)

Check for
updates

Approximating GED Using a Stochastic
Generator and Multistart IPFP

Nicolas Boria®)@®, Sébastien Bougleux®, and Luc Brun

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France

{boria ,1luc .brun}@ensicaen .fr, bougleux@unicaen.fr

Abstract. The Graph Edit Distance defines the minimal cost of a
sequence of elementary operations transforming a graph into another
graph. This versatile concept with an intuitive interpretation is a funda-
mental tool in structural pattern recognition. However, the exact com-
putation of the Graph Edit Distance is NP-complete. Iterative algo-
rithms such as the ones based on Franck-Wolfe method provide a good
approximation of true edit distance with low execution times. However,
underlying cost function to optimize being neither concave nor convex,
the accuracy of such algorithms highly depends on the initialization. In
this paper, we propose a smart random initializer using promising parts
of previously computed solutions.

Keywords: Graph edit distance + Parallel gradient descents
Multistart -+ Stochastic warm start

1 Introduction

Computing a similarity or a dissimilarity measure between graphs is a major
challenge in pattern recognition. One of the most well-known and used app-
roach to compute a distance between two graphs is the Graph Edit Distance
(GED) [12]. Computing the GED consists in finding a sequence of graph edit
operations (insertions, deletions and substitutions of vertices and edges) that
transforms a graph into another with a minimal cost. Such a sequence of edit
operations is called an edit path, and the edit distance between two graphs G and
H is defined by GED(G, H) = min,erc,m) X_ce, c(€), where I'(G, H) denotes
the set of edit paths between G and H and ¢(e) denotes the cost of an elementary
operation e belonging to the edit path ~.

If both graphs are simple and if the cost between vertices and edges remains
fixed, one can show [3] that the edit distance between two graphs G and H
of respective orders m and m may be formulated as the following quadratic
problem: GED(G, H) = mingep, ,, 32 Az + ctz, where II, ,, denotes the set of
vectorized assignment matrices between Vg and V. Such a matrix « encodes for
each element of Vi one and only one operation (either substitution or deletion).

Work supported by Region Normandie under project RIN AGAC.

© Springer Nature Switzerland AG 2018
X. Bai et al. (Eds.): S+SSPR 2018, LNCS 11004, pp. 460-469, 2018.
https://doi.org/10.1007/978-3-319-97785-0_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97785-0_44&domain=pdf
http://orcid.org/0000-0002-0548-4257
http://orcid.org/0000-0002-4581-7570
http://orcid.org/0000-0002-1658-0527

Stochastic Generator and Multistart IPFP for GED 461

In the same way, = encodes for each element of Vj either a substitution or an
insertion. The matrix A encodes the cost of edge operations while ¢ encodes
the cost of operations on vertices. Computing the GED is NP-hard, so several
heuristics were proposed to compute approximate solutions in polynomial time.

The design of approximate solutions to the GED problem has been strongly
stimulated by the introduction of an approximation of the GED problem into a
Linear Sum Assignment Problem with Edition (LSAPE) [9]. This approximation
consists in associating to each node of two graphs G and H a substructure and
to populate a cost matrix encoding: the costs of matching two substructures, the
cost of inserting one substructure in H and the cost of removing one substruc-
ture from G. Given such a cost matrix ¢, the assignment matrix x minimizing
¢tz provides a set of elementary operations on vertices from which an edit path
may be deduced. The cost of this edit path provides an upper bound for the
graph edit distance. This minimization step may be solved in polynomial time.
This transformation of an NP-complete problem into a minimization problem
with a polynomial complexity is the major advantage of the LSAPE approxima-
tion. However the computation of the cost matrix ¢ may require non polynomial
execution times. Different types of substructures have been defined in [4,8,9,14].

