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Overview of Efficient Clustering Methods
for High-Dimensional Big Data Streams

Marwan Hassani

2.1 Introduction

Clustering is a well-established data mining concept that aims at automatically
grouping similar data objects while separating dissimilar ones. This process is
strongly dependent on the notion of similarity, which is often based on some
distance measure. Thus, similar objects are usually close to each other while
dissimilar ones are far from each other. The clustering task is performed without
a previous knowledge of the data, or in an unsupervised manner.

During the early stages of data mining research, the whole data objects were
considered to be statically and permanently stored in the memory. This allowed
the designed data mining technique to perform as much passages over the objects
as needed to deliver the desired patterns. In the era of big data, the recent growth
of the data size and the easiness of collecting data made the previous settings no
more convenient. The size of the continuously generated data and the limited storage
capacity allow in many scenarios for a single passage over the data, and users are
interested in gaining a real-time knowledge about the data as they are produced.

A data stream is an ordered sequence of objects that can be read once or very
small number of times using limited processing and computing storage possibilities.
This sequence of objects can be endless and flows usually at high speeds with
a varying underlying distribution of the data. This fast and infinite flow of data
objects does not allow the traditional permanent storage of the data and thus multiple
passages are not any more possible. Many domains are dealing essentially with data
streams. The most prominent examples include network traffic data, telecommuni-
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cation records, click streams, weather monitoring, stock trading, surveillance data,
health data, customer profile data, and sensor data. There is many more to come. A
very wide spectrum of real-world streaming applications is expanding. Particularly
in sensor data, such applications spread from home scenarios like the smart homes
to environmental applications, monitoring tasks in the health sector [13], in the
digital humanities using eye-tracking [21] or gesture monitoring but do not end with
military applications. Actually, any source of information can easily be elaborated to
produce a continuous flow of the data. Another emerging streaming data sources are
social data. In a single minute, 456,000 tweets are happening, 2,460,000 pieces of
content are shared on Facebook, Google conducts 3,607,080 searches, the weather
channel receives 18,055,555.56 forecast requests, Uber riders take 45,787.54 trips,
and 72 h of new videos are uploaded to YouTube while 4,146,600 videos are
watched.1

Users are interested in gaining the knowledge out of these information during
their same minute of generation. A delay, say till the next minute, might result in
an outdated knowledge. Furthermore, with the introduction of the new regulations
for data privacy protection like GDPR2 starting into effect at the end of May 2018,
businesses dealing with sensitive user profile data are not allowed anymore to store
them. Thus, they would need to switch to a flexible and streaming structure to
manage and analyze real-time customer behavior data.

The abovementioned emerging applications motivated dozens of research topics
and development frameworks during the previous one and a half decades. Extracting
a real-time knowledge out of large numbers of objects with an evolving nature
required a different look at data than the traditional static one. Particularly, an
unsupervised mining of evolving objects in the real-time was needed in multiple
applications. In this chapter, we give an overview of the challenges as well as the
contributions in this emerging field by highlighting some of the main algorithms
there.

The remainder of this chapter is organized as follows: Sect. 2.2 introduces data
streams with some applications. In Sect. 2.3, we list the challenges one has to face
while designing stream clustering algorithms for mining big data. In Sect. 2.4, we
present, at a high level of abstraction, recent approaches in the field of big data
stream mining that overcame the challenges mentioned in Sect. 2.3. Finally, Sect. 2.5
concludes this chapter.

2.2 Streaming Data

Objects from the perspective of static mining approaches are all available in the
memory while running the algorithm. As a result, the algorithm can scan objects as
much as needed to generate the final output without assuming any order for reading

1Sources: domo.com and statisticbrain.com.
2https://www.eugdpr.org/.

https://www.eugdpr.org/
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these objects. In the streaming setting, an endless flow of objects o1, o2, . . ., oi ,
. . . of the dataset D is seen at timestamps t1, t2, . . ., ti , . . ., respectively, where
ti+t > ti for all i values. Each object oi seen at ti is a d-dimensional tuple: oi =
(oi1, oi2,. . . , oid) ∈ D.

Due to the endless flow of streaming objects, it is not realistic to assume a
possibility of memory storage of all oi ∈ D. This is mainly due to limitations
of storage, processing power, expected response time, and even available energy.
Efficient mining approaches aim at minimizing the number of scans they perform
over the objects before generating the final output. Thus, both the needed storage
and the required processing power are limited such that the final output that includes
objects oi, oi+1, . . . oj is generated before the arrival of object oj+1 at timestamp
tj+1.

