e.g., encrypting and auditing).

The vulnerability level can also be assessed by checking the model employed
to disclose the data, as described by Elliot et al. [16]:

– Open access (unrestricted access): Highly vulnerable data disclosure model,
in which anyone can access the data. No restrictions are applied on what the
recipients can do with the data.

– Delivered access: A restricted form of data disclosure, in which access to the
data is restricted to those recipients who have agreed to specific conditions
concerning access to the data.

– On-site safe settings: More restricted form of data disclosure, in which the
data is only accessible from a particular location.

– Virtual access: A date disclosure model supporting limited “remote” access.
For example, analysis servers allow outsiders to analyze the data, while not
allowing them to access the original data directly.

As for the other levels, we use the following simple three-grade evaluation
scale for the vulnerability level.

180 M. Iguchi et al.

– HIGH: The current safeguards are insufficient.
– MEDIUM: The current safeguards are working, but there is some room for

improvement.
– LOW: The current safeguards are sufficient.

Determining the Likelihood Level. The likelihood level of the shared data is
determined by the data’s threat and vulnerability levels using the matrix shown
in Fig. 2.

Fig. 2. Likelihood level matrix

As shown in Fig. 2, a HIGH threat or vulnerability level score alone does not
yield a HIGH likelihood level. Even if the data recipients are not trustworthy (a
HIGH threat level score), we can keep the likelihood level LOW by implementing
strong safeguards (a LOW vulnerability level score). Likewise, implementing few
safeguards (a HIGH vulnerability level score) might be acceptable if the data
recipients are trustworthy (a LOW threat level score).

The likelihood level assessed here will be used in Step 4 when we evaluate
the overall data privacy risk.

3.4 Step 4: Assessing Overall Data Privacy Risk

Finally, we assess the privacy risk of the data using a combination of the severity
and likelihood levels. Figure 3 presents a matrix for combining the severity and
likelihood levels.

The overall data privacy risk is to be interpreted as follows:

– If the data privacy risk is LOW, this represents an ideal situation.
– If the data privacy risk is MEDIUM, the situation is acceptable. Should we

need to reduce the privacy risk to LOW, we can do so by improving the
severity and/or likelihood levels if scored as MEDIUM.

The Anatomy of the HIPAA Privacy Rule 181

– If the data privacy risk is HIGH or CRITICAL, this is not acceptable. We
must improve the severity and/or likelihood levels if scored as HIGH.

To improve the severity level, we need to reduce the data’s identification level.
For instance, we should explore whether we can apply some de-identification
techniques and lower the risk of re-identification.

Fig. 3. Overall risk matrix

To improve the likelihood level, we need to reduce the data’s vulnerabil-
ity level. For example, the applied safeguards should be revisited to bring the
likelihood level down to the acceptable level.

4 Analysis of the HIPAA Privacy Rule Using the
Risk-Based Approach

In this section, we analyze the HIPAA Privacy Rule using our risk-based app-
roach framework in order to clarify the effectiveness of the risk-based approach
in constructing a straightforward data sharing method. We will briefly overview
the HIPAA Privacy Rule and three data sharing methods that are defined in
the Privacy Rule. Then, we will analyze the HIPAA Privacy Rule using our risk-
based approach framework and describe how the three data sharing methods
balance the data severity and likelihood levels to keep the data privacy risks at
an acceptable level.

4.1 HIPAA Overview

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) [17]
is a set of regulations in the United States for handling protected health informa-
tion securely and efficiently. The HIPAA, together with its expansion in 2009 by

182 M. Iguchi et al.

the Health Information Technology for Economic and Clinical Health (HITECH)
Act, establishes a set of standards for protecting the security and privacy of pro-
tected health information. There are pros and cons on the HIPAA, but some
studies report that its primary effectiveness is acknowledged even by those who
are against the regulations [18].

The HIPAA standards apply to covered entities and business associates (45
CFR §160.103).

– Covered Entity: Health care provider (e.g., doctor or pharmacy), health plan
(e.g., health insurance company), or health care clearinghouse (e.g., billing
house or community health information system).

– Business Associate: Organization or person that provides data transmission
services concerning protected health information to a covered entity. For
example, a cloud service provider that creates, receives, maintains, or trans-
mits protected health information on behalf of a covered entity is explicitly
defined as a business associate [19].

There are two primary rules covered in HIPAA: The Security Rule and Pri-
vacy Rule. The Security Rule sets national standards for protecting the confi-
dentiality, integrity, and availability of protected health data, while the Privacy
Rule sets national standards for protecting data subjects’ privacy. The method-
ologies for data sharing are covered in the Privacy Rule, and so we will mainly
focus on this.

4.2 Data Disclosure Method Covered in the HIPAA Privacy Rule

The HIPAA Privacy Rule defines the following three methods of protected health
information disclosure. For each method, the HIPAA Privacy Rule defines the
specification of the shared data set and the required safeguards that need to be
applied to the data recipients [20].

Disclosure of Protected Health Data as is (Raw Data). The first data
disclosure method consists of sharing the protected health information as is.
This pattern is applied when a covered entity delegates some of their health care
activities and functions to a business associate. For instance, a covered entity will
disclose protected health information as is when they delegate the management
of the information to a cloud service provider.

When a covered entity is to disclose protected health information in this
manner, the HIPAA Privacy Rule requires that the covered entity supervises
their business associate to ensure the protected health information is treated
securely (i.e., HIPAA Security Rule compliance). In particular, the covered entity
must sign a business associate agreement with the business associate to obtain
satisfactory assurance and regulate the usage of the disclosed data.

The Anatomy of the HIPAA Privacy Rule 183

Disclosure of De-identified Data. The second data disclosure method com-
prises the sharing of de-identified health information. Once protected health
information is de-identified, the information can no longer be linked with its
original data subject. Such information is no longer considered as protected
health information, and a covered entity can freely disclose such information to
anyone in any manner.

The HIPAA Privacy Rule defines two methods of de-identifying protected
health data: (1) Expert Determination method (45 CFP §164.514(b)(1)) and (2)
Safe Harbor method (45 CFR §164.514(b)(2)).

The Expert Determination method allows an expert to analyze the data and
design a method of de-identifying protected health information. The HIPAA
Privacy Rule requires that the chosen method must minimize the risk of re-
identification to be “very small.”

The Safe Harbor method provides an easy-to-follow rule. This method allows
a covered entity to de-identify protected health information by removing 18 spe-
cific identifiers. These identifiers are summarized in Table 1. Once these identi-
fiers are removed, the data is regarded as de-identified.

Disclosure of Limited Data Set. The third data disclosure method com-
prises the sharing of a limited data set (45 CFR §164.514(e)). A limited data
set contains partially de-identified data. The HIPAA Privacy Rule allows a cov-
ered entity to create a limited data set by removing 16 specific identifiers. These
identifiers are summarized in Table 1. As shown in Table 1, a couple of fields that
must be removed in the Safe Harbor method are allowed in a limited data set.

A limited data set may only be disclosed for the purposes of research, public
health, or health care operations. Before sharing a limited data set, a data use
agreement covering the following provisions must be signed by the data recipients
(45 CFR §164.514(e)(4)):

– Acceptable uses and disclosures of the limited data set.
– Deployment of the appropriate safeguards to prevent use or disclosure of

information that is inconsistent with the agreement.
– Assurance that any agents to whom the limited data set is provided agree to

the same restrictions and conditions that apply to the data set recipient.
– Re-identification of information or contacting data subjects is prohibited.

In general, a data use agreement provides a weaker legal binding compared
to a business associate agreement.

4.3 Analysis of Data Disclosure Methods with a Risk-Based
Approach

The HIPAA Privacy Rule does not explicitly mention the risk-based approach1.
The only mention in connection with the HIPAA Privacy Rule is found in a
1 In the HIPAA Security Rule, assessing potential risks concerning the confidentiality,

integrity, and availability of health information is defined as a required obligation
(45 CFR §164.308(a)(1)(ii)(A)).

184 M. Iguchi et al.

Table 1. De-identified data set and limited data set

guidance document published by the United States Department of Health and
Human Services [20]. The guidance states that an expert should assess the data
risk when designing de-identification procedures in the Expert Determination
method.

Although not explicitly claimed, we can see that the three data disclosure
methods defined in the HIPAA Privacy Rule are carefully designed using the
risk-based approach. The following summarizes the results of analyzing the data
disclosure methods. In the analysis, we leverage the risk-based approach frame-
work we explained in Sect. 3.

Disclosure of Protected Health Data (as is)

– The identification level is assessed as HIGH, because the data is not de-
identified at all.

– The prejudicial level is fixed to HIGH, because the data is protected health
data.

The Anatomy of the HIPAA Privacy Rule 185

– The threat level is assessed as LOW, because the HIPAA Privacy Rule obliges
a covered entity to select a trustworthy business associate.

– The vulnerability level is also assessed as LOW, because the HIPAA Privacy
Rule obliges a covered entity to implement an adequate level of safeguards,
including the signing of a business associate agreement.

Disclosure of De-identified Data

– The identification level is assessed as LOW, because the data must be fully
de-identified, regardless of whether the Expert Determination or Safe Harbor
method is used. For example, a study by Benitez and Malin [21] showed
that data that had been de-identified using the Safe Harbor method had a
re-identification risk ranging from 0.01% to 0.25%.

– The prejudicial level is fixed to HIGH, because the data is protected health
data.

– The threat level is assessed as HIGH, because the de-identified data can be
disclosed to anyone.

– The vulnerability level is assessed as HIGH, because the de-identified data
can be disclosed freely with no safeguards.

Disclosure of a Limited Data Set.

– The identification level is assessed as MEDIUM, because the data is par-
tially de-identified. The study by Benitez and Malin [21] showed that the
re-identification risk for a limited data set ranges from 10% to 60%.

– The prejudicial level is fixed to HIGH, because the data is protected health
data.

– The threat level is assessed as MEDIUM. The purpose of the data disclosure
is restricted to research, public health, or health care operations, and so a
covered entity is indirectly obliged to select somewhat trustable recipients. In
addition, a limited data set is still regarded as protected health information,
and so the covered entity is required to choose data recipients who are capable
of complying with the HIPAA Security Rule.

– The vulnerability level is assessed as MEDIUM. The data recipients are not
fully regulated in the way that a business associate is controlled by a business
associate agreement. Instead, the recipients are bound by a data use agree-
ment, which provides a more relaxed level of control over the data recipient.

Table 2 summarizes how the data privacy risk is assessed for each data dis-
closure method.

As shown in Table 2, we can see that the HIPAA Privacy Rule, although
not explicitly stated, balances the severity and likelihood levels effectively in all
three data disclosure methods. For all methods, the overall data privacy risk is
controlled to an acceptable level (MEDIUM) by requiring an appropriate level
of safeguards to be implemented on the basis of the shared data.

186 M. Iguchi et al.

Table 2. Analysis of data sharing methods using the risk-based approach

5 Leveraging the Success of HIPAA Privacy Rule

Following the HIPAA Privacy Rule analysis in Sect. 4, we will explore how we
can make good use of the analysis result.

We will consider the following two findings and explore how we can leverage
them when to construct new rules and regulations for realizing privacy-conscious
data sharing in other data domains.

– Properly scoping the target data contributes to an effective assessment of the
severity level and the definition of straightforward safety measures.

– Covering data sets with multiple identification levels contributes to flexibility
in supporting various data sharing requirements.

5.1 Properly Scoping the Target Data

One of the main factors in why the HIPAA Privacy Rule could formulate sys-
tematic data sharing methods is because it is clear in its target. The target of
the HIPAA Privacy Rule is focused on protecting the data privacy of “protected
health information” only.

The fact that the target data is strictly limited to health information allows
the HIPAA Privacy Rule to enjoy the following benefits:

– The content of the target data is fixed. This fact makes the magnitude of
the potential damage evident, making the assessment of the target data’s
prejudicial level definitive (i.e., the prejudicial level is fixed to HIGH).

– The personally identifiable information included in the target data is fixed.
This fact supports the construction of straightforward rules for de-identifying
the data. Both the Safe Harbor method and limited data set specification
provide precise rules, by stating identifiers that are to be removed. A covered
entity could just follow the instructions to convert protected health informa-
tion to either a de-identified or limited data set.

– The above two benefits make the formulated de-identification methods verifi-
able. Because the target data is explicitly fixed and the de-identification meth-
ods are systematically defined, Benitez and Malin [21] could later re-evaluate
the de-identification methods by reassessing the re-identification risk.

The Anatomy of the HIPAA Privacy Rule 187

When we want to formulate new secure data sharing rules and regulations,
we should attempt to follow the same practices. It is essential to scope the target
data correctly. If we try to construct data sharing rules without setting a clear
data scope, then we will most likely arrive at vague and unsystematic rules for
the following reasons:

– The content of the target data will be unfocused, making the assessment of
the prejudicial level difficult and meaningless.

– The personally identifiable information included in the target data will be
unorganized, making the formulation of systematic de-identifying rules diffi-
cult.

– Because the target data is unorganized, it will be difficult to later re-access
the validity of the formulated de-identification methods.

5.2 Covering Data Sets with Multiple Identification Levels

The HIPAA Privacy Rule defines three types of data sets (i.e., raw data, de-
identified data, and limited data set) with different identification levels. The
HIPAA Privacy Rule also defines distinct data disclosure methods for each of
these.

Because the HIPAA Privacy Rule provides a selection of data set types for
disclosure, a data provider can select a method of sharing their health data in
accordance to their situation and follow the rules to minimize the data privacy
risks to an acceptable level.

Covering multiple data sets with different identification levels is a good prac-
tice to follow when we want to formulate new privacy-conscious data sharing
rules and regulations. The handling of a data set with the MEDIUM identifi-
cation level will play an especially crucial role in constructing systematic rules.
This is because creating fully de-identified data is not trivial in some domains.
An opinion issued by the EU’s Article 29 Data Protection Working Party [14]
states that a perfectly de-identified data set is not easy to generate in some
situations. The opinion also states that a de-identified data set can still con-
tain residual privacy risks to data subjects. By incorporating data set with the
MEDIUM identification level into a rule, we will be able to support such cases.

As an illustrative example, consider how we can adapt some of recent data dis-
closure techniques that rely on data encryption (e.g., the homomorphic encryp-
tion privacy-preserving protocol) [15] into new regulations. We can map these
algorithms for the “MEDIUM” strategy as follows:

– In most countries, encrypted data is not accepted as fully de-identified as
long as its decrypting key exists. The identification level of the encrypted
data should thus be assessed as MEDIUM. This means that the severity level
will be assessed as MEDIUM.

– Because the severity level is MEDIUM, some relaxed controls must be
enforced on the data recipients to control the likelihood level to MEDIUM.
In the case of the homomorphic encryption protocol, the protocol only allows

188 M. Iguchi et al.

data recipients to compute certain functions on the data, while not allow-
ing them to access the original content. In a sense, the protocol technically
regulates how the data recipients can process the data. This is analogous to
the HIPAA Privacy Rule contractually regulating the data recipients through
a data use agreement. Therefore, one possible rule we could formulate is to
define the application of the homomorphic encryption protocol as an adequate
technical safeguard that provides a MEDIUM vulnerability level.

6 Conclusion

This paper explored the effectiveness of a risk-based approach to constructing
systematic rules and regulations for privacy-preserving data disclosure. We first
defined a simplified risk-based framework for evaluating data privacy risks. The
proposed framework was then applied to analyze the HIPAA Privacy Rule. We
identified that the three data disclosure models defined in the HIPAA Privacy
Rule control the data privacy risks by balancing the severity and likelihood levels.
On the basis of the analysis, we explored how to learn from the success of the
HIPAA Privacy Rule for constructing new privacy-preserving data sharing rules.
We identified two key factors that should be considered to deliver effective and
systematic data sharing rules and regulations.

Naturally, other factors should be addressed when constructing such rules.
The regulations enforced in each country are different, and these need to be taken
into consideration when formulating data sharing rules. However, we believe that
our findings will contribute to the realization of some straightforward standards
for privacy-preserving data sharing.

References

1. ISO/IEC 27005:2011: Information technology - Security techniques - Information
security risk management. Standard, International Organization for Standardiza-
tion (ISO) (2011)

2. Ross, R.S.: Nist sp 800–30 rev. 1: Guide for conducting risk assessments. Technical
report (2012). https://dx.doi.org/10.6028/NIST.SP.800-30r1

3. Open Web Application Security Project (OWASP): Owasp risk rating methodology
(2016). https://www.owasp.org/index.php/OWASP Risk Rating Methodology

4. Garfinkel, S.L.: Nistir 8053: De-identification of personal information. Technical
report, October 2015. https://doi.org/10.6028/nist.ir.8053

5. Commission Nationale de l’Informatique et des Libertés (CNIL): Methodology for
Privacy Risk Management, Translation of June 2012 edition (2012)

6. Information Commissioner’s Office (ICO): Conducting Privacy Impact Assess-
ments Code of Practice (2014)

7. ISO/IEC 29134:2017: Information technology - Security techniques - Guidelines for
privacy impact assessment. Standard, International Organization for Standardiza-
tion (ISO) (2017)

8. Information and Privacy Commissioner of Ontario: De-identification Guidelines for
Structured Data (2016)

https://dx.doi.org/10.6028/NIST.SP.800-30r1
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://doi.org/10.6028/nist.ir.8053

The Anatomy of the HIPAA Privacy Rule 189

9. El Emam, K., Arbuckle, L.: Anonymizing Health Data: Case Studies and Methods
to Get You Started, 1st edn. O’Reilly Media, Inc. (2013)

10. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: 2008 IEEE Symposium on Security and Privacy (sp 2008), pp. 111–125, May
2008

11. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 30th
IEEE Symposium on Security and Privacy, pp. 173–187, May 2009

12. de Montjoye, Y.A., Radaelli, L., Singh, V., Pentland, A.: Unique in the shopping
mall: on the reidentifiability of credit card metadata. Science 347(6221), 536–539
(2015)

13. Douriez, M., Doraiswamy, H., Freire, J., Silva, C.T.: Anonymizing nyc taxi data:
Does it matter? In: 2016 IEEE International Conference on Data Science and
Advanced Analytics (DSAA), pp. 140–148, October 2016

14. European Commission Article 29 Data Protection Working Party: Opinion 05/2014
on Anonymisation Techniques (2014)

15. Mendes, R., Vilela, J.P.: Privacy-preserving data mining: methods, metrics, and
applications. IEEE Access 5, 10562–10582 (2017)

16. Elliot, M., Mackey, E., O’Hara, K., Tudor, C.: The Anonymisation Decision Making
Framework. UKAN, United Kingdom (2016)

17. U.S. Department of Health & Human Services, Office for Civil Rights: Health
information privacy (2015). https://www.hhs.gov/hipaa/index.html

18. Chesanow, N.: Is hipaa creating more problems than it’s preventing? (2013).
https://www.medscape.com/viewarticle/810648

19. U.S. Department of Health & Human Services, Office for Civil Rights: Guidance on
hipaa & cloud computing (2017). https://www.hhs.gov/hipaa/for-professionals/
special-topics/cloud-computing/index.html

20. U.S. Department of Health & Human Services, Office for Civil Rights: Guidance
regarding methods for de-identification of protected health information in accor-
dance with the health insurance portability and accountability act (hipaa) privacy
rule (2015). https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/
de-identification/index.html

21. Benitez, K., Malin, B.: Evaluating re-identification risks with respect to the hipaa
privacy rule. J. Am. Med. Inf. Assoc. 17(2), 169–177 (2010)

https://www.hhs.gov/hipaa/index.html
https://www.medscape.com/viewarticle/810648
https://www.hhs.gov/hipaa/for-professionals/special-topics/cloud-computing/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/cloud-computing/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html

Secret Sharing

Improvements to Almost Optimum Secret
Sharing with Cheating Detection

Louis Cianciullo(B) and Hossein Ghodosi

James Cook University, Townsville 4811, Australia
{louis.cianciullo,hossein.ghodosi}@jcu.edu.au

Abstract. Secret sharing allows a secret s to be distributed amongst
n participants in the form of shares. An authorised set of these partic-
ipants is then able to reconstruct s at a latter date by pooling their
shares. Secret sharing with cheating detection capability (SSCD) allows
participants to detect the submission of faulty or modified shares. Within
this field researchers consider two different models of security, the OKS
model and the CDV model.

In SPACE 2015 Jhanwar and Safavi-Naini (JS) presented two SSCD
schemes, one developed under each of the security models. We prove
that both of these schemes fail to detect cheating. We then show that
with some modifications both schemes can be made secure. The resulting
schemes have near optimal share size, support operations from an arbi-
trary finite field and provide a high level of security even if the secret
domain is small. The first of these schemes is devised under the OKS
model and is the most efficient of its kind, whilst the second is devised
under the CDV model and is as efficient as the current best solution.

1 Introduction

Secret sharing is a cryptographic primitive independently discovered by Blakley
[4] and Shamir [15] in 1979. In a secret sharing scheme, a secret s is distributed
amongst n participants, P1, · · · , Pn, in the form of shares, V1, · · · , Vn, such that
Pi obtains Vi for 1 ≤ i ≤ n. At a latter date an authorised subset of participants
is able to reconstruct s by combining their shares. We can classify authorised
and unauthorised subsets of participants by means of an access structure Γ ,
such that the subset A ∈ Γ is an authorised subset that can reconstruct s,
whilst A′ /∈ Γ is an unauthorised subset that cannot. In a perfect secret sharing
scheme if an unauthorised subset attempt to reconstruct s then they should
obtain no additional information regarding s, other than what their individual
shares give them.

A secret sharing scheme is more formally defined as a pair of algorithms
SHARE and REC. The SHARE algorithm is executed by a trusted entity D, known
as the dealer and REC is executed by a second, separate entity C, the combiner.
We define these algorithms in the following manner:

L. Cianciullo—This research is supported by an Australian Government Research
Training Program (RTP) Scholarship.

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 193–205, 2018.
https://doi.org/10.1007/978-3-319-97916-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_13&domain=pdf

194 L. Cianciullo and H. Ghodosi

SHARE(s) → (V1, . . . , Vn): A probabilistic algorithm that takes a secret s and
produces n random shares.

REC(γ) → s′: A deterministic algorithm that takes a subset of shares γ and out-
puts a secret s′.

Given a secret s ∈ S that is used to compute shares V1, · · · , Vn and a subset
of these shares, denoted by γ, used to compute a secret s′ then the following
properties will hold (assuming that all participants follow the protocol exactly):

Pr[s′ = s | γ ∈ Γ] = 1

Pr[s′ = s | γ /∈ Γ] = Pr[s′ = s]

These properties state that in a perfect secret sharing scheme a set of unautho-
rised participants cannot reduce their uncertainty of the secret. It is a well known
fact that in a perfect secret sharing scheme the share size cannot be smaller than
the secret itself. That is, |Vi| ≥ |S| where |Vi| denotes the maximum size of a
given participant’s share i.e. max1≤i≤n(|Vi|).

In a (t, n) threshold secret sharing scheme we define an unauthorised subset
of participants as any subset γ′ in which |γ′| < t where t ≤ n. It is this particular
type of secret sharing scheme that we consider exclusively throughout the rest
of this article.

In 1988 Tompa and Woll [16] demonstrated that Shamir’s (t, n) threshold
scheme [15] is vulnerable to share forgery. This is when one or more participants
submit modified shares to C, resulting in the reconstruction of a secret s′ �= s.
Because of this, various stronger notions of secret sharing have been considered
throughout the literature (see [2,7] for two examples). One such notion is secret
sharing with cheating detection capability (SSCD).

SSCD considers the scenario in which corrupt participants, known as
cheaters, modify their shares in order to trick other (honest) participants into
reconstructing a false secret. An effective SSCD scheme can alert the honest par-
ticipants to the submission of false shares. This type of protocol has applications
in such things as robust secret sharing [8] and secure message transmission [11].

More formally a (t, n, δ) SSCD scheme is a threshold secret sharing scheme
in which the probability of successful cheating occurring is less than or equal
to δ [1]. To put this another way a (t, n, δ) SSCD scheme is a secret sharing
scheme with a modified REC algorithm. In the definition that we consider, there
are n participants, P1, · · · , Pn with shares, V1, · · · , Vn where t of these same
participants will attempt to reconstruct the secret s. We assume that up to
t − 1 of these participants are dishonest (cheaters) and wish to force the honest
participants into accepting a secret s′, where s′ �= s.

The goal of SSCD is to detect when such cheating occurs in order to prevent
reconstruction of an invalid secret. Thus, the REC algorithm given for secret
sharing is modified so that it either outputs s′ (which may or may not be equal
to the original secret) or a special symbol, ⊥, which indicates that cheating has
been detected.

Improvements to Almost Optimum Secret Sharing with Cheating Detection 195

For any such scheme with the above reconstruction protocol in which up to
t − 1 faulty shares, V ′

i1
, · · · , V ′

it−1
and one unmodified share, Vit are submitted,

the probability of failure, δ, is defined as:

Pr[REC(V ′
1 , · · · , V ′

t−1, Vt) =⊥] ≥ 1 − δ

Conversely let s be a valid secret distributed to a set of n participants by
SHARE and define s′ as the secret computed by REC using shares (which may or
may not be modified) from t of these same participants, then:

Pr[s �= s′] ≤ δ

An extensive amount of work has been produced on SSCD with the main
goal being the reduction of share size. A key factor that greatly influences share
size is the model of security a SSCD scheme is devised under. Typically schemes
are devised under one of two models, the CDV model and the OKS model.

1.1 CDV Model

The CDV model was given by Carpentieri, De Santis and Vaccaro [6] in 1994.
Schemes devised under this model consider the scenario in which the cheaters
actually know the secret. Thus, such a scheme is only secure if the honest par-
ticipants can detect cheating (with probability 1 − δ) given that the cheaters
already know the secret.

Ogata, Kurosawa and Stinson [14] give a bound for the share size of schemes
devised under this model. As before let |Vi| denote the maximum share size
of a given participant. Let |S| denote the size of the secret domain and δ the
probability of successful cheating occurring:

|Vi| ≥ |S| − 1
δ2

+ 1

1.2 OKS Model

In [14] Ogata, Kurosawa and Stinson introduced the OKS model. This model of
security assumes that the cheaters do not know the secret. As a result of this
the bound on share size for schemes developed under this model varies from the
bound given by the CDV model:

|Vi| ≥ |S| − 1
δ

+ 1

Remark 1. SSCD schemes devised under the OKS model typically have smaller
share sizes than those devised under the CDV model. However, a common trait
for schemes developed under the OKS model is that δ is dependent on |S| e.g.
δ = 1√

|S| [13]. This is not the case for schemes devised under the CDV model as in

these type of schemes the probability of successful cheating does not necessarily
depend on the secret domain.

196 L. Cianciullo and H. Ghodosi

1.3 Our Contribution

First we present some flaws that exist in two SSCD schemes given in [10]. One
of these schemes is developed under the OKS model and the other is developed
under the CDV model. The flaws in question allow just one cheating participant
to fool the other participants into accepting an incorrect secret. Secondly we
show how to modify the schemes in [10], such that they are secure and satisfy
the following desirable properties originally given in [12] by Obana and Tsuchida.

– Capable of supporting an arbitrary finite field: Computations can be
done in a field of any characteristic.

– Near optimal share size: The share size is only slightly larger than the
bound given for the particular model the scheme is developed under, where
an optimal scheme is one that meets the bound.

– Adequate level of security even if the secret domain is relatively
small: The probability of successful cheating occurring is no larger than 1

|S|
or can be set arbitrarily (as is the case for most schemes developed under the
CDV model).

Whilst most schemes developed under the CDV model have these attributes
there is only one other scheme developed under the OKS model that currently
achieves this, and it is given by Obana and Tsuchida in [12]. The share size for
this scheme is 2 bits larger than optimal whilst our scheme developed under the
OKS model has a share size only 1 bit larger than optimal. Making our scheme
is the most efficient yet.

The other scheme presented in this paper is developed under the CDV model
and achieves the same share size as the scheme presented by Cabello et al. [5].
To the best of our knowledge this scheme has the smallest share size of any such
scheme secure in the CDV model.

2 Preliminaries

2.1 Shamir’s Secret Sharing Scheme

In Shamir’s seminal paper [15] he introduced a (t, n) threshold secret sharing
scheme in which each participant is given a point on a polynomial of degree
t − 1 for their share. Suppose that there are n participants, P1, · · · Pn and that
all computations are done in the field Fq, where q is a prime number such that
q > n. The protocol is as follows:

SHARE(s) → (V1, . . . , Vn): A probabilistic algorithm in which D picks a random
polynomial, f(x) of degree at most t − 1, where f(0) = s. Participants are
assigned the share Vi = f(i) for 1 ≤ i ≤ n.

REC(γ) → s′: A deterministic algorithm that takes a subset of shares γ, where
|γ| ≥ t and computes and outputs s′ using Lagrange interpolation. Without

Improvements to Almost Optimum Secret Sharing with Cheating Detection 197

loss of generality assume γ is composed of shares from the first set of |γ|
participants i.e. P1, · · · , P|γ|, then:

s′ =
|γ|∑

i=1

Vi

∏

1≤i≤|γ|
i�=j

j

j − i

In Shamir’s scheme it is assumed that all participants follow the protocol
exactly, i.e. they always submit the correct shares for REC.

2.2 The Tompa and Woll Attack

Tompa and Woll [16] showed that Shamir’s scheme is vulnerable to an attack
in which malicious participants are able to obtain the secret s and force the
honest participants into reconstructing s′ �= s. In fact, it is possible for just one
cheater in a group of t participants to accomplish this. To carry out this attack
successfully cheaters modify their shares in the following fashion.

Given a set of t participants P1, · · · , Pt attempting to reconstruct the secret,
assume that there is subset of dishonest participants within this set denoted by θ
where 1 ≤ |θ| ≤ t− 1. This set of cheaters compute a polynomial Δ(x) of degree
at most t − 1. They set Δ(i) = 0 for Pi /∈ θ (all of the honest participants)
and Δ(0) = β, which is an arbitrary value picked by the cheaters. Pj ∈ θ then
submits the share Vj + Δ(j) where Vj is the share originally assigned to Pj . All
dishonest participants submit these modified shares whilst Pi /∈ θ submits his
unaltered share Vi (which can be viewed as Vi + Δ(i)).

This results in the reconstruction of f ′(x) = f(x) + Δ(x) where f(x) is the
original polynomial used to compute and distribute shares. It is now easy for the
cheaters to compute s as f ′(0) = s + β.

2.3 JS SSCD Scheme Devised in OKS Model

In this section the scheme developed under the OKS model presented in [10] is
reviewed. All computations are done in the field Fq where q > 2n.

SHARE(s) → (V1, . . . , Vn): D picks a random polynomial f(x), of degree1 at most
2t−2, where f(0) = s. D also chooses 2n distinct public elements α1, · · · , α2n.
Each participant, Pi is given the share Vi = (f(αi), f(αi+n)) for 1 ≤ i ≤ n.

REC(γ) → s′: A subset, γ, of t participants (of which up to t−1 can be cheaters)
submit shares to C who reconstructs f ′(x) using Lagrange interpolation. If
the degree of f ′(x) is 2t − 2 or less, output s′ = f ′(0) as the secret, otherwise
output ⊥.

1 In [10] the degree of the polynomial is 2t. This is because they set t + 1 as the
threshold value, this is not common practice in SSCD schemes which usually employ
a threshold value of t.

198 L. Cianciullo and H. Ghodosi

2.4 JS SSCD Scheme Devised in CDV Model

Here we present the SSCD scheme devised under the CDV model presented in
[10]. All computations are done in the field Fq where q > 3n.

SHARE(s) → (V1, . . . , Vn): D picks a random polynomial f(x), of degree at most
3t − 3, where f(0) = s. D also chooses 3n distinct public points α1, · · · , α3n.
Each participant, Pi is given the share Vi = (f(αi), f(αi+n), f(αi+2n)) for
1 ≤ i ≤ n.

REC(γ) → s′: A subset, γ, of t participants (of which up to t−1 can be cheaters)
submit shares to C who reconstructs f ′(x) using Lagrange interpolation. If
the degree of f ′(x) is 3t − 3 or less, output s′ = f ′(0) as the secret, otherwise
output ⊥.

3 Flaws in JS SSCD

This section is concerned with the security flaw inherent in the two schemes
presented by Jhanwar and Safavi-Naini in [10]. It is shown that neither of these
two schemes is secure. We begin by investigating their first scheme which was
developed under the OKS model.

The authors state that this scheme will detect cheating with probability
δ = 1 − 1

q even if up to t − 1 of the t participants are cheaters. The mechanism
used for cheating detection relies on the fact that a degree 2t − 2 polynomial is
uniquely defined by 2t − 1 points. So if t participants submit their shares then
C obtains 2t points. If these shares are unaltered then they will all describe the
same degree 2t − 2 polynomial f(x). However, if one or more of these shares are
changed in a random fashion then, with probability 1

q , the collection of shares
will describe a degree 2t − 1 polynomial.

For the above scenario in which shares are changed randomly the scheme
is indeed secure. However, the scheme is not secure against the Tompa and
Woll attack. Using this attack just one participant can cheat the other honest
participants with probability 1, as demonstrated below.

Let θ denote the set of dishonest participants where 1 ≤ |θ| ≤ t−1. In order to
cheat they must submit shares that are consistent with the honest participants’
shares, i.e. all shares describe a polynomial of degree 2t−2. In order to accomplish
this they can use the Tompa and Woll attack to force reconstruction of f ′(x) �=
f(x), where f ′(x) is a polynomial of degree at most 2t − 2. To do so θ compute
Δ(x) of degree at most 2t−2 such that for all honest participants Pi /∈ θ, Δ(αi) =
Δ(αi+n) = 0 and Δ(0) = β. All cheaters Pj ∈ θ submit the modified shares
V ′

j = (f(αj)+Δ(αj), f(αj+n)+Δ(αj+n)). This will result in the reconstruction
of a polynomial f ′(x) = f(x) + Δ(x) that is of degree at most 2t − 2 with
f ′(0) = β + s. This occurs because of the well known homomorphic property
of Shamir’s secret sharing scheme [3]. This property states that given two sets
of shares, r1, · · · , rz and k1, · · · , kz, associated with the polynomials R(x) and
K(x) respectively, the individual summation of these shares: r1+k1, · · · , rz +kz,
will describe the polynomial R(x) + K(x).

Improvements to Almost Optimum Secret Sharing with Cheating Detection 199

The second scheme devised by JS is devised under the CDV model. However,
the cheating detection mechanism is the same as the first scheme described.
This time however, D uses a polynomial of degree at most 3t − 3 to distribute
shares and each participant is given three points on this polynomial as his share.
Thus the exact same attack can be used against this scheme, with the cheaters
computing a polynomial Δ(x) of degree 3t − 3.

4 Improvement to JS SSCD

In this section we show how to modify JS’s SSCD schemes in order to add
security. Both modified schemes are unconditionally secure with the same share
size, secret space and probability of succesful cheating as claimed in the original
protocols presented in [10]. The basic idea behind these corrected schemes is to
use a slightly modified version of what Hoshino and Obana [9] call a check digit
function.

In a cheater detection scheme that employs a check digit function, two types
of shares are distributed: one directly related to the secret s, and the other
related to a check digit l = L(s). At reconstruction of a secret s′ and a check
digit l′, the combiner, C checks whether l′ = L(s′). If this is not the case then C
concludes that cheating has occurred and outputs ⊥, otherwise C assumes that
s′ is valid and broadcasts this value.

Our proposed scheme follows this basic definition. However, instead of con-
structing shares related to the check digit l and the secret s we instead distribute
two or three shares (using the OKS or CDV models, respectively) to each partic-
ipant corresponding to either two or three polynomials of degree at most t − 1,
respectively. These polynomials can then be used to reconstruct a larger degree
polynomial A(x) (of degree 2t− 2 or 3t− 3) as well as the check digit. Note that
the definition of a check digit described here is slightly different to [9] in that
for our schemes l = s. Thus we compare the reconstructed secret to the check
digit, if the two are not equal then we reject s′ and conclude that cheating has
occurred. This is explained in greater detail in the following sections.

4.1 Proposed OKS-Secure Scheme

In this scheme a polynomial, A(x) of degree at most 2t − 2, where A(0) = s,
is used to construct two polynomials, f(x) and g(x) of degree at most t − 1,
which are then used to distribute shares to participants. Upon reconstruction
both f(x) and g(x) are reconstructed and used to reconstruct A(x). In order to
check that no cheating has occurred, C checks that A(0) = f(0) · g(0). As with
the scheme given by JS all computations are performed in Fq where q is a prime
number and q > 2n. The SHARE and REC algorithms are as follows:

SHARE(s) → (V1, . . . , Vn): D picks a random polynomial A(x) = s + Q1x + · · · +
Q2t−2x

2t−2 where Qj ∈ Fq for 1 ≤ j ≤ 2t − 2. He then uses the first 2t − 1
points on A(x) to construct two more polynomials in the following fashion:

f(x) = A(1) + A(2)x + · · · + A(t)xt−1

200 L. Cianciullo and H. Ghodosi

g(x) = α + A(t + 1)x + · · · + A(2t − 1)xt−1

Where α is picked such that s = A(1) · α and the other coefficients of both
g(x) and f(x) are points on A(x). Participant Pi is assigned the share Vi =
(f(i), g(i)) for 1 ≤ i ≤ n.

REC(γ) → s′: A subset, γ, of t participants (of which up to t−1 can be cheaters)
submit shares to C who reconstructs f ′(x) and g′(x) using Lagrange interpo-
lation. He then uses the coefficients of f ′(x) and g′(x) (specifically the points
A′(1), · · · , A′(2t − 1)) to reconstruct A′(x). If A′(0) = f ′(0) · g′(0) then C
outputs A′(0) as the secret, otherwise output ⊥.

Security. To prove the security of the proposed OKS-secure scheme we begin
by showing that it is perfect and then prove that except with probability δ a set
of dishonest participants cannot cheat the honest participants into accepting a
false secret.

Theorem 1. The proposed OKS-secure scheme is perfect, i.e. fewer than t
participants cannot reduce their uncertainty of the secret s.

Proof. Say that the first t − 1 participants with shares Vi = (f(i), g(i)) for
1 ≤ i ≤ t−1 wish to compute s. By pooling their shares and forming a coalition
they can construct the following system:

f(1) = A(1) + A(2) + · · · + A(t)

g(1) = α + A(t + 1) + · · · + A(2t − 1)

f(2) = A(1) + 2 · A(2) + · · · + 2t−1 · A(t)

g(2) = α + 2 · A(t + 1) + · · · + 2t−1 · A(2t − 1)

...

f(t − 1) = A(1) + (t − 1) · A(2) + · · · + (t − 1)t−1 · A(t)

g(t − 1) = α + (t − 1) · A(t + 1) + · · · + (t − 1)t−1 · A(2t − 1)

For any value i it is known that A(i) = s+i·Q1+· · ·+i2t−2 ·Q2t−2. So the above
system of equations can therefore be rewritten purely in terms of the coefficients
of A(x) (including s). This results in an unsolvable system composed of 2t − 2
independent equations and 2t − 2 unknowns. To clarify this, let s = Q0 then,
consequently, α becomes:

Q0 · (A(1))−1 = Q0(
2t−2∑

i=0

Qi)−1

Therefore, the shares of a given participant in the coalition, denoted as Pw for
1 ≤ w ≤ t − 1, can be rewritten as:

f(w) =
t∑

j=1

(
wj−1 ·

2t−2∑

i=0

jiQi

)

Improvements to Almost Optimum Secret Sharing with Cheating Detection 201

g(w) = Q0(
2t−2∑

z=i

Qi)−1 +
t∑

j=1

(
wj−1 ·

2t−2∑

i=0

(j + t)iQi

)

Although both of these equations share the common factors of w,
Q0, Q1, · · · , Q2t−2 it is evident that they are linearly independent of each other
due to the different set of evaluation points used (the j values). This same princi-
ple applies to the shares held by each of the other participants. That is, the set of
shares held by each of the participants in the coalition are linearly independent
of each other due to the evaluation points used. In this case these evaluation
points are the w values.

From this we can state that each of the t−1 participant is essentially given 2
shares of a degree 2t−2 polynomial, albeit in roundabout fashion. Therefore, the
coalition has a set of 2t− 2 shares relating to a polynomial of degree 2t− 2. Due
to the perfectness of Shamir’s secret sharing scheme [15] they cannot compute
any information relating to s as (from the point of view of the t−1 participants)
all potential q amount of values of s are equally likely.

Theorem 2. The proposed OKS-secure scheme is a (t, n, δ) SSCD under the
OKS model with share size |Vi| = q2, secret domain S = Fq and probability of
cheating δ = 1

q .

Proof. In order to successfully cheat, the set of t − 1 dishonest participants,
denoted by θ, will need to not only force the reconstruction of a secret s′ = s+β1

but also ensure that s′ = f ′(0)·g′(0) where f ′(0) = f(0)+β2 and g′(0) = g(0)+β3

such that β1 , β2 , and β3 are some constants. Using the Tompa and Woll attack
it is possible for θ to actually pick the values of β1, β2 and β3 and in order to
cheat they need to pick these values such that:

s + β1 = (f(0) + β2)(g(0) + β3)

Knowing that s = f(0) · g(0) this equation then becomes:

β1 = β3 · f(0) + β2 · g(0) + β2 · β3

In Shamir’s scheme unless t + 1 points are known no information about the
secret can be obtained. Therefore both f(0) and g(0) are essentially random
(from θ’s point of view) as f(0) = A(1) and g(0) = s

f(0) . Thus the probability of
cheating is 1

q as the multiplication of two numbers in the field Fq can result in
any of the q possibilities. Since each participant gets for their share two points
each drawn from Fq and the secret is also drawn from Fq then the proposed
scheme is a (t, n, δ) SSCD under the OKS model with |Vi| = q2, |S| = q and
δ = 1

q .

