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Abstract. Phase retrieval is to recover signals from phaseless linear
measurements. The most efficient methods to tackle this problem are
nonconvex gradient approaches, which however generally need an elab-
orate initialized guess to ensure successful reconstruction. The inverse
power method is proposed to provide a more accurate initialization.
Numerical experiments illustrate the higher accuracy of the proposed
method over other initialization methods. And we further demonstrate
the iterative use of the initialization method can obtain an even better
estimate.
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1 Introduction

Phase retrieval is to recover the signal x ∈ C
n from the phaseless measurement:

bi = |〈ai,x〉| , 1 ≤ i ≤ m, (1)

where the measuring vectors ai in C
n. The measuring matrix A = [a1, · · · ,am]

is assumed to be full-rank. The applications of phase retrieval exists widely
in many fields of sciences and engineering, including X-ray crystallography [1],
molecular imaging [2], biological imaging [3] as well as astronomy [4]. To avoid
the illness of problem, it is proved that m should be larger than 2n − 1 in real-
valued case or 4n−4 in complex-valued case [5,6], which we call the information
limit in phase retrieval.

The nonlinear inverse problem in (1) is generally known to be NP-hard [7].
Therefore, without adopting effective heuristic function, it is almost impossible
to find the solution in tolerable time when n is relatively large. The efficient and
practical approaches to this problem are generally nonconvex and can be roughly
categorized into two types: alternating projection algorithms (also referred as
fixed point algorithms) [8,9] and gradient-descent methods [10,11].
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The crucial step for nonconvex methods is an elaborate initialization. Namely,
one usually needs a good estimate of the true solution to ensure the probability
of successful reconstruction. In fact, many nonconvex gradient-like method, e.g.
the Wirtinger flow method [10] and the Amplitude flow method [12] degenerate
to be convex if the initialization lies around the true solution. As more accurate
initializer is proposed, the nonconvex method can performs even better when m
is below the information limit in phase retrieval [13].

Related work is presented in Sect. 2. In Sect. 3, a more accurate initialization
method, called the inverse power method is proposed in this paper. And through
numerical experiments, the effectiveness and superior accuracy are illustrated
in Sect. 4.

2 Related Work

Current initialization methods include the spectral method [8], the truncated
spectral method [14] and the null vector method [15]. For the convenience of
the notation, the measuring vectors are normalized to unit vectors before the
initialization step, namely ‖ai‖ = 1.

The spectral method is a linear algebraic initializer by the maximization
problem:

xspec = arg max
{

‖diag(b)A∗x‖2 : x ∈ C
n, ‖x‖ = ‖x0‖

}
, (2)

where diag(b) is a function that returns a square diagonal matrix with the ele-
ments of vector b on the main diagonal.

The truncated spectral method is a modification of the spectral method.
This method first select a part of measuring vectors which have the largest inner
product with the true solution x. Then an estimate can be obtained by finding
the vector that is most coherent with the selected set of vectors. Specifically, the
truncated spectral vector method is to solve the maximization problem:

xt-spec = arg max
{

‖diag(1τ � b)A∗x‖2 : x ∈ C
n, ‖x‖ = ‖x0‖

}
, (3)

where � stands for element-wise multiplication, and 1τ is the characteristic
function of the set

{i : b(i) ≤ τ‖x0‖} (4)

with some preset threshold value τ ∈ (0, 1).
The null vector method is proposed from another viewpoint: the orthogo-

nality between vectors. A set of weak vectors that are most orthogonal to x
are selected from the measuring vectors. And through seeking the vector which
is most orthogonal to the weak vectors, one can obtain an estimate of the x.
Mathematically speaking, the weak vector set is denoted as I ⊂ {1, · · · ,m} and
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its complement Ic are defined such that bi ≤ bj for all i ∈ I and j ∈ Ic. Then
the null vector method can be formulated as

xnull = arg min
{

‖A∗
Ix‖2 : x ∈ C

n, ‖x‖ = ‖x0‖
}

. (5)

To make use of the available power method, Chen convert (5) into a maximization
problem [15]:

xnull = arg max
{∥∥A∗

Icx
∥∥2 : x ∈ C

n, ‖x‖ = ‖x0‖
}

. (6)

Current initialization methods, (2), (3) and (6) are all about finding the lead-
ing eigenvector, which can be efficiently solved by power method. We illustrate
the Algorithm 1 for computing (2) as an example.

