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Nanotechnology for Aquaculture
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Abstract As a part of sustainable culture, aquaculture is objectively a very
promising activity comparing to other livestock production industries. Practically,
aquaculture encounters serious challenges causing numerous drawbacks at multiple
levels such as water infection, pond contamination, biofouling, chronic/acute dis-
eases, and postharvest preservation. Researchers and overseers in the aquaculture
industry have continually adopted new technologies to overcome most of these
serious challenges; nanotechnology is among the prominent technologies to be
applied in many aquaculture pundits. The different practical applications of nan-
otechnology in aquaculture disciplines are to be presented throughout this chapter.
The application of nanotechnology in water and wastewater remediation, e.g.,
disinfection, sterilization, detoxification, and monitoring, is also discussed. The
involvement of nanotechnology in aquatic organisms’ performance and health in
terms of vaccination, drug delivery, monitoring, antimicrobial application, repro-
duction control, and functional feeding is also mentioned. Additionally, the role of
nanotechnology in harvested fish manufacturing, preservation, packaging, and
commercialization is emphasized. The current chapter gives an overview about the
current and potential nanotechnology applications in aquaculture and the sugges-
tions to get the maximum benefit from it.
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20.1 Introduction

Nanotechnology is atomic and molecular matter controlling at the nanometer scale
of 1–100 nm to study, design, create, synthesize, manipulate, and applicate of
functional materials, devices as well as systems for matter exploitation of novel
phenomena and properties. Worthy mentioning, the US National Nanotechnology
Initiative (NNI) defined nanotechnology as “understanding and control of matter at
dimensions of roughly 1–100 nm where unique phenomena enable novel applica-
tions”. The numbers of nanoscience applications or authorization of patents for
inventions were increased significantly in the world (FAO 2016a).

Nanotechnology has vast potential in electronic, materials science, humans,
animal food, and agriculture sectors including aquaculture and its application in
biological and biomedical sciences for analysis of biomolecules, development of
non-viral vectors for gene therapy, cancer therapy, clinical diagnosis, and thera-
peutics. The majority of the investment in nanomaterial research is in
nano-electronics, nanomedicine as well as nanopharmaceutics research. While in
agricultural field, nanotechnologies investment is lesser than others in mentioned
sectors and thus few nano-technologies and nano products are available in agri-
culture, aquaculture industry and animal husbandry. However, there is a huge
potential for nanotechnology in this important sector which is required for revo-
lution in socioeconomic status for huge population.

Aquaculture is a major global industry with annual production exceeding 50
million tones as well as estimated value of US$ 80 billion (FAO 2009). Global
aquaculture production is growing at 6.6% as an average annual rate since 1995. In
2015, the business reached 76.6 and 29.4 million tons of aquatic animals and
aquatic plants, respectively. Aquaculture sector is expected to play a significantly
vital role in contributing to food security, economic development, and poverty
alleviation (FAO 2016b), and will soon overtake capture fisheries (FAO 2008).
Benefits of aquaculture include a production of high-quality food for growing
population and jobs. But there are many problems associated with the environ-
mental issues (Martinez-Porchas and Martinez-Cordova 2012a, b). Some of the
problems that have negative impacts on aquaculture industry include a destruction
of natural ecosystems (Rajitha et al. 2007; DeWalt et al. 2002); water pollution
(Paez-Osuna 2001; Avnimelech and Kochba 2009); acidification/salinization of
soils (Martínez-córdova et al. 2009; Rodríguez-Valencia et al. 2010); eutrophication
and nitrification of ecosystems receiving effluents (Crab et al. 2009a, b; Fenaroli
et al. 2014; Martinez-Porchas and Martinez-Cordova 2012a, b); chemical con-
tamination (Justino et al. 2016; Sapkota et al. 2008a, b); biological contamination
due to non-native species introduction (Krkošek et al. 2007; Molnar et al. 2008);
landscape modification (Bentley 2015; Dumbauld and McCoy 2015); and negative
effects on fisheries (Granada et al. 2016; Natale et al. 2013) (Fig. 20.1).

Nanotechnology shows many interdisciplinary activities in both agriculture and
aquaculture sectors. Aquaculture industry and the fisheries can be revolutionized by
nanotechnology with new tools for rapid disease detection, enhancement of fish
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ability to absorb drugs, vaccines, and nutrients, etc (Rather et al. 2011a, b). Several
nanotechnology applications for aquaculture are being developed. The highly
integrated fish farming industry may be considered among the best to incorporate

Fig. 20.1 Examples of aquaculture problems concerning environmental issues: a biological
contamination; b water pollution; c chemical contamination; d fishery problems; e soil
salinization; and f eutrophication. Adopted from Luis et al. (2017)

Fig. 20.2 Multidisciplinary activities of nanotechnology in agriculture and aquaculture
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and commercialize nanotechnological products (Rather et al. 2011a, b). Moreover,
nanotechnology applications in fish processing can also be used to detect fish
bacteria in packaging, product safety by increasing the protection during processing
(Fig. 20.2).

At present, although the use of nanotechnology in aquaculture needs much of
development research, there are many glimpses of the future nanotechnological
applications in water treatment in aquaculture, fish health management, animal
breeding as well as harvest and postharvest technology.

20.2 Nanotechnology for Clean Water

Water is the life-supporting substance and a precious resource for survival of
civilization. Clean water is one of the major global challenges for this century.
Aquatic ecosystems and water quality face many old and new challenges. The
major factors responsible for water pollution are the human activities; this pollution
severely affects fish and may be lethal. So, the need for paying attention to this issue
and the necessary corrective measures should be considered (Wang et al. 2015).

Most of fish farm’s water is received directly from reservoirs or rivers and is
discharged in rivers or reservoirs unfortunately without any previous treatments
(Tavares and Santeiro 2013). Fish farms are divided into compartments, such as
laboratories for larvae culture, plankton (natural feed) production ponds, fish
breeding ponds, fish fattening ponds, and others. Water quality of the mentioned
compartments may deteriorate directly because of fertilization and fish feeding
management.

Fish farms are maintained by biological interactions as well as complex physical
and chemical factors which directly depend on the water quality. Fish farms’
wastewater discharged into streams, rivers, or lakes can cause important impacts on
the environment (Konsowa 2007). The current water distribution, treatment, and
discharge practices are no longer sustainable as these practices heavily depend on
conveyance and centralized systems. Nanotechnology not only enable efficient,
modular and multifunctional processes, but also provide affordable, high perfor-
mance to wastewater treatment solutions with minimizing the large infrastructures
dependence (Qu et al. 2012). Water treatment technologies based on nanotech-
nology are used for safe reuse of wastewater, improving sea and saline water
desalination, decontamination and disinfection of water, i.e., nano-adsorption and
biosorption for contaminant removal, nanophotocatalysis for contaminant chemical
degradation, nanosensors for contaminant detection, various membrane technolo-
gies including nanofiltration, reverse osmosis, and photocatalysis (Bora and Dutta
2014; Kumar et al. 2014). A basic application of nanotechnology for water resource
management has been shown in Fig. 20.3. Some of the aspects are being discussed
below.
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20.2.1 Disinfection of Water

Water supplies for aquaculture and seed production are often considered as one of
the easiest means for infectious disease introduction and spread. A pathogen-free
water source is vital for aquaculture success. Surface waters used in aquaculture that
come from coastal waters or rivers may contain fish pathogens, so such open water
supplies should be treated before use. Parameters such as environmental pollution,
soil composition, and food waste can affect the physicochemical properties of pond
water in aquaculture (Venkat 2011; 2014a, b), while water quality in open sea or
coastal cages is affected by the natural environment (Khosravi-Katuli et al. 2017).

Fish culture facilities should depend on a disease prevention program that
includes water quality, quarantine and sanitation of new animals as well as nutri-
tional management. Sanitation practices include disinfection between fish groups,
cleanliness during fish growth, and disease transmission prevention by equipment,
personnel, or water. Disinfection is a common disease management tool in aqua-
culture and considered as a part of biosecurity plan by prevention of the target
pathogenic agents’ entry or exit from an aquaculture establishment or compartment,
as well as the pathogenic agents spreading within aquaculture establishments.
Disinfection may be used in emergency disease response for supporting the disease
control zone maintenance and for eradication of the disease (stamping-out proce-
dures) from affected aquaculture establishments. Disinfection-specific objective will
determine the used strategy and how the strategy is applied.

Fig. 20.3 A basic flowchart of nanotechnology for water resource management. Redrawn from
Qu et al. (2013)
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Traditional and time-consuming disinfection process in aquaculture includes
surfaces and equipment cleaning and washing for solid waste removal, which may
reduce the disinfectants’ effectiveness, disinfectant application and chemical residue
removal or inactivation to avoid toxicity to aquatic animals as well as corrosion of
equipment and environmental impacts. Processes that may be used for chemical
residue removal or inactivation may include rinsing of surfaces with water, dilution
until the acceptable levels, chemical agents’ treatment to inactivate the disinfectant
or keeping it for time needed for active compound deactivation or dissipation.
Disinfectants may be risks to the users’ health and aquatic animals in addition to the
environment. Also, there is a need of trained labors, as chemical disinfectants
should be used, stored, and disposed of in accordance with manufacturer’s regu-
lations and instructions.

Traditional disinfectant methods in aquaculture, such as pH modifiers (alkalis
and acids), oxidizing agents, biguanides, quaternary ammonium compounds
(QACs), aldehydes, ultraviolet (UV) irradiation, heat treatment, hydrogen peroxide
and malachite green, desiccation, or even combined disinfection methods, have
several limitations such as high cost, toxicity to aquatic animals, increased pathogen
resistance, and negative effects on nontarget organisms (Romero et al. 2012). Still,
aquatic establishments including fishponds, tanks, cage nets, pipes, vehicles, con-
tainers, buildings, boats, biofilters as well as husbandry equipment need to be
disinfected. Moreover, bad water quality may lead to injury to the marine organisms
and so results in poor performance (Boyd and Tucker 2012).

Nanotechnology can improve disinfection efficiency, decreasing toxic effects of
traditional disinfectants and costs or through augment water supply by unconven-
tional water sources’ safe use (Qu et al. 2013). Nanotechnology use in water
treatment offers several applications that could be specific to the user, which include
nano-adsorbents, nanomembranes, nanometals, nanophotocatalysis, and others. In
addition to one useful aspect which is the ability of various properties, integration in
multifunctional materials, such as nanomaterials, can be used for simultaneous
particle removal and contaminant elimination; hence, greater process efficiency is
provided (Gehrke et al. 2015).

Recently, the nano-enabled products’ application based on polymers and func-
tionalized composites, aerogels, magnetic engineered and hydrophobic organoclay
NPs for treatment and purification of water has been studied (Bhattacharyya et al.
2015; Lofrano et al. 2016). nAg, nAu, nFe, CNTs, nTiO2, and lanthanum (La) were
used for the removal of heavy metal pesticides and ammonia from water as well as
wastewater (Ren et al. 2011; et al. 2012; Pradeep 2009; Rather et al. 2011a, b).
Quantum dots (QDs) have been proposed for heavy metal detection in aquaculture
(Chen et al. 2013), because of their unique optical properties (Vázquez-González
and Carrillo-Carrion 2014).

Shrimp- and fish-intensive farming led to growing problems with bacterial
pathogens such as A. salmonicida, Yersinia ruckeri, and Flavobacterium columnare
(Pulkkinen et al. 2010). Moreover, aquaculture production has suffered severe
losses due to bacterial disease (Huang et al. 2010), but the present traditional
sterilization and disinfection methods for aquatic disease control such as various
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chemical disinfectants and antibiotics have numerous side effects and so many
adverse effects (Yang 2003). It is worth mentioning that water disinfection nan-
otechnologies in fishpond increased water quality, fish and prawn survivals, and so
the yields (Huang et al. 2015). In addition, this technology can be applied in both
aquariums and commercial fishponds for reduction of water disinfection cost, and
believed to provide safe and free fishponds from pollution and disease.

Effective disinfection without toxic disinfection by-product (DBP) formation is a
great challenge for water industry. Conventional disinfectants, such as ozone and
chlorine disinfectants, can form toxic DBPs (carcinogenic nitrosamines, halo-
genated disinfection by-product bromate, etc.). While UV disinfection may be an
alternative for oxidative disinfection due to minimal DBPs production, but UV
disinfection requires high dosage for certain microorganisms (e.g., adenoviruses).
So, alternative disinfection development was an urgent need. Nanotechnology has
potential role in disinfection and microbial control through many antimicrobial
nanomaterials (Li et al. 2008) that have antimicrobial properties, lower tendency to
DBPs formation such as nano-Ag, nano-TiO2, nano-ZnO, CNTs, fullerenes, and
nano-Ce2O4 (Table 20.1).

