
Chapter 5
Spark-Based Design of Clustering Using
Particle Swarm Optimization

Mariem Moslah, Mohamed Aymen Ben HajKacem, and Nadia Essoussi

5.1 Introduction

Large volume of data are being collected from different sources and there is a high
demand for methods that can efficiently analyze such data referred to as Big data
analysis. Big data usually refers to three main dimensions, also called the three Vs
[11], which are, respectively, Volume, Variety, and Velocity. Volume refers to the
large amount of data, Variety refers to the number of types of data, and Velocity
refers to the speed of data processing. Hence, exploring and organizing large-scale
data using machine learning techniques becomes an important challenge in Big data
analysis.

Clustering is an important technique in machine learning which has been used to
look for hidden models, relations, or to summarize data. Technically, clustering aims
to organize data into a predetermined number of groups where objects within the
same group share some common characteristics. Examples of clustering methods
categories are hierarchical methods, density-based methods, grid-based methods,
model-based methods, and partitional methods [18]. K-means [14] as one of the
partitional clustering methods, it remains the most efficient because of its simplicity
and its low computational complexity. However, it is sensitive to the selection of
initial cluster centers, as it may converge to suboptimal solutions if the initial cluster
centers are not properly chosen [5].

To overcome this weakness, several optimization algorithms were introduced
to perform data clustering. Genetic algorithm (GA) which is based on a mutation
operator for clustering analysis was proposed [12]. Another approach based on
simulated annealing (SA) for data clustering was proposed [3] and more recently

M. Moslah · M. A. B. HajKacem (�) · N. Essoussi
LARODEC, Institut Supérieur de Gestion de Tunis, Université de Tunis, Le Bardo, Tunisia
e-mail: nadia.essoussi@isg.rnu.tn

© Springer Nature Switzerland AG 2019
O. Nasraoui, C.-E. Ben N’Cir (eds.), Clustering Methods for Big Data Analytics,
Unsupervised and Semi-Supervised Learning,
https://doi.org/10.1007/978-3-319-97864-2_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97864-2_5&domain=pdf
mailto:nadia.essoussi@isg.rnu.tn
https://doi.org/10.1007/978-3-319-97864-2_5

92 M. Moslah et al.

the particle swarm optimization (PSO) was proposed for data clustering [17].
Among these algorithms, particle swarm optimization (PSO), as one of the swarm
intelligence algorithms, has gain a great popularity in the last two decades and
seemed to be potentially full and fertile research area [15]. In addition, PSO
algorithm does not require high computational capacities or a lot of parameters
to adjust, compared to genetic algorithms [8]. Although the efficiency of PSO
algorithm for data clustering, it does not scale with the increasing volume of data.
This is explained by the high computation time to build grouping from large amount
of data.

To deal with large-scale data, Aljarah and Ludwig [2] proposed fitting PSO
clustering into MapReduce model. However, this method has some considerable
shortcomings. The first shortcoming is the result of inherent conflict between
MapReduce and PSO clustering. PSO is an iterative algorithm and it requires to
perform many iterations for producing optimal results. In contrast, MapReduce has
a significant problem with iterative algorithms. At each iteration, the whole data set
must be read and written to disks and this results a high input/output (I/O) operations.
This significantly degrades the performance of MapReduce-based method. The sec-
ond shortcoming is inherited from the PSO clustering algorithm. PSO suffers from
a low convergence speed when it approaches the global optimum region. According
to [1], particles tend to move slowly when they reach the convergence region.

To deal with these issues, we propose in this chapter a new Spark-based PSO
clustering method, referred to as S-PSO. First, we propose to exploit the benefits
provided by Spark, by using in-memory operations to reduce the efficiency of
existing MapReduce solutions. Second, we propose a modified version of PSO
which executes k-means algorithm when it approaches the global optimum region to
accelerate the convergence. The rest of this chapter is organized as follows: Sect. 5.2
presents a background about the basic concepts related to the particle swarm
optimization algorithm, MapReduce model, and Spark framework. In Sect. 5.3,
existing works related to data clustering using PSO and Big data clustering methods
are presented. Section 5.4 presents our proposed method S-PSO. Section 5.5 offers
a theoretical analysis of the proposed method. Section 5.6 presents experiments that
we have performed to evaluate the efficiency of the proposed method. Section 5.7
presents conclusion and future works.

5.2 Background

This section first presents the particle swarm optimization, followed by the Big data
technologies used in this work.

5.2.1 Particle Swarm Optimization

Particle swarm optimization (PSO) was first introduced in 1995 by Kennedy the
social psychologist and Eberhart the electrical engineer. At first the algorithm was
intended to simulate the social behavior of birds when searching for food. When a

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 93

bird recognizes a food area, it broadcasts the information to all the swarm. Hence,
all the birds follow him and this way they raise the probability of finding the food
since it is a collaborative work. Then the behavior of birds within swarms was turned
into an intelligent algorithm capable of solving several optimization problems [15].

PSO is a population-based optimization algorithm. It is composed of a swarm of
particles where each particle is considered as a potential solution to the optimization
problem. Each particle i is characterized at the time t, by the current position xi(t)

in the search space, the velocity vi(t), the personal best position pbestPi(t), and
fitness value pbestFi(t). The personal best position represents the best position that
the particle has ever achieved throughout its movement, which is defined as follows:

pbestPi(t + 1) =
{
pbestPi(t) if f (pbestPi(t)) <= f (xi(t + 1))

xi(t + 1) if f (pbestPi(t)) > f (xi(t + 1))
(5.1)

The swarm’s best position gbestP (t) corresponds to the best position that the whole
swarm has ever seen, which is calculated as follows:

gbestP (t + 1) = min (f (y), f (gbestP (t))) (5.2)

where y ∈ {pbestP0(t), ..., pbestPS(t)}. Particle’s positions and velocities are
calculated using the following equations:

xi(t + 1) ← xi(t) + vi(t) (5.3)

vi(t+1) ← wvi(t)+c1r1(pbestPi(t)−xi(t))+c2r2(gbestP (t)−xi(t)) (5.4)

where w is referred to the inertia weight, xi(t) is the position of the particle i at
the time t , vi(t) is the velocity of the particle i at the time t , c1 and c2 are two
acceleration coefficients, and r1 and r2 are two random values in the range [0,1].
The main algorithm of PSO is described in Algorithm 1 [10].

