
Chapter 4
An Introduction to Deep Clustering

Gopi Chand Nutakki, Behnoush Abdollahi, Wenlong Sun, and Olfa Nasraoui

4.1 Introduction

Driven by the explosive growth in available data and decreasing costs of compu-
tation, Deep Learning (DL) has been paving a transformational path in machine
learning and artificial intelligence [8, 17], with a dramatic impact on a variety of
application domains, ranging from computer vision [15] and speech recognition [13]
to natural language processing [5] and recommender systems [25, 27, 30]. DL found
much of its fame in problems involving predictive modeling tasks such as classifica-
tion and recommendation which are considered supervised learning. Deep learning
has also been widely used to learn richer and better data representations from big
data, without relying too much on human engineered features. Many of these deep
representation networks rely on a preliminary unsupervised learning stage, referred
to as unsupervised pretraining (e.g., autoencoders, matrix factorization, restricted
Boltzmann machines, etc.), which learn better (deep) representations of the data
that are known to drastically improve the results of supervised learning networks.
Even though it started mostly within the realm of supervised learning, deep
learning’s success has recently inspired several deep learning-based developments
in clustering algorithms which sit squarely within unsupervised learning. Most
DL-based clustering approaches have exploited the representational power of DL
networks for preprocessing clustering inputs in a way to improve the quality of
clustering results and to make clusters easier to extract. However, clustering has not
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Fig. 4.1 Taxonomy of Deep Clustering presented in this chapter

always been the ultimate goal of these techniques, since some of them aim primarily
to obtain richer deep representations, but employ clustering as an essential and
enabling step to improve this representation. Yet, both approaches result in deep
representations and clustering outputs, hence we will refer to all the approaches
presented in this chapter as Deep Clustering.

Figure 4.1 helps further understand the taxonomy of Deep Clustering approaches
that we present, which itself motivates the structure of this chapter. Deep Clustering
approaches differ based on their overall algorithmic structure, network architectures,
loss functions, and optimization methods for training (or learning the parameters).
In this chapter, we focus on Deep learning for clustering approaches where those
approaches either use deep learning for the purpose of grouping (or partitioning)
the data and/or creating low rank deep representations or embeddings of the data,
which among other possible goals, could play a significant supporting role as a
building block of supervised learning. There may be several ways to come up with
a taxonomy of deep clustering methods; our approach in this chapter is based on
viewing the methods as a process. We thus present a simplified taxonomy based on
the overall procedural structure or design of deep clustering methods. The simplified
taxonomy helps both beginner and advanced readers. Beginners are expected to
quickly grasp how almost all approaches are designed based on a small set of
common patterns, while more advanced readers are expected to use and extend
these patterns in order to design increasingly complex deep clustering pipelines
that fit their own machine learning problem-solving aims. In our taxonomy, Deep
Clustering approaches can be considered to fall into the following three broad
families (see Fig. 4.1):

1. Sequential multistep Deep Clustering approaches: These approaches consist
of two main steps. The first step learns a richer deep (also known as latent)
representation of the input data, while the second step performs clustering on
this deep or latent representation.

2. Joint Deep Clustering approaches: This family of methods include a step
where the representation learning is tightly coupled with the clustering, instead
of two separate steps for the representation learning and clustering, respectively.
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The tight coupling is generally performed by optimizing a combined or joint loss
function that favors good reconstruction while taking into account some form of
grouping, clustering, or codebook representation of the data.

3. Closed-loop multistep Deep Clustering approaches: This family of methods
contains two salient steps, similar to the first family (sequential multistep Deep
Clustering); however, the steps alternate in an iterative loop instead of being
performed in one feedforward linear fashion.

A common thread between all the above families is that clustering is performed
on a different (so-called deep or latent) representation (DR) instead of the original
data. The deep representation is typically of lower dimensionality and captures more
easily the different hidden groups within the data. It is not surprising therefore
that such deep representations are more conducive to better clustering, even using
simple algorithms such as K-means although the latter tends to struggle when faced
with high-dimensional data. It is well known that using a Deep Representation
(DR) or preprocessing of the data using dimensionality reduction methods gives
better clustering results. Deep Representation methods that are known to improve
the results of K-means include: (1) linear mapping methods such as Principal
Component Analysis (PCA) or Nonnegative Matrix Factorization (NMF) [4, 35]
and (2) nonlinear approaches such as those used in Spectral Clustering [22, 33] and
Deep Neural Network-based DR [3, 10, 12, 28, 32].