Nano-TiO2 can be taken as an example to understand the antimicrobial mech-
anisms. These particles could achieve desirable sterilization on E. coli, Aeromonas
hydrophila, and Vibrio anguillarum. In the presence of ultraviolet lights, the ster-
ilizing rate of 0.1 g/L nano-TiO2 could reach above 98% after 2 h. Moreover, this
rate could be still above 96% after 2 h in the sun (Huang et al. 2010). Nano-TiO2

photocatalytic sterilization efficiency was correlative with nano-TiO2 concentration
and reaction time. Without adequate reaction time or concentration, the sterilization
would be ineffective (Huang et al. 2010). Nano-TiO2 in natural environments has
strong sterilization effects but only in sunlight presence as sunlight catalytic effect is
like that of ultraviolet without a need of artificial light so this supports this tech-
nology application in aquaculture industry. Nano-TiO2 has organic pollutant

Table 20.1 Nanomaterial antimicrobial mechanisms

Nanomaterials Antimicrobial mechanisms

Nano-Ag Release of silver ions, protein damage, suppression of DNA
replication, membrane damage

Nano-TiO2 Production of ROS

Nano-ZnO Release of zinc ions, production of H2O2, membrane damage

Nano-MgO Membrane damage

Nano-Ce2O4 Membrane damage

nC60 ROS-independent oxidation

Fullerol and
aminofullerene

Production of ROS

Carbon nanotubes Membrane damage, oxidative stress

Graphene-based
nanomaterials

Membrane damage, oxidative stress
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degradation ability in water, disinfection, and sterilization abilities. Under ultravi-
olet irradiation, it is able to produce free radicals with high oxidation activity such
as highly active hydroxyl –OH, peroxyl radical –OOH, superoxide ion –O, and
other, which can interact with microorganisms (bacteria and viruses) and
bio-macromolecules, such as proteins, lipids, enzymes, and nucleic acid, and other
so destroy their cell structures through a series of chain reactions. The end result of
these series of reactions is denaturation and lipolysis of bacteria and; accordingly,
disinfection and sterilization with efficiency higher than traditional bactericide
(Zhao et al. 2000; Yu et al. 2002; Sonawane et al. 2003).

20.2.2 Photocatalysis Using Nanoparticles for Water
Purification

Photocatalytic oxidation is an advanced oxidation process for trace contaminant
removal as well as microbial pathogens. This process is a useful pretreatment means
for enhancing the biodegradability of non-biodegradable and hazardous contami-
nants. The major barrier for photocatalysis wide application is the slow kinetics due
to limited light influencing and photocatalytic activity. Table 20.2 focuses on
increasing photocatalytic reaction kinetics and photoactivity range by nano-TiO2.

In water/wastewater treatment, TiO2 is the most vastly used semiconductor
photocatalyst such as low toxicity, high chemical stability, low cost, and raw
material abundance. It generates an electron/hole (e−/h+) pair upon UV photon
absorption and then later either migrates to the surface to form reactive oxygen
species (ROS) or undergoes forming undesired recombination.

The photochemical reaction equation of hole/electron pair produced by photo-
catalyst (TiO2) under light is as follows:

“TiO2 þ light energyðhvÞ ! electron ðe�Þþ positive hole ðhþ Þ”

The hole/electron reacts with the object surface and water in the air, and then
reactive free radicals (positive hole) are produced as follows:

“hþ þwater molecules H2Oð Þ ! OHþHþ � electron (e�Þ and oxygen ðO2Þ
! ReactiveOxygen Species O�

2

� �
”

The oxidation–reduction reaction occurs between the hole/electron pairs pro-
duced by photocatalyst reaction with organics on the matter surface as well as in the
air, which then may be oxidized completely to other innocuous substances and
water. Photocatalysis degradation is suggested to involve the (e−/h+) pair gener-
ation which is leading to radical formation such as superoxide radical anions,
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hydroxyl radicals as well as hydroperoxyl radicals. These radicals act as oxidizing
species in the processes of photocatalytic oxidation (Gupta and Kulkarni 2011). On
the other hand, hydroxyl radicals [OH], reactive oxygen as well as other activated
substances can be generated after the hole/electron pair’s reaction on surface of the
matter in water and air (Zhao et al. 2005). Nano-TiO2 photoactivity can be
improved by optimizing particle shape and size, reducing e−/h+ recombination by
maximizing reactive facets, noble metal doping, and surface treatment to contam-
inant adsorption enhancement.

TiO2 size plays an important role in its sorption, solid-phase transformation, and
e−/h+ dynamics, where TiO2 crystalline structures, the most stable for particle size
larger than 35 nm, are rutile, while anatase is more efficient in ROS production and
is the most stable at particle size smaller than 11 nm (Fujishima et al. 2008; Zhang
and Banfield 2000).

The major cause for slow TiO2 photocatalysis reaction kinetics is the fast e−/h+

recombination. Reduction of TiO2 particle size decreases e−/h+ volume
recombination as well as improves interfacial charge carrier transfer (Zhang et al.
1998). However, when particle size is reduced to several nanometers, surface

Table 20.2 TiO2 photocatalyst optimization

Optimization
objects

Optimization mechanisms Optimization
approached

Waste treatment
applications

Expanding
photoactivity
range

• Band gap narrowing Anion doping Low-energy cost
solar/visible
light-activated
photocatalytic
reactors

• Impurity energy levels Metal impurity
doping

• Electron injection Narrow band
gap
semiconductor
doping

Dye sensitizer
doping

Enhancing
kinetics of
photocatalytic
reaction

• Better electron–hole separation,
lower electron–hole
recombination

Noble metal
doping

High-performance
UV-activated
photocatalytic
reactors• Shorter carrier diffusion paths in

the tube walls, higher reactant
mass transfer rate toward tube
surface

Nanotube
morphology

• Higher reactant sorption, better
electron–hole separation, lower
electron–hole recombination

Reactive
crystallographic
facets

• More surface reactive sites,
higher reactant adsorption,
lower electron–hole
recombination

Size
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recombination dominates, decreasing photocatalytic activity. TiO2 nanotube
organic compound decomposition was recorded to be more efficient than that of
TiO2 nanoparticles (Macak et al. 2007), where the higher photocatalytic activity
was related to the shorter carrier diffusion paths in walls of the TiO2 nanotubes in
addition to reactants’ faster mass transfer toward the TiO2 nanotube surface.

In addition to TiO2, tungsten trioxide (WO3) and some fullerene derivatives have
the potential to be used in water treatment through photocatalysis. WO3 band gap is
narrower than that of TiO2, and this allows it to be visible light activated, <450 nm
(Kominami et al. 2001). Platinum (Pt) can enhance WO3 reactivity by facilitating
O2 multi-electron reduction and improves e−/h+ separation (Kim et al. 2010).
Aminofullerenes generate 1O2 under irradiation of the visible light (<550 nm) (Lof
et al. 1995) and have been studied for pharmaceutical compound degradation and
virus inactivation (Lee et al. 2010). Fullerol and C60 encapsulated with poly (N-
vinylpyrrolidone) under UVA light can produce 1O2 and superoxide (Brune in
oxidationt et al. 2009). Aminofullerenes can be immobilized more than fullerol;
moreover, aminofullerenes are more effective in disinfection purposes. This is
related to their positive charge. TiO2-produced hydroxyl radicals is higher than 1O2

in oxidation potential, and it has more selective ROS that are less sensitive to
nontarget background organic matter quenching. Currently, TiO2 is much cheaper
and readily available than fullerenes.

Photocatalytic water treatment process efficiency strongly depends on the pho-
toreactor configuration and operation parameters. The commonly used two con-
figurations are slurry reactors and immobilized TiO2 using reactors. A different
dispersion/recovery or immobilizations of catalyst techniques are being studied to
maximize its efficiency. Recently, the water quality effects and operating parameters
include: contaminant type and concentration, TiO2 loading, temperature, dissolved
oxygen, pH, wavelength, and intensity of light (Chong et al. 2010).

Some commercial product, e.g., Purifics Photo-Cat™ system, had treatment
capacity up to 2 million gallon/day, with a 678 ft2 minor footprint. Pilot tests
indicated that this system is exceedingly efficient for eliminating organics without
waste stream generation and can be operated with low power consumption
(Al-Bastaki 2004; Benotti et al. 2009; Westerhoff et al. 2009).

Nano-TiO2 expedited solar disinfection (SODIS) has been extensively examined
and appears to be a possible option for safe drinking water production in developing
countries’ remote areas. The SODIS system can be either small scale for one person
or enlarged to solar compound parabolic collectors of medium size. However, there
are many technical challenges for its application on the large scale, including
optimization of catalyst for improving quantum yield or visible light utilization;
efficient design of photocatalytic reactor as well as catalyst recovery/immobilization
techniques; and better reaction selectivity. Along with TiO2, CeO2 nanoparticles
and carbon nanotubes have been examined in heterogeneous catalytic ozonation
processes as catalysts can provide fast and relatively complete organic pollutant
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degradation. Both radical-mediated reaction pathway and non-radical-mediated
reaction pathway have been proposed (Nawrocki and Kasprzyk-Hordern 2010). In
both mechanisms, ozone and/or pollutant adsorption on the surface of catalyst plays
a critical role.

Nanomaterials’ high catalytic activity is related to large specific surface area in
addition to an easily accessible surface. Some nanomaterials were also stated to
promote ozone decomposition into hydroxyl radicals and facilitate the degradation
process by radical-mediated routes (Orge et al. 2011). For industrial-scale appli-
cations, the nanomaterial enabled catalytic ozonation mechanism better under-
standing is a critical need. Moreover, the role of photocatalytic sterilization in
aquaculture needs more research.

20.3 Use of Manufactured Nanomaterials in Aquaculture

Water pollution treating nano-adsorption material at present is broadly divided into:
TiO2 class, carbonaceous nanomaterials, iron and iron compounds, and other
nanomaterials (McIntyre 2012), In the Lake Biwa, Japan, many kinds of manu-
factured nanomaterials (MNMs) were used to purify the lake water and the effect
was significant (Cao et al. 2015). A similar experiment was carried out in some
areas of Shanghai, Suzhou, and good results were achieved. MNMs are used for a
month, eliminated the water body odor, and dropped NH3–N content from
7 � 10−6 to below than 0.5 � 10−6 mg/l, without water change, no oxygen, no side
effects, and no secondary pollution (Cao et al. 2015).

Insect Museum of Shanghai used MNMs in a 30 m2 ponds of ornamental fish
with stocking of 40 kg for six months without water change or oxygen addition or
sewage suction but with usual feeding fodder, the water NH3–N content fell from
0.5 � 10−6 below to 0.25 � 10−6 mg/l (Cao et al. 2015).

MNMs were also successfully used by researchers in India for industrial
wastewater treatment, good results were achieved, and the investment was covered
through power and all vital savings in consumption (Sreeprasad et al. 2013). MNMs
were used in the seawater Cyclina sinensis nursery, where nanosilver powder,
tourmaline nanomicron powders, and other materials were used to improve water
quality, purify water, and so get better water environment, resulting in the increased
survival rate and improving spat nursery production (Yang et al. 2006). Carbon
nanotubes were used to adsorb industrial wastewater containing heavy metals such
as zinc, copper, arsenic, chromium in addition to other heavy metals as well as nitro
and amino compounds and other greater toxic substances of the dyes. The
adsorption process increased with increase of both carbon nanotube dosage and the
temperature (Shahryari et al. 2010).
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20.3.1 Application in Aquaculture Facilities

In aquaculture field, MNMs application is most widely used in different breeding
facilities. According to the physical nature of MNMs applications, they were
classified into: nanocoating, nanofibers and nanofilms. In aquaculture, nanocoating
has been used as functional, protective, and decorative coatings with other special
features such as anti-virus, pest control, anti-fire, and others (Colvin 2003).
Moreover nanocoatings’ biological function includes two aspects like releasing of
the component in coating for biological growth inhibition, so preventing biofouling,
and slow release of nutrients that play an important role in organisms’ growth
(Simchi et al. 2011).

Addition of the nanoscale particle size in surface coatings improves its response
to chemical catalysis and photocatalysis and the self-cleaning ability under UV.
ZnO nanoscale particles added to paint make nanocoating that has bactericidal,
anti-virus activities as well as has a shield UV and infrared absorbing properties
(Simchi et al. 2011). Antimicrobial nanomaterial-coated sea cage mesh does not
need frequent washing and cannot be fouling. The nutritious nanocoating-coated
equipment in the water can breed some organisms on the surface such as unicellular
algae and bait; thus increasing the production (Simchi et al. 2011).

Regarding nanofiber, there are studies that proved the strong degradation of toxic
substances such as some nerve gases by Pt and TiO2 nanoparticles; so mixing
nanofibers with these groups of similar functions is a good mean for manufacturing
high-performance protective suits (Bergshoef and Vancso 1999). In 1999, Professor
Mac Diarmid, From the Faculty of Chemistry at Pennsylvania University, who has
been awarded the Nobel Prize, proposed a composite nanofiber and reported that “a
lot of metal nanoparticles can be very destructive to marine microorganisms.”
Nickel and copper nanoparticles have been used to make a macromolecule nano-
fibers acting as a coating material. Subsequently, this coating material that coats the
device will produce a small current of waves which prevent marine organisms
adhering on the device surfaces; thus, long-term preservation of water-exposed
equipment’s will not be difficult (Feng et al. 2010).

