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Data Stream Clustering for Real-Time
Anomaly Detection: An Application to
Insider Threats
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6.1 Introduction

A data stream is a continuous acquisition of data generated from various source(s) in
a dynamic environment, typically in a high velocity, leading to accumulation of large
volumes of data. This characterisation leads to a typical Big Data computational
problem. The dynamic nature of a data stream imposes a change in the data over
time. In real-time data streaming, a change refers to an anomalous data that deviates
from the normal baseline (e.g. credit card fraud, network intrusion, cancer, etc.).
The ultimate aim of such stream mining problems is to detect anomalous data in
real-time.

The absence of prior knowledge (no historical database) is often entangled to
a real-time stream mining problem. The anomaly detection system is required to
employ unsupervised learning to construct an adaptive model that continuously
(1) updates with new acquired data, and (2) detects anomalous data in real-time.
The system usually acquires data as segments and identifies the outliers in the
segment as anomalous. An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a different mechanism
[23]. To detect outliers in a stream mining problem, several approaches have been
proposed, nevertheless, unsupervised clustering has been successfully applied to
identify the patterns in the data and spot outliers [3]. In this work, we select the
insider threat problem as a real-world application to detect malicious insider threats
(outliers) in real-time. With the absence of labelled data (no previously logged
activities executed by users in an organisation), the insider threat problem poses
a challenging stream mining problem.
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Insider threat detection is an emergent concern for academia, industries, and
governments due to the growing number of insider incidents in recent years.
An insider is a current or former employee, contractor, or business partner of
an organisation who has authorised access to the network, system, or data (e.g.
trade secrets, organisation plans, and intellectual property) [35]. Malicious insider
threats are attributed to insiders who exploit their privileges with the intention
to compromise the confidentiality, integrity, or availability of the system or data.
According to the 2011 Cybersecurity Watch Survey [10], 21% of attacks are
attributed to insiders in 2011, while 58% are attributed to outsiders. However, 33%
of the respondents inspect the insider attacks to be more costly, compared to 51% in
2010. For instance, Harold Martin, a former top-security contractor at the National
Security Agency (NSA), was recently convicted for stealing around 500 million
pages of national defence information over the course of 20 years [38]. Earlier
in 2013, Snowden’s attack was reported as the biggest intelligence leakage in the
USA [42]. Edward Snowden, a former contractor to the NSA, disclosed 1.7 million
classified documents to the mass media.

The challenge of the insider threat detection problem lies in the variety of
malicious insider threats in the data sets. Each malicious insider threat is devised of
a complex pattern of anomalous behaviours carried out by a malicious insider, thus
making it difficult to detect all anomalous behaviours per threat. Analytically, some
anomalous instances (behaviours) which exist in a dense area of normal instances
have a high similarity to normal instances. These anomalous instances are difficult
to detect and may be missed by the detection system.

Based on the challenge of the problem, we formulate this work with the aim to
detect any-behaviour-all-threat; it is sufficient to detect any anomalous behaviour
in all malicious insider threats. In other words, we can hunt a malicious insider threat
by at least detecting one anomalous behaviour among the anomalous behaviours
associated with this threat. We call this approach threat hunting. The design of
the proposed approach with such a relaxing condition contributes in reducing the
frequent false alarms.

Figure 6.1 illustrates a continuous data stream of behaviours (instances) includ-
ing normal behaviours and anomalous behaviours. Each arrow denotes a behaviour
(instance) Xt executed by a user at a specific period of time. Let the blue arrows
represent the normal behaviours. Let the green arrows and the red arrows represent

Xt Xt+1

normal

T1

T2

Fig. 6.1 Continuous data stream of behaviours
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the anomalous behaviours which belong to the malicious insider threats T1 and T2,
respectively. To detect a malicious insider threat T1, it is required to detect any
green behaviour Xt . Hence, it is essential to detect any of the anomalous behaviours
per malicious insider threat; the aim to detect any-behaviour-all-threat. Note that
the proposed approach may detect more than one behaviour which belong to a
malicious insider threat, nevertheless, the ultimate aim is to detect one anomalous
behaviour per threat.

Based on the above argument, the feature space is defined as a set of features
which describe the user’s behaviour. Each feature is extracted from the data set
logs to represent a user’s behaviour related to a particular activity. A feature vector
(i.e. instance, behaviour) represents a set of feature values (i.e. actions, commands)
evaluated at a period of time. A more detailed description about the feature space is
provided in Sect. 6.3.

Several machine learning approaches have been suggested to address the insider
threat problem. However, these approaches still suffer from a high number of false
alarms. A recent real-time anomaly detection system, named RADISH, based on k

nearest neighbours (k-NN) is proposed by Bose et al. [5]. The experimental results
showed that 92% of the alarms flagged for malicious behaviour are actually benign
[false positives (FPs)].

To address the shortcoming of the high number of false alarms, we propose
a streaming anomaly detection approach, namely Ensemble of Random subspace
Anomaly detectors In Data Streams (E-RAIDS). We presented a preliminary
version of E-RAIDS (coined RandSubOut) in [22]. E-RAIDS is built on top
of the established outlier detection techniques [Micro-cluster-based Continuous
Outlier Detection (MCOD) or Anytime Outlier Detection (AnyOut)] which employ
clustering over continuous data streams. The merit of E-RAIDS is its capability to
detect malicious insider threats in real-time (based on the definition of real-time in
terms of window iterations as discussed in Sect. 6.4).

E-RAIDS learns an ensemble of p outlier detection techniques (either MCOD
or AnyOut), such that each model of the p models learns on a random feature
subspace. The acquired data is accumulated in a temporary buffer of pre-defined
capacity (equals to a fixed window size). So that, at each window iteration, each of
the p models in the ensemble is updated with the acquired data, and local outliers
are identified in the corresponding feature subspace.

Let p = n + 1 denote the number of feature subspaces selected randomly, such
that n is set to the number of features (dimension) of the feature space F in the
community data set. n represents the number of feature pairs (i.e. two features per
subspace), and 1 represents the whole feature space (i.e. all features). In this way,
E-RAIDS is capable to detect local outliers in the n feature pairs, as well as global
outliers in the whole feature space. Hence, E-RAIDS employs the idea of random
feature subspaces to detect local outlier(s) (anomalous behaviour(s)) which might
not be detected over the whole feature space. These anomalous behaviour(s) might
refer to malicious insider threat(s).

E-RAIDS introduces two factors: (1) a survival factor vfs , which confirms
whether a subspace votes for an alarm, if outlier(s) survive for a vfs number of



118 D. Haidar and M. M. Gaber

window iterations; and (2) a vote factor vfe, which confirms whether an alarm
should be flagged, if a vfe number of subspaces in the ensemble vote for an alarm.
E-RAIDS employs an aggregate component that aggregates the results from the p

feature subspaces, in order to decide whether to generate an alarm. The rationale
behind this is to reduce the number of false alarms.

The main contributions of this chapter are summarised as follows:

• an ensemble approach on random feature subspaces to detect local outliers
(malicious insider threats), which would not be detected over the whole feature
space;

• a survival factor that confirms whether outlier(s) on a feature subspace survive
for a number of window iterations, to control the vote of a feature subspace;

• an aggregate component with a vote factor to confirm whether to generate an
alarm, to address the shortcoming of high number of FPs;

• a thorough performance evaluation of E-RAIDS-MCOD and E-RAIDS-AnyOut,
validating the effectiveness of voting feature subspaces, and the capability to
detect (more than one)-behaviour-all-threat detection (Hypothesis 2) in real-time
(Hypothesis 1).