Algorithm 1 The main algorithm of PSO
1: Input: Z: input data set
2: Output: Particles information
3: Initialize the swarm of particles from Z.
4: while Convergences not reached do
5: Compute the fitness of particles according to the fitness function to be optimized.
6: Update each particle’s personal best position and fitness value using Equation 5.1.
7: Update the global best position using Equation 5.2.
8: Update particle’s positions and velocities using Equation 5.3 and 5.4 respectively.
9: end while

It is important to note that the convergence is reached when gbest does not have
significant changes anymore [15].

94 M. Moslah et al.

5.2.2 MapReduce Model

MapReduce is a very well-known programming framework built to ensure the
parallel computation and processing of large volume of data. It adopts the method
of divide and conquer in which a problem is divided into smaller and less complex
sub-problems. Then simultaneously, all sub-problems are separately executed. Once
finished, results are merged to provide a final solution to the very big and
complex problem [6]. The principal components of the MapReduce model are
the map and reduce functions. The map function takes as input key/value pairs
(k, v), performs the assigned work, and generates intermediate key/value pairs
[(k′, v′)]. An intermediate step known as shuffling step is required to organize each
intermediate key with its corresponding values [7].

The reduce function aims to merge all the values corresponding to each interme-
diate key (k′,[v′]) to form the final result and output final key/value pairs as [(k′
,v′′)][7].

Figure 5.1 outlines the flowchart of MapReduce paradigm. The enormous data
set is divided into several chunks, small enough to be fitted into a single machine,
each chunk is then assigned to a map function to be processed in parallel. Inputs and
outputs are stored in the distributed file system and are accessible by each node in the
cluster. Apache Hadoop is the most popular implementation of MapReduce for Big
data processing and storage on commodity hardware. The use of this framework has

Input Data

Split Split Split
...

<key,value><key,value><key,value>

<key' ,value’><key' ,value’><key' ,value’>

<key' ,value'’><key' ,value'’><key' ,value'’>

<key' ,[list value']><key' ,[list value']><key' ,[list value']>

MAP MAP MAP

Shuffle

Reduce

Fig. 5.1 MapReduce flowchart

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 95

become widespread in many fields because of its performance, open source nature,
installation facilities, and its distributed file system named Hadoop distributed file
system (HDFS). In spite of its great popularity, Hadoop MapReduce has significant
problems with iterative algorithms.

5.2.3 Apache Spark

Apache Spark, a new framework for Big data processing, designed to be able
to solve the Hadoop’s shortcomings. It was developed in 2009 in AMPLab in
UC Berkeley University, then it became open source in 2010. It is known for its
scalability, flexibility, and rapidity [16]. Spark gains its prosperity from its capacity
of performing in-memory computations which means that data does not have to
be moving from and to the disk instead it is maintained in the memory. In fact,
Spark loads the necessary data needed for a specific application, processes and
keeps resulted data in memory for further iterations or processes. Therefore, data
are read and written only once, rather than multiple times, when iterative processes
are required. It also supports streaming processing and this is considered as a
strength point regarding Hadoop framework. Spark is based on resilient distributed
dataset (RDD), which is considered as a database table that is distributed among the
different nodes of the cluster. The RDDs could be created by reading an external
data source or by parallelizing a collection of data. Two major operations could be
performed on RDDs, namely transformations and actions. Transformations apply
changes on an RDD and generate a new one. Examples of transformations are Map,
Sample, GroupbyKey, and ReducebyKey. Actions are operations that require the
generation of an output. Examples of actions are Count, Take, and Foreach.

5.3 Related Works

PSO is widely used in cluster analysis since it uses a whole population of
possible solutions that collaborate in the purpose of finding better quality clusters
[1, 9, 17]. Merwe and Engelbrecht [17] are the first to propose clustering using
particle swarm optimization algorithm. In fact, they proposed two methods for data
clustering which are the PSO clustering algorithm and the hybrid method which
combines both PSO and k-means and then they compared it with k-means algorithm.
PSO clustering method is based on the particle swarm optimization algorithm
which constitutes a population of particles considered as potential solutions to
the clustering problem, these particles contain each k randomly selected initial
centroids. This approach is different from that of k-means because it considers a
whole swarm of solutions and not only one as in k-means. The particles move
in the search space until a global optimal solution is reached. The hybrid method
uses the result of k-means algorithm as one of the initial solutions, then randomly

96 M. Moslah et al.

generates the rest of the swarm to finally execute the PSO clustering algorithm. The
two approaches were compared with the stand-alone k-means algorithm and they
showed significantly better performances in convergence and quantization error.
Esmin et al. [9] proposed a clustering method based upon the method of Merwe
and Engelbrecht [17] with modifications on the regular fitness function. Since the
fitness computation doesn’t take into account the number of data vectors in each
cluster, result’s quality was significantly influenced. The number of data objects
within each cluster was introduced in the fitness computation which results in good
improvements. Ahmadyfard and Modares [1] proposed a new hybrid PSO and K-
means clustering algorithm. It starts by executing PSO and switches to k-means
when the algorithm reaches the global optimum region. The switch is obtained when
the fitness function remains significantly unchanged after several iterations. This
combination takes advantage of the strength points of both k-means and PSO and
in the same time overcomes their weaknesses. Since PSO shows poor convergence
speed near optimum, it is then combined with k-means to speed up the convergence.
This combination brings significant improvement compared with the stand-alone
PSO and k-means algorithms. Despite the efficiency of the latter discussed methods
to deal with the initialization problem using PSO, they are not able to scale with
huge volume of data.