4.2 Proposed CDV-Secure Scheme

In our OKS-secure scheme it is easy to see that if the cheaters know the value
of s then it is entirely possible for them to compute β1 = β3·f(0)+β2 ·g(0)+β2 ·β3

202 L. Cianciullo and H. Ghodosi

and therefore break the security of the system. In fact if the cheaters know S
then they can actually compute the share of the honest participant, as they will
be able to solve the system given in the proof of Theorem 1.

So, while this scheme is certainly secure in the OKS setting (where the
cheaters do not know the secret) it is not at all secure in the CDV setting
(where they do know the secret). However, it is possible to rectify this with a
simple modification.

The construction and cheating detection mechanism for the CDV-secure
scheme is much the same as for the OKS-secure scheme. However, here A(x)
is of degree at most 3t−3 and we use the first 3t−2 points on A(x) to construct
three polynomials f(x), g(x) and h(x) of degree at most t − 1. This means that
each participant obtains three shares, one relating to each of the degree t − 1
polynomials. As per the second scheme described in [10] this prevents malicious
participants (who know the secret) from computing the honest participant’s
share. We define the check digit as l = f(0) · g(0) · h(0). All computations are
performed in Fq where q is a prime number such that q > 3n and |S| ≤ q.

SHARE(s) → (V1, . . . , Vn): D picks a random polynomial A(x) = s + Q1x + · · · +
Q3t−3x

3t−3. He then uses the first 3t − 2 points on A(x) to construct three
more polynomials:

f(x) = A(1) + A(2)x + · · · + A(t)xt−1

g(x) = α + A(t + 1)x + · · · + A(2t − 1)xt−1

h(x) = ω + A(2t)x + · · · + A(3t − 2)x3t−2

Where α and ω are picked such that s = A(1) ·α ·ω and the other coefficients
of f(x), g(x) and h(x) are all points on A(x). Participant Pi is assigned the
share Vi = (f(i), g(i), h(i)) for 1 ≤ i ≤ n.

REC(γ) → s′: A subset, γ, of t participants (of which up to t−1 can be cheaters)
submit shares to C who reconstructs f ′(x), g′(x) and h′(x) using Lagrange
interpolation. C then uses the coefficients of f ′(x), g′(x) and h′(x) (specifically
the points A′(1), · · · , A′(3t − 2)) to reconstruct A′(x), again using Lagrange
interpolation. If A′(0) = f ′(0) ·g′(0) ·h′(0) then C outputs A′(0) as the secret,
otherwise output ⊥.

Security. As before, in this section the security of the given scheme is proved.

Theorem 3. The proposed CDV-secure scheme is perfectly secure.

Proof. Analogous to the proof of Theorem 1.

Theorem 4. The proposed CDV-secure scheme is a (t, n, δ) SSCD under the
CDV model with share size |Vi| = q3, secret domain size |S| ≤ q and probability
of cheating δ = 1

q .

Improvements to Almost Optimum Secret Sharing with Cheating Detection 203

Proof. As with the proof for Theorem 2 assume that we have t participants who
wish to reconstruct s and that t − 1 of these participants make up the set of
dishonest participants denoted by θ. All computations are done in the field Fq.

In order to successfully cheat, θ need to force reconstruction of s′ = f ′(0) ·
g′(0) · h′(0). Where we define s′ = s + β1, f ′(0) = f(0) + β2, g′(0) = g(0) + β3

and h′(0) = h(0) + β4. Since θ know the value of s they can easily compute s′.
So to successfully cheat they must solve the following equation:

s′ = (f(0) + β2)(g(0) + β3)(h(0) + β4)

In order to solve this equation they must first compute f(0), g(0) and h(0). We
show that this is not possible except with probability 1

q which is analogous to
guessing. Without loss of generality assume that θ is composed of participants
P1, · · · , Pt−1 and Pt is the honest participant. By pooling their shares, θ can
construct the following system:

f(1) = A(1) + A(2) + · · · + A(t)

g(1) = α + A(t + 1) + · · · + A(2t − 1)

h(1) = ω + A(2t) + · · · + A(3t − 2)

f(2) = A(1) + 2 · A(2) + · · · + 2t−1 · A(t)

g(2) = α + 2 · A(t + 1) + · · · + 2t−1 · A(2t − 1)

h(2) = ω + 2 · A(2t) + · · · + 2t−1 · A(3t − 2)

...

f(t − 1) = A(1) + (t − 1) · A(2) + · · · + (t − 1)t−1 · A(t)

g(t − 1) = α + (t − 1) · A(t + 1) + · · · + (t − 1)t−1 · A(2t − 1)

h(t − 1) = ω + (t − 1) · A(2t) + · · · + (t − 1)t−1 · A(3t − 2)

As with the proof of Theorem 1, the above system can be represented in terms of
the coefficients of A(x) = s+Q1x+· · ·+Q3t−3x

3t−3 and ω (as α = s
ω·A(1)). Since

s is known, the system is composed of 3t − 3 equations and 3t − 2 unknowns,
meaning that θ cannot compute the values of f(0), g(0) or h(0) except with
probability 1

q , i.e., they attempt to guess a value for either of the three variables.
Therefore we can define the probability of successful cheating as δ = 1

q .
Since each participant receives three values as their share and all values

(except for s ∈ S) are drawn from Fq then the size of the share size is |Vi| = q3.
Thus the proposed scheme is a (t, n, δ) SSCD under the CDV model.

5 Conclusion

The results presented in this paper are threefold:

1. It was shown that the two SSCD schemes presented in [10] are vulnerable to
the classic attack described by Tompa and Woll [16].

204 L. Cianciullo and H. Ghodosi

2. The construction of a near optimal SSCD scheme secure under the OKS
model that supports arbitrary finite fields and a small secret domain was
given. This is the most efficient of such schemes to date, being the same size
as the original scheme devised in [10], which they state is 2 bits greater than
optimal. Thus it is 1 bit more efficient than the scheme given in [12] which is
the only other secure scheme that achieves these extended capabilities.

3. A near optimal SSCD scheme secure in the CDV model that has the same
share size as the insecure scheme described by JS [10] was given. This is an
extremely efficient scheme as it achieves a share size equal to that of the
scheme presented by Cabello et al. [5] which is the most efficient yet.

An open problem within this field is the construction of a SSCD scheme secure
under the CDV model that achieves optimum share size. Another interesting
topic recently introduced in [12] is the construction of a SSCD scheme secure in
the OKS model that is not only optimal but also supports an arbitrary field and
a small secret domain.

References

1. Araki, T., Obana, S.: Flaws in some secret sharing schemes against cheating. In:
Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp.
122–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-
1 10

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10.
ACM, New York (1988)

3. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret
(extended abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 19

4. Blakley, G.: Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS
National Computer Conference, pp. 313–317. AFIPS Press, Monval (1979)

5. Cabello, S., Padró, C., Sáez, G.: Secret sharing schemes with detection of cheaters
for a general access structure. Des. Codes Crypt. 25(2), 175–188 (2002)

6. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of
cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
48285-7 10

7. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust
secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 13

8. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 27

https://doi.org/10.1007/978-3-540-73458-1_10
https://doi.org/10.1007/978-3-540-73458-1_10
https://doi.org/10.1007/3-540-47721-7_19
https://doi.org/10.1007/3-540-48285-7_10
https://doi.org/10.1007/3-540-48285-7_10
https://doi.org/10.1007/978-3-642-29011-4_13
https://doi.org/10.1007/978-3-540-78967-3_27

Improvements to Almost Optimum Secret Sharing with Cheating Detection 205

9. Hoshino, H., Obana, S.: Almost optimum secret sharing schemes with cheating
detection for random bit strings. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015.
LNCS, vol. 9241, pp. 213–222. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22425-1 13

10. Jhanwar, M.P., Safavi-Naini, R.: Almost optimum secret sharing with cheating
detection. In: Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015.
LNCS, vol. 9354, pp. 359–372. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24126-5 21

11. Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmis-
sion scheme. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 99–112.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10230-1 8

12. Obana, S., Tsuchida, K.: Cheating detectable secret sharing schemes supporting
an arbitrary finite field. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS,
vol. 8639, pp. 88–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09843-2 7

13. Ogata, W., Kurosawa, K.: Optimum secret sharing scheme secure against cheating.
In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 200–211. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 18

14. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum secret sharing scheme secure
against cheating. SIAM J. Discret. Math. 20(1), 79–95 (2006)

15. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
16. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Crypt. 1(2), 133–138

(1988)

https://doi.org/10.1007/978-3-319-22425-1_13
https://doi.org/10.1007/978-3-319-22425-1_13
https://doi.org/10.1007/978-3-319-24126-5_21
https://doi.org/10.1007/978-3-319-24126-5_21
https://doi.org/10.1007/978-3-642-10230-1_8
https://doi.org/10.1007/978-3-319-09843-2_7
https://doi.org/10.1007/978-3-319-09843-2_7
https://doi.org/10.1007/3-540-68339-9_18

XOR-Based Hierarchical Secret
Sharing Scheme

Koji Shima(B) and Hiroshi Doi

Institute of Information Security, Yokohama, Kanagawa, Japan
{dgs164101,doi}@iisec.ac.jp

Abstract. Hierarchical secret sharing schemes are known for how they
share a secret among a group of participants partitioned into levels. In
this study, we apply the general concept of hierarchy to Kurihara et
al.’s XOR-based secret sharing scheme and propose a hierarchical secret
sharing scheme applicable at any level. In our scheme, a minimal num-
ber of higher-level participants are required for recovery of the secret.
Such hierarchical schemes applicable at any level over finite fields have
been proposed, but no XOR-based hierarchical schemes applicable at
any level have been reported. We realize the first such scheme. More-
over, considering practical use, we present an evaluation of our software
implementation.

Keywords: Secret sharing scheme · Hierarchical access structure
XOR-based scheme · Ideal scheme · Software implementation

1 Introduction

In the modern information society, there is a strong need to securely store large
amounts of secret information to prevent information theft or leakage and avoid
information loss. Secret sharing schemes are known to simultaneously satisfy the
need to distribute and manage secret information to prevent such information
theft and loss. [1] and [2] independently introduced the basic idea of a (k, n)
threshold secret sharing scheme almost four decades ago in 1979. In Shamir’s
(k, n) threshold scheme, n shares are generated from the secret, and each of these
shares is distributed to a participant. Next, the secret can be recovered using any
subset k of the n shares, but it cannot be recovered with fewer than k shares.
Furthermore, every subset comprising less than k participants cannot obtain any
information regarding the secret. Therefore, the original secret is secure even if
some of the shares are leaked or exposed. Conversely, the secret can be recovered
even if a few of the shares are missing.

Several hierarchical secret sharing schemes are known for how they share the
given secret among a group of participants who are partitioned into levels. In
such schemes, often, a minimal number of higher-level participants are required
to recover the secret. For example, opening a bank vault may require, say, three
employees, at least one of whom must be a department manager. In this scenario,
c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 206–223, 2018.
https://doi.org/10.1007/978-3-319-97916-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_14&domain=pdf

XOR-Based Hierarchical Secret Sharing Scheme 207

we have what is called a ({1, 3}, n) hierarchical secret sharing scheme. In [3,4],
Tassa introduced polynomial derivatives to generate shares and focused on the
question related to Birkhoff interpolation problems.

Given that the hierarchical scheme described above requires indispensable
participants to recover a given secret, from another perspective, this scheme can
be used to delete the secret. In (k, n) threshold schemes, the reliability of data
deletion depends on the deletion of more than n − k shares. However, while
using such a hierarchical scheme, the reliability of data deletion depends on
the deletion of the specific shares held by the indispensable participants, that
is, the deletion of more than |U0| − k0 shares at the highest level when we use
Definition 1. Considering practical and strategic use, for example, in cases where
data deletion must be done with urgency, deletion of the secret is guaranteed
by the deletion of the shares possessed by the indispensable participants. In
other words, this scheme satisfies the need to prevent both information theft
and information loss. Moreover, it offers the advantage of facilitating quick and
straightforward deletion of the secret after it has been distributed.

1.1 Secret Sharing Schemes and Hierarchical Schemes

Shamir’s (k, n) threshold secret sharing scheme can be implemented using arbi-
trary values of k and n, with k ≤ n. However, the scheme requires extensive
calculations for generating the n shares and recovering the secret from k shares
because in doing so, a polynomial of degree k − 1 must be processed. Fujii et
al. [5] proposed a fast (2, n) threshold scheme that uses only XOR operations
to distribute and recover the secret. Kurihara et al. [6–8] proposed (3, n) and
(k, n) threshold schemes that use only XOR operations. In [9], Kurihara et al.
presented a faster technique for realizing field operations over GF(q) by using
the construction mechanisms of Feng et al. [10] and Blömer et al. [11] for the
matrix representation of finite fields. Chen et al. [12] proposed a (k, n) thresh-
old scheme that constructs shares based on a systematic information dispersal
algorithm (IDA). All abovementioned schemes are ideal.

Tassa [3,4] proposed a (k, n) hierarchical secret sharing scheme in which
a minimal number of higher-level participants are required for recovering the
secret. Tassa’s scheme is ideal. Tassa used the derivative of a polynomial to
achieve hierarchy and recover the secret via Birkhoff interpolation. In [13], Selçuk
et al. proposed a function called the truncated version to achieve the described
hierarchy. This truncated version truncates the polynomial from to the lowest-
order term depending on the level. In [21,22], Shima et al. proposed fast hierar-
chical secret sharing schemes.

In addition, Tassa [3,4] showed other hierarchical settings studied by other
authors. Shamir [2] suggested accomplishing a hierarchical scheme by assigning
capable participants a large number of shares. Here, levels are represented as
subsets of participants, but the necessary number of participants for recovery is
determined based on a weighted average of the thresholds associated with each
of these levels. In other words, when any subset of lower-level participants is suf-
ficiently large, only the lower-level participants are needed to recover the secret.
Simmons [14] and Brickell [15] considered other hierarchical settings. However,

208 K. Shima and H. Doi

the necessary number of participants is the highest of the thresholds associated
with the various levels. Therefore, their hierarchical settings are unsuitable for
the scenario in which a minimal number of higher-level participants must be
involved in recovery of the secret.

Tassa then defined a (k, n) hierarchical secret sharing scheme as follows.

Definition 1. Let k = {ki}m
i=0, 0 < k0 < · · · < km, and let k = km(≥ 2) be the

maximal threshold. A (k, n) hierarchical secret sharing scheme where a minimal
number of higher-level participants is required for any recovery of the secret is
defined as the following access structure Γ :

Γ =

⎧
⎨

⎩
V ⊂ U :

∣
∣
∣
∣
∣
∣
V ∩

⎛

⎝
i⋃

j=0

Uj

⎞

⎠

∣
∣
∣
∣
∣
∣
≥ ki,∀i ∈ {0, 1, · · · ,m}

⎫
⎬

⎭
.

Here, let U be a set of n participants and assume that U is composed of levels,
that is, U =

⋃m
i=0 Ui, where Ui

⋂Uj = ∅ for all 0 ≤ i < j ≤ m. The scheme then
generates each share of the participants u ∈ U to satisfy the access structure.

Given k = {1, 3} as an example, we have a ({1, 3}, n) hierarchical scheme that
consists of two levels and requires at least one indispensable participant from U0

and three or more participants from U0

⋃U1 to recover the secret.

1.2 Example Scenarios of Hierarchical Schemes

Tassa presented the opening of a bank vault as an example scenario. In this sce-
nario, a fast ({1, 3}, n) hierarchical secret sharing scheme is required. Castiglione
et al. [16] presented other scenarios; the project manager and team members
can access a project workspace according to their levels of authority; nurses may
access a subset of patients’ clinical data, while a doctor can access all data.

Here, we present a file management system as an example scenario. We store
the indispensable participant’s share in local storage such as smartphones, and
we store the remaining two shares in external storage such as USB mass storage
and cloud storage. Only the owner of the smartphone can recover this data by
using either of the two external storage devices, and data cannot be recovered
using only the two external storage devices. Therefore, there is a need for a fast
({1, 2}, 3) hierarchical secret sharing scheme.

1.3 Our Contribution

In this paper, we propose an XOR-based ideal hierarchical secret sharing scheme,
which can be applied to any level. Our scheme then requires a minimal number of
higher-level participants to recover the secret. In addition, when k participants
at the highest level U0 cooperate to recover the secret, the proposed scheme can
yield the same result as Kurihara et al.’s (k, n) threshold scheme [7].

Tassa [3,4] proposed a hierarchical scheme over a finite field of sufficiently
large prime order q. Kurihara et al. proposed an XOR-based non-hierarchical
scheme. Shima et al. [22] proposed a hierarchical scheme over finite fields of
characteristic two. No XOR-based hierarchical schemes applicable at any level
have been reported. Our overall contributions are summarized as follows:

XOR-Based Hierarchical Secret Sharing Scheme 209

– We apply the general concept of hierarchy to Kurihara et al.’s XOR-based
secret sharing scheme and realize a simple XOR-based hierarchical secret
sharing scheme applicable to any level. We achieve hierarchy by using our
function FW (i, j), shown later in Table 3, and providing mathematical proof.

– Our scheme eliminates an issue typically associated with such hierarchical
schemes [3,4,22]; depending on the allocation of participant identities, there is
a specific case in which the secret cannot be recovered in spite of an authorized
subset.

2 Preliminaries

2.1 Notations and Definitions

– ⊕ denotes a bitwise XOR operation.
– || denotes a concatenation of bit sequences.
– n ∈ N denotes number of participants.
– np is a prime number such that np ≥ n.
– The following index values are elements of GF(np), that is, Xc(a±b) denotes

Xc(a±b) mod np
. (1) random numbers, (2) divided pieces of the secret and the

shares, (3) XOR-ed terms of (1) and (2), (4) participants, and (5) matrices.
– H(X) denotes the Shannon entropy of a random variable X.

2.2 Definitions and Properties of Matrix

– In denotes the n × n identity matrix. O denotes a zero matrix.
– 1 denotes a matrix in which all elements are ones.
– Elementary row operations are as follows: (1) Each element in a row is mul-

tiplied by a non-zero constant, (2) A row is replaced by the sum of that row
and a multiple of another row, (3) A row within the matrix is switched with
another row.

– The leading coefficient of a row is the first nonzero element in that row.
– A matrix in row echelon form is one in which the leading coefficient of a

nonzero row is strictly to the right of the leading coefficient of the row above,
and all nonzero rows are above any rows of all zeros.

– Any matrix can be transformed to the row echelon form by using elementary
row operations. The echelon form is not unique, but all row echelon forms
have the same number of zero rows.

– The rank of matrix A, rank(A), equals the number of nonzero rows of a
matrix transformed to the row echelon form.

2.3 Perfect and Ideal Secret Sharing Schemes

In this subsection, we refer to Beimel [17] for a perfect secret sharing scheme and
refer to Blundo et al. [18,19] and Kurihara et al. [6–8] for an ideal secret sharing
scheme. Let S be a random variable in a given probability distribution on the
secret, SB be a random variable in a given probability distribution on the shares

210 K. Shima and H. Doi

in each authorized set B, and ST be a random variable in a given probability
distribution on the shares of each unauthorized set T . A perfect secret sharing
scheme would satisfy the following conditions:

Correctness, Accessibility. H(S|SB) = 0.
Perfect privacy, Perfect security. H(S|ST) = H(S).

A secret sharing scheme is called ideal if it is perfect and the information rate
equals one. In other words, if the size of every bit of the shares equals the bit
size of the secret, the scheme is ideal. As Tassa [4] mentioned in Definition 1.1,
we may apply the information rate to a hierarchical secret sharing scheme.

3 Related Work

From Kurihara et al.’s scheme [7], we equally divide the secret s ∈ {0, 1}d(np−1)

into np −1 blocks s1, · · · , snp−1 ∈ {0, 1}d. d is, for example, 8 and 64. The dealer
securely distributes each share wi for i = 0, · · · , n − 1 of a (k, np) threshold
scheme to participant Pi. Therefore, we can construct a (k, n) threshold scheme
by using a (k, np) threshold scheme even if n is a composite number.

Table 1 shows the distribution algorithm. Step 1 divides the secret equally
into np − 1 pieces of the d-bit sequence. Step 2 generates (k − 1)np − 1 pieces
of the d-bit random number. Here, we define the vectors s, r and e, as given in
Table 1. Step 3 generates shares wi by using the function FW (i, j). We can view
Step F1 as w(i,j) = v(i,j) · e with a uniquely given vector v(i,j) corresponding to
the (k, np) threshold scheme. If k = 3 and np = 5, v(2,1) = (0100 00010 0001).

Table 1. Kurihara et al.’s distribution algorithm

Input: s ∈ {0, 1}d(np−1)

Output: (w0, · · ·wn−1)

1: s0 ← {0}d, s1|| · · · ||snp−1 ← s
2: for i ← 0 to k − 2:

for j ← 0 to np − 1:

rij
$←− {0, 1}d (discard r0np−1)

3: for i ← 0 to n − 1:
for j ← 0 to np − 2:

w(i,j) ← FW (i, j)
wi ← w(i,0)|| · · · ||w(i,np−2)

4: return (w0, · · ·wn−1)

FW (i, j)

F1: w(i,j) ← k−2
h=0 r

h
h·i+j ⊕ sj−i

F2: return w(i,j)

– s denotes the vector (s1, · · · , snp−1)T.
– r denotes the vector (r00, · · · , r0np−2, r

1
0, · · · , r1np−1, · · · , rk−2

0 , · · · , rk−2
np−1)

T.

– e denotes the (knp − 2)-dimensional vector
[
r
s

]

.

XOR-Based Hierarchical Secret Sharing Scheme 211

– v(i,j) denotes a (knp−2)-dimensional binary vector such that w(i,j) = v(i,j) ·e.
Table 2 shows the recovery algorithm. Participants Pi for i = t0, · · · , tk−1

cooperate to recover the secret. Step 1 equally divides each share into d-bit pieces.
Step 2 generates the k(np − 1)-dimensional vector w. In Step 3, we obtain the
matrix M by using the function FMAT (). Step 4 recovers s1, · · · , snp−1 by cal-
culating M ·w. In Step 5, we obtain the secret s by concatenating s1, · · · , snp−1.
In Step F1, we obtain the vectors v(ti,j) such that w(ti,j) = v(ti,j) · e. In Step
F2, we obtain the matrix G. In Step F3, the matrix

[
G Ik(np−1)

]
is transformed

to the row echelon form
[
Ḡ J

]
. Matrices Ḡ and J correspond to the matrices

transformed from G and Ik(np−1), respectively. We then view the matrix
[
Ḡ J

]

as a matrix divided into block matrices O ,G0,G1,G2,J0, and J1, as given in
Table 2. Step F4 transforms the matrix [G0 J0] to the matrix

[
Inp−1 M

]
. Step 5

outputs the matrix M. Intuitively, the secret can be recovered in an authorized
set because G has full rank and can be transformed to ¯̄G to obtain s1, · · · , snp−1.

Table 2. Kurihara et al.’s recovery algorithm

Input: (wt0 , · · · , wtk−1)
Output: s

1: for i ← 0 to k − 1:
w(ti,0)|| · · · ||w(ti,np−2) ← wti

2: w ← (w(t0,0), · · · , w(t0,np−2), · · · ,
w(tk−1,0), · · · , w(tk−1,np−2))T

3: M ← FMAT (t0, · · · , tk−1)
4: (s1, · · · , snp−1)T ← M · w
5: s ← s1|| · · · ||snp−1

6: return s

FMAT (t0, · · · , tk−1)
F1: for i ← 0 to k − 1:

for j ← 0 to np − 2:
v(ti,j) ← w(ti,j) = v(ti,j) · e

F2: G ← (v(t0,0), · · · ,v(tk−1,np−2))T

F3:
G2 G1 J1

O G0 J0
= Ḡ J ← G Ik(np−1)

F4:
G2 G1 J1

O Inp−1 M
= ¯̄G ¯̄J ← Ḡ J

F5: return M

– w denotes a k(np − 1)-dimensional vector.
– M denotes a (np − 1) × k(np − 1) binary matrix.
– G denotes a k(np − 1) × (knp − 2) binary matrix.

We analyze the proof techniques [7] to describe the correctness and perfect pri-
vacy of our proposed scheme and to actively use their lemmas.

Definition 2. Let t0, · · · , tL−1 denote the indexes of L shares, which are arbi-
trary numbers such that 0 ≤ ti, tj ≤ n − 1 and ti
= tj if i
= j. Let s0 = {0}d

denote a singular point. Furthermore, let r be the same as shown in Table 1 and
let s′ = (s0, · · · , snp−1)T. Then, we define the L(np − 1) × (knp − 1) binary
generator matrix G′ = [U V] such that

w = G′ ·
[
r
s′

]

= U · r ⊕ V · s′

= (w(t0,0), · · · , w(t0,np−2), · · · , w(tL−1,0), · · · , w(tL−1,np−2))T.

We may discuss correctness and perfect privacy with s′ by using this singular
point because w does not change. Furthermore, we may set as zero or one each

212 K. Shima and H. Doi

element of the column of G′ corresponding to s0 = {0}d. Therefore, we can
represent the matrix V with (np − 1) × np matrices E(j).

Lemma 1 ([7] Lemma 1). Under Definition 2, the conditions

rank(G′) = rank(U) = L(np − 1) if 1 ≤ L ≤ k − 1,
rank(G′) = k(np − 1), rank(U) = (k − 1)(np − 1) if L ≥ k

are satisfied when matrices G′ and E(j) are determined, i.e.,

G′ =
[
U V

]

=

⎡

⎢
⎢
⎢
⎣

Inp−1 E(t0) · · · E((k−2)t0) E((np−1)t0)

Inp−1 E(t1) · · · E((k−2)t1) E((np−1)t1)

...
...

. . .
...

...
Inp−1 E(tL−1) · · · E((k−2)tL−1) E((np−1)tL−1)

⎤

⎥
⎥
⎥
⎦

,E(j) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

O
... Inp−j

0
0

Ij−1

... O
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, we define matrix E(2)
(i,j) = E(i) ⊕ E(j). We then perform elementary row

operations on matrix G′ and obtain matrix [U′ V′] represented by matrices

U′ =

⎡

⎢
⎢
⎢
⎢
⎣

Inp−1 E(t0) · · · E((k−2)t0)

O E(2)
(t0,t1)

· · · E(2)
((k−2)t0,(k−2)t1)

...
...

. . .
...

O E(2)
(t0,tL−1)

· · · E(2)
((k−2)t0,(k−2)tL−1)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

Inp−1 ∗
O
... U′′

O

⎤

⎥
⎥
⎥
⎦

,

V′ =

⎡

⎢
⎢
⎢
⎢
⎣

E((np−1)t0)

E(2)
((np−1)t0,(np−1)t1)

...

E(2)
((np−1)t0,(np−1)tL−1)

⎤

⎥
⎥
⎥
⎥
⎦

=
[
E((np−1)t0)

V′′

]

.

We also define matrix D = [U′′ V′′], and Lemma 1 satisfies the conditions

rank(D) = rank(U′′) = (L − 1)(np − 1) if 1 ≤ L ≤ k − 1,
rank(D) = (k − 1)(np − 1), rank(U′′) = (k − 2)(np − 1) if L ≥ k.

Kurihara et al. introduced several other techniques in their proof of Lemma 1.
Specifically, they introduced Lemmas 2 and 3, and defined matrix H(i,j) by
adding one row to E(2)

(i,j) with all rows of E(2)
(i,j).

Lemma 2 ([7] Lemma 4). Suppose p is a prime number. Let i, j, l ∈ GF(p),
i
= j, and let il be a p-dimensional unit vector such that

il = (
0

0̌, · · · , 0,
l

1̌, 0, · · · ,
p−1

0̌).

XOR-Based Hierarchical Secret Sharing Scheme 213

Furthermore, let X be a set of p-dimensional binary vectors defined by

X = {ii+m ⊕ ij+m | 0 ≤ m ≤ p − 2}.

Then, all vectors in X are linearly independent.

Lemma 3 ([7] Lemma 6). Suppose x0, · · · , xi−1 for i ≥ 2 are random numbers
selected from the finite set {0, 1}h for h > 0 independently from each other with
uniform probability 1/2h. Let X be the set defined by X = {x0, · · · , xi−1}. Then,
x0, · · · , xi−1 and all XOR-ed combinations of the elements in X are random
numbers that are pairwise independent and distributed uniformly over {0, 1}h.

Definition 3. Let i, j ∈ GF(np), i
= j. We define the matrix np×np as follows:

H(i,j) =

[
E(2)

(i,j)⊕np−2
l=0 (ii+l ⊕ ij+l)

]

.

Then, using Lemma 2 and Li, which denotes a circulant matrix based on the
identity matrix, H(i,j) is represented as

H(i,j) =

[
E(2)

(i,j)

ii−1 ⊕ ij−1

]

= Li ⊕ Lj , Li =
[
E(i)

ii−1

]

=
[
O Inp−i

Ii O

]

.

Since rank(E(2)
(i,j)) = np − 1 from Lemma 2, rank(H(i,j)) = np − 1. Furthermore,

we can represent matrix D = [U′′ V′′] as matrix M = [P Q], where

P =

⎡

⎢
⎣

H(t0,t1) · · · H((k−2)t0,(k−2)t1)

...
. . .

...
H(t0,tL−1) · · · H((k−2)t0,(k−2)tL−1)

⎤

⎥
⎦ ,Q =

⎡

⎢
⎣

H((np−1)t0,(np−1)t1)

...
H((np−1)t0,(np−1)tL−1)

⎤

⎥
⎦ .

As a result, rank(D) = rank(M), rank(U′′) = rank(P), and rank(V′′) =
rank(Q) are satisfied. Then, we can simply multiply H(i,j) required in elemen-
tary row operations because Li · Lj = Lj · Li = Li+j is satisfied.

4 Proposed Scheme

In this section, we describe the proposed (k, n) hierarchical secret sharing scheme
that satisfies Definition 1. Our scheme requires a minimal number of higher-
level participants to recover the secret. From another perspective, not only k0
participants at the highest level but also k0+1 or more participants at the highest
level can participate in the recovery. Therefore, we construct the scheme such
that it can lead to the same result as Kurihara et al.’s (k, n) threshold scheme [7]
when k participants at the highest level cooperate to recover the secret.

214 K. Shima and H. Doi

4.1 Distribution Algorithm

We equally divide secret s ∈ {0, 1}d(np−1) into np − 1 blocks s1, · · · , snp−1 ∈
{0, 1}d. d is, for example, 8 and 64. The dealer securely distributes each share
wi for i = 0, · · · , n − 1 of a (k, np) hierarchical scheme to participant Pi. There-
fore, we can construct a (k, n) hierarchical scheme with a (k, np) hierarchical
scheme even if n is a composite number. Table 3 shows the difference between
the proposed and Kurihara et al.’s algorithms.

Table 3. FW (i, j) of proposed scheme

R(x) := x
h=0 r

h
h·i+j ⊕ if x = k − 2 : 0

else : k−2
h=x+1

np−1
a=0 rha

F1: w(i,j) ← if l = 0 : R(k − 2) ⊕ sj−i

else : R(k − 1 − kl−1) ⊕ np−1
a=1 sa

F2: return w(i,j)

– Participant Pi ∈ Ul receives w(i,j) and kl is defined by Definition 1.

4.2 Recovery Algorithm

The difference of FW (i, j) leads to corresponding changes in G, G′, and v(i,j),
but our recovery algorithm is identical to that of Kurihara et al., as shown in
Table 2. We can then view Step 3 of Table 2 as a precomputation.

4.3 Achieving Hierarchy

This creative solution of FW (i, j) in the proposed algorithm achieves hierarchy
and is nontrivial, while the difference appears to be minor. Tassa’s scheme [3,4]
achieves hierarchy by using the properties of polynomial derivatives; shares of
lower-level participants are not generated from the secret and some random
values. Because Step F1 in Table 3 means w(i,j) = v(i,j) · e, we have attempted
to set all elements corresponding to the secret and some random values of v(i,j) to
zero for the lower-level participants, but this approach did not work. Through
repeated consideration, we can achieve hierarchy when those elements are all
ones and prove the correctness and perfect privacy of our scheme by actively
using Kurihara et al.’s proof techniques. Intuitively, G used in recovery has full
rank in an authorized set and does not have full rank in an unauthorized set, also
including k or more participants. Section 4.5 shows an example of our scheme.

Achieving hierarchy with the proposed XOR-based scheme eliminates a tra-
ditional issue. As Tassa stated in [3,4], depending on the allocation of participant
identities, there is a specific case in which the secret cannot be recovered in spite
of the presence of an authorized subset because the determinant of a matrix used
in recovery, related to the generator matrix, is zero under a certain probability.
Our scheme does not require values of participant identities in the generator
matrix. Therefore, this allocation issue does not occur, and every authorized set
always receives the secret information.

XOR-Based Hierarchical Secret Sharing Scheme 215

4.4 Security Analysis

Based on Kurihara et al.’s proof approach [7,20], we present the effects on our
FW (i, j) in Table 3. We introduce Lemmas 4 and 5.

Without loss of generality, we may view matrix G′, corresponding to par-
ticipants who cooperate to recover the secret, as a matrix listed from to the
highest-level participants in the recovery set. In other words, the right block
matrices of the first 1 in each row of G′ are all 1’s and the block matrices below
those 1’s in that row are also all 1’s. We then define matrix Ê(2)

(i) = E(i) ⊕ 1 and

the np × np matrix Ĥ(i) by adding one row to Ê(2)
(i) along with all rows of Ê(2)

(i) .

Ĥ(i) can be represented as Ĥ(i) =
⊕np−1

j=0,j �=i Lj .

Lemma 4. Under Definition 2, Let 2 ≤ L ≤ k. M = [P Q], corresponding to
D = [U′′ V′′], is represented as M(L)

k = [M(i,j)]L−1 k−1
i=1 j=1. We define

Ha
(i,j) =

{
H(a·ti,a·tj) if 1 ≤ a ≤ k − 2
H((np−1)ti,(np−1)tj) if a = k − 1

,

Ĥa
(i) =

{
Ĥ(a·ti) if 1 ≤ a ≤ k − 2
Ĥ((np−1)ti) if a = k − 1

.

Furthermore, we define qi for the i-th block row of M(L)
k and view q0 as qL−1.

Let a + qa ≤ b + qb, a < b for all a, b since we may view M(L)
k as a matrix listed

from to the highest-level participants, and let

M(i,j) =

{
Hj

(0,i) (i + j + qi < L)

Ĥj
(0) (i + j − qi ≥ L)

.

If qi ≤ 0 for all i, then rank(M(L)
k) = rank(D) = (L − 1)(np − 1), else

rank(M(L)
k) = rank(D) < (L − 1)(np − 1).

Proof. For example, if L = 3 < k, q1 = 0, and q2 = 0, M(L)
k is represented as

M(L)
k =

[
H1

(0,k−2) Ĥ
2
(0) · · · Ĥk−2

(0) Ĥk−1
(0)

Ĥ1
(0) Ĥ2

(0) · · · Ĥk−2
(0) Ĥk−1

(0)

]}

L − 1 blocks

and this lemma proves rank(M(L)
k) = (L − 1)(np − 1). If L = k and qi = 0 for

all i, M(L)
k is represented as

M(L)
k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1
(0,1) H2

(0,1) · · · Hk−2
(0,1) Ĥ

k−1
(0)

H1
(0,2) H2

(0,2) · · · Ĥk−2
(0) Ĥk−1

(0)

...
... . .

. ...
...

H1
(0,k−2) Ĥ2

(0) · · · Ĥk−2
(0) Ĥk−1

(0)

Ĥ1
(0) Ĥ2

(0) · · · Ĥk−2
(0) Ĥk−1

(0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

L − 1 blocks

216 K. Shima and H. Doi

and this lemma also proves rank(M(L)
k) = (L − 1)(np − 1).

Let i0 = 0, · · · , L − 2 and let M̄(L)
k be the matrix such that the j-th block

column of M(L)
k for j = 1, · · · , k−1 is switched with the (k−j)-th block column

and the i-th block row for i = 1, · · · , L − 2 is switched with the (L − 1)-th block
row. Since elementary matrix operations do not change the rank of a matrix,
we may discuss rank(M̄(L)

k) instead of rank(M(L)
k). If qi0 = 0 for all i0, M̄

(L)
k is

represented as

M̄(L)
k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ĥk−1
(0) Ĥk−2

(0) · · · Ĥ2
(0) Ĥ1

(0)

Ĥk−1
(0) Hk−2

(0,1) · · · H2
(0,1) H1

(0,1)

Ĥk−1
(0) Ĥk−2

(0) · · · H2
(0,2) H1

(0,2)

...
...

. . .
...

...

Ĥk−1
(0) Ĥk−2

(0) · · · Ĥ2
(0) H1

(0,k−2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

L − 1 blocks .

Since Ĥx
(i) ⊕ Hx

(i,j) = Ĥx
(j), M̄

(L)
k can be transformed to

M̄(L)
k →

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ĥk−1
(0) Ĥk−2

(0) Ĥk−3
(0) · · · Ĥ1

(0)

O Ĥk−2
(1) Ĥk−3

(1) · · · Ĥ1
(1)

O O Ĥk−3
(2) · · · Ĥ1

(2)

...
...

...
. . .

...

O O O · · · Ĥ1
(k−2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

M0 ∗ ∗
O
... ∗ M′

O

⎤

⎥
⎥
⎥
⎦

by using elementary row operations. Here, we define matrices M0 and M′. Since
Ĥk−1−i0

(i0)

= O for all i0, rank(M̄(L)

k) = (L − 1)(np − 1). If qi0 ≥ 1 for at least

any one of i0, rank(M̄(L)
k) < (L− 1)(np − 1) because at least one of the diagonal

block matrices of M̄(L)
k , corresponding to Ĥk−1−i0

(i0)
for all i0, is O . Note that if

L < k, we can discuss the diagonal block matrices of M′.
Next, we consider the remaining condition qi0 < 0 for all i0. For example, if

q1 = −1, q2 = −2, and the others qi0 = 0, M̄(L)
k can be transformed to

M̄(L)
k →

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ĥk−1
(0) Ĥk−2

(0) Ĥk−3
(0) Ĥk−4

(0) · · · Ĥ1
(0)

Ĥk−1
(1) Ĥk−2

(1) Ĥk−3
(1) Ĥk−4

(1) · · · Ĥ1
(1)

Ĥk−1
(2) Ĥk−2

(2) Ĥk−3
(2) Ĥk−4

(2) · · · Ĥ1
(2)

O O O Ĥk−4
(3) · · · Ĥ1

(3)

...
...

...
...

. . .
...

O O O O · · · Ĥ1
(k−2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

XOR-Based Hierarchical Secret Sharing Scheme 217

In general, M̄(L)
k can be transformed to

M̄(L)
k →

⎡

⎢
⎢
⎢
⎢
⎣

M(m0)
0 ∗

M(m1)
1

. . .

O M(mα)
α

⎤

⎥
⎥
⎥
⎥
⎦

,

where M(mi)
i is an mi × mi block matrix. If rank(M(mi)

i) = mi(np − 1) for all i,
rank(M̄(L)

k) = (L − 1)(np − 1). Without loss of generality, we can discuss M(m0)
0

instead of all matrices M(mi)
i . M(m0)

0 can be transformed to

M(m0)
0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ĥk−1
(0) Ĥk−2

(0) · · · Ĥ(k−m0)
(0)

Ĥk−1
(1) Ĥk−2

(1) · · · Ĥ(k−m0)
(1)

...
...

. . .
...

Ĥk−1
(m0−1) Ĥ

k−2
(m0−1) · · · Ĥ(k−m0)

(m0−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ĥk−1
(0) Ĥk−2

(0) · · · Ĥ(k−m0)
(0)

Hk−1
(0,1) Hk−2

(0,1) · · · H(k−m0)
(0,1)

...
...

. . .
...

Hk−1
(0,m0−1) H

k−2
(0,m0−1) · · · H(k−m0)

(0,m0−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

∗

H′

⎤

⎥
⎥
⎦ .

Here, let M be the matrix used in Kurihara et al.’s scheme and let M̄ be the
matrix such that the j-th block column of M for j = 1, · · · , k − 1 is switched
with the (k−j)-th block column. M̄ can be also transformed to the same matrix
transformed from M. Then, we can view H′ as a submatrix of M̄. H′ can be
transformed to the row echelon form as with M̄ or M. In other words, rank(H′) =
(m0 − 1)(np − 1). Furthermore, rank(M(m0)

0) = m0(np − 1) because each block
row of H′ is XOR-ed with the first block row of M(m0)

0 . Therefore, rank(M̄(L)
k) =

(L − 1)(np − 1) and the proof is complete.
�
Lemma 5. Under Definition 2, Let 2 ≤ L. If the block matrices in V are all
1’s, rank(G′) ≤ (L−1)(np −1). Furthermore, if the block matrices in V and the
k − 2, k − 1, · · · , j-th block columns of U are all 1’s, rank(G′) ≤ (L− 1)(np − 1).

Proof. Matrices V and V′ are represented as

V =

⎡

⎢
⎣

1
...
1

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
L blocks, V′ =

⎡

⎢
⎢
⎢
⎣

1
O
...
O

⎤

⎥
⎥
⎥
⎦

=
[

1
V′′

]

.

