
Chapter 7
Effective Tensor-Based Data Clustering
Through Sub-Tensor Impact Graphs

K. Selçuk Candan, Shengyu Huang, Xinsheng Li, and Maria Luisa Sapino

7.1 Introduction

Tensors are multi-dimensional arrays and are commonly used for representing multi-
dimensional data, such as sensor streams and social networks [9, 17]. Thanks to the
widespread availability of multi-dimensional data, tensor decomposition operations
(such as CP [10] and Tucker [31]) are increasingly being used to implement various
data analysis tasks, from anomaly detection [17], correlation analysis [26] to pattern
discovery [13] and clustering [22, 28, 32].

A critical challenge for tensor-based analysis is its computational complexity
and decomposition can be a bottleneck in some applications [14, 21, 30]. Phan
and Cichocki [23] proposed a methodology to partition the tensor into smaller
sub-tensors to deal with this issue: (a) partition the given tensor into blocks (or sub-
tensors), (b) decompose each block independently, and then (c) iteratively combine
these sub-tensor decompositions into a final decomposition for the input tensor. This
process leads to two key observations:

• Observation #1: Our key observation in this chapter is that Step (c), which
iteratively updates and stitches the sub-tensor decompositions obtained in Steps
(a) and (b), is where the various decompositions interact with each other and

K. S. Candan (�) · S. Huang · X. Li
Arizona State University, Tempe, AZ, USA
e-mail: candan@asu.edu; shengyu.huang@asu.edu; lxinshen@asu.edu

M. L. Sapino
University of Torino, Torino, Italy
e-mail: marialuisa.sapino@unito.it

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2_7

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97864-2_7&domain=pdf
mailto:candan@asu.edu
mailto:shengyu.huang@asu.edu
mailto:lxinshen@asu.edu
mailto:marialuisa.sapino@unito.it
https://doi.org/10.1007/978-3-319-97864-2_7


146 K. S. Candan et al.

where any inaccuracies in individual sub-tensor decompositions can propagate
(through the update rules introduced in Sect. 7.2.4) to the decomposition of the
complete tensor.

• Observation #2: We further observe that if we can quantify and capture how these
sub-tensors interact and inaccuracies propagate, we can use this information to
better allocate resources to tackle the accuracy–efficiency trade-off inherent in
the decomposition process.

Based on these two observations, in this chapter, we introduce the notion of sub-
tensor impact graphs (SIGs) (Sect. 7.3), which capture and represent how the
decompositions of these sub-partitions impact each other and the overall tensor
decomposition accuracy and present several complementary algorithms that lever-
age this novel concept to address various key challenges in tensor decomposition.

7.1.1 Contributions of This Chapter: Sub-Tensor Impact
Graphs

While block-based tensor decomposition techniques [15, 23] provide potential
opportunities to boost the accuracy/efficiency trade-off, this solution leaves several
open questions, including (a) how to partition the tensor and (b) how to most
effectively combine results from these partitions. In this chapter, we introduce the
notion of sub-tensor impact graphs (SIGs), which quantify how the decompositions
of these sub-partitions impact each other and the overall tensor decomposition
accuracy and present four complementary algorithms that leverage this novel
concept to address various key challenges in tensor decomposition, including
personalization, noise, and dynamic data.

7.1.1.1 Challenge #1: Decomposition in the Presence of Dynamic Data

Firstly, we rely on sub-tensor impact graphs (SIGs) to tackle performance challenges
that dynamic data pose in tensor analytics: incremental tensor decomposition. Re-
computation of the whole tensor decomposition with each update will cause high
computational costs and incur large memory overheads. Especially for applications
where data evolves over time and the tensor-based analysis results need to be
continuously maintained. In Sect. 7.4, we present a two-phase block-incremental
CP-based tensor decomposition technique (BICP), which relies on sub-tensor
impact graphs to prune unnecessary computation in the presence of incremental
updates on the data [11].



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 147

7.1.1.2 Challenge #2: Dealing with Noisy Data

Next, in Sect. 7.5, we present a Noise Adaptive Tensor Decomposition (nTD)
method that leverages sub-tensor impact graphs to tackle deal with noisy data. nTD
partitions the tensor into multiple sub-tensors and then decomposes each sub-tensor
probabilistically through Bayesian factorization—the resulting decompositions are
then recombined through an iterative refinement process to obtain the decom-
position for the whole tensor. nTD leverages a resource allocation strategy that
accounts for the impact of the noise density of one sub-tensor on the decomposition
accuracies of the other sub-tensors, based on the underlying sub-tensor impact
graph [19].

7.1.1.3 Challenge #3: Personalization of the Decomposition Process

Finally, we introduce a novel personalized tensor decomposition (PTD) mechanism
for accounting for the user’s focus and interests during tensor decomposition
(Sect. 7.6). We present alternative ways to account for the impact of the accuracy
of one region of the tensor to the accuracies of the other regions of the tensor, each
based on a different assumption about how the impact of inaccuracies propagates
along the tensor. Given a model of impact, PTD (a) first partitions the input tensor in
a way that reflects user’s interest, (b) constructs a sub-tensor impact graph reflecting
the tensor content and its partitions, and then (c) analyzes this sub-tensor impact
graph (in the light of the user’s interest) to identify initial decomposition ranks
for the sub-tensors in a way that will boost the final decomposition accuracies for
partitions of interest [18].

7.2 Background

7.2.1 Tensors

A tensor is a multi-dimensional array. More formally, an N-way or Nth-order tensor
is an element of the tensor product of N vector spaces, each of which has its own
coordinate system. A third-order tensor has three indices. A first-order tensor is a
vector, a second-order tensor is a matrix, and tensors of order three or higher are
called higher-order tensors. As in the case of matrices, the dimensions of the tensor
array are referred to as its modes. For example, the tensor, X ∈ R

I×J×K, shown in
Fig. 7.1, is of third-order and has three modes: I columns (mode 1), J rows (mode 2),
and K tubes (mode 3). Fibers are the higher-order analogue of matrix rows and
columns. A fiber is defined by fixing every index but one. A matrix column is a
mode-1 fiber and a matrix row is a mode-2 fiber. Slices are two-dimensional sections
of a tensor, defined by fixing all but two indices [16].



148 K. S. Candan et al.

Fig. 7.1 A third-order
(3-mode) tensor of
dimensions, I × J × K

Fig. 7.2 CP decomposition of a 3-mode tensor results in a diagonal core and three factors

7.2.2 Tensor Decomposition

Tensor-based algorithms, most notably tensor decomposition, are increasingly
important tools for analysis, including clustering, of high-dimensional data sets.
Intuitively, tensor decomposition process generalizes matrix decomposition-based
data analysis and clustering (such as PCA [7] and SVD [5, 8]) to high-dimensional
arrays (known as tensors) and rewrites the given tensor in the form of a set of
factor matrices (one for each mode of the input tensor) and a core tensor (which,
intuitively, describes the spectral structure of the given tensor). These factor matrices
and core tensors then can be used for obtaining multi-modal clusters of the input
data. The two most popular tensor decomposition algorithms are the Tucker [31]
and the CANDECOMP/PARAFAC(CP) [10] decompositions. We next provide a
brief description of these algorithms.

7.2.2.1 CP and Tucker Decompositions

The PARAFAC decomposition can be seen as a generalization of matrix factor-
izations to tensors [10]. PARAFAC decomposition is also known as CANDE-
COMP/PARAFAC (CP) decomposition. As shown in Fig. 7.2, given a tensor X,
CP factorizes the tensor into F component matrices (where F is a user supplied
non-zero integer value also referred to as the rank of the decomposition). For the
simplicity of the discussion, let us consider a 3-mode tensor X ∈ R

I×J×K. CP
would decompose X into X̊ consisting of three matrices A, B, and C, such that



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 149

Fig. 7.3 Tucker decomposition of a three-mode tensor

X ≈ X̃ = recombine[X̊] ≡ recombine[A, B, C] ≡
F∑

f =1

af ◦ bf ◦ cf ,

where af ∈ R
I, bf ∈ R

J, and cf ∈ R
K. The factor matrices A, B, C

are the combinations of the rank-one component vectors into matrices, e.g., A =
[ a1 a2 · · · aF ]. This is visualized in Fig. 7.2.

Tucker decomposition generalizes singular value matrix decomposition (SVD)
to higher-dimensional data (Fig. 7.3). Given a tensor X ∈ R

I×J×K, Tucker decom-
position factorizes the tensor into factor matrices with different number of rows,
which are referred to as the rank of the decomposition. Tucker decomposition would
decompose X into three matrices A, B, C and one core dense tensor G, such that

X ≈ X̃ = G ×1 A ×2 B ×3 C ≡
P∑

p=1

Q∑

q=1

R∑

r=1

gpqrap ◦ bq ◦ cr ,

where A ∈ R
I×P, B ∈ R

J×Q, C ∈ R
K×R are the factor matrices and can be treated

as the principal components in each mode. The (dense) core tensor, G ∈ R
P×Q×R,

indicates the strength of interactions among different components of the factor
matrices.

7.2.2.2 Accuracy of Tensor Decomposition

Note that, in general, unlike matrix decomposition (where each matrix has an exact
decomposition), tensors may not have exact decompositions [16]. Therefore, many
of the algorithms for decomposing tensors are based on an iterative process that
tries to improve the approximation until a convergence condition is reached, such as
an alternating least squares (ALS) method: at its most basic form, ALS estimates, at
each iteration, one factor matrix while maintaining other matrices fixed; this process
is repeated for each factor matrix associated with the modes of the input tensor.