To deal with large-scale data, several methods which are based on parallel
frameworks have been designed in the literature [2, 4, 13, 20]. Most of these
methods use the MapReduce model for data processing. For instance, Zaho el al.
[20] have implemented k-means method through MapReduce model. This method
first assigns each data point to the nearest cluster prototypes in the map function.
The reduce function then updates the new cluster prototypes. Then, this method
iterates calling the two functions several times until convergence. Ben HajKacem
et al. have proposed fitting k-prototypes using MapReduce model [4] in order to
perform the clustering of mixed large-scale data. This method iterates two main
steps until convergence: the step of assigning each data point to the nearest cluster
center and the step of updating cluster centers. These two steps are implemented
in map and reduce phase, respectively. Ludwing has proposed the parallelization
of fuzzy c-means clustering using MapReduce model [13]. This method is based
on two MapReduce jobs. The first MapReduce job calculates the cluster centers
by scanning the input data set. The second MapReduce job also iterates over the
data set and calculates the distances to be used to update the membership matrix as
well as to calculate the fitness. Although the performance of the latter discussed
methods to deal with large-scale data using MapReduce, they do not provide a
solution regarding the sensitivity to the selection of the initial cluster centers.

Aljarah and Ludwig [2] proposed MR-CPSO which is, to the best of our knowl-
edge, the only method that processes large-scale data clustering using MapReduce
model as well as PSO to ensure better scalability and better clustering quality. In
order to perform clustering using PSO, few steps have to be performed which start
by the particles initialization, fitness update, centroids update, and finally personal
best and global best update. The proposed implementation based on MapReduce
suggests three major modules. The first module is a map reduce module responsible

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 97

for centroids update. The map function receives the particles information as a
key value pair where the key is the particle ID and the value represents all the
information related to the particle. The map function extracts from each particle the
necessary information that enables the update of the centroids and that is done using
the position and velocity update formulas (1.3) and (1.4). Then the reduce function
combines all updated information into one file and load it into the distributed file
system. Once the centroids are updated, the algorithm launches the second module.
The second module is a MapReduce module where the map function performs
the data assignment step and the reduce function updates the fitness values for
each particle. In fact, the map function retrieves the updated particles information
and then receives the data chunk to use, then for each particle, data objects are
assigned to the closest center. Once done, a key/value pair is generated where the key
represents the particle ID and centroid ID where the data is assigned and the value
represents the computed distance. Then, the reduce function uses the generated
key/value pairs from the previous map function to compute the new fitness values
that have to be stored in the distributed file system. The last module is a simple
module that merges the outputs resulted from the different previous modules. In
addition to that, personal best are updated for each particle as well as a global best.
The updated particle’s information are stored in the distributed file system to be used
for next iterations. Figure 5.2 presents the modules of MR-CPSO.

Table 5.1 summarizes the existing methods.
Although the attested performance of MR-CPSO to perform large-scale data, it

has some considerable shortcomings.

• PSO suffers from a low convergence speed close to the global optimum region.
In fact, according to [1], particles tend to move slowly when they reach the
convergence region. This could be explained by the fact that in PSO, particles
tend to follow the global best one and when the algorithm is about to converge,
all the particles are almost in the same convergence region. Therefore every

First Module Second Module

Initial Swarm Data Records

Split 1 Split 2 Split 3 Split n Split 1 Split 2 Split 3 Split n

1st Map

1st Reduce 1st Reduce

Updated Swarm

New Swarm

Fitness Values
Output

1st Reduce 1st Reduce 2nd Reduce 2nd Reduce 2nd Reduce 2nd Reduce

1st Map 1st Map 1st Map 2nd Map 2nd Map 2nd Map 2nd Map

Third Module
(Merging)

Fig. 5.2 MR-CPSO modules

98 M. Moslah et al.

Table 5.1 Summary of
existing methods

Initialization Scalability

Merwe and Engelbrecht [17] + −
Esmin et al. [9] + −
Ahmadyfard and Modares [1] + −
Zhao et al. [20] − +

Ben HajKacem et al. [4] − +

Ludwing [4] − +

Aljarah and Ludwig [2] + +

particle’s pbestPi and xi(t) are almost equal to the gbestP . Therefore, the
particles velocities and positions are not exhibiting significant changes.

• PSO is an iterative algorithm and it requires to perform some iterations for
producing optimal results. In contrast, MapReduce has a significant problem
with iterative algorithms. As a consequence, the whole data set must be loaded
from the file system into the main memory at each iteration. Then, after it is
processed, the output must be written to the file system again. Therefore, many
of I/O operations like I/O disk occur during each iteration and this decelerates
the running time.

5.4 Proposed Approach: S-PSO for Clustering Large-Scale
Data

We propose a new efficient PSO clustering method using Spark. The proposed
method S-PSO is based on a new strategy that runs k-means algorithm in the
latest stages. In fact, k-means is a very fast algorithm so it will accelerate the
convergence and it will not affect the final result quality since PSO is very close
to the convergence. Furthermore, the proposed method reads the data set only once
in contrast to existing MapReduce implementation of PSO clustering. Hence, we
aim to exploit in our implementation the flexibility provided by Spark framework,
by using in-memory operations that alleviate the consumption time of existing
MapReduce solution [2].

S-PSO method is composed of four major steps, namely Data assignment and
fitness computation step, Personal and global best update step, Position and velocity
update step, and finally K-means iteration step. The main process of the proposed
method denoted by S-PSO is described in Fig. 5.3.