Here, we refer to Lemma 4. M, corresponding to D = [U′′ V′′], can be rep-
resented as M(L)

k in which M0 is always O if L ≤ k. It is apparent that

218 K. Shima and H. Doi

rank(M) ≤ (L − 1)(np − 1). Furthermore, even if L > k, we can retain
rank(M) ≤ (L − 1)(np − 1). The proof is therefore complete.
�

We introduce Theorems 1, 2, and 3 under the access structure of Definition 1.
Theorem 1 shows correctness H(S|SB) = 0. Theorems 2 and 3 show perfect
privacy H(S|ST) = H(S).

Theorem 1. Let L = k in Definition 2. Assume that any set of k participants
B = {Pt0 , · · · , Ptk−1} agrees to recover the secret. Then, Lemma 1 holds even if
matrix 1’s are included and the secret can be recovered.

Proof. Consider the set of participants that can recover the secret. Because the
corresponding G′ has rank(G′) = k(np − 1) and rank(U) = (k − 1)(np − 1) from
Lemma 4, the secret is therefore recovered.
�
Theorem 2. Let 1 ≤ L ≤ k − 1 in Definition 2. Assume that any set of L
participants T = {Pt0 , · · · , PtL−1} agrees to recover the secret. Then, we receive
no information regarding the secret.

Proof. Consider G′ corresponding to the set of participants. Let α = L′(np − 1)
be the rank of G′. If L = 1, rank(G′) = L(np − 1) = α. From Lemma 4, if
L = 2, · · · , k − 1, rank(G′) = α ≤ L(np − 1). In other words, we can find Ḡ′ =[
Ū V̄

]
such that rank(Ḡ′) = α and rank(Ū) = α. If we receive no information

regarding the secret from the Ḡ′, we do not receive information more than Ḡ′.
Suppose that elements of s, as given in Table 1, and elements of r are mutually

independent and that elements of r are selected from the finite set {0, 1}d with
uniform probability 1/2d. Ū and V̄ are L′(np − 1)× ((k − 1)np − 1) and L′(np −
1) × np matrices, respectively. Because all rows of Ū are linearly independent
for 1 ≤ L′ ≤ k − 1, we can use Lemma 3. In other words, all elements of the
L′(np − 1)-dimensional vector Ū · r are d-bit random numbers that are mutually
independent and distributed uniformly over {0, 1}d. Therefore, the vector Ū · r
is uniformly distributed over {0, 1}dL′(np−1).

Next, we suppose that w′ denotes a fixed value of w. w = w′ can be obtained
with uniform probability (1/2)dL′(np−1) from any selected s or V̄ · s′. Because s
is independent of w, we have H(S|ST) = H(S) and therefore receive no infor-
mation regarding the secret.
�
In hierarchical schemes, we need to consider the case of k or more participants
in an unauthorized set T .

Theorem 3. Let L ≥ k in Definition 2. Assume that any set of L participants
T = {Pt0 , · · · , PtL−1}
∈ Γ agrees to recover the secret. Then, the secret cannot
be recovered.

Proof. From Lemma 5, when no participants at the highest level U0 cooperate
to recover the secret, the secret cannot be recovered. Next, from Lemma 4, when
a minimal number of higher-level participants are not included, rank(G′) <
k(np − 1). If L > k, each of the L − k block rows should include Ĥj

(0), shown in

XOR-Based Hierarchical Secret Sharing Scheme 219

Lemma 4, because the block row is not for the participant at the highest level
U0. As a result, we can retain rank(G′) < k(np − 1) even if L > k. Therefore,
we can simplify the proof to the case of L < k shown in Theorem 2 and receive
no information regarding the secret.
�
The proof is thus complete, and we conclude that both correctness and perfect
privacy hold. Because every bit size of shares equals the bit size of the secret,
our scheme is ideal.

4.5 Brief Example of Our Scheme

We consider a ({2, 3}, 5) hierarchical secret sharing scheme as an example. Let
participants P0, P1, P2 ∈ U0, and P3, P4 ∈ U1. We generate each share wi =

w(i,0)|| · · · ||w(i,3) for participant Pi with w = G ·
[
r
s

]

. For example, we can view

the v(0,0) used to generate w(0,0) as v(0,0) = (1000 10000 0000), i.e.,

w =

⎡

⎢
⎢
⎢
⎢
⎣

w0

w1

w2

w3

w4

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w(0,0)

w(0,1)

w(0,2)

w(0,3)

w(1,0)

w(1,1)

...
w(3,2)

w(3,3)

w(4,0)

w(4,1)

w(4,2)

w(4,3)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= G ·
[
r
s

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1000 10000 0000
0100 01000 1000
0010 00100 0100
0001 00010 0010
1000 01000 0001
0100 00100 0000

...
0010 11111 1111
0001 11111 1111
1000 11111 1111
0100 11111 1111
0010 11111 1111
0001 11111 1111

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r00
r01
r02
r03
r10
r11
r12
r13
r14
s1
s2
s3
s4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

When participants P1, P2, P4 cooperate to recover the secret, the secret can be
recovered because

[G I12] =⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1000 01000 0001 1000 0000 0000
0100 00100 0000 0100 0000 0000
0010 00010 1000 0010 0000 0000
0001 00001 0100 0001 0000 0000
1000 00100 0010 0000 1000 0000
0100 00010 0001 0000 0100 0000
0010 00001 0000 0000 0010 0000
0001 10000 1000 0000 0001 0000
1000 11111 1111 0000 0000 1000
0100 11111 1111 0000 0000 0100
0010 11111 1111 0000 0000 0010
0001 11111 1111 0000 0000 0001

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

[G I12] → [
Ḡ J

] →
[
¯̄G ¯̄J

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1000 01000 0001 1000 0000 0000
0100 00100 0000 0100 0000 0000
0010 00010 1000 0010 0000 0000
0001 00001 0100 0001 0000 0000
0000 11101 1111 1001 1001 0000
0000 01010 0010 1100 1100 0000
0000 00101 1001 0110 0110 0000
0000 00011 1000 0010 0010 0000
0000 00000 1000 1011 1001 0010
0000 00000 0100 0001 0010 0011
0000 00000 0010 0100 1000 1100
0000 00000 0001 1001 1101 0100

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

220 K. Shima and H. Doi

G′ =

⎡

⎣
I4 E(1) E(4)

I4 E(2) E(3)

I4 1 1

⎤

⎦ , s =

⎡

⎢
⎢
⎣

s1
s2
s3
s4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1011 1001 0010
0001 0010 0011
0100 1000 1100
1001 1101 0100

⎤

⎥
⎥
⎦

⎡

⎣
w1

w2

w4

⎤

⎦ .

However, participants P0, P3, P4 cannot recover the secret from Theorem 3.

5 Software Implementation

For the (k, n) hierarchical secret sharing scheme, we evaluated the proposed
scheme using one general purpose machine, as described in Table 4. Furthermore,
we used a file size of 888,710 bytes and provided some parameters of k and n.

Table 4. Test environment

CPU Intel R© Celeron R© Processor G1820
2.70 GHz × 2, 2MB cache

RAM 3.6 GB

OS CentOS 7 Linux 3.10.0-229.20.1.el7.x86 64

Programing language C

Compiler system gcc 4.8.3 (-O3 -flto -DNDEBUG)

Table 5 presents our experimental results. We used d = 64 and used Xorshift
for random number generation. The processing time to generate random numbers
was included in the results of distribution. The implementation used in our
experiments can be applied to any level, not specialized for, for example, k =
{1, 3}. We then assigned n participants such that participants in each level could
cooperate to recover the secret and most of the remaining n − k participants
belonged to lower levels, especially the lowest level. We obtained almost the
same results in both ({1, k}, n) and ({2, 3, k}, n) with k = 5 and n = 11.

Table 5. Experimental results

(k, n) Distribution (Mbps) Recovery (Mbps)

({1,3},5) 1,390 6,750

({1,3},11) 130 1,720

({1,3},59) 4.07 206

({1,5},11) 62.6 1,070

({2,4},7) 321 2,340

({2,3,5},11) 62.5 1,090

({2,4,6,10},17) 11.5 195

({3,7,11,14,17},23) 3.52 34.7

XOR-Based Hierarchical Secret Sharing Scheme 221

Table 6 shows the computational costs. In general, the size of the secret
exceeded d(np − 1) bits. In our analysis, we refer to such an initial computa-
tion processed once for that recovery as a precomputation. We omit the detailed
calculations here due to the page limitation, but we may view the cost of recov-
ery in our scheme as the one in Kurihara et al.’s scheme [7,8] because no changes
were made to them in terms of the number of necessary XOR operations. Fur-
thermore, for example, the minimum computational cost of distribution can be
obtained when all n participants belong to the highest level. In Table 6, we can
see that our scheme is more efficient than Tassa’s approach, which is a hierar-
chical scheme, if np is not extremely large. Note that the precomputation cost is
not dominant in a large file, while our scheme is not more efficient than Tassa’s
approach. Furthermore, as Shima et al. [22] mentioned in Sect. 5.2.1, we can see
that arithmetic operations required high computational costs.

Table 6. Computational costs

Precomputation Distribution Recovery

Our scheme O(k3n3
p) O(kn)|s| ≤ x ≤ O(knpn) O(knp)|s|

Tassa’s scheme O(k3) O(kn) O(k3)

– k is the maximal threshold, shown in Definition 1.
– |s| denotes the bit length of the secret, i.e., |s| = d(np − 1).
– A t × t determinant required O(t3) when we used LU decomposition.
– Our scheme shows the costs of the bitwise XOR operations, and Tassa’s

scheme shows the costs of arithmetic operations.

6 Conclusions

In this paper, we focused on a fast (k, n) hierarchical secret sharing scheme
that also supports efficient deletion of the secret. To achieve this, we applied a
hierarchy to Kurihara et al.’s XOR-based secret sharing scheme and found that
all elements corresponding to the secret and some random values of the binary
generator matrix are set to 1 for the lower-level participants. In addition, we
showed that the traditional allocation issue with participant identities could be
removed. Given that the implementation used in our experiments can be applied
to any level, we found that our implementation was able to recover a given secret
with k = {1, 3} and n = 5 at a processing speed of approximately 6.75 Gbps.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful and constructive comments. This work was supported by JSPS KAKENHI
Grant Number JP18K11306.

222 K. Shima and H. Doi

References

1. Blakley, G.R.: Safeguarding cryptographic keys. AFIPS 48, 313–317 (1979)
2. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
3. Tassa, T.: Hierarchical threshold secret sharing. In: Naor, M. (ed.) TCC 2004.

LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24638-1 26

4. Tassa, T.: Hierarchical Threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)
5. Fujii, Y., Tada, M., Hosaka, N., Tochikubo, K., Kato, T.: A fast (2, n)-threshold

scheme and its application. CSS 2005, 631–636 (2005). (in Japanese)
6. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast (3, n)-threshold

secret sharing scheme using Exclusive-OR operations. IEICE Trans. Fundam. E91-
A(1), 127–138 (2008)

7. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: On a fast (k, n)-threshold
secret sharing scheme. IEICE Trans. Fundam. E91-A(9), 2365–2378 (2008)

8. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold
secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee,
D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85886-7 31

9. Kurihara, J., Uyematsu, T.: A novel realization of threshold schemes over binary
field extensions. IEICE Trans. Fundam. E94-A(6), 1375–1380 (2011)

10. Feng, G.-L., Deng, R.-H., Bao, F.: Packet-loss resilient coding scheme with only
XOR operations. IEE Proc. Commun. 151(4), 322–328 (2004)

11. Blömer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., Zuckerman, D.: An
XOR-Based Erasure-Resilient Coding Scheme. ICSI Technical report TR-95-048
(1995)

12. Chen, L., Laing, T.M., Martin, K.M.: Efficient, XOR-based, ideal (t, n)−threshold
schemes. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp.
467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 28

13. Selçuk, A.A., Kaşkaloğlu, K., Özbudak, F.: On hierarchical threshold secret shar-
ing. IACR Cryptology ePrint Archive 2009, p. 450 (2009)

14. Simmons, G.J.: How to (Really) share a secret. In: Goldwasser, S. (ed.) CRYPTO
1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990). https://doi.org/
10.1007/0-387-34799-2 30

15. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle,
J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-46885-4 45

16. Castiglione, A., De Santis, A., Masucci, B.: Hierarchical and shared key assignment.
NBiS-2014, pp. 263–270 (2014)

17. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7 2

18. Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of
secret sharing schemes. TCS 154, 283–306 (1996)

19. Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of
secret sharing schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
148–167. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 11

20. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast (k, L, n)-threshold
ramp secret sharing scheme. IEICE Trans. Fundam. E92-A(8), 1808–1821 (2009)

https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1007/978-3-540-24638-1_26
https://doi.org/10.1007/978-3-540-85886-7_31
https://doi.org/10.1007/978-3-319-48965-0_28
https://doi.org/10.1007/0-387-34799-2_30
https://doi.org/10.1007/0-387-34799-2_30
https://doi.org/10.1007/3-540-46885-4_45
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/3-540-48071-4_11

XOR-Based Hierarchical Secret Sharing Scheme 223

21. Shima, K., Doi, H.: ({1, 3}, n) hierarchical secret sharing scheme based on XOR
operations for a small number of indispensable participants. AsiaJCIS 2016, pp.
108–114 (2016)

22. Shima, K., Doi, H.: A hierarchical secret sharing scheme over finite fields of char-
acteristic 2. J. Inf. Process. 25, 875–883 (2017)

Symmetric-Key Primitives

Integer Linear Programming
for Three-Subset Meet-in-the-Middle

Attacks: Application to GIFT

Yu Sasaki(B)

NTT Secure Platform Laboratories,
3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

sasaki.yu@lab.ntt.co.jp

Abstract. This article presents a new usage of integer-linear-
programming (ILP) for block-cipher analysis, in particular for automat-
ing a procedure to search for optimal independent key bits used in a
meet-in-the-middle (MitM) attack. The research is motivated by a recent
lightweight block-cipher design GIFT, in which the evaluation by the
designers has some room to be improved. The developed tool finds opti-
mal choices of independent key bits, which improves the complexity of
the 15-round MitM attack, the current best attack, on GIFT-64 from 2120

to 2112.

Keywords: GIFT · Block cipher · Cryptanalysis · Symmetric-key
Meet-in-the-middle · Integer linear programming

1 Introduction

Lightweight cryptography, which is one of the most actively discussed topics in
the current symmetric-key community, studies cryptographic technologies that
are particularly useful for extremely resource-constraint environments, e.g. sen-
sor networks and radio frequency identifier (RFID) systems. Those technologies
are important for the coming age of Internet-of-Things, in which a lot of sensitive
data is measured by sensors that are not equipped with a powerful CPU and the
data is communicated through public channels.

Block ciphers are one of the most fundamental primitives for symmetric-
key cryptographic schemes. Since the pioneering ultra-lightweight block cipher
design PRESENT [6], a huge number of lightweight block ciphers have been
designed especially during the last decade. Readers may refer to [1] for a list of
existing lightweight block-cipher designs.

Given a lot of lightweight block ciphers, it is now necessary for the community
to choose good designs. Indeed, lightweight block ciphers have recently been
discussed extensively not only in academia but also by standardization bodies
such as ISO, NIST and CRYPTREC.

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 227–243, 2018.
https://doi.org/10.1007/978-3-319-97916-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_15&domain=pdf

228 Y. Sasaki

At CHES 2017, Banik et al. proposed a new lightweight block cipher called
GIFT [3], which outperforms even SIMON [4] or SKINNY [5] in round-based
hardware implementation. According to the designers, GIFT was designed by
revisiting PRESENT’s design strategy and by pushing its implementation cost to
limits, while providing special care on security. For example, the maximum differ-
ential probability of its 4-bit S-box is 2−1.415 instead of standard 2−2 but the bit-
shuffle was designed to avoid having such bad propagation many times. Such a
compromise of security enables the designers to have lighter design choices. More-
over, from this innovation, the designers claim that GIFT improves PRESENT
both in efficiency and security. Indeed, the number of rounds for 64-bit block and
128-bit key is 28, which is smaller than that of PRESENT. Due to this property,
security analysis of GIFT is of great interest.

To the best of our knowledge, no third party analysis is available on GIFT. The
designers provided several dedicated cryptanalyses. Two deeply discussed attacks
are a 14-round integral attack and a 15-round meet-in-the-middle (MitM) attack,
here the MitM attack is a rather classical one [9] (sometimes called three-subset
MitM attack [7]) that divides the attack target into two independent parts.

In three-subset MitM attacks, the target cipher EK is divided into two parts
E1

K1
and E2

K2
so that EK = E2

K2
◦ E1

K1
, where K1 and K2 are sets of key bits

involved in the computations of E1 and E2, respectively. Let A1 and A2 be
sets of key bits used in only E1 and E2, respectively. Then for each guess of
the intersection of A1 and A2, E1(P) and E−1

2 (C) for a pair of plaintext and
ciphertext (P,C) are computed independently, thus the MitM attack is applied.

The designers, without explaining any rational, chose two sets of particular
8 key bits as A1 and A2 for GIFT-64. This raises the following issues.

– The optimality of the choice of key bits for A1 and A2 is unclear.
– More generally, is there any method, possibly automated, to identify the opti-

mal choice of key bits for A1 and A2?

Our Contributions. In this paper, we positively answer the above questions by
developing an optimal search method using integer-linear-programming (ILP).
Thanks to this tool, we successfully find new choices of independent key bits
for three-subset MitM attack that improve the complexity of the previous MitM
attack against GIFT-64 from 2120 to 2112, namely enlarges the size of A1 and
A2 from 8 to 16 bits. Our approach also ensures that there does not exist any
choice of independent key bits to achieve the complexity of 2111 or below. The
attack results are summarized in Table 1.

Table 1. Summary of attacks against GIFT-64.

Rounds Approach Time Data Memory Optimality Ref.

14/28 Integral 296 263 263 N/A [3]

15/28 MitM 2120 264 28 − [3]

15/28 MitM 2112 264 216 � Ours

Integer Linear Programming 229

Applications of ILP and mixed integer linear programming (MILP) to crypt-
analyses against block ciphers have been discussed actively, e.g. differential and
linear cryptanalyses [17,20,24,25], division property [23,27], cube attack [16],
impossible differential and zero-correlation cryptanalyses [8,21], and so on. We
show that a part of the process to mount three-subset MitM attacks can also be
automated and optimized by ILP.

From a technical viewpoint, our goal is to maximize the size of A1 and A2.
Naturally, an objective function of our model is “maximize |A1|” under the
constraint that |A1| = |A2|.1 Our model then deals with two constraints; (1) the
bits affected from A1 and A2 do not overlap each other, and (2) the number of
compared bits at the matching stage is sufficiently large (greater than or equal to
|A1|). An interesting feature is that those two constraints control two properties
that are complement each other, i.e. the former is focusing on the independence
and the latter is focusing on the match. Our model generates those constrains
in almost the same way, which reduces the implementers workload.

Paper Outline. Section 2 describes the specification of GIFT-64. Section 3
recalls the framework of the three-subset MitM attack and shows the previous
15-round attack against GIFT-64 presented by the designers. Section 4 explains
how a problem of finding optimal separations for MitM attacks can be modeled
by linear inequalities to be solved by ILP. Section 5 presents our improved MitM
attack against 15-round GIFT-64. Section 6 discusses an application to XTEA
[18]. We conclude this paper in Sect. 7.

2 Specification of GIFT

GIFT [3] is a lightweight block cipher supporting 64- and 128-bit block sizes and
128-bit key size. The former and the latter are called GIFT-64 and GIFT-128,
respectively. In this paper, we focus our attention on GIFT-64, thus omit the
detailed description of GIFT-128.

A 64-bit plaintext P is loaded to a 64-bit state s0. Then the state is updated
by iteratively applying a round function RF : {0, 1}64 × {0, 1}32 �→ {0, 1}64 28
times as si ← RF (si−1, ki−1) for i = 1, 2, · · · , 28, where ki−1 are 28 round keys
generated from a 128-bit user-specified key K by a key scheduling function KF :
{0, 1}128 �→ ({0, 1}32)28 as (k0, k1, · · · , k27) ← KF (K). We call the computation
for index i “round i.” The last state, s28, is a ciphertext C.

Round Function (RF). Let x63, x62, · · · , x0 be a 64-bit state value. The round
function consists of three operations: SubCells, PermBits, and AddRoundKey.

SubCells: It applies a 4-bit to 4-bit S-box S shown in Table 2 to 16 nibbles
x4i+3, x4i+2, x4i+1, x4i, ∀i = 0, 1, · · · , 15 in parallel.

1 Generally, the cost of two functions in the MitM attack can be unbalanced. Then
choosing different weight of |A1| and |A2| may be optimal. If the application is limited
to the three-subset MitM attacks, two functions are usually balanced.

230 Y. Sasaki

Table 2. S-box.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

PermBits: A bit-permutation π shown in Table 3 is applied to the 64-bit state.

Table 3. Bit-permutation.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
π(x) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
π(x) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
π(x) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

AddRoundKey: This step consists of adding a round key and a round con-
stant. A 32-bit round key ki−1 is extracted from the key state, it is further
partitioned into two 16-bit words ki−1 = U‖V = u15u14 · · · u0‖v15v14 · · · v0.
For GIFT-64, U and V are XORed to x4i+1 and x4i of the state respectively.

x4i+1 ← x4i+1 ⊕ ui, x4i ← x4i ⊕ vi, ∀i ∈ {0, 1, · · · , 15}.

Then, a single bit ‘1’ and a 6-bit round constant are XORed to the state at bit
positions 63, 23, 19, 15, 11, 7 and 3. Round constants are generated by a simple
linear feedback shift register. In our analysis, the round constants do not have
any impact, thus we ignore them hereafter. The schematic diagram of the GIFT
round function is shown in Fig. 1.

Key Schedule Function (KF). A 128-bit user-specified key K is loaded to a
128-bit key state that is composed of eight 16-bit words κ7, κ6, · · · , κ0. A round
key is first extracted from the key state before the key state update. For GIFT-64,
two 16-bit words of the key state are extracted as the round key ki−1 = U‖V ,

U ← κ1, V ← κ0.

The key state is then updated as follows,

κ7‖κ6‖κ5‖ · · · ‖κ1‖κ0 ← κ1 ≫ 2‖κ0 ≫ 12‖κ7‖ · · · ‖κ3‖κ2,

where ≫ i is an i-bit right rotation within a 16-bit word. The schematic diagram
of the GIFT key schedule function is illustrated in Fig. 2.

Integer Linear Programming 231

Fig. 1. Schematic diagram of two rounds of GIFT-64.

Fig. 2. Schematic diagram of key schedule function of GIFT-64.

Security. GIFT aims at single-key security. The designers do not claim any
related-key security even though no attack is known in this model as of today.

3 Three-Subset Meet-in-the-Middle Attacks

A three-subset meet-in-the-middle attack was proposed by Bogdanov and Rech-
berger [7] and was well summarized by Isobe [12,13]. We first recall its framework
in Sect. 3.1 and explain the previous attack on GIFT-64 in Sect. 3.2.

3.1 General Framework

Basic Framework. A block-cipher EK is divided into two parts E1
K1

and E2
K2

so that EK(x) = E2
K2

◦ E1
K1

(x), x ∈ {0, 1}b, where K1 and K2 are sets of key
bits involved in the computations of E1 and E2, respectively. Then, three sets
of key bits A0, A1, and A2 are defined as follows.

232 Y. Sasaki

– A0: a common set of key bits used in both E1 and E2, namely A0 = K1 ∩K2.
– A1: a set of key bits used only in E1, namely A1 = K1 \ K1 ∩ K2.
– A2: a set of key bits used only in E2, namely A2 = K2 \ K1 ∩ K2.

The attack first prepares a pair of plaintext and ciphertext denoted by (P,C).
The attacker exhaustively guesses A0 and for each of them, compute E1

A1
(P)

and D2
A2

(C) independently for all candidates of A1 and A2, where D2 denotes a
decryption of E2. The correct key always leads to a match, thus the key space
can be reduced efficiently. E1 and D2 are a chunk of rounds in a practical block-
cipher design, thus called a forward chunk and a backward chunk, respectively.
A formal description in an algorithm style is given in Algorithm1.

Algorithm 1. Basic Three Subset Meet-in-the-Middle Attack
Input: E1, D2, A0, A1, A2, (P, C), a list L used to store key candidates
Output: a list of key candidates L
1: L ← φ.
2: for all candidates of A0 do
3: for all candidates of A1 do
4: Compute E1

A1(P), and store it along with A1 in a table T .
5: end for
6: for all candidates of A2 do
7: Compute D2

A2(C).
8: if the same value as D2

A2(C) exists in T then
9: L ← L ∪ (A0 ∪ A1 ∪ A2).

10: end if
11: end for
12: end for
13: return L

In Step 4, the attack requires a memory to store 2|A1| values. The computa-
tional complexity of Algorithm 1 is 2|A0|(2|A1| + 2|A2|). The attack can be faster
than the brute force attack by a factor of min(2|A1|, 2|A2|). Therefore it is crucial
to find large A1 and A2 in the MitM attack.

Instead of separating EK into E1
K1

and E2
K2

, it is often separated into three
parts such that EK = E2

K2
◦ Eskip

K1,K2
◦ E1

K1
as illustrated in Fig. 3. In this case,

E1
K1

(P) and D2
K2

(C) cannot directly match due to the existence of Eskip. How-
ever, in a typical block cipher design, full diffusion is not achieved only in 1
round, hence state values inside Eskip can partially be computed without the
knowledge of round keys. As a result, by reducing the number of matched bits,
the number of attacked rounds may increase. Let m be the number of matched
bits. As long as m ≥ min(|A1|, |A2|), the MitM attack is faster than the brute
force attack by a factor of 2min(|A1|,|A2|). If m < min(|A1|, |A2|), the improved
factor is reduced to 2m. In other words, the improved factor is 2min(|A1|,|A2|,m).

Integer Linear Programming 233

Fig. 3. Three-subset MitM attack with partial match.

Initial Structure and Splice-and-Cut. A few more techniques are known
to extend the number of attacked rounds, e.g. splice-and-cut technique by Aoki
and Sasaki [2] and the initial-structure technique by Sasaki and Aoki [19].

The splice-and-cut technique enables the attacker to divide EK into E2
K2

◦
Eskip ◦ E1

K1
◦ E2

K2 . The attacker first fixes the value of the state between E2
K2

and E1
K1

, which is denoted by X. In the backward chunk, the attacker computes
P = D2

A2(X) for all possible values of A2, and makes encryption queries P
to obtain the corresponding ciphertext C. Then, D2

A2
(C) is computed. If the

change of A2 propagates to all bits in P , the attack requires the full code book.
The initial-structure technique enables to inject another layer depending on

all of A0, A1, A2 at the boundary of two chunks. It again exploits an imperfect
diffusion in a small number of rounds. As long as the impact of changing A1 in
the forward direction and the impact of changing A2 in the backward direction
do not overlap each other, two chunks can be computed independently.

The three-subset MitM attack with the splice-and-cut and initial structure
techniques is illustrated in Fig. 4. Those techniques are successfully applied to
many ciphers, e.g. generic Feistel construction [15], 3-round Even-Mansour con-
struction [10], dedicated designs KTANTAN [26] and XTEA [14,22].

Fig. 4. Splice-and-cut and initial structure techniques.

234 Y. Sasaki

3.2 Previous Three-Subset MitM Attack on 15-Round GIFT-64

The designers of GIFT presented a 15-round three-subset MitM attack against
GIFT-64 [3]. In GIFT-64, two words of the key are rotationally used in every
4 rounds. Namely, (κ0, κ1) for round i when i mod 4 = 0, (κ2, κ3) when i
mod 4 = 1, (κ4, κ5) when i mod 4 = 2, and (κ6, κ7) when i mod 4 = 3, though
bit-positions inside each word are rotated.

Given this property and the framework in Fig. 4, (κ6, κ7) and (κ2, κ3) were
chosen as sources of independent computations for 15 rounds. Those bits are
called neutral bits and stressed by superscripts F and B for forward and backward
chunks, respectively. The chunk separation is shown in Table 4.

Table 4. Chunk separation of the previous 15-round MitM attack.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

round key
U κ1 κB

3 κ5 κF
7 κ1 κB

3 κ5 κF
7 κ1 κB

3 κ5 κF
7 κ1 κB

3 κ5

V κ0 κB
2 κ4 κF

6 κ0 κB
2 κ4 κF

6 κ0 κB
2 κ4 κF

6 κ0 κB
2 κ4

Remarks ←− IS −→ Eskip ←−

κ2 and κ3 never appear from rounds 7 to 9 and κ6 and κ7 never appear
from rounds 3 to 1 and 15 to 13. Hence, independence of two chunks is ensured
during these rounds. The remaining task for the attacker is to choose neutral
bits satisfying the following two conditions simultaneously:

– Propagations in two chunks never overlap during rounds 4 to 6.
– Partial computations during rounds 10 to 12 have sufficient matching bits.

Choice by the Designers and Challenges. The designers chose 8 bits of
(κ6, κ7) and 8 bits of (κ2, κ3) as neutral bits, which has 40 bits to match dur-
ing rounds 10 to 12. As explained in Sect. 3.1, the complexity of the attack
is determined by the minimum value between the number of neutral bits for
each chunk and the number of matched bits. Thus, the attack complexity is
2128−min(8,8,40) = 2120.

This fact motivated us to tackle the following two problems.

– The choice of the previous attack is very unbalanced with respect to the
number of the neutral bits and the matched bits (8 versus 40). More balanced
choices may exist, which improves the attack complexity.

– More generally, for a given chunk separation, e.g. Table 4, is there any method,
possibly automated one, to find the optimal choice of neutral bits?

In this paper, we positively answer those questions by developing an optimal
search method using ILP, which improves the attack complexity to 2112.

Integer Linear Programming 235

Remarks on GIFT-128. The designers [3] claimed that the MitM attack is
harder for GIFT-128 than GIFT-64. This is because the size of the round key
in GIFT-128 is 64 bits, which is a double of the one in GIFT-64. To be more
precise, κ0, κ1, κ4, κ5 are used in round 2i+1 and κ2, κ3, κ6, κ7 are used in round
2i. Hence, two chunks must be shorter in GIFT-128 than in GIFT-64. With this
reason, we do not discuss the MitM attack against GIFT-128.

4 ILP Model to Search for Optimal Neutral Bits

Our goal is, given the chunk separation by the designers shown in Table 4, to
identify the optimal choices of neutral bits by using ILP. It may be helpful for
readers to refer to illustrations of 3-round initial structure in Fig. 5 and 3-round
partial-matching in Fig. 6 to obtain rough ideas of our modeling.

Overall Strategy. In high-level, we maximize the number of neutral bits for
(κ2, κ3) and for (κ6, κ7) under the three constraints; (1) the number of neutral
bits for (κ2, κ3) and for (κ6, κ7) are balanced, (2) the bits affected from each
neutral bits during the initial structure do not overlap, and (3) partial compu-
tations from two directions during the partial-match contain a sufficient number
of bits in common.

4.1 Details of ILP Models

Binary Variables for Key Bits. To define whether or not each bit is chosen
as a neutral bit, we assign a binary variable for each key bit denoted by ki,j , i ∈
{2, 3, 6, 7}, j ∈ {0, 1, · · · , 15}. Namely,

ki,j =
{

1 if the j-th bit ofκi is a neutral bit
0 otherwise

Then, the objective function is simply defined as

maximize
∑

i∈{6,7}

15∑
j=0

ki,j .

The constraint to balance the number of neutral bits in two chunks is given by

∑
i∈{6,7}

15∑
j=0

ki,j =
∑

i∈{2,3}

15∑
j=0

ki,j .

Constraints for the Initial Structure. The initial structure covers rounds 4 to
6. Independence of two chunks is detected by checking the active S-box positions
in round 6. Namely, we define 16 binary variables ISF

j , j ∈ {0, 1, · · · , 15} such that
ISF

j is 1 only if the j-th S-box in round 6 is active (gets affected by neutral bits) in

236 Y. Sasaki

the forward chunk. Similarly, we define ISB
j , j ∈ {0, 1, · · · , 15} for the backward

chunk. Then, the constraints to ensure the independence is given by

ISF
j + ISB

j ≤ 1 for j ∈ {0, 1, · · · , 15},

which means that each S-box is affected by at most 1 chunk.
We then need to describe valid relationships between (k6, k7) and ISF and

between (k2, k3) and ISB .
In the backward chunk, the j-th S-box in round 6 can be active only when

bit position π(4j) or π(4j + 1) in round 6 or both of them are activated by
(k2, k3). Let dB

π(4j) and dB
π(4j+1) be binary dummy variables to denote whether

the corresponding bit is active or not. Then ISB
j becomes a bitwise-OR of dB

π(4j)

and dB
π(4j+1), which can be modeled by three inequalities.

dB
π(4j) + dB

π(4j+1) − ISB
j ≥ 0, −dB

π(4j) + ISB
j ≥ 0, −dB

π(4j+1) + ISB
j ≥ 0.

The relationship between the dummy variables and (k2, k3) are simply given by

dB
4j = k2,j , dB

4j+1 = k3,j for j ∈ {0, 1, · · · , 15}.

Description of the forward chunk is similar, thus we only explain it roughly.
The j-th S-box in round 5 is active only when either k7,j or k6,j or both of them
are active. 4 output bits from the j-th S-box in round 5 are 4j, 4j + 1, 4j + 2,
and 4j +3. Here, we introduce 64 dummy binary variables dF

j to denote whether
the j-th bit after the S-box in round 5 is active or not, and they can be modeled
by dF

4j = k7,j ∨ k6,j and dF
4j = dF

4j+1, d
F
4j = dF

4j+2, and dF
4j = dF

4j+3. Remember
that a bitwise-OR can be modeled by 3 inequalities. Hence the above can be
modeled by 6 (in)equalities. Finally, ISF

j is a bitwise-OR of 4 input variables,
i.e. ISF

j = (dF
π−1(4j+3), d

F
π−1(4j+2), d

F
π−1(4j+1), d

F
π−1(4j)), which can be modeled by

dF
π−1(4j+3) + dF

π−1(4j+2) + dF
π−1(4j+1) + dF

π−1(4j) − ISF
j ≥ 0,

− dF
π(4j) + ISF

j ≥ 0, −dF
π(4j+1) + ISF

j ≥ 0,

− dF
π(4j+2) + ISF

j ≥ 0, −dF
π(4j+3) + ISF

j ≥ 0.

Constraints for the Partial Match. First of all, bit positions of round keys
are rotated due to the key schedule function. Hence, it is convenient to introduce
another four 16-bit words w2,j , w3,j , w6,j and w7,j with

w2,j = k2,(j+12) mod 16, w3,j = k3,(j+2) mod 16,

w6,j = k6,(j+24) mod 16, w7,j = k7,(j+4) mod 16,

and work with those words for making a system of the partial match.2 Note that
the rotation is applied twice between (κ6, κ7) in round 4 and (κ6, κ7) in round
12 as it can be checked in Table 4.
2 Introducing wi,j is redundant. One can directly point out the corresponding bits in

ki to build the actual system. Also note that most of ILP solvers efficiently remove
redundant inequalities and variables in the system with a presolve algorithm, hence
having such simple redundant variables does not significantly slow down the speed.

Integer Linear Programming 237

The partial match covers rounds 10 to 12. We match computations from
two chunks at the input of round 12. Namely, we define 64 binary variables
PMF

j , j ∈ {0, 1, · · · , 63} such that PMF
j is 1 only if the j-th bit is impossible to

compute without knowing the neutral bits of w3 and w2. PMF
j is 0 if they are

possible to be computed independently of the neutral bits. Similarly, we define
PMB

j , j ∈ {0, 1, · · · , 63} for the backward chunk. Then, the condition to use bit
position j for the filter is

PMF
j + PMB

j = 0 for j ∈ {0, 1, · · · , 15},

which means that each bit can be used for the match when it can be com-
puted from both directions. Recall that we need to ensure that the number of
matched bits must be greater than or equal to the number of neutral bits, which
is defined as

∑
i∈{6,7}

∑15
j=0 ki,j . Hence, we introduce 64 dummy variables nj for

j ∈ {0, 1, · · · , 63} that takes 1 only when PMF
j + PMB

j = 0. This is a negation
of bitwise-OR, thus can be modeled by 3 inequalities as

PMF
j + PMB

j + nj ≥ 1, −PMF
j − nj ≥ −1, −PMB

j − nj ≥ −1.

Then, the constraint to have sufficient number of matched bits is given by

∑
i∈{6,7}

15∑
j=0

ki,j ≤
63∑

j=0

nj .

The remaining task is to describe valid relationships between (w2, w3) and
PMF and between (w6, w7) and PMB . This part is almost the same as the
models for the initial structure because we simply propagate the neutral bits
during those rounds. To avoid the redundancy, we omit the detailed inequalities
to connect (w2, w3) and PMF and (w6, w7) and PMB .

4.2 Search Results

We used Gurobi Optimizer 7.0 [11] to solve the system of inequalities. The
system consists of 850 linear (in)equalities and 576 binary variables, which is
quite small compared to standard differential and linear trail searches. Indeed,
the ILP solver stopped in a second.

The search results are summarized in Table 5 along with the data of the
attack by the designers [3]. We found three choices of 16 neutral bits for each
chunk having 16 bits to match.

Note that ILP usually returns one solution. By using the idea in [24], after we
obtained the solution, we added a constraint to remove the discovered pattern
from the solution space and continued to search until no solution was detected.
For example, by adding

∑15
j=8 k6,j ≤ 7, the first pattern was removed from the

solution space, and the tool returned another pattern.

238 Y. Sasaki

Table 5. Three chunk separations achieving optimal complexity. Numbers denote
bit-positions of the neutral bits during the initial structure.

k6 k7 k2 ≫ 12 k3 ≫ 2

[3] 0 · · · 3 0 · · · 3 4 · · · 7 8 · · · 11

Pattern 1 8 · · · 15 8 · · · 15 0 · · · 7 0 · · · 3, 12 · · · 15

Pattern 2 4 · · · 7, 12 · · · 15 4 · · · 7, 12 · · · 15 4 · · · 7, 12 · · · 15 0 · · · 3, 8 · · · 11

Pattern 3 4 · · · 7, 8 · · · 11 4 · · · 11 4 · · · 11 0 · · · 7

5 Improved MitM Attacks on GIFT-64

We provide the improved MitM attack against GIFT-64 by using pattern 1 in
Table 5. The chunk separation is exactly the same as [3] shown in Table 4. We now
set 16 neutral bits as specified in Table 5, and show that forward and backward
computations do not overlap each other during the 3-round initial structure and
16 bits can be compared during the 3-round partial match.

Initial Structure. The three-round initial structure is schematically illustrated
in Fig. 5. We first set that 16 bits of the state between PermBits and AddRound-
Key in round 4 to some fixed value, say c. Then, whenever we choose the values
of the neutral bits for the forward computation, (κ6, κ7), AddRoundKey can

Fig. 5. Three-round initial structure of the improved MitM attack.

Integer Linear Programming 239

be computed as c ⊕ (κ6, κ7). In the backward computation, whenever those
values are referred during the inverse of SubCells in round 4, those bits are
treated as c. Hence, two chunks can be computed independently at the bound-
ary of AddRoundKey in round 4. Similarly, we set 16 bits of the state between
AddRoundKey in round 6 and SubCells in round 7 to another fixed value.

The neutral bits in (κ6, κ7) activate 8 left most S-boxes in round 5. The out-
put 32 bits are distributed to 8 S-boxes in round 6, and then further distributed
to 32-bits of the entire state for SubCells in round 7. On the other hand, neutral
bits in (κ2, κ3) are chosen to avoid affecting the same bits. Indeed, after the
inverse of PermBits in round 6, different 8 S-boxes are activated. Then from the
property of the permutation, computations in two chunks never overlap during
rounds 5 and 4.

Partial-Match. The three-round partial-match is schematically illustrated in
Fig. 6. The neutral-bit positions are rotated from Fig. 5 due to the key schedule.

Fig. 6. Three-round partial-match of the improved MitM attack.

The forward computation starting from round 4 can continue until PermBits
in round 10, but neutral bits for the backward chunk in the AddRoundKey
in round 10 prevents the full-state computation. Here, as shown in Fig. 6, six

240 Y. Sasaki

active S-boxes are independent with neutral bits in (κ2, κ3), which leads to 24-
bit information after the PermBits in round 11.

The backward computation starts from round 6 to the plaintext. Then, the
corresponding ciphertext is obtained through the encryption queries, and the
backward computation continues until round 13. The backward computation
loses 16-bit information after the inverse of AddRoundKey in round 12, but
the other 48 bits are still computable. After the inverse PermBits, known-bit
positions cover 4 bits of the S-box output for 8 S-boxes, which leads to 32-bit
information right after the inverse of AddRoundKey in round 11.

The known-bit positions from both directions overlap in 16 bits (bit positions
8–11, 24–27, 40–43, and 56–59). Hence, 16-bit filter is applied.

Complexity Analysis. In the framework of the three-subset MitM attack in
Sect. 3, |A1| = |A2| = 16, and |A0| = 96. The attack exhaustively guesses 96-
bit value of A0, and for each of them, both of forward and backward chunks are
computed for 216 choices of neutral bits. This roughly takes 7

15 ·296 ·216 ≈ 7
15 ·2112

round function operations for the forward chunk and 9
15 · 296 · 216 ≈ 9

15 · 2112

round function operations for the backward chunk. The sum of two costs are
16
15 ·2112, but after some optimization, the constant factor can be removed. Here,
we omit the details and truncating the complexity to 2112.

For each guess of |A0|, the number of pairs to match is 216+16 = 232 and
about 216 matched candidates are obtained after the 16-bit match at round 11.
Hence, after 296 iterations of A0, 296+16 = 2112 candidates will remain. Finally,
those 2112 candidates can be tested by using 2 more plaintext-ciphertext pairs.