However, LSAPE is based on a linear approximation of a quadratic prob-
lem. In order to get a finer approximation of the graph edit distance, several
methods use variants of local search such as simulated annealing in order to
improve an initial estimation of the edit distance [6,10,11]. A slightly different
approach [3], consists in using the Franck Wolfe minimization scheme [7] from an
initial guess. This algorithm converges by iterations towards a local minimum
of the quadratic function usually close from the initial guess. This heuristic pro-
vides close approximations of the graph edit distance on small graphs but is
sensitive to the solution used to initialize the method. An heuristic to reduce the
influence of the initial guess has been proposed in [5]. This heuristic is based on
the use of multiple initial guesses either deduced from a set of solutions of the
LSAPE problem or based on the generation of random assignment matrices. The
common drawback of these two heuristics is that the generation of initial solu-
tions does not take into account information provided by runs of Franck-Wolfe
method which may have converged.

In this paper we propose a new heuristic based on alternative runs of the
generation of initial solutions and the determination of their associated local
minima using Franck-Wolfe method. This method is described in Sect. 3. The
proposed method is evaluated in Sect. 4 through several experiments.

2 Preliminaries

Throughout the paper, we will use the same concepts and notations as those
introduced in [3]. Vertices of graphs G and H are numbered respectively from
1 to n and from 1 to m, and two virtual vertices indexed as n + 1 in G and as
m—+1in H are added. These virtual vertices, denoted by ec and ep, correspond
respectively to insertions and deletions. An assignment ¢ — eg (resp. ¢ — J)
corresponds to the deletion of vertex i of G (resp. insertion of vertex j of H).

462 N. Boria et al.

1 begin
2 Minimize a linear approximation of) around the current solution x in the
discrete domain by solving an LSAP:b* « argmin (x' A)b
bETn m,e
3 Perform the descent by minimizing @ along the segment [x, b] in the
continuous domain: a* « argmin Q(x + a(b* —x))
a€(0,1]

4 Update z : x — x + o (b* — x)
Repeat steps 2 to 4 until x7 A(x — b*) < 3 |Q(x) + xTA(b* — x)’ holds for
a given scalar 3 € (0, 1), or if a given number of iterations is reached

Algorithm 1. FW(A, x)

In this context, a solution for GED will be described as an error-correcting
assignment matriz x, where all vertices of G are assigned to a single element of
H U {ep}, and all vertices of H are assigned to a single element of G U {e¢}.
The polytope Iy, ,,, of error-correcting assignment matrices thus contains all
matrices of dimensions (n+1) x (m+ 1), with binary values, and with a single 1
in each line and in each column, except for the last line and the last column. We
naturally extend the concept to matrices with fractional values: we call error-
correcting bistochastic matrixz any matrix where the sum of all cells for each line
except the last one and each column except the last one amounts exactly to 1.

Given a cost matrix A and an initial continuous or discrete candidate solution
x, Algorithm 1 describes Frank-Wolfe algorithm FW (A, x). In the following, we
denote by IPFP the method that consists in running FW(A, x) and projecting
the returned solution in the discrete space. See [3] for more details.

3 RANDPOST Algorithm

The conception of algorithm RANDPOST finds its origin in the following intuition
regarding the - often conflicting - criteria that a smart initial solution generator
should fulfill. On the one hand, a smart generator should propose solutions
that are well distributed inside the II ,, polytope, in order to increase the
diversity among local minima that are ultimately returned. We call this criterium
exploration criterium. On the other hand, we obviously wish that one of the
initial solutions ultimately led to a global minimum, so that a good generator
should somehow already generate solutions that includes “smart” assignments.
We call this criterium quality criterium.

Building up on the progresses of the multistart IPFP (mIPFP) algorithm [5],
we propose a new algorithm that explores the polytope and generates new solu-
tions by taking advantage of the whole statistical information contained in the
set of solutions returned by mIPFP. This algorithm is presented in Sect. 3.2. We
also devise a new parameterized random generator that is described in Sect. 3.1.

Stochastic Generator and Multistart IPFP for GED 463

3.1 Generating Initial Solutions with Parameterized Number
of Insertions and Deletions

With respect to the initial random generator used in [5], where vertices were
randomly assigned by the use of the std::random_shuffle procedure of the
C++ standard library, resulting in a random proportion of insertions and dele-
tions, we decided to use a random generator with a parameterized proportion of
insertions and deletions.