Figure 2.1 gives some examples about real world application that produce data
streams. Most of these scenarios are covered within the scope of the algorithms
presented in this chapter. Figure 2.1a shows an example about wired streaming data
that monitor some flowing phenomenon like network traffic data, click streams, or
airport camera monitoring. Figure 2.1b presents a visualization of streaming tweets
with a certain tag and within a certain time using the Streamgraph framework
[6]. Figure 2.1c depicts an application of a wireless sensor network deployment

Fig. 2.1 Reference [12]. Examples of big data streams
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Fig. 2.2 Reference [12]. Two applications of mining body-generated streaming data. (a) In a
health care scenario [13] and (b) in a translation scenario in collaboration with psycholinguists
in the humanities area [21]

in a bridge for surveillance or load observation. Sensors are producing continuous
streams of readings, and experts need to collect a real-time knowledge about
the stability of the bridge in the case of emergency, or gather regular reports
in the normal case. Similarly, Fig. 2.1d shows an example of sensors collecting
temperature, humidity, and light information from multiple offices in Intel Berkeley
Research Lab [10]. Such sensors are usually of limited storage, processing power,
and battery life. In Fig. 2.2a, a body sensor network is producing multiple streams
about the health status of the runner. Other sensors are collecting streams of other
contextual information like the weather and location information. These can be
processed on a local mobile device or a remote server to gain, for instance, some
knowledge about the near-future status. Figure 2.2b presents another type of sensor
streaming data where an eye-tracking system is used to record the duration and the
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position of each eye fixation over the monitor during a human reading or writing
process. One task could be here finding interesting patterns that represent important
correlations between eye gazes and key strokes [21].

Stream clustering aims at detecting clusters that are formed out of the evolving
streaming objects. These clusters must be continuously updated as the stream
emerges to follow the current distribution of the data. These clusters represent
mainly the gained knowledge out of the clustering task. In this chapter, advanced
stream clustering models are introduced. These models are mainly motivated by the
basic challenges that we have observed for clustering of streaming data in real world
scenarios, particularly sensor streaming data (cf. Fig. 2.1).

2.3 Challenges of Stream Clustering of Big Data

Designing stream clustering approaches has some unique special challenges. We list
in the following the different paradigms that make it challenging to design a stream
clustering approach.

2.3.1 Adaptation to the Stream Changes and Outlier Awareness

The algorithm must incrementally cluster the stream data points to detect evolving
clusters over the time, while forgetting outdated data. New trends of the data must
be detected at the same time of their appearance. Nevertheless, the algorithm must
be able to distinguish new trends of the stream from outliers. Fulfilling the up-to-
date requirement contradicts the outlier awareness one. Thus, meeting this tradeoff
is one of the basic challenges of any stream clustering algorithm.

2.3.2 Storage Awareness and High Clustering Quality

Due to the huge sizes and high speeds of streaming data, any clustering algorithm
must perform as few passages over the objects as possible. In most cases, the
application and the storage limitations allow only for a single passage. However,
high-quality clustering results are requested to make the desired knowledge out of
the data stream. Most static clustering models tend to deliver an initial, sometimes
random, clustering solution and then optimize it by revisiting the objects to
maximize some similarity function. Although such multiple-passages possibility
does not exist for streaming algorithms, the requirement of an optimized, high-
quality clustering does still exist.
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2.3.3 Efficient Handling of High-Dimensional,
Different-Density Streaming Objects

The current huge increase of the sizes of data was accompanied with a similar boost
in their number of dimensions. This applies of course to streaming data too. For
such kinds of data with higher dimensions, distances between the objects grow
more and more alike due to an effect termed curse of dimensionality [4]. According
to this effect, applying traditional clustering algorithms in the full-space merely
will result in considering almost all objects as outliers, as the distances between
them grow exponentially with their dimensionality d. The latter fact motivated the
research in the area of subspace clustering over static data in the last decade, which
searches for clusters in all of the 2d − 1 subspaces of the data by excluding a
subgroup of the dimensions at each step. Apparently, this implies higher complexity
of the algorithm even for static data, which makes it even more challenging when
considering streaming data.