5.4.1 Data Assignment and Fitness Computation Step

S-PSO starts by setting an initial swarm where it initializes every particle’s position,
velocity, personal best position, and personal best fitness. The positions are the
initial cluster’s centroids and they are randomly retrieved from the data. Therefore,
each particle once initialized represents a possible solution of the data clustering.

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 99

Particle Information Data

Slice 1 Slice 2 Slice c...

Data

Slice 1 Slice 2

Centroid Update

Slice c

Stop END

Yes

Yes

No

Switch

No

...

...

Data
Assignment

P1 P2 Ps

Pbest Update

Position/Velocity
Update

Position/Velocity
Update

Merge updated particles

Position/Velocity
Update

gbest Update

Data
Assignment

Data
Assignment

Data
Assignment

Data
Assignment

Data
Assignment

Fitness Computation

Data Assignment and Fitness Computation Step

pbest/gbest Update Step

Position/Velocity Update Step

K-means iteration Step

Fig. 5.3 Flowchart S-PSO

This initial swarm encompasses particle’s information that will be used for the
remaining steps. The data assignment step is a highly expensive operation because
it requires to assign the huge amount of data to their closest clusters and this has to
be done for every single particle. Since assigning an object is independent from the
other objects therefore this step could be performed in parallel. First, the data set is
divided into chunks and every chunk is assigned to a map function along with the
particle’s information. The map function, called Data assignment, assigns the data
point from its corresponding chunk to the closest cluster in each particle. Then, the

100 M. Moslah et al.

map function returns as output a key value pair where the key is composed of the
couple particleID and centroidID and the value designates the minimum distance
between a data object and the centroidID in a specific particleID.

Once all the data are already assigned to the closest cluster, a reduce function,
called fitness computation step uses the reduceByKey() operation provided by Spark
framework to combine the different outputs from the different map functions. The
reduce function computes the new fitness value using for that the quantization error
given by the following formula:

Fi =
∑k

j=1[
∑

∀zp∈Cij
d(zp, Cj)/|Cij |]
k

(5.5)

where d(zp, Cj) represents the distance between the data object zp and the cluster’s
centroid Cj , |Cij | represents the number of objects assigned to the centroid Cij

relative to the particle i, and finally k represents the number of clusters.
Then, the reduce function provides as output a key value pair composed of the

particleID as a key and the new fitness value as the value. Let Z = {z1...zn} the
input data set. Let P(t) = {Pi(t)...PS(t)} the set of the particle’s information
where Pi(t) = {xi(t), vi(t), pbestPi(t), pbestFi(t)} represents the information
of particle i in the iteration t where xi(t) is the position, vi(t) is the velocity,
pbestPi(t) is the best position, and pbestFi(t) is the best fitness.

Let F = {F1...FS} the set of fitness values where Fi is the fitness value of the
particle i.

Algorithm 2 outlines the data assignment and fitness computation step.

Algorithm 2 Data assignment and fitness computation step
1: Input: Z: input data set, P(t): particle information
2: Output: F: fitness values
3: Split the data set Z into c chunks Z = {Z1...Zc}
4: % Map Phase

Let Zj be assigned to map j
5: for each zp ∈ Zj do
6: for each Pi(t) ∈ P(t) do
7: xi(t) ← Extract position from Pi(t)

8: Assign data objects to their closest centroid by computing the euclidean distance
9: Let distance the minimum computed distance

10: Let CentroidID the index of the centroid where the object zp is assigned
11: Let ParticleID be the index of the particle i
12: end for
13: Emit (key: ParticleID, CentroidID /value: distance)
14: end for
15: % Reduce Phase
16: for each Pi(t) ∈ P do
17: Compute fitness value Fi using Equation 5.5
18: Emit (key: ParticleID /value: Fi)
19: end for

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 101

5.4.2 Pbest and Gbest Update Step

When the new particle’s fitness is computed, it is automatically stored in an RDD
distributed among the cluster’s nodes. However, since Pbest and gbest update is not
an expensive step and it does not require to be performed in parallel that’s why the
RDD containing the particle’s fitness is collected which means it is returned to the
driver program to be used in a serial way. Now, each particle updates its personal
best position. For the gbest update, the particle having the best fitness value (the
smallest quantization error) is identified as gbest particle.

Let pbestF (t) = {pbestF1(t)...pbestFS(t)} the set of personal best fitness
values where pbestFi(t) is the pbestF of the particle i at iteration t.
Let pbestP (t) = {pbestP1(t)...pbestPS(t)} the set of personal best position where
pbestP1(t) is the pbestP of the particle i at iteration t. Let gbestP be the position
of the best particle.
Algorithm 3 outlines the pbest and gbest update step.

Algorithm 3 Pbest and gbest update step
1: Input: F, pbestF (t), pbestP (t)

2: Output: pbestF (t + 1), pbestP (t + 1), gbestP
3: gbestP ← ∅
4: for each particle Pi(t) ∈ P(t) do
5: pbestFi(t + 1) ← ∅
6: pbestPi(t + 1) ← ∅
7: if (pbestFi(t) ≤ Fi) then
8: pbestFi(t + 1) ← pbestFi(t)

9: pbestPi(t + 1) ← pbestPi(t)

10: else
11: pbestFi(t + 1) ← Fi

12: pbestPi(t + 1) ← xi(t + 1)
13: end if
14: end for
15: Let i∗ is the index of particle having the best fitness value
16: gbestP ← xi∗ (t)

5.4.3 Position and Velocity Update Step

To take advantage of the parallel environment, S-PSO starts by splitting the particles
information among different map functions to perform the velocity and position
update using Eqs. (5.3) and (5.4).

Then, the reduce function merges the results provided from the different map
functions into one single RDD using for that a reduceByKey() operation.

