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Abstract. The Graph Edit Distance defines the minimal cost of a
sequence of elementary operations transforming a graph into another
graph. This versatile concept with an intuitive interpretation is a funda-
mental tool in structural pattern recognition. However, the exact com-
putation of the Graph Edit Distance is NP-complete. Iterative algo-
rithms such as the ones based on Franck-Wolfe method provide a good
approximation of true edit distance with low execution times. However,
underlying cost function to optimize being neither concave nor convex,
the accuracy of such algorithms highly depends on the initialization. In
this paper, we propose a smart random initializer using promising parts
of previously computed solutions.

Keywords: Graph edit distance · Parallel gradient descents
Multistart · Stochastic warm start

1 Introduction

Computing a similarity or a dissimilarity measure between graphs is a major
challenge in pattern recognition. One of the most well-known and used app-
roach to compute a distance between two graphs is the Graph Edit Distance
(GED) [12]. Computing the GED consists in finding a sequence of graph edit
operations (insertions, deletions and substitutions of vertices and edges) that
transforms a graph into another with a minimal cost. Such a sequence of edit
operations is called an edit path, and the edit distance between two graphs G and
H is defined by GED(G,H) = minγ∈Γ (G,H)

∑
e∈γ c(e), where Γ (G,H) denotes

the set of edit paths between G and H and c(e) denotes the cost of an elementary
operation e belonging to the edit path γ.

If both graphs are simple and if the cost between vertices and edges remains
fixed, one can show [3] that the edit distance between two graphs G and H
of respective orders n and m may be formulated as the following quadratic
problem: GED(G,H) = minx∈Πn,m

1
2xtΔx+ ctx, where Πn,m denotes the set of

vectorized assignment matrices between VG and VH . Such a matrix x encodes for
each element of VG one and only one operation (either substitution or deletion).
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In the same way, x encodes for each element of VH either a substitution or an
insertion. The matrix Δ encodes the cost of edge operations while c encodes
the cost of operations on vertices. Computing the GED is NP-hard, so several
heuristics were proposed to compute approximate solutions in polynomial time.

The design of approximate solutions to the GED problem has been strongly
stimulated by the introduction of an approximation of the GED problem into a
Linear Sum Assignment Problem with Edition (LSAPE) [9]. This approximation
consists in associating to each node of two graphs G and H a substructure and
to populate a cost matrix encoding: the costs of matching two substructures, the
cost of inserting one substructure in H and the cost of removing one substruc-
ture from G. Given such a cost matrix c̃, the assignment matrix x minimizing
c̃tx provides a set of elementary operations on vertices from which an edit path
may be deduced. The cost of this edit path provides an upper bound for the
graph edit distance. This minimization step may be solved in polynomial time.
This transformation of an NP-complete problem into a minimization problem
with a polynomial complexity is the major advantage of the LSAPE approxima-
tion. However the computation of the cost matrix c̃ may require non polynomial
execution times. Different types of substructures have been defined in [4,8,9,14].

However, LSAPE is based on a linear approximation of a quadratic prob-
lem. In order to get a finer approximation of the graph edit distance, several
methods use variants of local search such as simulated annealing in order to
improve an initial estimation of the edit distance [6,10,11]. A slightly different
approach [3], consists in using the Franck Wolfe minimization scheme [7] from an
initial guess. This algorithm converges by iterations towards a local minimum
of the quadratic function usually close from the initial guess. This heuristic pro-
vides close approximations of the graph edit distance on small graphs but is
sensitive to the solution used to initialize the method. An heuristic to reduce the
influence of the initial guess has been proposed in [5]. This heuristic is based on
the use of multiple initial guesses either deduced from a set of solutions of the
LSAPE problem or based on the generation of random assignment matrices. The
common drawback of these two heuristics is that the generation of initial solu-
tions does not take into account information provided by runs of Franck-Wolfe
method which may have converged.