The attack complexity is (Time,Data,Memory) = (3 · 2112 ≈
2113.6, 264, 216). By applying the same metric as the designers [3], this complexity
can be interpreted as (Time,Data,Memory) = (2112, 264, 216).

6 Comments on Three-Subset MitM Attack on XTEA

The three-subset MitM was applied to a lightweight block cipher XTEA [18],
e.g. 28-round attack [22] and 29-round attack [14], hence a natural question is
whether or not our method can be applied to XTEA.

XTEA is a 64-bit block cipher having 2-branch Feistel network. Its internal
state is represented by two 32-bit words Li and Ri and the round function can
be represented as follows.

Li+1 ← Ri,

Ri+1 ← Li �
(
(consti � Ki) ⊕ ((Ri � 4 ⊕ Ri � 5) � Ri)

)
,

where “�” is a 32-bit modular addition. The initial structure technique cannot
be applied to the XTEA, thus the previous 29-round attack has the form of
Fig. 3. Then, we only need to optimize the partial-matching phase.

Integer Linear Programming 241

Due to the carry during the � operation, when the bit position x, x ∈
{0, 1, · · · , 31} is unknown, all bits from x+1 to 31 becomes unknown. This prop-
erty makes searching for the optimal choices of neutral bits very easy. Indeed, it
can be manually checked that the choice in the 29-round attack is optimal.

Our ILP model to optimize the choice of neutral bits can be applied to XTEA
to automatically run this by hand analysis. Because the results obviously cannot
improve the previous attack, we omit the exact models for XTEA.

7 Concluding Remarks

In this paper, we revisited the three-subset MitM attack on GIFT-64. We devel-
oped a new ILP model that takes input as the chunk separation and outputs the
optimal choices of neutral bits in the key. The tool successfully returned all the
optimal choices of neutral bits, which improves the complexity of the current
best attack from (Time,Data,Memory) = (2120, 264, 28) to (2112, 264, 216).

Towards lightweight design, a recent trend is making a key schedule function
as simple as possible. We hope that the proposed tool will help cryptographers
for optimizing details of three-subset MitM attacks.

References

1. Biryukov, A., Großschädl, J., Le Corre, Y.: CryptoLUX, Lightweight Cryptography
(2015). https://www.cryptolux.org/index.php/Lightweight Cryptography

2. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–
119. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4 7

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present - towards reaching the limit of lightweight encryption. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 16

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013)

5. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol.
9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 5

6. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

7. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19574-7 16

8. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impos-
sible differentials and zero-correlation linear approximations. Cryptology ePrint
Archive, Report 2016/689 (2016). https://eprint.iacr.org/2016/689

https://www.cryptolux.org/index.php/Lightweight_Cryptography
https://doi.org/10.1007/978-3-642-04159-4_7
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-19574-7_16
https://eprint.iacr.org/2016/689

242 Y. Sasaki

9. Diffie, W., Hellman, M.E.: Exhaustive cryptanalysis of the NBS data encryption
standard. Comput. Issue 6(10), 74–84 (1977)

10. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Key recovery attacks on 3-round
Even-Mansour, 8-step LED-128, and full AES2. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 337–356. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-42033-7 18

11. Gurobi Optimization Inc.: Gurobi optimizer 7.0. Official webpage (2015). http://
www.gurobi.com/

12. Isobe, T.: A single-key attack on the full GOST block cipher. In: Joux, A. (ed.)
FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21702-9 17

13. Isobe, T.: A single-key attack on the full GOST block cipher. J. Cryptol. 26(1),
172–189 (2013)

14. Isobe, T., Shibutani, K.: Security analysis of the lightweight block ciphers XTEA,
LED and Piccolo. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS,
vol. 7372, pp. 71–86. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31448-3 6

15. Isobe, T., Shibutani, K.: Generic key recovery attack on feistel scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 464–485.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 24

16. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on keccak
keyed modes with MILP method. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017, Part I. LNCS, vol. 10624, pp. 99–127. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70694-8 4

17. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

18. Needham, R.M., Wheeler, D.J.: TEA extensions. Technical report, Computer Lab-
oratory, University of Cambridge (1997)

19. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 8

20. Sasaki, Y., Todo, Y.: New differential bounds and division property of Lilliput:
block cipher with extended generalized feistel network. In: Avanzi, R., Heys, H.
(eds.) SAC 2016. LNCS, vol. 10532, pp. 264–283. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69453-5 15

21. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects - revealing structural properties of several ciphers. In: Coron, J.-S.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 185–215.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 7

22. Sasaki, Y., Wang, L., Sakai, Y., Sakiyama, K., Ohta, K.: Three-subset meet-in-
the-middle attack on reduced XTEA. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT 2012. LNCS, vol. 7374, pp. 138–154. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31410-0 9

23. Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for
ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 5

https://doi.org/10.1007/978-3-642-42033-7_18
http://www.gurobi.com/
http://www.gurobi.com/
https://doi.org/10.1007/978-3-642-21702-9_17
https://doi.org/10.1007/978-3-642-21702-9_17
https://doi.org/10.1007/978-3-642-31448-3_6
https://doi.org/10.1007/978-3-642-31448-3_6
https://doi.org/10.1007/978-3-642-42033-7_24
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-01001-9_8
https://doi.org/10.1007/978-3-319-69453-5_15
https://doi.org/10.1007/978-3-319-69453-5_15
https://doi.org/10.1007/978-3-319-56617-7_7
https://doi.org/10.1007/978-3-642-31410-0_9
https://doi.org/10.1007/978-3-319-70694-8_5

Integer Linear Programming 243

24. Sun, S., et al.: Towards finding the best characteristics of some bit-oriented block
ciphers and automatic enumeration of (related-key) differential and linear charac-
teristics with predefined properties. Cryptology ePrint Archive, Report 2014/747
(2014)

25. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 9

26. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved meet-in-
the-middle cryptanalysis of KTANTAN (poster). In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22497-3 31

27. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
648–678. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 24

https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-642-22497-3_31
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/978-3-662-53887-6_24

Symbolic-Like Computation
and Conditional Differential
Cryptanalysis of QUARK

Jingchun Yang1,2, Meicheng Liu1,2, Dongdai Lin1,2(B), and Wenhao Wang1,2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

{yangjingchun,liumeicheng,ddlin,wangwenhao}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. At ASIACRYPT 2010, Knellwolf et al. proposed a general
analysis of NFSR-based cryptosystems, called conditional differential
cryptanalysis. The main idea of this technique is to impose conditions
on the internal state to get a deterministic differential characteristic for
a large number of rounds. In this paper, we propose a method, called
symbolic-like computation, to simulate the differential propagation of an
iterated cryptosystem. By coding the internal state bits and modeling
the bit operations, it can determine the constantness of the differential
expression with linear time complexity. Based on this method, we can
obtain a list of good input differences. We apply this technique to the
conditional differential cryptanalysis of QUARK, a family of lightweight
hash functions proposed by Aumasson et al. at CHES 2010. By con-
trolling the propagation of differences both backwards and forwards, we
can observe the bias of output difference at a higher round. Eventually,
we can distinguish U-QUARK/D-QUARK/S-QUARK/C-QUARK up to
155/166/259/452 rounds respectively. Our distinguishers are very prac-
tical and have been fully verified by experiments on a single PC. To the
best of our knowledge, all these results are the best thus far.

Keywords: Cryptanalysis · Conditional differential cryptanalysis
NFSR · Symbolic-like computation · QUARK

1 Introduction

In modern cryptographic primitives, nonlinear feedback shift register (NFSR)
plays an important role in the applications with constrained environments, like

This work was supported by the National Natural Science Foundation of China
(Grant Nos. 61379139 and 61672516), the Strategic Priority Research Program of
the Chinese Academy of Sciences (Grant No. XDA06010701), and the Fundamental
Theory and Cutting Edge Technology Research Program of Institute of Information
Engineering, CAS (Grant No. Y7Z0331102).

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 244–261, 2018.
https://doi.org/10.1007/978-3-319-97916-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_16&domain=pdf

Symbolic-Like Computation 245

the radio-frequency identification devices (RFID) and sensor networks. Based on
the structure of NFSR, many famous ciphers have been proposed, such as the
well known stream cipher Trivium [8] and Grain [12], the lightweight block cipher
family KATAN/KTANTAN [9], and the hash function family QUARK [2–4]. All
these algorithms possess an efficient hardware implementation and a high level
security at the same time.

In cryptanalysis, NFSR-based cryptosystems are often analyzed as a boolean
function f whose variables derive from the state bits in the registers. In recent
years, cube attacks [10,11] and conditional differential cryptanalysis [13,21] have
proved to be very effective against such ciphers. Cube attacks work on finding
many derivatives of the boolean function f , and then deriving the linear equa-
tions in the state bits. While conditional differential cryptanalysis consists in
analysing the bias of the output of derivatives of f on well chosen inputs.

Conditional differential cryptanalysis was proposed by Knellwolf et al. at
ASIACRYPT 2010 [13]. In this attack, attackers analyze the propagation of
differences round by round. At the early iterations of the cipher, conditions are
imposed on the internal state bits to control the propagation of the difference.
Attackers generate the input samples according to the conditions and introduce
the input difference at the initial rounds. In the end, they will be able to observe a
bias in the output difference. In this way, Knellwolf et al. obtained a distinguisher
for Grain v1 up to 104 rounds.

Actually, the notion of conditional differential cryptanalysis was inspired by
message modification techniques as they were introduced in [20] to speed up
the collision search for hash functions. The main idea of message modification
techniques is to choose the message words and internal chaining variables in an
attack on the hash function to fulfill the conditions imposed by the differential
characteristic in a deterministic way. This technique led to the collision attacks
on full MD5 [20], SHA-1 [19] and reduced SHA-256 [7].

Up to now, conditional differential cryptanalysis has attracted a lot of atten-
tion. In 2015, Banik [5] proposed the conditional differential cryptanalysis for
105-round Grain v1. The complexity for the key recovery attack was faster than
exhaustive search by 29. In 2016, Ma et al. [16] proposed two conditional dif-
ferential attacks towards Grain-128a. In attack A, they could retrieve 18 secret
key expressions for 169-round Grain-128a. In attack B, they extended the distin-
guishing attack against Grain-128a up to 195 rounds in a weak-key setting. In the
same year, Ma et al. [17] improved the conditional differential attacks, they could
retrieve 31 distinct secret key expressions for 107-round Grain v1 and 15 dis-
tinct secret key expressions for 110-round Grain v1. In 2016, Watanabe et al. [22]
proposed a new method to find conditional differential characteristics on NFSR-
based stream ciphers. Using this method, they could distinguish Grain v1 up to
114 rounds. Later at ACISP 2017, Watanabe et al. [21] proposed the method
of arrangement of differences and conditions to obtain good higher-order condi-
tional differential characteristics. They applied it to Kreyvium, an NFSR-based
stream cipher oriented to homomorphic-ciphertext compression, and obtained a
distinguisher on Kreyvium with 899 rounds.

246 J. Yang et al.

With the increasing need for lightweight hash functions oriented to hardware
implementation, Aumasson et al. proposed a novel design philosophy [2] for light-
weight hash functions at CHES 2010. Inspired by the design of the stream cipher
Grain and the block cipher KATAN, they presented the hash function family
QUARK, composed of three instances: U-QUARK, D-QUARK, and S-QUARK.
In 2012, for the need of 256-bit security, Aumasson et al. proposed a new design
C-QUARK [4] which has a internal state of 384 bits. In 2015, Zhang et al. [23]
improved the conditional differential cryptanalysis, and they could distinguish
U-QUARK/D-QUARK/S-QUARK/C-QUARK up to 153/159/248/445 rounds
respectively.

1.1 Our Contributions

In this paper, we propose a general technique, called symbolic-like computation,
to simulate the differential propagation of an iterated cryptosystem.

It is well known that symbolic computation can accurately give the boolean
expression of the output difference for an r-round iterated cryptosystem. How-
ever, with the increase of the value of r, the time/memory complexity of symbolic
computation would be growing exponentially.

Sometimes, we only want to know whether the boolean expression is a con-
stant. In this circumstance, we adopt a much faster way. First we code the
internal state bits with different numbers; then we model the two basic opera-
tions AND and XOR in boolean functions, by the rule of state update, we can
compute the codes of the next state iteratively; finally, we compute the codes
of newly generated bits round by round, for any round r, we can determine the
constantness of the differential expression of a specific state bit or an output bit
according to its code. Based on this method, we can obtain a list of good input
differences with a linear time complexity, which is very efficient compared to the
symbolic computation.

We apply this technique to the conditional differential analysis of QUARK.
Given the single-bit difference sp, we first utilize the backward computation to
derive a multi-bit input difference which leads to the single-bit difference sp after
q rounds. In the meantime, we limit the propagation of the single-bit difference
by nullifying the differential expression of newly generated bits at t ≥ q. For each
imposed condition, we convert it to the equivalent condition at t = 0 to obtain
the final conditional differential characteristic. Finally we verify this characteritic
by experiments to show the maximum round where the bias of output difference
can be observed.

Our results show that we have obtained new distinguishers for all instances
of QUARK with the above improved techniques. Take S-QUARK as an example,
we can distinguish the cipher up to 259 rounds with a complexity of 215, while
the best previous analysis could only distinguish the cipher up to 248 rounds
with a much higher complexity. We summarize our results in Table 1 with the
comparisons with the previous results. All our results are the best thus far and
have been fully verified by experiments on a single PC.

Symbolic-Like Computation 247

Table 1. Results on QUARK.

Cipher #Rounds Complexity Ref.

U-QUARK 136 227 [3]

153 218 [23]

155 227 Sect. 5

D-QUARK 159 227 [3]

159 222 [23]

166 225 Sect. 5

S-QUARK 237 227 [3]

248 224 [23]

259 215 Sect. 5

C-QUARK 396 220 [4]

445 220 [23]

452 228 Sect. 5

In [23], the complexity is computed as 1
ε2

, where
ε is the observed bias of the output difference.
We also take this calculation.

The rest of the paper is organized as follows. In Sect. 2 we introduce some
basic definitions and theories. Section 3 describes the algorithm of QUARK,
with the method of computing backward update functions provided. In Sect. 4,
we propose an iterative method for finding good input differences. In Sect. 5
we elaborate on the conditional differential cryptanalysis of QUARK. We take
D-QUARK as an example, and give the cryptanalysis results for all flavors of
QUARK. Section 6 concludes the paper.

2 Preliminaries

Derivatives of Boolean Functions [14,15]. Let F2 denote the binary field
and F

n
2 denote the n-dimensional vector space over F2. An n-variable Boolean

function f is a mapping from F
n
2 to F2. Denote by + the addition in F2 and

⊕ the addition in F
n
2 . The derivative of f with respect to a ∈ F

n
2 is defined as

follows:
Δaf(x) = f(x ⊕ a) + f(x).

The derivative of f is also a boolean funtion. If σ = {a1, . . . , ai} is a set of vectors
in F

n
2 , let L(σ) denote the set of all 2i linear combinations of elements in σ. The

i-th derivative of f with respect to σ is defined as follows:

Δ(i)
σ f(x) =

∑

c∈L(σ)

f(x ⊕ c).

In other words, the i-th derivative of f can be evaluated by summing up all 2i

evaluations of f at L(σ).

248 J. Yang et al.

Random Boolean Functions and Frequency Test. Let D be a non-empty
subspace of F

n
2 . If a boolean function f mapping from D to F2 whose output

is an independent uniformly distributed variable, then we say f is a random
boolean function. According to the law of large numbers, for sufficiently many
inputs x1, . . . , xN ∈ D the value

y =
2
∑N

k=1 f(xk) − N√
N

approximately follows a standard normal distribution. We say f passes the fre-
quency test on D at a significance level α (where α is often taken as 0.005) if

Φ(y) < 1 − α

2
.

In cryptanalysis, frequency test can be used to distinguish a cipher from an ideal
random boolean function. Let β denote the probability that a boolean function
passes the frequency test. Then the distinguishing advantage is given by 1−α−β.

Conditional Differential Cryptanalysis [13]. Here we briefly introduce the
process of conditional differential cryptanalysis. Attackers first choose some bits
in the initial state as input difference. The positions should be “good” enough
such that after many initialization rounds, the deterministic output difference
can still be observed. Then attackers analyze the conditions on the initial state
bits carefully to prevent the propagation of differences. At last, they derive a
set of conditions and the differential characteristic, they also need to verify this
characteristic by experiments to show the maximum round where the bias of
output difference can be observed. If we can observe the bias at a higher round
than ever before, then we obtain a new distinguisher for the cipher.

In this paper, we just focus on the first-order derivative. Suppose we need S
pairs of input samples to detect the bias ε of the output difference of r-round
QUARK. Let U =

∑S
k=1 Δaf(xk) and y = 2U−S√

S
. Without loss of generality, let

ε satisfy that Pr(Δaf(xk) = 1) = 1+ε
2 . The expected values of U and y are thus

1+ε
2 · S and ε · √

S respectively. According to the formula Φ(y) < 1 − α
2 , we can

obtain that

S >
u2

ε2
, (1)

where Φ(u) = 1 − α
2 . This inequality indicate that we need at least u2

ε2 pairs
of input samples to observe the bias ε of the output difference. If α is taken as
0.005, then u2 ≈ 7.9 by the normal distribution table.

3 A Brief Description of QUARK

At CHES 2010, Aumasson et al. proposed a lightweight hash function fam-
ily QUARK [2]. Inspired by the design of the stream cipher Grain and the
block cipher KATAN, QUARK initially composed of three instances: U-QUARK,

Symbolic-Like Computation 249

D-QUARK, and S-QUARK. The digest length n are 136, 176, and 256 bits
respectively. As a sponge construction, QUARK can be used for message authen-
tication, stream encryption, or authenticated encryption. In 2012, for the need
of 256-bit security, Aumasson et al. proposed a new design C-QUARK [4] which
has a internal state of 384 bits. In Journal of Cryptology 2013, QUARK was
slightly modified [3] to address a flaw in the initial analysis.

3.1 Sponge Construction

Following the notations introduced in [6], a QUARK instance is parametrized
by an output length n, a rate (or block lengh) r, and a capacity c. The width
b = r + c of a sponge construction is the size of its internal state. We denote this
internal state s = (s0, . . . , sb−1), where s0 is referred to as the first bit of the
state. Given a predefined initial state of b bits, the sponge construction processes
a message m in three steps:

1. Initialization. Padding the message by appending a ‘1’ bit and the minimal
number of ‘0’ bits such that the total length is a multiple of r.

2. Absorbing phase. The r-bit message blocks are XOR’d with the last r bits
of the state, interleaved with the call to the permutation P .

3. Squeezing phase. The last r bits of the state are returned as output, inter-
leaved with applications of the permutation P , until n bits are returned.

3.2 Permutation

The permutation P of QUARK is depicted in Fig. 1. Three feedback shift reg-
isters (FSRs) constitute the internal state of P : two nonlinear ones (NFSRs) of
b/2 bits each, and a linear one (LFSR) of l bits. The state at round t ≥ 0 is
composed of

– An NFSR X of b/2 bits, denoted Xt = (Xt
0, . . . , X

t
b/2−1);

– An NFSR Y of b/2 bits, denoted Y t = (Y t
0 , . . . , Y t

b/2−1);
– An LFSR L of l bits, denoted Lt = (Lt

0, . . . , L
t
l−1).

The following lines describe the procedure of P .

Initialization. Given input of the b-bit internal state of the sponge construction
s = (s0, . . . , sb−1), P initializes its internal state as follows:

1. (X0
0 , . . . , X0

b/2−1) := (s0, . . . , sb/2−1).
2. (Y 0

0 , . . . , Y 0
b/2−1) := (sb/2, . . . , sb−1).

3. (L0
0, . . . , L

0
l−1) := (1, . . . , 1).

250 J. Yang et al.

Fig. 1. The permutation of QUARK.

State Update. The current internal state (Xt, Y t, Lt) determines the next
state (Xt+1, Y t+1, Lt+1). The update mechanism works as follows:

1. ht := h(Xt, Y t, Lt).
2. (Xt+1

0 , . . . , Xt+1
b/2−1) := (Xt

1, . . . , X
t
b/2−1, Y

t
0 + f(Xt) + ht).

3. (Y t+1
0 , . . . , Y t+1

b/2−1) := (Y t
1 , . . . , Y t

b/2−1, g(Y t) + ht).
4. (Lt+1

0 , . . . , Lt+1
l−1) := (Lt

1, . . . , L
t
l−1, p(Lt)).

Computation of the Output. Once initialized, the state of QUARK is
updated R times. The output is defined as the final value of the NFSRs X
and Y :

s = (s0, . . . , sb−1) = (XR
0 ,XR

1 , . . . , Y R
b/2−2, Y

R
b/2−1).

3.3 Proposed Instances

Up to now, QUARK has 4 proposed versions, that is: U-QUARK, D-QUARK,
S-QUARK, and C-QUARK. For each instance, we list its rate r, capacity c,
width b, rounds R, and digest length n, see in Table 2. For C-QUARK, the
length of the LFSR is l = 16, and the corresponding feedback polynomial p(Lt)
returns Lt

0 +Lt
2 +Lt

3 +Lt
5; while for other three instances, l = �log 4b� = 10 and

p(Lt) = Lt
0 + Lt

3.
For all flavors of QUARK, function f , g, and h are nonlinear functions of the

internal state variables. For more details of the nonlinear functions of QUARK,
we refer to the original papers [3,4] and the C source code [1] given by the
authors.

3.4 Backward Update Functions

Notice that the backward update functions of permutation P can be easily
derived. In this situation, we contrive to obtain the internal state at round t

Symbolic-Like Computation 251

Table 2. Parameters of the proposed instances of QUARK.

Instance Rate (r) Capacity (c) Width (b) Rounds (R) Digest (n)

U-QUARK 8 128 136 544 136

D-QUARK 16 160 176 704 176

S-QUARK 32 224 256 1024 256

C-QUARK 64 320 384 768 384

from the state at round t + 1. Suppose the state of X, Y , and L at round t + 1
is (Xt+1

0 , . . . , Xt+1
b/2−1), (Y t+1

0 , . . . , Y t+1
b/2−1), and (Lt+1

0 , . . . , Lt+1
l−1) respectively. By

the shifting of register X, we have

Xt
i = Xt+1

i−1 , i ∈ {1, . . . , b/2 − 1}. (2)

Similarly, we have

Y t
i = Y t+1

i−1 , i ∈ {1, . . . , b/2 − 1}, (3)

and
Lt

i = Lt+1
i−1, i ∈ {1, . . . , l − 1}. (4)

Denote Lt+1
l−1 = p(Lt) = Lt

0 + p∗(Lt), where p∗(Lt) does not depend on Lt
0.

Since all the variables in p∗(Lt) can be directly represented by the variables at
round t + 1 from Eq. (4), then Lt

0 = Lt+1
l−1 + p∗(Lt) can be derived. So we have

recovered the state of L at round t.
Denote f(Xt) = Xt

0 + f∗(Xt) and g(Y t) = Y t
0 + g∗(Y t), where f∗(Xt) does

not depend on Xt
0, and g∗(Y t) does not depend on Y t

0 . Once again, all the
variables in f∗(Xt) and g∗(Y t) can be directly represented by the variables at
round t+1 from Eqs. (2) and (3). According to the rule of state update, we have

Xt+1
b/2−1 + Y t+1

b/2−1 =Y t
0 + f(Xt) + g(Y t)

=Y t
0 + Xt

0 + f∗(Xt) + Y t
0 + g∗(Y t)

=Xt
0 + f∗(Xt) + g∗(Y t),

(5)

and
Y t+1

b/2−1 =g(Y t) + h(Xt, Y t, Lt)

=Y t
0 + g∗(Y t) + h(Xt, Y t, Lt).

(6)

Except for Lt
0, all the variables in h(Xt, Y t, Lt) can be directly represented by

the variables at round t + 1 from Eqs. (2) and (3). Thus, from Eqs. (5) and (6),
we can recover the expressions of Xt

0 and Y t
0 :

Xt
0 =Xt+1

b/2−1 + Y t+1
b/2−1 + f∗(Xt) + g∗(Y t),

Y t
0 =Y t+1

b/2−1 + g∗(Y t) + h(Xt, Y t, Lt).

In this way, we have derived the backward update functions of permutation P .

252 J. Yang et al.

4 Symbolic-Like Computation

In this section, we propose a general method for the purpose of simulating the
differential propagation, called symbolic-like computation.

In cryptanalysis, symbolic computation has been widely used to analyze the
algebraic normal form (ANF) of a cryptographic algorithm. It is well known that
symbolic computation can accurately give the boolean expression of the output
difference for an r-round iterated cryptosystem. However, with the increase of
the value of r, the time/memory complexity of symbolic computation would be
growing exponentially.

Sometimes, we only want to know whether the boolean expression is a con-
stant. In this circumstance, we adopt a much faster way. First we code the
internal state bits with different numbers; then we model the two basic opera-
tions AND and XOR in boolean functions, by the rule of state update, we can
compute the codes of the next state; finally, we compute the codes of newly gen-
erated bits round by round, for any round r, we can determine the constantness
of the differential expression of a specific state bit or an output bit according to
its code.

To illustrate our method, we take the first-order derivative as an example.
Suppose an NFSR-based cipher has a nonlinear feedback shift register. Initially,
secret variables (e.g., key bits) and public variables (e.g., plaintext bits or IV bits)
are loaded to the registers. Thus the internal state is filled with ‘0’ or ‘1’ bits. We
denote the internal state by (s0, s1, . . . , sNl−1). Suppose si0 , . . . , siV l−1 are loaded
with IV bits. Let v = sd be the single-bit difference, where d ∈ {0, . . . , Nl − 1} \
{i0, . . . , iV l−1}. The values of other non-IV variables are unknown, we denote
each of them by u. Notice that the relation of any two u variables is also unknown.

Now we code the initial state bits with some specific numbers. Fixed ‘0’ or
‘1’ bits are just coded with number 0 or 1. The ‘u’ bits are coded with number
2, and the single-bit difference ‘v’ is coded with number 3. With the update of
internal state, the boolean operations AND and XOR are frequently applied to
the state bits, so more forms of state bits will emerge. For example, a ‘1’ bit
XORing a ‘v’ bit would give rise to a ‘v + 1’ bit. We summarize all forms in
Table 3. For each of them, we code it with a unique number.

Table 3. Coding of the internal state bits.

Form 0 1 u v v + 1 v + u uv uv + 1 uv + u

Code 0 1 2 3 4 5 6 7 8

Actually, the result of AND/XOR operation of any two kinds of bits listed
in Table 3 will be still in the table. The general form of all the state bits can be
represented as α · v + β · 1, where α, β ∈ {0, 1, u}. In this form, v and 1 can be
interpreted as some “bases”, while α and β are the “co-ordinates”. Since the set
{0, 1, u} is closed under the AND/XOR operation, the generating set α · v +β ·1

Symbolic-Like Computation 253

is also closed under the AND/XOR operation. Notice that, if α = 0, then the
difference with respect to v is equal to 0, the corresponding codes c0 ∈ {0, 1, 2};
if α = 1, then the difference with respect to v is equal to 1, the corresponding
codes c1 ∈ {3, 4, 5}.

Let a and b be two bits, and their codes be code(a) and code(b) respec-
tively. Define sand and sxor as the operations of code(a) and code(b) such that
code(a) sand code(b) = code(a · b) and code(a) sxor code(b) = code(a+ b). As
mentioned above, we do not know the value of u bits, and the relation of two u
bits is also unknown, so u + u = u, i.e., 2 sxor 2 = 2. Since we only introduce a
single-bit difference at round t = 0, any two v bits in the internal state exactly
have the same value, so we have v + v = 0, i.e., 3 sxor 3 = 0. Similarly, the
AND of uv and v + 1 is 0, since v(v + 1) = 0. We exhaust the sand/sxor of any
two codes, and list the results in sand table and sxor table in Appendix A.

Using the sand table and the sxor table, one can compute the code value of
the state update function whose variables are all coded.

Example 1. Suppose the length of the register is 8, and the update function is
st = st−3st−7 + st−1st−5 + st−8. Initially, we introduce the difference at s1, and
set s4, s5, s6, s7 to 1. At t = 8, we compute the code value of s8 as follows:

code(s8)
= code(s5s1 + s7s3 + s0)
= sxor(sxor(code(s5s1), code(s7s3)), code(s0))
= sxor(sxor(sand(code(s5), code(s1)), sand(code(s7), code(s3))), code(s0))
= sxor(sxor(sand(1, 3), sand(1, 2)), 2)
= 5.

Finding Good Single-Bit Input Differences. Now, we apply the symbolic-
like computation to the search of good single-bit input differences. Given the
single-bit input difference, one can iteratively compute the code of the newly
generated bit by the state update function. If the code of a newly generated
bit sr

Nl−1 at round r is equal to c0, where c0 ∈ {0, 1, 2}, then the difference in
sr

Nl−1 is equal to 0. If the code of sr
Nl−1 is equal to c1, where c1 ∈ {3, 4, 5},

then the difference in sr
Nl−1 is equal to 1. At last, we can find a maximum

round S, where a deterministic difference still exists in the internal state. For
each possible single-bit input difference vi, we repeat the above procedure to
compute its maximum round Si. Finally, we store all the (i, Si) pairs and list
them in descending order by Si. The top k items are the candidates of good
single-bit input differences.

5 Conditional Differential Cryptanalysis of QUARK

In this section, we apply the techniques described in Sect. 4 to the conditional
differential cryptanalysis of QUARK. We first take D-QUARK as an example
and give the complete process of analysis, then we apply it to other instances of
QUARK. Our results for all flavors of QUARK are presented in Subsect. 5.2.

254 J. Yang et al.

5.1 Analysis of D-QUARK

As illustrated in Sect. 2, the procedure of conditional differential cryptanalysis
consists of the following steps:

1. Selection of the input difference: attackers choose some bits in the inter-
nal state as input difference. The positions should satisfy that after many
initialization rounds, the deterministic output difference can still be observed.

2. Imposing conditions: attackers analyze the conditions on the initial state
bits to prevent the propagation of differences.

3. Verification: attackers derive a set of conditions and the differential charac-
teristic, and verify this characteristic by experiments to show the maximum
round where the bias of output difference can be observed.

Selection of the Input Difference. The result of conditional differential analy-
sis largely depends on the selection of both input difference and conditions of state
bits. In Sect. 4, we have illustrated the process of finding good single-bit input dif-
ference. With symbolic-like computation, we can find a set of differences which can
spread far enough. We apply it to D-QUARK, and obtain the following list:

Table 4. Candidates of single-bit input differences of D-QUARK.

Input difference bit i Maximum round Si

148 125

147 124

146 123

34 122

134 122

145 122

...
...

Imposing Conditions. In [4] Aumasson et al. proposed two approaches to
control the propagation of differences:

1. Control the propagation of the single-bit input difference in a given state bit
sp as far as possible;

2. Find an input difference of arbitrary weight that leads to a single-bit difference
in sp after q rounds.

By controlling the propagation of sp both backwards and forwards, they found
a distinguisher for C-QUARK up to 396 rounds. In [23], Zhang et al. pro-
posed a method to find a suitable sp, and they could distinguish U-QUARK/
D-QUARK/S-QUARK/C-QUARK up to 153/159/248/445 rounds respectively.

Symbolic-Like Computation 255

In order to further improve the results, we should control the propagation as
far as possible. However, it is challenging to impose conditions for more rounds.
One of the challenges is that we may introduce much more conditions to convert
the intermediate conditions. As for D-QUARK, the length of the register X is
88. Let q = 10, suppose we need to impose a condition X10

75 = 0 at round t = 10.
Since this condition cannot be imposed directly in the initial state, we convert
this condition to the equivalent condition X0

85 = 0 by the shifting of register.
However, if this condition is X10

85 = 0, to convert it to the equivalent conditions
at t = 0, a lot more conditions will be added rather than a single condition.
Another tricky problem is that the conditions derived by the two approaches
may contradict (e.g., the conditions X0

34 = 0 and X0
34 = 1) and cannot be

satisfied simultaneously.
Therefore, we should make a tradeoff among the backward round q, the

forward round, and the number of conditions. The total rounds should be large
enough while the number of conditions should be as small as possible. We follow
this rule and apply it to the analysis of D-QUARK.

In Table 4, we have obtained several candidates of single-bit input differences.
For each of them, we use the above two approaches to impose conditions and then
verify the characteristic by experiments. Our experiments show that choosing the
single-bit difference at s34 and setting q = 7 might be a good choice.

Now we describe the process of imposing conditions. Given the single-bit dif-
ference at s34 and the backward round q = 7, we first consider using the backward
computation to derive the input difference which leads to a single-bit difference
at s34 after q = 7 rounds. With the help of SAGE [18], a software on symbolic
computation, we can compute the differential expressions in the updated state
bits at early rounds of the state update. In Sect. 3, we have discussed about how
to compute the backward update functions. When we move backwards, X0 and
Y0 are updated at each round. Since q = 7, we need to compute the differential
expressions in the updated state bits Xt

0 and Y t
0 for t ∈ {0, . . . , 6} from the inter-

nal state at t = 7. Note that we should first compute the state of the register L
at t = 7 by the linear feedback function. The following conditions will make sure
that for the initial 7 rounds, each differential expression in the updated state bit
is equal to a constant (0 or 1):

X7
56Y

7
3 + X7

56Y
7
78 = 0,

X7
9X7

17X
7
25X

7
40 + X7

9X7
56X

7
77 + X7

25X
7
40X

7
45X

7
56X

7
65 + X7

25X
7
40 + 1 = 0.

A sample that satisfies the above two conditions can be generated by fixing
the following bits to a constant:

X7
56 =1, Y 7

3 = 1,X7
9 = 1,

Y 7
78 =1,X7

77 = 1,X7
25 = 0.

(7)

256 J. Yang et al.

Except for Y 1
0 = Y 0

1 = s89, the differential expressions in all other updated
bits (i.e., Xi

0, i ∈ {0, . . . , 6} and Y j
0 , j ∈ {0, 2, 3, 4, 5, 6}) are equal to zero. Note

that the single-bit difference s34 = X7
34 has moved to X0

41 = s41. Thus, the initial
difference that has differences at s41 and s89 will boil down to a single-bit differ-
ence s34 after 7 rounds, with the conditions in Eq. (7) satisfied. Obviously, these
conditions can be directly converted to the conditions in the initial state bits:

X0
63 =1, Y 0

10 = 1,X0
16 = 1,

Y 0
85 =1,X0

84 = 1,X0
32 = 0.

(8)

In the same way, we can impose conditions forwards to restrain the propaga-
tion of s34. In this period, 29 state bits are fixed to make sure that for 31 rounds,
each differential expression in the updated state bit is equal to a constant (only
4 of them are equal to 1). Therefore, we have fixed 6 + 29 = 35 initial state bits
in total to prevent the propagation of differences.

Verification. Finally, we verify this characteristic by experiments. We first
introduce the difference at s41 and s89, then impose the 35 conditions on the
initial state bits. Other state bits are set to random values. For one pair of input
samples, the only difference for sample A and sample B is that, in sample A,
s41 = s89 = 0, while in sample B, s41 = s89 = 1. Each pair of input samples
would give a value of the output difference. We randomly generate 232 pairs of
input samples, and observe the bias of the difference in the updated state bit
round by round. After 166 rounds, the bias of the difference in the state bit s88
is 0.00016. According to Eq. 1 in Sect. 2, this bias is strong enough to distinguish
the cipher from random.

5.2 Cryptanalysis Results for All Flavors of QUARK

In the previous subsection, the analysis of D-QUARK has been elaborated. Now
we apply these methods to the conditional differential cryptanalysis of other
versions of QUARK. Table 5 shows the cryptanalysis results for all flavors of
QUARK. The imposed conditions for each version are listed in AppendixB.
Our distinguishers are very practical. Take S-QUARK as an example, we can
distinguish 259 rounds with a strong bias of 0.00522, while the best previous
analysis could only distinguish the cipher up to 248 rounds with a much higher
complexity. To the best of our knowledge, all our results for QUARK are the
best thus far.

Symbolic-Like Computation 257

Table 5. Cryptanalysis results for all flavors of QUARK.

Instance Input difference bits Output
difference
bit

#Rounds Bias #Pairs
of input
samples

U-QUARK s1, s3, s5, s19, s68, s69, s71,
s77, s85, s87, s129

s0 155 0.00008 232

D-QUARK s41, s89 s88 166 0.00016 232

S-QUARK s3, s5, s13, s22, s74, s128,
s130, s137, s140, s144, s146,
s149

s0 259 0.00522 232

C-QUARK s1, s5, s6, s12, s14, s16, s18,
s25, s29, s31, s32, s33, s34,
s37, s39, s41, s66, s100, s192,
s198, s202, s203, s205, s213,
s215, s217, s219, s221, s223,
s225, s229, s230, s233, s235,
s241, s245, s249, s254, s255,
s266, s268, s270, s271, s272,
s274, s276, s278, s280, s282,
s284, s286, s288

s0 452 0.00007 233

Note that the number of pairs of input samples we choose are actually very large to
ensure the validity of results. According to Eq. 1 in Sect. 2, about 218 pairs of samples
are enough for S-QUARK.

6 Conclusions

In this paper, we proposed a general method to simulate the differential propa-
gation of an iterated cryptosystem. Based on this method, we can obtain a list
of good input differences. We applied this method to the conditional differential
cryptanalysis of QUARK family. By controlling the propagation of differences
both backwards and forwards, we can observe the bias of output difference at
a higher round. To the best of our knowledge, all results are the best thus far
and have been fully verified by experiments. It is worthy of applying it to the
cryptanalysis of other cryptosystems in the future.

Acknowledgments. We are grateful to Ming Li, Xiaojuan Zhang, and anonymous
reviewers of IWSEC 2018 for their fruitful discussions and helpful comments.

258 J. Yang et al.

A Simulating the Bit Operations

See Tables 6 and 7.

Table 6. Simulating the AND operation.

sand 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8

2 0 2 2 6 8 8 6 8 8

3 0 3 6 3 0 6 6 6 6

4 0 4 8 0 4 8 0 4 8

5 0 5 8 6 8 8 6 8 8

6 0 6 6 6 0 6 6 6 6

7 0 7 8 6 4 8 6 7 8

8 0 8 8 6 8 8 6 8 8

Table 7. Simulating the XOR operation.

sxor 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8

1 1 0 2 4 3 5 7 6 8

2 2 2 2 5 5 5 8 8 8

3 3 4 5 0 1 2 6 7 8

4 4 3 5 1 0 2 7 6 8

5 5 5 5 2 2 2 8 8 8

6 6 7 8 6 7 8 6 7 8

7 7 6 8 7 6 8 7 6 8

8 8 8 8 8 8 8 8 8 8

Symbolic-Like Computation 259

B Conditions for All Flavors of QUARK

See Table 8.

Table 8. Conditions for all flavors of QUARK.