In aquaculture, filtering media is extremely demanded; the effectiveness of fil-
tering is closely related to the medium fiber fineness. As the filtered material size
particle should match both the filtering medium constitutional unit and the pas-
sageway, so by applying nanofibers in the medium, the nano-level granules either in
the solution or in the gas can be removed (Graham et al. 2002; Tsai et al. 2002). In
accordance with a relevant report (Kim 1997), microfiber filters can filtrate aerosol;
therefore, these filters are suitable for purifying air. The nanofiber compound and
certain selective reagents are used for manufacturing and developing molecular
filters that are not only able to separate organic gas and vapor as well as O2 and
CO2, but also can be useful in biochemical experiments for the toxic reagent
removing and so on.

Nanofilm is divided into particle film and dense film. In aquaculture,
nanomembrane filtration is using nanomembranes for selective permeability for a
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different valence ion, water bleaching, natural organic as well as synthetic organic
compound removal (such as pesticides), by-products of disinfection removal
(THMs and haloacetic acids) in addition to their precursors, for the water biological
stability (Savage and Diallo 2005). According to reports, at early 2008 in
Zhangjiagang on the anion nanofilm use to experiment, the obtained results sug-
gested that the MNMs polyculture pool facilities of aquatic animals’ use improved
the quality of water, reduced the disease incidence, and accelerated the growth of
animals (Albanese et al. 2012).

20.3.2 Biofouling Control

Nanotechnology may improve aquaculture production and shrimp culture through
improving the disease control, feeding formulation, and biofouling control.
Biofouling is unwanted bacteria (as biofilm), and invertebrates (mussels and bar-
nacles) and algae (seaweeds and diatoms) could be controlled by coating or paint
nanostructuring through metal oxide nanoparticles such as ZnO, CuO, and SiO2

incorporation. This will be achieved by developing an efficient antifouling surface
as well as improving the antifouling control performance (Rajeshkumar et al. 2008;
Handy 2012).

The bacterial biofilm allows macrofouler attachment, as in maricultural cages so
causing many serious problems such as weight increase, corrosion, surface alter-
ation as well as submerged structure distortion (Champ 2003). Antifoulings are
directly applied to get rid of these fouling organisms, but unfortunately on the other
nontarget species there are undesired adverse effects, e.g., tributyltin or TBT
(Lofrano et al. 2016). nZnO, nCuO, and nSi seem to be potential good antifouling
candidates (Rather et al. 2011a, b), because of their high surface–volume ratio
producing a more efficient antifouling barrier (i.e., at equal or lower concentra-
tions). Ashraf and Edwin (2016) recorded a significant fouling reduction by using
nCuO to treat nets of cage after 90 days from application.

Some commercial products (NanoCheck®) were developed for management of
the fishpond using particles of 40-nm size based on lanthanum (La) compounds,
which limited the growth of algae through supporting the water phosphate
absorption (Mohd Ashraf et al. 2011). Moreover, NPs of La oxides were used on
Escherichia coli, Penicillium roqueforti, Staphylococcus carnosus, and Chlorella
vulgaris as phosphate scavenger resulted in starvation of the microorganisms
(Gerber et al. 2012). Vijayan et al. (2014) examined nAg as well as nAu bacterial
anti-biofilm activity. The examined nanosubstrates were synthetized from the
extracts of Turbinaria conoides. The results indicated that nAg only was efficient in
biofilm formation controlling, but nAu was not.
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20.3.3 Nanodispersants

Oil spill response involves different technologies; one of them used chemical dis-
persants that contain surface-active agents (surfactant molecules) that agents
migrate to the oil/water interface and then reduce interfacial tension between water
and oil. With the wave energy abietane, tiny droplets of oil from the oil slick break
away. These tiny droplets get dispersed and suspended into the water column,
thereby becoming a good food source for the naturally occurring bacteria. The
biodegradation process is catalyzed by the dispersants leading to spilled oil
removal.

20.3.4 Nanomembranes

Manchester Institute of Technology developed nanowire membranes that have
absorbent and superhydrophobic activities for oil selective absorption from an oil–
water mixture. This could be achieved by using self-assembly method; this institute
has constructed freestanding membranes including inorganic nanowires have the
ability of oil absorption up to twenty times their weight. Moreover, MIT’s
SENSEable City Laboratory has recently produced robot called “Sea swarm”
depending on the nanowire mesh. This autonomous oil-absorbing robot uses
oil-absorbing nanowire mesh covering a conveyor belt. When the robot moves
along the water surface, the conveyor belt as well as the nanomesh rotates, and
selective absorption starts for water cleaning. These robots have the ability to run
for weeks to clean up several oil gallons per hour using very little energy (as low as
about 100 W).

Oil spills generally result in seawater contamination due to water-soluble crude
oil fraction dissolution. The contaminated water is highly toxic due to high dis-
solved hydrocarbon concentration and able to cause ecosystem irreparable damage.
The oil-contaminated water photocatalytic decomposition by using TiO2 particle
nanoscale or microscale can control the problem. Professor Feng from Tsinghua
University, in collaboration with the other institutions, has produced a new func-
tional nanomaterials (Fig. 20.4) act as an oil–water separation membrane. These
nanomaterials can perform efficient separation for a series of oil–water mixture
within minutes, and the efficiency of separation was over 99% (Gao et al. 2013).

20.3.5 Desalination

Seawater desalination in the near future will be a major freshwater source because
of limited freshwater resources. Reverse osmosis (RO) membranes are high-cost
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conventional desalination technologies due to large amount of energy consumption.
Nanotechnology has played a very vital role in creating low-energy alternatives,
among which the most promising technologies are: aligned carbon nanotube
membranes, protein–polymer biomimetic membranes, and thin-film nanocomposite
membranes (Hoek and Ghosh 2009; Nikonenko et al. 2014). These technology
desalination efficiencies are up to 1000 times better than that of RO, because it has
the high permeability of water due to carbon nanotube membranes present in their
structure, and integration of these membranes (some of them) in other processes
such as disinfection, defouling, deodorizing, and self-cleaning. In another tech-
nology for seawater desalination, zeolite nanomembrane is used (Liu and Chen
2013). Soon, some of these desalination technologies may be present in the market
place but there are critical challenges that should be considered as practical
desalination effectiveness, scale-up fabrication as well as long-term stability
(Ranjan et al. 2016b; Shivendu et al. 2016).

Recently, many devices have been developed with improved efficiency and
performance that are self-sustained webs of polyvinylidene fluoride electrospun

Fig. 20.4 Gravity-driven oil–water separation
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nanofibers (Essalhi and Khayet 2014); PVA/PVDF hollow fiber composite mem-
brane modified with TiO2 nanoparticles (Li et al. 2014a, b); novel integrated system
coupled with nanofluid-based solar collector (Kabeel and El-Said 2013, 2014); zinc
oxide micro-/nanostructures grafted on activated carbon cloth electrodes (Myint
et al. 2014); tubular MFI zeolite membranes (Drobek et al. 2012); titanium oxide
nanotubes/polyethersulfone blend membrane (Abdallah et al. 2014); graphene-
wrapped MnO2 nanostructures (El-Deen et al. 2014b); thin-film nanocomposite
membranes (Subramani et al. 2014); graphene/SnO2 nanocomposite (El-Deen et al.
2014a); and carbon nanotubes (Goh et al. 2013).

20.3.6 Removal of Heavy Metals

Ligand-based nanocoating can be used for effective heavy metal removal, which is
related to high absorption tendency and cost-effectiveness as it can be regenerated
by treating with the previously used nanocoating media bifunctional
self-assembling ligand in situ. Crystal clear technology is used for water purifica-
tion in this technology; multiple metal layers are bonded to one substrate (Farmen
2009). Nowadays, nanomaterials have been widely used for heavy metals removal
from water/wastewater due to their high reactivity and large surface area.

Metal oxide nanoparticles, such as nanosized ferric oxides, aluminum oxides,
manganese oxides, cerium oxides, magnesium oxides, and titanium oxides, have
high surface area as well as specific heavy metal adsorption affinity from aqueous
systems. To date, development of new technologies for metal oxide nanoparticle
synthesis as well as of better possibility for practical use, i.e., composite materials
or granular oxides, has become a hot topic to evaluate their heavy metal removal
under different experimental conditions or to reveal the metal removal underlying
mechanism based on mathematical models or analytical techniques such as XAS,
NMR, and ATR-FTIR (Hua et al. 2012; Kumar and Chawla 2014).

Additionally, fulvic acid and humic acid are very common in aquatic environ-
ments in addition to have several of functional groups which help them to complex
with metal ions as well as interact with nanomaterials. These interactions can alter
the nanomaterials’ environmental behavior and influence the heavy metal removal
and transportation by nanomaterials. Thus, these interactions and their underlying
mechanisms need specific investigations.

Tang et al. (2014) have recorded a detailed review on the humic acid and fulvic
acid effects on heavy metal removal from aqueous solutions by different nanoma-
terials, mainly including iron-based nanomaterials, carbon-based nanomaterials,
and photocatalytic nanomaterials. Moreover, this review discussed the interaction
mechanisms and evaluated the humic acid and fulvic acid potential environmental
implications to nanomaterials as well as heavy metals.

Chitosan nanoparticles as adsorbents are being used for the removal of heavy
metal. Recent studies have focused on removal of heavy metal by chitosan
nanoparticles with clays such as kaolinite, bentonite, and montmorillonite because
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of the inherent capability of clays to heavy metal removal just like chitosan and
chitin. In the recent period, studies on nanochitosan–clay composite for removal of
metal ion have been reported (Futalan et al. 2011; Pandey and Mishra 2011).
Chitosan–magnetite nanocomposites were also stated for heavy metal removal from
aqueous solution (Namdeo and Bajpai 2008; Fan et al. 2017).

20.3.7 Selective Removal of Nitrate and Phosphate

Excessive phosphorus (P) and nitrogen (N) release into runoff from activities of
human is eutrophication major cause, which degrades ecosystems and freshwater.
Nitrate and phosphate pollutants can be removed by biological treatment, chemical
precipitation, membrane processes, ion exchange, electrolytic treatment, and
adsorption process for effective removal of these pollutants from water sources
(Fig. 20.5).

Ideally, the expected properties of designed zero-valent metal-containing
nanoparticles (ZVMNPs) for water treatment include their low toxicity to the
biota; high reactivity for the targeted contaminants removal; after injection, high
reactive longevity and high mobility in porous media (Yan et al. 2013). Moreover,
lowering the enhanced nitrate removal, pH is lowered by adding either buffer
system or acidic solutions. Removal of phosphate by iron oxide nanoparticles and

Fig. 20.5 Nanotechnological techniques for removal of nitrate and phosphate ions from
wastewater
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NZVI is a sorptive process where the sorbed phosphate either still in the
nanoparticles or get precipitated with iron species (Prashantha Kumar et al. 2016).

Almeelbi and Bezbaruah (2012) have detected that phosphate is removed up to
100% by using of nanoscale zero-valent iron (nZVI) particles; moreover, nZVI
particles had more efficient activity than larger-sized particles (micro-ZVI). Alessio
(2015) have reported that nitrate removal efficiency reached up to 98, 87, and 63%
in 60 min during the solution treatment from initial concentrations of nitrate
nitrogen that were 50, 70, and 95 mg/L, respectively, and verified interaction was
found to be a first-order kinetic type.

Among the used adsorbents for water quality standard improvement, hydrated
metal oxides, e.g., Fe (III), Zr (IV), and Cu (II) nanocomposite, were extensively
explored for removal of phosphate via outer-sphere complexes (Chen et al. 2015).
Carbon-based materials like graphite oxide (GO), graphite, graphene, multi-walled
carbon nanotube (MWCNT), carbon nanotube (CNT), and functionalized
carbon-based materials have made adsorption and catalysis potential applications.
Only a few studies for phosphate and nitrate ion removal from aqueous system are
reported (Prashantha Kumar et al. 2016).

20.4 Nanotechnology Devices for Aquatic Environment
Management

Nanotechnology application in seawater shrimp aquaculture indicated that the
nanodevice was able to reduce the water exchange rate and improve both water
quality and survival rate of shrimp and so yield (Wen et al. 2003). Among many
nanodevices, the best device was nanonet treatment; the results showed fish sur-
vival rate increased to 100%, decreasing in both water nitrite and nitrate; moreover,
nitrite decreased to as low as 1/4 of the control group. Also, nanotechnologies
increased the water pH and improved significantly the water quality (Liu et al.
2008).