Additionally, as the stream evolves, the number, the density, and the shapes of
clusters may dramatically change. Thus, assuming a certain number of clusters
like in k-means-based clustering models or setting a static density threshold as in
the DBSCAN-based clustering models is not convenient for a stream clustering
approach. A self-adjustment to the different densities of the data is strongly needed
while designing a stream clustering algorithm. Again, this requirement is in conflict
with the storage awareness necessity.

2.3.4 Flexibility to Varying Time Allowances Between
Streaming Objects

An additional, natural characteristic of data streams (e.g., sensor data) is the fluctuat-
ing speed rate. Streaming data objects arrive usually with different time allowances
between them, although the application settings would assume a constant stream
speed. Available stream clustering approaches, called budget algorithms in this
context, strongly restrict their model size to handle minimal time allowance to be
on the safe side (cf. Fig. 2.6). In the case of reduced stream speed, the algorithm
remains idle during the rest of the time, till the next streaming object arrives.
Anytime mining algorithms, designed recently for static data, try to make use of
any given amount time to deliver some result. Longer given times imply higher
clustering quality. This idea was adopted for clustering streaming data. Although
this setting can be seen as an opportunity for improving the clustering quality rather
than a challenge, it is not trivial to have a flexible algorithmic model that is able to
deliver some result even with very fast streams.
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2.3.5 Energy Awareness and Lightweight Clustering of Sensor
Data Streams

Wireless sensor nodes are equipped with a small processing device, a tiny memory,
and a small battery in addition to the sensing unit [27]. This encouraged the research
in the area of in-sensor-network mining, where the nodes do some preprocessing of
the sensed data instead of simply forwarding it. In many of these applications, sensor
nodes are distributed in unreachable areas without a cheap possibility of changing
the battery. Thus, the usability time of the node is bounded by the battery lifetime.
In this manner, besides the previously mentioned challenges, clustering sensor
streaming data has to carefully consume the processing and energy resources. In fact,
clustering and aggregation approaches are used within wireless sensor networks to
save energy by preprocessing the data in the node, and forwarding the relevant ones
merely.

2.4 Recent Contributions in the Field of Efficient Clustering
of Big Data Streams

In this section, we present, at a high level of abstraction, novel, efficient stream
clustering algorithms that consider all of the above challenges mentioned in
Sect. 2.3. These contributions [12] are structured in the following four subsections.
In Sect. 2.4.1, we present novel high-dimensional density-based stream cluster-
ing techniques. In Sect. 2.4.2, we introduce advanced anytime stream clustering
approaches. In Sect. 2.4.3, we present efficient methods for clustering sensor data
and aggregating sensor nodes. Finally, in Sect. 2.4.4, we present unique subspace
stream clustering framework as well as the subspace cluster mapping evaluation
measure. In all of the following subsections, the first and the second challenges
mentioned in Sects. 2.3.1 and 2.3.2 are carefully considered. Each of the rest of the
challenges (Sects. 2.3.3–2.3.5) is the main focus in one of the following subsections,
as we will explain.

2.4.1 High-Dimensional, Density-Based Stream Clustering
Algorithms

In this line of research to address big data stream clustering, we refer to three
density-based stream clustering algorithms. Here, the third challenge mentioned in
Sect. 2.3.3 is mainly considered.

In [18], an efficient projected stream clustering algorithm called PreDeCon-
Stream is introduced for handling high-dimensional, noisy, evolving data streams.
This technique is based on a two-phase model (cf. Fig. 2.3). The first phase repre-
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Fig. 2.3 Reference [12]. The online–offline model of stream clustering algorithms. Decayed input
objects have lighter colors than recent ones

Fig. 2.4 Reference [12]. The steps of HASTREAM algorithm [19]. The incremental part is
explained in red arrows to maintain the clustering at timestamp tj after the red insertions and
deletions of microclusters introduced to the old ones from timestamp ti

sents the process of the online maintenance of data summaries, called microclusters,
that are then passed to an offline phase for generating the final clustering. The
technique works on incrementally updating the output of the online phase stored
in a microcluster structure. Taking those microclusters that are fading out over time
into consideration speeds up the process of assigning new data points to the existing
clusters. The algorithm localizes the change to the previous clustering result, and
smartly uses a clustering validity interval to make an efficient offline phase.

