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Abstract. This paper proposes an improved method for large pose face
alignment. Unlike existing methods, the proposed method regresses both
2D and 3D coordinates of facial landmarks simultaneously. It first com-
putes a coarse estimation of the landmarks via a shape regression network
(SRN) whose input is only the input image. It then refines the landmarks
with another SRN whose input consists of three components: the trans-
formed image, the visible landmark heatmap and the feature map from
the first SRN. These components are constructed by a transformation
module based on the current estimates of 3D and 2D landmarks. By
effectively exploring the 3D property of faces for constraining 2D land-
marks and refining their visibility, the proposed method can better align
faces under large poses. Extensive experiments on three public databases
demonstrate the superiority of the proposed method in large pose face
alignment.
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1 Introduction

Face alignment, also known as facial landmarks detection, aims at detecting
facial key points (such as eye-corners, nose tip, and mouth corners) on face
images, which is fundamental to many face-related tasks, e.g., expression recog-
nition, 3D face reconstruction and face recognition. The last decade has wit-
nessed significant progresses in face alignment. With the introduction of cascaded
regression [1], many state-of-the-art face alignment methods achieve high pre-
cision in detecting the landmarks in frontal and near-frontal (i.e., yaw rotation
angles are within ±60◦) face images. However, they may still fail in challenging
large pose face alignment, due to self-occlusion and unreliable features around
invisible landmarks on the face images.

Many recent methods [2–6] use convolutional neural networks (CNN) to learn
more effective features rather than using hand-crafted features for detecting
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facial landmarks. Some other recent methods resort to 3D face models [7–9] to
improve the robustness of facial landmarks detection to large pose variations,
from which 2D-based methods suffer. Such 3D-based methods generally fit a
3D morphable face model (3DMM) [11] to the input 2D face image and infer
landmarks from the reconstructed 3D face via 3D-to-2D projection. Despite the
significant progresses made by CNN-based methods [2–6] and 3D-based methods
[7–10], large pose face alignment is still a challenging problem.

In this paper, we propose an improved method to solve the large pose facial
landmarks detection problem. Instead of fitting a 3DMM, we directly regress
3D landmarks based on CNN to refine 2D landmarks. It imposes a strong shape
constraint to the 2D landmarks. To exclude unreliable features around invisible
landmarks, we estimate the visibility of the landmarks based on the obtained
3D coordinates, and generate a visible landmark heatmap that can facilitate the
extraction of pose-robust features. Evaluation results on three public benchmark
databases with comparison to state-of-the-art methods prove the effectiveness of
our proposed method.

2 Related Work

Many methods utilize 3D face alignment to refine 2D face alignment for large
pose faces considering the limitation of 2D-based methods in dealing with self-
occlusion. Zhu et al. [9] proposed a method called 3D Dense Face Alignment
(3DDFA), which generated PNCC map from the obtained 3D face shape and
stacked it with the input image as the input to the next stage. Although having
well advanced the state-of-the-art of face alignment, like most existing 3D-based
methods [7,8], it still has difficulties in dealing with near profile faces because
it does not explicitly consider invisible landmarks. Chen et al. [10] refined 2D
face landmarks by using 3D landmarks that were regressed from hand-crafted
features. These 3D-based methods, regressing either 3DMM parameters or 3D
coordinates, compute 2D landmarks via projecting the obtained 3D landmarks
onto 2D images. In this paper, instead, we regress directly both 3D and 2D
coordinates of the landmarks with learned features, and use the 3D landmarks
as a strong shape constraint to refine the 2D landmarks.

Various types of feature maps have been used to assure focusing on the region
of interest and extracting more robust features. DAN [5] aims at detecting visi-
ble facial contour points and utilizes landmark heatmaps to constrain the region
of interest from which features are extracted. However, the heatmaps in DAN
do not consider the visibility of landmarks, and would thus lead to unreliable
features around invisible landmarks. The PNCC feature maps [9] are obtained
by projecting 3D face shapes onto 2D plane via z-buffering. The Z-Buffer repre-
sentation is, however, not differentiable, preventing end-to-end training. In our
work, we utilize the regressed 3D landmarks to estimate the visibility of each
landmark and generate heatmaps based on the visible landmarks. This way, we
can better ensure that more robust features are learned.
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Fig. 1. The main steps in our proposed method, which regresses the landmarks in two
stages. The first stage coarsely estimates the residual of 2D and 3D landmarks with
respect to the landmarks’ initial estimates (i.e., the mean locations in frontal view).
The second stage refines the estimated 2D and 3D landmarks by taking the transformed
image (IT ), the visible landmark heatmap and the feature map from the prior stage
as input, which are generated by the transformation module. In practice, the second
stage can be repeated, resulting in a deeper cascade structure, though we implement
only two stages in this paper.