We focus our analysis on the number of deletions, as - for given n = |G|
and m = |H| - the number of deletions is completely determined by it, namely,
#insertions = #deletions — n + m.

Namely, given a parameter o € (0, 1), we used a new initial random generator
RANDGEN(«r) which generates solutions with an expected number of deletions
equal to an + (1 — o) max{(n —m),0}. In other words, @ denotes the expected
proportion of “unnecessary” deletions of vertices in the set of initial solutions,
reminding that if n > m any feasible assignment will have to assign at least
n — m vertices to the virtual node ez which thus correspond “necessary” to
deletions.

3.2 Stochastic Generation of New Initial Solutions Based on Several
Refined Solutions

We describe here the functioning of RANDPOST (Algorithm 2). Given a pair of
graphs G and H, the algorithm starts by running mIPFP, which outputs a set S*
of r solutions for the problem. Each of these r solutions is represented as an error-
correcting assignment matrix x. A matrix ¥ is then created by simply summing
all of these r matrices and dividing all values by r. Hence, Vi € [1,n + 1],j €
[1,m + 1], ¥; ; represents the proportion of solutions where ¢ is assigned to j
among the r solutions of S*. Matrix ¥ (which is an error-correcting bistochastic
matrix) is then used as a probability distribution to compute a new set of k
solutions which are subsequently refined using IPFP, and the first r that have
converged among these k parallel processes are added to the set S*. The whole

1 begin

2 Generate an initial set S C Dy m,c of k solutions using RANDGEN(«)

3 Start refining all solutions in S using IPFP, and stop the refinement process
when r of them have converged, which results in a set of r improved
solutions S*

for i=1 to |l do
5 Update matrix ¥ in the following way: ¥ « > .. x/|S™|.
6 Generate a new set S of k solutions using a random generator that uses
the probability distribution described by Eq. (1).
7 Start refining all solutions in S using IPFP, and add the r first to have
converged to S*

Algorithm 2. RANDPOST(k, ,1)

464 N. Boria et al.

sequence that updates ¥, generates new solutions and finally refines them is
repeated [times.

Parameters k and r enables to speed up the algorithm when k > r: some of
the k initial solutions might require many iterations of IPFP in order to converge
to a local minimum, so that by launching k parallel IPFPs and stopping all them
when 7 of them have converged, the whole process is likely to be faster than
launching r parallel IPFPs and waiting for all of them to converge.

The intuitive idea behind algorithm RANDPOSTis the following: if an assign-
ment ¢ — j appears with a high frequency within solutions of the set S*, then
this assignment is likely to be part of many good solutions for the problem at
hand. Hence, the algorithm generates k new solutions in a stochastic way, where
the probability for a given assignment to be part of a solution is higher for
assignments with high ¥; ; value, and thus high frequency.

To be even more precise, the random generator assigns each vertex of G to
a vertex of H U{ep} following a greedy procedure. The matrix x of dimensions
(n+1) x (m+1) (which will eventually contain the solution returned by the
algorithm) is initialized with zeros, and whenever an assignment i — j is made by
the algorithm, this translates to x; ; «+— 1. At the end of the algorithm z should
be an error-correcting permutation. The random generator assigns iteratively
vertices from 1 to n based on the following probabilistic distribution P;, where
P;(j) denotes the probability for vertex i of G to be assigned to vertex j of H
by the generator, given a partial assignment of vertices from 1 to 7 — 1:

Vi=1,..,m+1, P (j)=%()

Vi=2,...,n,Vj=1,..m+1

0 ifj#m+1land Jh <i,staxp; =1
!p'L"]

Pi(j) =
l(]) m i—1
=20t (lel Jﬂh,z%,l)

otherwise

1)
Finally, all vertices of H that have been left unassigned at the end of the pro-
cedure are all assigned to eg. First let us prove that matrix produced by the
proposed random generator is always an error-correcting permutation matrix.
This is done by putting together the two following facts: (1) by construction,
each line of x but the last one has exactly one value set to 1 and all the others set
to 0 (a single assignment is made for a single line at each step of the generator),
(2) the probability distribution described by (1) ensures that no vertex j of H
is assigned twice (once assigned, its probability of being assigned again is zero),
and the very last step ensures that each one is assigned at least once.