E-RAIDS extends the preliminary version RandSubOut [22], where it upgrades
the selection of the set of outliers (anomalous behaviours) identified at a window
iteration over a feature subspace to improve the detection performance of malicious
insider threats over the whole ensemble. This is later described in Sect. 6.3.3.1.
Unlike RandSubOut, we evaluate E-RAIDS on community data sets such that
each community is richer with malicious insider threats which map to a variety
of scenarios. Moreover, E-RAIDS is evaluated, not only in terms of the number of
detected threats and FP Alarms, however, in terms of (1) F1 measure, (2) voting
feature subspaces, (3) real-time anomaly detection, and (4) the detection of (more
than One)-behaviour-all-threat.

The rest of this chapter is organised as follows. Section 6.2 reviews the techniques
which utilised clustering to detect outliers, and the stream mining approaches
proposed for insider threat detection. Section 6.3 presents the proposed streaming
anomaly detection approach, namely E-RAIDS, for insider threat detection. Experi-
ments and results are discussed in Sect. 6.4. Finally, Sect. 6.5 summarises the chapter
and suggests future work.

6.2 Related Work

The absence of labelled data (i.e. low data maturity) reveals that an organisation
has no previously logged activities executed by users (no historical database). We
address the absence of prior knowledge using unsupervised streaming anomaly
detection built on top of established outlier detection techniques.

Clustering has been successfully applied to identify the patterns of the data for
outlier detection [3]. The continuous acquisition of data generated from various
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sources defines the streaming environment of the insider threat problem. Several
clustering methods have been proposed to handle the streaming environment. The
state of the art presents two primitive clustering methods: Balanced Iterative
Reducing and Clustering using Hierarchies (BIRCH) [46], and CluStream [1].

BIRCH is an incremental hierarchical clustering method which was first pro-
posed for very large data sets. BIRCH incrementally and dynamically clusters
acquired data instances. It maintains a tree of cluster features (information about
clusters) which is updated in an iterative fashion [21]. Thereafter, BIRCH was
applied to data stream clustering.

BIRCH was the first to introduce the concepts of micro- and macro-clusters [26].
CluStream is a data stream clustering method that employed those two concepts
for the clustering process: online micro-clustering and offline macro-clustering. In
the online phase, CluStream scans the acquired data instances and creates micro-
clusters in a single pass to handle the big (unbounded) data stream. In the offline
phase, CluStream only utilises the micro-clusters and re-clusters into macro-clusters
[21].

From BIRCH to CluStream, the concept of data stream clustering is applied,
despite the fact that BIRCH includes incremental processing of data instances.
Incremental clustering processes one data instance at a time and maintains a pre-
defined data structure (i.e. model) that is incrementally updated without the need
for model reconstruction [40]. In fact, many incremental methods predate the data
stream mining methods. The intrinsic nature of data streams requires methods which
implement incremental processing of data instances, in order to handle the resource
limitations (i.e. time and memory) [40]. But unlike earlier incremental clustering
methods, data stream clustering methods require a more efficient time complexity
to cope with high data rates [28]. Indeed, the literature stresses the importance of
considering the inherent time element in data streams [40]. For instance, a typical
data stream clustering method exhibits the temporal aspect of cluster tracking [40].
The dynamic behaviour of cluster over a data stream manifests in the evolving
of existing clusters over time; the emergence of new clusters; and the removal of
clusters based on a time stamp and/or size. Those cluster updates must be performed
on the data structure (i.e. model) very efficiently [28]. Hence, the data stream
clustering methods are not only incremental, but are also fast in terms of the inherent
temporal aspects.

In this work, data stream clustering is used to underpin the outlier detection
techniques for real-time anomaly detection. In the insider threat problem, the
temporal aspect is substantial to consider, in order to detect malicious insider threats
in real-time (based on the definition of real-time in terms of window iterations as
discussed in Sect. 6.4). Hence, data stream clustering methods are more adequate to
be utilised in this work than typical incremental clustering methods.

In the following we review the techniques which utilised clustering to detect
outliers. Thereafter, we shed light on two outlier detection techniques (MCOD
and AnyOut) which employ data stream clustering. Those two techniques are later
utilised in the proposed framework.
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We also review the streaming anomaly detection approaches proposed for insider
threat detection.

6.2.1 Clustering for Outlier Detection

It is important to distinguish our objective—to optimise outlier detection—from
that of a benchmark of clustering methods developed to optimise clustering (such as
DBSCAN [11] and BIRCH [46]). The outliers in these methods [11, 46] are referred
to as noise, where they are usually tolerated or ignored. However, in our work,
we refer to outliers as anomalous (suspicious) behaviour(s) which may correlate to
malicious insider threats. Therefore, clustering is utilised to optimise the detection
of outliers.

On the other hand, a benchmark of clustering methods to optimise outlier
detection (such as LOF [6] and CBLOF [24]) are developed. Breunig et al. [6]
introduced the concept of Local Outlier Factor (LOF) to determine the degree of
outlierness of an instance using density-based clustering. The locality of instance
(local density) is estimated by the distance to its k nearest neighbours. Thus, the LOF
of an instance located in a dense cluster is close to 1, while lower LOF is assigned for
other instances. He et al. [24] present a measure, called Cluster-based Local Outlier
Factor (CBLOF), to identify the physical significance of an outlier using similarity
function. The CBLOF of an instance is determined by (1) the distance to its nearest
cluster (if it belongs to a small cluster), or (2) the distance to its cluster (if it belongs
to a large cluster).

However, the aforementioned methods do not tackle outlier detection in continu-
ous data streams. MCOD [28] and AnyOut [3] are two established outlier detection
techniques, which employ data stream clustering in continuous data streams. MCOD
and AnyOut are utilised as building block clustering techniques for the proposed E-
RAIDS approach. A detailed description and formalisation for these techniques is
found in Sect. 6.3.2.

6.2.2 Streaming Anomaly Detection for Insider Threat
Detection

Few approaches have utilised streaming anomaly detection to detect insider threats
[36, 37, 41, 45] with no prior knowledge. We give a brief description for these
approaches in the following.

Among the emerging interest in deep learning, Tuor et al. [41] present a prelim-
inary effort to utilise deep learning in an online unsupervised approach to detect
anomalous network activity in real-time. The authors presented two models: a deep
neural network (DNN) model which is trained on each acquired instance only once,
and a recurrent neural network (RNN) which learns an RNN per user such that the
weights are shared among all users, however, the hidden states are trained per user.
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Zargar et al. [45] introduce a Zero-Knowledge Anomaly-Based Behavioural
Analysis Method, namely XABA, that learns each user’s behaviour from raw logs
and network traffic in real-time. XABA is implemented on a big-stream platform
without pre-defined or pre-processed activity logs, to handle high rates of network
sessions. The authors indicated that XABA reports a low number of FPs, when
evaluated on a real traitor scenario.

One of the remarkable approaches is an ensemble of one class SVM (ocSVM),
namely Ensemble-based Insider Threat (EIT), proposed by Parveen et al. [36].
The authors proposed an ensemble approach, based on static ocSVM learners, to
model a continuous data stream of data chunks (i.e. daily logs). The EIT maintains
an ensemble of a k pre-defined number of models M , where the ensemble is
continuously updated at each day session upon the learning of a new model Ms .
The EIT selects the best k − 1 models from the k models, having the minimum
prediction error over the data chunk Cs , and appends the new model Ms . The results
show that ensemble-ocSVM outperforms ocSVM, where it reports a higher accuracy
and almost half the number of FP. The authors extended their work in a future
paper [37], where the ensemble approach is applied to unsupervised graph-based
anomaly detection (GBAD). The results show that ensemble-ocSVM outperforms
the ensemble-GBAD in terms of FP.