Once finished, the data set and the particle’s information stored both in RDDs
are persisted in memory for the next iteration and are not returned to the disk. The
persistence is performed using the operation cache() or persist().

102 M. Moslah et al.

Let x(t) = {x1(t)...xS(t)} the set of position values where xi(t) is the position
of the particle i at iteration t . Let v(t) = {v1(t)...vS(t)} the set of velocity values
where vi(t) is the velocity of the particle i at iteration t .

Algorithm 4 outlines the position and velocity update step.

Algorithm 4 Position and velocity update step
1: Input: gbestP , P(t)

2: Output: P(t+1)
3: % Map Phase

Let Pi(t) be assigned to a map function i
4: xi(t + 1) ← ∅
5: vi(t + 1) ← ∅
6: Compute the new position value xi(t + 1) using 5.4
7: Compute the new velocity value vi(t + 1) using 5.3
8: Emit(key: 1/ value: Pi(t + 1))
9: % Reduce Phase

10: Merge outputs of the different map functions
11: Emit (P(t + 1))

S-PSO continues iterating until it almost reaches the global optimum region
where it becomes very slow. In order to overcome this problem, when the S-PSO
reaches the switch condition, it automatically switches to k-means algorithm to take
advantage of its speed.

The switch is realized when the variable Time-To-Start is reached: it determines
the iteration number where the switch has to occur.

5.4.4 K-Means Iteration Step

When the algorithm switches to k-means, it takes as input the final global best
position retrieved from PSO to serve as an initial cluster centroid. K-means is
composed of two major steps: data assignment and centroids update. The data
assignment step is a map function that takes as input the data chunk and the initial
clusters centroids, then it assigns the data objects to the closest cluster. For that, it
generates as output a list of key/value pair where key represents the index of the
cluster where the data object is assigned and the value represents the data vector.

The centroid update step is a reduce function responsible for merging the
different outputs of the map function and for updating the clusters centroids using
the mean operation in each cluster. K-means iteration step iterates until it reaches
the maximal number of iterations.

Let C(t) = {c1(t)...ck(t)} the set of cluster centroids at iteration t . Algorithm 5
outlines the k-means iteration step.

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 103

Algorithm 5 K-means iteration step
1: Input: Z, gbestP
2: Output: C(t+1)
3: Split the data set Z into c chunks Z = {Z1...Zc}
4: C(t) ← gbestP

5: % Map Phase
Let Zj assigned to map j

6: for each zp ∈ Zj do
7: for each Ci(t) ∈ C(t) do
8: Assign data objects to their closest centroid by computing the euclidean distance
9: Let CentroidID the index of the centroid where the object zp is assigned

10: end for
11: Emit (key:CentroidID /value: zp)
12: end for
13: % Reduce Phase
14: for each Ci(t) ∈ C(t) do
15: Update centroid Ci(t + 1)
16: Emit (key: CentroidID /value: Ci(t + 1))
17: end for

Algorithm 6 outlines the overall steps of S-PSO.

Algorithm 6 S-PSO algorithm
1: Input: Z: input data set, Iter: maximal iteration number, S: swarm size, k: number of clusters,

Time-To-Start: iteration number for switching to K-means, P(t): initial swarm’s information
2: Output: Cf : Final centroids
3: i ← 1
4: switch ← false
5: while ((i< Iter) and (!switch)) do
6: % Data assignment and fitness computation step
7: % Pbest and gbest Update step
8: % Position and velocity update step
9: i++

10: if (i =Time-To-Start) then
11: switch ← true
12: C = gbestP

13: end if
14: end while
15: if (switch =true) then
16: j ← 1
17: repeat
18: % K-means iteration step
19: j ← j + 1
20: until (j = I ter)

21: end if

104 M. Moslah et al.

5.5 Theoretical Analysis

5.5.1 Complexity Analysis

Complexity analysis aims to provide the time, space, and I/O complexities of our
proposed method S-PSO and compares it to MR-CPSO proposed by [2] since it is
the only work dealing with Big data clustering using PSO.

The following notations are used: n the data set size, k the number of clusters, c
the number of data chunks, I the number of iterations, s the swarm size, and P the
size of the list containing the particle’s information.

5.5.1.1 Time Complexity

The most expensive operation in PSO is the data assignment step where each data
object has to compute its distance to all the clusters of each particle in the swarm,
then this has to be repeated several times. Therefore, the time complexity of PSO
could be estimated to O(n.k.s.I).

The S-PSO splits the input data into several chunks that could be processed
simultaneously. So instead of processing n data object in every iteration which
is the case for PSO, S-PSO will use n/c data item per iteration. Hence, at each
iteration S-PSO takes O(n/c.k.s) time. Similar to S-PSO, MR-CPSO works on
chunks, thus it takes O(n/c.k.s) time for each iteration. However, regarding the
number of iterations, MR-CPSO executes PSO for I times while for S-PSO the
number of iteration is divided into I1 for running PSO and I2 for running k-means
where I1+I2=I (I1, I2 < I). Since K-means is a very fast algorithm which means
that executing it for I2 times will definitely reduce the overall consumed time.

Therefore, the overall time complexity for S-PSO is estimated to O(n/c.k.s.I1 +
n/c.k.I2). While the overall time complexity for MR-CPSO is estimated to
O(n/c.k.s.I). Hence, S-PSO decreases the time complexity of MR-CPSO from
O(n/c.k.s.I) to O(n/c.k.s.I1 + n/c.k.I2) where I1, I2 < I .

5.5.1.2 Space Complexity

The S-PSO and MR-CPSO store in the memory a data set of size n where it is used
in the data assignment and fitness computation step. In addition to that they initialize
and store a list containing the particles information. Therefore, the space complexity
of S-PSO and MR-CPSO is estimated to O(n + P).