Let us briefly prove that (1) defines a proper probability distribution. It
is easy to verify that Z;njll Py(j) = 1 by simply reminding that ¥ is an error-
correcting bistochastic matrix. For i = 2, ..., n, consider a matrix W which values
are as follows:

g [0 ifjFm+landIn<ista; =1
¥, otherwise

Stochastic Generator and Multistart IPFP for GED 465

It is easy to verify that:

m-+1 m 1—1
Vi=2,...,n Z =1 Z (Z xh,l%,l) (2)
j=1

h=1 \l=1

We finally prove that (1) defines a proper probability distribution:

m+1 7_n+1 u:/ .
Vi=2,...,n Y Pli—j)= mZFli_l’j =1
j=1 1= (25:1 zh,l%yl) @

Finally, whenever the stochastic generator produces a candidate solution that
has already been generated earlier, the solution is discarded and a new solution
is produced using a slightly flatter (and thus more explorative) distribution.

4 Experimental Results

In this section, we evaluate the proposed method through several experiments,
in order to determine as clearly as possible the relevance and importance of the
exploration and quality criteria described in Sect. 3.

4.1 Datasets and Protocol

Table 1 presents the chemical datasets that were used in our experiments. MAO,
PAH, MUTA10-70 and MUTAmix were considered in ICPR 2016 — Graph Dis-
tance Contest [2]. We also extracted 25 graphs from ClinTox [13], and 10 graphs
with more than 100 vertices from MUTA.

Table 1. Characteristics of datasets

Dataset #graphs | Avg order | Labels on nodes/edges
MAO 68 18.4 Labeled

PAH 94 20.7 Unlabeled
MUTA10-70 | 10 10-70 Labeled

MUTAmix |10 45 Labeled

MUTA100+ |10 131.6 Labeled

ClinTox 25 115.7 Labeled

We evaluated the four following versions of RANDPOST(k,r,[): RANDPOST(40,
40,0), RANDPOST(40,20,1), RANDPOST(40,10,3) and RANDPOST(40,5,7). This
choice of parameters is determined by the following idea: considering two algo-
rithms RANDPOST(k, 71,11) and RANDPOST(k, 72, l3) such that r1(I1 +1) = ro(la+1)
and 11 > 79, their relative performances can be compared without bias as the

466 N. Boria et al.

(a) MAO, metric costs c4 (b) MAO, anti-metric costs c3
Fig. 1. Behavior of RANDPOST w.r.t. parameter «, metric vs. anti-metric costs

overall number of candidate solutions is the same (in our case, all four algorithms
generate exactly 40 candidates), while the latter algorithm performs better on
the quality criteria, and the former on the exploration one. We thus consider
that r represents the exploration parameter, while [represents the quality one.

Regarding cost functions, we tested all algorithms with four different sets
of costs: ¢1, o and c3 correspond to the costs used in [2], while ¢4 is the cost
function used in [5] and references therein. Note that ¢, ¢y and ¢4 correspond
to metric costs where a substitution cost of two elements is lower or equal to the
cost of the removal of the first element together with the insertion of the second
one. Conversely, c3 is an anti-metric cost violating this last inequality. The main
idea between these two classes of cost functions is that metric cost functions
favor substitutions while the anti-metric ones favor deletions and insertions.

All tests were performed using 4 AMD Opteron processors at 2.6 Ghz with
512G of RAM. The number of parallel threads was limited to 40 (which corre-
sponds to parameter k). The code for the algorithm is written in C++.

4.2 Behavior of the Algorithm w.r.t. Parameter o

We tested three versions of RANDPOST with several values for parameter a of
RANDGEN, and several cost functions (see the previous section). The most sig-
nificant results are presented in Fig.1 for MAO, a dataset with enough and
relatively simple instances so that interesting statistical tendencies can emerge.
Contrasting tendencies can be observed with the metric cost function ¢4 and
the anti-metric one c3. Interestingly, the algorithm performs better as the initial
proportion of “unfavored” choice rises. We believe that this is due to the design
of the IPFP gradient descent, which is likely to find a better local minimum
when starting from a solution including a greater number of “neutral” (in the
sense of easily improvable) assignments.

