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Abstract. In this paper, we explore how to the decompose the global
statistical mechanical entropy of a network into components associated
with its edges. Commencing from a statistical mechanical picture in
which the normalised Laplacian matrix plays the role of Hamiltonian
operator, thermodynamic entropy can be calculated from partition func-
tion associated with different energy level occupation distributions aris-
ing from Bose-Einstein statistics and Fermi-Dirac statistics. Using the
spectral decomposition of the Laplacian, we show how to project the
edge-entropy components so that the detailed distribution of entropy
across the edges of a network can be achieved. We apply the result-
ing method to fMRI activation networks to evaluate the qualitative and
quantitative characterisations. The entropic measurement turns out to
be an effective tool to identify the differences in structure of Alzheimer’s
disease by selecting the most salient anatomical brain regions.
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1 Introduction

Functional magnetic resonance imaging (fMRI) has provided a sophisticated
means of studying the neuro-pathophysiology associated with Alzheimer’s dis-
ease (AD) [11]. It maps the network representation to neuronal activity between
the various brain regions. The resulting network structure has proved useful
in understanding Alzheimer’s disease (AD) via the analysis of intrinsic brain
connectivity [10]. Although there is converging evidence about the identity of
the affected regions in fMRI, it is not clear how this abnormality affects the
functional organisation of the whole brain.

Analysis tools derived from measures of network entropy have been exten-
sively used to characterise the salient features of the structure of network systems
arising in biology, physics, and the social sciences [1–3]. In particular ideas from
statistical mechanics and information theory have been used to develop tech-
niques and analyse the time evolution of network structure using analogies with
both classical and quantum systems. For example, the von Neumann entropy can
be used as an effective characterization of network structure, commencing from
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a quantum analogue in which the Laplacian matrix plays the role of the density
matrix [1]. Further development of this idea has shown the link between the von
Neumann entropy and the degree statistics of pairs of nodes forming edges in a
network [2], which can be efficiently computed for both directed and undirected
graphs [3]. Since the eigenvalues of the density matrix reflect the energy states of
a network, this approach is closely related to the heat bath analogy in statistical
mechanics.

These promising approaches from statistical mechanics [4], thermodynamics
[5] or quantum information [6] provide a convenient route to network characteri-
sation. A well-explored study is an analogy of combining the networks with ther-
modynamic system [7]. The Hamiltonian operator identifies the energy states of
a network by using the eigenvalues of a matrix characterisation. By mapping the
network system occupied by a set of particles, the energy states are supported to
be populated these particles in thermal equilibrium with the heat bath [7]. The
occupation of particles in the energy states is populated according to the specific
distribution. Specifically, these associated with the assumptions concerning the
quantum spin statistics, namely Bose-Einstein and Fermi-Dirac statistics. From
the relevant partition function, the thermodynamic entropy can be derived to
characterise networks [7].

Although entropic network analysis using the heat bath analogy provides a
useful global characterisation of network structure, they do not lend themselves
to the analysis of the entropy of edge or subnetwork structure. In this paper, we
explore a novel edge entropy projection which can be applied to the global net-
work entropy computed from statistical mechanics using both the classical Boltz-
mann distribution and the quantum Bose-Einstein and Fermi-Dirac statistics [7].
The new characterisations of edge entropy resulting from this analysis allow us
to probe in finer detail the interactions between different anatomical regions in
fMRI data from healthy controls and Alzheimer’s disease sufferers (AD).

It as been noted that AD subjects exhibit significantly lower regional connec-
tivity and exhibit disrupted the global functional organisation when compared
to healthy controls [8]. Because Bose-Einstein particles coalescence in low energy
states and Fermi-Dirac particles have a greater tendency to occupy high energy
states because of the Pauli exclusion principle, these types of spin statistics lead
to very different distributions of entropy for a network with a given structure
(i.e. a set of normalised Laplacian eigenvalues) [7]. Moreover, we wish to inves-
tigate them as a means of characterising differences in the network structure at
low temperature. The analysis of the distribution of edge entropy within a net-
work reveals that the different quantum statistics can be used to explore how the
distribution of edge-entropy encodes the intrinsic differences in the anatomical
pattern of fMRI responses between different groups having Alzheimer’s disease
and normal healthy controls.