Instance Conditions

U-QUARK ‘0’ bits s2, s6, s8, s9, s10, s11, s15, s22, s23, s24, s28, s29, s33, s36,
s38, s40, s43, s47, s48, s50, s51, s52, s53, s55, s56, s57, s60,
s61, s62, s70, s72, s75, s80, s86, s89, s91, s93, s95, s97, s101,
s103, s106, s108, s112, s116, s117, s122, s125, s131, s132

‘1’ bits s18, s25, s32, s34, s37, s41, s46, s58, s59, s63, s64, s65, s73,
s79, s81, s83, s88, s90, s92, s94, s96, s100, s102, s105, s107,
s110, s113, s114, s115, s118, s119, s120, s124, s126, s127, s128,
s130, s133, s134

s74 = s4 + s7 + s17 + s31 + s49 + 1

D-QUARK ‘0’ bits s15, s20, s32, s33, s49, s51, s55, s57, s61, s62, s66, s68, s72,
s73, s79, s82, s87, s103, s105, s107, s115, s127, s158

‘1’ bits s16, s34, s42, s50, s56, s63, s83, s84, s86, s98, s164, s173

S-QUARK ‘0’ bits s38, s49, s52, s58, s61, s62, s63, s66, s73, s76, s80, s82, s85,
s88, s99, s101, s102, s108, s110, s119, s159, s187, s189, s192,
s241

‘1’ bits s34, s86, s87, s96, s104, s113, s161, s164

C-QUARK ‘0’ bits s36, s38, s45, s46, s48, s49, s50, s52, s53, s56, s58, s59, s60,
s61, s62, s63, s67, s68, s69, s70, s71, s72, s73, s74, s75, s77,
s78, s79, s81, s82, s83, s84, s86, s87, s88, s92, s93, s95, s96,
s97, s103, s105, s106, s109, s115, s117, s118, s119, s120, s121,
s122, s123, s125, s126, s127, s128, s129, s131, s133, s135, s136,
s137, s138, s139, s140, s142, s144, s146, s148, s149, s150, s151,
s154, s156, s160, s162, s164, s180, s200, s218, s226, s228, s231,
s234, s239, s242, s244, s246, s247, s251, s252, s253, s256, s257,
s258, s259, s260, s261, s262, s263, s264, s265, s267, s269, s273,
s279, s290, s292, s294, s296, s298, s300, s302, s304, s305, s306,
s308, s310, s312, s318, s320, s322, s325, s327, s328, s333, s335,
s338, s343, s344, s345, s346, s347, s348, s349, s351, s353, s355,
s357, s359, s361, s371, s377, s378, s380

‘1’ bits s43, s54, s55, s57, s64, s65, s76, s80, s91, s101, s114, s130,
s132, s134, s204, s214, s220, s232, s236, s238, s240, s248, s250,
s281, s283, s285, s287, s289, s291, s293, s295, s297, s299, s301,
s303, s307, s314, s316, s332, s334, s342, s352, s368

260 J. Yang et al.

References

1. Aumasson, J.P.: Github - veorq/quark: Lightweight cryptographic hash functions
(reference code). https://github.com/veorq/Quark/

2. Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight
hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 1

3. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: a lightweight
hash. J. Cryptol. 26(2), 313–339 (2013)

4. Aumasson, J.P., Knellwolf, S., Meier, W.: Heavy Quark for secure AEAD. DIAC-
Directions in Authenticated Ciphers (2012)

5. Banik, S.: Conditional differential cryptanalysis of 105 round Grain v1. Crypt.
Commun. 8(1), 113–137 (2016)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 11

7. Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-order differential
collisions for reduced SHA-256. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 15

8. De Cannière, C.: Trivium: a stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006).
https://doi.org/10.1007/11836810 13

9. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04138-9 20

10. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

11. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 10

12. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream
ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS,
vol. 4986, pp. 179–190. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68351-3 14

13. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 130–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 8

14. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8 16

15. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E.,
Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptog-
raphy. SECS, vol. 276, pp. 227–233. Springer, Boston (1994). https://doi.org/10.
1007/978-1-4615-2694-0 23

https://github.com/veorq/Quark/
https://doi.org/10.1007/978-3-642-15031-9_1
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-642-25385-0_15
https://doi.org/10.1007/978-3-642-25385-0_15
https://doi.org/10.1007/11836810_13
https://doi.org/10.1007/978-3-642-04138-9_20
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/978-3-540-68351-3_14
https://doi.org/10.1007/978-3-540-68351-3_14
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23

Symbolic-Like Computation 261

16. Ma, Z., Tian, T., Qi, W.F.: Conditional differential attacks on Grain-128a stream
cipher. IET Inf. Secur. 11(3), 139–145 (2016)

17. Ma, Z., Tian, T., Qi, W.F.: Improved conditional differential attacks on Grain v1.
IET Inf. Secur. 11(1), 46–53 (2016)

18. Stein, W., Joyner, D.: Sage: system for algebra and geometry experimentation.
ACM SIGSAM Bull. 39(2), 61–64 (2005)

19. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

20. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

21. Watanabe, Y., Isobe, T., Morii, M.: Conditional differential cryptanalysis for
Kreyvium. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp.
421–434. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 22

22. Watanabe, Y., Todo, Y., Morii, M.: New conditional differential cryptanalysis for
NLFSR-based stream ciphers and application to Grain v1. In: 2016 11th Asia Joint
Conference on Information Security (AsiaJCIS), pp. 115–123. IEEE (2016)

23. Zhang, K., Guan, J., Fei, X.: Improved conditional differential cryptanalysis. Secur.
Commun. Netw. 8(9), 1801–1811 (2015)

https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/978-3-319-60055-0_22

Lightweight Recursive MDS Matrices
with Generalized Feistel Network

Qiuping Li1, Baofeng Wu2(B), and Zhuojun Liu3

1 University of Chinese Academy of Sciences, Beijing, China
2 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
wubaofeng@iie.ac.cn

3 Key Laboratory of Mathematics Mechanization Academy of Mathematics
and Systems Science, Chinese Academy of Sciences, Beijing, China

Abstract. Maximum distance separable (MDS) matrices are often used
to construct optimal linear diffusion layers in many block ciphers. With
the development of lightweight cryptography, the recursive MDS matri-
ces play as good candidates. The recursive MDS matrices can be com-
puted as powers of sparse matrices. In this paper, we consider search-
ing recursive MDS matrices from Generalized Feistel Structure (GFN)
matrices. The advantage of constructing MDS matrices based on GFN
matrices mainly displays two aspects. First, the recursive GFN MDS
matrix can be implemented by parallel computation that would reduce
the running time. Second, the inverse matrix of recursive GFN MDS
matrix is also a recursive GFN MDS matrix and they have the same
XOR count. We provide some computational experiments to show we do
find some lightweight 4× 4 and 8× 8 recursive GFN MDS matrices over
F2n . Especially, the 8 × 8 recursive GFN MDS matrices over F28 have
lower XOR count than the previous recursive MDS matrices.

Keywords: Lightweight MDS matrix · Recursive · XOR count
Generalized Feistel Network

1 Introduction

In the designing of symmetric-key ciphers, there are two fundamental concepts
required for the overall security of the cipher, they are the confusion and the
diffusion properties described by Shannon [19]. The diffusion layer of a cipher is
often achieved by a matrix that transforms an input vector to some output vec-
tor through linear operations. The quality of a linear diffusion layer is connected
to its branch number. A high branch number implies that changing a single bit
of the input will change the output a lot, which is exactly what one expects for
a good diffusion layer. Therefore, maximum distance separable (MDS) matrices
are quite good choices for the construction of diffusion layers since their branch
numbers are maximum. However, different MDS matrices have different imple-
mentation costs; not all MDS matrices can lead to efficient hardware or software
implementations.
c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 262–278, 2018.
https://doi.org/10.1007/978-3-319-97916-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_17&domain=pdf

Lightweight Recursive MDS Matrices with Generalized Feistel Network 263

To estimate the hardware implementation cost of an MDS matrix, Khoo
et al. [13] provide the definition of XOR count, which is called d-XOR count in
[12], roughly speaking it is the number of XOR operations needed to perform
multiplication of the matrix with any vector. It is expected to find the MDS
matrix with as little d-XOR count as possible. After the d-XOR count, Jean et al.
[12] proposed a new metric called s-XOR count, which can reuse intermediate
results to decrease the XOR count and does not need the temporary registers
since these are wires between gates. Since the s-XOR count is less than or equal
to the d-XOR count, in this paper, we use the s-XOR count as the metric to
estimate the hardware implementation cost of an MDS matrix.

To improve efficiency of hardware implementation, a clever method is to
obtain MDS matrices by recursive constructions. The recursive MDS matrix can
be constructed from a k × k sparse matrix over F2n , where n is the size of the
Sboxes, such that k iterations of this matrix is an MDS matrix. On the one hand,
the recursive MDS matrix can save storage space and on the other hand, it needs
to spend more running time. This is a trade-off. The main idea of using recursive
matrices to construct MDS matrices was first adopted in the design of lightweight
hash function PHOTON [8] and block cipher LED [9]. Afterwards, the defini-
tion of recursive MDS matrices was given in [20]. Following the work of [20],
some recent papers [1–4,10,14,24,25] are devoted to the construction of recur-
sive MDS matrices. In [20], Sajadieh et al. replaced the finite field operations by
simpler F2-linear operations, again improving the implementation efficiency of
the construction. The same design strategy was used by Wu et al. [24] to obtain
optimal diffusion layer, even including bit-level LFSRs case. In [8], the authors
constructed lightweight MDS matrices from companion matrices by exhaustive
search. In [10], authors developed techniques to test if a given k ×k matrix is an
MDS matrix. They also construct lightweight 4×4 and 5×5 MDS matrices over
F2n for all n ≥ 4. In [3,4,11], authors construct recursive MDS matrices using
the BCH code and Gabidulin code.

These previous works only consider whether the MDS matrix is lightweight
or not, however, the XOR count of inverse matrix of the MDS matrix was rarely
discussed. In this paper, we introduce some properties of recursive MDS matrix
with Generalized Feistel Network (GFN) and construct some lightweight recur-
sive GFN MDS matrices. We find the inverse matrix of a GFN MDS matrix
is also a GFN MDS matrix and they have the same XOR counts. In addition,
the recursive GFN MDS matrix and its inverse matrix can be implemented by
parallel computing that can reduce the running time. We also give some results
to reduce the searching space. Computational experiments show that lightweight
4 × 4 recursive GFN MDS matrices over F2n can be obtained. For 8 × 8 MDS
matrix, we find some recursive GFN MDS matrices that outperform previous
lightweight recursive MDS matrices over F28 . They can be used to replace the
diffusion layers of previous block ciphers and hash functions to gain better per-
formance.

This paper is organized as follows. In Sect. 2, we give some notations of MDS
matrix and XOR count. In Sect. 3, we discuss some properties of Generalized

264 Q. Li et al.

Feistel Network matrix. In Sect. 4, we give some propositions to reduce the
searching scope and find some lightweight recursive GFN MDS matrices. In
Sect. 5, we conclude the paper.

2 Preliminaries

Let F2 = {0, 1} be the binary finite field and F2n be the finite field of 2n elements.
F2n is isomorphic to polynomials in F2[x] modulo an irreducible polynomial p(x)
of degree n, namely, each element of F2n can be represented as a polynomial of
degree less than n over F2. Suppose β ∈ F2n , then β can be represented as∑n−1

i=0 biα
i, where bi ∈ F2 and α is a root of a generating polynomial of F2n . The

element β can be viewed as an n-bit string (bn−1, bn−2, . . . , b0), traditionally,
the n-bit string is represented in a hexadecimal representation, which will be
prefixed with 0x. For example, in F28 , the 8-bit string 01101010 corresponds to
the element α6 + α5 + α3 + α, written 0x6a in hexadecimal.

The addition operation on F2n is simply defined as a bitwise XOR and does
not depend on the choice of the irreducible polynomial p(x) of degree n. However,
for multiplication, one needs to specify the irreducible polynomial p(x) of degree
n. We denote this field as F2n/p(x), where p(x) can be given in hexadecimal
representation.

2.1 MDS Matrix and Its Properties

Maximum Distance Separable (MDS) matrices are crucial components in cryp-
tographic designs, as they ensure a perfect diffusion layer. In the following, we
give the definition of MDS matrix.

Definition 1 (see [7]). The differential branch number of a k × k matrix M
over F2n is

Bd (M) = min
x�=0

{wb(x) + wb(Mx)} ,

and the linear branch number of M is

B� (M) = min
x �=0

{
wb(x) + wb(MTx)

}
.

where wb(x) is the number of nonzero elements in x, and when the optimal value
Bd (M) = B� (M) = k + 1 is attained, we say M is an MDS matrix.

There are various ways to verify if a matrix is MDS, in this paper we state a
common way to identify MDS matrix.

Proposition 1 (see [5]). A square matrix M is an MDS matrix if and only if
all square sub-matrices of M are nonsingular.

Based on above proposition and the property of the adjoint matrix, we have
the following property of MDS matrix.

Lightweight Recursive MDS Matrices with Generalized Feistel Network 265

Proposition 2. If the matrix M is an MDS matrix, then the matrix M−1 is
also an MDS matrix.

The following proposition is a crucial result in this paper.

Proposition 3 (see [16]). For any permutation matrices P and Q, the branch
numbers of M and PMQ are the same.

2.2 XOR Count

To estimate the hardware implementation cost of a diffusion layer, Khoo et al.
[13] provide the definition of XOR count(denoted by d-XOR count [12]).

Definition 2 (see [13]).The d-XOR count of an element β in the field F2n/p(x)
is the number of XOR operations required to implement the multiplication of
β with an arbitrary η over F2n/p(x) and denoted by d-XOR(β), where η ∈
F2n/p(x).

After this, Jean et al. [12] provided an improved XOR count(denoted by s-
XOR count [12]) which can reuse intermediate results to decrease the XOR count
and it does not need temporary register since these are wires between gates.

Definition 3 (see [12]). The s-XOR count of an element β in the field F2n/p(x)
is the minimum number of XOR operations in the sequence of instructions for
implementing the field element multiplication and denoted by s-XOR(β).

Example 1. Let β = 7 is the element of F23/0xb. Suppose (b2, b1, b0) to be the
binary representation of an arbitrary element η in the field F23/0xb. We have:

(1, 1, 1) · (b2, b1, b0) = (b2 ⊕ b0, b2 ⊕ b1, b1) ⊕ (b1, b2 ⊕ b0, b2) ⊕ (b2, b1, b0)
= (b1 ⊕ b0, b0, b2 ⊕ b1 ⊕ b0),

which corresponds to 3 d-XORs. In practice, b1 ⊕ b0 can be reused, so we have
the s-XOR(β) = 2 < d-XOR(β).

In 2017, [15] proposed a more efficient way to compute the XOR count of
MDS matrices, but this way is not suitable for the recursive MDS matrices. The
recursive MDS matrix can be computed as powers of a sparse matrix, so the
XOR count of recursive MDS matrix is some multiples of the XOR count of a
sparse matrix. In this paper, we use the new metric(s-XOR count) to evaluate
the implementation cost.

The XOR count of a matrix M = (mi,j)k×k, mi,j ∈ F2n , is defined as [22].

XOR(M) =
k∑

i,j=1

XOR(mi,j) +
k∑

i=1

(ri − 1)n, (1)

where ri is the number of nonzero elements in the i-th row.

266 Q. Li et al.

3 Generalized Feistel Network Matrix

In this section, we firstly introduce some properties of previous recursive MDS
matrices and their XOR count formulas. After that we talk about the Generalized
Feistel Network matrix and its properties about MDS matrix.

3.1 Recursive MDS Matrix

In [8], the authors propose the idea of constructing recursive MDS matrix with
companion matrix. Using the notation of [8], we define the companion matrix of
f(x) = z1 + z2x + · · · + zkxk−1 + xk as

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 . . . 1
z1 z2 z3 · · · zk

⎤

⎥
⎥
⎥
⎥
⎥
⎦

k×k

,

where zi ∈ F2n , i = 1, 2, . . . , k.
From the formula (1), the XOR count of implementing the matrix C is

(k − 1) · n +
k∑

i=1

XOR(zi).

The recursive MDS matrix M = Ck can be implemented by Linear Feedback
Shift Register (LFSR, Fig. 1). So the XOR count of recursive MDS matrix with
companion matrix is

k[(k − 1) · n +
k∑

i=1

XOR(zi)]. (2)

Fig. 1. Linear Feedback Shift Register.

Lightweight Recursive MDS Matrices with Generalized Feistel Network 267

In [24], the authors propose to construct recursive MDS matrices with Type-
II Generalized Feistel Structure (GFS, Fig. 2). This Type-II Generalized Feistel
Structure is a extension of the Type-II Generalized Feistel Network. Using the
notation of [24], we define the matrix representation of Type-II Generalized
Feistel Structure (GFS) as follows.

Agfs2[z1, z2, . . . , zk] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

T U2 0 · · · 0 0
0 T U3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 . . . T U k

2

U1 0 0 · · · 0 T

⎤

⎥
⎥
⎥
⎥
⎥
⎦

k×k

where “0” is a 2 × 2 zero matrix over F2n while T =
[
0 1
0 0

]

and Ui =
[

0 0
z2i−1 z2i

]

1 ≤ i ≤ k
2 are 2 × 2 block matrices, z1, z2, z3, . . . , zk ∈ F2n for some n.

From the formula (1), the XOR counts of implementing the matrix is

k

2
· n +

k∑

i=1

XOR(zi).

Similarly, the XOR counts of recursive MDS matrix with Type-II GFS is

k[
k

2
· n +

k∑

i=1

XOR(zi)]. (3)

Fig. 2. Type-II Generalized Feistel Structure.

From Fig. 1, we notice the LFSR can not be implemented by parallel compu-
tation to decrease the running time. From the matrix Agfs2, the inverse matrix of
Type-II Generalized Feistel Structure (GFS) matrix is not always Type-II GFS
matrix, so the inverse matrix of the recursive Type-II GFS MDS matrix is not
always implemented by Type-II GFS. In the following, we will use the general
definition matrix of the Generalized Feistel Network to construct recursive MDS
matrices.

268 Q. Li et al.

3.2 Generalized Feistel Network Matrix

In this paper, we construct recursive MDS matrix with Generalized Feistel Net-
work (GFN) matrix. We hope the GFN has lesser XOR count and can be imple-
mented by parallel computation so that the GFN can save the hardware imple-
ment cost and reduce the running time. From [6], we have the following definition
of GFN matrix.

Definition 4 (see [6]). A k × k matrix B with coefficients in {0, 1, z1, . . . , zt}
is a Generalized Feistel Network (GFN) matrix if it can be written as B = PF
such that P is a permutation matrix and the matrix F satisfies the following
conditions:

(1) the main diagonal is filled with 1,
(2) the off-diagonal coefficients are either 0 or zi,
(3) for each index i(1 ≤ i ≤ k), if row(column) i has an zj coefficient then

column(row) i just has 0 coefficient except the main diagonal is 1, where
zj ∈ F2n , j = 1, 2, . . . , t.

Example 2. The following matrix is F of a Generalized Feistel Network.

F =

⎡

⎢
⎢
⎣

1 z1 z2 0
0 1 0 0
0 0 1 0
0 z3 0 1

⎤

⎥
⎥
⎦

From this example, we can see that the column 2 and 3 have the coefficient z1
and z2, so the row 2 and 3 just have 0 coefficient except the main diagonal is 1.

Example 3. If the 4 × 4 Type-II Generalized Feistel Structure matrix Agfs2 =

PF, then P =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤

⎥
⎥
⎦ and F =

⎡

⎢
⎢
⎣

z1 z2 0 0
0 1 0 0
0 0 z3 z4
0 0 0 1

⎤

⎥
⎥
⎦. We can see when z1 = z3 = 1,

the Type-II GFS satisfies the conditions of GFN matrix. So the Type-II GFS
MDS matrices have not always the advantage of GFN MDS matrices.

According to [6], we easily have the following theorem.

Theorem 1 (see [6]). Let B = PF be a Generalized Feistel Network (GFN)
matrix according to Definition 4. Then F is an involution matrix.

Since F is involution matrix, we naturally want to know whether Bk = (PF)k

is involution matrix or not. Next, we will talk about this problem. The following
lemma is a well-known property of permutation matrix.

Lemma 1. Let P be a permutation matrix. Then P−1 = PT .

From the definition of GFN matrix, the non-linear layer F has the following
property.

Lightweight Recursive MDS Matrices with Generalized Feistel Network 269

Lemma 2. Let B = PF be a Generalized Feistel Network (GFN) matrix from
Definition 4 and F ′ = QFQ−1, where Q is a permutation matrix. Then F ′ sat-
isfies the three conditions of Definition ??.

Proof. Let fi,j denote the coefficient of F at row i and column j, f ′
l,q denote

the coefficient of F
′
at row l and colutm q, σ is the permutation representation

of the permutation matrix Q. From Lemma 1, we have Q−1 = QT . Since Q−1

transform the column of the matrix F and QTT = Q, we have σ is the permuta-
tion representation of the permutation matrix Q−1. So we have f ′

l,q = fσ(i),σ(j).
Then

(1) when i = j, we have fi,i = 1. So fσ(i),σ(i) = 1.
(2) when i �= j, we have fi,j is either 0 or zs(1 ≤ s ≤ t) and σ(i) �= σ(j). So

fσ(i),σ(j) is either 0 or zs(1 ≤ s ≤ t).
(3) when i �= j and fi,j = zs(1 ≤ s ≤ t), we have σ(i) �= σ(j) and fp,i = fj,l = 0,

for all p �= i, l �= j. So when σ(i) �= σ(j) and fσ(i),σ(j) = zs(1 ≤ s ≤ t), we
have fσ(p),σ(i) = fσ(j),σ(l) = 0, for all σ(p) �= σ(i), σ(l) �= σ(j).

So the F ′ satisfies the three conditions of Definition 4.

Depended on above theorem and lemma, it easily has the following theorem.

Theorem 2. Let B = PF be a Generalized Feistel Network (GFN) matrix from
Definition 4 and M = Bk is MDS matrix. Then B−1 = FP−1 = P−1F ′ is also
a GFN matrix and M−1 = (B−1)k is also MDS matrix, where F ′ = PFP−1.

Although this theorem is simple, it brings us many benefits. The inverse
matrix of a permutation matrix is naturally a permutation matrix. Applying
above theorem, we have that the inverse matrix of a recursive MDS matrix
with GFN matrix can also be implemented by GFN and the XOR count of the
recursive MDS matrix is the same with its inverse matrix.

4 MDS Properties of Generalized Feistel Network

In this section, we firstly provide some propositions to reduce the searching
scope, and then give some lightweight MDS matrices. Based on Proposition 1,
if the entries of matrix Bk have zero element, then Bk is not an MDS matrix.
Applying this judgement, some MDS properties of recursive GFN matrices will
be discussed. Depended on these properties, some lightweight recursive GFN
MDS matrices are found.

4.1 Some Propositions of k × k Recursive GFN MDS Matrices

Firstly, we give a normalized form of Bm =
[
P (I +

∑t
s=1 Eis,js)

]m

.

270 Q. Li et al.

Proposition 4. If B = P (I +
∑t

s=1 Eis,js) is a k × k matrix, then Bm =

P
[∏m−1

l=0 (I +
∑t

s=1 Eσl(is),σl(js))
]
Pm−1, where P is a permutation matrix, σ is

the permutation representation of the row transform matrix P and the matrix
Ei,j is consisted of all zeros except in the i-th row of the j-th column.

Proof. Since σ is the permutation representation of the row transform matrix P,
we have the σ also represents the column transform matrix P−1. So

P (I +
t∑

s=1

Eis,js) = (I +
t∑

s=1

Eσ(is),jsP
−1)P = (I +

t∑

s=1

Eσ(is),σ(js))P.

Then

Bm =

[
P (I +

t∑
s=1

Eis,js)

]m

= P (I +
t∑

s=1

Eis,js)P (I +
t∑

s=1

Eis,js) · · ·P (I +
t∑

s=1

Eis,js)

= P (I +

t∑
s=1

Eis,js)(I +

t∑
s=1

Eσ(is),σ(js))P
2(I +

t∑
s=1

Eis,js) · · ·P (I +

t∑
s=1

Eis,js)

= P (I +
t∑

s=1

Eis,js)(I +
t∑

s=1

Eσ(is),σ(js)) · · · (I +
t∑

s=1

Eσm−1(is),σm−1(js))P
m−1

= P

[
m−1∏
l=0

(I +
t∑

s=1

Eσl(is),σl(js)
)

]
Pm−1.

Nextly, we want to reduce the searching scope of GFN matrix B = PF , it
can be considered from two aspects. On the one hand, it can simplify the matrix
F. On the other hand, it can exclude some impossible permutation matrices.
Firstly, we will simplify the matrix F.

Definition 5 (see [6]). Two GFNs matrices B and B′ are equivalent if there
exists a permutation matrix Q of the k blocks such that B′ = QBQ−1.

Remark 1. From the condition (3) of the definition of GFN matrix and Defini-
tion 5, we just need to search the matrix form

F =
[
I 0
A I

]

k×k

,

where A is a �k
2 � × 	k

2
 matrix.

From the condition (3) of the definition of GFN matrix, if row(column) i has an zj

coefficient then column(row) i just has 0 coefficient except the main diagonal is 1.
Therefore, we have all row(column) index of the nonzero elements zj(1 ≤ j ≤ t)
of F accounts for half of the order of the matrix F. Based on Definition 5, there

Lightweight Recursive MDS Matrices with Generalized Feistel Network 271

exist a permutation matrix Q2 such that the row index of the nonzero elements
zj(1 ≤ j ≤ t) of the Q2FQ−1

2 is greater than or equal k
2 . We also have the

permutation matrix Q3 such that the column index of the nonzero elements
zj(1 ≤ j ≤ t) of Q2FQ−1

2 Q−1
3 is lesser than or equal k

2 . So we just need search
F is the nonzero elements zj(1 ≤ j ≤ t) belong to lower left quarter of F , i.e.
we just need to search the matrix

F =
[
I 0
A I

]

k×k

,

where A is a �k
2 � × 	k

2
 matrix.
In addition, we also find when all the coefficients zs ∈ F2n are in the first

column or in the last row of the matrix F , the matrix Bk = (PF)k is not an
MDS matrix.

Proposition 5. If B = PF = P (I +
∑t

s=1 Ek,s) is a k × k GFN matrix, then
Bk(k > 2) is not an MDS matrix.

Proof. It is easy to see that

Eis,jsEis′ ,js′ =
{

0 is′ �= js

Eis,js′ is′ = js
(4)

Let σ be the permutation representation of the row transform matrix P. Then σ
also represent the column transform matrix P−1. From Proposition 4, we have

Bk = P

[
k−1∏

l=0

(I +
t∑

s=1

Eσl(k),σl(s))

]

P k−1,

So the row index of Bk is k, σ(k), σ2(k), . . . , σk−1(k).

(a) If the length of the cycle σ(k) is less than k, then the Bk must have a row
that just has one nonzero element be from P k. So the Bk is not MDS matrix.

(b) If the length of the cycle σ(k) is k. From formula (1), we know the row
index σk−1(k) will be eliminated by Eσl(k),σl(s)(l = 0, . . . , k − 2). Then the
σk−1(k)−th row just has Eσk−1(k),σk−1(s)(s = 1, . . . , t) and 1 that are the
non-zero elements. From Remark 1, we have t ≤ k

2 . If Bk is MDS matrix,
then k

2 + 1 ≥ k, k ≤ 2. So the Bk(k > 2) is not MDS matrix.

From above conditions, we know Bk(k > 2) is not MDS matrix.

Similarly, we have the following proposition.

Proposition 6. If B = PF = P (I +
∑t

s=1 Es,1) is a k × k GFN matrix, then
Bk(k > 2) is not MDS matrix.

In the following, we give a proposition to exclude some impossible permuta-
tion matrices. It is similar to Theorem 7 of [6], we can have some MDS properties
of GFN matrix.

272 Q. Li et al.

Proposition 7. If B = PF is a k × k GFN matrix, F =
[
I 0
A I

]

k×k

and P =
[
P1 0
0 P2

]

k×k

, then Bk is not an MDS matrix, where P, P1, P2 are permutation

matrices and A is a �k
2 � × 	k

2
 matrix.

Proof. Since

B2 = (PF)2 =
[

P1 0
P2A P2

] [
P1 0

P2A P2

]

=
[

P 2
1 0

P2AP1 + P 2
2 A P 2

2

]

,

we know the upper right quarter of Bk is zero matrix. So the Bk is not an MDS
matrix.

From the above preliminary judge, the searching scope can be reduced. In the
next subsection we will search some lightweight recursive GFN MDS matrices.

4.2 Some Lightweight Recursive GFN MDS Matrices

In this subsection, we search some lightweight k×k recursive GFN MDS matrices
over F2n , where k = 4, 8 and n is arbitrary integer.

It is natural that we want to find lightweight k × k recursive GFN MDS
matrix, then we need the t as small as possible for

Bk = P

[
k−1∏

l=0

(I +
t∑

s=1

Eσl(s),σl(1))

]

P k−1.

When k = 4, we first consider the situations of t = 1 and t = 2. In these
situations, we need to consider 4! × 12 + 4! × 12 × 9 = 2880 GFN matrices.
From Remark 1, we just need to consider the situations of B = P (I + E4,1),
B = P (I + E4,1 + E4,2), B = P (I + E4,1 + E3,1), B = P (I + E4,1 + E3,2), where
the matrix Ei,j is consisted of all zeros except in the i−th row and j−th column
is zs ∈ F2n . According to Propositions 5 and 6, we only need to consider the
situation of B = P (I + E4,1 + E3,2). Based on Proposition 7, we finally need to
consider 4! − (2 × 2) = 20 GFN matrices. The searching result is as follows.

Lemma 3. Let B =

⎡

⎢
⎢
⎣

z1 0 0 1
0 z2 1 0
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ be defined over F2n . Then B4 is an MDS

matrix, if
0 �= z1 �= z2 �= 0, z41 + 1 �= 0, z42 + 1 �= 0,
z21 + z1z2 + z22 �= 0, z21z

2
2 + 1 �= 0, z41z

4
2 + z21z

2
2 + 1 �= 0,

z21z
3
2 + z1 + z2 �= 0, z1z

3
2 + 1 �= 0, z21 + z22 + z31z

3
2 �= 0,

z31z
2
2 + z1 + z2 �= 0, z2z

3
1 + 1 �= 0, z21 + z22 + z31z

3
2 + z1z2 �= 0.

Lightweight Recursive MDS Matrices with Generalized Feistel Network 273

Proof. It can be computed that

B4 =

⎡

⎢
⎢
⎣

z41 + 1 z21 + z1z2 + z22 z1 + z2 z31
z21 + z1z2 + z22 z42 + 1 z32 z1 + z2

z31 z1 + z2 1 z21
z1 + z2 z32 z22 1

⎤

⎥
⎥
⎦

From Proposition 1, we need that all the minors of B4 are non-zero, then we
have
B4[1, 4] = z31 �= 0 B4[1, 2] = z21 +z1z2+z22 �= 0 B4[1, 1] = z41 +1 = (z1+1)4 �= 0
B4[2, 3] = z32 �= 0 B4[2, 2] = z42 + 1 = (z2 + 1)4 �= 0 B4[1, 3] = z1 + z2 �= 0
It is easy to check that the number of 2 × 2 minors of B4 is 36. There are 18
different polynomials in the following list.
z21 z22 z41z

3
2 + z31 z21z

2
2 + 1 z41z

2
2 + z21 z31z

2
2 + z1 + z2

z21z2 z1z2 z31z
4
2 + z32 z1z

3
2 + 1 z31z

3
2 + z21 + z22 z41z

4
2 + z21z

2
2 + 1

z1z
2
2 z21z

2
2 z21z

4
2 + z22 z2z

3
1 + 1 z21z

3
2 + z1 + z2 z31z

3
2 + z21 + z1z2 + z22

Then we have
z21z

2
2 + 1 = (z1z2 + 1)2 �= 0 z1z

3
2 + 1 �= 0 z2z

3
1 + 1 �= 0

z31z
3
2 + z21 + z22 �= 0 z31z

2
2 + z1 + z2 �= 0 z21z

3
2 + z1 + z2 �= 0

z31z
3
2 + z21 + z1z2 + z22 �= 0 z41z

4
2 + z21z

2
2 + 1 = (z21z

2
2 + z1z2 + 1)2 �= 0

We can also compute that the number of 3 × 3 minors of B4 is 16. There are 8
different polynomials in the following list.
1 z21 z22 z1z2 z1z

2
2 z21z2 z1 + z2 z21z

2
2 + 1

So B4 is an MDS matrix, if
0 �= z1 �= z2 �= 0, z1 + 1 �= 0, z2 + 1 �= 0,
z21 + z1z2 + z22 �= 0, z1z2 + 1 �= 0, z21z

2
2 + z1z2 + 1 �= 0,

z21z
3
2 + z1 + z2 �= 0, z1z

3
2 + 1 �= 0, z21 + z22 + z31z

3
2 �= 0,

z31z
2
2 + z1 + z2 �= 0, z2z

3
1 + 1 �= 0, z21 + z22 + z31z

3
2 + z1z2 �= 0.

From Lemma 3, we can implement the GFN matrix of Lemma 3 and its inverse
matrix by Figs. 3 and 4.

Fig. 3. Generalized Feistel Network Fig. 4. Inverse structure of Generalized
Feistel Network

274 Q. Li et al.

It is obviously that the GFN MDS matrix only needs to reuse the existing
memory with neither temporary storage nor additional control logic required,
these properties are the same with Type-II GFS and LFSR. Furthermore, the
inverse matrix of the GFN MDS matrix has the same XOR count and they can
be implemented by parallel computing, but the inverse matrices of Type-II GFS
and LFSR do not have these properties.

From Lemma 3, we know z1, z2 are not 0, 1 and z1z2 �= 1. By using the
methods of table lookups, the following corollaries propose some lightweight
4 × 4 recursive GFN MDS matrices.

Corollary 1. Let B =

⎡

⎢
⎢
⎣

α 0 0 1
0 α2 1 0
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ be defined over F2n and n > 1, where α is a

root of generating polynomial of F2n . Then B4 is an MDS matrix for all n ≥ 4
except α is a root of any of the following polynomials

x4 + x3 + x2 + x + 1 = 0, x4 + x3 + 1 = 0, x6 + x + 1 = 0,
x5 + x4 + x2 + x + 1 = 0, x6 + x3 + 1 = 0, x7 + x + 1 = 0.

Proof. From Lemma 3, if the α satisfies the following polynomials then B4 is an
MDS matrix.
0 �= α �= α2 �= 0,
α + 1 �= 0,
α2 + 1 = (α + 1)2 �= 0,
α2 + αα2 + α4 = α2(α2 + α + 1) �= 0,
αα2 + 1 = (α + 1)(α2 + α + 1) �= 0,
α2α4 + αα2 + 1 = α6 + α3 + 1 �= 0,
α2α6 + α + α2 = α(α7 + α + 1) �= 0,
αα6 + 1 = (α + 1)(α3 + α + 1)(α3 + α2 + 1) �= 0,
α2 + α4 + α3α6 = (α2 + α + 1)(α5 + α4 + α2 + α + 1) �= 0,
α3α4 + α + α2 = α(α6 + α + 1) �= 0,
α2α3 + 1 = (α + 1)(α4 + α3 + α2 + α + 1) �= 0,
α2 + α4 + α3α6 + αα2 = (α4 + α3 + 1)(α + 1)3 �= 0,
That is to say that α is not a root of any of the following polynomials.
x = 0, x + 1 = 0, x4 + x3 + x2 + x + 1 = 0, x4 + x3 + 1 = 0,
x2 + x + 1 = 0, x3 + x + 1 = 0, x5 + x4 + x2 + x + 1 = 0, x6 + x3 + 1 = 0,
x3 + x2 + 1 = 0, x6 + x + 1 = 0, x7 + x + 1 = 0.
So B4 is an MDS matrix for all n ≥ 4 and α is not a root of any of the following
polynomials.
x4 + x3 + x2 + x + 1 = 0, x4 + x3 + 1 = 0, x6 + x + 1 = 0,
x5 + x4 + x2 + x + 1 = 0, x6 + x3 + 1 = 0, x7 + x + 1 = 0.

Similarly, we have the following corollary.

Lightweight Recursive MDS Matrices with Generalized Feistel Network 275

Corollary 2. Let B =

⎡

⎢
⎢
⎣

α−1 0 0 1
0 α2 1 0
1 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ be defined over F2n and n > 1, where α is

a root of generating polynomial of F2n . Then B4 is an MDS matrix for all n ≥ 4
except α is a root of any of the following polynomials

x4 +x3 +x2 +x+1 = 0, x5 +x3 +1 = 0, x6 +x5 +1 = 0, x6 +x3 +1 = 0.

We applied above corollaries to construct recursive MDS matrices. We found
some recursive MDS matrices with fewer XOR count than the previous MDS
matrices and list them in following table.

Table 1. Comparison of the XOR count of 4 × 4 MDS matrices.

Field/Ring Reference Matrix type XORs XORs of inverse matrix

F24/0x13 Corollary 1 GFN 4× (3 + 2× 4) = 44 4× (3 + 2× 4) = 44

F24/0x13 [13] LFSR 4× (3 + 3× 4) = 60 4× (3 + 3× 4) = 60

GL(4,F2) [24] Type-II GFS 4× (2 + 2× 4) = 40 4× (3 + 2× 4) = 44

F28/0x1c3 Corollary 1 GFN 4× (8 + 2× 8) = 96 4× (8 + 2× 8) = 96

F28/0x11d [13] LFSR 4× (9 + 3× 8) = 132 4× (9 + 3× 8) = 132

GL(8,F2) [24] Type-II GFS 4× (2 + 2× 8) = 72 4× (3 + 2× 8) = 76

In Table 1, we compare the XOR count of 4 × 4 MDS matrices over F24

and F28 . Although, the XOR count of our construction is larger than Type-II
GFS MDS matrix, the inverse matrix of Type-II GFS matrix is not a Type-II
GFS matrix and their XOR counts are different. Similarly, we also search some
lightweight 8 × 8 recursive MDS matrices from GFN matrices.

Corollary 3. If B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 α α 0 0 0 1
0 0 0 1 0 0 1 0
α2 α 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, then the B8 is MDS matrix for

infinitely many n and n > 7, where α is a root of generating polynomial of F2n .

Remark 2. When we prove above result, we find that all minors of B8 contain
finitely many irreducible polynomial of degree larger than 7. However there are
infinitely many irreducible polynomial of degree larger than 7 in finite field. So
we can find B8 is MDS matrix for infinitely many n and n > 7.

276 Q. Li et al.

Table 2. Comparison of the XOR count of 8 × 8 MDS matrices.

Field/Ring Reference Matrix type XORs XORs of its inverse matrix

F28/0x187 Corollary 3 GFN 8× (14 + 6× 8) = 496 8× (14 + 6× 8) = 496

[F24/0x13]
2 [23] LFSR 8× (2× 36) = 576 8× (2× 36) = 576

GL(8,F2) [24] LFSR 8× (9 + 7× 8) = 520 8× (9 + 7× 8) = 520

From above corollary, we found some 8 × 8 recursive MDS matrices with fewer
XOR counts than the previous MDS matrices and list them in the following
table.

From Table 2, we compare the XOR counts of 8 × 8 MDS matrices over F28 .
We find the recursive MDS matrix with GFN and its inverse matrix are more
lightweight than previous recursive MDS matrices.

5 Conclusion

In this paper, we search the recursive MDS matrices from GFN matrices. The
GFN matrix and its inverse matrix can be implemented by parallel computa-
tion to decrease the running time and have the same XOR count. Computational
experiments show that lightweight recursive MDS matrices can be obtained from
GFN matrices, in particular, the 8 × 8 recursive GFN MDS matrices are more
lightweight than previous recursive MDS matrices. Since these 8 × 8 recursive
GFN MDS matrices are consistent with 8-bit Sboxes, they can be used to replace
the diffusion layers in some lightweight block ciphers and lightweight hash func-
tions and have less hardware implementation cost.

References

1. Augot, D., Finiasz, M.: Exhaustive search for small dimension recursive MDS dif-
fusion layers for block ciphers and hash functions. In: Proceedings of 2013 IEEE
International Symposium on Information Theory (ISIT), pp. C1551–C1555. IEEE
(2013)

2. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
ciphers – focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 4

3. Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion layers using
shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol.
8540, pp. 3–17. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46706-0 1

4. Berger, T.P.: Construction of recursive MDS diffusion layers from gabidulin codes.
In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–
285. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4 18

5. Blaum, M., Roth, R.M.: On lowest density MDS codes. IEEE Trans. Inf. Theory
45(1), 46–59 (1999)

https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-662-46706-0_1
https://doi.org/10.1007/978-3-662-46706-0_1
https://doi.org/10.1007/978-3-319-03515-4_18

Lightweight Recursive MDS Matrices with Generalized Feistel Network 277

6. Berger, T.P., Minier, M., Thomas, G.: Extended generalized feistel networks using
matrix representation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013.
LNCS, vol. 8282, pp. 289–305. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43414-7 15

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-
4

8. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 13

9. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

10. Gupta, K.C., Ray, I.G.: On constructions of MDS matrices from companion matri-
ces for lightweight cryptography. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl,
E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8128, pp. 29–43. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40588-4 3

11. Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: On the direct construction of recur-
sive MDS matrices. Des. Codes Crypt. 82(1), 77–94 (2017)

12. Jean, J., Peyrin, T., Sim, S.M.: Optimizing implementations of lightweight building
blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130–168 (2017)

13. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-
optimal SPN structures and components with a fair comparison. In: Batina, L.,
Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 433–450. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44709-3 24

14. Kolay, S., Mukhopadhyay, D.: Lightweight diffusion layer from the kth root of the
MDS matrix. IACR Cryptology ePrint Archive 2014, 498 (2014)

15. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line pro-
grams for MDS matrices yet another XOR count paper. IACR Trans. Symmetric
Cryptol. 2017(4), 188–211 (2017). https://doi.org/10.13154/tosc.v2017.i4.188-211

16. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin,
T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 101–120. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52993-5 6

17. Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS
matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 121–139. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 7

18. Li, C., Wang, Q.: Design of lightweight linear diffusion layers from near-MDS
matrices. IACR Trans. Symmetric Cryptol. 2017(1), 129–155 (2017)

19. Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4),
656–715 (1949)

20. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive diffusion layers
for block ciphers and hash functions. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 385–401. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34047-5 22

21. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48116-5 23

22. Sarkar, S., Syed, H.: Lightweight diffusion layer: importance of toeplitz matrices.
IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016)

23. Toh, D., Teo, J., Khoo, K., Sim, S.M.: Lightweight MDS serial-type matrices with
minimal fixed XOR count. IACR Cryptology ePrint Archive 2017, 1084 (2017)

https://doi.org/10.1007/978-3-662-43414-7_15
https://doi.org/10.1007/978-3-662-43414-7_15
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-40588-4_3
https://doi.org/10.1007/978-3-662-44709-3_24
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.1007/978-3-662-52993-5_6
https://doi.org/10.1007/978-3-662-52993-5_7
https://doi.org/10.1007/978-3-642-34047-5_22
https://doi.org/10.1007/978-3-642-34047-5_22
https://doi.org/10.1007/978-3-662-48116-5_23

278 Q. Li et al.

24. Wu, S., Wang, M., Wu, W.: Recursive diffusion layers for (lightweight) block
ciphers and hash functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 355–371. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35999-6 23

25. Zhao, R., Zhang, R., Li, Y., Wu, B.: On constructions of a sort of MDS block
diffusion matrices for block ciphers and hash functions. IACR Cryptology ePrint
Archive 2015, 449 (2015)

https://doi.org/10.1007/978-3-642-35999-6_23
https://doi.org/10.1007/978-3-642-35999-6_23

Provable Security

How to Prove KDM Security of BHHO

Hayato Tada(B), Akinaga Ueda, and Kaoru Kurosawa

Ibaraki University, Hitachi, Japan
{17nm710h,kaoru.kurosawa.kk}@vc.ibaraki.ac.jp

Abstract. Boneh et al. showed a KDM secure public-key encryption
scheme under the DDH assumption. The KDM security means that even
when any affine function of the secret keys is encrypted, it is guaranteed
to be secure. In this paper, we show a more tight proof. The reduction
loss to the DDH assumption is 2/3 times smaller in the KDM(1)-security,
and 5/6 times smaller in the KDM(n)-security, where n is the number of
users. Our proof is also conceptually simpler.