Unfortunately, the behavior that we observe on MAO does not emerge with
the same clarity on more complex datasets containing bigger or unlabeled graphs.
However, it seems that IPFP requires a medium value for o (around 0.4) to
perform best when dealing with unlabeled graphs. For bigger graphs (more than
40 vertices) high values of « seem to produce better starting points for IPFP,
independently of cost functions.

Stochastic Generator and Multistart IPFP for GED 467

Table 2. Experimental results of RANDPOST(k, r, 1), cost cl

Algorithms MAO a =0 PAH o = 0.3 ClinTox o = 0.9

Time | GED |err. %best | Time |GED |err. %best | Time |GED |err. Yobest
RANDPOST(40, 1,0) |0.013|34.43 |10.30 25 0.013 |36.94 24.82 1 3.542 |209.42 |52.12 0
RANDPOST(40, 40, 0) | 0.074 | 24.16 0.03 | 98 0.099 |21.23 9.11 |19 17.205|167.76 |10.46 | 2
RANDPOST(40, 20, 1) |0.029 | 24.14| 0.01|100 0.038 |20.71 8.59 |27 13.330/163.18 5.88 |10
RANDPOST(40, 10, 3) | 0.051 | 24.19 0.06 | 98 0.063 |20.42 8.30 33 19.514|160.24 2.94 |30
RANDPOST(40,5,7) |0.144|24.48 0.35 | 89 0.116 |20.90 8.78 |26 29.278/157.98| 0.69|76
Algorithms MUTA 10 @ = 0 MUTA 20 a« = 0.2 MUTA 30 o« = 0.8

Time | GED |err. %best | Time |GED err. Y%best | Time | GED err. Yobest
RANDPOST(40,1,0) 0.013|13.19 |1.21 60 0.012 |33.35 14.49 |23 0.027 |73.80 49.51 5
RANDPOST(40, 40, 0) | 0.020|11.98|0.00 |100 0.080 |19.00 0.14 |86 0.235 |25.68 1.39 |42
RANDPOST(40, 20, 1) |0.028 |11.98|0.00 |100 0.041 |18.96 0.10|91 0.128 |25.28 0.99 |51
RANDPOST(40, 10, 3) |0.062|11.98|0.00 |100 0.062 |19.03 0.17 |89 0.181 |25.07 0.78 61
RANDPOST(40,5,7) |0.148/12.01 |0.03 97 0.153 |19.33 0.47 |73 0.452 |25.51 1.22 |51
Algorithms MUTA 40 o« = 0.6 MUTA 50 o = 0.9 MUTA 60 o« = 0.9

Time | GED |err. %best | Time |GED err. %best | Time | GED err. Y%obest
RANDPOST(40, 1,0) |0.063|83.94 |50.23 | 2 0.123 |81.67 44.83 | 5 0.246 |98.55 51.97 | 5
RANDPOST(40, 40, 0) |0.575|36.07 | 2.36 |26 1.141 |40.10 3.26 |20 2.120 |50.64 4.06 |11
RANDPOST(40, 20, 1) | 0.302 | 35.00 1.29 |46 0.565 |38.56 1.72 |31 1.158 |48.95 2.37 |24
RANDPOST(40, 10, 3) | 0.391 |34.31| 0.60 67 0.886 |37.57 0.73 61 1.862 |47.69 1.11 |54
RANDPOST(40,5,7) |0.51634.85 1.14 |53 1.465 |37.84 1.00 |55 3.133 |47.33 0.75|56
Algorithms MUTA 70 a« = 0.9 MUTA 1004+ o« = 0.9 MUTAmMix a = 0.9