This paper is organised as follows. Section 2 briefly reviews the basic concepts
in network representation, especially with sophisticate study of von Neumann
entropy. Section 3 reviews density matrix and Hamiltonian operator on graphs,
and decompose the thermodynamic entropy on edges from Bose-Einstein and
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Fermi-Dirac statistics. Section 4 provides our experimental evaluation. Finally,
Sect. 5 provides the conclusion and direction for future work.

2 Graph Representation

In this section, we provide the basic background of graph representation and
basic quantum theory. We briefly introduce the concept of the normalized Lapla-
cian matrix as the density matrix in the definition of von Neumann entropy.

2.1 Preliminary

Let G(V,E) be an undirected graph with node set V and edge set E ⊆ V × V ,
and let V represent the total number of nodes on graph G(V,E). The adjacency
matrix of a graph is A with the degree of node u is du =

∑
v∈V Auv. Then, the

Laplacian matrix is L = D − A, where D denotes the degree diagonal matrix
whose elements are given by D(u, u) = du and zeros elsewhere. The normalized
Laplacian matrix L̃ of the graph G is defined as L̃ = D− 1

2 LD
1
2 , and the spectral

decomposition is L̃ = ΦΛ̃ΦT , where Λ̃ = diag(λ1, λ2, . . . λ|V |) is the diagonal
matrix with the ordered eigenvalues as elements and Φ = (ϕ1, ϕ2, . . . , ϕ|V |) is
the matrix with the ordered eigenvectors as columns.

2.2 von Neumann Edge Entropy

The density matrix describes a system with an ensemble of pure quantum states
|ψi〉 and each with probability pi. It is defined as ρ =

∑V
i=1 pi|ψi〉〈ψi|. The

density matrix for a graph or network can be achieved by scaling the normalised
Laplacian matrix by the reciprocal of the number of nodes [1,6]. It is defined as
ρ = L̃

V . This interpretation opens up the possibility of characterising a graph
using the von Neumann entropy from quantum information theory. Therefore,
the von Neumann entropy is given in terms of the eigenvalues λ1, ....., λ|V | of
the density matrix ρ[1],

S
V N

= −Tr(ρ log ρ) = −
|V |∑

i=1

λi

|V | log
λi

|V | (1)

In fact, Han et al. [2] have shown how to approximate the calculation of
von Neumann entropy in terms of simple degree statistics. Their approxima-
tion allows the cubic complexity of computing the von Neumann entropy to be
reduced to one of quadratic complexity using simple edge degree statistics, i.e.

S
V N

= 1 − 1
|V | − 1

|V |2
∑

(u,v)∈E

1
dudv

(2)

Therefore, the edge entropy decomposition is given as

S
edge

V N
(u, v) =

1
|E| − 1

|V ||E| − 1
|E||V |2

1
dudv

(3)
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where S
V N

=
∑

(u,v)∈E S
edge

V N
(u, v). This expression decomposes the global

parameter of von Neumann entropy on each edge with the relation to the degrees
from the connection of two vertexes.

3 Quantum Statistics and Global Entropy Decomposition

The concept of von Neumann entropy arises in the quantum domain. Here,
we commence from the Hamiltonian operator in quantum statistics to develop
thermodynamic entropy. We then decompose or project the global entropy onto
edges using the eigenvectors of normalised Laplacian matrix.

3.1 Thermodynamic Entropy

To connect the normalised Laplacian matrix to statistical mechanics and quan-
tum statistics, we view the eigenvalues of the Laplacian matrix as the energy
eigenstates of a system in contact with a heat reservoir. These determine the
Hamiltonian and hence the relevant Schrödinger equation which governs the
particles in the system. The particles occupy the energy states of the Hamil-
tonian subject to thermal agitation by the heat bath. The number of particles
in each energy state is determined by the temperature, the assumed model of
occupation statistics and the relevant chemical potential.