Keywords: Public key · Encryption scheme · KDM security
Matrix DDH

1 Introduction

1.1 Background

In the usual model of encryption schemes, it is assumed that a plaintext is
independent of the secret key sk. The key dependent message (KDM) security is
a more demanding notion such that the security is guaranteed even when sk is
encrypted. In general, a KDM(n) secure encryption scheme with respect to a set
of functions F provides security even when one encrypts f(sk1, . . . , skn) under
a public key pkj for any function f ∈ F , where ski is the secret-key of user i for
i = 1, . . . , n.

Boneh et al. (BHHO) [4] constructed the first KDM(n) secure public-key
encryption scheme under the DDH assumption. It is so with respect to all affine
functions. They first introduced the matrix DDH assumption as a main technical
tool, and showed that it is reduced to the DDH assumption with some reduction
loss. They then introduced the so called the expanded system, and proved the
KDM(n) security.

Applebaum et al. [1] proved that a variant of Regev’s scheme [7] is KDM(n)

secure w.r.t. all affine functions under the LWE assumption. Brakerski and Gold-
wasser [2] showed that a variant of BHHO scheme is KDM(n) secure w.r.t.
all affine functions under the subgroup indistinguishability assumption. They
proved it by introducing a technique of the interactive vector game. Malkin
et al. [6] showed a KDM(n) secure encryption scheme w.r.t. the set of functions
which are computable by a polynomial-size modular arithmetic circuit. Wee [8]
showed that a KDM(1)-secure encryption scheme, where there is a single user,
can be constructed from homomorphic smooth projective hash functions.
c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 281–296, 2018.
https://doi.org/10.1007/978-3-319-97916-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_18&domain=pdf

282 H. Tada et al.

1.2 Our Contribution

In this paper, we show a more tight proof of the KDM security for BHHO
scheme [4]. The reduction loss to the DDH assumption is 2/3 times smaller in
the KDM(1)-security, and 5/6 times smaller in the KDM(n)-security. Our proof
is also conceptually simpler.

In the model of IND-CPA security, an adversary queries to the encryption
oracle once. In the model of KDM security, on the other hand, an adversary
is allowed to query to the encryption oracle multiple times. To deal with such
multiple queries, we introduce a multi-query DDH assumption. Let

[(a1, . . . , a�)] = (ga1 , . . . , ga�),

where g is a generator of a group G of prime order p. Then the multi-query DDH
assumption says

([R1], [r2R1], . . . , [rQR1]) and ([R1], [R2], . . . , [RQ])

are computationally indistinguishable for polynomially large Q, where ri
$← Zp,

Ri
$← Z

�
p and � ≥ 2. We then show that it is tightly reduced to the matrix

DDH assumption with the matrix size �. In particular, the reduction loss is
independent of Q.1

Now our proof of the KDM security consists of the following arguments.

(1) The KDM(1)-security for a single query.
We prove this under the usual DDH assumption by using the idea of the
interactive vector game [2].

(2) The KDM(1)-security for multiple queries.
If we use a hybrid argument, then the reduction loss will be proportional
to the number of queries Q. To make it independent of Q, we rely on the
multi-query DDH assumption.

(3) How to simulate n − 1 public keys from a single public key pk1.
We can simulate pk2 from pk1 under the DDH assumption. If we further
use a hybrid argument to simulate the rest of the public keys, then the
reduction loss will be linear in n. To make it independent of n, we rely on
the multi-query DDH assumption.

(4) We combine (2) and (3) in parallel to prove more tight KDM(n) security.

Our proof makes it clear that the matrix DDH assumption (through our
multi-query DDH assumption) is useful to make the reduction loss small.

Finally we derive a more tight reduction from the matrix DDH assumption
to the DDH assumption than Boneh et al. The loss factor is reduced from O(�)
to O(log �), where � is the size of the matrix. Then both the KDM(1) security
and the KDM(n) security of BHHO encryption scheme are further improved.

Remark 1. Galindo et al. [5] showed an almost tight reduction from the matrix
DLIN assumption to the DLIN assumption in constructing an ID-based KDM-
secure encryption scheme.
1 It is tightly reduced to the DDH assumption if � = 2 or Q = 2. Otherwise, however,

it is not.

How to Prove KDM Security of BHHO 283

2 Preliminaries

Let G be a group of prime order p with a generator g. Define LDDH and LR as

LDDH =
{
D

∣∣ D =
(

1, t
γ, γt

)
, t ∈ Zp, γ ∈ Zp

}

LR =
{
D

∣∣ D =
(

1, t
γ1, γ2

)
, t ∈ Zp, γ1 ∈ Zp, γ2 ∈ Zp, γ2 �= γ1t

}

For a matrix A = (ai,j) over Zp, let [A] be a matrix (gai,j) over G. In particular,
if u = (a1, . . . , a�), then

[u] = [(a1, . . . , a�)] = (ga1 , . . . , ga�).

When X is a set, x
$← X means that x is randomly chosen from X. When

A(x; r) is a probabilistic algorithm, y ← A(x) means that y = A(x; r) is com-
puted for a random string r. The cardinality of a set X is denoted by |X|. The
bit length of a string Y is denoted by |Y |. All the algorithms in this paper run
in probabilistic polynomial time, and the security parameter is denoted by k.

2.1 DDH Assumption

The DDH assumption is that LDDH and LR are indistinguishable. Formally
consider the following game between a challenger and an adversary A.

1. The challenger chooses b
$← {0, 1} and

D $←
{

LDDH if b = 0
LR if b = 1

He then sends [D] to the adversary A.
2. The adversary A outputs b′ ∈ {0, 1}.

Define

DDHAdv(A) = |Pr(b′ = 1|b = 0) − Pr(b′ = 1|b = 1)|

and
DDHAdv = max

A
DDHAdv(A).

2.2 Matrix DDH Assumption

Boneh et al. [4] introduced the matrix DDH assumption. Let Rki(Z�1×�2
p) be the

set of all �1 ×�2 matrices over Zp with rank i. Then the matrix DDH assumption
is that {[D] | D ∈ Rkr1(Z

�1×�2
p)} and {[D] | D ∈ Rkr2(Z

�1×�2
p)} are indistin-

guishable, where 1 ≤ r1 < r2 ≤ min{�1, �2}.

284 H. Tada et al.

Formally we consider the following game.

1. The challenger chooses b
$← {0, 1} and

D $←
{

Rkr1(Z
�1×�2
p) if b = 0

Rkr2(Z
�1×�2
p) if b = 1

He then sends [D] to the adversary A.
2. The adversary A outputs b′ ∈ {0, 1}.

Define

MatrixAdv(r1,r2;�1,�2)(A) = |Pr(b′ = 1|b = 0) − Pr(b′ = 1|b = 1)|

Boneh et al. [4] proved that the DDH assumption implies the matrix DDH
assumption.

Proposition 1. For any A, there exists B, running in about the same time as
A, such that

MatrixAdv(r1,r2;�1,�2)(A) ≤ (r2 − r1)DDHAdv(B).

3 KDM Secure Encryption Scheme

3.1 KDM Security

Let E = (K,E,D) be a public-key encryption scheme, where K is a key genera-
tion algorithm, E is an encryption algorithm and D is a decryption algorithm.
For a security parameter k, let Sk be the space of secret keys sk and Mk be that
of messages m, where (sk, pk) ← K(1k).

The KDM security of E = (K,E,D) is parameterized by the number of users
n and a set of functions Fk = {f | f : Sn

k → Mk} in such a way that the
encryption of f(sk1, . . . , skn) should be indistinguishable from that of 0, where
f ∈ Fk. Formally, we consider a game between a challenger and an adversary A
as follows.

Initialize. First the challenger choose b
$← {0, 1}. Next he generates

(ski, pki) ← K(1k) for i = 1, . . . , n, and sends n public keys (pk1, . . . , pkn) to
the adversary A.

Query. The adversary A queries (j, f) ∈ {1, . . . , n} × Fk to the challenger.
For each query, the challenger computes x = f(sk1, . . . , skn) and sends the
following ciphertext c to the adversary A.

c =
{

Epkj
(x) if b = 0

Epkj
(0) if b = 1

Finish. The adversary A outputs a guess b′ ∈ {0, 1}.

How to Prove KDM Security of BHHO 285

Define

KDM(n)Adv(A) = |Pr(b′ = 1|b = 0) − Pr(b′ = 1|b = 1)|
= |2Pr(b′ = b) − 1| (1)

and
KDM(n)Adv = max

A
KDM(n)Adv(A).

We say that E is KDM(n)-secure with respect to the function classes F = {Fk}
if KDM(n)Adv is negligible. We also say that A is a F-KDM(n) adversary.

3.2 BHHO Encryption Scheme

Boneh et al. [4] showed the KDM(n)-secure encryption scheme with respect to
all affine functions such as follows.

Key Generation. For � = �3 log2 p 	, choose u $← Z
�
p and sk $← {0, 1}�. Then

output a public key pk = [u,−u · skT] and a secret key sk.
Encryption. To encrypt [m] ∈ G, choose r

$← Zp and output a ciphertext such
that Epk(m; r) = [ru,−ru · skT + m].

Decryption. For a ciphertext [(c, d)] and a secret key sk, output [m] = [d + c ·
skT), where c ∈ Z

�
p.

Let sk1, . . . , skn be n secret keys. For a0 ∈ Zp and a1 ∈ Z
�
p, . . . ,an ∈ Z

�
p,

define
fa0,a1,...,an

(sk1, . . . , skn) = [a0 +
∑

i

ai · skT
i].

Let Faffine be the set of functions fa0,a1,...,an
. Then Boneh et al. [4] proved the

following proposition.

Proposition 1. For Faffine-KDM(n) adversary A, there exist B1 and B2, both
running in about the same time as A, such that

KDM(n)Adv ≤ 4 ·MatrixAdv(1,�;�+1,�)(B1)+2 ·MatrixAdv(1,�+1;�+1,�+1)(B2)+2/p.

From Proposition 1, we obtain the following corollary.

Corollary 1. For Faffine-KDM(n) adversaries, A, there exists B running in
about the same time as A, such that

KDM(n)Adv(A) ≤ (6� − 4)DDHAdv(B) + 2/p.

Remark 2. Boneh et al. [4] defined KDM(n)Adv(A) as |Pr(b′ = b) − 1/2| instead
of |2Pr(b′ = b) − 1|. Hence it was written as

KDM(n)Adv(A) ≤ (3� − 2)DDHAdv(B) + 1/p

in [4, Theorem 1].

286 H. Tada et al.

4 Outline of Our Proof

Recall that an adversary is allowed to query to the encryption oracle multiple
times in the model of KDM security. We write U ≈ V to denote that two random
variables U and V are computationally indistinguishable.

4.1 KDM(1) Security for a Single Query

In BHHO encryption scheme, a secret key is sk $← {0, 1}� and the public key is

given by pk = [u,−u·skT], where u $← Z
�
p. It is well known that (u, ru) ≈ (u,R)

under the DDH assumption, where r
$← Zp and R $← Z

�
p, and the reduction is

tight. Then we can prove the KDM(1) security for a single query as follows. (We
use the idea of the interactive vector game [2] here.)

Epk([a0 + a · skT]) = [r(u, −u · skT) + (0�, a0 + a · skT)], where r
$← Zp.

≈ [(R, −R · skT) + (0�, a0 + a · skT)] : R ← ru from DDH

= [R, a0 + (a − R) · skT]

≡ [R+ a, a0 − R · skT] : R ← (R − a) since R is random

≈ [ru+ a, a0 − ru · skT] : ru ← R from DDH

≈ [ru+ a, a0 − rs0] : s0
$← Zp from the leftover hash lemma

pk = [u, −s0] ← pk = [u, −u · skT]

≈ [R+ a, a0 − r] : (R, −r) ← r(u, −s0) from DDH

≡ [R, −r] : since (R, −r) is random

≈ [r(u, −s0)] : from DDH

≈ [r(u, −u · skT)] : from the leftover hash lemma

pk = [u, −u · skT] ← pk = [u, −s0]

= Epk([0]) (2)

For the leftover hash lemma, see [4, Lemma 2, Corollary 1].

4.2 KDM(1) Security for Multiple Queries

If we use a hybrid argument to extend the above result to multiple queries,
however, the reduction loss will be proportional to the number of queries Q. To
make it independent of Q, we introduce a multi-query DDH assumption. It says

[u, r1u, . . . , rQu] ≈ [u,R1, . . . ,RQ] (3)

for polynomially large Q, where ri
$← Zp and Ri

$← Z
�
p. We then prove that it is

tightly reduced to the matrix DDH assumption, in fact, let D be an �× � matrix
and u be the first row. Then a random linear combination of the rows of D yields
ri · u if rank(D) = 1, and Ri if rank(D) = �. Hence the indistinguishability is
tightly reduced to the matrix DDH assumption and independent of Q.

Now in Eq. (2), replace the DDH assumption with the multi-query DDH
assumption.

How to Prove KDM Security of BHHO 287

4.3 KDM(n) Security

For i = 1, . . . , n, let pki = [ui,−ui · skT
i] be the public key of user i, where

ui
$← Z

�
p and ski

$← {0, 1}� is the secret key. For i = 2, . . . , n, we can write
ski as

ski = sk1 ⊕ ei = sk1 · T(ei) + ei, (4)

where ei
$← {0, 1}� and T(e) = diag((−1)ei). Then we simulate pki by using pk1

under the multi-query DDH assumption as follows.

pki = [ui, −ui · skT
i]

≡ [ui · T(ei)
−1, −ui · T(ei)

−1 · skT
i] : since ui is random

≈ [γiu1 · T(ei)
−1, −γiu1 · T(ei)

−1 · skT
i] : where γi

$← Zp,

from multi-query DDH

= [γi · u1 · T(ei)
−1, −(γi · u1 · T(ei)

−1) · (sk1 · T(ei) + ei)
T] : from Eq. (4)

= [γi · u1 · T(ei)
−1, −γi(u1 · skT

1) − γi(u1 · T(ei)
−1 · eT

i)]

Thus we can simulate pki from pk1 = [u1,−u1 ·skT
1] and ei. Further a0+

∑n
i=1 ai ·

sTi is expressed as an affine function of sk1 from Eq. (4).
We combine the above argument with that of Sect. 4.2 in parallel to prove

more tight KDM(n) security.

4.4 Final Result

Our proofs show that

KDM(1)Adv ≤ 4� · DDHAdv + 2/p (5)

KDM(n)Adv ≤ 5� · DDHAdv + 2/p. (6)

while Boneh et al. showed only

KDM(n)Adv ≤ 6� · DDHAdv + 2/p

as shown in Corollary 1 (see Remark 2 also.) Finally we improve our results to

KDM(1)Adv ≤ 4 log(�) · DDHAdv + 2/p

KDM(n)Adv ≤ 5 log(�) · DDHAdv + 2/p

by deriving a more tight reduction from the matrix DDH assumption to the
DDH assumption than Boneh et al. [4].

5 Multi-query DDH Assumption

In this section, we introduce a multi-query DDH assumption, and prove that it
is tightly reduced to the matrix DDH assumption.

288 H. Tada et al.

5.1 Basic Form

Suppose that an adversary A is given [u] such that u $← Z
�
p. Let Ou be the oracle

which outputs [ru] such that r
$← Zp. Let OR be the oracle which outputs [R]

such that R $← Z
�
p.

Define

MultiDDH(�)Adv(A) = |Pr(AOu([u]) = 1 − Pr(AOR([u]) = 1|.

The multi-query DDH assumption is that MultiDDH(�)AdvA is negligible for any
PPT A.

Theorem 1. For any adversary A of above, there exists a matrix DDH
adversary B, running in about the same time as A, such that

MultiDDH(�)Adv(A) ≤ MatrixAdv(1,�;�,�)(B).

Proof. We construct a matrix DDH adversary B as follows.

1. B receives [D] from the challenger, where D $← Rk1(Z�×�
p) or D $← Rk�(Z�×�

p).
2. Let [u] be the first row of [D]. B gives [u] to A.

3. If A queries to the oracle, then B chooses x $← Z
�
p, and returns [x · D] to A.

4. Finally B receives b′ from A, and sends it to the challenger.

If D $← Rk1(Z�×�
p), then it is easy to see that x ·D = ru, where r is uniformly

distributed over Zp. If D $← Rk�(Z�×�
p), then it is also easy to see that x · D is

uniformly distributed over Z
�
p. Therefore the theorem holds. �

5.2 Generalized Form

Suppose that an adversary A is given [u1, . . . ,un] such that ui
$← Z

�
p for

i = 1, . . . , n. Let Ou1,...,un
be the oracle which outputs [r1u1, . . . , rnun] such

that ri
$← Zp for i = 1, . . . , n. Let ORn be the oracle which outputs [R1, . . . ,Rn]

such that Ri
$← Z

�
p for i = 1, . . . , n.

Define

MultiDDH(n,�)Adv(A) = |Pr(AOu1,...,un ([u1, . . . ,un]) = 1
− Pr(AOn

R([u1, . . . ,un]) = 1|.

The generalized multi-query DDH assumption is that MultiDDH(n,�)AdvA is
negligible for any PPT A.

Theorem 2. For any adversary A of above, there exists a matrix DDH
adversary B, running in about the same time as A, such that

MultiDDH(n,�)Adv(A) ≤ MatrixAdv(1,�;�,�)(B).

How to Prove KDM Security of BHHO 289

Proof. We construct a matrix DDH adversary B as follows.

1. B receives [D] from the challenger, where D $← Rk1(Z�×�
p) or D $← Rk�(Z�×�

p).

2. For i = 1, . . . , n, B chooses Li
$← Rk�(Z�×�

p), Ri
$← Rk�(Z�×�

p) and computes

[Di] = [Li · D · Ri].

Let [ui] be the first row of [Di]. B gives [u1, . . . ,un] to A.

3. If A queries to the oracle, then B chooses xi
$← Z

�
p, and returns [xi ·Di] to A

for i = 1, . . . , n.
4. Finally B receives b′ from A, and sends it to the challenger.

The rest of the proof is the same as that of Theorem 1. �

6 More Tight KDM Security of BHHO

In this section, we show that BHHO encryption scheme has more tight KDM
security. Let

Δ(A,B) =
1
2

∑
x∈S

|Pr(A = x) − Pr(B = x)|

denote the statistical distance between two random variables A and B.
Then the following proposition holds from the leftover hash lemma [4, Lemma 2,
Corollary 1].

Proposition 2. Le u $← Z
�
p, sk

$← {0, 1}� and s0
$← Zp. Then

Δ
(
(u,u · skT); (u, s0)

)
≤ 1/p,

where � = �3 log2 p 	.

6.1 How to Prove KDM(1) Security

Theorem 3. In BHHO encryption scheme, for any Faffine-KDM(1) adversary
A, there exist multi-query DDH adversaries B1 and B2, both running in about
the same time as A, such that

KDM(1)Adv(A) ≤ 2 · MultiDDH(�)(B1) + 2 · MultiDDH(�+1)(B2) + 2/p,

where � = �3 log2 p 	.

290 H. Tada et al.

Proof. Let pk = [u,u · skT] be a public key of BHHO encryption scheme, where
sk is the secret key. In Eq. (2), we replace the DDH assumption with the multi-
query DDH assumption as follows.

Epk([a0 + a · skT]) = [r(u, −u · skT) + (0�, a0 + a · skT)], where r
$← Zp.

≈ [(R, −R · skT) + (0�, a0 + a · skT)] : R ← ru

from multi-query DDH of length �

= [R, a0 + (a − R) · skT]

≡ [R+ a, a0 − R · skT] : R ← (R − a) since R is random

≈ [ru+ a, a0 − ru · skT] : ru ← R

from multi-query DDH of length �

≈ [ru+ a, a0 − rs0] : s0
$← Zp from Proposition 2

pk = [u, −s0] ← pk = [u, −u · skT]

≈ [R+ a, a0 − r] : (R, −r) ← r(u, −s0)

from multi-query DDH of length � + 1

≡ [R, −r] : since (R, −r) is random

≈ [r(u, −s0)] : from multi-query DDH of length � + 1

≈ [r(u, −u · skT)] : from Proposition 2

pk = [u, −u · skT] ← pk = [u, −s0]

= Epk([0]) (7)

Therefore the theorem holds.
�

Corollary 2. In BHHO encryption scheme, for any Faffine-KDM(1) adversary
A, there exist multi-query DDH adversaries B1 and B2, both running in about
the same time as A, such that

KDM(1)Adv(A) ≤ 2 ·MatrixAdv(1,�;�,�)(B1)+2 ·MatrixAdv(1,�+1;�+1,�+1)(B2)+2/p,

where � = �3 log2 p 	.
Proof. From Theorem 1. �

If we use Corollary 1, we obtain the following corollary.

Corollary 3. In BHHO encryption scheme, for any Faffine-KDM(1) adversary
A, there exists a DDH adversary B, running in about the same time as A, such
that

KDM(1)Adv(A) ≤ (4� − 2)DDHAdv(B) + 2/p.

6.2 How to Prove KDM(n) Security

Lemma 1. For e = (e1, . . . , e�) ∈ {0, 1}�, define an � × � matrix T(e) as
T(e) = diag((−1)ei) Then for s = (s1, . . . , s�) ∈ {0, 1}�, it holds that

s ⊕ e = s · T(e) + e

How to Prove KDM Security of BHHO 291

Proof. We can see that
si ⊕ ei = (−1)eisi + ei.

Hence the result follows. �

Theorem 4. In BHHO encryption scheme, for any Faffine-KDM(n) adversary
A, there exist multi-query DDH adversaries B1,B2,B3, each running in about
the same time as A, such that

KDM(n)Adv(A) ≤ MultiDDH(n,�)Adv(B1)

+2 · MultiDDH(�)Adv(B2) + 2 · MultiDDH(�+1)Adv(B3),

where � = �3 log2 p 	.
Proof. We consider a series of games, Game 0, . . ., Game 13 as shown below.
For each game, define

pi = Pr(A outputs b′ = 1 in Game i).

Game 0. This is the same as the KDM(n) security game with b = 0. The
challenger chooses ui

$← Z
�
p and ski

$← {0, 1}� for i = 1, . . . , n. He then sends
n public keys pk1, . . . , pkn to the adversary A such that pki = [ui, yi], where
yi = −ui · skT

i and ski is the secret key.
If the adversary A queries (j, fa0,a1,...,an

) to the challenger, the challenger
returns

C = Epkj
([a0 +

∑
i

ai · skT
i]).

Game 1. This is the same as Game 0 except that for i = 2, . . . , n, the challenger
chooses ei

$← {0, 1}� and sets ski = sk1 ⊕ ei. It is clear that p1 = p0.
From Lemma 1, it holds that

ski = sk1 ⊕ ei = sk1 · T(ei) + ei (8)

Hence we have

pki = [ui,−ui · (sk1 · T(ei) + ei)T].

Also a0 +
∑

i ai · skT
i is written as an affine function on sk1 such that

a0 +
∑

i

ai · skT
i = b0 + b · sk1

for some b0 ∈ Zp and b ∈ Z
�
p. Therefore for a query (j, fa0,a1,...,an

), the
challenger returns

C = Epkj
([b0 + b · skT

1])

= ([ruj , ryj + b0 + b · skT
1])

= ([ruj ,−ruj · (T(ej) · skT
1 + eT

j) + b0 + b · skT
1])

292 H. Tada et al.

Game 2. This is the same as Game 1 except that the challenger replaces uj

with uj ·T(ej)−1 for j = 1, . . . , n. Then p2 = p1 because uj is random. Since
T(ej)T = T(ej), we have

pkj = [uj · T(ej)−1,−uj · (skT
1 + ·T(ej)−1eT

j)]

C = [ruj · T(ej)−1,−ruj · (skT
1 + ·T(ej)−1eT

j) + b0 + b · skT
1]

Game 3. This is the same as Game 1 except that the challenger replaces ruj

with R $← Z
�
p for j = 1, . . . , n. Then we can construct a general multi-query

DDH adversary B1 such that

|p3 − p2| ≤ MultiDDH(n,�)Adv(B1).

In this game, we have

C = [R · T(ej)−1,−R · skT
1 − R · T(ej)−1eT

j + b0 + b · skT
1]

= [R · T(ej)−1, b0 − (b − R) · skT
1 − R · T(ej)−1eT

j]

Game 4. This is the same as Game 3 except that we replace R − b with
R′ $← Z

�
p. Then p4 = p3 because R is random. In this game, we have

C = [(R′ + b) · T(ej)−1, b0 − R′ · skT
1 − (R′ + b) · T(ej)−1 · eT

j]

Game 5. This is the same as Game 4 except that the challenger replaces R′

with ru1, where r
$← Zp. At the same time, the challenger replaces each

uj with γju1, where γj
$← Zp. Then we can construct a multi-query DDH

adversary B2 such that

|p5 − p4| ≤ MultiDDH(�)Adv(B2).

In this game, we have

pkj = [γju1 · T(ej)−1,−γju1 · (sk1 + T(ej)−1ej)T]

C = [(ru1 + b) · T(ej)−1, b0 − ru1 · skT
1 − (ru1 + b) · T(ej)−1 · eT

j]

Game 6. This is the same as Game 5 except that the challenger replaces u1·sk1

with s0
$← Zp. Then we have |p6−p5| ≤ 1/p from Proposition 2. In this game,

we have

pkj = [γju1 · T(ej)−1,−γj(s0 + u1 · T(ej)−1eT
j)]

C = [(ru1 + b) · T(ej)−1, b0 − rs0 − (ru1 + b) · T(ej)−1 · eT
j]

Game 7. This is the same as Game 6 except that the challenger replaces
r(u1, s0) with (R, r′) $← Z

�+1
p . Then we can construct a multi-query DDH

adversary B3 such that

|p7 − p6| ≤ MultiDDH(�+1)Adv(B3).

In this game, we have

C = [(R + b) · T(ej)−1, b0 − r′ − (R + b) · T(ej)−1 · eT
j]

How to Prove KDM Security of BHHO 293

Game 8. This is the same as Game 7 except that the challenger replaces
(R + b, r′ − b0) with (R′, r) $← Z

�+1
p . Then p8 = p7 because R and r′ are

random. In this game, we have

C = [R′ · T(ej)−1,−r − R′ · T(ej)−1 · eT
j]

Game 9. This is the same as Game 8 except that the challenger replaces (R′, r)

with r(u1, s0), where r
$← Zp. Then we can construct a multi-query DDH

adversary B4 such that

|p9 − p8| ≤ MultiDDH(�+1)Adv(B4).

In this game, we have

C = [ru1 · T(ej)−1,−rs0 − ru1 · T(ej)−1 · eT
j]

Game 10. This is the same as Game 9 except that the challenger replaces s0

with u1 ·skT
1 . Then we have |p10−p9| ≤ 1/p from Proposition 2. In this game,

we have

pkj = [γju1 · T(ej)−1,−γj(u1 · skT
1 + u1 · T(ej)−1eT

j)]

= [γju1 · T(ej)−1,−γju1 · T(ej)−1(sk1T(ej) + ej)T]

C = [ru1 · T(ej)−1,−ru1 · skT
1 − ru1 · T(ej)−1 · eT

j]

= [ru1 · T(ej)−1,−ru1 · T(ej)−1(sk1T(ej) + ej)T]

Game 11. This is the same as Game 10 except that the challenger replaces
γju1 with uj

$← Z
�
p for j = 1, . . . , n. Then we can construct a multi-query

DDH adversary B5 such that

|p11 − p10| ≤ MultiDDH(�)Adv(B5).

In this game, we have

pkj = [uj · T(ej)−1,−uj · T(ej)−1(sk1T(ej) + ej)T]
C = [(r/γj)uj · T(ej)−1,−(r/γj)uj · T(ej)−1(sk1T(ej) + ej)T]

Game 12. This is the same as Game 11 except that the challenger replaces
uj · T(ej)−1 with uj . Then p12 = p11 because uj is random. In this game,
we have

pkj = [uj ,−uj · (sk1T(ej) + ej)T]
C = [(r/γj)uj ,−(r/γj)uj · (sk1T(ej) + ej)T]

Game 13. This is the same as Game 12 except that the challenger replaces
sk1T(ej) + ej with skj . Then p13 = p12 from Lemma 1. In this game,
we have

pkj = [uj ,−uj · skT
j]

C = [(r/γj)uj ,−(r/γj)uj · skT
j] = Epkj

([0])

294 H. Tada et al.

Finally Game 13 is the same as the KDM(n) security game with b = 1.
Therefore by summing up each |pi+1 − pi|, we obtain this theorem.

�

Corollary 4. In BHHO encryption scheme, for any Faffine-KDM(n) adversary
A, there exist B1 and B2, both running in about the same time as A, such that

KDM(n)Adv(A) ≤ 3·MatrixAdv(1,�;�,�)(B1)+2·MatrixAdv(1,�+1;�+1,�+1)(B2)+2/p,

where � = �3 log2 p 	.
Proof. From Theorems 1, 2, and Corollary 2. �

Corollary 5. In BHHO encryption scheme, for any Faffine-KDM(n) adversary
A, there exists a DDH adversary B, running in about the same time as A, such
that

KDM(n)Adv(A) ≤ (5� − 3)DDHAdv(B) + 2/p.

Proof. From Proposition 1. �

7 Improvement

In this section, we derive a more tight reduction from the matrix DDH assump-
tion to the DDH assumption than Proposition 1. The loss factor is reduced from
O(�) to O(log �), where � is the size of the matrix. Then both the KDM(1) security
and the KDM(n) security of BHHO encryption scheme are further improved.

7.1 More Tight Reduction from Matrix DDH to DDH

For an a × a matrix A and a b × b matrix B, define A⊕B as a (a + b) × (a + b)
matrix such that

A ⊕ B =
(
A 0
0 B

)
.

(See Remark 1.)

Lemma 2. Let �1, �2 ≥ 2, r ≥ 2 and 1 ≤ m ≤ �r/2�. Then for any A, there
exists B, running in about the same time as A such that

MatrixAdv(r−m,r;�1,�2)(A) ≤ DDHAdv(B).

Proof. B takes [D] as an input, where D $← Rk1(Z2×2
p) or D $← Rk2(Z2×2

p). B
first builds an r × r matrix such that

M = D ⊕ · · · ⊕ D︸ ︷︷ ︸
m times

⊕Ir−2m

B then chooses L $← Rkr(Z�1×r
p), R $← Rkr(Zr×�2

p), and sends a matrix [L·M·R]
to A.

If rank(D) = 1, then L ·M ·R is uniformly distributed over Rkr−m(Z�1×�2
p).

If rank(D) = 2, then it is uniformly distributed over Rkr(Z�1×�2
p). Hence the

lemma follows. �

How to Prove KDM Security of BHHO 295

Theorem 5. Consider r1, r2, �1, �2 such that 1 ≤ r1 < r2 ≤ min(�1, �2). Then
for any A, there exists B, running in about the same time as A, such that

MatrixAdv(r1,r2;�1,�2)(A) ≤ �log2 r2 − log2 r1	DDHAdv(B).

Proof. There exists unique k such that

2k−1 · r1 < r2 ≤ 2k · r1. (9)

For i = 0, . . . , k, let ti = 2ir1. Then we have ti = 2ti−1 for i = 1, . . . , k − 1, and
tk−1 < r2 ≤ tk.

For i = 0, . . . , k − 1, choose Mi
$← Rkti

(Z�1×�2
p). For k, choose Mk

$←
Rkr2(Z

�1×�2
p). Let

pi = Pr[A([Mi]) outputs 1].

Then from Lemma 2, we have

|pi+1 − pi| = MatrixAdv(ti,ti+1;�1,�2)(A) ≤ DDHAdv(Bi+1)

for i = 0, . . . , k − 2, and

|pk − pk−1| = MatrixAdv(tk−1,r2;�1,�2)(A) ≤ DDHAdv(Bk)

Now since t0 = r1, it holds that

MatrixAdv(r1,r2;�1,�2)(A) = |pk − p0|
≤ |p1 − p0| + · · · + |pk − pk−1|
≤ k · DDHAdv(B)

for some B. Finally from Eq. (9), we have

k = �log2 r2 − log2 r1	
Therefore the theorem follows. �

7.2 Application to the KDM Security of BHHO

Corollary 6. In BHHO encryption scheme, for any A, there exists B, running
in about the same time as A, such that

KDM(1)Adv(A) ≤ 4 · �log2(� + 1)	DDHAdv(B) + 2/p.

Proof. From Corollary 2 and Theorem 5. �

Corollary 7. In BHHO encryption scheme, for any A, there exists B, running
in about the same time as A, such that

KDM(n)Adv(A) ≤ 5 · �log2(� + 1)	DDHAdv(B) + 2/p.

Proof. From Corollary 4 and Theorem 5. �

296 H. Tada et al.

References

1. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.)
CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03356-8 35

2. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 1

3. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–218.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 13

4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 7

5. Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master
key-dependent message security and leakage-resilience. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33167-1 36

6. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key
encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 507–526. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 28

7. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: STOC 2005, pp. 84–93 (2005)

8. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9615, pp. 159–179. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49387-8 7

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-19571-6_13
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-33167-1_36
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/978-3-662-49387-8_7
https://doi.org/10.1007/978-3-662-49387-8_7

From Identification Using Rejection
Sampling to Signatures

via the Fiat-Shamir Transform:
Application to the BLISS Signature

Pauline Bert(B) and Adeline Roux-Langlois

Univ Rennes, CNRS, IRISA, Rennes, France
pauline.bert@irisa.fr

Abstract. In this paper, we present a reduction from non-lossy/lossy
identification scheme using rejection sampling to signature in the Ran-
dom Oracle Model (ROM). The rejection sampling is used to ensure that
the last step in the identification scheme does not leak information about
the secret key of the scheme. This last step may fail, and to hide these
failures to an adversary we use a Fiat-Shamir transform where we rerun
the identification protocol until we get a valid output. We also apply
our result for non-lossy identification scheme to the well-known BLISS
signature [DDLL13] and compare with the original proof.

Keywords: Signature schemes · Identification schemes
Fiat-Shamir transform · Rejection sampling · Lattices

1 Introduction

The Fiat-Shamir transform [FS86] is a well-studied transform from an iden-
tification scheme to a digital signature. In the lattice literature, Fiat-Shamir
signatures are probably the most efficient ones [Lyu12,GLP12,DDLL13], com-
pared to hash-and-sign, or even standard model signatures. In this paper, we
propose a reduction where almost every Fiat-Shamir transform on lattices can
fit into, and we apply our reduction to the BLISS signature [DDLL13].

From Identification to Signature.An identification scheme ID is a three-move pro-
tocol Commitment-Challenge-Response. The prover, using its secret key, sends a
commitment Cmt to the verifier. The verifier responds a random challenge Ch.
The prover finally sends a response Rsp. The verifier, having access to the corre-
sponding public key, accepts or not the complete transcript Cmt||Ch||Rsp. The
Fiat-Shamir (FS) transform [FS86] is a way to construct a digital signature scheme
in the Random Oracle Model (ROM) from an identification scheme. The signer
runs the identification scheme by itself by choosing the challenge via a hash func-
tion Ch ← H(Cmt,m). The signature of a message m is σ = (Cmt,Rsp), and to

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 297–312, 2018.
https://doi.org/10.1007/978-3-319-97916-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_19&domain=pdf

298 P. Bert and A. Roux-Langlois

verify such a signature, we recompute the challenge Ch ← H(Cmt,m) and check
whether Cmt||Ch||Rsp is a valid transcript or not.

Security. A basic security for an identification scheme is the security against
passive impersonation. The adversary, often called the impersonator, has access
to the public key of the scheme and to a transcript generation oracle [AABN02].
This oracle, depending on the identification scheme ID and on a key pair
(pk, sk), outputs a random transcript of a honest execution. The goal of the
adversary is to impersonate the prover. By interacting with an honest veri-
fier, the adversary wants the verifier to accept at the end of the execution of
the protocol. The signature scheme obtained by applying the FS transform is
secure against chosen-message attack in the ROM if, and only if, the underlying
identification scheme is secure against impersonation under passive attack (and
non-trivial meaning that the challenge space is super-polynomial) [AABN02].
This transformation is not tight, it looses a factor at least qH (number of queries
to the random oracle H) in the advantage of the impersonator compared to the
advantage of the forger.

Lossy/Non-Lossy Identification Scheme. Motivating by the work of Katz and
Wang [KW03], Abdalla et al. in [AFLT12] introduced the idea of lossy identifi-
cation scheme and give a tight analogous of the reduction of [AABN02], starting
from a lossy identification scheme. A lossy identification scheme comes with
an additional lossy key generation algorithm which outputs a lossy public key,
which is computationally indistinguishable from a honestly generated one. Such
scheme has also a property of simulatability, meaning that we can construct a
simulated transcript generation oracle, with no access to the secret key of the
identification scheme but still outputs transcripts whose distribution is statisti-
cally close to those from the original transcript generation oracle. The security
of a lossy identification scheme is a notion of impersonation with respect to lossy
keys, where the adversary has access to a lossy public key of the scheme and to
the simulated variant of the transcript generation oracle. In the lattice litera-
ture, we can find some lossy identification schemes: the lattice instantiation at
the end of [AFLT12], the underlying identification scheme of NIST submissions
TESLA, and Dilithium. In [ABB+17], the authors showed that the TESLA sig-
nature is secure in the Quantum Random Oracle Model (QROM) and recently
in [KLS17], the proof is generalized to Fiat-Shamir signature starting from lossy
identification scheme with an application to Dilithium. There exist also non-
lossy lattice-based identification schemes, for example the ones underlying the
signatures [Lyu12,DDLL13]. To prove the security of such schemes, a solution
is to use the Forking Lemma [PS00,BN06], resulting in a non-tight proof.

Rejection Sampling. The use of rejection sampling in lattice constructions is due
to Lyubashevsky [Lyu08,Lyu12]. He first describes an abort technique, allowing
the prover to abort the protocol instead of returning its response. The idea
behind the abort technique is to shorten the response by allowing it to fall
in a smaller space/interval. This will happen with small probability, and if it
does the prover simply aborts the protocol. When we construct a signature via

From Identification Using Rejection Sampling to Signatures 299

the Fiat-Shamir transform from such identification scheme, the aborts can be
hidden by simply rerun the protocol. The abort/rejection sampling technique is
also used to ensure that the response of the prover is independent from its secret
key. Rejection sampling is a method to sample from an arbitrary distribution f ,
given the access to a family of probability distributions gv indexed by some v.
A sample x

$← g drawn from g is accepted with probability f(x)
M ·gv(x)

where M is
a constant satisfying M · gv(x) ≥ f(x) for all x drawn from f . This procedure
succeeds with probability at least 1

M .

Identification Scheme using Rejection Sampling. In an identification scheme
using rejection sampling, the probability distribution f corresponds to the tar-
get output distribution of the prover responses. Unlike the distribution f , the
family of probability distribution gv will depend on the prover secret key; and
will be indexed by a random value v, being a function of the prover secret key
and a uniformly random challenge. For example in [Lyu12], the distribution of
the responses f is a known discrete Gaussian distribution Dm

σ of parameter σ.
However, the distribution gv is a shifted discrete Gaussian distribution Dm

v,σ

with the same parameter σ but centered on a vector v = Sc depending on the
prover secret key S and on a particular uniformly random challenge c.

Psk Vpk

Cmt

−−−−→
Ch

←−−−− Ch
$← {0, 1}c(k)

Rsp
$← gv

With proba f(x)
M·gv(x) , output Rsp

Otherwise output Rsp ← ⊥
Rsp

−−−−→ Dec ← V(pk,Cmt||Ch||Rsp)

Fig. 1. Identification scheme using Rejection sampling

Our Contribution. In this paper, we give a definition of an identification
scheme using rejection sampling starting from the definition of rejection sampling
from [Lyu12]. This kind of identification scheme has two inherent and quite
classical properties:

1. Correctness Error: The probability that a honestly generated transcript con-
tains a non-valid response is negligible, here it corresponds to

(
1 − 1

M

)
.

2. Simulatability: There exists a simulated transcript generation oracle, who
does not have access to the secret key and is able to output transcripts sta-
tistically close to those from the original transcript generation oracle.

The security we consider for such identification scheme is the impersonation
against passive attacks where the adversary has access to the real public key of
the scheme and also to the simulated transcript oracle.

300 P. Bert and A. Roux-Langlois

Our main result is a transformation from an identification scheme using rejec-
tion sampling to an existentially unforgeable signature in the ROM. This sig-
nature is obtained by applying the Fiat-Shamir transform on an identification
scheme using rejection sampling. The only significant modification from existing
Fiat-Shamir transform [AFLT12,KLS17] is that we repeat the execution of the
identification protocol in the signing algorithm as long as the response of the
prover is non-valid. We then discuss whether or not the identification scheme
is also lossy. If the identification scheme is lossy, we get a tight proof as in
[AFLT12] and if not, we get a non-tight proof loosing a factor of roughly qH

as in [AABN02]. To link the advantage of the impersonator and the advantage
against the underlying search problem, we use a propriety of soundness, i.e. if
we have access to two valid transcripts on a same commitment, we can extract
a solution of a instance of this search problem. Next, by using the Reset Lemma
[BP02] we can link the advantage of the impersonator playing the impersonation
experiment to the advantage of an adversary playing twice this experiment with
different randomness and getting two valid transcripts on a same commitment.