Underlying all three families are building blocks which are essential to designing
most deep learning methods. These building blocks are:

• Deep representation models.
• Loss functions.

The following sections of the chapter will start by presenting the essential build-
ing blocks to Deep Clustering. Then, each family of Deep Clustering approaches
will be discussed in order (sequential multistep, joint, and finally closed-loop
multistep Deep Clustering).

4.2 Essential Building Blocks for Deep Clustering

Before we introduce deep clustering techniques, we first discuss the essential
ingredients for any good clustering. The first important ingredient is that the
algorithm must have good representation or features (and/or similarity or affinity
measures). The second ingredient is a good cost or loss function that captures what
a good representation or clustering is. For this reason, we consider that underlying
all three families of Deep Clustering are the following set of building blocks which
are essential to designing most deep learning methods:

• Deep representation models: These are unsupervised pretraining models which
typically compute new deep or latent features or embeddings that are considered
faithful but richer representations (DR) of the data.
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• Loss functions: These are the objective or cost functions that are used to train the
above deep representation models or to compute clusters from data.

These building blocks are described in the next subsections.

4.2.1 Learning Deep Representations

A high-level representation of features can be learned using deep neural networks
(DNNs) that learn mappings from the input data to better (deep) representations
(DR) that can in turn aid clustering algorithms to discover better partitions or cluster
parameters. The features of these deep representations are generally extracted from
one layer of the network, typically the latent hidden layer of an Autoencoder [31] or
a Restricted Boltzmann Machine network [11]. The features can also be extracted
from the concatenation of several layers [26].

Deep neural networks that can discover better feature mappings are typically
trained in a similar way as unsupervised pretraining which is a common preliminary
stage even in building supervised deep learning networks. Unsupervised pretraining
strategies include denoising autoencoders [31] and Restricted Boltzmann Machines
[11] which are known to reduce variance and learn hidden units that compute
features of the input data that correspond to major factors of variation in the true
input distribution. Hence, unsupervised pretraining can guide optimization towards
basins of attraction of minima that allow better generalization from training data and
add robustness to a deep architecture [6]. Autoencoders are in fact fundamentally
connected to clustering as shown by Baldi [2] who presented a framework to study
linear and nonlinear autoencoders, showing that learning in the Boolean autoencoder
(which is the most nonlinear autoencoder) is equivalent to a clustering problem that
can be solved in polynomial time for a small number of clusters, but becomes NP
complete for a large number of clusters.

In addition to autoencoders, there are alternative representation extraction build-
ing blocks such as Matrix Factorization [4, 34]. Although linear, Matrix Factoriza-
tion has proven to be a powerful strategy to learn latent representations that are
useful in many applications. MF methods are no longer confined to be linear. In fact,
a nonlinear extension of MF, called Generalized Matrix Factorization, was recently
proposed and used in deep recommender systems [9]. Just like autoencoders and
Restricted Boltzman Machines, they can easily be stacked to form hierarchical
representation layers whose output is later used as DR for clustering or other tasks.

4.2.2 Deep Clustering Loss Functions

There are several types of loss functions that can be used in a Deep Clustering
framework, of which we describe the four most important types ([1] discussed more
loss function building blocks). The first type comes purely from learning a deep
representation using deep learning techniques, and independent of any clustering
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Fig. 4.3 Sequential Multistep Deep Clustering

(e.g., the reconstruction error of an autoencoder or matrix factorization). The second
type is the clustering loss, which comes from a clustering process (e.g., the K-
means’ sum of squared errors objective function). The third type is a joint loss
function that combines the first two types. The fourth type is a loss function meant
to obtain crisper or harder cluster partitions in case of soft clustering. Soft or fuzzy
clustering allows a data point to belong to multiple clusters with varying degrees of
membership.