In this paper we propose a new heuristic based on alternative runs of the
generation of initial solutions and the determination of their associated local
minima using Franck-Wolfe method. This method is described in Sect. 3. The
proposed method is evaluated in Sect. 4 through several experiments.

2 Preliminaries

Throughout the paper, we will use the same concepts and notations as those
introduced in [3]. Vertices of graphs G and H are numbered respectively from
1 to n and from 1 to m, and two virtual vertices indexed as n + 1 in G and as
m+1 in H are added. These virtual vertices, denoted by εG and εH , correspond
respectively to insertions and deletions. An assignment i → εH (resp. εG → j)
corresponds to the deletion of vertex i of G (resp. insertion of vertex j of H).
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1 begin
2 Minimize a linear approximation of Q around the current solution x in the

discrete domain by solving an LSAP:b� ← argmin
b∈πn,m,ε

(x�Δ)b

3 Perform the descent by minimizing Q along the segment [x,b] in the
continuous domain: α� ← argmin

α∈[0,1]

Q(x+ α(b� −x))

4 Update x : x ← x+ α�(b� − x)

5 Repeat steps 2 to 4 until xT Δ(x − b�) < β
∣
∣Q(x) + xT Δ(b� − x)

∣
∣ holds for

a given scalar β ∈ (0, 1), or if a given number of iterations is reached

Algorithm 1. FW(Δ,x)

In this context, a solution for GED will be described as an error-correcting
assignment matrix x, where all vertices of G are assigned to a single element of
H ∪ {εH}, and all vertices of H are assigned to a single element of G ∪ {εG}.
The polytope Πε

n,m of error-correcting assignment matrices thus contains all
matrices of dimensions (n+1)× (m+1), with binary values, and with a single 1
in each line and in each column, except for the last line and the last column. We
naturally extend the concept to matrices with fractional values: we call error-
correcting bistochastic matrix any matrix where the sum of all cells for each line
except the last one and each column except the last one amounts exactly to 1.

Given a cost matrix Δ and an initial continuous or discrete candidate solution
x, Algorithm 1 describes Frank-Wolfe algorithm FW(Δ,x). In the following, we
denote by IPFP the method that consists in running FW(Δ,x) and projecting
the returned solution in the discrete space. See [3] for more details.

3 RANDPOST Algorithm

The conception of algorithm RANDPOST finds its origin in the following intuition
regarding the - often conflicting - criteria that a smart initial solution generator
should fulfill. On the one hand, a smart generator should propose solutions
that are well distributed inside the Πε

n,m polytope, in order to increase the
diversity among local minima that are ultimately returned. We call this criterium
exploration criterium. On the other hand, we obviously wish that one of the
initial solutions ultimately led to a global minimum, so that a good generator
should somehow already generate solutions that includes “smart” assignments.
We call this criterium quality criterium.

Building up on the progresses of the multistart IPFP (mIPFP) algorithm [5],
we propose a new algorithm that explores the polytope and generates new solu-
tions by taking advantage of the whole statistical information contained in the
set of solutions returned by mIPFP. This algorithm is presented in Sect. 3.2. We
also devise a new parameterized random generator that is described in Sect. 3.1.



Stochastic Generator and Multistart IPFP for GED 463

3.1 Generating Initial Solutions with Parameterized Number
of Insertions and Deletions

With respect to the initial random generator used in [5], where vertices were
randomly assigned by the use of the std::random shuffle procedure of the
C++ standard library, resulting in a random proportion of insertions and dele-
tions, we decided to use a random generator with a parameterized proportion of
insertions and deletions.

We focus our analysis on the number of deletions, as - for given n = |G|
and m = |H| - the number of deletions is completely determined by it, namely,
#insertions ≡ #deletions − n + m.

Namely, given a parameter α ∈ (0, 1), we used a new initial random generator
RANDGEN(α) which generates solutions with an expected number of deletions
equal to αn + (1 − α)max{(n − m), 0}. In other words, α denotes the expected
proportion of “unnecessary” deletions of vertices in the set of initial solutions,
reminding that if n > m any feasible assignment will have to assign at least
n − m vertices to the virtual node εH which thus correspond “necessary” to
deletions.