In China at present, nano-863 is widely used agricultural high-tech product. This
product is produced by addition of nanomaterials of high-temperature sintering and
strong light-absorbing properties with a carrier of ceramic material. Nano-863 has
been widely used in breeding of livestock, crop cultivation, and aquaculture
(Fig. 20.6).

An experiment studied the effects of nano-863 on the water quality results
indicating that nano-863 improves water quality and so is more conducive to fish
growth while without water changing for 6 months, NH3–N, NO3–N, NO2–N, and
CD contents in the test groups were 0.58, 0.89, 0.13, and 8.95, respectively, and all
of these results were lower than the control group with conventional changing of
water, i.e., 1.58, 2.33, 0.28, and 19.22. While pH was 7.20 in the experimental
group, that was higher than the control group (5.60).
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In shrimp farming, nano-863 was used in fishery aquatic breeding farm.
A number of million tailed shrimps were tested in each of the control and exper-
imental groups; only 360 thousand survived in the control group, while 730
thousand tailed shrimps survived in the test group; so, the test group survival rate is
twice that of the control group. Nano-863 can also enhance water activity and
energy, improve shrimp appetite, and so promote growth and development; it also
has very strong protection efficacy such as antibacterial as well as disease and algae
protection.

Nevada-based Altair Nanotechnologies produce NanoCheck which is
water-cleaning product for fishponds and swimming pools. NanoCheck uses 40 nm
of a lanthanum-based compound particle that absorbs phosphates from water and so
inhibits algae growth (Mongillo 2007). Altair is hoping for NanoCheck use in
commercial fish farms worldwide, where heavy metal removal and algae prevention
are costly. Altair plans to expand the tests to confirm NanoCheck effect on fish and
nanoparticle-laden runoff impacts either on human health or on the environment.
Besides, nanoscale delivery of soil-wetting agents and weedicides may be very vital
for aquatic weed control in large bodies of water as well as mitigation of stress due
to aquatic pollution and climate change. Thai researchers have succeeded in tita-
nium dioxide (TiO2) nanosized particles used to coat stone or ceramic in fish bowls
for water treatment. Ceramics or stones coated with TiO2 nanoparticles in fish tanks
can eliminate bacteria and moss. This technology can be applied in commercial
fishponds and aquariums to reduce the water treatment cost.

Fig. 20.6 Different types of biological assistant growth apparatus ceramic disks. Qiangdi
nano-863 (the biggest green one in the center), Suzhou Zhongchi (a, b, c, and d disks around)
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20.5 Nanotechnology in Fish Health

The aquatic environment is considered as a dynamic medium able to transport
pathogens over several kilometers. Furthermore, pathogens are capable of moving
between farms, due to the organism’s substantial movement and vehicles, which
create a highly complex transmission web of disease (Munro and Gregory 2009;
Murray 2013). Fish can be infected by various infectious diseases (Khoo 2000;
Ramaiah 2006; Brooker et al. 2007; Jacobs et al. 2009; Gomez-Casado et al. 2011;
Frans et al. 2011; Oidtmann and Stentiford 2011; Vega-Heredia et al. 2012).
Environmental stress is considered a major factor affecting health of fish, such as
hypoxia, ammonia poisoning, gas bubble diseases, temperature stress, nitrite poi-
soning, and pH stress. For infectious disease control, large quantities of veterinary
drugs such as antibiotics are employed and, in some cases, resulted in the resistant
pests’ appearance (Gjedrem 2015; Huang et al. 2015; Lafferty et al. 2015).

There are different administration routes to treat fish, such as the medication
dosing into the water (bath treatment), injection, in-feed medication, and topical
administration. Bath and topical administration are used for external diseases, while
injection and in-feed medication are used for internal infections (Bowker et al.
2016). Various federal as well as state regulatory agencies (such as the US Food
and Drug Administration) are regulating drugs used in aquaculture. FDA-approved
drugs for use with fish are presented in Tables 20.3 and 20.4 illustrating low
regulatory priority (LRP) substances which present little risk to aquatic organisms,
the environment, and humans. But these LRP substances can be used with the
following conditions: use in the applications listed, appropriate grade when used in
animals intended as food, not to exceed prescribed levels.

In addition to antibiotic use in humans, antibiotics are used in treatments of
animal for growth enhancement or as prophylactics (Marshall and Levy 2011).
However, in aquaculture, antibiotics are frequently used for high productivity
ensurance and this has caused the antibiotic-resistant bacteria emergence; moreover,
aquaculture ponds are becoming antibiotic resistance gene reservoirs that could be
acquired by animal as well as human pathogens (Huang et al. 2015; Letchumanan
et al. 2015a, b, c; Tomova et al. 2015; Xiong et al. 2015).

For prevention of diseases, nanotechnology applications include water treatment,
pond sterilization, aquatic disease detection and control, nutrients and drug efficient
delivery (including hormones and vaccines), and improvement of fish absorption
ability of these substances (Bhattacharyya et al. 2015; Huang et al. 2015).

20.5.1 Drug Delivery

Today, probiotics, antibiotics, and pharmaceutical/ nutraceutical application are
delivered through injection or feed either as preventive measures or when symp-
toms are evident. Nanoscale devices may detect as well as treat health problems and
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infections. Nanoscale smart delivery system poses multifunctional characteristics
such as pre-programming, time controlling, delivery monitoring of hormones,
probiotics, vaccines and chemicals (Donbrow 1991). In medicine, many nanopar-
ticle forms have been used (Table 20.5) such as the nanosized spherical particles
which are nanospheres (De Jong and Borm 2008). Nanospheres have high surface
area and small size which permit the dispersion of a specific drug on the surface of

Table 20.3 Drugs approved by the US Food and Drug Administration (FDA) for aquaculture
applications

Product Active ingredient Manufacturer

Administration route: bath

Finquel Tricaine
methanesulfonate

Argent Laboratories

Formacide-B Formalin B L Mitchell Inc.

Formalin-F™ Formalin Natchez Animal Supply
Company

Halamid® Aqua Chloramine-T Western Chemical Inc.

Oxymarine™ Oxytetracycline
hydrochloride

Alpharma, Inc

Oxytetracycline HCL Soluble Powder-343 Oxytetracycline
hydrochloride

Phoenix Scientific Inc.

Paracide F Formalin Argent Laboratories

Parasite-S® Formalin Western Chemical Inc.

Pennox 343 Oxytetracycline
hydrochloride

Pennfield Oil Co.

Perox-Aid® 35% Hydrogen peroxide Western Chemical Inc.

TERRAMYCIN-343 (oxytetracycline HCl)
soluble powder

Oxytetracycline
hydrochloride

Pfizer Inc.

Tetroxy Aquatic Oxytetracycline
hydrochloride

Cross Vetpharm
Group Ltd.

Tricaine-S Tricaine
methanesulfonate

Western Chemical Inc.

Administration route: injection

Chorulon® Chorionic
gonadotropin

Intervet Inc.

Administration route: in-feed

AquaFlor® Florfenicol Schering-Plough Animal
Health Corporation

Romet® TC Sulfadimethoxine/
ormetoprim

Aquatic Health
Resources

Romet 30® Sulfadimethoxine/
ormetoprim

Aquatic Health
Resources

Terramycin® 200 for fish Oxytetracycline
dehydrate

Phibro Animal Health
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nanosphere and so facilitate drug delivery. Tissue regeneration is another field
where nanospheres can be used (Ramalingam et al. 2013). Nanocapsule is another
nanoparticle form, which consists of an inner core and an outer nanoscale shell. The
core may be water or oil that contains a specific drug, while the outer shell protects
that specific drug from hydrolysis and degradation (Torchilin 2006). Liposomes as
an example are lipid bilayer nanosized spheres. Liposomes are ideal for both
hydrophilic and lipophilic medications’ drug delivery due to their structure that is
like the cell membrane of eukaryotes (Lasic 1998; Cavalieri et al. 2014). Carbon
nanotubes (single- or multi-walled) are nanoparticle forms commonly used in

Table 20.4 Low regulatory priority (LRP) substances used in aquaculture

Substances Applications

Acetic acid Parasiticide

Calcium chloride Egg hardening and maintenance of osmotic balance in fish

Calcium oxide Protozoacide

Carbon dioxide Anesthetic

Garlic Infestation control of helminths and sea lice

Ice Metabolism reducer

Magnesium sulfate Infestation control of trematodes and crustaceans

Onion Infestation control of crustaceans and sea lice

Papain Aid in removal of the gelatinous matrix from eggs

Potassium chloride Osmoregulator and antistress agent

Povidone-iodine Egg disinfectant

Sodium bicarbonate Aid in fish anesthesia

Sodium chloride (salt) Parasiticide, antistress agent, and osmoregulator

Sodium sulfide Improved hatchability

Thiamine hydrochloride Prevention of thiamine deficiency

Urea and tannic acid Reduced adhesiveness

Adapted from Bowker et al. (2016)

Table 20.5 Different forms of nanoparticles used in biomedical applications

Type of
nanoparticles

Structure Application in medicine

Nanospheres Spherical shaped Drug delivery, tissue regeneration

Nanocapsules Shell and core combination Controlled drug delivery

Carbon
nanotubes

Cylindrical tubes Drug delivery, anticancer

Liposomes Lipid bilayer globules Drug delivery for hydrophobic and
hydrophilic drugs

Dendrimers Highly branched ends and
central core

Delivery system, tissue engineering,
antimicrobials

Polymeric
nanoparticles

Polymers such as chitosan
and PLGA

Delivery system, tissue regeneration
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various medical applications including anti-tumor drugs as carbon nanotubes are
characterized by high cell membrane penetration ability and very large surface area.
Carbon nanotubes are ideal for drug delivery by acting as micro-needles (Reilly
2007). However, carbon nanotubes have high risk of inducing thrombi in the blood
vessels (Gaffney et al. 2015). Dendrimer form is the fourth particle form.
Dendrimers are nanoscale three-dimensional structures composed of tree
branch-like units originated from a central core. These have low molecular weight
with a highly branched multifunctional surface that facilitates dendrimers’ use as a
delivery system for vaccines, genes, and drugs as well as tissue regeneration
scaffold and as antimicrobial agents (Aulenta et al. 2003; Gillies and Frechet 2005;
Wu et al. 2015).

In fish medicine, the applied nanoparticle types have been limited to nanospheres
or polymeric nanoparticles; other nanoparticle application forms have not been
investigated yet.

20.5.1.1 Chitosan Nanoparticles for Drug Delivery

Chitosan nanoparticles are excellent drug delivery vehicles that have characteristic
proprieties such as non-toxic, biocompatible, and biodegradable polymer as well as
easily excreted from the kidney (De Jong and Borm 2008). Moreover, chitosan
nanoparticles can be adapted for sustainable and slow drug release due to
mucoadhesive property means (Dutkiewicz and Kucharska 1992). For example, in a
study on rainbow trout (Oncorhynchus mykiss) vitamin C conjugation with chitosan
nanoparticles resulted in vitamin release for 48 h after oral administration, and with
led to immune system stimulation due to the potent synergism between vitamin C
and chitosan (Alishahi et al. 2011). In another investigation, carried on Cyprinus
carpio, chitosan nanoparticles were examined as a hormone delivery system.
Luteinizing hormone-releasing hormone (LHRH) was bound to both chitosan
nanoparticles alone in one group, and in another group LHRH conjugated with
chitosan–gold nanoparticles. Both groups’ results showed blood hormone levels
increase with hormones sustaining release groups, in comparison with the group
that injected with hormone alone. Moreover, the rates of egg fertilization were
elevated after one injection dose of hormone–chitosan gold nanoparticles and
hormone–chitosan nanoparticle conjugate with 83 and 87%, respectively, com-
paring to LHRH alone multiple injections that gave 74% fertilization rate (Rather
et al. 2013).

20.5.1.2 PLGA Nanoparticles for Drug Delivery

PLGA is a copolymer composed of polylactic acid in addition to poly(glycolic)
acid. PLGA is biocompatible, non-toxic, biodegradable, and FDA-approved.
Hence, many researchers investigated PLGA feasibility as a drug carrier (Lü et al.
2009; Makadia and Siegel 2011). In a study on embryos of zebra fish, the
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anti-mycobacterial agent (rifampicin) was loaded on PLGA nanoparticles and then
applied because zebra fish embryos transparency had a vital role in measuring the
impact of treatment on Mycobacterium marinum-infection using noninvasive
imaging (Fig. 20.7). The rifampicin–PLGA nanoparticles achieved increasing of
therapeutic effect as well as higher embryo survival against M. marinum compared
to rifampicin alone (Fenaroli et al. 2014).

20.5.2 Nanosensors

In aquaculture industry, various diseases caused huge losses annually; therefore,
diseases’ efficient detection and control are very important for both maximizing
productivity and final product satisfactory quality ensurance (Ninawe et al. 2016).
Nano-biosensor use offers an innovative means to solve problems. These devices
may be depending on different nanomaterials, for example carbon nanotubes could
possibly facilitate the detection of low pathogens concentrations including viruses,
bacteria, parasites and pollutants (Chen et al. 2016).