Autoencoder Reconstruction Loss An autoencoder consists of two parts: an
encoder and a decoder [31] (see Fig. 4.3). The encoder maps (or encodes) its input
data layer x to a hidden layer representation or a code z in a latent space Z. During
training, the decoder tries to learn to make a faithful reconstruction x from the code
z, making sure that useful information has not been lost by the encoding process.
Once the training is done, the decoder part is no longer used, and only the encoder
part (consisting of the input layer and hidden layer) is left for mapping its input to the
latent space Z. This procedure allows autoencoders to learn useful representations in
case the output’s dimensionality is different from that of the inputs or when random
noise is injected into the input [32]. They can also be used for dimensionality
reduction [12]. The Autoencoder’s reconstruction loss captures the distance or error
between the input xi to the autoencoder and the corresponding reconstruction or
code f (xi), for instance, the mean squared error:

L =
∑

i

‖xi − fautoencoder(x)‖2. (4.1)
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Clustering Loss This type of loss is the objective function that guides a clustering
process, such as K-means [20]. Given a set of data samples {xi}i=1,...,N where
xi ∈ R

M , K-means strives to group the N data samples into K categories or cluster
partitions of the data. This is done by minimizing the following loss or cost function:

min
M∈RM×K,{si∈RK }

N∑

i=1

‖xi − Msi‖2
2 (4.2)

s.t. sj,i ∈ {0, 1}, 1T si = 1 ∀i, j,

where si is the cluster membership assignment vector of data point i which has only
one nonzero element for the cluster nearest to the data point; sj,i is the j th element
of si and represents the membership assignment in the j th cluster (1 if this cluster
is the nearest cluster to the data point and 0 otherwise); and the kth column of M ,
mk , is the centroid of the kth cluster.

Joint Deep Clustering Loss Function A joint loss function is intended to jointly
learn both DNN parameters and cluster parameters that aim to produce both better
DR and better clusters. Hence, joint loss functions combine both DR and clustering
objectives [23, 40]. Joint loss functions typically assume a generative model that
generates an M-dimensional data sample by xi = Whi , where hi ∈ R

R are latent
factors and W ∈ R

M×R are encoding weights or loading coefficients from the data
on those factors, and the latent factors’ dimensionality R � M . They further assume
that the data clusters are well-separated in latent domain (i.e., where hi lives) but
distorted by the transformation introduced by W . A joint loss function can then be
defined as follows [40]:

min
M,{si },W ,H

‖X − WH‖2
F + λ

N∑

i=1

‖hi − Msi‖2
2

+ r1(H ) + r2(W ) (4.3)

s.t. sj,i ∈ {0, 1}, 1T si = 1 ∀i, j,

where X = [x1, . . . , xN ], H = [h1, . . . ,hN ], and λ ≥ 0 is a parameter for
balancing data fidelity or reconstruction (first term) and the latent cluster structure
(second term). In (4.3), the first term performs DR and the second term performs
latent clustering. The terms r1(·) and r2(·) are regularization terms that try to favor
nonnegativity or sparsity and are used to prevent trivial solutions, such as zero latent
factor values [37].

Cluster Assignment Hardening Loss Assuming soft assignments of data points
to clusters, obtained using fuzzy clustering techniques, probabilistic clustering
methods, or normalized similarities between points and centroids. The cluster
assignment hardening loss tries to enforce making soft assignment probabilities
stricter or harder by encouraging cluster assignment probability distribution Q to
approach an auxiliary (target) distribution P which guarantees this constraint. The



4 An Introduction to Deep Clustering 79

following auxiliary distribution [34] improves cluster purity and stresses data points
that are assigned with high confidence:

pij = q2
ij /Σiqij

Σj ′(q2
ij ′/Σiqij ′)

. (4.4)

because it forces assignments to have stricter probabilities (closer to 0 and 1). This
happens due to squaring the original distribution and then normalizing. Cluster
hardening can finally be accomplished by minimizing the distance between the
original cluster assignment probability distribution and the auxiliary or target crisp
distribution, which can be done by minimizing (via neural network training) their
Kullback–Leibler divergence [16], given by:

L = KL(P ‖Q) =
∑

i

∑

j

pij log
pij

qij

. (4.5)

4.3 Sequential Multistep Deep Clustering

Sequential multistep Deep Clustering approaches consist of two major steps, as
shown in Fig. 4.3. The first step learns a richer deep (also known as latent)
representation (DR) of the input data, while the second step performs clustering on
this deep or latent representation. In the following, we describe a few representative
algorithms that fall into this family of Deep Clustering methods.