5.5.1.3 Input/Output Complexity

S-PSO reads the data chunk from disk only once and persists it in the memory.
Therefore, the I/O complexity of S-PSO is evaluated by O(n/c). While the MR-

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 105

CPSO has to access the disk I times corresponding to the number of iterations.
Hence, the I/O cost of MR-CPSO is evaluated by O(n/c.I). As a result, S-PSO
can reduce the I/O complexity of MR-CPSO from O(n/c.I) to O(n/c).

5.5.2 Time-To-Start Variable Analysis

In PSO, when particles approach the global optimum region, they tend to become
very slow. In order to speed up the convergence, k-means known for its speed was
integrated in the latest stages of PSO. This way, S-PSO starts by processing PSO
first, then it switches to k-means once it approaches the convergence area. We aim by
this combination to take advantage of PSO’s capacity of finding good quality results
on one hand and on the other hand take advantage of k-mean’s speed. The switching
between the two algorithms is conditioned by a variable that we introduce called
Time-To-Start. Time-To-Start designates the iteration number where the switch has
to occur. The choice of this variable can influence both time and quality. If this
variable is picked up to be in the beginning of PSO, we obtain a low quality result but
a very reduced execution time and the opposite is correct. Therefore, this variable
has to be chosen in a way that ensures balance between quality and time.

5.6 Experiments and Results

5.6.1 Methodology

In order to evaluate the efficiency of S-PSO method, we performed experiments
that aim to figure out three major points. (i) How efficient S-PSO method is when
applied to large-scale data compared to existing methods? (ii) How the Time-To-
Start variable can improve the performance of the proposed method? (iii) How the
Spark framework can enhance the scalability of the proposed method when dealing
with large-scale data?

5.6.2 Environment and Data Sets Description

Experiments were realized using a machine of 16 GB of RAM and 1T of disk having
8 cores, it uses Apache Spark version 2.1.1 and scala version 2.1.1 running on a
Ubuntu version 16.04. We conducted the experiments on the following data sets:

• Simulated data set: four series of large-scale data sets are generated using the
gaussian distribution where the mean is 350 and the sigma is 100. The data sets
range from 1 million to 8 millions data points. Each data point is described using

106 M. Moslah et al.

10 attributes. The numeric values are generated with gaussian distribution. In
order to simplify the names of the simulated data sets, we use the notations D1M,
D2M, D4M, and D8M to denote a simulated data set containing 1, 2, 4, and 8
millions data points, respectively.

• Magic: is a real data set which represents the results of registration simulation of
high energy gamma particles in a ground-based atmospheric Cherenkov gamma
telescope using the imaging technique. The magic data set contains 19,020
instances having each 10 attributes. The clustering process for this data set
identifies whether the energy registered is gamma or not. This data set was
obtained from UCI machine learning repository.1

• KDD Cup data set (KDD): is a real data set which consists of normal and attack
connections simulated in a military network environment. The KDD data set
contains about 5 millions connections. Each connection is described using 33
attributes. The clustering process for this data set detects the type of the attacks
among all connections. This data set was obtained from UCI machine learning
repository. 2

• Household data set (House) : is a real data set which represents the results of
measurements of electric power consumption in household. The House data set
contains 2,075,259 data points. Each data point is described using 10 attributes.
The clustering process for this data set identifies the types of electric consumption
in household. This data set was obtained from UCI machine learning repository.3

• CoverType: is a real data set that represents cover type for 30 × 30 meter cells
from US Forest. CoverType data set contains 581,012 instances having each 54
attributes. This data set helps to predict the type of the tree from 7 different
types. The real data set is obtained from the UCI4. Statistics of these data sets are
summarized in Table 5.2.4

Table 5.2 Summary of the data sets

Data set Number of data points Number of attributes Domain

D1M 1,000,000 10 Simulated

D2M 2,000,000 10 Simulated

D4M 4,000,000 10 Simulated

D8M 8,000,000 10 Simulated

Magic 19,020 10 Gamma particle’s energy

KDD 4,898,431 33 Intrusion detection

House 2,075,259 10 Electricity

CoverType 581,012 54 Agriculture

1https://archive.ics.uci.edu/ml/machine-learning-databases/magic/.
2https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/.
3https://archive.ics.uci.edu/ml/machine-learning-databases/00235/.
4https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/.

https://archive.ics.uci.edu/ml/machine-learning-databases/magic/
https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/
https://archive.ics.uci.edu/ml/machine-learning-databases/00235/
https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 107

5.6.3 Performance Measures

Evaluating the performance of our proposed method is an important step that takes
into account evaluation measures in order to assess the algorithm’s quality. The
evaluation is addressed towards the approach’s scalability and robustness in addition
to the quality of clustering results.

• In order to evaluate the scalability, we use the speedup, scaleup, and sizeup
measures, which are defined as follows.

– The speedup measure consists of fixing the data set size and varying the
number of computer nodes. Therefore, clustering is performed with one
computer node then with m computer nodes, having respectively T1 and Tm
as running time [19]. The speed up is measured as follows:

Speedup = T1/Tm (5.6)

The more the speedup is close to linear, the best the algorithm is.
– While the speedup measure keeps the data set size constant and increases the

computer nodes, the scaleup measure increases both the data set size and the
number of computer nodes. Therefore, the clustering is performed with one
computer node and s as data set size, then it is performed with m nodes with
m ∗ s as a data set size [19]. The scaleup measure is given by the following
formula:

Scaleup = T1s/Tms (5.7)

The algorithm is considered scalable when T1s is almost equal to Tm∗s .
– The sizeup measure holds constant the number of computer nodes and

increases m times the size of the data set. It helps to measure the capacity
of the algorithm to support m times larger data set [19]. The sizeup measure
is given by the following formula:

Sizeup = Ts/Tms (5.8)

An algorithm that has a good sizeup takes m times longer from executing s

and m ∗ s.