3 Proposed Method

3.1 Overview

Figure 1 shows the main steps in our proposed method, which consists of two
stages. In the first stage, a Shape Regression Network (SRN) is employed to
generate coarse estimates of both 2D and 3D landmarks for the input face image.
Unlike general 3D-based face alignment methods that need to fit a 3DMM, we
directly regress 3D landmarks and their corresponding semantically consistent
2D landmarks.

In the second stage, another SRN is deployed to refine the estimated 3D
and 2D landmarks. To fully explore the knowledge obtained in the first stage,
we combine the information from three different sources to form the input of
the SRN, specifically, the transformed input image, the heatmap of currently
estimated visible 2D landmarks, and a feature map from the first stage SRN.
In the transformation module, the transformation applied to the input image as
well as the 2D landmarks, and the visibility of 2D landmarks are computed.

3.2 Shape Regression Network

As shown in Fig. 2, the structure of SRN is inspired by the VGG network [12].
While the SRNs in the two stages share similar structure, they differ in their
inputs: The input of the first SRN is the original input image; but the input of the
second SRN is a combination of the transformed input image, visible landmark
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Fig. 2. The inputs of the two SRN in our proposed method are 112 × 112 × 1 and
112 × 112 × 3, respectively.

heatmap and a feature map from the first SRN. These three components are
generated in the transformation module and stacked across channel. Each SRN
regresses simultaneously 2D and 3D shape ΔS2d and ΔS3d, which are used to
update the current estimates of 2D landmarks S2d and 3D landmarks S3d.

3.3 Transformation Module

The transformation module generates the input for the second SRN based on
the output of the first SRN. Specifically, it transforms the input image as well
as its 2D landmarks to a canonical frontal view via an affine transformation.
The parameters involved in the transformation (denoted by T ) are estimated by
minimizing the error between the transformed 2D landmarks and the mean 2D
landmarks on frontal face images (ŜF

2d):

arg min
T

||ŜF
2d − T × S2d||22. (1)

with the computed affine transformation, the original input face image and its
2D landmarks are transformed accordingly with bilinear interpolation.

Since the transformed image is used as input to the second SRN, its regressed
shape residuals should be transformed back to the coordinate system of the
original input image. Hence, the refined 2D/3D landmarks in the second stage
are computed as follows,

S2
2d/3d = T−1

2 × (T2 × S1
2d/3d + ΔS2

2d/3d) (2)

where ΔS2
2d/3d is the output of the SRN of stage 2, T−1

2 is the inverse of
transform T2.

Note that the visibility of the landmarks is not considered so far. Fortunately,
the estimated 3D landmarks can be used to determine the visibility. Let M
denote the weak perspective projection matrix from 3D to 2D. We compute
it by minimizing the fitting error between the 3D and 2D landmarks. Given
the 3D landmarks and the 3D-to-2D projection matrix, we can compute the
visibility of the corresponding 2D landmarks. More detail will be given in the
next subsection.



Improving Large Pose Face Alignment by Regressing 2D and 3D Landmarks 353

3.4 Visible Landmark Heatmap

To utilize landmark heatmap to improve the quality of extracted features espe-
cially for large pose faces, we need to estimate the visibility of each facial land-
mark based on the corresponding 3D and 2D landmarks. The computation of
visibility is proposed in [7]:

v = sign(
−→
Ni · (

m1
||m1|| × m2

||m2|| )) (3)

where m1 and m2 are, respectively, first row vector and second row vector of the
3D-to-2D projection matrix M ,

−→
Ni is the normal vector at the landmark i in 3D

space, and sign denotes the sign function. Thus, if v is positive, the landmark
is visible; otherwise invisible.

After estimating the visibility of each landmark, we utilize the visible land-
marks to generate visible landmark heatmap. Landmark heatmap is an image
whose pixel intensity has an inverse relationship with the distance between the
pixel location and nearest landmark location. The visible landmark heatmap can
be computed by

H(x, y) =
1

1 + minsi∈Tk×Sk
2d

||(x, y) − si||2 (4)

where H(x, y) is the intensity of pixel (x, y) in visible landmark heatmap image,
Tk×Sk

2d are transformed visible landmarks at regression stage k, si is the nearest
visible landmark of pixel (x, y).