We consider the network as a thermodynamic system of N particles with
energy states given by normalised Laplacian matrix L̃, which is immersed in
a heat bath with temperature T . The ensemble is represented by a partition
function Z(β,N), where β is inverse of temperature T . When specified in this
way, the thermodynamic entropy is given by,

S = kB

[
∂

∂T
T log Z

]

N

(4)

with the corresponding chemical potential μ as,

μ = −kBT

[
∂

∂N
log Z

]

β

(5)

The statistical properties of particles in the network are determined by the
partition functions associated with different energy level occupation statistics.
In this way, thermodynamic quantities, such as entropy, can characterise the
network structure.

3.2 Bose-Einstein Edge Entropy

Bose-Einstein statistics apply to indistinguishable bosons which can aggregate
in the same energy state. For a system with a varying number of particles N
and a chemical potential μ, the Bose-Einstein partition function is

Z
BE

= det
(
I − eβμ exp[−βL̃]

)−1

=
V∏

i=1

(
1

1 − eβ(μ−εi)

)

(6)



Quantum Edge Entropy for Alzheimer’s Disease Analysis 453

From Eq. (4), the corresponding entropy is

S
BE

= −Tr
{

log[I − eβμ exp(−βL̃)]
}

− Tr
{

β[I − eβμ exp(−βL̃)]−1(μI − L̃)eβμ exp(−βL̃)
}

(7)

The entropy depends on the chemical potential for the system and hence the
number of particles in the system. The equivalent density matrix for the system
of particles is given by

ρ
BE

=
1

Tr(ρ1) + Tr(ρ2)

(
ρ1 0
0 ρ2

)

(8)

where

ρ1 = −
(
exp[β(L̃ − μI)] − I

)−1

ρ2 =
(
I − exp[−β(L̃ − μI)]

)−1

To compute the edge entropy projection for a system with Bose-Einstein
statistics, we exploit the spectral decomposition of the normalised Laplacian
matrix. The Bose-Einstein entropy can be written as

S
edge

BE
(u, v) =

|V |∑

i=1

σ(εi)ϕiϕ
T
i (9)

where

σ
BE

(εi) = −
V∑

i=1

log
(
1 − eβ(μ−εi)

)
− β

V∑

i=1

(μ − εi)eβ(μ−εi)

1 − eβ(μ−εi)

3.3 Fermi-Dirac Edge Entropy

Fermi-Dirac statistics apply to indistinguishable fermions with a maximum occu-
pancy of one particle in each energy state. According to the Pauli exclusion prin-
ciple, no further particles can be added to states that are already occupied. The
partition function for a system subject to Fermi-Dirac occupation statistics is

Z
FD

= det
(
I + eβμ exp[−βL̃]

)
=

V∏

i=1

(
1 + eβ(μ−εi)

)
(10)

with associated entropy given by

S
FD

= Tr
{

log[I + eβμ exp(−βL̃)]
}

− Tr
{

β[I + eβμ exp(−βL̃)]−1(μI − L̃)eβμ exp(−βL̃)
}

(11)



454 J. Wang et al.

Similarly, the density matrix for the system is

ρ
FD

=
1

Tr(ρ3) + Tr(ρ4)

(
ρ3 0
0 ρ4

)

(12)

where

ρ3 =
(
I + e−βμ exp[βL̃]

)−1

ρ4 =
(
I + eβμ exp[−βL̃]

)−1

Therefore, the corresponding edge entropy decomposition is,

S
edge

FD
(u, v) =

|V |∑

i=1

σ(εi)ϕiϕ
T
i (13)

where

σ
FD

(εi) =
|V |∑

i=1

log
(
1 + eβ(μ−εi)

)
− β

|V |∑

i=1

(μ − εi)eβ(μ−εi)

1 + eβ(μ−εi)

4 Experiments and Evaluations

In this section, we describe the application of the above methods to the analysis
of interregional connectivity structure for fMRI activation networks for normal
and Alzheimer’s patients. We first examine the dependence of the quantum edge
entropy components on node degree and temperature and compare their perfor-
mance with von Neumann entropy. Then we apply edge entropy-based analysis
to distinguish between different stages in the development of Alzheimer’s dis-
ease, and fMRI data for normal subjects. We explore whether we can identify
specific inter-regional connections and regions in the brain associated with the
neuro-degeneration caused by the onset of Alzheimer’s disease. To simplify the
calculations, the Boltzmann constant is set to unity in our experiments.