• In order to evaluate the quality of the proposed method, the Running Time and
the Quantization Error (QE) given by Eq. (5.5) are used. The QE measures the
distance differences between a center and the data objects within that center.

108 M. Moslah et al.

Table 5.3 Comparison of the running time and quantization error of S-PSO versus existing
methods

Data set K-means PSO S-PSO

Magic 8 37 25

KDD 4350 10844 2741

House 500 2188 460

CoverType 134 1325 398

Magic 14693 10762 10861

KDD 1.3E12 7.1E11 6.8E11

House 114 53 49

CoverType 1002728 1053373 1061763

5.6.4 Comparison of the Performance of S-PSO Versus
Existing Methods

In order to perform the experiments the following parameters are fixed, swarm
size as 10 particles, the number of iterations as 50, inertia weight (w) as 0.72,
acceleration coefficients (c1, c2) as 1.49, and the number of clusters (k) as 5
for all the data sets except for magic and CoverType is respectively 2 and 7.
Table 5.3 reports the performance results of the S-PSO compared to existing
methods. Concerning the running time, S-PSO outperforms PSO for all the data
sets and also outperforms k-means with house and kdd data sets but for magic and
CoverType k-means seems to be faster. This could be explained by the fact that
magic and CoverType are considered small data sets and they do not require to be
clustered in a parallel manner. Instead, if they are processed in a parallel way it will
cost additional time. Concerning the quantization error, PSO and S-PSO provide a
better quality regarding k-means while S-PSO keeps almost the same quality as for
PSO. This is due to the capacity of PSO and S-PSO using a population of candidate
solutions in order to explore the search space.

5.6.5 Evaluation of the Impact of Time-To-Start Variable on
the Performance of S-PSO

The purpose is to investigate the impact of the Time-To-Start variable on the
performance of S-PSO. Table 5.4 outlines the results. When Time-To-Start variable
increases and approaches the final stages of S-PSO, the running time gets more
important but the quality gets better as the quantization error decreases. In fact, when
the algorithm switches to k-means in its early stages which means when Time-To-
Start is small, it takes advantage of the speed of K-means but it is deprived from the
capacity of PSO of converging to high quality solutions. In fact the more the Time-
To-Start value is small, the fastest the algorithm becomes, the less the quality is.

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 109

Table 5.4 Impact of
Time-To-Start variable

Time to start

Data set 10 20 30 40 50

(a) The impact of Time-to-Start variable on the running time

Magic 11 17 21 24 28

KDD 421 1416 2077 2789 3206

House 213 383 403 460 661

CoverType 114 229 260 398 493

(b) The impact of Time-to-Start variable on the QE values

Magic 11301 10944 10630 10294 10365

KDD 9.1E11 9E11 8.9E11 8.9E11 8.9E11

House 65 58 58 50 53

CoverType 1294955 1150217 1139999 1101694 1192713

Therefore, it is important to figure out a compromise between time and quality. In
our case, since PSO gets very slow near to convergence the Time-To-Start variable is
chosen to be in the last ten iterations. This way switching to k-means will not affect
the final result since S-PSO is almost converging and it will reduce the execution
time.

5.6.6 Scalability Analysis

Figure 5.4a–d outlines the running time of the proposed method on D1M, D2M,
D4M, and D8M, respectively. We can notice that for all data sets the running time
decreases as the number of cores increases. For instance, for D4M, the running time
decreases from 3987 with 1 core to 730 on 8 cores which means that it decreases
over 5 times faster.

To evaluate the speedup for the proposed method, we maintain the constant data
set size and we increase the number of cores from 1 to 8. Figure 5.5a–d illustrates
the speedup results of respectively D1M, D2M, D4M, and D8M. The overall results
show a good speedup for the proposed method. Actually, for all the data sets, when
the number of cores goes from 1 to 4, the speedup results are very close to the linear
and therefore a very good speedup. When the number of cores exceeds 4, S-PSO’s
performances start to decrease where the speedup is moving far from the linear.
This is due to the additional communication time required to manage the increase
of core’s number.

Scaleup aims to measure the capacity of an algorithm to maintain the same
running time while increasing the data set size with direct proportion to the number
of cores. For evaluating the scaleup of our proposed method, we increase both the
size of the data set and the number of cores. For investigating the scaleup, we used
the D1M, D2M, D4M, and D8M data sets with respectively cores equal to 1, 2, 4,
and 8. The results are plotted in Fig. 5.6. The ideal algorithm is the one having its

110 M. Moslah et al.

Fig. 5.4 Running time of S-PSO on the different simulated data sets. (a) D1M data set. (b) D2M
data set. (c) D4M data set. (d) D8M data set

Fig. 5.5 Speedup results of S-PSO on simulated data sets. (a) D1M speedup. (b) D2M speedup.
(c) D4M speedup. (d) D8M speedup

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 111

1,2

0,8

0,6

0,4

0,2

0
1 2 3 4 5

Number of cores

S
ca

le
 u

p

6 7 8

1 1
0,87

0,97

0,73

Fig. 5.6 Scaleup results of S-PSO

1
0

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8

Data set Size (Millions)

S
iz

e
u

p

Linear

1 Core

1 Cores

4 Cores

8 Cores

Fig. 5.7 Sizeup results of S-PSO

scaleup values very close or equal to 1. In our case, our proposed method shows a
good scaleup. The overall results are approximately similar to D1M, D2M, D4M,
and D8M using respectively 1, 2, 4, and 8 cores. Therefore S-PSO scales well with
scaleup values ranging between 1 and 0.73.