150 K. S. Candan et al.

Note that due to the approximate nature of tensor decomposition operation, given a
decomposition [A, B, C] of X, the tensor X̃ that one would obtain by re-composing
the tensor by combining the factor matrices A, B, and C is often different from the
input tensor, X. The accuracy of the decomposition is often measured by considering
the Frobenius norm of the difference tensor:

accuracy(X, X̃) = 1 − error(X, X̃) = 1 −
(

‖X̃ − X‖
‖X‖

)
.

7.2.3 Tensor Decomposition and Clustering

As we mentioned earlier, intuitively, tensor decomposition process generalizes
matrix decomposition to high-dimensional arrays and the resulting factor matrices
and core tensors then can be used for obtaining multi-modal clusters of the
input data. Indeed, tensor-based representations of data and tensor decompositions
(especially the two widely used decompositions CP [10] and Tucker [31]) are
proven to be effective in multi-aspect data analysis and clustering. For instance,
[22] used tensor decomposition to cluster patients in a health-care setting based
on their individual and health profile data, including age, medical history, and
diagnostics: in particular, the authors have created a patient information tensor and
decomposed this tensor (by nonnegative low-rank approximation methods) to obtain
semantic clusters that can be used to characterize patients’ records. Davidson et
al. [6] applied tensor decomposition to fMRI data to help differentiating healthy and
Alzheimer affected individuals. Cao et al. [3] used a similar tensor decomposition-
based approach to cluster face images: authors modeled a collection of faces as a
tensor and they applied a tensor-based principal component analysis for seeking
face clusters. Wu et al. [32] leveraged CP decomposition (solved through stochastic
gradient descent) to cluster heterogeneous information networks: each type of
object in the network is represented as a different mode of the tensor. Sun et
al. [28], on the other hand, has shown that Tucker decomposition can be used for
subspace clustering which simultaneously conducts dimensionality reduction and
membership representation.

7.2.4 Block-Based Tensor Decomposition

One key challenge with tensor decomposition is its computational complexity:
decomposition algorithms have high computational costs and, in particular, incur
large memory overheads (also known as the intermediary data blow-up problem)
and, thus, basic algorithms and naive implementations are not suitable for large
problems. HaTen2 [12] focuses on sparse tensors and presents a scalable tensor



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 151

Algorithm 1 The outline of the block-based iterative improvement process
Input: original tensor X, partitioning pattern K , and decomposition rank, F

Output: CP tensor decomposition X̊
1. Phase 1: for all k ∈ K

• decompose Xk into U
(1)
k , U

(2)
k , . . ., U

(N)
k

2. Phase 2: repeat

a. for each mode i = 1 to N

i. for each modal partition, ki = 1 to Ki ,

A. update A
(i)
(ki )

using U
(i)
[∗,...,∗,ki ,∗,...,∗], for each block X[∗,...,∗,ki ,∗,...,∗]; more specif-

ically,

• compute T
(i)
(ki )

, which involves the use of U
(i)
[∗,...,∗,ki ,∗,...,∗] (i.e., the mode-i

factors of X[∗,...,∗,ki ,∗,...,∗])
• revise P[∗,...,∗,ki ,∗,...,∗] using U

(i)
[∗,...,∗,ki ,∗,...,∗] and A

(i)
(ki )

• compute S
(i)
(ki )

using the above

• update A
(i)
(ki )

using the above
• for each k = [∗, ∗, . . . , ki , . . . , ∗, ∗]

– update Pk and Qk using
– U

(i)
k and A

(i)
(ki )

until stopping condition
3. Return X̊

decomposition suite of methods for Tucker and PARAFAC decompositions on the
MapReduce framework. TensorDB [15] leverages a chunk-based framework to store
and retrieve data, extends array operations to tensor operations, and introduces
optimization schemes for in-database tensor decomposition.

One way to deal with this challenge is to partition the tensor and obtain the tensor
decomposition leveraging these smaller partitions. Block-based decomposition
techniques partition the given tensor into blocks or sub-tensors, initially decompose
each block independently, and then iteratively combine these decompositions into
a final decomposition. GridPARAFAC [23], for example, partitions the tensor into
pieces, obtains decomposition for each piece (potentially in parallel), and stitches
the partial decomposition results into a combined decomposition for the initial
tensor through an iterative improvement process. Here, we provide an overview of
the block-based tensor decomposition process.

Let us consider an N -mode tensor X ∈ R
I1×I2×...×IN , partitioned into a set (or

grid) of sub-tensors X = {Xk | k ∈ K} where K is the set of sub-tensor indexes.
Without loss of generality, let us assume that K partitions the mode i into Ki equal
partitions, i.e., |K | = ∏N

i=1 Ki . Let us also assume that we are given a target
decomposition rank, F , for the tensor X. Let us further assume that each sub-tensor
in X has already been decomposed with target rank F and let U(i) = {U(i)

k | k ∈ K}



152 K. S. Candan et al.

denote the set of F -rank sub-factors1 corresponding to the sub-tensors in X along
mode i. In other words, for each Xk, we have

Xk ≈ I ×1 U
(1)
k ×2 U

(2)
k · · · ×N U

(N)
k , (7.1)

where I is the N -mode F × F × . . . × F identity tensor, where the diagonal entries
are all 1s and the rest are all 0s. Given these, Phan and Cichocki [23] presents an
iterative improvement algorithm for composing these initial sub-factors into the full
F -rank factors, A(i) (each one along one mode), for the input tensor, X. The outline
of this block- based process is as follows: Let us partition each factor A(i) into Ki

parts corresponding to the block boundaries along mode i:

A(i) = [A(i)T
(1) A

(i)T
(2) ...A

(i)T
(Ki)

]T .

Given this partitioning, each sub-tensor Xk, k = [k1, . . . , ki, . . . , kN ] ∈ K can be
described in terms of these sub-factors:

Xk ≈ I ×1 A
(1)
(k1)

×2 A
(2)
(k2)

· · · ×N A
(N)
(kN )

(7.2)

Moreover [23] shows that the current estimate of the sub-factor A
(i)
(ki )

can be
revised using the update rule (for more details on the update rules please see [23]):

A
(i)
(ki )

←− T
(i)
(ki )

(
S

(i)
(ki )

)−1
(7.3)

where

T
(i)
(ki )

=
∑

l∈{[∗,...,∗,ki ,∗,...,∗]}
U

(i)
l

(
Pl 	 (U

(i)T
l A

(i)
(ki )

)
)

S
(i)
(ki )

=
∑

l∈{[∗,...,∗,ki ,∗,...,∗]}
Ql 	

(
A

(i)T
(ki )

A
(i)
(ki )

)

such that, given l = [l1, l2, . . . , lN ], we have

• Pl = �N
h=1(U

(h)T
l A

(h)
(lh)) and Ql = �N

h=1(A
(h)T
(lh) A

(h)
(lh)).

Above, � denotes the Hadamard product and 	 denotes element-wise division.
The block-based tensor decomposition process is outlined in pseudocode in

Algorithm 1. Figure 7.4 provides a visual example of this process: The given input
tensor X is partitioned into two sub-tensors, X1 and X2. In the first stage, each
sub-tensor is decomposed by CP, thus obtaining partial factors. The second stage

1If the sub-tensor is empty, then the factors are 0 matrices of the appropriate size.



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 153

Phase 1: Sub-tensor 
Decomposition

Χ1
≅ I

1
1

1
3

1
2

Χ3

Χ4

Χ5

Χ6

Χ7

Χ8

Χ2

Χ1

Phase 2: Block-based Iterative 
Tensor Decomposition

1
1

2
1

Update of with revised factors 
, ∈ {1,2,3}, ∈ {1,2,3,4,5,6,7}

1
1 Aligned with X1, X2, X5, X6

1
2 Aligned with: X1, X3, X5, X7

3
1 Aligned with: X1, X2, X3, X4

…

Χ8
≅ I

8
1

8
3

8
2

2
2

1
2 2

3

1
3

Fig. 7.4 Illustration of block-based tensor decomposition process

combines these partial decomposed factors using iterative updates to derive the final
factors (and the corresponding core) for tensor X.

7.3 Sub-Tensor Impact Graphs (SIGs) and Sub-Tensor
Impact Scores

In this section, we formally introduce the concept of sub-tensor impact graph
(SIG) that captures and represents the underlying structure of sub-tensors and helps
efficiently calculate the impact of each sub-tensor on the decomposition accuracy of
the overall tensor.

Let an N -mode tensor, X ∈ R
I1×I2×...×IN , be partitioned into a grid, X =

{Xk | k ∈ K}, of sub-tensors, such that

• Ki indicates the number of partitions along mode-i,
• the size of the j th partition along mode i is Ij,i (i.e.,

∑Ki

j=1 Ij,i = Ii), and
• K = {[kj1, . . . , kji

, . . . , kjN
] | 1 ≤ i ≤ N, 1 ≤ ji ≤ Ki} is a set of sub-tensor

indexes.

The number, ‖X‖, of partitions (and thus also the number, ‖K‖, of partition indexes)
is

∏N
i=1 Ki .



154 K. S. Candan et al.

Fig. 7.5 A sample 3-mode
tensor, partitioned into 27
heterogeneous sub-tensors

 27

 25

 3

 1

 7
y

z

x

Example 7.1 Figure 7.5 shows a 3-mode tensor, partitioned into 27 sub-tensors: 12
tensor-blocks (sub-tensors 1, 3, 7, 9, 10, 12, 16, 18, 19, 21, 15, 27), 12 slices (sub-
tensors 2, 8, 11, 17, 20, 26, 4, 6, 13, 15, 22, 24), and three fibers (sub-tensors 5, 14,
23). The specific shapes of partitions may correspond to user’s requirement such as
the degree of importance or user focus.