4.1 Dataset

The fMRI data were obtained from the ADNI initiative [9]. fMRI images of
subjects brains were taken every two seconds and are used to compute the
Blood-Oxygenation-Level-Dependent (BOLD) signals for different anatomical
brain regions. To do this the fMRI voxels were aggregated into larger regions of
interest (ROIs). The different ROIs correspond to different anatomical regions of
the brain and are assigned anatomical labels to distinguish them. There are 96
such anatomical regions in each fMRI image. The correlation between the aver-
age time series in different ROIs represents the degree of functional connectivity
between regions which are driven by neural activities [8].
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We construct a graph to represent the pattern of activities using the cross-
correlation coefficients for the average time series for pairs of ROIs. We create an
undirected edge between two ROI’s if the cross-correlation co-efficient between
the time series is in the top 40% of the cumulative distribution. This cross-
correlation threshold is fixed over all of the available data, which provides an
optimistic bias for constructing graphs. Those ROIs that have missing time series
data are discarded. Subjects fall into different categories according to the degree
of severity of the disease, there are normal subjects, those with early mild cogni-
tive impairment, those with late mild cognitive impairment and those with full
Alzheimer’s. The data supplied included 30 subjects with Alzheimer’s disease
(AD) and 38 normal, healthy control subjects.

4.2 Experimental Results

We first investigate the relationship between the mean edge entropy computed
using quantum statistics and von Neumann entropy. Figure 1 shows the edge
entropy with varying temperatures. Both statistical entropies exhibit a transition
in behaviour with respect to the von Neumann entropy with varying tempera-
ture. For example, at the high temperature (β = 0.1), both quantum entropies
are roughly in linear proportion to the von Neumann entropy. As the temper-
ature reduces, they take on an approximately exponential dependence. At low
temperature, the quantum edge entropies decrease monotonically with the von
Neumann edge entropy (β = 10). Therefore, at high temperature, the quantum
and von Neumann edge entropies are proportional, while at low temperature
they are in inverse proportion.

(a) Bose-Eistein Statistics (b) Fermi-Dirac Statistics

Fig. 1. Scatter plot of edge entropies compared to the von Neumann entropy with
different value of temperatures.

However, the spread as measured by the variance of the quantum edge
entropies corresponding to a fixed von Neumann entropy is also revealing. In
the Bose-Einstein case, the spread of edge entropies about the mean is nar-
row, while in the Fermi-Dirac it exhibits a broader and more scattered pattern.
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This effect is most obvious in the high-temperature region. The reason for this
is that the networks possess some internal cluster or community structure. Since
Bose-Einstein statistics preferentially sample the lower energy levels of the net-
work eigenvalue spectrum, it is more susceptible to strong community structure.
On the other hand, Fermi-Dirac statistics are more sensitive to a wider range of
eigenvalues and are hence sensitive to both the to the mean and variance of the
eigenvalue distribution.

We also apply the different edge entropy computations to fMRI brain net-
works, with the aim of determining which anatomical regions play the strongest
role in the development of Alzheimer’s disease. Figure 2 the different edge entropy
distribution for the Alzheimer’s disease (AD) and healthy control (Normal) sam-
ples. Compared to the von Neumann entropy which does not show a clear dif-
ference in distributions between the two groups, the quantum entropies better
distinguish the detailed distribution of edge entropy. The edge entropy in the
case Alzheimer’s disease tends towards lower values. This observation is more
palpable in the cases of the Bose-Einstein and Fermi-Dirac edge entropy dis-
tributions, as shown in Fig. 2(b) and (c), with more edges tending to occupy
the low entropy region. Moreover, the Bose-Einstein edge entropy exhibits bet-
ter separation between the healthy and Alzheimer’s groups compared to that for
the Fermi-Dirac distribution, since here the non-overlapping area is much larger.