4.3.1 Fast Spectral Clustering

Fast Spectral Clustering [38] is a classical multistep approach where an autoencoder
is trained to produce a latent or deep representation (DR), which is later used as input
to clustering with the K-means algorithm. In contrast to multistep methods that train
the autoencoder directly on the input data, Fast Spectral Clustering first extracts an
embedding S from the Laplacian of a precomputed similarity or kernel matrix W

and then trains the autoencoder to encode this embedding (see Algorithm 1). The
similarities are computed using a Gaussian kernel between every input data point
and p landmark points. The p landmarks can be obtained in different ways. They

Algorithm 1 Fast Spectral Clustering (FSC)
Input: Input data {x1, x2, ..., xn};
Output: k clusters of the data set 1: Select p landmarks 2: Compute similarity matrix W between
data points and landmarks 3: Compute the degree matrix: D = diag(W�ws ) 4: Compute S,
the input to the autoencoder: si = d

−1/2
ii wi 5: Train an autoencoder using S as its input 6: Run

k-means on the latent space DR of the trained autoencoder
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can be randomly sampled from the original data set or selected from the centroids
of p clusters by running k-means or using column subset selection methods [7]. The
Laplacian matrix is computed using:

Łnorm = D−1/2MD−1/2 = D−1/2W�WD−1/2 = S · ST (4.6)

which yields the embedding S = WD−1/2 that will be used as the input to the
autoencoder (Fig. 4.4).

4.3.2 Deep Sparse Subspace Clustering (SSC)

Given a data set X = [x1, x2, . . . , xn] ∈ Rd×n, SSC [24] seeks to linearly
reconstruct the i-th sample xi using a small number of other samples, hence
producing representation coefficients that are sparse. The optimization consists of
minimizing the reconstruction loss function as follows:

min
ci

1

2
‖xi − Xci‖2

F + γ ‖ci‖1 s.t. cii = 0 (4.7)

where ‖ · ‖1 denotes the �1-norm and cii denotes the i-th element in ci which
encourages ci to be sparse, and the constraint cii = 0 avoids trivial solutions. After
solving for the sparse representation C, an affinity matrix A is calculated using
A = |C| + |C|T . This matrix is finally used as input to spectral clustering to obtain
clustering results (see Fig. 4.5).
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4.3.3 Deep Subspace Clustering (DSC)

In most existing subspace clustering methods including SSC, each data input is
encoded as a linear combination of the whole data set. However, linear combinations
may not be sufficient for representing high-dimensional data which usually lie on
nonlinear manifolds. Deep Subspace Clustering (DSC) [24] represents each input
sample as a combination of others, similar to SCC. However, instead of a linear
combination, DSC learns a mapping using explicit hierarchical transformations in
a neural network and simultaneously learns the reconstruction coefficients C. The
neural network consists of M + 1 stacked layers with M nonlinear transformations,
which takes a given data input x as the input to the first layer. The input to the first
layer of the neural network is denoted as h(0) = x ∈ Rd , while h(m) denotes the
output of the subsequent (m-th) layers (where m = 1, 2, . . . , M indexes the layers),
W(m) ∈ Rd(m)×d(m−1)

and b(m) ∈ Rd(m)
denote the weights and bias associated

with the m-th layer, respectively, and d(m) is the dimension of the output of the m-
th layer. If H(M) denotes the collection of the corresponding outputs given by the
neural network,

H(M) = [h(M)
1 , h(M)

2 , . . . , h(M)
n ], (4.8)

the optimization problem of DSSC can then be expressed as:

min
W(m),b(m),C

1

2
‖H(M) − H(M)C‖2

F + γ ‖C‖1

+ λ

4

n∑

i=1

‖(h(M)
i )T h(M)

i − 1‖2
2

s.t.diag(C) = 0, (4.9)

where λ is a positive trade-off parameter, the first term is designed to minimize
the discrepancy between H(M) and its reconstructed representation, the second term
regularizes C for some desired properties, and the third term is designed to remove
an arbitrary scaling factor in the latent space, without which the neural network may
collapse in the trivial solutions H(M) = 0.