7.3.1 Accuracy Dependency Among Sub-Tensors

In Sect. 7.2.4, we presented update rules block-based tensor decomposition algo-
rithms use for stitching the individual sub-tensor decompositions into a complete
decomposition for the whole tensor. While the precise derivation of these update
rules is not critical for our discussion (and is beyond the scope of this chapter),
it is important to note that, as visualized in Fig. 7.6, each A

(i)
(ki )

is maintained

incrementally by using, for all 1 ≤ j ≤ N , the current estimates for A
(j)

(kj ) and the

decompositions in U(j), i.e., the F -rank sub-factors of the sub-tensors in X along
the different modes of the tensor. Moreover, and most importantly for the present
discussion, this update rule for A

(i)
(ki )

supports the following observation: Given

Xk ≈ I ×1 A
(1)
(k1)

×2 A
(2)
(k2)

· · · ×N A
(N)
(kN ),



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 155

Fig. 7.6 The block-based update rule maintains A
(i)
(ki )

incrementally by using the current estimates

for A
(j)

(kj ) and the decompositions in U(j)

the final accuracy for the sub-tensor Xk, k = [k1, . . . , ki, . . . , kN ], depends on the
accuracies of sub-factors A

(i)
(ki )

. Moreover, the accuracy of each of these, in turn,
depends on the accuracies of the sub-factors of the contributing sub-tensors. More
specifically, when updating A

(i)
(ki )

, we need to compute

• T
(i)
(ki )

, which involves the use of U
(i)
[∗,...,∗,ki ,∗,...,∗] (i.e., the mode-i factors of

X[∗,...,∗,ki ,∗,...,∗]), and

• P[∗,...,∗,ki ,∗,...,∗], which in turn uses U
(h)
[∗,...,∗,ki ,∗,...,∗] for 1 ≤ h ≤ N (i.e., all

factors of X[∗,...,∗,ki ,∗,...,∗]).

Therefore, the final accuracy of Xk depends directly on the initial decomposition
accuracies of the factor matrices U

(h)
[∗,...,∗,ki ,∗,...,∗], for 1 ≤ i, h ≤ N .

In other words, for each sub-tensor Xk, there is a set, direct_impact (Xk) ⊆
X, of sub-tensors that consists of those sub-tensors whose initial decomposition
accuracies directly impact the final decomposition accuracy of Xk. Moreover, as
visualized in Fig. 7.7, direct_impact (Xk) consists of those sub-tensors that are
aligned (i.e., share the same slices) with Xk, along the different modes of the tensor.

7.3.2 Sub-Tensor Impact Graphs (SIGs)

Given the accuracy dependencies among the sub-tensors formalized above, we can
define a sub-tensor impact graph (SIG):



156 K. S. Candan et al.

Fig. 7.7 The sub-tensors whose initial decomposition accuracies directly impact given sub-tensors
are aligned (i.e., share the same slices) with that sub-tensor along the different modes of the tensor

Definition 7.1 Let an N -mode tensor, X ∈ R
I1×I2×...×IN , be partitioned into a grid,

X = {Xk | k ∈ K}, of sub-tensors. The corresponding sub-tensor impact graph
(SIG) is a directed, weighted graph, G(V,E,w()), where

• for each Xk ∈ X, there exists a corresponding vk ∈ V ,
• for each Xl ∈ direct_impact (Xk), there exists a directed edge vl → vk in E,

and
• w() is an edge weight function, such that w(vl → vk) quantifies the direct

accuracy impact of decomposition accuracy of Xl on Xk. ♦
Intuitively, the sub-tensor impact graph represents how the decomposition accura-
cies of the given set of sub-tensors of an input tensor impact the overall combined
decomposition accuracy. A key requirement, of course, is to define the edge weight
function, w(), that quantifies the accuracy impacts of the sub-tensors that are related
through update rules. In this section, we introduce three alternative strategies to
account for the propagation of impacts within the tensor during the decomposition
process.

7.3.2.1 Alt. #1: Uniform Edge Weights

The most straightforward way to set the weights of the edges in E is to assume that
the propagation of the inaccuracies over the sub-tensor impact graph is uniform. In
other words, in this case, for all e ∈ E, we set wuni(e) = 1.



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 157

7.3.2.2 Alt. #2: Surface of Interaction-Based Weights

While being simple, the uniform edge weight alternative may not properly account
for the impact of the varying dimensions of the sub-tensors on the error propagation.

As we see in Fig. 7.5, in general, the neighbors of a given sub-tensor can be of
varying shape and dimensions and we may need to account for this diversity in order
to properly assess how inaccuracies propagate in the tensor. In particular, in this
subsection, we argue that the surface of interaction between two sub-tensors Xj and
Xl, defined as below, may need to be considered to account for impact propagation:

Definition 7.2 (Surface of Interaction) Let X be a tensor partitioned into a set (or
grid) of sub-tensors X = {Xk | k ∈ K}. Let also Xj and Xl be two sub-tensors in X,
such that

• j = [kj1, kj2 , . . . , kjN
] and

• l = [kl1, kl2 , . . . , klN ].
We define the surface of interaction, surf (Xj,Xl), between Xj and Xl as follows:

surf (Xj,Xl) =
∏

h s.t. jh=lh

Ijh,h.

♦
Here Ijh,h is the size of the jhth partition along mode h.

Principle 1 Let G(V,E,w()) be a sub-tensor impact graph and let (vj → vl) ∈ E

be an edge in the graph. The weight of this edge from vj to vl should reflect the area
of the surface of interaction between the sub-tensors Xj and Xl.

Intuitively, this principle verbalizes the observation that impacts are likely to
propagate more easily if two sub-tensors share large dimensions along the modes
on which their partitions coincide. Under this principle, we can set the weight of the
edge (vj → vl) ∈ E as follows:

wsur(vj → vl) = surf (Xj,Xl)∑
(vj→vm)∈E surf (Xj,Xm)

.

7.3.2.3 Alt. #3: Value Alignment-Based Edge Weights

Although surface of interaction-based edge weights can potentially account for the
varying shapes and sizes of the sub-tensors of X, they fail to take into account for
how similar these sub-tensors are—more specifically, they ignore how the values
within the sub-tensors are distributed and whether these distributions are aligned
across them.



158 K. S. Candan et al.

Intuitively, if the value distributions are aligned (or similar) along the modes that
two sub-tensors share, then they are likely to have high impacts on each other’s
decomposition during the decomposition process. If they are dissimilar, on the other
hand, their impacts on each other will be minimal. Therefore, considering only the
area of the surface of interaction may not be sufficient to properly account for the
inaccuracy propagation within the tensor. More specifically, we need to measure the
value alignment between sub-tensors as well:

Definition 7.3 (Value Alignment) Let X be a tensor partitioned into a set (or grid)
of sub-tensors X = {Xk | k ∈ K}. Let also Xj and Xl be two sub-tensors in X, such
that

• j = [kj1, kj2 , . . . , kjN
] and

• l = [kl1, kl2 , . . . , klN ].
Let, A = {h | kjh

= klh} be the set of modes along which the two sub-tensors
are aligned and let R be the remaining modes. We define the value alignment,
align(Xj,Xl, A), between Xj and Xl as

align(Xj,Xl, A) = cos(cj(A), cl(A)),

where the vector cj(A) is constructed from the sub-tensor Xj as follows2:

cj(A) = vectorize(Mj(A))

and the tensor Mj(A) is constructed from Xj by fixing the values along the modes
in A: ∀1 ≤ ih ≤ Ijh,h,

Mj(A)[i1, i2, . . . , i|A|] = norm(Xj|A,i1,i2,...,i|A|).

Here, norm() is the standard Frobenius norm and Xj|A,i1,i2,...,i|A| denotes the part of
Xj where the modes in A take values i1,i2, through i|A|. ♦
Intuitively, cj(A) captures the value distribution of the tensor Xj along the modes
in A.

Principle 2 Let G(V,E,w()) be a sub-tensor impact graph and let (vj → vl) ∈ E

be an edge in the graph. The weight of this edge from vj to vl should reflect the
structural alignment between the sub-tensors Xj and Xl.

This principle verbalizes the observation that impacts are likely to propagate more
easily if two given sub-tensors are structurally aligned along the modes on which
their partitions coincide. As before, under this principle, we can set the edge weights
of the edge (vj → vl) ∈ E in the sub-tensor impact graph as follows:

walign(vj → vl) = align(Xj,Xl)∑
(vj→vm)∈E align(Xj,Xm)

.

2cl(A) is similarly constructed from sub-tensor Xl.



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 159

7.3.2.4 Alt. #4: Combined Edge Weights

The surface of interaction-based edge weights account for the shapes of the sub-
tensors, but do not account for their value alignments. In contrast, value alignment-
based edge weights consider the structural similarities of the sub-tensors, but ignore
how big the surfaces they share are.

Therefore, a potentially more effective alternative would be to combine these
surface of interaction and value alignment-based edge weights into a single weight
that takes into account both aspects of sub-tensor interaction:

wcomb(vj → vl) = comb(Xj,Xl)∑
(vj→vm)∈E comb(Xj,Xm)

,

where comb(Y,Z) = align(Y,Z) × surf (Y,Z).