The above approaches have shown merit in addressing the insider threat detection
problem, however, as aforementioned, they do suffer from high false alarms. In this
book chapter, we utilise data stream clustering to detect outliers (malicious insider
threats), while reducing the number of false alarms.

6.3 Anomaly Detection in Data Streams for Insider Threat
Detection

This section identifies the feature space in the insider threat problem and the
categories of the feature set extracted. It then describes and formalises established
continuous distance-based outlier detection techniques (MCOD and AnyOut). It
presents the proposed E-RAIDS for insider threat detection with a detailed descrip-
tion of the feature subspace anomaly detection and the aggregate component
(ensemble voting).

6.3.1 Insider Threat Feature Space

In this book chapter, we utilise the synthetic data sets, including a variety of
malicious insider threat scenarios, generated by Carnegie Mellon University (CMU-
CERT) [16]. The CMU-CERT data sets comprise system and network logs for
the activities carried out by users in an organisation over 18 months (e.g. logons,
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connecting removable devices, copying files, browsing websites, sending emails,
etc.). We extract a feature set from these logs in the CMU-CERT data sets according
to the literature [5, 30, 31]. This feature set allows us to assess the behaviour of
users, and compare it to the previous behaviour of the users or their community
of users. We extract each feature considering the evidence it would reveal about
an undergoing anomalous behaviour. For example, consider the feature logon after
hours; this feature if its values is greater than 1, it reveals an evidence of an unusual
activity undergoing after the official working hours. Thus, it contributes in the
overall decision of the system whether a malicious alarm should be flagged or not.

In the following, we give a more detailed description of the feature set used in this
work. We categorise the features into five groups with some examples of each.

• Frequency-based features: assess the frequency of an activity carried out by a
community of users over each session slot (integer , e.g. frequency of logon,
frequency of connecting devices);

• Time-based features: assess an activity carried out within the non-working hours
period of time (integer , e.g. logon after work hours, device usage after work
hours);

• Boolean features: assess the presence/absence of an activity-related information
(f lag = {0, 1}, e.g. non-empty email-bcc, a non-employee email recipient,
sensitive file extension);

• Attribute-based features: are more specialised features, which assess an activity
with respect to a particular attribute (feature) value (integer , e.g. browsing a
particular URL (job websites, WikiLeaks)); and

• Other features: assess the count of other activity-related information. (integer ,
e.g. number of email recipients, number of attachments to emails).

This feature set defines the feature space of the insider threat problem, and is
used to construct community behaviour profiles for users having the same role
(e.g. Salesman, IT admin). A community behaviour profile represents instances
(i.e. vectors of feature values) evaluated over session slots, where a session slot
represents a period of time from start time to end time. Each vector of feature values
is extracted from the behaviour logs of the community users during a session slot.

In this work, we define the session slot per 4 h to find local anomalous behaviour
within a day which would not be detected per day. The rationale behind choosing the
session slot per 4 h is that this period of time is long enough to extract an instance
(i.e. vector of feature values) which provides an adequate evidence of anomalous
behaviour. Thus, it supports the system to capture the anomalous behaviours in
feature space. If the session slot is chosen per minutes, for example, the extracted
instances would lack the adequate evidence of the occurrence of anomalous
behaviour. On the other hand, if the session slot is chosen per days/weeks, for
example, the period of time will be too long to capture the anomalous behaviour
blurred among the normal behaviour in the extracted vector of feature values.

After constructing the community behaviour profiles, we normalise each vector
of feature values (over a session slot) to the range [0, 1], and associate it with a class
label {Normal,Anomalous}.
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6.3.2 Background on Distance-Based Outlier Detection
Techniques

The state of the art presents one of the most widely employed techniques for
anomaly detection, which are distance-based outlier detection techniques. Accord-
ing to the definition [27], an instance Xt is an outlier, if there exists less than k

number of neighbours located at a distance at most r from Xt .
In this work, we are interested in continuous outlier detection over a data

stream, where recent instances arrive and previous instances expire. The demo
paper [15] gives a comparison of four continuous distance-based outlier detection
techniques: STream OutlieRMiner (STORM) [2]; Abstract-C [44]; Continuous
Outlier Detection (COD) [28]; and Micro-cluster-based Continuous Outlier
Detection (MCOD) [28]. COD and MCOD have O(n) space requirements, and
they have a faster running time than the exact algorithms of both [2] and [44]. Note
that since all algorithms are exact, they output the same outliers [15]. According
to [15], COD and MCOD demonstrate a more efficient performance compared to
STORM and Abstract-C in terms of lower space and time requirements. Hence,
the latter are excluded, but not COD and MCOD. Furthermore, based on the
experimental evaluation in [28], MCOD outperforms COD over benchmark tested
data sets. Hence, MCOD is selected to be utilised as a base learner in the proposed
E-RAIDS approach.

The state of the art presents a further continuous distance-based outlier detection
technique, called Anytime Outlier Detection (AnyOut) [3]. However, AnyOut has
not been compared to the four techniques in the demo paper. We select MCOD
and AnyOut as base learners in E-RAIDS to compare their performance. It is
worth to note that the aforementioned distance-based outlier detection techniques
are implemented by the authors of [15] in the open-source tool for Massive Online
Analysis (MOA) [33].

In the following, a brief description of MCOD and AnyOut techniques is
provided.

6.3.2.1 Micro-Cluster-Based Continuous Outlier Detection

Micro-cluster-based Continuous Outlier Detection (MCOD), an extension to Contin-
uous Outlier Detection (COD), stems from the adoption of an event-based technique.
The distinctive characteristic of MCOD is that it introduces the concept of evolving
micro-clusters to mitigate the need to evaluate the range query for each acquired
instance Xt with respect to all the preceding active instances. Instead, it evaluates
the range queries with respect to the (fewer) centres of the micro-clusters. The
micro-clusters are defined as the regions that contain inliers exclusively (with no
overlapping). The micro-clustering is fully performed online [28].
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Given that, the centre mci of a micro-cluster MCi may or may not be an actual
instance Xt ; the radius of MCi is set to r

2 , such that r is the distance parameter for
outlier detection; and the minimum capacity (size) of MCi is k + 1. Below we give
a brief formalisation of MCOD.

Let k represent the number of neighbours parameter. Let PD represent the set of
instances that doesn’t belong to any micro-cluster.

The micro-clusters (i.e. centres of micro-clusters) in MCOD are determined as
described in [1]. In the initialisation step, seeds (with a random initial value) are
sampled with a probability proportional to the number of instances in a given micro-
cluster. The corresponding seed represents the centroid of that micro-cluster. In later
iterations, the centre mci is the weighted centroid of the micro-cluster MCi .

• Step 1: For each acquired instance Xt , MCOD finds (1) the nearest micro-cluster
MCi , whose centre mci is the nearest to it, and (2) the set of micro-cluster(s) R,
whose centres are within a distance 3×r

2 from their centres.
• Step 2: If dist (Xt ,mci) ≤ r

2 ; such that mci is the centre of the nearest cluster
MCi , Xt is assigned to the corresponding micro-cluster.

• Step 3: Otherwise, a range query q for Xt is evaluated with respect to the
instances in (1) the set PD and (2) the micro-clusters of the set R.

• Step 4: Consider n: the number of neighbours Nt ′ ∈ P to Xt , such that
dist (Xt ,Nt ′) ≥ r

2 . If n > θk; θ ≥ 1, then a new micro-cluster with centre
Xt is created and the n neighbours are assigned to this micro-cluster.

• Step 5: A micro-cluster whose size decreases below k + 1 is deleted and a
range query similar to that described for Xt is performed for each of its former
instances.

• Step 6: An instance Xt is flagged as an outlier, if there exists less than k instances
in either PD or R.