Time | GED |err. %best | Time |GED err. %best | Time |GED err. Y% best
RANDPOST(40, 1,0) |0.528|84.18 {25.80 | 6 3.181/259.28 |37.88 | O 0.111 |155.71 |21.68 | 6
RANDPOST(40, 40, 0) | 3.641 | 63.90 5.52 |12 19.67 |234.24 [12.84 | 1 0.848 |136.08 2.05 |42
RANDPOST(40, 20, 1) | 2.559 |61.45 3.07 |25 12.39 |227.49 6.09 | 9 0.455 |135.16 1.13 |57
RANDPOST(40, 10, 3) | 3.573 | 59.93 1.55 |49 18.51 |224.50 3.10 |34 0.634 |134.75| 0.72|68
RANDPOST(40,5,7) |8.181|59.44| 1.06 |56 28.70 |222.15| 0.75|78 1.117 |135.06 1.03 |55

4.3 Performance of RANDPOST

Table2 presents the performance of the four versions of RANDPOST(k,[) that
we mentioned earlier, plus RANDPOST(1,0) which corresponds to a single run of
IPFP starting from a random candidate solution. For each pair of graphs in each
dataset, we extracted the best known GED among those returned by a set of 14
algorithms (9 algorithms of [2] 4+ 5 versions of RANDPOST), except for ClinTox and
MUTA100+ that weren’t part of the benchmark in [1]. For these two datasets,
the best GED was extracted from our 5 algorithms alone. The “err.” column
presents the mean error w.r.t. best known solutions, while the “%best” column
presents the proportion of pairs of graphs for which the best known GED was
found. For each dataset, we selected the value of a leading to a minimal mean
GED over all 5 tested algorithms. The selected value is indicated in the table.
Due to space restrictions, we present results regarding the metric cost ¢l only.
The same tendencies can be observed with all the other cost functions.

The tendencies that emerge from Table2 are quite clear: the more qual-
itative versions of RANDPOST(k,r,l) perform better than all algorithms pre-
sented in [2] on datasets with labeled graphs containing at least 60 vertices.

468 N. Boria et al.

Under this threshold, the balance between exploration and quality criteria that
performs better GED favors more exploratory methods as the size of the graphs
decreases. Further analysis shows that the phenomenon is deeply linked to the
speed and quality of convergence of the algorithms: a more exploratory ver-
sion of RANDPOSTwill ultimately converge to better GED estimations, but it will
also converge at a slower rate. On the other hand, bigger graphs lead to slower
overall convergence rates. These two phenomenons are visible in Fig. 2. Both
plots represent the improvement in GED estimations over the successive loops
of RANDPQOST. Each stairstep measures the best GED computed in a loop, and as
the z-axis represents the number of computed solution, the length of the steps
equals r for each algorithm RANDPOST(k,r,1).

———RANDPOST(40,40,5) 1 68] —— RANDPOST(40,40,5)

— — —RANDPOST(40,20,10) i — — —~RANDPOST(40,20,10)

---------- RANDPOST(40,10,20) | | i -+weeees RANDPOST(40,10,20)

=<~ RANDPOST(40,5,40) o ——~ RANDPOST(40,5.40)
i

0 20 40 60 80 100 120 140 160 180 200 o 20 40 60 80 100 120 140 160 180 200
#solutions computed #solutions computed

(a) MUTA-20 (b) MUTA-70

Fig. 2. Convergence of RANDPOSTon datasets MUTA-20 and MUTA-70

When dealing with smaller graphs, qualitative methods converge very rapidly
to suboptimal solutions, while the exploratory ones converge more slowly to
better GED estimations. On the other hand, when dealing with bigger graphs,
the fast rate of convergence of qualitative methods becomes a strength rather
than a flaw, Fig. 2b shows that when the number of computed solutions is limited
to 40 (which corresponds to the results in Table 2), none of the algorithms has
yet converged, so that the faster converging algorithm yields better results. This
phenomenon eventually reverses on the long run: as an example, Fig. 2b suggests
that the limit on the number of computed solutions must be brought as high as
90 for RANDPOST(40, 10, 20) to outperform RANDPOST(40, 5,40) on MUTAT0.

5 Conclusion

Using a new iterative IPFP-based algorithm relying on stochastically generated
solutions, we investigated the relative importance of exploration and quality
criteria when generating candidate solutions for a multistart version of IPFP.
Our results suggest that the balance leading to better GED estimations depends
mostly on some ratio between the dimension of the problem at hand and the
overall number of generated solutions.