7.3.3 Sub-Tensor Impact Scores

While the edges on the sub-tensor impact graph, G, account for how (in)accuracies
propagate during each individual application of the update rules, it is important to
note that after several iterations of updates, indirect propagation of impacts also
occur over the graph G:

• during the first application of the update rule, impacts propagate among the sub-
tensors that are immediate neighbors;

• during the second application of the update rule, impacts reach from one sub-
tensor to those sub-tensors that are 2-hop away;

. . .
• during the mth application of the rule, impacts propagate to the m-hop neighbors

of each sub-tensor.

In order to use the sub-tensor impact graph to assign resources, we therefore need
to measure how impacts propagate within G over a large number of iterations of the
alternating least squares (ALS) process.

For this purpose, we rely on a random-walk-based measure of node relatedness
on the given graph. More specifically, we rely on personalized PageRank (PPR [2,
4]) to measure sub-tensor relatedness. Like all random-walk-based techniques, PPR
encodes the structure of the graph in the form of a transition matrix of a stochastic
process and complements this with a seed node set, S ⊆ V , which serves as the
context in which scores are assigned: each node, vi in the graph is associated with
a score based on its positions in the graph relative to this seed set (i.e., how many
paths there are between vi and the seed set and how short these paths are). Intuitively,
these seeds represent sub-tensors that are critical in the given application (e.g. high-
update, high-noise, or high-user-relevance; see Sects. 7.3 through 7.3.2 for various
applications).



160 K. S. Candan et al.

Given the graph and the seeds, the PPR score p[i] of vi is obtained by solving
the following equation:

p = (1 − β)TG p + βs,

where TG denotes the transition matrix corresponding to the graph G (and the
underlying edge weights) and s is a re-seeding vector such that if vi ∈ S, then
s[i] = 1

‖S‖ and s[i] = 0, otherwise. Intuitively, p is the stationary distribution
of a random walk on G which follows graph edges (according to the transition
probabilities TG) with probability (1 − β) and jumps to one of the seeds with
probability β. Correspondingly, those nodes that are close to the seed nodes over
a large number of paths obtain large scores, whereas those that are poorly connected
to the nodes in S receive small PPR scores. We note that the iterative nature of the
random-walk process underlying PPR fits well with how inaccuracies propagate
during the iterative ALS process. Based on this observation, given a directed,
weighted sub-tensor impact graph (SIG), G(V,E,w()), we construct a transition
matrix, TG, and obtain the PPR score vector p by solving the above equation.3 The
resulting sub-tensor impact scores are then used for assigning appropriate resources
to the various sub-tensors as described in the next three sections.

7.4 Application #1: Block-Incremental CP Decomposition
(BICP) and Update Scheduling Based on Sub-Tensor
Impact Scores

There are many applications in which data is evolving dynamically. Obviously,
in such scenarios, re-computation of the whole tensor decomposition with each
update will cause high computational costs. In this section, we present a block-
incremental CP decomposition (BICP) scheme which leverages SIGs to efficiently
conduct the iterative refinement process during the second phase of the block-based
tensor decomposition process. Let us assume that we are given a tensor, X, with
decomposition, X̊, and an update, Δ, on the tensor. BICP significantly reduces
computational cost of obtaining the decomposition of the updated tensor, while
maintaining high accuracy by relying on two complementary techniques:

• Update-Sensitive Block Maintenance in First Phase: In its first phase of
the process, instead of repeatedly conducting ALS on each sub-tensor, BICP
only revises the decompositions of the sub-tensors that contain updated data.
Moreover, when the update is small with respect to the block size, BICP relies
on incremental factor tracking [20, 27] to avoid re-decomposition of the updated
sub-tensor.

3Note that, since in general, the number of partitions is small and is independent of the size of the
input tensor, the cost of the PPR computation to obtain the ranks is negligible next to the cost of
tensor decomposition.



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 161

• Update-Sensitive Refinement in the Second Phase: In its second phase, BICP
leverages (automatically extracted) metadata about how decompositions of the
sub-tensors impact each other’s decompositions and a block-centric iterative
refinement to help achieve high efficiency and accuracy:

– BICP limits the refinement process to only those blocks that are aligned with
the updated block.

– We employ sub-tensor impact graph (SIG) to account for the refinement
relationships among the sub-tensors; we further apply impact score to reduce
redundant work: we

· identify sub-tensors that do not need to be refined and (probabilistically)
prune them from further consideration, and/or

· assign different ranks to different sub-tensors according to their impact
score: naturally, the larger the impact likelihood of a sub-tensor is, the
larger target rank BICP assigns to that tensor.

Intuitively, the above process enables BICP to assign appropriate levels of
accuracy to sub-tensors in a way that reflects the distribution of the updates
on the whole tensor. This ensures that the process is fast and accurate.

In this chapter, we focus on the SIG-based update sensitive refinement during the
second phase of the block-based decomposition process.

7.4.1 Reducing Redundant Refinements

During the refinement process of Phase 2, those sub-tensors that have direct
refinement relationships with the updated sub-tensors are critical to the refinement
process. Our key observation is that if we could quantify how much an update on
a sub-tensor impacts sub-factors on other sub-tensors, then we could use this to
optimize Phase 2. More specifically, given an update, Δ on tensor X, BICP assigns
an update sensitive impact score, IΔ(Xk) to each sub-tensor, Xk, and leverages this
impact score to regulate the refinement process to eliminate redundant work

Intuitively, if the two sub-tensors are similarly distributed along the modes that
they share, then they are likely to have high impacts on each other’s decomposition;
Therefore we use alternative #3: value alignment-based edge weights to assign the
weight of edge (introduced in Sect. 7.3.2). To calculate an update sensitive impact
score, we can rely on personalized PageRank (introduced in Sect. 7.3.3) to measure
sub-tensor relatedness. PPR encodes the structure of the graph in the form of a
transition matrix of a stochastic process from which the significances of the nodes
in the graph can be inferred. Here, we choose updated sub-tensors as seed nodes and
calculate PPR scores for all the other nodes as their impact scores.



162 K. S. Candan et al.

• Optimization Phase 2-I: Intuitively, if a sub-tensor has a low impact score, its
decomposition is minimally affected given the update, Δ. Therefore, those sub-
tensors with very low-impact factors can be completely ignored in the refinement
process and their sub-factors can be left as they are without any refinement.

• Optimization Phase 2-P: While optimization phase 2-I can potentially save a
lot of redundant work, completely ignoring low-impact tensors may have a
significant impact on accuracy. An alternative approach, with a less drastic
impact than ignoring sub-tensors, is to associate a refinement probability to sub-
tensors based on their impact scores. In particular, instead of completely ignoring
those sub-tensors with low-impact factors, we assign them an update probability,
0 < prob_update < 1. Consequently, while the factors of sub-tensors with high
impact scores are refined at every iteration of the refinement process, factors of
sub-tensors with low-impact scores have lesser probabilities of refinement and,
thus, do not get refined at every iteration of Phase 2.

• Optimization Phase 2-R: A second alternative to completely ignoring the
refinement process for low-impact sub-tensors is to assign different ranks to
different sub-tensors according to their impact scores: naturally, the higher the
target rank is, the more accurate the decomposition of the sub-tensor is. We
achieve this by adjusting the decomposition rank, Fk of Xk, as a function of
the corresponding tensor’s update sensitive impact score:

Fk =
⌈
F × Iδ(Xk)

maxh{Iδ(Xh)}
⌉

.

Intuitively, this formula sets the decomposition rank of the sub-tensor with the
highest impact score relative to the given update, Δ, to F ; other sub-tensors are
assigned progressively smaller ranks (potentially all the way down to 1)4 based
on their impacts scores. Once the new ranks are computed, we obtain new U(k)

factors with partial ranks Fk for Xk and refine these incrementally in Phase 2.
Here, we consider two rank-based optimization strategies, phase 2-Ra and

phase 2-Ri. In phase 2-Ra, we potentially adjust the decomposition rank for all
relevant sub-tensors. In phase 2-Ri, however, we adjust ranks only for sub-tensors
with high impact on the overall decomposition.

By extending the complexity formulation from [23], we can obtain the complexity5

of Phase 2 as O((F × ∑N
i=1

Ii

Ki
+ F 2) × T × H × |D|) where T is the number

of refinement iterations, H = (100 − L)% is the ratio of high impact sub-tensors
maintained, |D| is the number of sub-tensors that have direct impact on updated sub-
tensors, Ii is the dimensionality of the tensor along mode i, and Ki is the number of
partitions along that mode.

4It is trivial to modify this equation such that the smallest rank will correspond to a user provided
lower bound, Fmin, when such a lower bound is provided by the user.
5Here we report the complexity of phase2 − I and other refinement method complexity can be
derived similarly.



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 163

7.4.2 Evaluation

In this section, we report sample results that aim to assess the effectiveness of the
proposed BICP approach in helping eliminate redundant refinements

7.4.2.1 Setup

Data Sets In these experiments, we used three data sets: Epinions [29], Ciao [29],
and Enron [24]. The first two of these are comparable in terms of their
sizes and semantics: they are both 5000 × 5000 × 27 tensors, with schema
〈user, item, category〉, and densities 1.089 × 10−6 and 1.06 × 10−6, respectively.
The Enron email data set, on the other hand, has dimensions 5632 × 184 × 184,
density 1.8 × 10−4, and schema 〈t ime, f rom, to〉.
Data Updates We divided the tensor into 64 blocks (using 4 × 4 × 4 partitioning)
and applied all the updates to four of these blocks; Once the blocks are selected, we
randomly pick a slice on the block and update 10% of the fibers on this slice.