DSSC simultaneously learns M nonlinear mapping functions {W(m), b(m)}Mm=1
and n sparse codes {ci}ni=1 by alternatively updating one variable while fixing all
others, until convergence. Stochastic sub-gradient descent (SGD) is used to update
the parameters {W(m), b(m)}Mm=1. An �2-norm regularizer can also be added to avoid
overfitting [15, 21]. After obtaining C, a similarity graph is constructed using A =
|C| + |C|T and this graph is used as input to clustering.
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This approach first applies NMF [18] to learn a latent or deep representation, and
then applies K-means to this reduced-dimension representation [39] (see Fig. 4.6).
It is a common baseline for evaluating more complex architectures.

4.4 Joint Deep Clustering

Joint Deep Clustering is a family of methods that include a step, where the
representation learning is tightly coupled with the clustering, instead of two separate
steps for the representation learning and clustering, respectively. The tight coupling
is generally performed by optimizing a combined or joint loss function that favors
good reconstruction while taking into account some form of grouping, clustering,
or codebook representation of the data. In the following, we describe a few
representative algorithms that fall into this family of Deep Clustering methods
(Fig. 4.7).

4.4.1 Task-Specific and Graph-Regularized Network (TAGnet)

The goal of TAGnet [41] is to learn a discriminative embedding that is optimal
for clustering. Different from generic deep architectures, TAGnet is designed in a
way to take advantage of the successful sparse code-based clustering pipelines. The
TAGnet approach includes a feed-forward architecture, termed Task-specific And
Graph-regularized Network (TAGnet), to learn discriminative features, and a joint
clustering-oriented loss function (see Fig. 4.8). Its aim is to learn features that are
optimized under clustering criteria, while encoding graph constraints to regularize
the target solution. The solution to training the network parameters in TAGnet is
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derived from a theorem that shows that the optimal sparse code can be obtained
as the fixed point of an iterative application of a shrinkage operation on the degree
matrix and the Laplacian derived from the graph’s affinity matrix.

4.4.2 FaceNet

Designed for face recognition tasks, FaceNet [28] is a unified system for face
verification, recognition, and clustering (see Fig. 4.9). The approach aims to learn a
Euclidean embedding for images using a deep convolutional network. The network
is trained to produce good embeddings such that the squared L2 distances in the
embedding space directly correspond to the notion of face similarity; thus, faces of
the same person should have small distances while faces of different people should
be separated by large distances. Training is achieved by minimizing a triplet loss
function that is used to simultaneously achieve face verification, recognition, and
clustering. An embedding f (x) is extracted from an image x into a feature space
R

d , where the squared distance between all faces of the same identity is small across
all imaging conditions, whereas the squared distance between a pair of face images
from different identities is large.

4.4.3 Deep Clustering Network (DCN)

Deep Clustering Network (DCN) [39] is a multistep approach (see Fig. 4.14) that
starts by pretraining an autoencoder based on reconstruction loss minimization, then
feeds the deep representation output to K-means for clustering. After clustering,
the autoencoder is retrained by minimizing a joint loss function combining recon-
struction loss and the K-means clustering loss. DCN then alternates between the
autoencoder network training and cluster updates. DCN’s results on the MNIST
data set outperformed the results of the similar DEC approach, presented earlier
(Fig. 4.10).
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4.4.4 Joint NMF and K-Means (JNKM)

Similar to DCN, JNKM [39] performs joint deep representation and K-means
clustering in several steps, except that it uses NMF instead of an autoencoder to
obtain the DR. This method has the same structure as DCN (see Fig. 4.11), replacing
the autoencoder training with NMF, and was used as a baseline by [39]. Recall that
the main difference between NMF and autoencoder networks is the nonlinearity of
the latter’s mapping.

4.5 Closed-Loop Multistep Deep Clustering

Closed-loop multistep Deep Clustering approaches are a family of methods that
consist of two salient steps, similar to the first family (sequential multistep Deep
Clustering); however, these steps alternate in a loop instead of being performed in
one feedforward linear fashion. In the following, we describe a few representative
algorithms that fall into this family of Deep Clustering methods (Fig. 4.12).