3.2 Stochastic Generation of New Initial Solutions Based on Several
Refined Solutions

We describe here the functioning of RANDPOST (Algorithm 2). Given a pair of
graphs G and H, the algorithm starts by running mIPFP, which outputs a set S∗

of r solutions for the problem. Each of these r solutions is represented as an error-
correcting assignment matrix x. A matrix Ψ is then created by simply summing
all of these r matrices and dividing all values by r. Hence, ∀i ∈ [1, n + 1], j ∈
[1,m + 1], Ψi,j represents the proportion of solutions where i is assigned to j
among the r solutions of S∗. Matrix Ψ (which is an error-correcting bistochastic
matrix) is then used as a probability distribution to compute a new set of k
solutions which are subsequently refined using IPFP, and the first r that have
converged among these k parallel processes are added to the set S∗. The whole

1 begin
2 Generate an initial set S ⊂ Dn,m,ε of k solutions using RANDGEN(α)
3 Start refining all solutions in S using IPFP, and stop the refinement process

when r of them have converged, which results in a set of r improved
solutions S∗

4 for i=1 to l do
5 Update matrix Ψ in the following way: Ψ ← ∑

x∈S∗ x/|S∗|.
6 Generate a new set S of k solutions using a random generator that uses

the probability distribution described by Eq. (1).
7 Start refining all solutions in S using IPFP, and add the r first to have

converged to S∗

Algorithm 2. RANDPOST(k, r, l)
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sequence that updates Ψ , generates new solutions and finally refines them is
repeated l times.

Parameters k and r enables to speed up the algorithm when k � r: some of
the k initial solutions might require many iterations of IPFP in order to converge
to a local minimum, so that by launching k parallel IPFPs and stopping all them
when r of them have converged, the whole process is likely to be faster than
launching r parallel IPFPs and waiting for all of them to converge.

The intuitive idea behind algorithm RANDPOSTis the following: if an assign-
ment i → j appears with a high frequency within solutions of the set S∗, then
this assignment is likely to be part of many good solutions for the problem at
hand. Hence, the algorithm generates k new solutions in a stochastic way, where
the probability for a given assignment to be part of a solution is higher for
assignments with high Ψi,j value, and thus high frequency.

To be even more precise, the random generator assigns each vertex of G to
a vertex of H ∪ {εH} following a greedy procedure. The matrix x of dimensions
(n + 1) × (m + 1) (which will eventually contain the solution returned by the
algorithm) is initialized with zeros, and whenever an assignment i → j is made by
the algorithm, this translates to xi,j ← 1. At the end of the algorithm x should
be an error-correcting permutation. The random generator assigns iteratively
vertices from 1 to n based on the following probabilistic distribution Pi, where
Pi(j) denotes the probability for vertex i of G to be assigned to vertex j of H
by the generator, given a partial assignment of vertices from 1 to i − 1:

∀j = 1, ...,m + 1, P1(j) = Ψ(j)
∀i = 2, . . . , n,∀j = 1, ...,m + 1

Pi(j) =

⎧
⎪⎨

⎪⎩

0 if j 	= m + 1 and ∃h < i, s.t xh,j = 1
Ψi,j

1 − ∑m
h=1

(∑i−1
l=1 xh,lΨi,l

) otherwise

(1)
Finally, all vertices of H that have been left unassigned at the end of the pro-
cedure are all assigned to εG. First let us prove that matrix x produced by the
proposed random generator is always an error-correcting permutation matrix.
This is done by putting together the two following facts: (1) by construction,
each line of x but the last one has exactly one value set to 1 and all the others set
to 0 (a single assignment is made for a single line at each step of the generator),
(2) the probability distribution described by (1) ensures that no vertex j of H
is assigned twice (once assigned, its probability of being assigned again is zero),
and the very last step ensures that each one is assigned at least once.