Alternative Strategies We consider the following strategies to maintain the tensor
decomposition: Firstly, we apply the basic two-phase block-centric decomposition
strategy, i.e., we decompose all sub-tensors with CPALS in Phase 1 and we apply
iterative refinement using all sub-tensors in Phase 2 (in the charts, we refer to this
non-incremental decomposition approach as ORI). For Phase 1, we use a version of
STA where we update fibers that are update-critical, i.e., with highest energy among
all the affected fibers. For Phase 2, again, we have several alternatives: (a) applying
Phase 2 without any impact score-based optimization (P2N), (b) ignoring L% of sub-
tensors with the lowest impact scores (P2I), (c) reducing the decomposition rank of
sub-tensors (P2Ra and P2Ri), or (d) using probabilistic refinements for sub-tensors
with low impact scores (P2P). In these experiments, we choose L = 50% and, for
P2P, we set the update probability to p = 0.1. In addition to the block-based BCIP
and its optimizations, we also considered, as an efficient alternative, application of
the incremental factor tracking process to the whole tensor as in STA [27]—in the
charts, we refer to this alternative approach as Whole.

Evaluation Criteria We use the measure reported in Sect. 7.2.2.1 to assess decom-
position accuracy. We also report decomposition time for different settings. In these
experiments, the target decomposition rank is set to F = 10. Unless otherwise
specified, the maximum number of iterations in Phase 2 is set to 1000. Each
experiment was run 100 times and averages are reported.

Hardware and Software We used a quad-core Intel(R) Core(TM)i5-2400 CPU @
3.10GHz machine with 8.00GB RAM. All codes were implemented in Matlab and
run using Matlab 7.11.0 (2010b) and Tensor Toolbox Version 2.5 [1].



164 K. S. Candan et al.

7.4.2.2 Discussion of the Results

Impact scores measure how different regions of the tensor impacts other parts of
the tensor during the alternating least squares (ALS) process. Therefore, we expect
that, when we leverage the impact scores (computed in a way to account for the
distribution of the data updates) to assign the decomposition ranks, we should be
able to focus the decomposition work to better fit the dynamically evolving data.
Figure 7.8 compares execution times and accuracies of several approaches. Here,

Fig. 7.8 Comparison of (a) Execution times and (b) Decomposition accuracies under the default
configuration: the proposed optimizations provide several orders of gain in execution time relative
to ORI, while (unlike Whole) they match ORI’s accuracy



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 165

ORI indicates non-incremental two-phase block centric decomposition, whereas
Whole indicates application of factor tracking to the whole tensor. The other
five techniques in the figure (P2N, P2I, P2Ri, P2Ra, P2P) all correspond to
optimizations of the proposed BICP approach for Phase 2.

Firstly, this figure shows that the two social media data sets, Epinions and Ciao,
with similar sizes and densities show very similar execution time and accuracy
patterns. The figure also shows that the Enron data set also exhibits a pattern roughly
similar to the other data sets, despite having a different size and density.

The key observation in Fig. 7.8 is that the SIG-based optimizations provide sev-
eral orders of gain in execution time while matching the accuracy of non-optimized
version almost perfectly (i.e., the optimizations come without accuracy penalties).
In contrast, the alternative strategy, Whole, which incrementally maintains the
factors of the whole tensor (as opposed to maintaining the factors of its blocks)
also provides execution time gains, but sees a significant drop in its accuracy.

We note that P2P, which probabilistically updates low-impact sub-tensors rather
than completely ignoring them, does not significantly improve accuracy. This is
because the P2I approach already has an accuracy almost identical to P2N, i.e.,
ignoring low-impact tensors is a very safe and effective method to save redundant
work. Therefore, also considering that, unless a large number of blocks are ignored,
P2I is able to match the accuracy of P2N, we do not see a major need to use P2P
to reduce the impact of ignored sub-tensors.

7.5 Application #2: Noise-Profile Adaptive Decomposition
(nTD) and Sample Assignment Based on Sub-Tensor
Impact Scores

Many of the tensor decomposition schemes are sensitive to noisy data, an inevitable
problem in the real world that can lead to false conclusions. Recent research
has shown that it is possible to avoid over-fitting by relying on probabilistic
techniques that leverage Gibbs sampling-based Bayesian model learning [33];
however, these assume that all the data and intermediary results can fit in the
main memory, and (b) they treat the entire tensor uniformly, ignoring potential non-
uniformities in the noise distribution. In this chapter, we present a Noise Adaptive
Tensor Decomposition (nTD) method, which leverages a probabilistic two-phase
decomposition strategy, complemented with sub-tensor impact graphs, to develop a
sample assignment strategy that best suits the noise distribution of the given tensor
to leverage available rough knowledge regarding where in the tensor noise might
be more prevalent.



166 K. S. Candan et al.

Algorithm 2 Phase 1: Monte Carlo-based Bayesian decomposition of each sub-
tensor
Input: Sub-tensor Xk, sampling number L

Output: Decomposed factors U
(1)
k , U

(2)
k , . . ., U

(N)
k

1. Initialize model parameters U
(1)1
k , U

(2)1
k , . . ., U

(N)1
k .

2. For l = 1, . . . , L

a. Sample the hyper-parameter, α:

• αl ∼ p(αl |U(1)l
k , U

(2)l
k , . . . , U

(N)l
k ,Xk)

b. For each mode j = 1, . . . , N ,

i. Sample the corresponding hyper-parameter, Θ:

• Θ
U

(j)l

k
∼ p(Θ

U
(j)l

k
|U(j)l

k )

ii. For ij = 1, ..., Ij , sample the mode (in parallel):

U
(j)(l+1)

k(ij ) ∼ p

(
U

(j)

k(ij )

∣∣∣∣U
(1)l
k , . . . , U

(j−1)l

k , U
(j+1)l

k , . . . , U
(N)l
k ,Θl

U
(j)

k

, αl,Xk

)

3. For each mode j = 1, . . . , N ,

• U
(j)

k =
∑L

i=1 U
(j)i

k
L

More specifically, nTD partitions the tensor into multiple sub-tensors and then
decomposes each sub-tensor probabilistically through Bayesian factorization—the
resulting decompositions are then recombined through an iterative refinement
process to obtain the decomposition for the whole tensor. We refer to this as Grid-
Based Probabilistic Tensor Decomposition (GPTD). nTD complements GPTD with
a SIG-based resource allocation strategy that accounts for the impact of the noise
density of one sub-tensor on the decomposition accuracies of the other sub-tensors.
This provides several benefits: Firstly, the partitioning helps ensure that the memory
footprint of the decomposition is kept low. Secondly, the probabilistic framework
used in the first phase ensures that the decomposition is robust to the presence of
noise in the sub-tensors. Thirdly, a priori knowledge about noise distribution among
the sub-tensors is used to obtain a resource assignment strategy that best suits the
noise profile of the given tensor.

7.5.1 Grid-Based Probabilistic Tensor Decomposition (GPTD)

As a block-based algorithm, Grid-Based Probabilistic Tensor Decomposition
(GPTD) partitions the given tensor into blocks, decomposes each block indepen-
dently, and then iteratively combines these decompositions into a final composi-
tion. Differently from Algorithm 1, however, GPTD leverages Monte Carlo-based



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 167

Bayesian decomposition of sub-tensors in its Phase 1 (see Algorithm 2) to better
deal with the problem of over-fitting, which is a challenge especially when the data
is noisy.

Intuitively, entries in the factor matrices are modeled as probabilistic variables
and decomposition is posed as a maximization problem where these (latent) random
variables fit the observed data. In the presence of noise in the data, the observed
variables may also be modeled probabilistically: since the observations cannot
be precisely described, they may be considered as samples from a probability
distribution. In this section, following [25], in the presence of data uncertainty (due
to noise), we describe the fit between the observed data and the predicted latent
factor matrices, probabilistically, as follows:

Xk(i1,i2,...,iN )

∣∣∣U(1)
k , U

(2)
k . . . , U

(N)
k ∼ N([U(1)

k(i1)
, U

(2)
k(i2)

. . . , U
(N)
k(iN )

], α−1),

(7.4)
where the conditional distribution of Xk(i1,i2,...,iN )

given U
(j)

k (1 ≤ j ≤ N ) is

a Gaussian distribution with mean [U(1)
k(i1)

,U(2)
k(i2)

, . . .,U(N)
k(iN )

] and the observation
precision α. We also impose independent Gaussian priors on the modes:

U
(j)

k(ij )
∼ N(μ

U
(j)

k
,Λ−1

U
(j)

k

) ij = 1...Ij (7.5)

where Ij is the dimensionality of the j th mode. Given this, one can estimate

the latent features U
(j)

k by maximizing the logarithm of the posterior distribution,

log p(U
(1)
k , U

(2)
k . . . , U

(N)
k |Xk).

One difficulty with the approach, however, is the tuning of the hyper-parameters
of the model: α and Θ

U
(j)

k
≡ {μ

U
(j)

k
,Λ

U
(j)

k
} for 1 ≤ j ≤ N . [33] notes that one can

avoid the difficulty underlying the estimation of these parameters through a fully
Bayesian approach, complemented with a sampling-based Markov Chain Monte
Carlo (MCMC) method to address the lack of the analytical solution.

7.5.2 Noise-Sensitive Sample Assignment

One crucial piece of information that the basic grid-based decomposition process
fails to account for is potentially available knowledge about the distribution of the
noise across the input tensor. As discussed earlier, a sub-tensor which is poorly
decomposed due to noise may negatively impact decomposition accuracies also
for other parts of the tensor. Consequently, it is important to allocate resources to
prevent a few noisy sub-tensors from negatively impacting the overall accuracy.