6.3.2.2 Anytime Outlier Detection

Anytime Outlier Detection (AnyOut) is a cluster-based technique that utilises the
structure of ClusTree [29], an extension to R-tree [20, 39], to compute an outlier
score. The tree structure of AnyOut suggests a hierarchy of clusters, such that
the clusters at the upper level subsume the fine grained information at the lower
level. ClusTree is traversed in top-down manner to compute the outlier score of an
acquired instance Xt until it is interrupted by the subsequent (next) instance Xt .
Thus, the descent down the tree improves the certainty of the outlier score, neverthe-
less, the later the arrival of the subsequent instance the higher the certainty [3].

Given that, a cluster is represented by a Cluster Feature tuple CF = (n, LS, SS),
such that n is the number of instances in the cluster, LS and SS are respectively the
linear sum and the squared sum of these instances. The compact structure of the tree
using CF tuples reduces space requirements. From BIRCH [46] to CluStream [1],
cluster features and variations have been successfully used for online summarisation
of data, with a possible subsequent offline process for global clustering.



6 Data Stream Clustering for Anomaly Detection 125

Let es represent a cluster node entry in ClusTree. Given defined two scores to
compute the degree of outlierness of an instance Xt : (1) a mean outlier score is
sm(Xt ) = dist (Xt , μ(es)), such that μ(es) is the mean of the cluster node entry
es ∈ ClusTree where Xt is interrupted; and (2) a density outlier score is sd(Xt ) =
1 −g(Xt , es), such that g(xi, es) is the Gaussian probability density of Xt for μ(es)

as defined in [3]. Below we give a brief formalisation of AnyOut.
In the case of a constant data stream:

• Step 1: Initialisation: Each Xt in the data stream is assigned with an actual
confidence value conf (Xt ) = es(Xt ).

• Step 2: Distribute the computation time for each Xt based on the scattered
confidences.

• Step 3: For each acquired instance Xt , AnyOut traverses the tree in a top-down
manner until the arrival of the instance Xt+1 in the data stream.

• Step 4: At the moment of interruption, Xt is inserted to the cluster node entry e ∈
ClusTree, where Xt arrives (pauses).

• Step 5: The outlier score of Xt , according to the specified parameter sm(Xt ) or
sd(Xt ), is computed with respect cluster node entry es .

• Step 6: The expected confidence value for the outlier score of Xt is updated
based on the computation time. The confidence value (certainty) increases as the
computation time increases.

6.3.3 E-RAIDS Approach

The established continuous distance-based outlier detection techniques (MCOD and
AnyOut), described and formalised in Sect. 6.3.2, are utilised as building block data
stream clustering techniques for the proposed E-RAIDS approach.

In this work, we propose a streaming anomaly detection approach, namely
Ensemble of Random subspace Anomaly detectors In Data Streams (E-RAIDS), for
insider threat detection. In other words, E-RAIDS is an ensemble of an established
distance-based outlier detection technique (MCOD or AnyOut), such that each
model of the ensemble learns on a random feature subspace. The idea of E-RAIDS
is to employ an outlier detection technique on a feature subspace, to detect local
outliers which might not be detected over the whole feature space. These local
outliers may refer to anomalous behaviours (instances) attributed to a malicious
insider threat. Hence, the ultimate aim of the E-RAIDS approach is to detect any-
behaviour-all-threat (threat hunting as defined in Sect. 6.1); a process that leads to a
reduction of the number of false alarms.

Figure 6.2 presents the E-RAIDS framework. The set of blue arrows represent a
data stream, where each arrow represents an instance (feature vector) Xt acquired
at a session slot t . Consider the formalisations below:

• window: a segment of a fixed size w that slides along the instances in a data
stream with respect to time (i.e. session slots);
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Fig. 6.2 E-RAIDS framework

• buffer: a temporary short memory of allocated capacity (equals to w). It
temporarily accumulates the instances in a data stream. The buffer starts to
accumulate the instances in a data stream at the start of the window and stops
once the buffer is full after w number of instances. The full buffer is then input
to the base learner component to be processed; and

• window iteration wIter: an iteration of the window slide. It starts at the already
processed instances (in the previous buffer) procInst and ends at procInst +w.
For instance, wIter = 0 starts at procInst = 0 and ends at w. wIter = 1 starts
at procInst = w and ends at 2 × w. The window iteration wIter allows the
synchronisation between the window slide and the buffer accumulation.

Based on the aforementioned formalisations, at each window iteration wIter ,
the buffer accumulates w number of instances. Once the buffer is full, the instances
in the buffer are input to the base learner component. A base learner component
refers to the distance-based outlier detection technique to be utilised (MCOD or
AnyOut). It employs a p number of base models to learn on randomly selected p

feature subspaces. A feature subspace FSi ⊆ F is defined as a subset of features
selected from the whole feature space f , where F = {f1, f2, . . . , fn}. The rationale
behind the idea of random feature subspaces is to detect local outlier(s) (anomalous
behaviour(s)) which might not be detected over the whole feature space.

Let p = n + 1 represent the number of feature subspaces selected randomly,
such that n is set to the number of features (dimension) of the feature space F in
the community data set. n represents the number of feature pairs (i.e. 2 features per
subspace), and 1 represents the whole feature space (i.e. all features). The p feature
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subspaces are utilised to build the ensemble of p models {M1,M2, . . . ,Mn,Mp},
such that {M1,M2, . . . ,Mn} learn on feature pairs, and Mp learns on the whole
feature space. In this way, E-RAIDS is capable to detect local outliers in the n

feature pairs, as well as global outliers in the whole feature space.

6.3.3.1 Feature Subspace Anomaly Detection

For each model Mi on a feature subspace FSi , we define the following data
repositories and a survival factor:

• outSet : a temporary set of the outliers detected by a base learner (MCOD or
AnyOut) at wIter;

• outT empList : a list that stores the triples (1) an outlier out ∈ outSet , (2)
the wIter where it was first detected, and (3) a temporal count tempC which
counts the number of subsequent windows out was detected at. It has the form
〈out, wI ter, tempC〉; and

• subV oteList : a list that stores the triples (1) a wIter , (2) a subV ote

parameter set to 1 if the feature FSi votes for an alarm to be generated at
wIter and 0 otherwise, and (3) an outlier set subOutSet . It has the form
〈wIter, subV ote, subOutSet〉.

• vfs : a survival factor that confirms whether a feature subspace FSi votes for an
alarm to be generated at wIter . In other words, if an outlier out survived (has
been detected) for a vfs number of subsequent windows, then out is defined
as a persistent outlier. A persistent outlier boosts the chance of an alarm to be
generated at wIter .

Over each feature subspace FSi , the base learner (MCOD or AnyOut) processes
the buffer at the current wIter to update the model Mi . Mi identifies the outlier set
outSet , which includes (1) the outliers from the buffer at the current wIter; and (2)
the outliers from the previously learned instances before the model being updated.
The type (2) outlier refers to an instance that was identified as an inlier, however,
turned into an outlier in the current wIter .

For each outlier out ∈ outSet , if out does not exist in outT empList , a new
triple 〈out, wI ter, 1〉 is appended to outT empList . In this case, tempC is assigned
to 1 to declare that it is the first time an outlier out detected. If out exists in the
outT empList , tempC is incremented by 1 in the triple for out .