Algorithm 1. The spectral method
Input: A, b, ‖x0‖, threshod value ε.
Initialization: x1

1: for k = 1, 2, · · · do
2: x′

k+1 ← A diag(b2)A∗xk

3: xk+1 ← x′
k/ ‖x′

k+1‖
4: if ‖xk+1 − xk‖ ≤ ε, break
5: end for

Output: xspec = xk+1 ‖x0‖ / ‖xk+1‖ .

3 Algorithm

3.1 Inverse Power Method

Related work show that the null vector method has the best numerical perfor-
mance compared with spectral method and the truncated spectral method [15].
However, several drawbacks remains. An important step in the null vector is
setting a threshold value for picking out weak vectors, and the problem of how
to choose the proper threshold value has not been solved yet. Moreover, the
selected weak vectors are treated without indistinguishably, the accuracy could
be improved if proper weights are added upon these vectors. Based on these
considerations, our method, the inverse power method is proposed as follows:

xnull = arg max
{∥∥∥diag(b−γ/2)A∗x

∥∥∥
2

: x ∈ C
n, ‖x‖ = ‖x0‖

}
. (7)

where γ is a positive number.
The inverse power method is based on the following facts:

1. By minimizing the function fi(x) = x∗
‖x‖aia

∗
i

x
‖x‖ , one can obtain an arbitrary

vector in the orthogonal complement space of ai.
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2. Instead of selecting only a proportion of measuring vectors by comparing bi,
we carefully give various weights to measuring vectors. Specifically, the inverse
power method is to minimize a combination of weighted fi(x):

f(x) =
m∑
i

wifi(x). (8)

The measurements bi can also be regarded as the measure of orthogonality
between ai and x0. For arbitrary two measuring vectors ai and aj , if the
bi is smaller than bj , then x is more orthogonal with ai than aj , hence
more weights is added upon the function fi(x). Therefore, it is reasonable
to weight more fi(x) corresponding to smaller bi. A natural way to satisfy
this goal is weighting fi(x) with simple functions. Here we take the weights
wi = b−γ

i with γ ≥ 0, which makes (8) and (7) equivalent. Through numerical
implementations, we find that γ > 1 would ensure relative good performance.

Solving the minimization problem (7) is identical to searching for the eigen-
vector with the smallest eigenvalue. This can be solved efficiently through the
propose inverse power approach presented in Algorithm 2. The core step of this
algorithm is solving a linear system of equation, which can be implemented effi-
ciently by the well-known Gauss-Seidel method, Jacobi method or successive
over relaxation method.

Algorithm 2. The inverse power method (IPM)
Input: A, b, ‖x0‖, threshod value ε.
Initialization: x1

1: for k = 1, 2, · · · do
2: x′

k ← (
A diag(b−2)A∗)−1

xk

3: xk+1 ← x′
k/ ‖x′

k‖
4: if ‖xk+1 − xk‖ ≤ ε, break
5: end for

Output: xIPM = xk ‖x0‖ / ‖xk‖ .

3.2 Iterative Inverse Power Method

After we obtain an estimate xIPM by the inverse power algorithm, the similar
analysis about orthogonality can be made upon the residual xres = x0 − xIPM.
This inspires us to propose an iterative inverse power algorithm to improve the
estimate.