Let us briefly prove that (1) defines a proper probability distribution. It
is easy to verify that

∑m+1
j=1 P1(j) = 1 by simply reminding that Ψ is an error-

correcting bistochastic matrix. For i = 2, . . . , n, consider a matrix Ψ̃ which values
are as follows:

Ψ̃i,j =
{

0 if j 	= m + 1 and ∃h < i, s.t xh,j = 1
Ψi,j otherwise
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It is easy to verify that:

∀i = 2, . . . , n
m+1∑

j=1

Ψ̃i,j = 1 −
m∑

h=1

(
i−1∑

l=1

xh,lΨi,l

)

(2)

We finally prove that (1) defines a proper probability distribution:

∀i = 2, . . . , n
m+1∑

j=1

P (i → j) =

∑m+1
j=1 Ψ̃i,j

1 − ∑m
h=1

(∑i−1
l=1 xh,lΨi,l

) =
(2)

1

Finally, whenever the stochastic generator produces a candidate solution that
has already been generated earlier, the solution is discarded and a new solution
is produced using a slightly flatter (and thus more explorative) distribution.

4 Experimental Results

In this section, we evaluate the proposed method through several experiments,
in order to determine as clearly as possible the relevance and importance of the
exploration and quality criteria described in Sect. 3.

4.1 Datasets and Protocol

Table 1 presents the chemical datasets that were used in our experiments. MAO,
PAH, MUTA10-70 and MUTAmix were considered in ICPR 2016 – Graph Dis-
tance Contest [2]. We also extracted 25 graphs from ClinTox [13], and 10 graphs
with more than 100 vertices from MUTA.

Table 1. Characteristics of datasets

Dataset #graphs Avg order Labels on nodes/edges

MAO 68 18.4 Labeled

PAH 94 20.7 Unlabeled

MUTA10–70 10 10–70 Labeled

MUTAmix 10 45 Labeled

MUTA100+ 10 131.6 Labeled

ClinTox 25 115.7 Labeled

We evaluated the four following versions of RANDPOST(k, r, l): RANDPOST(40,
40, 0), RANDPOST(40, 20, 1), RANDPOST(40, 10, 3) and RANDPOST(40, 5, 7). This
choice of parameters is determined by the following idea: considering two algo-
rithms RANDPOST(k, r1, l1) and RANDPOST(k, r2, l2) such that r1(l1+1) = r2(l2+1)
and r1 > r2, their relative performances can be compared without bias as the



466 N. Boria et al.

0 0.2 0.4 0.6 0.8

32.5

33

33.5

34

34.5

G
E

D

RANDPOST(40,40,0)
RANDPOST(40,20,1)
RANDPOST(40,10,3)

(a) MAO, metric costs c4

0 0.2 0.4 0.6 0.8
16.1

16.2

16.3

G
E

D

RANDPOST(40,40,0)
RANDPOST(40,20,1)
RANDPOST(40,10,3)

(b) MAO, anti-metric costs c3

Fig. 1. Behavior of RANDPOST w.r.t. parameter α, metric vs. anti-metric costs

overall number of candidate solutions is the same (in our case, all four algorithms
generate exactly 40 candidates), while the latter algorithm performs better on
the quality criteria, and the former on the exploration one. We thus consider
that r represents the exploration parameter, while l represents the quality one.

Regarding cost functions, we tested all algorithms with four different sets
of costs: c1, c2 and c3 correspond to the costs used in [2], while c4 is the cost
function used in [5] and references therein. Note that c1, c2 and c4 correspond
to metric costs where a substitution cost of two elements is lower or equal to the
cost of the removal of the first element together with the insertion of the second
one. Conversely, c3 is an anti-metric cost violating this last inequality. The main
idea between these two classes of cost functions is that metric cost functions
favor substitutions while the anti-metric ones favor deletions and insertions.

All tests were performed using 4 AMD Opteron processors at 2.6 Ghz with
512G of RAM. The number of parallel threads was limited to 40 (which corre-
sponds to parameter k). The code for the algorithm is written in C++.