For each outlier out ∈ outT empList , E-RAIDS checks (1) if tempC = vfs ,
then out survived for a vfs number of subsequent windows. We call it persistent
outlier. Thus, a persistent outlier confirms that the FSi votes for an alarm at wIter .
Thus, subV ote is set to 1 in the triple for wIter in subV oteList . (2) If wIter −
tempC = vfs , then out has turned into an inlier. We call it expired outlier. Thus, the
triple for the expired outlier out is removed from the outT empList . (3) If wIter −
tempC < vfs , then out is neither a persistent outlier nor an expired outlier. We call
it potential outlier.
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Algorithm 1 Feature subspace
wIter ← 0
foreach Xt ∈ stream do

accumulate Xt to buffer
if buffer is full then

outSet ← get outliers detected by base
foreach out ∈ outSet do

if outinoutT empList then
a new triple 〈out, wI ter, 1〉 is appended to outT empList

else
increment tempC by 1 for out in outT empList

end
end
foreach out ∈ outT empList do

if tempC = vfs then
set subVote to 1 in subVoteList for the current wIter

remove out from outTempList
subOutSet ← persistent out∪ potential outliers
append subOutSet to subV oteList at wIter

end
if wIter − tempC = vfs then

remove out from outT empList

end
end
increment wIter

end
empty buffer

end
return subVoteList

Eventually, outT empList consists of persistent outliers and potential outliers
(expired outliers have been removed). E-RAIDS appends persistent outliers and
potential outliers in outT empList to the subOutSet in the triple for wIter in
subV oteList .

In the preliminary version RandSubOut [22], only the persistent outliers
in outT empList are appended to the subOutSet in the triple for wIter in
subV oteList . The subOutSet at wIter represents the set of anomalous behaviours
detected over a feature subspace FSi . As later described in Sect. 6.3.3.2, if the
ensemble votes to generate an alarm, then the subOutSet for each feature subspace
is utilised to evaluate whether all malicious insider threats are detected (i.e. the
aim of any-behaviour-all-threat). The experiments carried out on both versions
(E-RAIDS and RandSubOut) showed that E-RAIDS outperforms the latter in terms
of detecting more malicious insider threats. Analytically, unlike RandSubOut, E-
RAIDS considers further the potential outliers in the subOutSet to check for
detected malicious insider threats. Thus, the use of potential outliers significantly
boosts the detection performance of the proposed approach.

Finally, the buffer is emptied to be prepared for the subsequent (next) window of
upcoming instances (wIter + 1). A step-by-step pseudocode for the E-RAIDS base
learner procedure is provided in Algorithm 1.
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Algorithm 2 Ensemble of random feature subspaces
foreach wIter do

foreach FSi ∈ FS do
subV ote ← get subV ote for wIter from subV oteList for FSi

eV ote ← eV ote + subV ote for wIter in eV oteList

subOutSet ← get subOutSet for wIter from subV oteList for FSi

append subOutSet to eOutSet for wIter in eV oteList

end
if eV ote = vfe then

flag an alarm
end

end

6.3.3.2 Ensemble of Random Feature Subspaces Voting

For the ensemble of p models {M1,M2, . . . ,Mn,Mp} on feature subspaces
{FS1, FS2, . . . , FSn, FSp} respectively, we define the following data repository
and a vote factor:

• eV oteList : a list that stores the triples (1) a wIter , (2) an eV ote parameter that
counts the number of feature subspaces that vote for an alarm, and (3) an outlier
set eOutSet that appends the subOutSet from each FSi votes for an alarm. It
has the form 〈wIter, subV ote, subOutSet〉.

• vfe: a vote factor that confirms whether an alarm to be generated at wIter by the
whole ensemble. In other words, if a vfe number of feature subspaces vote for an
alarm, then an alarm is generated at wIter .

As illustrated in Fig. 6.2, the E-RAIDS aggregate component aggregates the
results from the p feature subspaces, in order to confirm whether to generate an
alarm or not at each window iteration wIter . For each feature subspace FSi ,
if subV ote = 1 for wIter , E-RAIDS adds subV ote to eV ote for wIter in
eV oteList . Furthermore, E-RAIDS gets subOutSet for wIter from subV oteList ,
and appends to eOutSet for wIter in eV oteList .

After getting the votes from all the feature subspaces in the ensemble, E-RAIDS
checks if eV ote = vfe. If the condition is satisfied, then an alarm of a malicious
insider threat is generated at wIter . The voting mechanism is technically controlled
by the vote factor vfe, such that if a vfe number of feature subspaces vote for
anomalous behaviour(s) at a window iteration wIter , then an alarm is generated.
This accordingly handles the case of a conflict, where p

2 (50%) of the feature
subspaces in the ensemble vote for anomalous behaviour(s) and the other p

2 vote for
normal behaviour(s). The ensemble technically checks if p

2 = vfe, then an alarm is
generated.

A step-by-step pseudocode for the E-RAIDS aggregate procedure is provided in
Algorithm 2.
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6.4 Experiments

We evaluated the effectiveness of the proposed approach on the CMU-CERT data
sets using Windows Server 2016 on Microsoft Azure (RAM 140GB, OS 64-bits,
CPU Intel Xeon E5 − 2673v3) for data pre-processing and Microsoft Windows 7
Enterprise (RAM 12GB, OS 64-bits, CPU Intel Core i5-4210U ) for experiments.
First, MATLAB R2016b was used to pre-process the data set and generate
community behaviour profiles per session slots of 4 h. Second, we implemented
E-RAIDS-MCOD and E-RAIDS-AnyOut and carried out the experiments in Java
environment (Eclipse Java Mars) using the open-source MOA package [33].

6.4.1 Description of the Data set

A significant impediment to researchers who work on the insider threat problem is
the lack of real world data. The real data logs the activities executed by the users
in an organisation. These data log files contain: private user profile information (e.g.
name, email address, mobile number, home address, etc.); intellectual property (e.g.
strategic or business plans, engineering or scientific information, source code, etc.);
and confidential content (e.g. email content, file content, etc.) [7]. Organisations
commonly refuse to give researchers access to real data to protect its users and
assets.

In the current decade, there exists a great recent trend towards the utilisation of
the CMU-CERT data set(s) for the insider threat detection systems [5, 12, 13, 30, 41,
43]. The CMU-CERT data sets are synthetic insider threat data sets generated by the
CERT Division at Carnegie Mellon University [9, 16]. CMU-CERT data repository
is the only one available for insider threat scenarios (5 scenarios) and has recently
become the evaluation data repository for researchers addressing the insider threat
problem [5, 17, 41].

In the preliminary version [22], we used r5.1 CMU-CERT data set, where each
community consists of one malicious insider threat which map to one scenario.

For this chapter, we used r5.2 CMU-CERT data set which logs the behaviour
of 2000 employees over 18 months. Unlike the previously released data sets, the
communities in the r5.2 data set consist of multiple malicious insider threats which
map to different scenarios. Among those employees, we extracted the data logs for
employees belonging to the following three communities: Production line worker
com-P, Salesman com-S, and IT admin com-I. The community com-P consists
of 300 employees, 17 malicious insider threats (associated with 366 anomalous
behaviours), where each threat maps to one of the scenarios {s1, s2, s4}. The
community com-S consists of 298 employees and 22 malicious insider threats
(associated with 515 anomalous behaviours), where each threat maps to one of
the scenarios {s1, s2, s4}. The community com-I consists of 80 employees and 12
malicious insider threats (associated with 132 anomalous behaviours), where each
threat maps to one of the scenarios {s2, s3}.
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6.4.2 Experimental Tuning

In this work, we define two experiments based on the proposed E-RAIDS approach.
The E-RAIDS-MCOD learns an ensemble of p MCOD base learners, such that
each MCOD base learner is trained on a feature subspace of the p feature subspaces.
Likewise, the E-RAIDS-AnyOut learns an ensemble of p AnyOut base learners.