Rapid pathogen detection in aquatic organisms may be very effective way to
disease control, but the available detection methods are costly, time consuming, and
could have detection and separation difficulties for some pathogen (Guo et al.
2016). A study designed an immunomagnetic NP-based microfluidic system for
Staphylococcus aureus detection producing a microfluidic chip with indium tin
oxide. The obtained results evidenced that the detection system sensitivity and
specificity were the same results of the colony counting method, with a whole
shorter time of detection without colony cultivation.

Fig. 20.7 a–d Lateral view showing formation of Mycobacterium marinum granulomas in zebra
fish embryos. After injection of nanoparticles in the posterior caudal vein, panels, e–h show
rifampicin-loaded PLGA nanoparticles targeting the granulomas. Adapted from Fenaroli et al.
(2014)
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Sensitive and rapid disease diagnosis adopted for nanoparticles are called nan-
odiagnostics (Jain 2003). Gold nanoparticles are widely used in diagnostics and
considered one of the most used particles, which are suitable for use in different
methods (Baptista et al. 2008; Saleh et al. 2015). The first gold nanoparticle report
for fish pathogen detection was with Aeromonas salmonicida antibody-gold
nanoparticles conjugated for furunculosis-specific immunodiagnosis in fish tissues
(Saleh et al. 2011). Kuan et al. (2013) prepared an electrochemical DNA biosensor
for Aphanomyces invadans detection in fish with a DNA reporter probe and based
on conjugation of Au-NPs and so fungi which are at a lower level than PCR could
be detected.

Jaroenram et al. (2012) combined colorimetric assay of Au-NPs with
loop-mediated isothermal amplification (LAMP) for yellow head virus visual
detection in shrimp. This was high sensitive, rapid, and specific method. A similar
combination of LAMP with DNA-functionalized Au-NPs was developed for white
spot syndrome virus (WSSV) detection in shrimp (Seetang-Nun et al. 2013). This
method was sensitive, specific, and suitable for field applications. In another study,
Toubanaki et al. (2015) designed a method for detection of nervous necrosis virus
(NNV) by using gold nanoparticle-based biosensor for viral nucleic acid detection
after RT-PCR amplification, but this was quite cost-effective, as this method did not
require antibody conjugation.

Yang et al. (2012) recorded an immunomagnetic reduction assay in grouper fish
for nervous necrosis virus (NNV) using magnetic nanoparticles covered with rabbit
anti-NNV antibody. Application of an external magnetic field, for immunodiag-
nosis was based on magnetic nanoparticle motility; if the viral antigen bound to
antibody coated-nanoparticles and form clusters, that will decrease their motility.
The virus titer could be detected using a magnetic immunoassay analyzer. Spring
viremia of carp virus (SVCV) detection by a colorimetric assay was developed
using unmodified Au-NPs. At first addition of the probe, that was complementary
for SVCV and then followed by gold nanoparticles. If target RNA of the virus was
present, it hybridized to the probe, so the probe is prevented from stabilizing the
gold nanoparticles. The gold nanoparticles could aggregate resulting in the solution
change from red to blue. If there was not viral nucleic acid, the probe could be
freely adsorbed onto the gold nanoparticle surface; this could prevent nanoparticles
aggregation and keep the red color of solution (Figs. 20.8 and 20.9) (Saleh et al.
2011). This method was highly specific and rapid, and there was not a need for prior
viral nucleic acid amplification. The same principle was used for developing a
specific, rapid as well as sensitive assay for the DNA virus detection, cyprinid
herpesvirus 3 (CyHV-3) (Saleh and El-Matbouli 2015).

20.5.3 Nanovaccines

In many infectious fish diseases, main gateway is ecosystem. The natural biological
cycle includes one or more hosts’ stable association to provide a medium for the
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Fig. 20.8 Principle of direct detection of SVCV RNA using unmodified gold nanoparticles.
Redrawn after Saleh et al. (2012)
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pathogen progressive transmission and efficient replication for causing the infec-
tion. As infection proceeds, minor variations encounter in the pathogen natural
environment, such as host genetics individual variations as well as the immuno-
logical response to infection (Alexander and Mewhinney 2008).

The nanotechnological formulation development for aquaculture application has
been a major focus of research. An important characteristic of these systems is
multiple application suitability, such as the administration of antibiotics, vaccines,
nutraceuticals, and other pharmaceuticals (Rather et al. 2011b). Advantages typi-
cally include: enhancing the active agents’ bioavailability through low absorption,
sustained release of the active agent, decrease in application frequency, and high
molecular level of dispersion, because of nanoscale size, that can be used in the
disease treatment (Can et al. 2011; Bhattacharyya et al. 2015).

Conventionally, the active substance application is achieved either by injections
or in the fish food, which can be associated with side effects because of excessive
use and substantial losses during the process (Sheridan et al. 2013). The
biodegradable nanoformulation production with essential oils can play a vital role
in solving the disease control efficiency problems, as well as the contamination
problems. The contamination can be decreased by reducing the used traditional
chemical in disease control because nanoparticles can act as controlled released
systems and thus sustain the biological active compounds amount to treat diseases.
Many studies have recorded the synergism between using of essential oils encap-
sulated in biodegradable nanoparticles (Chifiriuc et al. 2017; Pavela et al. 2017;
Sotelo-Boyas et al. 2017a, b).

Several of these studies can play a role in solving aquaculture real problems,
where they evaluate the antifungal and bactericidal efficacy and so could be used in
fish disease treatment. Recently, Rai et al. (2017) discussed the prospects and

Fig. 20.9 Results of a gold nanoparticle-based assay for detection of SVCV: In a positive test, the
color of the solution changes from red to blue. Adapted from Saleh et al. (2012)
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emerging trends of the synergism between antimicrobial potentials of essential oils
and nanoparticles. Researchers described that the essential oil encapsulation in
nanoparticles is a promising strategy where these systems can facilitate these
compounds’ application as antimicrobial agents. In addition, researchers cited that
the active compounds sustained, and controlled release can improve the efficacy and
bioavailability against multi-resistant pathogens. Moreover, nanodrugs as well as
vaccines might be costless and more effective to prevent/ treat diseases than current
technologies (Chen and Yada 2011).

Naturally, vaccination has an important role in fish farming. Nanoparticles use
for fish vaccination became a vital criterion, particularly for the farmed fish.
Nanoparticles have multifaceted advantages in the administration of drug such as
vaccine delivery and improving the farmed fish protection against pathogens that
caused diseases. However, the benefits accompanied with nanoparticle distribution
may be associated with health and environment risks (Walker 2004). Naturally,
polymeric nanoparticles have many advantages in vaccine delivery, such as sus-
tained vaccine delivery, drug solubility for intravascular delivery, and vaccine
antigen solubility improving against enzymatic degradation. In aquaculture, the
nanoparticles used for vaccine delivery are an interesting possibility but still the
precautionary principle needs to be the ideal of the best scientific practice for fish
vaccination (Nielsen et al. 2011).

In general, salmon is vulnerable to diseases. Pathogens of fish transmit well in
water as well as high stocking densities so the shorter the distances between farms
the higher transmission occurs. An excessive antibiotic use may prevent bacterial
diseases but again was not environmentally sustainable. The motivation trail for
nanoparticle utilization in salmon vaccines relates to that oil-adjuvant vaccines have
not been effective against some of intracellular pathogens (importantly viruses) as
well as it is difficult to use a strong alternative adjuvant system. Moreover,
oil-adjuvant vaccines have unwanted side effects in salmon such as autoimmunity,
internal organ adhesion in the abdomen and, less frequently, the deformations of
skeleton. Producers of vaccine are continuously trying application of oil adjuvant
but with lesser side effects.

Recently, fish vaccine can be developed with poly(lactic-co-glycolic) acid
(PLGA) which is a synthetic organic polymer. These particles maintain antigens
from premature degradation, i.e., before producing an effective immune response.
The PLGA particle degrades in vivo and so releases the antigens over time. The
degradation rate of the particles can be prepared by changing copolymer compo-
sition as well as particle size, properties that the vaccine efficiency can be sensitive.
Au-NPs also play a vital role in fish vaccine release.

Through chitosan nano, vaccine can be delivered. Chitosan nano is able to wrap
around vaccines which act as a carrier and are used in nano-encapsulation in the fish
physiology for treatment delivery. The bacterium Listonella anguillarum
nano-encapsulated vaccines can be introduced in Asian Carp (Myhr and Myskja
2011; Rajeshkumar et al. 2009).

Nanocapsules containing nanoparticles can be used in mass vaccination of fish.
These will be resistant to degradation and digestion. Nanocapsules contain short
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DNA strand that are absorbed into the cells of fish when administrated to water
containing fishes. For breaking the capsules, the ultrasound mechanism is used and
then the DNA is released, thus improving an immune response to fish by the
vaccination. Similarly, these vaccines’ oral administration and the active agent
site-specific release for vaccination will reduce disease management effort, the cost,
drug, vaccine application delivery, etc., at the same feeding cost leading to sus-
tainable aquaculture.

Polyanhydride NPs were used for vaccine antigen encapsulation, and release
determines shrimp immunization with feed or via immersion (Ross et al. 2014).
Moreover, for drug administration silica-based NPs can be suitable (i.e., pharma-
ceuticals or other therapeutics) due to the porous structure as well as high dose
incorporation ability (Strømme et al. 2009).

Briefly, nanoparticles are applied as oral drug carriers for many reasons, like
drug bioavailability improvement with poor absorption characteristics (Florence
et al. 1995), residence time prolongation and drug digestive stabilization in the
intestine, efficient absorption due to high dispersion at the molecular level, vaccine
antigen delivery to gut-associated lymphoid tissue (Jani et al. 1990), and drug
release control (Eldridge et al. 1990).

20.5.4 Antibacterial Activity of Metal-Based Nanoparticles

The most investigated nano-antibacterial agent is silver nanoparticle. They have
multiple acting mechanisms against bacteria, and so they can evade the resistance of
bacteria (Knetsch and Koole 2011), in contrast to antibiotics which have one acting
mechanism only (Hindi et al. 2009; Antony et al. 2013). The silver ion (Ag+)
release is one mechanism [287]. Ag+ binds to cell membrane proteins of bacteria
causing membrane disruption, so leading to the bacterial cell’s death (Lara et al.
2010). Intracellularly, Ag+ binds to nucleic acids and cytochrome, damaging them
as well as inhibiting cell division (Huang et al. 2011).

Prakash et al. (2013) illustrated that silver nanoparticles possess high antibac-
terial efficacy against bacterial isolates that have multi-drug resistant. Silver
nanoparticles’ bactericidal effect has also been demonstrated against methicillin
resistant Staphylococcus aureus (Ayala-Núñez et al. 2009). Silver nanoparticles
synthesized using a reducing agent which was citrus limon juice demonstrated
antibacterial as well as anti-cyanobacterial activity against Edwardsiella tarda, S.
aureus, Anabaena and Oscillatoria species, respectively (Swain et al. 2014).

Umashankari et al. (2012) used mangrove Rhizophora mucronata leaf bud
extract for AgNPs biological synthesis and then demonstrated antimicrobial effects
against Proteus species, Pseudomonas fluorescens, and Flavobacterium species.
These “green” synthesized silver nanoparticles’ efficacy was the same as that of
commercial antibiotics. In a study on juvenile shrimp Fenneropenaeus indicus
infected by Vibrio harveyi, silver nanoparticle long-term treatment decreased
mortalities by 71% at AgNPs high doses (Vaseeharan et al. 2010).
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There is great interest to investigate gold nanoparticle antimicrobial effects, and
this is related to that gold nanoparticles have low toxic effect to eukaryotic cells (Li
et al. 2014a, b). Gold nanoparticles can interact with biological proteins as well as
nonproteins, such as lipopolysaccharides (LPS), and have biological functions
(Sumbayev et al. 2013). Au-NPs supporting zeolite have bactericidal effects against
Salmonella typhi and E. coli (Lima et al. 2013). Functionalized Au-NPs inhibited
resistant bacterial isolate growth (Li et al. 2014a, b). “Green” synthesized gold
nanoparticles possess antibacterial activity against bacteria isolated from fish
(Velmurugan et al. 2014).

Gold nanoparticles have three pathways to achieve their antibacterial effects.
First way is through oxidative phosphorylation process interference with changing
bacterial cell membrane, which leads to decrease in F-Type ATP synthase activity
and a net decrease in both ATP synthesis and metabolism. The second path is via
interference with tRNA binding to the two ribosome subunits. The third pathway is
through enhancing chemotaxis (Cui et al. 2012).