Denote bIPM = A∗xIPM, the residual between the true measurements A∗x
and A∗xIPM can be approximated by bres := b − |A∗xIPM|. Then the propor-
tion of xres in the orthogonal complement space of ai can be characterized by
(bIPM)i

−γ . In other words, we can implement the inverse power algorithm upon
the bres to approximate xres, which can be use as the search direction for better
estimate.
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The iterative inverse power method is presented in Algorithm 3. The assign-
ment xIPM ← sign (x∗

IPMxs)xIPM adds a phase factor eiθ upon xIPM, where
θ = arg minθ

∥∥eiθxIPM − xs

∥∥. The step size is restricted to be less than l such
that the elements of bres are always positive, hence ensuring the weights used in
the inverse power method are always positive. Otherwise, the negative weights
will invalidate the inverse power method. The relaxation parameter α controls
the amount of each adjustment.

Algorithm 3. The iterative inverse power method (IIPM)
Input: A, b, α, ‖x0‖ , ε, maximum number of iterations: K
Initialization: xs = 0

1: for k = 1, 2, · · · , K do
2: bres ← b − |A∗xs|
3: xIPM ← IPM(A, bres, ‖x0‖ , ε)
4: xIPM ← sign (x∗

IPMxs)xIPM

5: l ← max
{
l ∈ R

+ : |a∗
i (xs + lxIPM)| ≤ bi, i = 1, · · · , m.

}

6: xs ← xs + αlxIMP

7: end for

Output: xIIPM = xs ‖x0‖ / ‖xs‖ .

4 Numerical Experiments

In this section, we implement several numerical experiments to compare the per-
formance of our algorithms with other initialization algorithms. For comparison,
we define the relative error between recovered signal x̂ and the true signal x as:

RE: =
dist (x̂,x0)

‖x‖2 , (9)

where the function dist (x̂,x0) = minθ

∥∥eiθx̂ − x0

∥∥.
Figure 1 compares the inverse power method with three initialization schemes

mentioned in Sect. 2. The relative errors of the returned initialization estimate
under different oversampling rate m/n are presented. The measuring vectors
are i.i.d. N (0, In/2) + iN (0, In/2). Obviously, all methods perform better as
oversampling rate increases. The spectral and truncated spectral method exhibit
generally the worst performance compared with other methods. The null vector
method enjoys a better performance than the spectral and truncated spectral
method, and it achieves similar performance with the inverse method. However,
all the inverse power methods performs better than the null vector method as
oversampling rate increases. The inverse power methods with γ = 3 and γ = 3.5
have the lowest relative error over all oversampling rate. And interestingly, the
inverse power method performs almost the same with γ ≥ 2 when oversampling
rate is sufficiently large (m/n > 25).



228 Q. Luo et al.

5 10 15 20 25 30 35 40 45 50
oversampling rate m/n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
el

at
iv

e 
er

ro
r (

R
E)

null vector
spectral method
truncated spectral method
1.5-order inverse power method
2-order inverse power method
2.5-order inverse power method
3-order inverse power method
3.5-order inverse power method

Fig. 1. Relative error of estimates by different initialization schemes under different
oversampling rate m/n. n = 256, and m/n varies from 5 to 50. The parameter γ of the
inverse power method varies from 1.5 to 3.5.

Figure 2 illustrates the effectiveness of the proposed iterative inverse power
method. Overall, the iterative inverse power method perform considerably bet-
ter than the single inverse power method. And better accuracy is achieved as
oversampling rate increases. Let α correspond to the step size of each update.
Different α can lead to different rates of convergence. Apparently, a larger step
size can cause a faster converging rate. It only takes about 10 iterations to con-
verge for α = 0.9, while for the α = 0.1, dozens of iterations are implemented
before converging. However, a larger α can skip the optimum solution, which
has been widely discussed in optimization theory [16]. As shown in Fig. 2b, for
α = 0.9, the relative error is 0.48, much higher than 0.32 for α = 0.6, and 0.31
for α = 0.3.
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Fig. 2. Relative error for the iterative inverse power method versus iteration count
with various step size. α under different oversampling rates.

5 Conclusion

This paper develops a new initialization method, which can efficiently give a
more accurate estimate of the original signal for phase retrieval. And through
iterative use of the proposed inverse power method, a better performance is
achieved. This work is helpful for solving various imaging problems based on
phase retrieval.
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