The experiments are tuned for different values of parameters. Table 6.1 presents
the values for the parameters tuned in each of MCOD and AnyOut, with a short
description. Note that an extensive number of experiments were done to select
the presented tuning values for the parameters. The values were selected based
on E-RAIDS achieving the best performance in terms of the evaluation measures
described below.

For MCOD, the parameter k has a default value k = 50 in the MOA package.
In this chapter, we present k = {50, 60, 70} to evaluate the E-RAIDS-MCOD for
different number of neighbours. The parameter r , with a default value r = 0.1, is
presented for a range for r = {0.3, 0.4, 0.5, 0.6, 0.7} to check the influence of r .

For AnyOut, the parameter |Dtrain| is presented for 500 instances, knowing that
no threats are present at the beginning of the stream in these 500 instances. The
parameters confAgr and conf did not show a significant influence on the utilised
data sets, so both are assigned to their default values, in the MOA package, 2 and 4,
respectively. τ has a minimum value 0 and a maximum value 1, so it is presented for
τ = {0.1, 0.4, 0.7} to evaluate the influence of varying the outlier score threshold
on the outliers detected. oscAgr has a minimum value 1 and a maximum value 10,
so it is presented for the oscAgr = {2, 4, 6, 8}.

In general, for E-RAIDS approach with either MCOD or AnyOut base learner,
we present the vouch factor vfs = 2, so it confirms an outlier as positive (anomalous)
after it survives for 2 subsequent windows. We present the vote factor vfe = 1, so
if at least 1 feature subspace in the ensemble flags an alert, an alarm of a malicious
insider threat is confirmed to be generated.

Likewise, for both E-RAIDS-MCOD and E-RAIDS-AnyOut, the window size
is presented for w = {50, 100, 150, 200}. As previously described, an instance

Table 6.1 Tuned parameters

Description

MCOD parameter

k = {50, 60, 70} Number of neighbours parameter

r = {0.3, 0.4, 0.5, 0.6, 0.7} Distance parameter for outlier detection

AnyOut parameter

|Dtrain| = 500 Training set size

confAgr = 2 Size of confidence aggregate

conf = 4 Initial confidence value

τ = {0.1, 0.4, 0.7} Outlier score threshold

oscAgr = {2, 4, 6, 8} Size of outlier score aggregate
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(feature vector) is a set of events executed during a pre-defined session slot. In this
work, we define a session slot per 4 h. Let w represent the window size, which
accumulates the acquired instances in a data stream. If w = 50 and vfs = 2, then
the instances in each window are processed after 4 × 50 = 200 h � 8 days. Based
on the description of E-RAIDS, a threat (outlier) may be confirmed as an outlier at
least over the window it belongs to (after 8 days) or over the next window (after
� 8×2 = 16 days). If w = 200 and vfs = 2, then the instances in each window are
processed after 4 × 200 = 800 h � 33 days. A threat (outlier) may be confirmed as
an outlier at least (after 33 days) or over the next window (after � 33×2 = 66 days).
Note that the malicious insider threats simulated in the CMU-CERT data sets span
over at least one month and up to 4 months. Hence, we hypothesise the following in
Hypothesis 1.

Hypothesis 1 The E-RAIDS approach is capable to detect the malicious insider
threats in real-time (during the time span of the undergoing threat).

6.4.3 Evaluation Measures

Many research work has been done to detect or mitigate malicious insider threats,
but nevertheless has established standard measures to evaluate the proposed models
[18]. The research practices show that the insider threat problem demands to
measure the effectiveness of the models before being deployed, preferably in terms
of true positives (TP) and false positives (FP) [19].

In the state of the art, a remarkable number of approaches were validated in
terms of FP measure [4, 5, 14, 32, 37]. This sheds light on the importance of the
FP measure to address the shortcoming of the high number of false alarms (FPs).
Furthermore, some approaches were validated in terms of: TP measure [32]; F1
measure [4, 34]; AUC measure [8, 12, 17]; precision and recall [25, 30]; accuracy
[25, 37]; and others.

The variety of the utilised evaluation measures in the state of the art reveals the
critical need to formulate the insider threat problem and to define the measures
that would best validate the effectiveness of the propose E-RAIDS approach. In
the following, we give a formulation for the E-RAIDS approach and we define the
evaluation measures utilised in this work.

As aforementioned, the ultimate aim of the E-RAIDS approach is to detect all
the malicious insider threats over a data stream in real-time, while minimising the
number of false alarms.

The challenge of the insider threat problem lies in the variety and complexity
of the malicious insider threats in the data sets. Each malicious insider threat is
devised of a set of anomalous behaviours. An anomalous behaviour is represented
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by an instance (feature vector) which describes a set of events (features) carried
out by a malicious insider. Based on the challenge of the problem, we formulate
the E-RAIDS approach with the aim to detect any-behaviour-all-threat (as defined
in Sect. 6.1). This means that it is sufficient to detect any anomalous behaviour
(instance) in all malicious insider threats. Hence, E-RAIDS approach is formulated
as a threat hunting approach, where a threat is detected if (1) a vfe number of feature
subspaces confirm an undergoing threat (flag alarm) over a window and (2) the
outliers, associated with the alarm flagged over the window, include at least a true
positive (anomalous behaviour detected as outlier). Note that although the detection
of one behaviour confirms the detection of the threat, we hypothesise the following
in Hypothesis 2.

Hypothesis 2 The E-RAIDS approach is capable of detecting more than one
behaviour from the set of behaviours which belong to a malicious insider threat.
We refer to as (more than one)-behaviour-all-threat detection in E-RAIDS.

Furthermore, the property of the E-RAIDS approach of using windows over data
streams introduces a refined version of the evaluation of false positives (FP). In
this work, we use the FPAlarm to evaluate the false positives. So that if all the
outliers associated with the alarm generated over a window are actually normal,
then the alarm is considered a false alarm (i.e. FPAlarm is incremented 1). A formal
definition for FPAlarm is given in the following.

We define the measures used to evaluate the performance of E-RAIDS, which
include a refined version of the default (known) evaluation measures, taking our
ultimate aim into account.

• PT : Threats number of malicious insider threats associated with anomalous
instances. In other words, PT is the number of malicious insiders attributed to
the anomalous behaviours;

• TPT : True Positives a refined version of default TP to evaluate the number of
threats detected by the framework among all the PT malicious insider threats.
TPT is incremented if at least one anomalous instance (behaviour attributed to
the threat) is associated as an outlier to a flagged alarm;

• FPAlarm: False Positive Alarm a refined version of default FP to evaluate the
number of false alarms generated. An alarm is declared false if all the outliers
associated with the alarm are actually normal instances. This means that none of
the instances contributed to generating the alarm, therefore, false alarm;

• FNT : False Negatives a refined version of default FN to evaluate the number of
insider threats not detected; and

• F1 measure: defined based on the values of the above defined measures.

The evaluation for E-RAIDS does not employ only the defined evaluation
measures, however, it is required to prove the previously stated hypothesises to be
true.
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6.4.4 Results and Discussion

In the preliminary version [22], RandSubOut was evaluated in terms of TPT detected
threats and FPAlarm.

In this work, the results are presented and discussed for E-RAIDS-MCOD and
E-RAIDS-AnyOut as follows: in terms of (1) the pre-defined evaluation measures;
(2) voting feature subspaces; (3) real-time anomaly detection; and (4) the detection
of (more than One)-behaviour-all-threat.

6.4.4.1 MCOD vs AnyOut Base Learner for E-RAIDS in Terms of
Evaluation Measures

In the following, we analyse the performance of E-RAIDS with MCOD base learner
vs AnyOut base learner in terms of the pre-defined evaluation measures: T PT out
of PT ; FPAlarm; and F1 measure.