(a) von Neumann Edge Entropy

(b) Bose-Einstein Edge Entropy (c) Fermi-Dirac Edge Entropy

Fig. 2. Edge entropy distribution of fMRI networks with (a) von Neumann entropy,
(b) Bose-Einstein statistics and (c) Fermi-Dirac statistics. Two groups of patients,
Alzheimer’s disease (AD) and healthy control (Normal).
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Identifying diseased regions in the brain is also important. Several studies
have shown that different anatomical structures can be analysed using the prop-
erties of the corresponding ROIs, and are important for understanding brain
disorders [10,11]. Here, we use the difference in standard deviation for the quan-
tum entropy to identify the sources of significant variance between AD and
HC groups. Figure 3 plots the greatest variance of edge entropy for different
anatomical regions (nodes). The entropic measurements in the brain areas, such
as the Paracingulate Gyrus, Parahippocampal Gyrus, Inferior Temporal Gyrus
and Temporal Fusiform Cortex, suggest that subjects with AD experience loss
of interconnection between these regions in their brain network during the pro-
gression of the disease.

As listed in Table 1, the ten anatomical regions with the largest entropy dif-
ferences for subjects with the full AD are Paracingulate Gyrus, Parahippocampal
Gyrus, Temporal Fusiform Cortex, etc. This result is consistent with the previous
study reported in [11,12]. For example, the parahippocampal gyrus has consis-
tently been reported as being vulnerable to pathological changes in Alzheimer’s
disease (AD), which is closely related to entorhinal and perirhinal subdivisions as
the most heavily damaged cortical areas for the disease [13]. The Frontal Medial
Cortex and Temporal Fusiform Cortex are memory-related cognitive areas. They
are severely damaged by Alzheimer’s disease and affect recognition memory for
faces. Overall, the loss of connection between these brain regions results in signif-
icant functional impairment between healthy subjects and patients with the AD.

Table 1. Top 10 ROIs with the most significant difference in edge entropy between
the Alzheimer’s disease (AD) and Health Control (Normal) groups.

Index ROI ROI

1 Inferior Temporal Gyrus Left (14) Temporal Fusiform Cortex Left (37)

2 Frontal Medial Cortex Left (25) Frontal Medial Cortex Right (73)

3 Paracingulate Gyrus Left (27) Paracingulate Gyrus Right (75)

4 Parahippocampal Gyrus Left (34) Temporal Fusiform Cortex Left (37)

5 Parahippocampal Gyrus Left (34) Parahippocampal Gyrus Right (82)

6 Temporal Fusiform Cortex Left (37) Temporal Fusiform Cortex Right (85)

7 Temporal Fusiform Cortex Left (37) Temporal Fusiform Cortex Right (86)

8 Inferior Temporal Gyrus Right (63) Temporal Fusiform Cortex Right (86)

9 Planum Polare Right (92) Heschl’s Gyrus Right (93)

10 Heschl’s Gyrus Right (93) Planum Temporale Right (94)

In conclusion, both statistical methods and von Neumann edge entropies
can be used to represent changes in network structure. Compared to the von
Neumann edge entropy, quantum edge entropies are more sensitive to sample
variance associated with the degree distribution. At high-temperature region, the
quantum statistics have similar degree sensitivity. However, at low-temperature,
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Fig. 3. Significant differences between edge entropy associated with diseased areas in
the brain. We use the standard deviation of quantum entropy to identify the divergence
between AD and HC groups for each edge.

Bose-Einstein statistics reflect strong community structure while Fermi-Dirac
statistics are more suitable for representing a detailed structure of the degree
distribution.

5 Conclusion

In this paper, we show how to decompose the global network entropies resulting
from quantum occupation statistics onto the constituent edges of a graph. We
refer to the resulting quantum statistical quantities as Bose-Einstein and Fermi-
Dirac edge-entropies. The method uses the normalised Laplacian matrix as the
Hamiltonian operator of the network to compute the corresponding partition
functions. We undertake experiments to analyse the quantum edge entropies
and compare them to their von Neumann counterparts. Experiments reveal that
both the Bose-Einstein and Fermi-Dirac edge entropy distributions can effec-
tively in characterising detailed variations in the network structure. They both
outperform the von Neumann entropy in this respect. Finally, we apply this novel
method to provide insights into the neuropathology of Alzheimer’s disease. The
quantum edge entropy distribution is capable of discriminating between subjects
suffering from Alzheimer’s and healthy subjects.
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