We note that there is a direct relationship between the amount of noise a sub-
tensor has and the number of Gibbs samples it requires for accurate decomposition.
In fact, the numbers of Gibbs samples allocated to different sub-tensors Xk in



168 K. S. Candan et al.

Algorithm 2 do not need to be the same. As we have seen in Sect. 7.5.1, Phase
1 decomposition of each sub-tensor is independent from the others and, thus, the
number of Gibbs samples of different sub-tensors can be different. In fact, more
samples can provide better accuracy for noisy sub-tensors and this can be used to
improve the overall decomposition accuracy for a given number of Gibbs samples.
Consequently, given a set of sub-tensors, with different amounts of noise, uniform

assignment of the number of samples, L =
(

L(total)
|K |

)
, where L(total) is the total

number of samples for the whole tensor and |K | is the number of sub-tensors, may
not be the best choice. In this chapter, we rely on this key observation to help assign
Gibbs samples to the various sub-tensors. On the other hand, the number of samples
also directly impacts the cost of the probabilistic decomposition process. Therefore,
the sample assignment process must be regulated carefully.

7.5.2.1 Naive Option: Noise Density-Based Sample Assignment

Intuitively, the number of samples a noisy sub-tensor, Xk, is allocated should be
proportional to the density, ndk, of noise it contains:

L(Xk) = �γ × ndk� + Lmin, (7.6)

where Lmin is the minimum number of samples a (non-noisy) tensor of the given
size would need for accurate decomposition and γ is a control parameter. Note that
the value of γ is selected such that the total number of samples needed is equal to
the number, L(total), of samples allocated for the whole tensor:

L(total) =
∑

k∈K
L(Xk). (7.7)

7.5.2.2 SIG-Based Sample Assignment: S-Strategy

Equations (7.6) and (7.7), above, help allocate samples across sub-tensors based on
their noise densities. However, as discussed earlier, inaccuracies in decomposition of
one sub-tensor can propagate across the rest of the sub-tensors in Phase 2. Therefore,
a better approach would be to consider how errors can propagate across sub-tensors
when allocating samples. More specifically, if we could assign a significance score
to each sub-tensor, Xk, that takes into account not only its noise density, but also the
position of the sub-tensor relative to other sub-tensors, we could use this information
to better allocate the Gibbs samples to sub-tensors.

As discussed earlier in Sect. 7.3.3, the sub-tensor impact graph (SIG) of a given
tensor can be used for assigning impact scores to each sub-tensor. This process,
however, requires (in addition to the given SIG) a seed node set, S ⊆ V , which
serves as the context in which scores are assigned: Given the SIG graph, G(V,E),



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 169

and a set, S ⊆ G(V,E), of seed nodes, the score p[i] of a node vi ∈ G(V,E) is
obtained by solving p = (1 − β)A p + βs, where A denotes the transition matrix,
β is a parameter controlling the overall importance of the seeds, and s is a seeding
vector.

Our intuition is that we can use the sub-tensors with noise as the seeds in the
above process. The naive way to create this seeding vector is to set s[i] = 1

‖S‖ if
vi ∈ S, and to s[i] = 0, otherwise. However, we note that we can do better: given
noise densities (nd) of the sub-tensors we can create a seeding vector

s[k] = ndk∑
j∈K ndj

,

and then, once the sub-tensor impact scores ( p) are computed, we can associate a
noise-sensitive significance score,

ηk = p[k] − minj∈K (p[j])
maxj∈K (p[j]) − minj∈K (p[j]) ,

to each sub-tensor Xk. Given this score, we can then rewrite Eq. (7.6) as

L(Xk) = �γ × ηk� + Lmin. (7.8)

7.5.3 Evaluation

In this section, we report experiments that aim to assess the proposed noise-sensitive
sample assignment strategy (s-strategy) by comparing the performance of nTD,
which leverages this strategy, against GPTD with uniform sample assignment and
other naive strategies

7.5.3.1 Setup

Data Sets In these experiments, we used one user centered data set:Ciao [29]. The
data is represented in the form of 5000 × 5000 × 996 (density 1.7 × 10−6) tensor.
Its schema is 〈user, item, time〉. In this data, the tensor cells contain rating values
between 1 and 5 or (if the rating does not exist) a special “null” symbol.

Noise In these experiments, uniform value-independent type of noise was intro-
duced by modifying the existing ratings in the data set. More specifically, given a
uniform noise profile and density, we have selected a subset of the existing ratings
(ignoring “null” values) and altered the existing values—by selecting a completely
new rating (which we refer to as value-independent noise).



170 K. S. Candan et al.

Evaluation Criteria We use the root mean squares error (RMSE) inaccuracy
measure to assess the decomposition effectiveness. We also report the decompo-
sition times. Unless otherwise reported, the execution time of the overall process
is reported as if sub-tensor decompositions in Phase 1 and Phase 2 are all executed
serially, without leveraging any sub-tensor parallelism. Each experiment was run ten
times with different random noise distributions and averages are reported.

Hardware and Software We used a quad-core CPU Nehalem Node with 12.00GB
RAM. All codes were run using Matlab R2015b. For conventional CP decomposi-
tion, we used MATLAB Tensor Toolbox Version 2.6 [1].

7.5.3.2 Discussion of the Results

We start the discussion of the results by studying the impact of the s-strategy
for leveraging noise profiles.

Impact of Leveraging Noise Profiles In Fig. 7.9, we compare the performance of
nTD with noise-sensitive sample assignment (i.e., s-strategy) against GPTD
with uniform sample assignment and the two naive noise adaptations, presented
in Sects. 7.5.2.1 and 7.5.2.2, respectively. Note that in the scenario considered in
this figure, we have 640 total Gibbs samples for 64 sub-tensors, providing on the
average 10 samples per sub-tensor. In these experiments, we set Lmin to 9 (i.e., very
close to this average), thus requiring that 576(= 64 × 9) samples are uniformly
distributed across the sub-tensors—this leaves only 64 samples to be distributed
adaptively across the sub-tensors based on the noise profiles of the sub-tensors
and their relationships to other sub-tensors. As we see in this figure, the proposed
nTD is able to leverage these 64 uncommitted samples to significantly reduce
RMSE relative to GPTD with uniform sample assignment. Moreover, we also see
that naive noise adaptations can actually hurt the overall accuracy. nTD-naive uses
biased sampling on the noise blocks and focuses on the centrality of sub-tensors.
Thus, nTD-naive performs worse than uniform way. These together show that the
proposed s-strategy is highly effective in leveraging rough knowledge about
noise distributions to better allocate the Gibbs samples across the tensor.

In summary, the proposed sub-tensor impact graphs help allocate Gibbs samples
in a way that takes into account how errors due to noise propagate across the whole
tensor during the decomposition process.



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 171

1.930
1.935
1.940
1.945
1.950
1.955
1.960
1.965
1.970
1.975
1.980
1.985

4 8 16

RM
SE

# of sub-tensors with noise

(a)

(b)

RMSE with Noise Adaptation - CIAO

0

150

300

450

4 8 16

Ti
m

e 
(s

ec
)

# of sub-tensors with noise

Exec. Time with Noise Adaptation - CIAO

Uniform

nTD-naïve1

nTD-naïve2

nTD

Uniform

nTD-naïve1

nTD-naïve2

nTD

Fig. 7.9 RMSE and execution time (without sub-tensor parallelism) for nTD with different num.
of noisy sub-tensors (4 × 4 × 4 grid; uniform noise; value independent noise; noise density 10%;
total num. of samples = 640; Lmin = 9, F = 10; max. num. of P2 iteration = 1000). (a) RMSE for
Ciao. (b) Time for Ciao

7.6 Application #3: Personalized Tensor Decomposition
(PTD) and Rank Assignment Based on Sub-Tensor
Impact Scores

In many clustering applications, the user may have a focus of interest, i.e., part of the
data for which the user needs high accuracy, and beyond this area focus, accuracy
may not be as critical. Relying on this observation, in this section, we present a



172 K. S. Candan et al.

personalized tensor decomposition (PTD) mechanism for accounting for the user’s
focus. Intuitively, the personalized tensor decomposition (PTD) algorithm partitions
the tensor into multiple regions and then assigns different ranks to different sub-
tensors: naturally, the higher the target rank is, the more accurate the decomposition
of the sub-tensor. However, we note that preserving accuracy for foci of interest,
while relaxing accuracy requirements for the rest of the input tensor is not a trivial
task, especially because loss of accuracy at one region of the tensor may impact
accuracies at other tensor regions. Therefore, PTD leverages sub-tensor impact
graphs to account for the impact of the accuracy of one region of the tensor to the
accuracies of the other regions of the tensor, each based on a different assumption
about how the impact of inaccuracies propagates along the tensor. In particular, PTD
analyzes the sub-tensor impact graph (in the light of the user’s interest) to identify
initial decomposition ranks for the sub-tensors in a way that will boost the final
decomposition accuracies for partitions of interest.