We give an example of this by applying our main result to the well-known
BLISS signature [DDLL13] with its underlying non-lossy identification scheme.
We choose the BLISS signature because the construction follows exactly our Fiat-
Shamir transform (i.e. rerun the identification scheme in the signing algorithm
to get a valid response) and we remark that the BLISS paper does not take into
account this feature in the proof.

Overview of Our Main Result. The idea behind this proof is to use honest
transcripts of the identification scheme to answer the signing queries of the
forger. If we have a valid transcript Cmt||Ch||Rsp, we will set the random oracle
H(Cmt||m) ← Ch to ensure that σ = (Cmt,Rsp) is a valid signature for the
message m. The first step of our proof is to limit the number of signing attempts
to l, where we can take l greater than M . Doing this modification implies that
the forger might see invalid signatures, when after l tries, the response of the
prover is non-valid. This happens for each signing query, so the probability that
a signature is non-valid is at most qS(1 − 1

M)l where
(
1 − 1

M

)
is the probability

that an honestly generated transcript contains a non-valid response.
On sign query m, we may overwrite the value H(Cmt,m). Such collisions

happen with probability at most l(qS+qH+1)qS

2β where β corresponds to the min-
entropy of commitments.

Then we apply a series of small changes to get a signing algorithm that no
longer needs the secret key sk. To do that the major change is to switch from
the transcript generation algorithm to its simulated counterpart thanks to the
use of rejection sampling. If the statistical distance between the distribution of
the transcripts outputted by this two oracles is at most εrs, the advantage of
the forger changes by at most qSεrs due to the rejection sampling technique.

Non-Lossy Identification Scheme. If the identification is non-lossy, we can link
the advantage of the forger to the advantage of the impersonator. For this step,
we make a guess about which hash query will be used in the forgery. If our

From Identification Using Rejection Sampling to Signatures 301

guess is correct, we are able to break the underlying impersonation problem,
that’s why we loose at least a factor qH in the advantage of the impersonator
compared to the advantage of the forger, like [AABN02].

Lossy Identification Scheme. If the identification is lossy, we can add another step
which involves switching the real public key of the scheme to a lossy one. The
advantage of the adversary is modified by at most the advantage in distinguishing
a real public key from a lossy one. The reduction is tight because the advantage
of the forger is tightly related to the advantage of breaking the underlying search
problem, for example the decision-LWE problem in [AFLT12]. Finally, the last
step link the advantage of the forger to the advantage of the impersonator with
respects to lossy keys as with non-lossy identification scheme.

2 Preliminaries

Notation. Let A(·, ·, · · ·) be a randomized algorithm, then x ← A(a, b, · · · ;R) is

the unique output on inputs a, b, · · · and coins R, while x
$← A(a, b, · · ·) means

that we first pick a random R
$← Coins(k) and then assigned x ← A(a, b, · · · ;R).

2.1 Identification Scheme Using Rejection Sampling

To hide the secret key of a prover in a identification scheme, Lyubashevsky
[Lyu12] proposed to use a rejection technique. Informally, the prover generates
a candidate for its response and rejects it with a certain probability to ensure
that the distribution of the response is independent from the prover secret key.

Lemma 1 (Rejection Sampling [Lyu12]). Let V be an arbitrary set, h : V →
R and f : Zm → R be probability distributions. If gv : Zm → R is a family of
probability distributions indexed by all v ∈ V with the property that there exists
a constant M ∈ R such that ∀v,Pr

[
M · gv(x) ≥ f(x), x $← f

]
≥ 1 − εrs, then,

the output distribution of

v
$← h

x
$← gv

return (x, v) with probability min
(

f(x)
M ·gv(x)

, 1
)

is within statistical distance εrs/M of the output distribution of

v
$← h

x
$← f

return (x, v) with probability 1/M

Moreover, the probability pout that the first algorithm output something is
bounded by (1 − εrs)/M ≤ pout ≤ 1/M .

302 P. Bert and A. Roux-Langlois

ID. An identification scheme using rejection sampling (see Fig. 1) is a classi-
cal one using rejection sampling to ensure that responses follow a probability
distribution f , by first generate then following a family of probability gv.

Definition 1. An identification scheme using rejection sampling ID is defined
by ID = (KeyGen,P,V, c, gv, f) where:

– KeyGen(1k) is the key generation algorithm, taking the security parameter
k ∈ N of the scheme and outputting a pair of keys (pk, sk). The secret key sk
is given to the prover algorithm P, and the public pk is given to the verifier
algorithm V.

– P is the prover algorithm, which takes as input the secret key sk and the
current conversation transcript and outputs the next message to be sent to
the verifier.

– V is a deterministic algorithm which takes as input the public key pk and
the complete transcript conversation Cmt||Ch||Rsp and outputs a boolean
decision Dec.

– c(k) is a function of the security parameter k, which corresponds to the length
of the challenge.

– gv is a family of probability distributions indexed by v, a function of the secret
key sk, a particular challenge Ch and in some case v can also depend on a
particular commitment Cmt or on the secret used to construct the commit-
ment,

– f is the output distribution of the prover responses such that there exists a
constant M ∈ R verifying ∀Ch ∈ {0, 1}c(k),∀x,M · gv(x) ≥ f(x).

Transcript Generation Oracle. Like in [AABN02,AFLT12], we associate a tran-
script generation oracle TrID

pk,sk,k to an identification scheme ID. The transcript
generation oracle TrID

pk,sk,k returns a random transcript Cmt||Ch||Rsp of an
honest execution of ID with key pair (pk, sk) and security parameter k. In an
identification scheme using rejection sampling, the prover may output a response
Rsp = ⊥, in this case the transcript generation oracle will output ⊥||⊥||⊥.

TrID
pk,sk,k :

Cmt
$← P(sk),

Ch
$← {0, 1}c(k), Rsp

$← gv

return Cmt||Ch||Rsp with probability f(x)
M ·gv(x)

, otherwise ⊥||⊥||⊥.

Inherent Properties. Thanks to the rejection sampling (Lemma 1) we can sim-
ulate the transcript generation oracle TrID

pk,sk,k by an algorithm T̃r
ID
pk,k with no

access to the secret key sk. It proceeds by first generating Cmt
$← P(sk) and

Ch
$← {0, 1}c(k) and outputting Cmt||Ch||Rsp with Rsp

$← f with probability
1
M , and otherwise ⊥||⊥||⊥.

This property is called Non-Abort Honest-Verifier Zero-Knowledge
(naHVZK) in [KLS17].

From Identification Using Rejection Sampling to Signatures 303

Definition 2 (naHVZK). ID is said to be ε-perfect naHVZK if there exists
an algorithm T̃r

ID
pk,k, given only the public key pk and the security parameter k,

outputs Cmt||Ch||Rsp such that the following conditions hold:

1. The distribution of Cmt||Ch||Rsp
$← T̃r

ID
pk,k has statistical distance at most

ε from Cmt′||Ch′||Rsp′ $← TrID
pk,sk,k,

2. The distribution of Ch from Cmt||Ch||Rsp
$← T̃r

ID
pk,k is uniform in the chal-

lenge set {0, 1}c(k).

Our identification scheme also satisfy the correctness property from [KLS17],
with εc = 1 − 1/M .

Definition 3 (Correctness Error). An identification scheme ID has correct-

ness error ε if for all (pk, sk) $← KeyGen(1k) the following holds:

1. All possible transcripts Cmt||Ch||Rsp satisfying Rsp 	= ⊥ are valid,
2. The probability that a honestly generated transcript Cmt||Ch||Rsp contains

Rsp = ⊥ is bounded by ε.

Security. The security of the identification scheme we consider here is a security
against passive impersonation where the goal of the adversary is to impersonate
the prover without the knowledge of the secret key sk. This impersonator is
modeled as a probabilistic algorithm I which is given as input the public key
pk of the identification scheme and also has access to the simulation of the
transcript oracle T̃r

ID
pk,k described above. After looking at these transcripts, the

impersonator I interacts with an honest verifier in the three-move protocol and
wants the verifier to accept at the end of this protocol.

Expimp-pa-sim
ID,I (k):

(pk, sk) $← KeyGen(1k), st‖Cmt
$← IT̃r

ID
pk,k(pk)

Ch
$← {0, 1}c(k), Rsp

$← I(st,Ch), Dec ← V(pk,Cmt||Ch||Rsp)
return Dec
The advantage of I playing the game above is

Advimp-pa-sim
ID,I (k) = Pr

[
Expimp-pa-sim

ID,I (k) = 1
]
.

An ID is polynomially-secure against impersonation under passive attack if
Advimp-pa-sim

ID,I (·) is negligible for every poly(k)-time impersonator I.

2.2 Lossy Identification Scheme Using Rejection Sampling

A lossy identification scheme using rejection sampling is defined like a classical
identification scheme plus an algorithm LossyKeyGen(1k) which takes the security
parameter k ∈ N and outputs a lossy public key pk. We will replace a truly

304 P. Bert and A. Roux-Langlois

generated public key in Expimp-pa-sim
ID,I (k) by a lossy one in the impersonation

experiment with respect to lossy keys Explos-imp-pa
ID,I (k) and we have no need of

a secret key in this case. A lossy identification scheme satisfies two properties, a
simulatability property like the naHVZK defined above and the following one:

Definition 4 (Indistinguishability of keys). Consider the two experiments
Expind-keys-real

ID,D (k) and Expind-keys-lossy
ID,D (k) in which we respectively generate pk

via KeyGen(1k) and via LossyKeyGen(1k), and provide it as input to the distin-
guishing algorithm D. We say that D can (t, ε)-solve the key-indistinguishability
problem if D runs in time t and

∣
∣
∣Pr

[
Expind-keys-real

ID,D (k) = 1
]

− Pr
[
Expind-keys-lossy

ID,D (k)
]∣∣
∣ ≥ ε.

We say that ID is (t, ε)-key-indistinguishable if no algorithm (t, ε)-solve the key-
indistinguishability problem.

Min-Entropy of Commitments. Let C(sk) = {P(sk;R) : R ∈ Coins(k)} be the
set of commitments associated to sk, where Coins(k) is a set of binary string
depending on the security parameter k. The maximum probability that a com-
mitment takes a particular value is:

α(sk) = max
Cmt∈C(sk)

{
Pr

[
P(sk;R) = Cmt : R

$← Coins(k)
]}

.

Then, the min-entropy function associated to ID is β(sk) = minsk

{
log2

1
α(sk)

}
,

where the minimum is taken over all the (pk, sk) generated by KeyGen(1k).

2.3 Reset Lemma

Here we recall the Reset Lemma from [BP02] which apply to identification scheme
in the same way the Forking Lemma [PS00,BN06] applies to signature scheme.

Lemma 2 (Reset Lemma [BP02]). Let P be a prover in a canonical identi-
fication scheme with verifier V and let q, v be inputs for the prover and verifier
respectively. Let acc(p, v) be the probability that V accepts after its interaction
with P, i.e. the probability that the following experiment returns 1:

R
$← Coins(k), st||Cmt ← P(p;R)

Ch
$← {0, 1}c(k), Rsp

$← P(st,Ch), Dec ← V(v,Cmt||Ch||Rsp)
return Dec

Let res(q, v) be the probability that the following reset experiment outputs 1:

R
$← Coins(k), st||Cmt ← P(p;R)

Ch1
$← {0, 1}c(k), Rsp1

$← P(st,Ch1), Dec1 ← V(v,Cmt||Ch1||Rsp1)

Ch2
$← {0, 1}c(k), Rsp2

$← P(st,Ch2), Dec2 ← V(v,Cmt||Ch2||Rsp2)
return Dec1 ∧ Dec2 ∧ Ch1 	= Ch2

Then acc(q, v) ≤ 1
2c(k) +

√
res(q, v).

From Identification Using Rejection Sampling to Signatures 305

2.4 Lattice Background

Lattices. An m-dimensional full-rank lattice Λ is a discrete additive subgroup
of Rm. A lattice is the set of all integer combinations of some linearly independent
basis vectors, B = {b1, · · · ,bm} ∈ R

m×m, Λ(B) = {∑m
i=1 zibi : zi ∈ Z}.

Gaussian Distribution. The continuous Gaussian distribution of center c ∈ R
m

and width parameter σ is defined as ρm
c,σ(x) = 1√

2πσ2 exp(−‖x−c‖2

2σ2). The discrete

Gaussian distribution over the lattice Z
m is defined as Dm

c,σ = ρm
c,σ(x)

ρm
σ (Zm) where

ρm
σ (Zm) =

∑
x∈Zm ρm

σ (x).

Lemma 3 ([Lyu12]). For any η > 1, Prz←Dm
σ

[‖z‖ > ησ
√

m] < ηm exp
m
2 (1−η2).

SIS. A classical hard problem in lattice based literature is the Short Integer Solu-
tion (SIS) problem, introduced by Ajtai [Ajt96] where he also gives a reduction
from worst-case lattice problems to the average-case SIS problem.

Definition 5 (SISq,n,m,β). Given an uniformly random matrix A $← Z
n×m
q ,

find a non-zero vector x ∈ Z
m such that Ax = 0 mod q and 0 < ‖x‖ ≤ β.

3 Signature Scheme Using Rejection Sampling

In this part, we will describe formally the Fiat-Shamir transform we use to con-
struct a digital signature from our definition of an identification scheme using
rejection sampling. Will we show that applying this Fiat-Shamir to such identi-
fication scheme gives us a secure digital signature in the ROM.

3.1 Fiat-Shamir Transform

Definition 6. Let ID = (KeyGen,P,V, c, gv, f) be an identification scheme
using rejection sampling, and H : {0, 1}∗ → {0, 1}c(k) be a hash func-
tion modeled as a random oracle, then we can construct a signature DS =
(KeyGen,Sign,Verify). The signature has the same key generation algorithm as
the identification scheme, and the output length of the hash function equals the
challenge length. The signing and verifying algorithms are defined as follows:

Sign(sk,m):
while Rsp = ⊥ do

Cmt ← P(sk)
Ch ← H(Cmt,m)

Rsp
$← gv

return σ = (Cmt,Rsp) with
probability f(x)

M ·gv(x)
, otherwise

Rsp ← ⊥

Verify(pk,m, σ):
parse σ as (Cmt,Rsp)
Ch ← H(Cmt,m)
return V(pk,Cmt||Ch||Rsp)

306 P. Bert and A. Roux-Langlois

3.2 General Result from Non-Lossy Identification Scheme

Our first and main result gives us a reduction from non-lossy identification
scheme using rejection sampling to an existential unforgeable secure signature in
the ROM by supposing that the underlying ID scheme satisfies the two properties
naHVZK and correctness error defined in Definitions 2 and 3.

Theorem 1. Let ID = (KeyGen,P,V, c, gv, f) be an identification scheme
using rejection sampling whose commitment space has min-entropy β(k), let
H : {0, 1}∗ → {0, 1}c(k) be a hash function modeled as a random oracle, and
let DS = (KeyGen,Sign,Verify) be the associated signature as in Definition 6.
If ID is εrs-perfect naHVZK, has correctness error εc and is secure against
impersonation under passive attacks then DS is existentially unforgeable secure
against adaptive chosen-message attack in the random oracle model such that:

Advuf-cma
DS,F (k) ≤ (qH + 1)Advimp-pa-sim

ID,I (k) + qSεrs +
l(qS + qH + 1)qS

2β
+ qSεl

c.

Furthermore, if I runs in at most time t′, then F runs in times t = t′ −
O(qStSign), where tSign designed the average time of the signing algorithm.

Proof. This proof uses code-based game-playing à la [AABN02,AFLT12], by
constructing a sequence of experiments Exp0, · · · ,Exp7 starting with the exper-
iment catching the existentially unforgeability of the signature scheme. We
defined δi as the event that experiment Expi returns 1, i.e. that the adver-
sary F outputs a valid forgery. We will assume that before outputting a forgery
(m∗, σ∗ = (Cmt∗,Rsp∗)), F already queried the corresponding hash query on
Cmt∗,m∗, which increase the number of hash query by one.

Exp0. In this first experiment, the challenger generates the pair of keys

(pk, sk) $← KeyGen(1k), sets the hash counter hc and the sign counter sc to
zero, and also initializes the set of queried messages M to empty in Initial-
ize and returns the public key pk to F . On hash query Cmt,m, the challenger
checks if H(Cmt,m) has already been set. If H(Cmt,m) = ⊥, the counter hc is

incremented by one, the challenger chooses a random challenge Ch
$← {0, 1}c(k)

and sets H(Cmt,m) ← Ch. The challenger finally outputs H(Cmt,m). On sign
query m, the counter sc is incremented by one, the queried message m is added
to the set M and the challenger computes the signature σ = (Cmt,Ch) as
in the signing algorithm. During the signing phase, the challenger also checks
if H(Cmt,m) = ⊥, if so it performs the same steps as for an hash query
on Cmt,m. Finally, when F outputs a forgery (m∗, σ∗), the challenger runs
Dec ← V(pk,Cmt∗||Ch∗||Rsp∗) and returns Dec ∧ (m∗ 	∈ M). By definition,
Pr [δ0] = Advuf-cma

DS,F (k).

Exp1. Let bad be a boolean variable initialize to false. In Exp1, we limit the
number of signing attempts to l, with l ≥ M in practice. We also set bad to
true if after l signing attempts, we do not output a valid signature. For each
signature, the probability that Rsp = ⊥ after at most l attempts is equal to εl

c

From Identification Using Rejection Sampling to Signatures 307

Initialize:
1: (pk, sk) $← KeyGen(1k)
2: hc ← 0, sc ← 0, M ← { }
3: return pk

On Hash-query Cmt, m:
1: if H(Cmt, m) = ⊥ then
2: hc ← hc + 1
3: Ch

$← {0, 1}c(k)

4: H(Cmt, m) ← Ch
5: return H(Cmt, m)
Finalize(m∗, σ∗):
1: Parse σ∗ as Cmt∗,Rsp∗

2: Ch∗ ← H(Cmt∗, m∗)
3: Dec ← V(pk,Cmt∗||Ch∗||Rsp∗)
4: return Dec ∧ (m∗ M∈�)

On Sign-query m:
1: sc ← sc + 1, M ← M ∪ {m}
2: ctr ← 0

3: while Rsp = ⊥ and ctr ≤ l do

4: ctr ← ctr + 1
5: Cmt ← P(sk)
6: if H(Cmt, m) = ⊥ then
7: hc ← hc + 1
8: Ch

$← {0, 1}c(k)

9: H(Cmt, m) ← Ch
10: Ch ← H(Cmt, m)

11: Rsp
$← gv

12: return σ = (Cmt,Rsp) with prob-
ability f(x)

M·gv(x) , otherwise Rsp ← ⊥
13: if Rsp = ⊥ then

14: bad ← true

15: return σ = (⊥, ⊥)

Fig. 2. Exp0 and Exp1

where we recall that εc corresponds to the error correctness of the scheme. We

get |Pr [δ1] − Pr [δ0]| ≤
qS∑

i=1

Pr [bad = true in the i-th sign query] = qSεl
c (Fig. 2).

Exp2. In this experiment, the challenger no longer sets bad to true due to a non-
valid signature. This modification does not change the output of the experiment,
we have Pr [δ2] = Pr [δ1].

Exp3. In this experiment, on sign query m, the challenger sets bad to true if
the value H(Cmt,m) has already been defined. If bad is set, the challenger also

chooses a new value Ch
$← {0, 1}c(k) and overwrites the old value H(Cmt,m) ←

Ch. To compute the probability of bad sets to true, we assume that all the hash
queries have been already ask at the beginning of the experiment. The probabil-
ity that during the i-th signing query bad sets to true is (l(i − 1) + qH + 1) /2β

where we recall that l is the number of signing attempts we introduce in

Exp1. So we get |Pr [δ3] − Pr [δ2]| ≤
qS∑

i=1

Pr [bad = true in the i-th sign query] ≤
l(qS+qH+1)qS

2β .

Exp4. In this experiment, the challenger no longer sets bad to true due to an
overwriting of the value H(Cmt,m). This modification does not change the
output of the experiment, we have Pr [δ4] = Pr [δ3].

Exp5. In the previous experiment, to answer signing query, the challenger gen-

erates a new uniform challenge Ch
$← {0, 1}c(k) like in the transcript generation

308 P. Bert and A. Roux-Langlois

oracle TrID
pk,sk,k. So in this experiment, we change the simulation of the signing

algorithm such that the value Cmt||Ch||Rsp are generated thanks to TrID
pk,sk,k.

This change does not affect the output of the game, Pr [δ5] = Pr [δ4].

Exp6. We can go further, by generating all the transcripts needed to answer
signing queries at the beginning of the experiment which does not change the
output of the experiment, Pr [δ6] = Pr [δ5].

Exp7. In the last experiment, we replace the transcript generation oracle
TrID

pk,sk,k by its simulated counterpart T̃r
ID
pk,k. Since the statistical distance

between the distribution outputted by TrID
pk,sk,k and by T̃r

ID
pk,k is at most εrs,

we have |Pr [δ7] − Pr [δ6]| ≤ qSεrs (Fig. 3).

Initialize:
1: (pk, sk) $← KeyGen(1k)
2: hc ← 0, sc ← 0, M ← { }
3: for i = 1, · · · , qS do
4: ctr ← 0
5: while Rspi = ⊥ and ctr ≤ l do

6: (Cmti,Chi,Rspi)
$←

⎧⎨
⎩

TrID
pk,sk,k

T̃r
ID
pk,k

7: return pk

On Sign-query m:
1: sc ← sc + 1, M ← M ∪ {m}
2: return σ = (Cmtsc,Rspsc)

On Hash-query Cmt, m:
1: if H(Cmt, m) = ⊥ then
2: hc ← hc + 1
3: Ch

$← {0, 1}c(k)

4: H(Cmt, m) ← Ch
5: return H(Cmt, m)
Finalize(m∗, σ∗):
1: Parse σ∗ as Cmt∗,Rsp∗

2: Ch∗ ← H(Cmt∗, m∗)
3: Dec ← V(pk,Cmt∗||Ch∗||Rsp∗)
4: return Dec ∧ (m∗ M∈�)

Fig. 3. Exp6 and Exp7

The last step of the proof is to show that we can use the forger from Exp7

to construct an impersonator I playing the experiment Expimp-pa-sim
ID,I (k). The

impersonator receives a public key pk from an honest verifier V, chooses an
index fp uniformly at random from [1, qH + 1] and sends pk to F . It also gen-
erates the transcripts (Cmti,Chi,Rspi) for i = 1, · · · , qS thanks to T̃r

ID
pk,k. On

the j-th hash query (Cmtj ,mj) of F , it first checks if j 	= fp. If so, I works
like in Exp7 and if not, I returns Cmtfp as the first interaction with the veri-
fier V. In that case, the verifier outputs a challenge Ch∗, the impersonator sets
H(Cmtfp,mfp) ← Ch∗ and returns this value to F . On the i-th signing query,
I returns σ = (Cmti,Rspi) as in Exp7. Eventually, the forger F outputs a
forgery (m∗, σ∗ = (Cmt∗,Rsp∗)) and I outputs Rsp∗ to the verifier as the
last step of the identification protocol. If (Cmt∗,m∗) = (Cmtfp,mfp), then the
probability that Exp7 outputs one is the that Expimp-pa-sim

ID,I (k) outputs one. We
get Pr [δ7] ≤ (qH + 1)Advimp-pa-sim

ID,I (k). Putting everything together and we get
the expected result.
�

From Identification Using Rejection Sampling to Signatures 309

3.3 Result from Lossy Identification Scheme

To prove the security of the underlying identification scheme we can either use a
decision hard problem, or a search hard problem. By using a decision hard prob-
lem, we can replace the public key pk by a “lossy” version in the impersonation
experiment like in [AFLT12]. Then if the identification is lossy (see definition in
part 2.2), we can add another step to the proof of Theorem 1 and we get the
following result:

Theorem 2. Let ID = (KeyGen, LossyKeyGen,P,V, c, gv, f) be a lossy iden-
tification scheme using rejection sampling whose commitment space has min-
entropy β(k), let H : {0, 1}∗ → {0, 1}c(k) be a hash function modeled as a ran-
dom oracle, and let DS = (KeyGen,Sign,Verify) be the associated signature as in
Definition 6. If ID is εrs-perfect naHVZK, has correctness error εc, is (t′, εk)-
key-indistinguishable, and is secure against impersonation under passive attacks
with respect to lossy keys then DS is existentially unforgeable secure against
adaptive chosen-message attack in the random oracle model such that:

Advuf-cma
DS,F (k) ≤ (qH + 1)Advlos-imp-pa

ID,I (k) + εk + qSεrs +
l(qS + qH + 1)qS

2β
+ qSεl

c.

Furthermore, F runs in times t = t′ − O(qStSign).

Proof. The beginning of the proof is the same as for Theorem 1, we use the same
sequence of experiments Exp0, · · · ,Exp7 plus another experiment Exp8.

Exp8. In this experiment, the challenger generates the public key thanks to
the LossyKeyGen(1k) instead of KeyGen(1k). Distinguishing these two exper-
iments corresponds to the key-indistinguishability property of ID, we get
|Pr [δ8] − Pr [δ7]| ≤ εk. To conclude the proof, as in the proof of Theorem 1,
we show that we can use the forger from Exp8 to construct an impersonator I
playing the experiment Explos-imp-pa

ID,I (k).
�

4 Application to the BLISS Signature

In this part, we apply our result from Theorem 1 to the non-lossy identifica-
tion scheme of the BLISS signature. We describe this identification scheme, its
properties and we compare our result to the original BLISS proof.

4.1 Description of the BLISS Identification and Signature Schemes

The BLISS signature was introduced by Ducas et al. [DDLL13] follows directly
from the work of [Lyu12], where the authors improved the rejection sampling by
taking a bimodal Gaussian instead of a shifted Gaussian. The secret key sk is
a short matrix S ∈ Z

m×n
2q and the public key is a matrix A ∈ Z

n×m
2q such that

AS = qIn mod 2q. The challenge set is the set of binary vectors of length n and
weight κ, C = {v : v ∈ {0, 1}n, ‖v‖1 ≤ κ}. The hash function H : {0, 1}∗ → C
outputs uniform elements in the challenge set C. The underlying identification
scheme of the BLISS signature works as follows:

310 P. Bert and A. Roux-Langlois

Psk=(A,S) Vpk=A

y $← Dm
σ , u ← Ay mod 2q

u−−−−→
b

$← {0, 1}, z ← (−1)bSc + y
c←−−−− c $← C

Output z with probability
z−−−−→ Output 1 iff ‖z‖∞ < q/4,

1
/(

M exp
(
−‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉

σ2

))
‖z‖ ≤ ησ

√
m, and

otherwise output z ← ⊥ Az + qc = u mod 2q.

4.2 Properties of the Identification Scheme

We give an high level overview of the properties achieve by the BLISS identifi-
cation scheme (for more details, see [DDLL13]).

Perfect Rejection Sampling. The target output distribution of the prover
responses is f(z) = Dm

σ . The responses in the above identification scheme
follow the family of distribution gSc(z) = 1

2Dm
Sc,σ(z) + 1

2Dm
−Sc,σ(z) =

f(z) exp
(
−‖Sc‖2

2σ2

)
cosh

(
〈Sc,z〉

σ2

)
.

To ensure that M · gSc(z) ≥ f(z) for all z, the authors of [DDLL13] choose
M = exp

(
1

2α2

)
where α is such that σ ≥ α‖Sc‖.

naHVZK. We describe the transcript generation oracle TrID
pk,sk,k, and the sim-

ulated one T̃r
ID
sk,k. Thanks to Lemma 1 the outputs of these to algorithm are

statistically closed.

TrID
pk,sk,k :
y ← Dm

σ , u ← Ay mod 2q

c $← C, b
$← {0, 1}, z ← (−1)bSc + y

return (u, c, z) with probability
1
/(

M exp
(
−‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉

σ2

))
,

otherwise return (⊥,⊥,⊥).

T̃r
ID
pk,k :
z ← Dm

σ

c $← C
u ← Az + qc mod 2q
return (u, c, z) with probability 1

M ,
otherwise return (⊥,⊥,⊥)

Correctness Error. The prover uses a rejection sampling technique to ensure that
its response z is independent from its secret key, and by Lemma 1, we know that
the prover outputs z 	= ⊥ with probability at least 1−1/M . If the prover outputs
a valid response, we have Az − qc = A((−1)bSc + y) + qc = u and by Lemma
1, z is distributed according to Dm

σ and hence has norm ‖z‖ ≤ ησ
√

m with high
probability.

Impersonation/Soundness. We want here to have an idea of the advantage of
an impersonator I playing the experiment Expimp-pa-sim

ID,I (k), where the imper-
sonator I has access to the real public key of the scheme pk = A and to the
simulated transcript generation oracle T̃r

ID
pk,k described above. If we apply the

Reset Lemma 2, the advantage of I corresponds to the probability acc and we
get two valid transcripts on a same commitment (u, c, z) and (u, c′, z′) with

From Identification Using Rejection Sampling to Signatures 311

probability frk. With these two transcripts, we get Az+ qc = Az′ + qc′ mod 2q
which gives A(z − z′) = 0 mod q.

Then z − z′ is a solution of norm at most ≤ 2ησ
√

m of a SIS instance of
parameters n, m, q, and β = 2ησ

√
m. If AdvSIS denotes the advantage against

such SIS instance, we finally get Advimp-pa-sim
ID,I ≤ 1

|C| +
√
AdvSIS.

Min-Entropy of commitments. To get an idea of the min-entropy, we consider
the probability that a commitment takes a particular value,

Pr [Ay = u; y ← Dm
σ] ≤ 2−n.

Conclusion. Applying our result from Theorem 1 to the BLISS signature, we
get

Advuf-cma
DS,F ≤ (qH + 1)

(
1
|C| +

√
AdvSIS

)
+ l(qS + qH + 1)qS2−n + qS(1 − 1/M)l.

4.3 Original BLISS Proof

The original BLISS proof is summarized in [DDLL13, Theorem 3.3] but proved
through two lemmas. The first lemma [DDLL13, Lemma 3.4], states that the
advantage in distinguishing the actual signing algorithm from an hybrid one
constructed using the rejection sampling is at most qS(qS +qH)2−n. And the sec-
ond lemma [DDLL13, Lemma 3.5] is a direct application of the General Forking
Lemma of [BN06], which says that the advantage against the SIS problem with
parameters n, m, q, and β = 2ησ

√
m is at least AdvSIS ≥ acc ·

(
acc

qS+qH
− 1

|C|
)

where acc = Advuf-cma
DS,F − 1

|C| . Thanks to the General Forking Lemma, we can

rewrite this equation as acc ≤ qH+qS

|C| +
√

(qH + qS)AdvSIS. Putting the two
lemmas together and we get

Advuf-cma
DS,F ≤ qS + qH + 1

|C| +
√

(qH + qS)AdvSIS + qS(qS + qH)2−n.

Comparison. In the original BLISS paper, the proof does the identification
scheme only once during the signing algorithm instead of repeating the iden-
tification scheme until the response is non-valid. So we need to add a factor l to
the term qS(qS +qH)2−n and add the term qS(1−1/M)l in the previous equation
to better fit the Fiat-Shamir transform from Definition 6. For concrete parame-
ters, we would have qH � qS , for example in the NIST submission qH = 2128 and
qS = 264, and our reduction looses a factor roughly

√
qH (we looses at least qH

in the reduction but gains roughly
√

qH by applying the Reset Lemma instead
of the Forking Lemma).

Acknowledgments. Pauline Bert is funded by the Direction Générale de l’Armement
(Pôle de Recherche CYBER). This work has received a French government support
granted to the CominLabs excellence laboratory and managed by the National Research
Agency in the “Investing for the Future” program under reference ANR-10-LABX-
07-01.

312 P. Bert and A. Roux-Langlois

References

[AABN02] Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification
to signatures via the Fiat-Shamir transform: minimizing assumptions for
security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-46035-7 28

[ABB+17] Alkim, E., et al.: Revisiting TESLA in the quantum random oracle model.
In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–
162. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 9

[AFLT12] Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure
signatures from lossy identification schemes. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 34

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended
abstract). In: STOC, pp. 99–108. ACM (1996)

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and
a general forking lemma. In: ACM Conference on Computer and Commu-
nications Security, pp. 390–399. ACM (2006)

[BP02] Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs
of security against impersonation under active and concurrent attacks. In:
Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 11

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40041-4 3

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[GLP12] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based
cryptography: a signature scheme for embedded systems. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8 31

[KLS17] Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-
Shamir signatures in the quantum random-oracle model. IACR Cryptology
ePrint Archive 2017, p. 916 (2017)

[KW03] Katz, J., Wang, N.: Efficiency improvements for signature schemes with
tight security reductions. In: ACM Conference on Computer and Commu-
nications Security, pp. 155–164. ACM (2003)

[Lyu08] Lyubashevsky, V.: Lattice-based identification schemes secure under
active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp.
162–179. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78440-1 10

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29011-4 43

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. J. Cryptology 13(3), 361–396 (2000)

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-319-59879-6_9
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43

Universal Witness Signatures

Chen Qian1, Mehdi Tibouchi2(B), and Rémi Géraud3

1 Univ Rennes, Rennes, France
chen.qian@irisa.fr

2 NTT Secure Platform Laboratories, Tokyo, Japan
tibouchi.mehdi@lab.ntt.co.jp

3 École normale supérieure, Paris, France
remi.geraud@ens.fr

Abstract. A lot of research has been devoted to the problem of defining
and constructing signature schemes with various delegation properties.
They mostly fit into two families. On the one hand, there are signature
schemes that allow the delegation of signing rights, such as (hierarchi-
cal) identity-based signatures, attribute-based signatures, functional sig-
natures, etc. On the other hand, there are malleable signature schemes,
which make it possible to derive, from a signature on some message,
new signatures on related messages without owning the secret key. This
includes redactable signatures, set-homomorphic signatures, signatures
on formulas of propositional logic, etc.

In this paper, we set out to unify those various delegatable signatures
in a new primitive called universal witness signatures (UWS), which sub-
sumes previous schemes into a simple and easy to use definition, and cap-
tures in some sense the most general notion of (unary) delegation. We
also give several constructions based on a range of cryptographic assump-
tions (from one-way functions alone to SNARKs and obfuscation) and
achieving various levels of security, privacy and succinctness.

Keywords: Digital signatures · Delegation · Malleable signatures
Functional signatures · Identity-based cryptography · Obfuscation
SNARKs

1 Introduction

Many signature schemes in the literature have delegatability properties either
for keys or for messages.

The first family includes notions like (hierarchical) identity-based [14,18,21,
28] and attribute-based [22,23,25] signatures, in which a master key authority
grants signing rights to users, who may in turn be able to delegate those rights to
lower-level signers. It also includes a slightly different class of schemes where the
owner of the master secret key can sign all messages in the message space, and
can delegate signing rights on restricted families of messages (again, possibly with

c© Springer Nature Switzerland AG 2018
A. Inomata and K. Yasuda (Eds.): IWSEC 2018, LNCS 11049, pp. 313–329, 2018.
https://doi.org/10.1007/978-3-319-97916-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97916-8_20&domain=pdf

314 C. Qian et al.

recursive delegation): functional signatures [4,11] and policy-based signatures [6]
are examples of such schemes.

The second family of schemes is that of malleable signature schemes, as
defined e.g. by Ahn et al. [1], Attrapadung et al. [3] and Chase et al. [12]: in
those schemes, it is possible, given a signature on some message, to publicly
derive signatures on certainly related messages. Specific examples include con-
tent extraction signatures [29], redactable and sanitizable signatures [2,19], some
variants of set-homomorphic and network coding signatures [10,19] (where users
sign sets, resp. vector spaces, and those signatures can be delegated to subsets
or subspaces) and more. A different example and one of the original motiva-
tions of this work is Naccache’s notion of signatures on formulas of propositional
logic [24], which makes it possible to derive a signature on a propositional for-
mula Q from a signature on P whenever P ⇒ Q.

Main Idea of This Work. The goal of this paper is to unify all of the schemes
above into a single very general and versatile primitive, which we call univer-
sal witness signatures (UWS), and to propose concrete instantiations of that
primitive achieving good security and privacy properties.

Our first observation is that delegation of keys and delegation of messages are
really two sides of the same coin, which can be unified by regarding a signature on
a message m by an identity A as really the same object as a key associated with
the sub-identity (A,m) of A. The operation of signing messages simply becomes a
special case of key delegation. Then, we can obtain in some sense the most general
notion of signature scheme with (unary) delegation by saying that the set of
identities is endowed with an essentially arbitrary pre-order relation ≤, and that
given a key SKA on an identity A, we are able to derive another key SKB on any
identity B such that B ≤ A. Unforgeability is then defined in the obvious way:
roughly speaking, after obtaining keys SKAi

on various identities Ai (possibly
derived from higher-level identities), an adversary is unable to construct a valid
key SKB for an identity B that doesn’t satisfy B ≤ Ai for any i.

The type of delegation functionality achieved by such a scheme is simply
determined by the pre-order relation ≤. For example, regular (non-delegatable)
signatures are obtained by choosing a set of identities equal to the message
space together with a special identity ∗, such that m ≤ ∗ for any message m,
and no other relationship exists. Then, SK∗ is the secret key in the traditional
sense, and it can be used to derive keys SKm playing the role of signatures.
If non-trivial relationships exist between the messages m themselves, we get a
malleable signature scheme instead. For instance, we get redactable signatures
if messages are ordered in such a way that m′ ≤ m if and only if m′ is obtained
from m by replacing some of the text in m by blanks. And we obtain identity-
based signatures with a larger set of identities, still containing a special identity
∗ associated with the master key authority, but also identities idi associated with
the various users of the system, and identities (idi,m) for each pair of a user and
a message. The order relation is then given by idi ≤ ∗ for all i, and (idi,m) ≤ idi

Universal Witness Signatures 315

for all i and all messages. If additional nontrivial relationships exist between the
idi’s, we essentially get hierarchical identity-based signatures.

We would like to support a really general class of pre-order relations ≤, to
support for example the signatures on propositional formulas mentioned ear-
lier, which are malleable signatures on messages (formulas) ordered by logical
implication. However, the delegation algorithm that lets us publicly derive SKB

from SKA when B ≤ A should certainly be able to efficiently test whether the
relation B ≤ A actually holds. This is not possible directly for a relation like
logical implication. For general NP relations, however, it does become possible if
the delegation algorithm also receives as input a witness w of B ≤ A (for logical
implication, for example, it would be a proof that A ⇒ B).

Our Contributions. Along the lines sketched above, our first contribution is
to define the notion of universal witness signature (UWS) scheme with respect to
an arbitrary NP pre-order relation ≤ with a greatest element ∗. Such a scheme
consists of only two algorithms:

Setup(1λ): returns a key SK∗ on the special identity ∗, as well as some public
parameters PP;

Delegate(PP,SKA, A,B,w): checks that SKA is a valid key for the identity A
and that w is a valid witness of B ≤ A. If so, returns a fresh key SKB for the
identity B. Otherwise, returns ⊥.

We do not actually need a separate algorithm for signature verification: to check
whether SKA is a valid key on A, we can simply try to delegate A to itself (since
≤ is a pre-order, there is a trivial witness wA≤A for A ≤ A), and test whether
the Delegate algorithm returns something or just ⊥.

Security for a UWS scheme is defined as the unforgeability notion described
in the previous paragraph. As usual, we distinguish between selective security
(in which the adversary has to choose in advance the identity on which it will try
to forge) and adaptive security. We also identify two other desirable properties
of a UWS scheme: the privacy notion of context-hiding UWS, which says that
the delegation path used to obtain a given key is computationally hidden, and
the notion of succinctness, which says that the size of a key SKA is bounded
only in terms of the size of A and the security parameter, independently of the
delegation path.

We show that universal witness signatures are sufficient to obtain many ear-
lier schemes appearing the literature, including HIBS, redactable signatures,
functional signatures and Naccache’s propositional signatures (for which our
concrete constructions provide the first complete instantiations, to the best of
our knowledge).

And finally, we give several constructions of UWS based on a range of
assumptions, and achieving various subsets of our desirable properties. First,
we show that one-way functions alone are enough to obtain adaptively secure
UWS for arbitrary NP pre-order relations. The approach is similar to the one-
way function-based construction of functional signatures [11]. As in the work of

316 C. Qian et al.

Boyle et al., however, the resulting scheme is neither context-hiding nor succinct.
Then, we prove that virtual black-box obfuscation [5] (for a well-defined program
depending on the pre-order relation under consideration) provides a very simple
construction of secure, succinct, context-hiding UWS. This construction ticks all
of our boxes, but it is of course based on a very strong assumption: in fact, Barak
et al. showed that VBB is unachievable for general circuits. There could exist
a virtual black-box obfuscator for our specific program of interest (and in fact,
candidate constructions of indistinguishability obfuscation conjecturally satisfy
that property), but this is rather speculative. We therefore try to achieve sim-
ilarly strong properties based on somewhat more reasonable assumptions. We
give two such constructions: one based on SNARKs [9,17,20] (actually, proof-
carrying data [7,8,13]), which is secure and succinct but achieves a somewhat
weaker form of privacy than the context-hiding property; and another based
on indistinguishability obfuscation [5,15,16,27], which is succinct and context-
hiding but which we only prove selectively secure. Both of those constructions
suffer from a limitation on delegation depth: it can be an arbitrary polynomial
in the security parameter but fixed at Setup time. Moreover, our iO-based con-
struction only applies to order relations rather than general pre-orders.

2 Universal Witness Signatures

Our notion of universal witness signature generalizes many existing signature
schemes with delegation or malleability, such as homomorphic signatures [19],
functional signatures [11] and hierarchical identity-based signatures [14]. It sup-
ports delegation hierarchies defined by arbitrary NP pre-order relations, which,
to the best of our knowledge, makes it more general than all previously pro-
posed such schemes. And yet, its syntax is quite simple, consisting of only two
algorithms.