To evaluate the sizeup of the proposed method S-PSO, the number of cores is
kept constant while we increase the data set size in order to evaluate the behavior of
S-PSO with the increasing volume of data. Figure 5.7 outlines the obtained sizeup
results for respectively 1, 2, 4, and 8 cores. The obtained results show a good sizeup
of our proposed method. For instance, for 1 core, the sizeup results are almost equal
to the linear reaching 7.7 for D8M.

112 M. Moslah et al.

5.7 Conclusion

Big data clustering is an important field that requires special methods for dealing
with high volume of data. Existing methods tried to fit the clustering algorithm based
on PSO into MapReduce model. However, due to nonsuitability of MapReduce
on iterative algorithms and the low convergence speed of PSO, we proposed a
new large-scale data clustering method based on Spark framework and an adapted
version of PSO combined with k-means. The proposed method, evaluated on
both real and simulated data sets, has shown good results according to quality
and scalability measures. As future works, we suggest combining S-PSO with
other techniques to automatically looking for the number of clusters k since this
parameter must be per-configured in advance. Moreover, we might think of applying
feature selection algorithms to select most relevant features to use in S-PSO. This
fact can reduce the heavy computation required in each iteration due to the high
dimensionality.

References

1. A. Ahmadyfard, H. Modares, Combining PSO and k-means to enhance data clustering, in
International Symposium on Telecommunications, 2008 (2008), pp. 688–691

2. I. Aljarah, S.A. Ludwig, Parallel particle swarm optimization clustering algorithm based on
MapReduce methodology, in 2012 Fourth World Congress on Nature and Biologically Inspired
Computing (nabic) (2012), pp. 104–111

3. G.P. Babu, M.N. Murty, Simulated annealing for selecting optimal initial seeds in the k-means
algorithm. Indian J. Pure Appl. Math. 25(1–2), 85–94 (1994)

4. M.A. Ben HajKacem, C.E. Ben N’cir, N. Essoussi, MapReduce-based k-prototypes clustering
method for big data, in Proceedings of Data Science and Advanced Analytics (2015), pp. 1–7

5. M.E. Celebi, H.A. Kingravi, P.A. Vela, A comparative study of efficient initialization methods
for the k-means clustering algorithm. Expert syst. Appl. 40(1), 200–210 (2013)

6. C.P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and technologies:
a survey on big data. Inf. Sci. 275, 314–347 (2014)

7. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

8. K.-L. Du, M. Swamy, Search and Optimization by Metaheuristics: Techniques and Algorithms
Inspired by Nature (Birkhäuser, Basel, 2016)

9. A.A.A. Esmin, D.L. Pereira, F. De Araujo, Study of different approach to clustering data
by using the particle swarm optimization algorithm, in IEEE Congress on Evolutionary
Computation, 2008. CEC 2008 (IEEE World Congress on Computational Intelligence) (2008),
pp. 1817–1822

10. A.A. Esmin, R.A. Coelho, S. Matwin, A review on particle swarm optimization algorithm and
its variants to clustering high-dimensional data. Artif. Intell. Rev. 44(1), 23–45 (2015)

11. V. Gorodetsky, Big data: opportunities, challenges and solutions, in Information and Commu-
nication Technologies in Education, Research, and Industrial Applications (2014), pp. 3–22

12. K. Krishna, M.N. Murty, Genetic k-means algorithm. IEEE Trans. Syst. Man Cybern. B
Cybern. 29(3), 433–439 (1999)

13. S.A. Ludwig, MapReduce-based fuzzy c-means clustering algorithm: implementation and
scalability. Int. J. Mach. Learn. Cybern. 6(6), 923–934 (2015)

5 Spark-Based Design of Clustering Using Particle Swarm Optimization 113

14. J. MacQueen et al., Some methods for classification and analysis of multivariate observations,
in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
vol. 1 (1967), pp. 281–297

15. R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization. Swarm Intell. 1(1), 33–57
(2007)

16. R. Shyam, B.G. HB, S. Kumar, P. Poornachandran, K. Soman, Apache spark a big data
analytics platform for smart grid. Proc. Technol. 21, 171–178 (2015)

17. D. Van der Merwe, A.P. Engelbrecht, Data clustering using particle swarm optimization, in The
2003 Congress on Evolutionary Computation, 2003. CEC’03, vol. 1 (2003), pp. 215–220

18. D. Xu, Y. Tian, A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193
(2015)

19. X. Xu, J. Jager, H.-P. Kriegel, A fast parallel clustering algorithm for large spatial databases,
in High Performance Data Mining (Springer, Berlin, 1999), pp. 263–290

20. W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on MapReduce, in IEEE Interna-
tional Conference on Cloud Computing (2009), pp. 674–679

	5 Spark-Based Design of Clustering Using Particle Swarm Optimization
	5.1 Introduction
	5.2 Background
	5.2.1 Particle Swarm Optimization
	5.2.2 MapReduce Model
	5.2.3 Apache Spark

	5.3 Related Works
	5.4 Proposed Approach: S-PSO for Clustering Large-Scale Data
	5.4.1 Data Assignment and Fitness Computation Step
	5.4.2 Pbest and Gbest Update Step
	5.4.3 Position and Velocity Update Step
	5.4.4 K-Means Iteration Step

	5.5 Theoretical Analysis
	5.5.1 Complexity Analysis
	5.5.1.1 Time Complexity
	5.5.1.2 Space Complexity
	5.5.1.3 Input/Output Complexity

	5.5.2 Time-To-Start Variable Analysis

	5.6 Experiments and Results
	5.6.1 Methodology
	5.6.2 Environment and Data Sets Description
	5.6.3 Performance Measures
	5.6.4 Comparison of the Performance of S-PSO Versus Existing Methods
	5.6.5 Evaluation of the Impact of Time-To-Start Variable on the Performance of S-PSO
	5.6.6 Scalability Analysis

	5.7 Conclusion
	References