7.6.1 Problem Formulation

Let an N -mode tensor X ∈ R
I1×I2×...×IN be partitioned into a set (or grid) of sub-

tensors X = {Xk | k ∈ K}, where Ki indicates the number of partitions along
mode-i, the size of the j th partition along mode i is Ij,i (i.e.,

∑Ki

j=1 Ij,i = Ii),
and K = {[kj1, . . . , kji

, . . . , kjN
] | 1 ≤ i ≤ N, 1 ≤ ji ≤ Ki} is a set of sub-

tensor indexes. The number, ‖X‖, of partitions (and thus also the number, ‖K‖, of
partition indexes) is

∏N
i=1 Ki . In addition, let KP ⊆ K be the set of sub-tensor

indexes that indicate those sub-tensors for which the user requires higher accuracy.
Note that, without loss of generality, we assume that the tensor X is re-ordered
before it is partitioned in such a way that the number, Ki , of resulting partitions
along each mode-i is minimal—i.e., along each mode, the entries of interest are
clustered together to minimize the number of partitions.6

Given the above, let us use XP as a shorthand to denote the cells of X
collectively covered by the sub-tensors indexed by KP . The goal of the personalized
tensor decomposition (PTD) is to obtain a personalized (or preference sensitive)
decomposition X̂ of X in such a way that

accuracy(XP , X̂P ) > accuracy(XP , X̃P ),

where X̂P is the reconstruction of the user selected region from the personalized
decomposition X̂ and X̃P is the reconstruction of the same region from a decom-
position of X insensitive to the user preference KP (or equivalently KP = K).
Naturally, we also aim that the time to obtain the personalized decomposition X̂
will be lesser than the time needed to obtain preference insensitive decomposition

6While this minimality criterion is not strictly required, the fewer partitions there are, the faster
and potentially more effective will be the personalization process.



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 173

Algorithm 3 Overview of the PTD-CP process
Input: original tensor X, partitioning pattern K , user’s focus KP , and decomposition rank, F

Output: personalized CP tensor decomposition X̂

1- compute the sub-tensor impact graph, G(v,E,w()), using the original tensor X and partitioning
pattern K ;

2- for each partition k ∈ K , assign an initial decomposition rank Fk based on the sub-tensor impact
graph, G(v,E,w()), and user’s personalization focus KP ;

3- obtain a block-based CP decomposition, X̂, of X using the partitioning pattern K and the initial
decomposition ranks {Fk | k ∈ K};

return X̂

X̃ and also that the personalized decomposition minimally impacts the rest of the
tensor, i.e.,

accuracy(X, X̂) ∼ accuracy(X, X̃).

7.6.2 Sub-Tensor Rank Flexibility

Remember from Sect. 7.2.4, where we presented the update rules block-based tensor
decomposition algorithms use for stitching the individual sub-tensor decomposi-
tions into a complete decomposition for the whole tensor, that (as visualized in
Fig. 7.6) each A

(i)
(ki )

is maintained incrementally by using, for all 1 ≤ j ≤ N , the

current estimates for A
(j)

(kj ) and the decompositions in U(j), i.e., the F -rank sub-
factors of the sub-tensors in X along the different modes of the tensor. A closer look
at the update rule for A

(i)
(ki )

further reveals the following observation:

• Sub-tensor Rank Flexibility: One critical observation is that the above formula-
tion does not require that all sub-tensors in X are decomposed with the same
target rank F .

In fact, as long as one sub-tensor is decomposed to rank F , all other sub-
tensors can be decomposed to ranks lesser than F and we can still obtain full
F -rank factors, A(i), for X.

7.6.3 Rank Assignment for Personalized Tensor Decomposition

The PTD algorithm relies on this sub-tensor rank flexibility property to personalize
the block-based (CP) decomposition process described earlier: unlike the basic
block-based scheme discussed in the introduction, PTD improves the accuracy



174 K. S. Candan et al.

of the high-priority sub-tensors (indicated by KP ) by assigning them higher
initial decomposition ranks than the rest of the partitions (Algorithm 3). The key
difficulty, however, is that one cannot arbitrarily reduce the decomposition ranks
of low priority partitions, because the accuracy in one partition may impact final
decomposition accuracies of other tensor partitions. As visualized in Algorithm 3,
the proposed PTD algorithm first constructs a sub-tensor impact graph, G, that
accounts for the propagation of inaccuracies along the tensor during a block-based
decomposition process. The PTD algorithm then leverages this graph to account for
the impact of the initial decomposition inaccuracy of one sub-tensor on the final
decomposition accuracy of XP , i.e., the cells of X collectively covered by the user’s
declaration of interest (i.e., KP ).

Intuitively, the initial decomposition rank, Fk, of sub-tensor Xk will need to
reflect the impact of the initial decomposition of the sub-tensor Xk on the final
decomposition of the high-priority sub-tensors, Xκ , κ ∈ KP . This implies that,
when picking the decomposition ranks, Fk, we need to measure how inaccuracies
propagate within G over a large number of iterations of the alternating least squares
(ALS) process. For this purpose we rely on the sub-tensor impact scores introduced
in Sect. 7.3; more specifically, we compute the initial decomposition rank Fk of Xk
as

Fk =
⌈
F × s[k]

maxh{s[h]}
⌉

,

where s[k] denotes the sub-tensor impact score of the sub-tensor Xk in G. Intuitively,
this formula sets the initial decomposition rank of the sub-tensor with the highest
sub-tensor impact score (i.e., highest accuracy impact on the set of sub-tensors
chosen by the user) to F , whereas other sub-tensors are assigned progressively
smaller ranks (potentially all the way down to 1)7 based on how far they are from
the seed set in the sub-tensor impact graph, G.

7.6.4 Evaluation

In this section, we report sample results that aim to assess the effectiveness of the
proposed personalized tensor decomposition (PTD) approach in helping preserve
the tensor decomposition accuracy at parts of the tensor that are high-priority for
the users.

7It is trivial to modify this equation such that the smallest rank will correspond to a user provided
lower bound, Fmin, when such a lower bound is provided by the user.



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 175

Table 7.1 Various tensor
partitioning scenarios
considered in the
experiments: the percentages
are the sizes of the partitions
(relative to the overall size of
the mode) along each mode

2 × 2 × 2 partitions

Configuration Part. #1 Part. #2

1 - Most balanced 50% 50%

2 - 40% 60%

3 - 30% 70%

4 - 25% 75%

5 - 10% 90%

6 - Least balanced 1% 99%

7.6.4.1 Setup

Data Set In the experiments reported in this chapter, we used the Ciao [29] data
set, represented in the form of a 167 × 967 × 18 (density 2.2 × 10−4) tensor, with
the schema 〈user, item, category〉. In these experiments, we assume that the input
tensor is partitioned into 8 (= 2×2×2) according to the scenarios shown in Table 7.1
and two randomly selected sub-tensors are marked as more important than the rest.

Decomposition Strategies We considered five decomposition strategies: not per-
sonalized (NP), uniform edge weights (UNI), surface of interaction-based edge
weights (SURF), value alignment-based edge weights (VAL), and combined edge
weights (COMB). The target CP decomposition rank, F , is set to 10.

Evaluation Criteria We use the measure reported in Sect. 7.2.2.2 to assess decom-
position accuracy and execution time. In particular, we report accuracies for both
user’s area of focus and the whole tensor.

Hardware and Software We ran the experiments reported in this section on a
quad-core Intel(R) Core(TM)i5-2400 CPU @ 3.10GHz machine with 8.00GB RAM.
All codes were implemented in Matlab and run using Matlab R2015b. For CP
decomposition, we used MATLAB Tensor Toolbox Version 2.6 [1].

7.6.4.2 Discussion of the Results

Sub-tensor impacts help take into account how inaccuracies in the decomposition
propagate into high- and-low-priority regions. We therefore expect that allocating
resources using sub-tensor impact graphs should provide better accuracies for high-
priority regions. As we see in Fig. 7.10, as expected, PTD algorithms boost accuracy
for the high-priority partitions in the user focus, especially where the partitions
are of heterogeneous sizes (as is likely to be the case in real situations). While, as
would be expected, the PTD algorithms have impact on the overall decomposition
accuracy for the whole tensor, this is more than compensated by gains in accuracies
in high-priority areas. Moreover, the figure also shows that the gains in accuracy in
high-priority partitions within the user’s focus come also with significant gains in
execution times for the decomposition process.



176 K. S. Candan et al.

0.0

0.1

0.2

0.3

0.4

0.5
Ac

cu
ra

cy

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Accuracy for Focus Area (Ciao,2X2X2, 2 part. in focus)

Accuracy for Whole Tensor (Ciao,2X2X2, 2 part. in focus)

Decomposition Time(sec.) (Ciao,2X2X2, 2 part. in focus)

NP

UNI

VAL

SURF

COMB

NP

UNI

VAL

SURF

COMB

NP

UNI

VAL

SURF

COMB

1 2 3 4 5 6
Partition Balance

1 2 3 4 5 6
Partition Balance

1 2 3 4 5 6
Partition Balance

(a)

(b)

(c)

Fig. 7.10 Experiment results with two partitions in focus. (a) Accuracy of the region of focus.
(b) Whole tensor accuracy. (c) Decomposition time



7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 177

The figure also establishes that, both in terms of accuracy and execution time
gains, we can order the various edge weighting strategies as follows: UNI (least
effective), VAL, SURF, and COMB (most effective). In other words, as we argued in
Sect. 7.3.2.4, the most effective way to account for the propagation of inaccuracies
is to combine the surface of interaction and value alignment-based edge weights into
a single weight which accounts for both shapes of the sub-tensors and their value
alignments.

7.7 Conclusions

Computational complexity of tensor decomposition is a major bottleneck in many
applications. Block-based tensor decomposition is employed to efficiently conduct
tensor decomposition for large-scale data analysis. However, we need a smart
strategy to account for the relationship among these sub-tensors(blocks). Therefore,
we proposed sub-tensor impact graph (SIG) to account for the propagation of
impacts within the sub-tensors during the decomposition process. Then, we pre-
sented three applications of SIG to efficiently solve the challenges in personalized
tensor analysis, incremental tensor analysis, and noise tensor analysis. Experiments
results on real data sets show that SIGs can improve the performance of tensor
analysis in these three applications in both of execution time and decomposition
accuracy.