Deep Embedded Clustering (DEC) uses autoencoders as network architecture
and initialization method, and uses K-means for clustering [34] (see Fig. 4.13).
DEC first pretrains an autoencoder using a standard input reconstruction loss
function. Then, the DR resulting from this autoencoder is fed to K-means to obtain
clusters. Next, the autoencoder network is fine-tuned using the cluster assignment
hardening loss (see the Building Blocks section above) and the clustering centers
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are updated again. This process is then repeated. The clusters are iteratively refined
by learning from their high confidence assignments with the help of the auxiliary
target distribution.

Discriminatively Boosted Clustering (DBC) [19] shares many similarities with
DEC except for using convolutional autoencoders. It also uses K-means for clus-
tering and the same training method: pretraining with autoencoder reconstruction
loss, clustering the autoencoder’s output DR, then fine-tuning the autoencoder using
a cluster assignment hardening loss (see Fig. 4.14). The main advantage of DBC
over DEC is its superior performance on image data, as expected, due to using
convolutional layers.

Clustering CNN (CCNN) uses a Convolutional Neural Network [29] to achieve
joint clustering and deep representation learning. The features are extracted from
one of the internal layers of the CCNN, while the cluster labels are considered
to be the output predictions coming from the CCNN’s softmax layer. The initial
cluster centers that are used to compute the joint loss function in the pretraining
phase are based on selecting k random images from the data set. After clustering
the features coming from the DR using K-means, the assigned cluster labels are
compared with the labels predicted by the CCN’s softmax layer to compute a
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clustering-classification loss. This loss function is then used to retrain the CCNN
parameters. The process is repeated with the extracted DR features again used to
update the cluster centroids, essentially entering a repetitive loop of CCN training
and clustering (see Fig. 4.15).

Aljalbout et al. [1] proposed a closed loop strategy that also iterates autoencoder
training and K-Means clustering in a loop. Like CCNN, they used a convolutional
architecture for extracting the DR in the first step to handle image data. However,
the main difference is that they retrain the network weights using a joint loss
function combining both reconstruction and cluster hardening loss (see Fig. 4.16).
Their method was shown to outperform other strategies on the MNIST and
COIL20 benchmark image data sets based on the external cluster evaluation metrics,
Normalized Mutual Information and cluster accuracy [1].
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4.6 Conclusions

In this chapter, we presented a simplified taxonomy with several representative
examples of Deep Clustering methods which are built on algorithms that result
in both deep or latent representations (DR) and (either as an explicit aim or as
a byproduct) clustering outputs, such as a partition of the input data and cluster
centroids. Our simplified taxonomy is based on the overall procedural structure or
design of most Deep Clustering methods, thus dividing Deep Clustering approaches
into three families: sequential multistep, joint, and closed-loop multistep Deep
Clustering methods. In addition to describing several algorithms that fall under the
three main families above, we discussed the most important building blocks that are
essential to Deep Clustering methods.

Together with the Deep Clustering building blocks, our simplified taxonomy
should help beginning readers get a quick grasp of how most approaches are
designed, while guiding more advanced readers, and following the tradition of the
DL community, to stack and combine the modular patterns that we have presented in
order to design even more sophisticated deep clustering pipelines for their specific
problem-solving needs.

While we have not detailed the implementation details or computational costs
of Deep Clustering, scaling Deep Clustering follows along the steps of scaling DL
in general. This means that strategies such as SGD play an essential role in fast
optimization in the presence of big data sets, while GPU clusters play a critical
role in accelerating computation due to the highly distributed nature of most DL
architectures and weight updates. As with conventional clustering, graph-based,
agglomerative, and spectral methods are notoriously costly in both computation
time and memory requirements because of handling pairwise similarity matrices
and Laplacians. However, this can be addressed by using a small number of selected
landmarks instead of the entire data set when computing pairwise metrics, such as
was done in Fast Spectral Clustering [38].

Deep Clustering has been applied to several big data domains, ranging from
image to text and time series (earthquake) data, and we expect that in the future,
it will have an impact on even more diverse domains and applications, in the
same tradition of older clustering algorithms. Deep Clustering is hence expected to
continue the tradition of clustering algorithms and to expand their ability to elucidate
the hidden structure in big data and thus contribute to better understanding, retrieval,
visualization, and organization of big data, in addition to being an important
component of complex decision-making systems [14, 36].
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