4.2 Behavior of the Algorithm w.r.t. Parameter α

We tested three versions of RANDPOST with several values for parameter α of
RANDGEN, and several cost functions (see the previous section). The most sig-
nificant results are presented in Fig. 1 for MAO, a dataset with enough and
relatively simple instances so that interesting statistical tendencies can emerge.
Contrasting tendencies can be observed with the metric cost function c4 and
the anti-metric one c3. Interestingly, the algorithm performs better as the initial
proportion of “unfavored” choice rises. We believe that this is due to the design
of the IPFP gradient descent, which is likely to find a better local minimum
when starting from a solution including a greater number of “neutral” (in the
sense of easily improvable) assignments.

Unfortunately, the behavior that we observe on MAO does not emerge with
the same clarity on more complex datasets containing bigger or unlabeled graphs.
However, it seems that IPFP requires a medium value for α (around 0.4) to
perform best when dealing with unlabeled graphs. For bigger graphs (more than
40 vertices) high values of α seem to produce better starting points for IPFP,
independently of cost functions.
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Table 2. Experimental results of RANDPOST(k, r, l), cost c1

Algorithms MAO α = 0 PAH α = 0.3 ClinTox α = 0.9

Time GED err. %best Time GED err. %best Time GED err. %best

RANDPOST(40, 1, 0) 0.013 34.43 10.30 25 0.013 36.94 24.82 1 3.542 209.42 52.12 0

RANDPOST(40, 40, 0) 0.074 24.16 0.03 98 0.099 21.23 9.11 19 17.205 167.76 10.46 2

RANDPOST(40, 20, 1) 0.029 24.14 0.01 100 0.038 20.71 8.59 27 13.330 163.18 5.88 10

RANDPOST(40, 10, 3) 0.051 24.19 0.06 98 0.063 20.42 8.30 33 19.514 160.24 2.94 30

RANDPOST(40, 5, 7) 0.144 24.48 0.35 89 0.116 20.90 8.78 26 29.278 157.98 0.69 76

Algorithms MUTA 10 α = 0 MUTA 20 α = 0.2 MUTA 30 α = 0.8

Time GED err. %best Time GED err. %best Time GED err. %best

RANDPOST(40, 1, 0) 0.013 13.19 1.21 60 0.012 33.35 14.49 23 0.027 73.80 49.51 5

RANDPOST(40, 40, 0) 0.020 11.98 0.00 100 0.080 19.00 0.14 86 0.235 25.68 1.39 42

RANDPOST(40, 20, 1) 0.028 11.98 0.00 100 0.041 18.96 0.10 91 0.128 25.28 0.99 51

RANDPOST(40, 10, 3) 0.062 11.98 0.00 100 0.062 19.03 0.17 89 0.181 25.07 0.78 61

RANDPOST(40, 5, 7) 0.148 12.01 0.03 97 0.153 19.33 0.47 73 0.452 25.51 1.22 51

Algorithms MUTA 40 α = 0.6 MUTA 50 α = 0.9 MUTA 60 α = 0.9

Time GED err. %best Time GED err. %best Time GED err. %best

RANDPOST(40, 1, 0) 0.063 83.94 50.23 2 0.123 81.67 44.83 5 0.246 98.55 51.97 5

RANDPOST(40, 40, 0) 0.575 36.07 2.36 26 1.141 40.10 3.26 20 2.120 50.64 4.06 11

RANDPOST(40, 20, 1) 0.302 35.00 1.29 46 0.565 38.56 1.72 31 1.158 48.95 2.37 24

RANDPOST(40, 10, 3) 0.391 34.31 0.60 67 0.886 37.57 0.73 61 1.862 47.69 1.11 54

RANDPOST(40, 5, 7) 0.516 34.85 1.14 53 1.465 37.84 1.00 55 3.133 47.33 0.75 56

Algorithms MUTA 70 α = 0.9 MUTA 100+ α = 0.9 MUTAmix α = 0.9

Time GED err. %best Time GED err. %best Time GED err. %best

RANDPOST(40, 1, 0) 0.528 84.18 25.80 6 3.181 259.28 37.88 0 0.111 155.71 21.68 6

RANDPOST(40, 40, 0) 3.641 63.90 5.52 12 19.67 234.24 12.84 1 0.848 136.08 2.05 42

RANDPOST(40, 20, 1) 2.559 61.45 3.07 25 12.39 227.49 6.09 9 0.455 135.16 1.13 57

RANDPOST(40, 10, 3) 3.573 59.93 1.55 49 18.51 224.50 3.10 34 0.634 134.75 0.72 68

RANDPOST(40, 5, 7) 8.181 59.44 1.06 56 28.70 222.15 0.75 78 1.117 135.06 1.03 55

4.3 Performance of RANDPOST

Table 2 presents the performance of the four versions of RANDPOST(k, l) that