Formal Definition. Now we give a formal definition of our scheme. Note that
the terms identity and message are synonymous in our setting, and can be used
interchangeably. Similarly, the signing key for an identity can equivalently be
seen as a signature on the corresponding message.

Definition 1 (Universal Witness Signatures). A universal witness signa-
ture scheme (UWS for short) for an NP pre-order relation ≤ with a greatest
element ∗ consists of two probabilistic polynomial-time algorithms:

– Setup(1λ) → (PP,SK∗): This algorithm takes as input a security parame-
ter λ, produces a master signing key SK∗, keeps it secret and outputs public
parameters PP.

– Delegate(PP,SKA, A,B,w) → SKB: This function takes as input the public
parameters, a signing key for identity A, an identity B, and a witness w. If
w is a valid witness of the NP statement B ≤ A and SKA is a valid signing
key for identity A, then the algorithm outputs a signing key for identity B,
otherwise it outputs ⊥.

Universal Witness Signatures 317

We note that there exists a trivial witness for A ≤ A. For simplicity’s sake, we
also define a third algorithm Verify, which is merely a specialization of Delegate:

– Verify(PP,SKA, A) → {True,False}: This algorithm takes a public parameter,
an identity A and a signing key SKA. We have Verify(PP,SKA, A) = False if
and and only if Delegate(PP,SKA, A,A,wA≤A) returns ⊥, where wA≤A is the
trivial witness for the reflexive property A ≤ A.

Additional Properties of UWS. We now propose three desirable properties
for a UWS scheme. Intuitively, we will say that a UWS scheme is secure (i.e.
unforgeable) if a polynomially-bounded adversary allowed to make arbitrary
delegation queries cannot come up with a valid signing key on an identity A∗

that isn’t reachable by delegation from any of the signing keys she obtained.
We will say that the scheme is context-hiding if a signing key does not reveal

the delegation path used to derive it. For example, a signing key SKA on A
obtained from a long delegation path is indistinguishable from a signing key for
the same identity delegated directly from the master key SK∗.

Finally, we will say that the scheme is succinct when the size of a signing
key is bounded depending only on the size of the associated identity (and not
on the length of the delegation path used to derive it).

These properties can be captured formally as follows.

Definition 2 (Correctness). Correctness of an UWS scheme states that for
all SKA, if

UWS.Verify(PP,SKA, A) outputs True and wB≤A is a witness of B ≤ A,

then the signing key SKB ← UWS.Delegate(PP, A,B,wB≤A) is not equal to ⊥,
and UWS.Verify(PP,SKB , B) outputs True.

Definition 3 (Selective security of UWS schemes). The selective security
of an UWS scheme is captured by the advantage of an adversary A in the fol-
lowing security game against a challenger C:

1. A chooses a target identity A∗.
2. C runs the algorithm Setup(1λ) to get SK∗ and PP. Then it keeps the master

signing key SK∗ secret and sends the public parameter PP to A, together with
a tag tSK∗ referring to SK∗.

3. C initializes an associative list H in which the challenger maintains a set of
tuples (t, A,SK) where t is a tag for the signing key generated by the chal-
lenger, A is an identity, and SK is a signing key for the identity A. The
associative initially consists of just the tuple (tSK∗ , ∗,SK∗).

4. A can submit two types of queries:
Delegate queries: Assume that C generated the signing key SKA on an

identity A, and that A received the corresponding tag tSKA
. For any

identity B for which A knows a witness wB≤A of B ≤ A, A can instruct
C to execute Delegate(PP,SKA, A,B,wB≤A). The challenger will then
generate a new unique tag tSKB

on the resulting signing key SKB, and
add the tuple (tSKB

, B,SKB) to its associative list H, sending back the tag
tSKB

to A.

318 C. Qian et al.

Reveal queries: Using the corresponding tag, A can ask C to reveal any
previously generated signing key SKA provided that the associated identity
A does not satisfy A∗ ≤ A.

5. After polynomially many queries of the type above, A outputs a candidate
forgery SKA∗ , and wins if and only if

Verify(PP,SKA∗ , A∗) = True.

A UWS scheme is selectively secure if and only if for all probabilistic polynomial-
time adversaries A, the advantage of A in the previous game is negligible.

We also consider the adaptive security of UWS schemes, which is similarly
defined, with the notable exception that the adversary does not announce in
advance the identity A∗ on which she will forge, but can choose it adaptively
instead (with the condition that it does not satisfy A∗ ≤ A for any of the iden-
tities A associated with revealed signatures).

Definition 4 (Context-hiding). A UWS scheme is context-hiding if, for
every tuple (SK1,SK2, A1, A2, w1, w2) and every identity B such that

Delegate(PP,SK1, A1, B,w1) → SK′
1 �= ⊥

and
Delegate(PP,SK2, A2, B,w2) → SK′

2 �= ⊥,

the distributions of (PP, B,SK′
1) and (PP, B,SK′

2) are statistically close.

Definition 5 (Succinctness). An UWS scheme is succinct if there exists a
polynomial p such that the size of any signature SKA is bounded by p(λ, |A|).

3 Applications: From UWS to Other Primitives

Our universal witness signature scheme can be considered as a generalization of
many existing malleable signature schemes. To showcase this, we use our UWS
scheme to instantiate several well-known signature schemes, and some more origi-
nal ones, namely: functional signatures and propositional signatures. A construc-
tion of hierarchical identity-based signatures and redactable signatures is also
given in the full version of this paper [26]. To the best of our knowledge, this
is the first time that a construction for propositional signatures appears in the
literature.

Functional Signatures. Functional signatures, introduced by Boyle et al. [11],
are a particularly wide-ranging generalization of identity-based signatures in
which the key authority can generate signing keys skf associated to functions f ,
such that the owner of skf can sign exactly those messages that are in the image
of f . Moreover, to sign m in the image of f , the owner of skf needs a witness to
this fact, namely a preimage of m under f . In this section, we show how we can
easily obtain functional signatures based on universal witness signatures.

Universal Witness Signatures 319

Definition 6 (Functional Signature). The functional signature for a mes-
sage space M and a function family F = {f : Df → M} is a tuple of algorithms
(Setup,KeyGen,Sign,Verify) which is specified as follows:

– Setup(1λ) → (msk,mvk): the setup algorithm takes a security parameter λ
and it returns a master signing key msk and a master verification key mvk.
Then it keeps the master signing key secret msk and publishes the master
verification key mvk.

– KeyGen(msk, f) → skf : the key generation algorithm takes a master signing
key msk and a function f to specify which one will be allowed to sign the
messages, then it outputs a corresponding signing key.

– Sign(f, skf ,m) → (f(m), σf(m)): the signing algorithm takes a function f
and the corresponding signing key skf as input and produces f(m) and the
signature σf(m)of f(m)

– Verify(mvk, σm,m) → {True,False}: the verification algorithm takes a
signature-message pair (m,σm) and the master verification key mvk. The
algorithm outputs True if σm is a valid signature of m, otherwise outputs
False.

Functional Signatures From UWS. Consider the order OF corresponding to the
function family F :

– Let M be the message space. The order OF is an order on the set {∗}∪F ∪M
– ∗ is the greatest identity, bigger than all other messages.
– m ≤ f when ∃m′ ∈ M ∧ m = f(m′)
– There does not exist any other non-trivial order

We note ≤ be the previously defined order. Then consider the UWS scheme corre-
sponding to this order. The construction of the functional signature is described
in figure Fig. 1.

Security of the Functional Signature Scheme. A functional signature scheme is
typically expected to verify the following properties:

– Correctness: This property expresses the fact that a properly generated sig-
nature is verified to be correct. Formally: ∀f ∈ F ,∀m ∈ Df , (msk,mvk) ←
Setup(1λ), skf ← KeyGen(msk, f), (f(m), σf(m)) ← Sign(f, skf ,m),

Verify(mvk, σf(m), f(m)) = True.

– Unforgeability: The unforgeability of the functional signature scheme is
defined by the the following security game between an adversary A and a
challenger C:

• C generates a pair of keys (msk,mvk) ← Setup(1λ), then publishes the
master verification key mvk byt keeps the master signing key msk secret.

• C constructs an initially empty associative list H indexed by f ∈ F , a key
generation oracle OKeyGen and a signing oracle OSign as follows:

320 C. Qian et al.

∗ OKeyGen(f): If there exists already a value associated to f in the
associative list H, then outputs H(f) directly. Otherwise the ora-
cle uses the KeyGen algorithm to generate the signing key skf ←
KeyGen(msk, f) associated to f , then adds the function-signing key
pair (f, skf) to the associative list.
∗ OSign(f,m): If there exists a value associated to f in the associative
list H, then uses the signing algorithm to generate a signature σf(m)of
f(m)

• A can query the two oracles OSign and OKeyGen. A can also make requests
of corresponding value in the associative list H. A win against the security
game if it can produce a message-signature pair (m,σ) such that:

∗ Verify(mvk,m, σ) = 1
∗ There does not exist m′ and f such that m = f(m′) and f was sent
as a query to the key generation oracle OKeyGen.
∗ There does not exist a function-message pair (f,m′) was a query to
the signing oracle OSign and m = f(m′)

Let A be an adversary against the functional signature constructed using UWS
scheme with non-negligible advantage. Then by the definition it can produce a
message-signature pair (m,σ) such that:

1. Verify(mvk,m, σ) = True
2. There does not exist m′ and f such that m = f(m′) and f was sent as a

query to the key generation oracle OKeyGen.
3. The message m was not sent as a query to the signing oracle OSign.

Condition 1 implies that Verify(PP, σ,m) = True. Condition 2 implies that for
all (f,m′) which verifies that f(m′) = m, skf has never been revealed. Then
the third condition implies that σm has not been revealed. As in the specific
order corresponding to the functional signature, the only elements bigger than
m are m itself, ∗, and {f | ∃m′ ∈ M.f(m′) = m}. With the conditions 2 and 3,
the signatures of these identities have never been revealed, but A can produce a
valid signature for m which break the existential unforgeability of the underlying
UWS scheme.

Fig. 1. Functional signatures from UWS.

Universal Witness Signatures 321

Propositional Signatures. In an invited talk at CRYPTO and CHES 2010,
Naccache [24] introduced the new notion of propositional signatures, for which he
suggested a number of real-world applications such as contract-signing. Propo-
sitional signatures are signatures on formulas of propositional calculus, which
are homomorphic with respect to logical implication. In other words, given a
signature on a propositional formula P , one should be able to publicly derive
a signature on any Q such that P ⇒ Q. Since the satisfiablity of propositional
formulas cannot be decided efficiently without auxiliary information, the deriva-
tion algorithm should also take as input a witness of P ⇒ Q, i.e. a proof of Q
assuming P .

To the best of our knowledge, no construction of propositional signatures
has been proposed so far. However, it is easy to see that they are, again, easily
obtained from UWS.

Security of Propositional Signatures. Formally, a propositional signature scheme
is a triple (G,D,V) of efficient algorithms for key generation: G(1λ) →
(mvk, σFalse), signature derivation: D(mvk, σP , P,Q, π) → σQ, and verification:
V(mvk, σP , P) → True/False. The signature σFalse on the false proposition plays
the role of master secret key, due to ex falso quodlibet. Correctness states that
if σP is a valid signature on proposition P (in the sense that V(mvk, σP , P)
evaluates to True) and π is a valid proof of P ⇒ Q, then D(mvk, σP , P,Q, π)
a valid signature σQ on Q. Unforgeability says that after obtaining signatures
on propositions Pi of his choice, an efficient adversary cannot produce a valid
signature on a position Q such that none of the Pi’s implies Q.

Propositional Signatures from UWS. Clearly, the UWS scheme associated with
the corresponding set of propositional formulas endowed with the NP preorder
relation given by logical implication (where witnesses are proofs) exactly gives
a propositional signature scheme.

In fact, our definition of security captures for UWS captures a slightly
stronger security model, where unforgeability still holds when the adversary can
make unrestricted delegation queries on messages he cannot see, so as to control
delegation paths.

4 Construction of UWS

We now explain how to realise UWS. The first construction requires only the
existence of one-way function, but is neither context-hiding nor succinct. These
properties can be obtained at the cost of introducing new assumptions such
as the existence of proof-carrying data (for succinctness) or obfuscators (for
context-hiding).

4.1 Construction from One-Way Functions

Firstly, we propose a construction of the UWS scheme based only on the existence
of one-way functions. The existence of one-way function is a very weak and basic

322 C. Qian et al.

assumption of cryptography. But this very basic construction does not verify
many other properties than adaptive security like succinctness or context-hiding.

In this construction, we use a “certificate of computation” approach: Every
signature is provided with a certificate of the delegation path. And an identity
A can provide a certificate of the identity B if and only if B ≤ A. For example
if for the generation of the signature of the identity A, we have passed the
identities ∗, id1, id2, . . . , idn, A. Each identity produced a signing-verification key
pair (skidi

, vkidi
) using the key generation of a signature scheme, and σvkidi

is
a signature of (idi, widi≤idi−1 , vkidi

)1 produced using the signing key ski−1 The
signature of the identity A is represented by

SKA =
(
skA,

[
(vkA, A,wA≤n, σvkA) ,

(
vkidn

, idn, widn≤idn−1 , σvkidn

)
, . . . ,

. . . , (vk∗, ∗, w∗≤∗, σvk∗)
])

For simplicity we will note “w is a valid witness of x ≤ y” by “x ≤w y” in
the following sections of this paper and we propose the following construction
of our UWS scheme using a classical existential unforgeable signature scheme
Sig = (Setup,Sign,Verify).

Setup(1λ):

– The setup algorithm first takes two pairs of keys (msk,mvk), (vk∗, sk∗) from
the signature’s parameters generation algorithm.

– Then it generates a signature σvk∗ of (∗, w∗≤∗, vk∗) using the signing key msk,
this can be considered as a certificate of the verification key vk∗ delivered by
the master authority.

– The certificate c∗ of the identity ∗ is [(vk∗, ∗, w∗≤∗, σvk∗)]. The signing key
(signature) SK∗ of the identity ∗ in our UWS scheme is (sk∗, c∗) and the
public parameter PP will be mvk.

Delegate(mvk,SKA, A,B,w):

– The signing key SKA has the form (skA, cA), where the certificate cA is a list

[(vkA, A,wA, σA), . . . , (vk∗, ∗, w∗≤∗, σvk∗)].

– The delegation algorithm first verifies that the certificate cA is valid, by
checking that each σj is a valid signature on (idj , wj , vkj) with respect
to the verification key vkj−1. It also checks that the witnesses are valid:
B ≤w A ≤wA

idn . . . and that vkA is a correct public key for skA by signing
a random message and verifying it.

– If all these verification steps succeed, a fresh key pair (skB, vkB) for Sig is gen-
erated, together with a signature σB on (B,wB≤A, vkB) using the singing key
skA The algorithm then computes an extended certificate cB by prepending
(vkB , B,wB , σB) to cA, and returns the signature SKB as (skB , cB).

This construction is summarized in Fig. 2.
1 This is represented as a message idi||widi≤idi−1 ||vkidi .

Universal Witness Signatures 323

Fig. 2. Construction of UWS from one way functions.

Theorem 1. The construction of UWS based on the one-way function is cor-
rect.

Proof. If we have Verify(mvk,SKA, A) = True and B ≤w A, then SKB =
(skB , cB) with cB = [(vkB , B,w, σB), cA], and by construction, we have that
(vkB , skB) is a valid signature key pair, and σB is a valid signature of
(B,wB≤A, vkB). By the verification above and hypothesis of SKA is valid, cB

is also a valid certificat and Verify(mvk,SKB , B) outputs True. ��
The proof that this construction is adaptively secure is given in the full version
of this paper [26].

4.2 Succinct Construction from Proof-Carrying Data

The previous construction based on one-way functions is clearly neither context-
hiding nor succinct. In this section, we give a construction based on SNARKs,
which is adaptively secure and succinct; we also provide arguments suggesting
that it should satisfy some form of context-hiding property at least when the
SNARK is zero-knowledge. As a downside, we are limited to a polynomial num-
ber of delegation steps: the maximum delegation depth must be fixed at setup
time, as a polynomial in the security parameter. Our construction use the fol-
lowing theorems proposed by Bitansky et al. [8].

Theorem 2 (SNARK Recursive Composition Theorem). There exists
an efficient transformation RecComp algorithm such that, for every publicly-
verifiable SNARK (GSNARK,PSNARK,VSNARK), the 3-tuple algorithms

(G,P,V) = RecComp(GSNARK,PSNARK,VSNARK)

is a publicly-verifiable PCD system for every constant-depth compliance predi-
cate.

324 C. Qian et al.

Theorem 3 (PCD Depth-Reduction Theorem). Let H = {HK}k∈N be a
collision-resistant hash-function family. There exists an efficient transformation
DepthRedH with the following properties:

– Correctness: If (G,P,V) is a PCD system for constant-depth compliance
predicates, then (G′,P ′,V ′) = DepthRedH(G,P,V) is a path PCD for
polynomial-depth compliance predicates.

– Verifiability Properties: If (G,P,V) is publicly verifiable then so is (G′,P ′,V ′)
– Efficiency: There exists a polynomial p such that the (time and space) effi-

ciency of (G′,P ′,V ′) is the same as that of (G,P,V) up to the multiplicative
factor p(k)

For the construction, we follow the same line of thinking as in Sect. 4.1. We
consider an existential unforgeable signature scheme Sig = (Gen,Sign,Verify),
with master signing key msk and master verification key mvk. Let us first define
the distributed computation transcript T = (G, linp, data) and the corresponding
C-compliance C(zout, linp, zin) as follows:

– G = (V,E): The graph of the distributed computation transcript, with V
labeled by the identity and (A,B) ∈ E labeled by the tuple (VKB , SKB ,
wB≤A, σVKB

).
– linp: The local input of the vertices will be the identity corresponding to this

vertex.
– zout: The data of the edges are the labels of the edges, specifically zout =

(VKB ,SKB , wB≤A, σVKB
).

– C(zout, linp, zin): parse zout as (VKB ,SKB , wB≤A, σVKB
), and suppose zin =

(VKA,SKA, wA≤C , σVKA
) with C the predecessor of A. The algorithm C(zout,

linp, zin) outputs True if
• Sig.Verify(VKA, (linp(B), wB≤A,VKB), σVKA

) = True
• B ≤wB≤A

A
• For a random message m, we have Sig.Verify(VKB ,m,Sig.Sign(SKB ,m)) =

True.

Let us consider the PCD scheme (G,P,V) corresponding to the distributed com-
putation transcript described as above. Then we have all the building blocks for
our universal witness signature.

– Setup(1λ) → (PP,SK∗): Let (mvk,msk) ← Sig.Gen(1λ), then use the gener-
ation algorithm of the proof-carrying data to get PP = crs ← G(1λ). Let
z∗ = (mvk,msk, “∗ ≤ ∗”, σVK∗), we compute π∗ ← P(crs,⊥,⊥, z∗, ∗) and
σVK∗ ← Sig.Sign(msk, (∗, “∗ ≤ ∗”,mvk)). Then output SK∗ = (z∗, π∗) and
VK∗ = mvk.

– Delegate(PP,SKA, A,B,wB≤A) → SKB :
• Parse SKA as (zA, πA) with zA = (VKA,SKA, wA≤C , σVKA

).
• We first check whether πA is valid proof of the fact that zA is consis-

tent with the C-compliance transcript. If the test fails then the algorithm
ouputs ⊥

Universal Witness Signatures 325

• If the check succeeds, use the underlying signature scheme’s genera-
tion algorithm to get (SKB ,VKB) ← Sig.Gen(1λ), and use the sign
algorithm to get σVKB

= Sig.Sign(SKA, (B,wA≤B ,VKB)). Let zB =
(VKB ,SKB , wB≤A, σVKB

).
• Finally use the proof algorithm P to generate a proof of zB : πB ←

V(crs, zA, πA, zB , B) which is a proof of the fact that zB is consistent with
the C-compliance transcript. The algorithm outputs SKB = (zB , πB).

This construction is summarized in Fig. 3.

Theorem 4. The construction of UWS scheme based on the Proof-Carrying
Data is correct.

Proof. If SKB is produced by the Delegate algorithm on SKA, and SKA is a valid
signature of A, by the correctness of the PCD scheme, we have πB is a valid
proof of the fact that zB is consistent with the C-compliance transcript. This
assures that the new signature SKB will pass the verification algorithm which
means Verify(PP,SKB , B) will outputs True. ��
We give also proof of the selective security and succinctness of this construction
in the full version of this paper [26].

4.3 Construction from Indistinguishability Obfuscation

The SNARK based construction from the previous section has some limitations:
a polynomial bound on delegation depth, and no rigorously proved context-
hiding property. A very simple construction without either of these shortcomings
(thus achieving all the desired properties of universal witness signatures) can be
obtained from virtual black-box obfuscation: we describe that construction in the
full version of this paper [26]. Admittedly, however, virtual black-box obfusca-
tion is an onerous assumption: it is known to be unachievable for general circuits
in the standard model [5]. In this section, we provide a satisfactory construc-
tion using a somewhat more realistic flavor of obfuscation (indistinguishability
obfuscation) together with puncturable pseudorandom functions (as is usual for
iO-based constructions). Both notions are formally recalled in the full version of
this paper [26].

Fig. 3. Construction of UWS from proof-carrying data.

326 C. Qian et al.

Fig. 4. The CheckSign algorithm.

Our construction of UWS from punctured PRFs and iO achieves correctness,
context-hiding, and succinctness. However, besides the reliance on iO, which is a
strong assumption, the maximum delegation level must again be chosen at setup
time, and there is a limitation of the type of preorder relations we support. More
precisely, our construction applies to order relations (≤ is anti-symmetric) and
moreover, any given element has at most polynomially many elements greater
than itself. We will use the following three primitives in our construction:

1. Let C� = iO(C) be the indistinguishability obfuscation of the circuit C;
2. Let (G,F) be a punctured PRF scheme in which G generates the system

parameters and F is the keyed PRF;
3. Let f be an injective length-doubling PRG.

Here is our construction:

– Setup(1λ):
• We generate the PRF key K from G(1λ) and compute the indistinguisha-

bility obfuscation CheckSign� of the algorithm CheckSign.
• The master signing key (signature of ∗) SK∗ is the PRF value F(K, ∗) of

∗ and the public parameter PP is the obfuscated circuit CheckSign�.
– Delegate(PP,SKA, A,B,wB≤A):

• CheckSign�(SKA, A,B,wB≤A) which is an indistinguishability obfuscation
of the program CheckSign described Fig. 4.

Theorem 5. The iO-based construction is correct, succinct, and context-hiding.

Proof. All three properties rely on the underlying indistinguishability obfusca-
tion’s properties; we denote this obfuscator iO. By construction, a valid signature
SKA of identity A is equivalent to the fact that SKA = F(K,A). Very roughly,
it follows that:

– Correctness If SKB is produced by the algorithm Delegate, then SKB =
F(K,B). We have Verify(PP,SKB , B) = True.

– Succinctness and Context-hiding SKA = F(K,A) is independent of the
delegation path, and its output is that of a pseudorandom function. Hence
the UWS scheme is succinct and context-hiding.

A security proof and extended proofs of succinctness and the context-hiding
property are provided in the full version of this paper [26]. ��

Universal Witness Signatures 327

5 Conclusion

In this paper, we have introduced a very general notion of delegatable signa-
ture scheme: universal witness signatures (UWS). We have formally defined the
security properties that UWS should ideally satisfy, and provided four different
constructions based on a range of assumptions from the existence of one-way
functions to virtual black-box obfuscation, and achieving some or all of these
security properties. Those constructions can be used to instantiate a number of
other primitives, and provide, in particular, the first instantiations of proposi-
tional signatures, a notion with numerous interesting applications.

Each of our constructions has some limitations, however. Constructing secure,
succinct and context-hiding UWS with unbouded delegation depth based on
relatively weak assumptions is left as a challenging open problem. In addition,
our work did not tackle the problem of anonymity for UWS-like schemes, and we
only considered unary delegation. Those problems are also worth investigating
in future work.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. J. Cryptol. 28(2), 351–395 (2015)

2. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures.
In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.1007/
11555827 10

3. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 23

4. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016 (1). LNCS, vol.
9614, pp. 357–386. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49384-7 14

5. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2),
6:1–6:48 (2012)

6. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014 (2).
LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 16

8. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: STOC, pp. 111–120. ACM
(2013)

9. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013.
LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36594-2 18

https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-662-49384-7_14
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18

328 C. Qian et al.

10. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

11. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

12. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
new definitions and delegatable anonymous credentials. In: CSF, pp. 199–213.
IEEE Computer Society (2014)

13. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: ICS, pp. 310–331. Tsinghua University Press (2010)

14. Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Secure hierarchical identity
based signature and its application. In: Lopez, J., Qing, S., Okamoto, E. (eds.)
ICICS 2004. LNCS, vol. 3269, pp. 480–494. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30191-2 37

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49. IEEE Computer Society (2013)

16. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016-B (2). LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53644-5 10

17. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

18. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

19. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

20. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: STOC, pp. 723–732. ACM (1992)

21. Kiltz, E., Neven, G.: Identity-based signatures. In: Joye, M., Neven, G. (eds.)
Identity-Based Cryptography, Cryptology and Information Security Series, vol. 2,
pp. 31–44. IOS Press, Amsterdam (2008)

22. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its
applications. In: AsiaCCS, pp. 60–69. ACM (2010)

23. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 24

24. Naccache, D.: Is theoretical cryptography any good in practice? CRYPTO & CHES
2010 invited talk (2010)

25. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone
predicates in the standard model. IEEE Trans. Cloud Comput. 2(4), 409–421
(2014)

26. Qian, C., Tibouchi, M., Géraud, R.: Universal witness signatures. HAL Open
Archive (2018). Full version of this paper, https://hal.archives-ouvertes.fr/hal-
01814279v1

https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-540-30191-2_37
https://doi.org/10.1007/978-3-540-30191-2_37
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-662-53644-5_10
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/978-3-642-19074-2_24
https://hal.archives-ouvertes.fr/hal-01814279v1
https://hal.archives-ouvertes.fr/hal-01814279v1

Universal Witness Signatures 329

27. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC, pp. 475–484. ACM (2014)

28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

29. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45861-1 22

https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-45861-1_22
https://doi.org/10.1007/3-540-45861-1_22

Author Index

Aoki, Kazumaro 114

Bert, Pauline 297

Cianciullo, Louis 193

de Ruiter, Joeri 127
Doi, Hiroshi 206

Fujii, Tatsuro 174

Géraud, Rémi 313
Ghodosi, Hossein 193

Hasegawa, Hirokazu 143
Hashimoto, Yasufumi 3

Iguchi, Makoto 174
Ikematsu, Yasuhiko 3
Ito, Katsutaka 143

Klein, Dominik 51
Kunihiro, Noboru 35
Kurosawa, Kaoru 104, 281

Lau, Terry Shue Chien 19
Li, Qiuping 262
Lin, Dongdai 244
Liu, Meicheng 244
Liu, Zhuojun 262

Naganuma, Ken 35

Onozawa, Sota 35

Poll, Erik 127

Qian, Chen 313

Rijneveld, Joost 127
Roux-Langlois, Adeline 297

Saito, Takamichi 68
Sasaki, Yu 227
Schwabe, Peter 127
Shi, Cheng 158
Shima, Koji 206
Shimada, Hajime 143
Sugawara, Shota 68
Suzaki, Kuniyasu 68

Tada, Hayato 104, 281
Takagi, Tsuyoshi 3, 87
Takayasu, Atsushi 87
Tan, Chik How 19
Tibouchi, Mehdi 313

Ueda, Akinaga 104, 281
Uematsu, Taro 174

van der Laan, Ebo 127
Verschuren, Jan 127

Wang, Weiyao 87
Wang, Wenhao 244
Wang, Yuntao 87
Wiemers, Andreas 51
Wu, Baofeng 262

Yamaguchi, Yukiko 143
Yang, Jingchun 244
Yokoyama, Masahiro 68
Yoneyama, Kazuki 158
Yoshino, Masayuki 35

	Preface
	IWSEC 2018 13th International Workshop on Security Organization Sendai, Japan, September 3–5, 2018 co-organized by ISEC in ESS of IEICE (Technical Committee on Information Security in Engineering Sciences Society of the Institute of Electronics, Information and Communication Engineers) and CSEC of IPSJ (Special Interest Group on Computer Security of Information Processing Society of Japan) and Cyberscience Center, Tohoku University
	Contents
	Cryptanalysis
	Chosen Message Attack on Multivariate Signature ELSA at Asiacrypt 2017
	1 Introduction
	2 The ELSA Signature Scheme
	2.1 Multivariate Signature Scheme
	2.2 Key Generation of ELSA
	2.3 Signature Generation and Verification of ELSA
	2.4 Previous Security Analysis and Parameter Selection

	3 Our Attack on ELSA
	3.1 Chosen Massage Attack
	3.2 How to Recover the Information Associated with Eq.(4)
	3.3 Equivalent Secret Key of ELSA and Forging a Signature
	3.4 How to Recover an Equivalent Secret Key

	4 Complexity Analysis and Experimental Results
	4.1 Complexity Analysis for Our Proposed Attack
	4.2 Experimental Results of Our Proposed Attack

	5 Conclusion
	References

	Key Recovery Attack on McNie Based on Low Rank Parity Check Codes and Its Reparation
	1 Introduction
	2 Preliminaries
	2.1 Background
	2.2 Hard Problems in Coding Theory
	2.3 Generic Attacks on RSD

	3 McNie Public-Key Encryption Scheme
	3.1 McNie Encryption
	3.2 McNie Based on LRPC Codes

	4 Gaborit's Attack on General McNie
	5 Our Key Recovery Attack on McNie Based on QC-LRPC Codes
	5.1 Our Idea - Transforming Quadratic System into Linear System
	5.2 Attack Against 3-Quasi-Cyclic LRPC Codes
	5.3 Attack Against 4-Quasi-Cyclic LRPC Codes
	5.4 Recovering Plaintext from Our Recovered and
	5.5 Actual Security Level of Proposed Parameters

	6 A New Proposal - McNie Based on Gabidulin Codes
	6.1 McNie Based on Gabidulin Codes
	6.2 Practical Security
	6.3 IND-CPA Secure Encryption
	6.4 Proposed Parameters

	7 Conclusion
	References

	Inference Attacks on Encrypted Databases Based on Order Preserving Assignment Problem
	1 Introduction
	1.1 Related Works
	1.2 Our Contribution

	2 Previous Research
	2.1 Preliminary
	2.2 Inference Attack
	2.3 Drawback of the Cumulative Attack

	3 New Optimization Problem
	3.1 Order Preserving Assignment Problem
	3.2 Solving Order Preserving Assignment Problem
	3.3 Toy Example for Solving OPAP

	4 Experiments Using Datasets
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Experimental Results for Scenario 1
	4.4 Experimental Results for Scenario 2

	5 Conclusion
	References

	Implementation Security
	Entropy Reduction for the Correlation-Enhanced Power Analysis Collision Attack
	1 Introduction
	2 Correlation-Enhanced Power Analysis Collision Attack
	3 Recovering the AES Key
	4 Theoretical Justification
	5 Success Rate of the Algorithm (Variant II)
	5.1 An Upper Bound of the Remaining Entropy
	5.2 A Lower Bound of the Remaining Entropy
	5.3 Probability of the Event Bs(K1,…,Ks))s ()2b

	6 Experiments
	7 Related Work
	8 Conclusion and Future Work
	References

	Safe Trans Loader: Mitigation and Prevention of Memory Corruption Attacks for Released Binaries
	1 Introduction
	2 Threat Model
	3 Proposed Method
	3.1 Design of STL
	3.2 Operational Flow of the STL
	3.3 Safer Functions
	3.4 Limitations

	4 Evaluation
	4.1 Environment
	4.2 Effectiveness Against Attacks
	4.3 Runtime Overhead
	4.4 Memory Overhead

	5 Related Work
	5.1 Countermeasures Against Buffer Overflow
	5.2 Countermeasures Against Use-After-Free
	5.3 Other Countermeasures

	6 Discussion
	6.1 Comparison
	6.2 Consideration from the Viewpoint of Software Life Cycle

	7 Conclusions
	References

	Public-Key Primitives
	Estimated Cost for Solving Generalized Learning with Errors Problem via Embedding Techniques
	1 Introduction
	2 Lattices and BKZ Algorithm
	2.1 Lattices and Lattice Problems
	2.2 BKZ Algorithm
	2.3 Applying BKZ Algorithm to uSVP

	3 LWE Problem and Complexity Analysis
	3.1 Definition of Generalized LWE Problem
	3.2 Reduction from LWE to uSVP
	3.3 Complexity Analysis Using Alkim et al.'s Estimate

	4 Half-Twisted Embedding
	5 Generalized Analysis of LWE Problem
	5.1 Applying Alkim et al.'s Estimate to Half-Twisted Embedding
	5.2 Analysis on Half-Twisted Embedding
	5.3 Numerical Results of Our Analysis

	6 Conclusion
	References

	(Short Paper) How to Solve DLOG Problem with Auxiliary Input
	1 Introduction
	2 Discrete Logarithm Problem over the Exponent
	2.1 Deterministic Algorithm
	2.2 Probabilistic Algorithm

	3 Generalization of Cheon's First Algorithm
	4 Generalization of Cheon's Second Algorithm
	5 Example
	References

	(Short Paper) Parameter Trade-Offs for NFS and ECM
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Formulas
	2.3 NFS Algorithm
	2.4 Running Time Evaluation of NFS
	2.5 ECM Algorithm

	3 Evaluation of the Trade-Offs for NFS
	3.1 Running Time and Success Probability
	3.2 Time Complexity and Memory Complexity

	4 Evaluation of the Trade-Offs for ECM
	5 Summary of the Results
	5.1 NFS
	5.2 ECM

	6 Conclusion
	References

	Security in Practice
	Is Java Card Ready for Hash-Based Signatures?
	1 Introduction
	2 XMSSMT
	2.1 WOTS+
	2.2 Hash Trees
	2.3 Chaining Trees

	3 Java Card Platform and Limitations
	3.1 Considerations for the OpenVPN Use Case

	4 Implementation
	4.1 Hash Functions
	4.2 Memory Usage and Benchmarks

	5 Java Card API Recommendations and Considerations
	5.1 Parallel Hashing
	5.2 Complete WOTS+ Chains
	5.3 WOTS+ Nodes and Hash Trees
	5.4 Complete XMSSMT Signatures
	5.5 Side-Channel Countermeasures

	References

	Detecting Privacy Information Abuse by Android Apps from API Call Logs
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Threat Model of This Work
	3.2 Overview
	3.3 Classify Applications According to Appropriateness
	3.4 Classify Android APIs
	3.5 Rebuilding Android to Output API Call Logs

	4 Experimental Configuration
	4.1 Environment for Collecting API Logs
	4.2 Applying microG
	4.3 Collecting Applications for Evaluation
	4.4 Evaluation Criteria
	4.5 Prediction Based on APIs Usage

	5 Experimental Results and Discussion
	5.1 Experimental Result
	5.2 Factors to Affect Estimation

	6 Conclusion
	References

	Verification of LINE Encryption Version 1.0 Using ProVerif
	1 Introduction
	1.1 Background
	1.2 Contribution

	2 Preliminaries
	2.1 Client-to-Server Transport Encryption Protocol (TEP)
	2.2 Message End-to-End Encryption (E2EEP)
	2.3 ProVerif

	3 Formalization of LINE encryption
	3.1 Formalization of TEP
	3.2 Formalization of E2EEP

	4 Verification Results
	4.1 Attack to Break Forward Secrecy for Client's Data of TEP
	4.2 Replay Attack to E2EEP
	4.3 Spoofing Attack to E2EEP

	5 Summary
	References

	The Anatomy of the HIPAA Privacy Rule: A Risk-Based Approach as a Remedy for Privacy-Preserving Data Sharing
	1 Introduction
	2 Related Work
	3 Risk-Based Approach Framework
	3.1 Step 1: Clarifying a Privacy Risk
	3.2 Step 2: Assessing Severity Level
	3.3 Step 3: Assessing Likelihood Level
	3.4 Step 4: Assessing Overall Data Privacy Risk

	4 Analysis of the HIPAA Privacy Rule Using the Risk-Based Approach
	4.1 HIPAA Overview
	4.2 Data Disclosure Method Covered in the HIPAA Privacy Rule
	4.3 Analysis of Data Disclosure Methods with a Risk-Based Approach

	5 Leveraging the Success of HIPAA Privacy Rule
	5.1 Properly Scoping the Target Data
	5.2 Covering Data Sets with Multiple Identification Levels

	6 Conclusion
	References

	Secret Sharing
	Improvements to Almost Optimum Secret Sharing with Cheating Detection
	1 Introduction
	1.1 CDV Model
	1.2 OKS Model
	1.3 Our Contribution

	2 Preliminaries
	2.1 Shamir's Secret Sharing Scheme
	2.2 The Tompa and Woll Attack
	2.3 JS SSCD Scheme Devised in OKS Model
	2.4 JS SSCD Scheme Devised in CDV Model

	3 Flaws in JS SSCD
	4 Improvement to JS SSCD
	4.1 Proposed OKS-Secure Scheme
	4.2 Proposed CDV-Secure Scheme

	5 Conclusion
	References

	XOR-Based Hierarchical Secret Sharing Scheme
	1 Introduction
	1.1 Secret Sharing Schemes and Hierarchical Schemes
	1.2 Example Scenarios of Hierarchical Schemes
	1.3 Our Contribution

	2 Preliminaries
	2.1 Notations and Definitions
	2.2 Definitions and Properties of Matrix
	2.3 Perfect and Ideal Secret Sharing Schemes

	3 Related Work
	4 Proposed Scheme
	4.1 Distribution Algorithm
	4.2 Recovery Algorithm
	4.3 Achieving Hierarchy
	4.4 Security Analysis
	4.5 Brief Example of Our Scheme

	5 Software Implementation
	6 Conclusions
	References

	Symmetric-Key Primitives
	Integer Linear Programming for Three-Subset Meet-in-the-Middle Attacks: Application to GIFT
	1 Introduction
	2 Specification of GIFT
	3 Three-Subset Meet-in-the-Middle Attacks
	3.1 General Framework
	3.2 Previous Three-Subset MitM Attack on 15-Round GIFT-64

	4 ILP Model to Search for Optimal Neutral Bits
	4.1 Details of ILP Models
	4.2 Search Results

	5 Improved MitM Attacks on GIFT-64
	6 Comments on Three-Subset MitM Attack on XTEA
	7 Concluding Remarks
	References

	Symbolic-Like Computation and Conditional Differential Cryptanalysis of QUARK
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 A Brief Description of QUARK
	3.1 Sponge Construction
	3.2 Permutation
	3.3 Proposed Instances
	3.4 Backward Update Functions

	4 Symbolic-Like Computation
	5 Conditional Differential Cryptanalysis of QUARK
	5.1 Analysis of D-QUARK
	5.2 Cryptanalysis Results for All Flavors of QUARK

	6 Conclusions
	A Simulating the Bit Operations
	B Conditions for All Flavors of QUARK
	References

	Lightweight Recursive MDS Matrices with Generalized Feistel Network
	1 Introduction
	2 Preliminaries
	2.1 MDS Matrix and Its Properties
	2.2 XOR Count

	3 Generalized Feistel Network Matrix
	3.1 Recursive MDS Matrix
	3.2 Generalized Feistel Network Matrix

	4 MDS Properties of Generalized Feistel Network
	4.1 Some Propositions of kk Recursive GFN MDS Matrices
	4.2 Some Lightweight Recursive GFN MDS Matrices

	5 Conclusion
	References

	Provable Security
	How to Prove KDM Security of BHHO
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 DDH Assumption
	2.2 Matrix DDH Assumption

	3 KDM Secure Encryption Scheme
	3.1 KDM Security
	3.2 BHHO Encryption Scheme

	4 Outline of Our Proof
	4.1 KDM(1) Security for a Single Query
	4.2 KDM(1) Security for Multiple Queries
	4.3 KDM(n) Security
	4.4 Final Result

	5 Multi-query DDH Assumption
	5.1 Basic Form
	5.2 Generalized Form

	6 More Tight KDM Security of BHHO
	6.1 How to Prove KDM(1) Security
	6.2 How to Prove KDM(n) Security

	7 Improvement
	7.1 More Tight Reduction from Matrix DDH to DDH
	7.2 Application to the KDM Security of BHHO

	References

	From Identification Using Rejection Sampling to Signatures via the Fiat-Shamir Transform: Application to the BLISS Signature
	1 Introduction
	2 Preliminaries
	2.1 Identification Scheme Using Rejection Sampling
	2.2 Lossy Identification Scheme Using Rejection Sampling
	2.3 Reset Lemma
	2.4 Lattice Background

	3 Signature Scheme Using Rejection Sampling
	3.1 Fiat-Shamir Transform
	3.2 General Result from Non-Lossy Identification Scheme
	3.3 Result from Lossy Identification Scheme

	4 Application to the BLISS Signature
	4.1 Description of the BLISS Identification and Signature Schemes
	4.2 Properties of the Identification Scheme
	4.3 Original BLISS Proof

	References

	Universal Witness Signatures
	1 Introduction
	2 Universal Witness Signatures
	3 Applications: From UWS to Other Primitives
	4 Construction of UWS
	4.1 Construction from One-Way Functions
	4.2 Succinct Construction from Proof-Carrying Data
	4.3 Construction from Indistinguishability Obfuscation

	5 Conclusion
	References

	Author Index