3.5 Feature Map

The feature map is an image generated by a fully connected layer, whose input is
the convolutional feature map of the last pooling layer in SRN. The output size
of the fully connected layer is 12, 544, and the output is reshaped to an image
(112 × 112 × 1). The feature map as a complement to the input facial image
and visible landmark heatmap transfers the learned information of prior stage
to later stage.

3.6 Loss Function

At each stage, we learn to minimize the 2D and 3D landmarks location error
normalized by facial bounding box diagonal lengths. Therefore, our loss function
can be written as

L =
||T−1

k (TkS
k−1
2d + ΔSk−1

2d ) − S∗
2d||

d2d
+

||T−1
k (TkS

k−1
3d + ΔSk−1

3d ) − S∗
3d||

d3d
(5)

where S∗
2d and S∗

3d are ground truth 2D and 3D landmarks, d2d and d3d are the
diagonal lengths of the 2D and 3D facial bounding boxes respectively. Note that
in the first SRN the input is original face image. Therefore, the loss function of
the first stage does not include the transformation T or its inverse T−1.
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4 Experiments

4.1 Implementation Details

We train our model with the 300W-LP database [9], which contains 61,225
images of front, middle-front and challenging profile faces together with their
68 ground truth 3D landmarks and their corresponding semantically consistent
2D landmarks. To increase the data diversity, we do data augmentation for the
training data by applying mirror, rotation, translation and scaling.

While our model consists of two stages, we first pre-train the first stage,
and then train both stages together in an end-to-end manner. We use Adam
stochastic optimization [14] to optimize our loss with a learning rate of 0.001
and mini batch size of 64. The method is implemented with Tensorflow 1.4.0.
The obtained model can run at 35 fps on a computer with one GeForce GTX
1050Ti.

4.2 Experimental Results

We compare our method with some state-of-the-art methods on three databases:
AFLW- 2000-3D [9], Menpo-3D [15], and 300W-Testset-3D [16]. In the experi-
ments, we use the facial bounding boxes generated from ground truth landmarks,
and the mean frontal face shape as the initial face shape S0

2d/3d.

Table 1. Mean error normalized by bounding box diagonal length on AFLW2000-3D
database.

Method [0◦, 30◦] [30◦, 60◦] [60◦, 90◦] Mean

RCPR (300W-LP) [17] 4.26 5.96 13.18 7.80

ESR (300W-LP) [18] 4.60 6.7 12.67 7.99

SDM (300W-LP) [19] 3.67 4.94 9.76 6.12

3DDFA [9] 3.78 4.54 7.93 5.42

3DDFA+SDM [9] 3.43 4.24 7.17 4.94

Chen et al. [10] 3.20 5.48 6.12 4.93

3D-FAN [6] 3.38 4.46 5.59 4.47

Ours (heatmap) 2.97 3.93 5.18 4.02

Ours (visible-heatmap) 2.97 3.85 5.09 3.97

Table 2. Mean error normalized by bounding box diagonal length on AFLW2000-3D
database (Only visible landmarks are considered).

Method [0◦, 30◦] [30◦, 60◦] [60◦, 90◦] Mean

DAN [5] 3.07 4.01 8.16 5.08

Ours 2.92 3.36 4.12 3.46
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AFLW2000-3D is a challenging large pose database containing 2,000
facial images and their annotated ground truth 68 semantic landmarks.
We categorize the face images in AFLW2000-3D into three view groups
[0◦, 30◦], [30◦, 60◦], [60◦, 90◦] according to their yaw rotation angles. The result-
ing three groups contain 1, 312, 390 and 298 images, respectively. Table 1 shows
the landmark localization errors of the proposed method and the counterpart
methods. Obviously, our method achieves the lowest error. In Table 1, we also
report the performance of our method when conventional heatmap rather than
the visibility-refined heatmap is used. The increased error proves the importance
of considering the landmark visibility. Table 2 further compares our method with
the latest DAN method. Note that only visible landmarks are considered here
for the sake of fair comparison. Again, our method performs better.

Menpo-3D contains 8,955 challenging images with varying illuminations,
poses and occlusions. 300W-Testset-3D contains 600 in-the-wild images. We com-
pare our method with Chen et al. [10] and 3D-FAN [6] on these two databases.
The results are shown in Table 3, which again demonstrate the superiority of
our method in robustly detecting facial landmarks under challenging conditions.
Figure 3 shows the landmarks detected by our method on some example images.

Table 3. Mean error normalized by bounding box diagonal length on Menpo-3D and
300W-Testset-3D databases.