we mentioned earlier, plus RANDPOST(1, 0) which corresponds to a single run of
IPFP starting from a random candidate solution. For each pair of graphs in each
dataset, we extracted the best known GED among those returned by a set of 14
algorithms (9 algorithms of [2] + 5 versions of RANDPOST), except for ClinTox and
MUTA100+ that weren’t part of the benchmark in [1]. For these two datasets,
the best GED was extracted from our 5 algorithms alone. The “err.” column
presents the mean error w.r.t. best known solutions, while the “%best” column
presents the proportion of pairs of graphs for which the best known GED was
found. For each dataset, we selected the value of α leading to a minimal mean
GED over all 5 tested algorithms. The selected value is indicated in the table.
Due to space restrictions, we present results regarding the metric cost c1 only.
The same tendencies can be observed with all the other cost functions.

The tendencies that emerge from Table 2 are quite clear: the more qual-
itative versions of RANDPOST(k, r, l) perform better than all algorithms pre-
sented in [2] on datasets with labeled graphs containing at least 60 vertices.



468 N. Boria et al.

Under this threshold, the balance between exploration and quality criteria that
performs better GED favors more exploratory methods as the size of the graphs
decreases. Further analysis shows that the phenomenon is deeply linked to the
speed and quality of convergence of the algorithms: a more exploratory ver-
sion of RANDPOSTwill ultimately converge to better GED estimations, but it will
also converge at a slower rate. On the other hand, bigger graphs lead to slower
overall convergence rates. These two phenomenons are visible in Fig. 2. Both
plots represent the improvement in GED estimations over the successive loops
of RANDPOST. Each stairstep measures the best GED computed in a loop, and as
the x-axis represents the number of computed solution, the length of the steps
equals r for each algorithm RANDPOST(k, r, l).
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Fig. 2. Convergence of RANDPOSTon datasets MUTA-20 and MUTA-70

When dealing with smaller graphs, qualitative methods converge very rapidly
to suboptimal solutions, while the exploratory ones converge more slowly to
better GED estimations. On the other hand, when dealing with bigger graphs,
the fast rate of convergence of qualitative methods becomes a strength rather
than a flaw, Fig. 2b shows that when the number of computed solutions is limited
to 40 (which corresponds to the results in Table 2), none of the algorithms has
yet converged, so that the faster converging algorithm yields better results. This
phenomenon eventually reverses on the long run: as an example, Fig. 2b suggests
that the limit on the number of computed solutions must be brought as high as
90 for RANDPOST(40, 10, 20) to outperform RANDPOST(40, 5, 40) on MUTA70.

5 Conclusion

Using a new iterative IPFP-based algorithm relying on stochastically generated
solutions, we investigated the relative importance of exploration and quality
criteria when generating candidate solutions for a multistart version of IPFP.
Our results suggest that the balance leading to better GED estimations depends
mostly on some ratio between the dimension of the problem at hand and the
overall number of generated solutions.
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distance as a quadratic assignment problem. Patt. Recogn. Lett. 87, 38–46 (2017).
https://doi.org/10.1016/j.patrec.2016.10.001
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