In HASTREAM [19], a hierarchical, self-adaptive, density-based stream clus-
tering model is contributed (cf. Fig. 2.4). The algorithm focuses on smoothly
detecting the varying number, densities, and shapes of the streaming clusters. A
cluster stability measure is applied over the summaries of the streaming data (the
microclusters in Fig. 2.3), to extract the most stable offline clustering. Algorithm 1
gives a pseudo-code of HASTREAM (cf. Fig. 2.4 and [19] for further details).
In order to improve the efficiency of the suggested model in the offline phase,
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Algorithm 1 HASTREAM(DataStream ds, minClusterWeight , bool
incUpdate)
1: initialization phase
2: repeat
3: get next point oi ∈ ds with current timestamp ti ;
4: insert oi in the microclusters using online parameter settings;
5: if (ti mod updateF requency == 0) then
6: if incUpdate then
7: incrementally update the minimal spanning tree MST by maintaining it;
8: else
9: compute the mutual reachability graph MRG and corresponding MST from scratch

10: end if
11: HC ← extractHierarchicalClusters(MST , minClusterWeight);
12: C ← extractFlatClustering(HC);
13: return C;
14: end if
15: until data stream terminates

50

60

70

80

90

100

[0,100[ [100,200[ [200,300[ [300,400[ [400,500[ [500,600[ [600,700[ [700,719]

Pu
rit

y 
[%

]

Time interval

Ite-LS Inc-LS-MT=0.5 Inc-LS-MT=1 Inc-LS-IM
Denstream Ite-IS Inc-IS-IM

Fig. 2.5 Purity of detected clustered in five variants of HASTREAM [19] compared to DenStream
[7] for the physiological dataset [26]. Timestamps are ×1000

some methods from the graph theory are adopted and others were contributed, to
incrementally update a minimal spanning tree of microclusters (cf. the red arrows in
Fig. 2.4). This tree is used to continuously extract the final clustering, by localizing
the changes that appeared in the stream, and maintaining the affected parts merely.
The averaged purity for this dataset is shown in Fig. 2.5. All four variants of
HASTREAM [19] have a higher averaged purity than that of DenStream [7] over
the physiological dataset [26].
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2.4.2 Advanced Anytime Stream Clustering Algorithms

By considering all other challenges, the main focus of the two algorithms presented
in this section are the third and the fourth challenges mentioned in Sects. 2.3.3
and 2.3.4. Anytime algorithms build upon the realistic assumption of the varying
time allowances between streaming objects (cf. Fig. 2.6). They aim at increasing the
quality of their output if they were given more time (i.e., the time allowance Δt is
bigger) instead of being idle as in traditional algorithms.

The LiarTree algorithm [17] is contributed on the online phase (cf. Fig. 2.3)
to provide precise stream summaries and to effectively handle noise, drift, and
novelty at any given time. It is proven that the runtime of the anytime algorithm is
logarithmic in the size of the maintained model opposed to a linear time complexity
often observed in previous approaches. The main contributions of this technique are
enabling the anytime concept to fast adapt to the new trends of the data, filtering
noise and keeping a logarithmic complexity.

In the SubClusTree algorithm [20], even another complexity dimension to the
problem addressed in LiarTree [17] is added. The high-dimensionality paradigm
of big streaming data (cf. Sect. 2.3.3) is considered together with the varying
arrival times and the streaming aspects of the data (cf. Sect. 2.3.4). SubClusTree
is a subspace anytime stream clustering algorithm, that can flexibly adapt to the
different stream speeds and makes the best use of available time to provide a high-
quality subspace clustering. It uses compact index structures to maintain stream
summaries in the subspaces in an online fashion. It uses flexible grids to efficiently
distinguish the relevant subspaces (i.e., subspaces with clusters) from irrelevant ones.
Algorithm 2 contains a pseudo-code of SubClusTree. An object is inserted in all one-
dimensional trees and if there is more time, the object is inserted into following most
potential higher-dimensional tree.