Finally, we would like to note that, here we presented three distinct uses of
sub-tensor impact graphs for three distinct challenges (dynamic data, noisy data,
and personalization). In practice, there is no reason these approaches cannot be
combined to tackle more complex scenarios, such as personalized clustering and
analysis over dynamically evolving data sets. We leave the study of these more
complex scenarios as future work.

Acknowledgements Research is supported by NSF#1318788 “Data Management for Real-Time
Data Driven Epidemic Spread Simulations,” NSF#1339835 “E-SDMS: Energy Simulation Data
Management System Software,” NSF#1610282 “DataStorm: A Data Enabled System for End-to-
End Disaster Planning and Response,” NSF#1633381 “BIGDATA: Discovering Context-Sensitive
Impact in Complex Systems,” and “FourCmodeling”: EUH2020 Marie Sklodowska-Curie grant
agreement No 690817.

References

1. B.W. Bader, T.G. Kolda et al., MATLAB Tensor Toolbox Version 2.5. Available online (January
2012)

2. A. Balmin, V. Hristidis, Y. Papakonstantinou. ObjectRank: authority-based keyword search
in databases, in Proceedings of the 30th International Conference on Very Large Data Bases
(VLDB) (2004)



178 K. S. Candan et al.

3. X. Cao, X. Wei, Y. Han, D. Lin, Robust face clustering via tensor decomposition. IEEE Trans.
Cybern. 45(11), 2546–2557 (2015)

4. S. Chakrabarti, Dynamic personalized pagerank in entity-relation graphs, in Proceeding WWW
’07 Proceedings of the 16th International Conference on World Wide Web (2007)

5. X. Chen, K.S. Candan, LWI-SVD: low-rank, windowed, incremental singular value decom-
positions on time-evolving data sets, in KDD ’14 Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2014)

6. I. Davidson, S. Gilpin, O. Carmichael, P. Walker, Network discovery via constrained tensor
analysis of FMRI data, in 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 194–202 (2013)

7. C. Ding, X. He, K-means clustering via principal component analysis, in ICML ’04 Proceed-
ings of the Twenty-First International Conference on Machine Learning (2004)

8. P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay, Clustering large graphs via the singular
value decomposition. Mach. Learn. 56, 9–33 (2004)

9. F.M. Harper, J.A. Konstan, The MovieLens datasets: history and context. Trans. Interact. Intell.
Syst. 5, 19:1–19:19 (2015)

10. R.A. Harshman, Foundations of the PARAFAC procedure: model and conditions for an
explanatory multi-mode factor analysis. UCLA Working Papers in Phonetics, vol. 16 (1970),
pp. 1–84

11. S. Huang, K.S. Candan, M.L. Sapino, BICP: block-incremental CP decomposition with update
sensitive refinement, in Proceeding CIKM ’16 Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management (2016)

12. I. Jeon, E. Papalexakis, U. Kang, C. Faloutsos, HaTen2: billionscale tensor decompositions, in
Proceedings - International Conference on Data Engineering (ICDE) (2015)

13. B. Jeon, I. Jeon, L. Sael, U. Kang, SCouT: scalable coupled matrix-tensor factorization -
algorithm and discoveries, in IEEE 32nd International Conference on Data Engineering
(ICDE) (2016)

14. U. Kang, E.E. Papalexakis, A. Harpale, C. Faloutsos, Gigatensor: scaling tensor analysis up
by 100 times algorithms and discoveries, in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp. 316–324 (2012)

15. M. Kim, K.S. Candan, Decomposition by normalization (DBN): leveraging approximate
functional dependencies for efficient CP and tucker decompositions. Data Min. Knowl. Disc.
30(1), 1–46 (2016)

16. T.G. Kolda, B.W. Bader, Tensor decompositions and applications. SIAM Rev. 51(3), 455–500
(2009)

17. T.G. Kolda, J. Sun, Scalable tensor decompositions for multi-aspect data mining, in Eighth
IEEE International Conference on Data Mining (ICDM) (2008)

18. X. Li, S.Y. Huang, K.S. Candan, M.L. Sapino, Focusing decomposition accuracy by person-
alizing tensor decomposition (PTD), in Proceeding CIKM ’14 Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management (2014)

19. X. Li, K.S. Candan, M.L. Sapino, nTD: noise-profile adaptive tensor decomposition, in
Proceeding WWW ’17 Proceedings of the 26th International Conference on World Wide Web
(2017)

20. S. Papadimitriou, J. Sun, C. Faloutsos, Streaming pattern discovery in multiple time-series, in
Proceeding VLDB ’05 Proceedings of the 31st International Conference on Very Large Data
Bases (2015)

21. E. Papalexakis, C. Faloutsos, N. Sidiropoulos, Parcube: sparse parallelizable tensor decom-
positions, in Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD), pp. 521–536 (2012)

22. I. Perros, E.E. Papalexakis, F. Wang, R. Vuduc, E. Searles, M. Thompson, J. Sun, Spartan:
scalable parafac2 for large & sparse data (2017). arXiv preprint arXiv:1703.04219

23. A.H. Phan, A. Cichocki, PARAFAC algorithms for large-scale problems. Neurocomputing
74(11), 1970–1984 (2011)

24. C.E. Priebe et al., Enron data set (2006). http://cis.jhu.edu/parky/Enron/enron.html

http://cis.jhu.edu/parky/Enron/enron.html


7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs 179

25. R. Salakhutdinov, A. Mnih, Probabilistic matrix factorization, in Proceeding NIPS’07 Proceed-
ings of the 20th International Conference on Neural Information Processing Systems (2007)

26. J. Sun, S. Papadimitriou, P.S. Yu, Window based tensor analysis on high dimensional and multi
aspect streams, in Sixth International Conference on Data Mining (ICDM’06), pp. 1076–1080
(2006)

27. J. Sun, D. Tao, S. Papadimitriou, P.S. Yu, C. Faloutsos, Incremental tensor analysis: theory and
applications. ACM Trans. Knowl. Discov. Data 2(3), Article No. 11 (2008)

28. Y. Sun, J. Gao, X. Hong, B. Mishra, B. Yin, Heterogeneous tensor decomposition for clustering
via manifold optimization. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 476–489 (2016)

29. J. Tang et al., Trust & distrust computing dataset (2011). https://www.cse.msu.edu/~tangjili/
trust.html

30. C.E. Tsourakakis, Mach: fast randomized tensor decompositions (2009). Arxiv preprint
arXiv:0909.4969

31. L. Tucker, Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–
311 (1966)

32. J. Wu, Z. Wang, Y. Wu, L. Liu, S. Deng, H. Huang, Tensor CP decomposition method for
clustering heterogeneous information networks via stochastic gradient descent algorithms. Sci.
Program. 2017, 13 (2017), Article ID 2803091

33. L. Xiong et al., Temporal collaborative filtering with Bayesian probabilistic tensor factorization,
in Proceedings of the 2010 SIAM International Conference on Data Mining (2010)

https://www.cse.msu.edu/~tangjili/trust.html
https://www.cse.msu.edu/~tangjili/trust.html

	7 Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs
	7.1 Introduction
	7.1.1 Contributions of This Chapter: Sub-Tensor Impact Graphs
	7.1.1.1 Challenge #1: Decomposition in the Presence of Dynamic Data
	7.1.1.2 Challenge #2: Dealing with Noisy Data
	7.1.1.3 Challenge #3: Personalization of the Decomposition Process


	7.2 Background
	7.2.1 Tensors
	7.2.2 Tensor Decomposition
	7.2.2.1 CP and Tucker Decompositions
	7.2.2.2 Accuracy of Tensor Decomposition

	7.2.3 Tensor Decomposition and Clustering
	7.2.4 Block-Based Tensor Decomposition

	7.3 Sub-Tensor Impact Graphs (SIGs) and Sub-Tensor Impact Scores
	7.3.1 Accuracy Dependency Among Sub-Tensors
	7.3.2 Sub-Tensor Impact Graphs (SIGs)
	7.3.2.1 Alt. #1: Uniform Edge Weights
	7.3.2.2 Alt. #2: Surface of Interaction-Based Weights
	7.3.2.3  Alt. #3: Value Alignment-Based Edge Weights
	7.3.2.4 Alt. #4: Combined Edge Weights

	7.3.3 Sub-Tensor Impact Scores

	7.4 Application #1: Block-Incremental CP Decomposition (BICP) and Update Scheduling Based on Sub-Tensor Impact Scores
	7.4.1 Reducing Redundant Refinements
	7.4.2 Evaluation
	7.4.2.1 Setup
	7.4.2.2 Discussion of the Results


	7.5 Application #2: Noise-Profile Adaptive Decomposition (nTD) and Sample Assignment Based on Sub-Tensor Impact Scores
	7.5.1 Grid-Based Probabilistic Tensor Decomposition (GPTD)
	7.5.2 Noise-Sensitive Sample Assignment
	7.5.2.1 Naive Option: Noise Density-Based Sample Assignment
	7.5.2.2 SIG-Based Sample Assignment: S-Strategy

	7.5.3 Evaluation
	7.5.3.1 Setup
	7.5.3.2 Discussion of the Results


	7.6 Application #3: Personalized Tensor Decomposition (PTD) and Rank Assignment Based on Sub-Tensor Impact Scores
	7.6.1 Problem Formulation
	7.6.2 Sub-Tensor Rank Flexibility
	7.6.3 Rank Assignment for Personalized Tensor Decomposition
	7.6.4 Evaluation
	7.6.4.1 Setup
	7.6.4.2 Discussion of the Results


	7.7 Conclusions
	References