Zinc oxide nanoparticles have antibacterial as well as antifungal effects (Gunalan
et al. 2012; Swain et al. 2014). The antibacterial activity is related to damage the
particles to the cell membrane of the bacteria and so makes the contents of the
cytoplasm leak from the cell (Liu et al. 2009). In the fish medicine field, ZnO-NPs
can inhibit Aeromonas hydrophila, Vibrio species, Edwardsiella tarda, S. aureus,
Flavobacterium branchiophilum, Pseudomonas aeruginosa, Citrobacter spp., and
Bacillus cereus growth (Swain et al. 2014). Ramamoorthy et al. (2013) studied the
ZnO nanoparticles’ antibacterial effects against Vibrio harveyi, and the results
indicated a higher bactericidal effect of ZnO-NPs in comparison with bulk ZnO.

TiO2-NPs had a bactericidal effect, when doped with magnetic Fe3O4-NPs
against Edwardsiella tarda, Streptococcus iniae, and Photobacterium damselae,
after light activation. Moreover, these particles can be applied for water disinfec-
tion, as pathogens of fish bind with the nanoparticles, and then be easily extracted
from the water using a magnet (Cheng et al. 2009, 2011). However, Jovanovic et al.
(2011, 2015) concluded that TiO2-NPs could affect immune system of fish though
inhibition of fish neutrophils antibacterial activity, and accordingly making fish
liable to the infection and hence fish mortality increased especially in outbreaks of
the diseases.

20.5.5 Antifungal Activity of Metal-Based Nanoparticles

Silver nanoparticles as an antifungal agent exhibited high inhibitory effects similar
to the Amphotericin B (commercial antifungal) against Candida species
(Sanjenbam et al. 2014; Mallmann et al. 2015). Silver nanoparticles’ antifungal
activity against dermatophytes was recorded (Kim et al. 2008). Gold nanoparticles’
fungicidal activity was reported against Candida species. Au-NPs efficacy was
related to their size, as the smaller the size of gold nanoparticles the higher their
antifungal activity (Wani and Ahmad 2013; Ahmad et al. 2013).
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In another interesting study, Aeromonas hydrophila was used for ZnO
nanoparticle biological synthesis, and these nanoparticles had antibacterial activity
against A. hydrophila (the same bacterium), P. aeruginosa, Enterococcus faecalis,
E. coli, Candida albicans, and Aspergillus flavus as shown in Fig. 20.10.

Fig. 20.10 Mueller-Hinton
agar plates showing the
antifungal effects of
ZnO-NPs, and zones of
inhibition against both
a Pseudomonas aeruginosa
and b Aspergillus flavus.
Adapted from Jayaseelan
et al. (2012)
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20.5.6 Antiviral Activity of Metal-Based Nanoparticles

Silver nanoparticles also possess antiviral properties such as HIV-1 virus proteins
binding activity in vitro (Elechiguerra et al. 2005), active against influenza A virus
(both silver nanoparticle–chitosan composite and silver nanoparticles) (Mehrbod
et al. 2009; Mori et al. 2013). In fish medicine, little work was published specifi-
cally on silver nanoparticles’ antiviral and antifungal effects.

20.5.7 Gene Delivery

The new carrier system development for gene delivery acts as an enabling tech-
nology for many genetic disorders’ treatment. However, a safe and efficient delivery
vehicle formulation is considered a critical barrier for gene therapy success.
Non-viral systems for delivery were proposed as promising alternatives to viral
vectors, due to their stability, safety, and facility to be made in large amounts
(Tomlinson and Rolland 1996). Some attitudes employ nanocomposites complexed
with DNA containing peptide, protein, lipid, or polymeric carriers. Promising
outcomes were achieved from the nanosphere complex formation between chitosan
and DNA (Roy et al. 1997).

Ramya et al. (2014) showed the efficient protection of a DNA construct con-
taining nodavirus gene which was extra small virus antisense (XSVAS) encapsu-
lated with chitosan NPs increasing the survivability of M. rosenbergii.
Nanomedicine in fish is in its infancy, and several gaps about the adverse effects to
both target and nontarget species need to be addressed.

20.5.8 Fish Reproduction Control

In commercial aquatic animal artificial reproduction, incomplete vitellogenesis in
females is considered one of the most vital and common problems, which is leading
to final oocyte maturation as well as ovulation failure. So, there is a necessary need
to develop methods for adequately controlling the reproductive process and so
overcome this problem. Chitosan NPs can be used in a controlled way to carry and
release endogenous hormone (Pulavendran et al. 2011). Rather et al. (2013) studied
salmon hormone–chitosan–nAu as a trial to overcome the problem of the repro-
ductive hormones’ short life in blood, thus avoiding the multiple injection uses to
enhance reproductive efficacy. The achieved results were that in treated organisms
the reproductive hormones were present for a longer period in blood and both of the
eggs’ relative number and fertilization rate were significantly increased. Moreover,
chitosan nanoconjugated salmon luteinizing hormone-releasing hormone
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(CsLHRH) increased the level of expression to SOX9 transcripts in gonads as well
as the levels of steroid hormonal in blood of Clarias batrachus female and male,
moreover being helpful for proper development of gonad (Bhat et al. 2016).

20.6 Nanotechnology in Fish Feeding

Fish may suffer from nutritional deficiencies due to the improper balance, lack, or
excess of food components. In aquaculture, the feed production is considered one of
the most important applications of nanotechnology where NPs’ use has proved to
be effective for micronutrient delivery, growth promotion, and encapsulation of
feed.

20.6.1 Micronutrient Delivery

In aquaculture research, an emerging area is nutraceutical use for fish health
management, stress mitigation, and value addition in fish as well as shellfish.
Despite nutraceutical low requirement, higher application cost is involved. Thus,
wastage should be minimized for economic viability and efficient utilization of
nutraceutical. Nanodelivery system development for these molecule kinds may
address their application problems in aquaculture practices at the commercial level.
There is a great opportunity for nanoparticle use to deliver nutraceuticals in feed of
fish and nutrigenomics studies. Moreover, many feed nanoformulations help to
maintain better consistency as well as feed taste.

Chitosan [poly(1,4-b-D-glucopyranosamine)] is a polysaccharide having
antimicrobial potential with low toxicity and low immunogenicity that is being
widely used for human and animal feed production (Rather et al. 2013; Luo and
Wang 2013; Ferosekhan et al. 2014). Chitosan NPs novel applications for the
unstable and/or hydrosoluble micronutrient delivery are in early development
stages. Alishahi et al. (2014) showed that chitosan NPs use significantly increased
vitamin C delivery as well as shelf life in rainbow trout after feeding for 20 days.
Jiménez-Fernández et al. (2014) conducted a similar study for chitosan NPs
application for ascorbic acid delivery (AA) in (i) the rotifer Brachionus plicatilis
in vivo and (ii) zebra fish liver cell line (ZFL). NPs were able to penetrate intestinal
epithelium of fish and significantly increase AA on both models. Rotifers that fed
with AA-NPs had up to twofold increase of their AA levels comparing to the
control groups.
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20.6.2 Growth Promotion

Zinc (Zn) is an essential micronutrient involved in many metabolic pathways, and
Zn is essential for the protein synthesis regulation, consumption of energy as well
as lipid and vitamin A metabolism (Muralisankar et al. 2014). Faiz et al. (2015)
investigated nZnO as a dietary Zn source evidencing improved immune response
and growth in grass carp (Ctenopharyngodon idella). Muralisankar et al. (2014)
showed that weight, antioxidant enzyme activity, and protein content increased
significantly in freshwater prawn (Macrobrachium rosenbergii) after feeding for
90 days with nZnO improved feed.

Bhattacharyya et al. (2015) reviewed the use of nanomaterials (NMs) for growth
induction in aquatic species by increasing the nutrients’ proportion passing through
the gut tissue and so into the organism rather than that passing across the digestive
system and then excreted partially or totally unused. Ramsden et al. (2009) used
nTiO2 to growth performance improvement in rainbow trout (Oncorhynchus
mykiss).

Selenium (Se) is an essential trace element for life and recently has been con-
sidered for animal nutrition in many case studies (Polettini et al. 2015; Sabbioni
et al. 2015). Se is glutathione peroxidase enzyme (GSH-Px) component (Rotruck
et al. 1973), which maintains the cell membrane through reduction of glutathione.
Se can be supplemented through diet (Wang et al. 2013; Ilham and Munilkumar
2016); moreover, Se NPs are gaining a great attention due to its antioxidant defense
properties and bioavailability (Sonkusre et al. 2014). Prussian carp (Carassius
auratus gibelio) fed nSe supplemented diets; results showed FCR reduction with
increase in final weight, muscle protein content as well as liver and blood plasma
GSH-Px activity (Zhou et al. 2009). Additionally, Wang et al. (2013) stated that
nSe caused increase in LDH, GSH-Px, Na+/K+-ATPase, cellular protein contents,
and superoxide dismutase (SOD) in crucian carp (C. auratus gibelio); moreover,
these effects were related to both dose and NPs size. Deng and Cheng (2003)
reported that nSe significantly improved Nile tilapia (Oreochromis niloticus)
growth at moderate and high Se NPs doses (0.5 mg/kg), (2.5 mg/kg), respectively,
via spiked feed presenting 86.3 ± 4.7 g weight gain rate.

20.6.3 Nano-encapsulation in Fish Feed

During the direct feed administration to water, feed nutrients can be released to
water from feed pellets. These nutrients can easily degrade during contact with
water. Chitosan NPs can be applied as an encapsulating agent (Chatterjee and Judeh
2016; Ji et al. 2015).

Essential oils (EOs) are volatile compounds and complex mixtures (mainly
monoterpenes, benzenoids, and sesquiterpenoids, others) produced by different
plant species like bushy matgrass (da Cunha et al. 2010; Becker et al. 2011),
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mentha (Danner et al. 2011; Roohi and Imanpoor 2015; Pedrazzani and Neto 2016),
cloves (Perdikaris et al. 2010; Javahery et al. 2012), and others (Benovit et al. 2012;
Parodi et al. 2013; Silva et al. 2015). Essential oils’ (EOs) pharmacological prop-
erties include antioxidant, anti-inflammatory, and anticarcinogenic effects.
Moreover, they have biocidal activity against many organisms such as bacteria,
viruses, fungi, insects, and nematodes (Raut and Karuppayil 2014; Baser and
Buchbauer 2015; Calo et al. 2015). In the aquaculture industry, EOs have great
potential for use due to their attractive characteristics such as low cost, ready
availability, low risk of side effects, low toxicity as well as high biodegradability
comparing to antibiotic use and the risk of pathogen drug-resistant strain emergence
challenge (Wei and Wee 2013; Anusha et al. 2014; Acar et al. 2015; Malheiros
et al. 2016). EOs can also assist in the fish diets because they can improve the
functioning and development of the digestive tract, especially in the early stages of
fish development, preventing pathogen adherence to the intestinal mucosa, accel-
erating the glucose absorption, and stimulating the digestive enzyme secretion
(Freccia et al.,2014; Hernandez et al. 2016; Zeppenfeld et al. 2016).

In aquaculture, anesthetics have been used to stress reduction in fish. Best
anesthetic selection depends on several factors including availability, cost, physical
conditions as well as the operative safety. Many anesthetics have not been used in
aquaculture, due to toxicity and undesirable side effects (Zahl et al. 2011). As an
alternative pathway, some essential oils have anesthetic activities in fish with
greater biodegradability and reduced toxicity, compared to synthetic chemicals.

However, despite essential oils’ (EOs) useful properties, some important limi-
tations for aquaculture applications are present. Unfortunately, as in other aromatic
and lipophilic compounds, EOs have low water solubility so their application in
ponds, as well other aquatic media, is difficult. Other disadvantages of EOs are their
high light sensitivity, low stability, and strong organoleptic characteristics, e.g.,
aroma and flavor (Turek and Stintzing 2013). Therefore, new approaches are
required for EOs applications and nano-encapsulation is a technique that can
improve their properties (Ghayempour and Montazer 2016).

Many studies of essential oil encapsulation by using several carrier systems,
such as chitosan nanoparticles (Hosseini et al. 2013; Esmaeili and Asgari 2015; Hu
et al. 2015; Mohammadi et al. 2015), zinc nanoparticles (Parris et al. 2005; Wu
et al. 2012; Zhang et al. 2014a; da Rosa et al. 2015); cyclodextrins (Ciobanu et al.
2012; Hill et al. 2013; Siqueira-Lima et al. 2014; Abarca et al. 2016), polymeric
nanoparticles (de Oliveira et al. 2014; Christofoli et al. 2015; Liakos et al. 2016);
nanotubes (Lee and Park 2015; Kim et al. 2016); and solid lipid nanoparticles (Lai
et al. 2006; Feng 2012; Moghimipour et al. 2013; Cortes-Rojas et al. 2014).
Addition of single-walled nanotubes of carbon, C60, or nTiO2 to rainbow trout food
changed fish pellet physical properties and resulted in reduction of nutrients’
leaching and their subsequent waste in fishpond (Ramsden et al. 2009).
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20.7 Nanotechnology and Seafood

Fishing lures used to catch fish are painted to attract fish attention by light reflec-
tion. But conventional lures reflect light in one direction only. To overcome this
problem, the lure surface is colored and then nanocoated with a polyimide film that
enhances fish-catching chance 2–3 times comparing to a lure without using a
polyimide coating. Before fish processing, Walha et al. (2008) applied the
nanofiltration as well as reverse osmosis processes to reduce drilling water salinity

Fig. 20.11 Different steps of food management that involve several steps (processing, packaging,
and preservation) and these aided by nanotechnology with the assistance of several nanomaterials.
Redrawn from Thiruvengadam et al. (2018)
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that is used in washing and processing of seafood. As pretreatment step, nanofil-
tration was used before the process of thermal and membrane seawater desalination.