In Fig. 2.7, one can obviously observe the anytime effect of SubClusTree using
a 25-dimensional dataset with five clusters hidden in only 13 relevant dimensions
out of the 25. For a very fast stream, a lower clustering quality is achieved. It can
be seen that an average interval of 50 steps between objects is very close to the best
possible value.
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Algorithm 2 SubClusTree
1: Initialization: store subspace trees in the bitmap with bit-vector as key
2: repeat
3: insert oi and update the global cluster feature to time ti ;
4: for j = 1 to d (number of dimensions) do
5: insert oij into the one-dimensional tree of subspace j ;
6: end for
7: if (ti mod updateF requency == 0) then
8: create candidateT rees and rank them according to their expected potential;
9: remove trees with insufficient potential; // but keep 1-dimensional trees

10: end if
11: while next object oi+1 did not arrive yet and moreT reesAvailable do
12: insert oi into next subspace tree
13: end while
14: until data stream terminates
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Fig. 2.7 Reference [12]. Average purity achieved by varying the inter-arrival times of the objects
Δt

2.4.3 Energy-Efficient Algorithms for Aggregating
and Clustering Sensor Streaming Data

In the three algorithms contributed in this line of research, the main focus is the
fifth challenge mentioned in Sect. 2.3.5, while keeping the main challenges from
Sects. 2.3.1 and 2.3.2 in mind.

The EDISKCO algorithm [15] is an Energy-Efficient Distributed In-Sensor-
Network K-Center Clustering algorithm with Outliers. Sensor networks have
limited resources in terms of available memory and residual energy. As a dominating
energy consuming task, the communication between the node and the sink has to
be reduced for a better energy efficiency. Considering memory, one has to reduce
the amount of stored information on each sensor node. EDISKCO performs an
outlier-aware k-center clustering [11] over the sensed streaming data in each node
and forwards the clustering result to the neighboring coordinator node. For that,
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Algorithm 3 EDISKCO on Node side
1: Initialization: Select the first InitPts objects from the stream;
2: perform an offline k-center clustering over the InitPts objects;
3: send the k centers and the cluster radius R to the coordinator
4: repeat
5: insert oi in available clusters and update cluster centers c1, c2, . . . ck ;
6: if changed, send the new centers to the coordinator;
7: if oi does not fit in any available cluster and number of clusters == k then
8: recluster after getting the coordinator acknowledgment;
9: end if

10: until data stream terminates

Algorithm 4 EDISKCO on Coordinator side
1: repeat
2: receive k-center solutions from all nodes and perform another k-center clustering on them;
3: Acknowledge reclustering by broadcasting the biggest current radius from all nodes;
4: Change coordinator w.r.t. residual energy;
5: until data stream terminates

each node consumes considerably less energy than the cost of forwarding all of its
readings to the sink. The update from the node to the coordinator happens only upon
a certain deviation of the cluster radii, controlled by an ε threshold, or upon the birth
or the deletion of a cluster. One node is selected as a coordinator from each spatially
correlated subgroup of the nodes, depending on the amount of the residual energy.
The coordinator performs another k-center clustering over the multiple clustering
solutions arriving from its neighboring nodes and forwards the solution to the far
sink. These are major contributions as one can perform a single passage over the data
by using a O(k) storage over the nodes and getting finally a high clustering quality
of a (4 + ε)-approximation to the optimal clustering. But, the main contribution
is performing up to 95% less communication tasks on the nodes compared to a
state-of-the-art technique. Thus, huge savings of energy are achieved. Algorithm 3
summarizes the node side procedure of EDISKCO while Algorithm 4 abstracts the
approach on the coordinator side.

A weighted version of EDISKCO, called SenClu, is contributed in [14]. It
guarantees a faster adaptation to the new trends of the drifting data streams. The
technique gives more importance to new data points, while slowly forgetting older
ones by giving them less weight. To achieve this, a novel, light-weighted decaying
function is contributed, that can be implemented on the tiny processing unit and
works on the limited storage capacity of sensor nodes. SenClu achieves even better
clustering quality than EDISKCO while draining almost the same amount of energy.

One can see from Table 2.1 that on the real dataset (i9-Sensor Dataset), SenClu
[14] consumes less than two Joules more than EDISKCO [15], and absorbs
considerably less energy than the state-of-the-art competitor PG [8]. When using
the Physiological Sensor Dataset [26], SenClu consumes less energy than both
competitors. Figure 2.8a shows that SenClu [14] and EDISKCO [15] always have a
better clustering quality than PG [8] on the node side. Because PG is more sensitive
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Table 2.1 Average energy consumption in Joule of a single node in the network by the end of
each dataset when using SenClu, EDISKCO, and PG