Method 300W-Testset-3D Menpo-3D

Chen et al. [10] 3.38 4.46

3D-FAN [6] 2.83 3.70

Ours 2.77 3.35

Fig. 3. Landmark detection results of our method on images from AFLW2000-3D (first
row), 300W-Testset-3D (second row) and Menpo-3D (third row). Green and red dots
show the visible and invisible landmarks, respectively. (Color figure online)
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5 Conclusions

In this paper, we propose an improved large pose face alignment method that
can locate 2D and 3D facial landmarks simultaneously. Our proposed method
effectively explores the 3D property of faces to refine the detected 2D land-
marks. Unlike existing methods, our proposed method simultaneously estimates
the 2D and 3D coordinates of the facial landmarks, and regularizes the land-
mark heatmap with the landmark visibility that is determined based on the
3D coordinates. Extensive experiments on challenging databases show that our
method is superior to the compared existing methods in challenging large pose
face alignment.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China (2017YFB0802300) and the National Natural Science
Foundation of China (61773270).

References

1. Zhou, S., Comaniciu, D.: Shape regression machine. Inf. Process. Med. Imaging
45(84), 13–25 (2007)

2. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point
detection. In: CVPR, pp. 3476–3483 (2013)

3. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-
task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10599-4 7

4. Zhu, S., Li, C., Chen, CL., Tang, X.: Face alignment by coarse-to-fine shape search-
ing. In: CVPR, pp. 4998–5006 (2015)

5. Kowalski, M., Naruniec, J., Trzcinski, T.: Deep alignment network: a convolutional
neural network for robust face alignment. In: CVPRW, pp. 2034–2043 (2017)

6. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D&3D face align-
ment problem? (and a dataset of 230,000 3D facial landmarks). In: ICCV, pp.
1021–1030 (2017)

7. Jourabloo, A., Liu, X.: Pose-invariant 3D face alignment. In: ICCV, pp. 3694–3702
(2015)

8. Liu, F., Zeng, D., Zhao, Q., Liu, X.: Joint face alignment and 3D Face reconstruc-
tion. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9909, pp. 545–560. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46454-1 33

9. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.: Face alignment across large poses: a 3D
solution. In: CVPR, pp. 146–155 (2016)

10. Chen, F., Liu, F., Zhao, Q.: Robust multi-view face alignment based on cascaded
2D/3D face shape regression. In: You, Z., et al. (eds.) CCBR 2016. LNCS, vol. 9967,
pp. 40–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46654-5 5

11. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model.
IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint, pp. 1409–1556 (2014)

https://doi.org/10.1007/978-3-319-10599-4_7
https://doi.org/10.1007/978-3-319-10599-4_7
https://doi.org/10.1007/978-3-319-46454-1_33
https://doi.org/10.1007/978-3-319-46454-1_33
https://doi.org/10.1007/978-3-319-46654-5_5


Improving Large Pose Face Alignment by Regressing 2D and 3D Landmarks 357

13. Tuzel, O., Marks, T.K., Tambe, S.: Robust face alignment using a mixture of
invariant experts. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9909, pp. 825–841. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46454-1 50

14. Kingma, D., Adam, J.: A method for stochastic optimization. In: International
Conference on Learning Representations, pp. 1–13 (2014)

15. Zafeiriou, S., Trigeorgis, G., Chrysos, G., Deng, J., Shen, J.: The menpo facial
landmark localisation challenge: a step closer to the solution. In: CVPRW, pp.
2116–2125 (2017)

16. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild
challenge: the first facial landmark localization challenge. In: ICCVW, pp. 397–
403 (2013)

17. Burgos-Artizzu, X., Perona, P., Dollar, P.: Robust face landmark estimation under
occlusion. In: ICCV, pp. 1513–1520 (2013)

18. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression.
Int. J. Comput. Vis. 107(2), 177–190 (2014)

19. Xiong, X., Torre, F.: Supervised descent method and its applications to face align-
ment. In: CVPR, pp. 532–539 (2013)

https://doi.org/10.1007/978-3-319-46454-1_50
https://doi.org/10.1007/978-3-319-46454-1_50

	Improving Large Pose Face Alignment by Regressing 2D and 3D Landmarks Simultaneously and Visibility Refinement
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Overview
	3.2 Shape Regression Network
	3.3 Transformation Module
	3.4 Visible Landmark Heatmap
	3.5 Feature Map
	3.6 Loss Function

	4 Experiments
	4.1 Implementation Details
	4.2 Experimental Results

	5 Conclusions
	References