Stochastic Generator and Multistart IPFP for GED 469

References

10.

11.

12.

13.

14.

Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y.: A graph database repository and
performance evaluation metrics for graph edit distance. In: Liu, C.-L., Luo, B.,
Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp. 138-147.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7_14
Abu-Aisheh, Z., et al.: Graph edit distance contest: results and future challenges.
Pattern Recogn. Lett. 100, 96-103 (2017). https://doi.org/10.1016/j.patrec.2017.
10.007

Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gatizére, B., Vento, M.: Graph edit
distance as a quadratic assignment problem. Patt. Recogn. Lett. 87, 38-46 (2017).
https://doi.org/10.1016/j.patrec.2016.10.001

Carletti, V., Gaiizere, B., Brun, L., Vento, M.: Approximate graph edit distance
computation combining bipartite matching and exact neighborhood substructure
distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015.
LNCS, vol. 9069, pp. 188-197. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18224-7_19

Daller, E., Bougleux, S., Gaiizeére, B., Brun, L.: Approximate graph edit dis-
tance from several assignments and multiple IPFP. In: International Conference on
Pattern Recognition Applications and Methods (2018). https://doi.org/10.5220/
0006599901490158

Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph edit distance
using bipartite graph matching. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J.
(eds.) GbRPR 2015. LNCS, vol. 9069, pp. 77-86. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18224-7_8

Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist.
Q. 3(1-2), 95-110 (1956)

Gaiizere, B., Bougleux, S., Brun, L.: Approximating graph edit distance using
GNCCP. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.)
S+SSPR 2016. LNCS, vol. 10029, pp. 496-506. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49055-7_44

Riesen, K., Bunke, H.: Approximate graph edit distance computation by means
of bipartite graph matching. Image Vis. Comput. 27, 950-959 (2009). https://doi.
org/10.1016/j.imavis.2008.04.004

Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using
various search strategies. Pattern Recogn. 48(4), 1349-1363 (2015). https://doi.
org/10.1016/j.patcog.2014.11.002

Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance approximation
with simulated annealing. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017.
LNCS, vol. 10310, pp. 222-231. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58961-9_20

Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs
for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353-362 (1983).
https://doi.org/10.1109/TSMC.1983.6313167

Wu, Z., et al.: MoleculeNet: a benchmark for molecular machine learning. Chem.
Sci. 9, 513-530 (2018). https://doi.org/10.1039/C7SC02664A

Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approx-
imating graph edit distance. Proc. VLDB Endow. 2(1), 25-36 (2009). https://doi.
org/10.14778/1687627.1687631

https://doi.org/10.1007/978-3-319-18224-7_14
https://doi.org/10.1016/j.patrec.2017.10.007
https://doi.org/10.1016/j.patrec.2017.10.007
https://doi.org/10.1016/j.patrec.2016.10.001
https://doi.org/10.1007/978-3-319-18224-7_19
https://doi.org/10.1007/978-3-319-18224-7_19
https://doi.org/10.5220/0006599901490158
https://doi.org/10.5220/0006599901490158
https://doi.org/10.1007/978-3-319-18224-7_8
https://doi.org/10.1007/978-3-319-18224-7_8
https://doi.org/10.1007/978-3-319-49055-7_44
https://doi.org/10.1007/978-3-319-49055-7_44
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1016/j.patcog.2014.11.002
https://doi.org/10.1016/j.patcog.2014.11.002
https://doi.org/10.1007/978-3-319-58961-9_20
https://doi.org/10.1007/978-3-319-58961-9_20
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.14778/1687627.1687631

	Approximating GED Using a Stochastic Generator and Multistart IPFP
	1 Introduction
	2 Preliminaries
	3 RANDPOST Algorithm
	3.1 Generating Initial Solutions with Parameterized Number of Insertions and Deletions
	3.2 Stochastic Generation of New Initial Solutions Based on Several Refined Solutions

	4 Experimental Results
	4.1 Datasets and Protocol
	4.2 Behavior of the Algorithm w.r.t. Parameter
	4.3 Performance of RANDPOST

	5 Conclusion
	References