Dataset Size Nodes SenClu [14] EDISKCO [15] PG [8]

i9-Sensor 40,589 19 28,770.2 28,768.38 28,792.5

Physio [26] 24,000 12 17,074.3 17,074.4 17,078.9

Lowest energy consumption is in bold
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Fig. 2.8 Reference [12]. The clustering quality using the Real Physiological Sensor Dataset [26]
over different parts of the input stream data. (a) Silhouette coefficient (higher is better), (b) Rglobal
(lower is better)

to noise than SenClu and EDISKCO, it is performing considerably worse than the
others on this relatively noisy dataset. Figure 2.8b is showing that on the node side,
SenClu is having most of the time the same global radius as EDISKCO. Only for a
short time, SenClu is having a bigger radius than EDISKCO.
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A further challenge for aggregating streaming data within the sensor network
is tackled. The physical clustering of sensor nodes depending on their similarity
is considered in the presented ECLUN algorithm [16]. The readings of a carefully
selected representative node are used to simulate the measurements of similar nodes.
While the recent approaches concentrated on the full-dimensionality correlation
between the readings, ECLUN selects the representatives depending on the subspace
correlation between some attributes of the measurements as well as the spatial
similarity. Additionally, the usage of energy between the nodes is uniformly
distributed, and, thus, the cases of single-node clusters are handled by changing
representatives according to the residual energy. This results in a longer lifetime of
the whole sensor network as nodes die close to each other.

2.4.4 A Framework and an Evaluation Measure for Subspace
Stream Clustering

This section presents some contributions mainly in the Evaluation and Visualization
step of the KDD (Knowledge Discovery in Databases) process.

The first subspace clustering evaluation framework over data streams, called
Subspace MOA, is presented in [22]. This open-source framework is based on the
MOA stream mining framework [5], and has three phases (cf. Fig. 2.9). In the online
phase, users have the possibility to select one of three most famous summarization
techniques to form the microclusters. Upon a user request for a final clustering, the
regeneration phase constructs the data objects out of the current microclusters. Then,
in the offline phase, one of five subspace clustering algorithms can be selected. In
addition to the previous combinations, the framework contains available projected
stream clustering algorithms like PreDeConStream [18] and HDDStream [25]. The
framework is supported with a subspace stream generator, a visualization interface,
and various subspace clustering evaluation measures. With the increase of the size
of high-dimensional data, applying traditional subspace clustering algorithms is
impossible due to their exponential complexities. Figure 2.10 shows, for instance,

user request
CFA

CFB

CFF
CFE

CFG

CFC CFD

Fig. 2.9 Reference [12]. Subspace MOA model for stream subspace clustering for big data. The
blue arrows represent the online phase, the green arrow represents the regeneration phase, and the
red arrow represents the offline phase
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Fig. 2.10 Reference [12]. (a): The runtime of the static subspace clustering algorithm: PROCLUS
[1]. Beginning from a sub-dataset size of 200 K objects only, the algorithm fails to successfully
finish the running. (b): A successful run of PROCLUS (and other subspace clustering algorithms
Clique [3], SubClu [23], and P3C [24]) over the whole KDD dataset [9] when applying the
streaming PROCLUS using Subspace MOA with CluStream [2] in the online phase on the same
machine

that when using the same machine, it was only possible by using Subspace MOA,
to get a relatively large dataset clustered with a subspace clustering algorithm
(PROCLUS [1]).

In [22], a novel external evaluation measure for stream subspace clustering
algorithms called SubCMM: Subspace Cluster Mapping Measure is contributed.
SubCMM is able to handle errors caused by emerging, moving, or splitting subspace
clusters. This first evaluation measure that is designed to reflect the quality of stream
subspace algorithms is directly integrated in the Subspace MOA framework. This
new measure was extensively compared against state-of-the-art full-space stream
clustering evaluation measures. The experimental evaluation, performed using the
Subspace MOA framework, depicts the ability of SubCMM to reflect the different
changes happening in the subspaces of the evolving stream.

2.5 Conclusion

In this chapter, we have mainly addressed the following three v’s of big data: veloc-
ity, volume, and variety. Various streaming data applications, with huge volumes
and varying velocities, were considered in different scenarios and applications.

A list of the recent challenges that face the designer of a stream clustering
algorithm was shown and deeply discussed. Finally, some recent contributions on
four main research lines in the area of big data stream mining were presented and
their fulfillment to the design requirements was highlighted. Table 2.2 summarizes
the main properties of some stream clustering algorithms mentioned in this chapter.
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