Three different commercial ultrafiltration/nanofiltration (UF-NF) membranes
XP117, MT03, and MT44 (cutoffs ranging between 200 and 4000 Da) are exam-
ined using a tangential flow filtration cell. The results detected that the MT03
membrane effectively removes the natural organic matter and reduces the con-
centration of sulfate in drilling water. Nanofiltration makes the water quality
standardization possible (Fig. 20.11).

20.7.1 Harvested Fish Preservation and Packaging
for Commercialization

Nanotechnology can have a vital role not only to fish production but also to the
fishery product marketing, especially because of the widespread need to increase
product shelf life. Hence, in the food packaging sector there have been great
intensified research efforts (Omodara 2015).

Due to growing environmental concerns, the biopolymer use in the food industry
has grown. However, this sector is still facing important problems related to the
high costs of production and low performance, in comparison with synthetic
polymers (Robertson 2016). Many scientific studies have shown that nanomaterial
incorporation in biodegradable food packaging can improve the materials’ thermal
and mechanical properties and so can increase the performance.

Furthermore, new properties can be provided by nanomaterials, such as oxygen
elimination, antimicrobial activities, antifungal activities, protection against
degradation, and enzyme immobilization, hence contributing to stored products’
better stability (de Azeredo 2009; Peelman et al. 2013; Rhim et al. 2013; Reig et al.
2014; Jiang et al. 2015; Kuswandi 2016). The whole nanoparticle use concept is
based on their properties which are improved stability, penetrability, reactivity,
surface area and strength, their mechanical, catalytic, optical, and quantum prop-
erties. The nanoparticles size allows their use in new or more efficient physical and
chemical reactions comparing to larger-scale materials (Cockburn et al. 2012;
Sastry et al. 2013; Ramachandraiah et al. 2015).

These useful properties will explain why nanotechnology should be imple-
mented in food packaging. Nanopackaging can be classified to “improved”
nanopackaging, which is used to improve the properties of packaging (e.g.,
mechanical and barrier properties); “active” nanopackaging, which allows inter-
action with the environment and food by absorbing or releasing substances from or
into the packaged food; and “intelligent” or “smart” nanopackaging, which allows
condition monitoring of the food surrounding environment or packaged food
(Chaudhry and Castle 2011; Silvestre et al. 2011; Baltic et al. 2013; Prasad et al.
2017). Ramezani et al. (2015) studied chitosan and chitosan NPs effect on fillets of
silver carp stored at 4 °C, and results showed that chitosan NPs had an interesting
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antimicrobial activity as well as inhibition ability of the total volatile nitrogen
(TVB-N) content for improving a product general storage potentiality.

20.7.2 Nanobarcode and Tagging Technology

In our daily life, tags of identification have been applied in wholesale livestock and
agriculture products. Due to nanoparticles’ small size, nanoparticles have been used
in many fields ranging from agricultural encoding to advanced biotechnology.
Nanobarcodes (>million) have been applied in general encoding and multiplexed
bioassays due to their ability to form a large combination number which make
nanobarcodes attractive for this purpose.

The optical microscope and UV lamp are used for micrometer-sized glass bar-
code identification. These barcodes are formed by doping with rare earth containing
different fluorescent material patterns of a specific type. The particles to be used in
nanobarcodes should be machine-readable, durable, easily encodable,
submicron-sized taggant particles.

For these nanobarcode particles’ manufacture, the process is highly scalable and
semiautomated, involving the inert metals (silver, gold, etc.) electroplating into
templates defining particle diameter and then release of the resulting striped
nanorods from templates. There are biological and non-biological applications for
these nanobarcodes (Mathew et al. 2009). A major challenge for researchers is cost
for nanobarcode technology development which can be concluded on the fact that
only 18 documents are published on Scopus indexed article database (SIAD). Out
of 18 articles, conference paper (six in number), notes (one in number), review
article (two in number), and nine research articles were only available in last ten
years by “nanobarcode” as keyword (SIAD 2014).

Similarly, with the same keyword only 32 articles are published in SciFinder®

database. None of these articles were found for 2014; but only one article was found
by Han et al. (2013). Similarly, three articles have been only found for 2012, but
none of these articles have described nanobarcode application in agricultural field
(SciFinder 2014). This shows that nanobarcode technology development for agri-
cultural application is needed to be one of the thrust areas.

A nanobarcode is a monitoring device composed of metallic stripes containing
nanoparticles as striping variations provide the encoding information method. By
nanobarcoding incorporation, exporters and processing industry can monitor their
aqua product source or track the delivery status until this product reaches the
market. Further, coupled with nanosensors in addition to “synthetic DNA tagged
with color-coded probes”, nanobarcode device could monitor temperature change,
detect pathogens, etc., thus improving the product quality.

Nanobarcodes have been utilized as ID tags for gene expression multiplexed
analysis and intracellular histopathology. Plant resistance improvement could be
achieved, against various environmental stresses as salinity, drought, diseases and
others, through biotechnology advancement at the nanoscale. Soon, through
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nanotechnology advancement based on gene sequencing more effective utilization
and identification of plant gene trait resources may introduce cost-effective and
rapid capability (Branton et al. 2008). Nanobarcodes can also be used to detect
pathogens from food products, and this is cost-effective (Han et al. 2013).

Nanobarcodes could also be used in many non-biological applications as -
authentication or tracking in husbandry and agricultural food products. This tech-
nology will enable the development of new auto-ID technologies for item tagging
that were previously not tagged with conventional barcodes (Branton et al. 2008).
The entire chip can be nearly at a dust mite size—closer to microscale than
nanoscale. Technology developers envision a world where any object anywhere can
be automatically identified.

Radio-frequency identification (RFID) is “a chip with a radio circuit incorporating
a nanoscale component with an identification code embedded in it”. These tag
characteristics as can be scanned from a distance hold more information as well as
identify any object, anywhere, automatically as they can be embedded in the product.
RFID tag may be used in juvenile fish. RFID tag can be a tracking device and a
device for monitoring fish swimming pattern, metabolism, and fish feeding behavior.
Moreover, a possible benefit is to permit fish processing plants to identify fish source
by incorporating the “nanobarcoding” as information management system part. This
technology may also be used by exporters of the whole fish for tracking the delivery
status of tagged fish. RFID nanotag advantages include memory storage capacity to
product identification number, product cost, price, manufactured date, characteristics,
and location as well as inventory on hand. The fresh food traceability, such as fish,
has become an important challenging in order to keep consumer’s safety and
freshness. Although this technology application on finfish aquaculture is yet to be
studied, however the previously mentioned potential benefits could prompt industry
participants for exploring this opportunity further (Rather et al. 2011a, b).

There are numerous bacterial diseases affecting humans such as tetanus, diph-
theria, typhoid fever, cholera, syphilis, food-borne illness, tuberculosis, and leprosy
caused by different bacterial species. As a remedial process, there is a need to detect
bacteria, and so, dye staining method is used. For bacterial staining, organic dyes
are the most commonly used biolabels, but their fluorescence degrades with time
and they are expensive. So, there is a need to find economical and durable alter-
natives. Quantum dot fluorescent labeling with biorecognition molecules has been
detected through the recent developments in luminescent nanocrystal field.
Quantum dots are much better than conventional organic dyes because of their more
efficient luminescence, excellent photostability, narrow emission spectra, tenability,
and symmetry according to the sizes of particle and material composition.

By a single excitation light source, all colors quantum dots can be excited
because of their broad absorption spectra (Warad et al. 2004). NPs biolabeled
bacillus bacteria consist of ZnS and Mn+2 which capped with biocompatible
“chitosan” that gave an orange glow when viewed by fluorescence microscope. For
E. coli O157:H7 detection, quantum dots were utilized as a fluorescence marker that
was coupled with immune magnetic separation (Su and Li 2004). For E. coli O157
detection, the magnetic beads were coated with anti-E. coli O157 antibodies for
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selective attachment to the target bacteria and with biotin-conjugated antibodies of
anti-E. coli for sandwich immune complexes formation. Quantum dots were labeled
by the immune complexes through biotin–streptavidin conjugation after the mag-
netic separation.

Another nanotechnology application possibility in seafood is using of different
packaging and conservation techniques for providing food safety via delaying
spoilage through enzymatic and microbial activities. Nanocomposite films are
utilized mostly to foods with active/intelligent packaging (antimicrobial films)
combination and edible film/coating technology. Nanocomposite films are formed
from natural biopolymers, like polysaccharide, lipid, and protein. These sources are
better packaging material than petrochemical-based plastics, and this is related to
that they are environment-friendly, edible, and anticancerogenic (Dursun et al.
2010).

There are many studies that demonstrate the formulation potential based on
biopolymers for using in aquaculture and the fishing industry (Borgogna et al.
2011; Alboofetileh et al. 2016; Joukar et al. 2017). Alishahi et al. (2014) reported
the advantages of using chitosan-based nanocomposites in aquaculture and seafood
industry; the usage of chitosan-based nanocomposites, as well as other

Fig. 20.12 Illustration of procedure for examining chitosan/AgNO3 composites as antimicrobial
film. Adopted Dananjaya et al. (2017)
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biopolymers, could solve the problems faced in this sector, during a short-term
period. Dananjaya et al. (2017) produced “silver nanoparticle (AgNP)-embedded
chitosan films” that have antimicrobial properties. Results of antimicrobial exper-
iment clearly detected that CAgNfs can inhibit the fish pathogenic bacteria growth
such as Vibrio tapetis, Vibrio (Aliivibrio) salmonicida, and E. tarda and fungi
growth such as Fusarium oxysporum. Moreover, CAgNfs significantly decreased
the experimentally exposed levels of V. salmonicida in artificial seawater, and so
there was a suggestion of using these CAgNfs to develop antimicrobial filters/
membranes to purify water units and eliminate the pathogenic microbes
(Fig. 20.12).

The emulsion is the result of mixing two or more liquids which do not readily
combine together such as water and oil (Ravichandran 2010). Nanoemulsions are
“liquid-in-liquid dispersions with droplet sizes on the order of 100 nm”.
Nanoemulsions are highly stable in comparison with conventional emulsions.
Moreover, nanoemulsions cannot be easily separated by using either gravitational
forces or aggregation of the droplets due to the small size of the particle and
droplets coating with surfactants that prevent the droplets from coalescing because
of interfacial repulsion, respectively.

In the food industry, nanoemulsions are applied to ice creams, salad dressings,
etc. With the small size particle, the products are creamier, are very easily trans-
ported through the digestive system epithelium, and therefore enhance the com-
ponent adsorption better than other emulsions. Nanoemulsion has several activities
against microorganisms either pathogenic or nonpathogenic (MNIMBS 2010).
Nanoemulsions are commonly utilized for the phytochemical’s delivery (Pradhan
et al. 2015). Joe et al. (2011) tested the sunflower oil-based nanoemulsion
(AUSN-4) influence on the quality and shelf life of steaks stored at 20 °C of
Indo-Pacific king mackerel “Scomberomorus guttatus”.

Among metal nanomaterials, Ag is the most promising one as it has both viri-
cidal and bactericidal activities due to reactive oxygen species production that
cleaves DNA as well as can be used for a wide range of applications in addition to
other properties such as low toxicity, its charge capacity, ease of use, crystallo-
graphic structure, high surface-to-volume ratios, and adaptability to various sub-
strates (Nangmenyi et al. 2009; Chen and Yada 2011; Faunce et al. 2014). Recently,
researches have been tried to vary gold and silver nanoparticles’ size with simple
approaches, i.e., changing the reactant concentration. The improved anticancerous
and antimicrobial activities were observed (Sireesh et al. 2015, 2017; Dasgupta
et al. 2016a; Jain et al. 2016; Shukla et al. 2017; Siripireddy et al. 2017; Tammina
et al. 2017). Recently, trends are changing in computational and silico as well as
in vitro approaches for inorganic nanoparticle toxicity evaluation at biomolecular
level (Ranjan et al. 2015, 2016a; Dasgupta et al. 2016b; Jain et al. 2016).