Tables 6.2 and 6.3 present the maximum T PT and the minimum FPAlarm
attained E-RAIDS-MCOD and E-RAIDS-AnyOut over the communities. The
results are reported in terms of the parameter values in the given sequence k, r, w

for E-RAIDS-MCOD and τ, oscAgr,w for E-RAIDS-AnyOut, respectively.

E-RAIDS-MCOD
Figure 6.3 presents the variation of F1 measure as a function of window size

w for E-RAIDS with MCOD base learner over the communities. The results are
reported with respect to k and r parameter values.

A preliminary analysis of the F1 measure shows no evident pattern in terms of
any of the parameters k, r , or w. Over the community com-P, E-RAIDS-MCOD

Table 6.2 Maximum T PT of detected insider threats over communities

Community E-RAIDS-MCOD Parameters k, r, w

com-P 16 50,0.3,100 60,0.4,50

60,0.6,100 60,0.7,150

70,0.4,50

com-S 21 70,0.4,150

com-I 10 50,0.4,50 70,0.3,100

E-RAIDS-AnyOut Parameters τ, oscAgr,w

com-P 16 0.1,2,100–200 {0.3, 0.7},2,50–200

com-S 20 0.1,2,50–100 0.3,2,50–100

0.7,2,150

com-I 12 0.1,2,50–200 0.3,2,50–100

0.7,2,{50, 200}
The bold values represent the maximum TPT achieved by either E-RAIDS-MCOD or E-RAIDS-
AnyOut over each community
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Table 6.3 Minimum FPAlarm over communities

Community E-RAIDS-MCOD Parameters k, r, w

com-P 0 50,0.4,200 60,{0.3, 0.5, 0.6},200

com-S 0 50,0.4,200 50,0.7,100

60,0.3,200 60,0.5–0.7,100

70,0.6–0.7,150

com-I 0 50,0.3,200 60,0.5,200

70,0.5–0.7,200

E-RAIDS-AnyOut Parameters τ, oscAgr,w

com-P 2 ∀τ ,∀oscAgr ,200

com-S 2 ∀τ ,∀oscAgr ,150–200

com-I 1 0.1,{2, 4},200 0.3,2–6,200

0.7,2–4,200

The bold values represent the minimum FPAlarm by either E-RAIDS-MCOD or E-RAIDS-AnyOut
over each community

achieves the maximum F1 = 0.9411; 60, 0.7, 150. It detects the maximum TPT = 16
out of PT = 17, thus missing one malicious insider threat. However, it flags only a
false positive alarm (FPAlarm = 1). Furthermore, Table 6.3 shows that E-RAIDS-
MCOD reports the minimum FPAlarm = 0 at w = 200 for different values of k and r .

Over the community com-S, E-RAIDS-MCOD achieves the maximum F1=
0.9523; 70, {0.6, 0.7}, 150. It detects a TPT = 20 out of PT = 22, while flagging
no false positive alarms (FPAlarm= 0). The maximum TPT = 21 is attained at
70, 0.4, 150, however, flagging FPAlarm= 2.

Over the community com-I, E-RAIDS-MCOD achieves the maximum F1=
0.6451; 70, 0.3, 100. It detects a TPT = 10 out of PT = 12, thus missing two
malicious insider threats, while flagging FPAlarm= 9. Nevertheless, Table 6.3
shows that E-RAIDS-MCOD reports the minimum FPAlarm= 0 at w = 200 for
different values of k and r .

We can deduce that the window size w = 150, 200 gives the best performance
for E-RAIDS-MCOD in terms of the evaluation measures.

E-RAIDS-AnyOut
Figure 6.4 presents the variation of F1 measure as a function of window size

w for E-RAIDS with AnyOut base learner over the communities. The results are
reported with respect to τ and oscAgr parameter values.

It is evident that there exists a positive correlation between F1 measure and
the parameter oscAgr for E-RAIDS-AnyOut. The variation of F1 measure at
oscAgr = 2 is the highest with respect to all the window sizes w = 50–200 over
both communities. Moreover, Fig. 6.5a reveals a positive correlation between F1
measure and the parameter w. The value of F1 measure increases as the window
size w increases.

Over the community com-P, E-RAIDS-AnyOut achieves the maximum F1=
0.9142; ∀τ, 2, 200. It detects the maximum TPT = 16 out of PT = 17, while
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Fig. 6.3 The variation of F1 measure as a function of window size w for E-RAIDS with MCOD
base learner over the communities. The legend represents the r parameter values. (a) com-P. (b)
com-S. (c) com-I

reducing the false positive alarms to FPAlarm= 2. Table 6.3 shows that E-RAIDS-
AnyOut reports the minimum FPAlarm= 2 ∀τ,∀oscAgr at w = 200. Thus, the
higher the window size, the lower the FPAlarm. Table 6.2 shows that E-RAIDS-
AnyOut reports the maximum TPT = 16 at oscAgr = 2 in general terms ∀τ,∀w.
Thus, the lower the oscAgr , the higher the TPT detected.

Over the community com-S, E-RAIDS-AnyOut achieves the maximum F1=
0.9090; 0.7, 2, 150. It detects a TPT = 20 out of PT = 22, while flagging two
false positive alarms (FPAlarm= 2).
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Fig. 6.4 The variation of F1 measure as a function of window size w for E-RAIDS with AnyOut
base learner over the communities. The legend represents the oscAgr parameter values. (a) com-P.
(b) com-S. (c) com-I

Over the community com-I, E-RAIDS-AnyOut achieves the maximum F1=
0.9600; ∀τ, 2, 200. It detects a TPT = 12 out of PT = 12, while flagging one
false positive alarm (FPAlarm= 1).

In terms of the evaluation measures, E-RAIDS-MCOD outperforms E-RAIDS-
AnyOut over the communities, where E-RAIDS-MCOD achieves a higher F1
measure over com-P and com-S, a higher TPT over com-S, and a lower FPAlarm= 0
over all communities.
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6.4.4.2 MCOD vs AnyOut for E-RAIDS in Terms of Voting Feature
Subspaces

In the following, we address the merit of using feature subspaces in the E-RAIDS
approach. We compare the number of feature subspaces in the ensemble that voted
for a malicious insider threat in each of E-RAIDS-MCOD and E-RAIDS-AnyOut.
The rationale behind using a random feature subspace to train each model of the p

models in the ensemble is to train the base learner (MCOD or AnyOut) on a subset
of the features and to detect local outliers which might not be detected over the
whole feature space.

Figure 6.5 illustrates the number of votes which contributed in flagging an
alarm of a malicious threat with respect to the number of instances processed
(given the window size w) over the communities. The number of votes actually
corresponds to the number of feature subspaces in the ensemble which generated an
alert. We selected E-RAIDS-MCOD and E-RAIDS-AnyOut with their parameters
which showed the best performance in terms of the evaluation measures. For move
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Fig. 6.5 The number of votes which contributed in flagging an alarm of a malicious threat with
respect to the number of instances processed over the communities. (a) com-P. (b) com-S. (c) com-I
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com-P down to be clear Fig. 6.5a shows the E-RAIDS-MCOD at 60, 0.7, 150 and
E-RAIDS-AnyOut at 0.1, 2, 200. For com-S, Fig. 6.5b shows the E-RAIDS-MCOD
at 70, 0.6, 150 and E-RAIDS-AnyOut at 0.7, 2, 150. For com-I, Fig. 6.5c shows the
E-RAIDS-MCOD at 70, 0.3, 100 and E-RAIDS-AnyOut at 0.1, 2, 200. Given that
the |Dtrain| = 500, this justifies why the votes for E-RAIDS-AnyOut start after 500
train instances has been processed over both communities.