Fresh Box® is a developed antimicrobial container for food; it is produced by
unique nanotechnology using fine polymers and shows tremendous properties
against numerous fungi and bacteria due to its contents from finely dispersed Ag
nanoparticles. Also, Rai and Bai (2018) reported a wide variety of “nanoproducts”
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achieved good sellers in markets, and these products contained metallic nanopar-
ticles (Fig. 20.13).

20.7.3 Biosensors and Electronic Nose

Microorganisms produced various characteristic volatile compounds that are either
useful or harmful to human beings; for example, yeasts’ use makes fermentation
while when bacteria eat sugar alcohol is produced as a by-product. Bacteria are the
most common food rotting causal organisms. Foul odor is a clear indication of food
degradation that may be detected by nasal and visual sensation; this sometimes may
be impractical as well as for further causes of poisoning. Therefore, for these odors’
detection it is more sensible to utilize an instrument as rapid detection biosensors
(Compagnone et al. 1995).

The nano-biosensors’ future applications were recently developed by Zhang
et al. (2014b, c), in fields other than agriculture and food nano-biosensor area.
Several sensors have been developed due to its importance; a review on this has
been prepared by Rocha-Santos (2014).

Fig. 20.13 Examples of some commercialized nanosilver-based products
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20.7.3.1 Rapid Detection Biosensors

These instruments can reduce the time required for immunoassays and lengthy
microbial testing. These instruments’ applications include contaminant detection in
different bodies such as food products, raw food materials, and water supplies
(Compagnone et al. 1995). Recently, nano-biosensors are developed for IgG and
metabolites’ rapid detection (Turkoglu et al. 2013; Labroo and Cui 2014).

20.7.3.2 Enzymatic Biosensors

Enzymes are very specific for certain biomolecule attachment so they can act as a
sensing element. According to Patel (2002), enzymatic biosensors on the immo-
bilization surface basis are classified into controlled pore glass beads with optical
transducer element, polyurethane foam with photothermal transducer element,
ion-selective membrane with either potentiometric or amperometric transducer
element, screen-printed electrode with amperometric transducer element. Regarding
microbial contamination, an electrogenerated chemiluminescence immunosensor
was developed to detect Bacillus thuringiensis using Fe3O4-Au nanoparticles (Li
et al. 2013). An optical fiber-based micro-analyzer in aquaculture was used to
measure fish volatile amine levels. This has future aspect for developing such
nano-biosensor instead of micro (Silva et al. 2010).

Electronic nose is an instrument based on the human nose operation and is
applied for odors’ different types of identification; electronic nose uses a response
pattern across a gas sensor array. Electronic nose can identify the odorant, find the
odor characteristic properties, and estimate the odorant concentration in the same
way as that of the human nose. It is mainly composed of gas sensors which consist
of nanoparticles and ZnO nanowires, for example (Hossain et al. 2005; Sugunan
et al. 2005). ZnO nanorods are utilized to develop electronic nose that can detect the
impurities from vapor mixture (Ko et al. 2013). Their resistance changes with
certain gas passage and generates a characteristic change in electrical signal which
forms the fingerprint pattern for detection of gas. This pattern is applied to deter-
mine the type, quantity, and quality of the detected odor. An improved surface area
is also present that helps in better gas absorption.

20.8 Safety Concerns of Nanotechnology in Aquaculture

Nanotechnology use can revolutionize the aquaculture industry (Fig. 20.13), but
further research is still a vital need for an effective and viable commercial imple-
mentation of this technology (Fig. 20.14). Some of the main problems which
should be addressed are cost analysis, the scalability of these systems, and the
possible environmental impacts (Fig. 20.15). Aquaculture and fishery industries

20 Nanotechnology for Aquaculture 521



will have to absorb the new technologies to move forward. Moreover, safe use and
the rational of nanotechnology will contribute to progress.

When it comes to nanotechnology application in the industrial scale, it is very
important to estimate the subsequent exposure levels to these materials and to

Fig. 20.14 Toxicological aspect of nanomaterials on humans, animals, environment, and whole
ecosystem. Diagrammatic representation of nanotoxicological analysis. Redrawn after Dasgupta
et al. (2017)
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evaluate nanoparticle release into the environment because nanoparticles can easily
penetrate organ and organelles of the human, so exposure concentrations, exposure
time, immune response, sites of penetration as well as nanoparticle retention and
accumulation in body and so their subsequent effects should be evaluated carefully.

Even though the research regarding nanotechnology application is growing
every day, in the naturally occurring nanosystems still insufficient scientific
examination is available. Treated water and/or nanomodified agricultural products’
compulsory testing should be performed before they are introduced into the market.

Fig. 20.15 Benefits and risks of nanotechnology applications in food and related products.
Redrawn from Thiruvengadam et al. (2018)
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Standardized test procedures are required for studying nanoparticle impacts on
living cells to evaluate the risks on human exposed to nanoparticles. Nanoparticle
toxicology is poorly understood due to the lack of validated test methods as well as
the inconsistency in the reported information. The inconsistency in the reported data
is related to nanoparticles’ improper characterization and the nanoparticle inter-
ferences in the available test system.

Hence, the policy makers and the regulatory bodies should provide the guidance
document to safe uses, the validated protocols, and the nanoparticle disposal. The
understanding of the nanoscience and nanotechnology safe application in water
quality management and agri-food will help in the “nano-agri-technology” sus-
tainable growth. Regulatory and government authorities (regulatory agencies and
certification bodies) as well as health, environmental, and safety councils (such as
environmental health services), scientific authorities, and non-governmental orga-
nizations, all over the world, detected the nanotechnologies’ risk assessment
importance (Vyom et al. 2012) and have given their own view, suggestion, and
guidance (RS/RAE 2004; USEPA 2007; SCCP 2007; Scenihr 2009; Dhawan et al.
2011). The same nanomaterial, with a different length, diameter, surface modifi-
cation, and crystal structure, will have different toxicities (Fig. 20.14).

20.8.1 Effects of Nanotechnologies on Human Health

There are four pathways where nanoparticle may enter the body of human: swal-
lowing, inhalation, skin absorption, and deliberate injection during medical pro-
cesses (or release from implants). Due to the fact that nanoparticle diameter is
extremely small, once these nanoparticles have entered the human body,
nanoparticles have a high mobility degree. So they can pass the blood-brain barrier
in some cases.

The potential nanoparticles danger to human and animals do not allow neglect.
University of Missouri (USA) researchers detected in their recent study nanoparticle
residue in fruits can enter the human body. So, it also can get into the liver, spleen,
heart, brain, etc., vitals, through lymphatic and blood system. It was demonstrated
that the residue of nanoparticle is very difficult to be removed by common rinsing
methods. Therefore, they appeal that in food wrap papers, nanotechnologies should
be carefully used.

20.8.2 Effects of Nanotechnologies on Fish Health
and Aquatic Environment

The nanoparticle toxicity has focused in mammalian models on the respiratory
exposure and the human health implications (Handy and Shaw 2007). With the
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nanotechnology’s rapid development, there is an increasing risk for human and
environmental exposure to the nanotechnology-based materials and products. Water
resources are particularly vulnerable by nanotechnologies’ direct and indirect
contamination, and the nanotechnologies’ environmental implication and potential
toxicity to aquatic organisms must be evaluated (Wang et al. 2008). TiO2

nanoparticle suspension stability in water had been investigated (Hao et al. 2009).
One hundred and 200 mg/L TiO2 nanoparticle resulted in statistically significant
reduction in superoxide dismutase (SOD), peroxidase (POD), and catalase
(CAT) activities and significant increase in levels of lipid peroxidation (LPO) in
tissues, suggesting that fish exposed to TiO2 nanoparticles two concentrations
suffered from the oxidative stress.

A comprehensive toxicity assessment included the modified acute (72 h) as well
as the chronic (21 days) toxicity tests, and accumulation analysis of TiO2

nanoparticles using a model organism such as Daphnia magna was conducted (Zhu
et al. 2010a, b). The results showed that TiO2 nanoparticle within the traditional
48-h exposure time exerted minimal toxicity to daphnia, but when the time of the
exposure was extended to 72 h TiO2 nanoparticle caused high toxicity. This
demonstrates that the duration of the exposure may be a contributing factor in
mediated toxicity of nanoparticle. Moreover, upon TiO2 nanoparticles’ chronic
exposure for 21 days, daphnia displayed severe mortality and growth retardation in
addition to reproductive defects. TiO2 nanoparticle and quantum dot potential
toxicity using the unicellular green alga “Chlamydomonas reinhardtii” were
assessed (Wang et al. 2008).

The growth kinetics showed that inhibition of growth occurred in the first two to
three days of cultivation in TiO2 nanoparticle or quantum dots’ presence. Moreover,
quantum dots were more toxic than TiO2 nanoparticle to Chlamydomonas cells
under experimental conditions. These results indicate a potential risk of TiO2

nanoparticle released to the aquatic environment. The different aqueous nan-
otechnology suspensions, such as nZnO, nTiO2, C60, nAl2O3, single-walled carbon
nanotubes, and multi-walled carbon nanotubes, can inhibit the algae growth
Scenedesmus obliquus (S. obliquus) as well as prevent movements of D. magna and
can lead to death. However, several nanomaterial toxicities are not similar to each
other (Wang et al. 2008).

According to six types of nanomaterial EC values on S. obliquus growth at 96 h,
the toxicity order was as follows: “nZnO > C60; TiO2, multi-walled carbon nan-
otubes and single-walled carbon nanotubes > nAl2O3”. While according to the EC
values on D. magna movement inhibition at 48 h, the toxicities order of the nano-
materials aqueous suspensions of six types were as follows: “nZnO > single-walled
carbon nanotubes > C60; multi-walled carbon nanotubes > nTiO2 > nAl2O3”.

The effects of Ag nanoparticle’s different particle sizes (61, 25, and 5 nm) on
growth of ryegrass, biomass, and seedling height were investigated (Yin et al.
2011); the smaller the size of the nanoparticle, the stronger its toxicity was. Yang
et al. (2010) investigated single-walled carbon nanotubes’ different lengths of
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(<l, 1–5, and 5 m) effects on the bacteria inhibition such as Salmonella typhi-
murium, and results showed that the single-walled carbon nanotubes’ antibacterial
ability increased with the increase in their lengths.

Khosravi-Katuli et al. (2017) summarized the various NPs information in
addition to the target organisms of aquaculture interest and the main relative testing
conditions. However, in the aquaculture industry there may be some concerns about
development activities and research, for example, in situations where researchers
were preparing new NMs containing feed formulations in the laboratory. The
occupational exposure to NMs at the laboratory has been investigated (Demou et al.
2009; Tsai et al. 2009). The evidence suggests the routine procedures with man-
ufactured NMs few grams, such as stirring and sonication, when normal precautions
are applied in the laboratory (e.g., gloves, use of a ventilated fume cupboard, or a
suitable dust mask).

It is worthy to mention that for routine research activities the normal precautions
in the laboratory should be followed but personal protective clothing will not be
needed, but of course, “researchers are required to carry out chemical risk assess-
ments for NMs before they start work, as with any other laboratory procedure”.

Surface inputs could be atmospheric deposition and coastal pollution. The sea-
water pH (typically pH 8) and, moreover, high ionic strength will enhance aggre-
gation processes, so NPs may precipitate onto either coastal or deep ocean
sediments (Fig. 20.16). However, with depth chemistry will change. Diatoms and

Fig. 20.16 Schematic diagram outlining the possible fate of nanoparticles (NPs) in the marine
environment and the organisms at risk of exposure. Redrawn from Klaine et al. (2008)

526 A. A. Tayel et al.



microbes can remobilize the accumulated NPs on/in sediments. It is unclear whe-
ther NPs will accumulate in the ocean current mixing zones, there is a risk to
organisms which feed at these interfaces. Some manufactured NPs may have sur-
face activities that permit them to still disperse in saline conditions, and these NPs
could accumulate because of surface tension effects and viscous properties at the
ocean surface microlayer with consequent risks for planktonic organisms and larvae
in the surface microlayer.

Ecotoxicity information so far suggests low acute toxicity by manufactured NMs
to aquatic species, and so aquaculture systems and fisheries’ immediate threats may
be very small. However, on low-level exposure chronic studies are needed using
realistic environmental scenarios to determine nanotechnology long-term impact on
the environment, which must be balanced against nanotechnology benefits in water
purification and environmental remediation technologies.

The NMs behavior and colloid chemistry suggest that NMs are likely to be
precipitated in the water column and this will be particularly associated with sed-
iments underneath fish cages. However, for the industry, this is not a new issue, and
aquaculture systems under caged benthic environments are monitored for biodi-
versity and pollution (Carroll et al. 2003). Public engagement will be important to
maintaining confidence in nanotechnology, especially with respect to the envi-
ronment and food safety. Overall, nanotechnology benefits are worth pursuing in
aquaculture so the hazard to wildlife should not act as a barrier to innovative,
responsible “aqua-nanotechnology” development.
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