Given the window size w, a window iteration wIter starts at the number of
already processed instances procInst and ends at procInst+w. For example,
given w = 100, the first window iteration wIter = 0 starts at procInst = 0
and ends at procInst + w = 100; wIter = 1 starts at 100 and ends at 200; etc.

A preliminary analysis of the results shows that E-RAIDS-AnyOut flags alarms
continuously ∀wIter after procInst = 500. However, E-RAIDS-MCOD shows
distinct alarms flagged, with no alarms at certain windows iterations. We recall that
E-RAIDS-MCOD outperforms E-RAIDS-AnyOut in terms of FPAlarm measure.
The continuous alarms flagged ∀wIter in E-RAIDS-AnyOut explains the higher
FPAlarm, as well as it reveals the uncertainty of E-RAIDS-AnyOut compared to
E-RAIDS-MCOD.

Knowing that the number of feature subspaces utilised in the ensemble is p =
17, the number of votes ∀wIter in E-RAIDS-AnyOut has a minimum votes =
11 and a maximum votes = 17, which reveals a level of uncertainty. The case
where 17 feature subspaces vote for an alarm indicates that all (17) models of the
ensemble detect at least one outlier (positive) associated with a malicious insider
threat. On the other hand, the number of votes in E-RAIDS-MCOD has a maximum
votes = 2. This means that only 1 or 2 feature subspaces vote for an alarm. We
recall the complexity of the malicious insider threat scenarios in the CMU-CERT
data sets. The anomalous instances usually exist in (sparse or dense) regions of
normal instances, and rarely as global outliers with respect to the whole feature
space. To address this, the E-RAIDS approach aims to detect local outliers which
may be found over ANY (not ALL) of feature subspaces. Having all the feature
subspaces in E-RAIDS-AnyOut voting for a threat, compared to a couple (1 or 2)
of feature subspaces in E-RAIDS-MCOD, reinforces the uncertainty of E-RAIDS-
AnyOut. The reason behind the uncertain performance of AnyOut in the E-RAIDS
approach may be due to that the outlier score of an instance Xt is computed upon the
arrival of a new instance Xt+1. Thus, the processing of the instance Xt is interrupted
at a certain level of the ClusTree, and the outlier score is computed with a lower level
of confidence (i.e. uncertain).

6.4.4.3 Real-Time Anomaly Detection in E-RAIDS

To prove the aforementioned Hypothesis 1 to be true, it is required to check if the
E-RAIDS detects the malicious insider threats in real-time (where real-time means
that the alarm is flagged during the time span of the undergoing threat). Based on
the previous conclusion regarding the uncertainty of E-RAIDS-AnyOut, and the
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Fig. 6.6 The actual malicious insider threats vs the threats detected in E-RAIDS-MCOD with
respect to the number of instances processed over the communities. (a) com-P. (b) com-S. (c)
com-I

superiority of E-RAIDS-MCOD in terms of (1) the evaluation measures and (2) the
voting feature subspaces, we select E-RAIDS-MCOD to verify Hypothesis 1.

Figure 6.6 illustrates the actual malicious insider threats vs the threats detected
in E-RAIDS-MCOD with respect to the number of instances processed over the
communities. The malicious insider threats are displayed in the legend over each
community using the following label scenRef_insiderID (e.g. s1_ALT1465) such
that scenRef (e.g. s1, s2, or s4) represents the reference number for the scenario
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followed in the malicious insider threat; and insiderID (e.g. ALT1465, AYG1697)
represents the user ID of the insider attributed to the threat. Hence, each colour in
the legend refers to a malicious insider threat.

We observe in Fig. 6.6 that a malicious insider threat is detected either (obs1) at
the current window iteration wIter where it is actually simulated, or (obs2) at the
subsequent (next) wIter . Hence, Hypothesis 1 is verified.

Based on the description of the E-RAIDS approach, a feature subspace votes
for a threat at wIter if at least an outlier survived for a vfs number of subsequent
windows, and consequently a specific threat is detected at wIter if (cond1) a vfe

number of subspaces vote (an alarm is flagged), and (cond2) at least outlier (positive)
associated with the alarm belongs to the threat. However, the outliers associated with
the alarm (as mentioned in (cond2)) consist of persistent outliers (which survived
from wIter−1) and potential outliers (at the current wIter). A potential outlier, if
satisfies (cond2), allows real-time detection at the current wIter (obs1). A persistent
outlier, if satisfies condition (cond2), allows real-time detection as observed at the
subsequent wIter (obs2).

6.4.4.4 (More Than One)-Behaviour-All-Threat Detection in E-RAIDS

The final analysis addresses Hypothesis 2. As defined in Sect. 6.1, the idea of
threat hunting aims to detect any-behaviour-all-threat, however, Fig. 6.6 shows the
capability of E-RAIDS-MCOD to detect more than one behaviour (not only one)
from the set of behaviours which belong to a malicious insider threat. It manifests
as multiple alarms (colour spikes) generated for a specific threat over a number of
windows. Hence, Hypothesis 2 is verified.

Analytically, this underlies in having multiple outliers, associated with the
alarm(s) flagged over window(s), which are actually true positives belonging to a
specific malicious insider threat.

6.5 Conclusion and Future Work

This chapter addresses the shortcoming of high number of false alarms in the
existing insider threat detection mechanisms. The continuous flagging of false
alarms deceives the administrator(s) about suspicious behaviour of many users. This
consumes a valuable time from their schedule, while investigating the suspected
users.

We present a streaming anomaly detection approach, namely Ensemble of
Random subspace Anomaly detectors In Data Streams (E-RAIDS), for insider threat
detection. The ultimate aim of E-RAIDS is to detect any-behaviour-all-threat (threat
hunting as defined in Sect. 6.1), while reducing the number of false alarms.

E-RAIDS is built on top of established continuous outlier detection techniques
(MCOD or AnyOut). These techniques use data stream clustering to optimise the
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detection of outliers (which may refer to malicious insider threats). E-RAIDS is an
ensemble of p outlier detectors (p MCOD base learners or p AnyOut base learners),
where each model of the p models learns on a random feature subspace. The merit
of using feature subspaces is to detect local outliers which might not be detected
over the whole feature space. These outliers may refer to anomalous behaviour(s)
which belong to a malicious insider threat. E-RAIDS presents also an aggregate
component to combine the votes from the feature subspaces, and take a decision
whether to flag an alarm or not.

We define two experiments: E-RAIDS-MCOD with MCOD base learner, and
E-RAIDS-AnyOut with AnyOut base learner. The experiments are carried out on
CMU-CERT data sets which include simulated malicious insider threat scenarios.
We compare the performance of E-RAIDS using each of MCOD and AnyOut in
terms of: (1) the evaluation measures: F1 measure, TPt of threats detected, and
FPAlarm flagged; (2) the effectiveness of the concept of voting feature subspaces;
(3) the capability of E-RAIDS to detect insider threats in real-time (Hypothesis 1);
and (4) the capability of E-RAIDS to detect more than one behaviour belonging
to an insider threat (Hypothesis 2) despite our formulation to the insider threat
approach (threat hunting).

The results show that E-RAIDS-MCOD outperforms E-RAIDS-AnyOut, where
the latter shows a low level of certainty in the detection of outliers. E-RAIDS-
MCOD reports a higher F1 measure = 0.9411 and 0.9523 over com-P and com-S,
a lower FPAlarm = 0 over all communities, and misses only one threat TPT = 16
and 21 over com-P and com-S. It is worth to also mention that the window size
w = 150, 200 gives the best performance for E-RAIDS-MCOD compared to
the tuned values. E-RAIDS verifies the hypothesised capabilities in terms of the
detection of more than one behaviour per threat in real-time.
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