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Abstract. Super Resolution (SR) is a complex, ill-posed problem where
the aim is to construct the mapping between the low and high resolu-
tion manifolds of image patches. Anchored neighborhood regression for
SR (namely A+ [15]) has shown promising results. In this paper we
present a new regression-based SR algorithm that overcomes the lim-
itations of A+ and benefits from an innovative and simple Neighbor
Reconstruction Method (NRM). This is achieved by vector operations
on an anchored point and its corresponding neighborhood. NRM recon-
structs new patches which are closer to the anchor point in the manifold
space. Our method is robust to NRM sparsely-sampled points: increasing
PSNR by 0.5 dB compared to the next best method. We comprehensively
validate our technique on standardised datasets and compare favourably
with the state-of-the-art methods: we obtain PSNR improvement of up to
0.21 dB compared to previously-reported work.
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1 Introduction

The purpose of single image super-resolution (SR) is to estimate a high resolution
(HR) image from a single low resolution (LR) image. It provides a way to enhance
the existing images which were generated by delayed imaging equipment or lim-
ited imaging conditions, and have been widely studied in recent years. Acquiring
a HR estimation from an LR observation is an ill-posed problem and so priors of
high quality images are normally relied on in the estimation process. Based on
the different priors, existing single image SR methods can be broadly classified
into three categories: interpolation-based methods [6,7], reconstruction-based
methods [1,17] and example learning-based methods [2–5,8,14,15,18].
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Fig. 1. Average PSNR (dB) vs time (s) of our algorithm (NRM) compared to other
SR methods. We largely improve (red) over the original example based single image
super-resolution methods (blue), i.e. our NRM method is 0.21 dB better than A+ [15]
and 0.91 dB better than the Global Regression (GR) [14]. Results reported on Set5
with magnification 4. (Color figure online)

Among the above mapping-based methods, neighbor embedding approaches
have achieved great research interests. In [14], Timofte et al. proposed a highly
efficient and effective SR algorithm called ANR, which maps the LR patches onto
the HR domain using the projections learned form neighborhoods. Specifically,
it relaxes the �1-norm regularization commonly used in most of the neighbor
embedding and sparse coding approaches [16,17] to a �2-norm regularized regres-
sion which can be solved offline and stored for each dictionary atom/anchor. This
results in large speed benefits. Subsequently, those authors proposed an improved
variant of the ANR method called A+ [15] that learns the regressors from the
locally nearest training LR and HR patches instead of the small dictionary. It
thus better utilizes the prior data to achieve improved performance. Under the
framework of A+, many notable methods such as the Half Hypersphere Confine-
ment Regression (HHCR) [11], the Patch Symmetry Collapse (PSyCo) [9] and
RFL [12] were proposed.

Although the A+ method [15] has achieved great success in delivering high
quality HR estimation, it has two serious limitations: First, to obtain dense
sample patches, A+ needs to harvest data images with different scales repeatedly,
resulting in a large amount of computation and storage; Second, even if A+ does
a so-called densely harvesting, we find that these patches are still too sparse for
the high dimension space.

1.1 Contributions

In this paper, we propose a novel and simple neighbor reconstruction method
and extend the concept of A+ resulting in a significant improvement.

1. Compared with A+, our method utilizes fewer features to construct a closer
neighbor and that results in a more accurate reconstruction coefficient vector
x. Specifically, we present a new neighbor reconstruction method which adds
an anchor point and its corresponding neighbor features together and divides
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the result by a scalar to generate a much closer neighbor. Compared with the
A+ method, our method requires fewer features to generate a closer neighbor
set.

2. Meanwhile, we have also designed a new projector which has much better
numerical stability to adapt to our new problem. As in A+, to obtain the low
resolution reconstruction coefficient vector x, we solve a regularized and over-
completed least-squares problem detailed in Eq. (4). We present a numerically
stable projector Eq. (6) to supplement our method.

3. In this case, by benefiting from closer neighbor we obtain a more accu-
rate reconstruction coefficient vector x leading to an improvement circa 0.1–
0.21 dB over A+. Moreover, with fixed memory, more anchor points can be
trained leading to much better generalization. Figure 1 shows improved quan-
titative performance.

(a) (b)

Fig. 2. Illustration of sample reconstruction. (a) geometric interpretation of neighbor-
hood reconstruction. The figure shows how to create a cosine similarity closer point
(f

tk
l + f tl )/c by using f tl and its neighbor f

tk
l . c is an adjustable parameter to make

(f tkl + f tl )/c be close to the intrinsic manifold, namely the solid line. In this figure,
when c = 1.85, (f

tk
l + f tl )/c can fall on the intrinsic manifold. (b) shows how to do

neighbor reconstruction process iteratively.

2 Analysis of Manifold-Based Single Image SR

We analyse in more detail the A+ technique and explain the limitations of their
method. All of our analysis is based on a basic property of the manifold: if an
assigned neighbor is close enough then the local manifold subspace can be well
described by the observed coordinates of the neighbor. Namely, if the neighbor of
aimed anchor point is close enough, we can use our coordinated points to describe
the inherent property of the manifold. The well-known Local Linear Embedding
(LLE) [10] was proposed based on this property and A+ method was, in turn,
motivated by LLE. There are two major deficiencies of A+ method.

1. To harvest dense sample patches, the A+ method samples patches at different
scales. If we generate dense patches with the A+ method on a large database,
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it is massively expensive in both computation and memory. For example, for
a 91-image dataset, to obtain dense patches around the anchored point, A+
method attempts to harvest 12 times at different scales resulting in about 5
millions patches.

2. A simple estimation shows that the patches harvested with the A+ method
are not close enough. In practice the dimension of features drawn from the low
dimensional patches is around 30. We aim to find a neighbor which lies within
an anchor point centred hypersphere whose radius is 0.1. Without loss of
generality, supposing that features are normalized and uniformly distributed,
at least 1030 features are needed to reconstruct that required neighbor while
only 5 million features are used in A+.

2.1 A Manifold-Based Model

We analyse the generalisation capacity of manifold-based single image SR.
Firstly, some notation is introduced. Suppose ph are small sampled patches
which are directly cropped from raw training images. pl is downsampled patches
from ph. And that fl and fh are normalized features extracted from pl and ph

respectively by feature extractors, fl = Kl(pl), NNNNNNNNNNNNnnfh =
Kh(ph), where Kl and Kh is linear feature extractors.

Further suppose that ̂Ml and ̂Mh are sampled manifolds corresponding to
low-dimensional and high-dimensional feature spaces, namely, ̂Ml = {f (i)l }n

i=1,
̂Mh = {f (i)h }n

i=1, where n is the number of extracted features in the low-
dimensional or high-dimensional feature space. Suppose Ml and Mh are con-
tinuous ground truth manifolds corresponding to the LR and HR feature spaces.
These two manifolds are structurally similar at local subspace. The relationship
between the sampled manifolds and ground truth manifolds is: Ml = limn→∞ ̂Ml,
Mh = limn→∞ ̂Mh.

There is an important one-to-one mapping, H(ph) = fl(∈ ̂Ml), which is a
naturally formed result when we are preparing the low and high patches. In
practice we firstly train an LR dictionary Dl,

Dl, α
i = arg min

Dl,αi
Σi‖f (i)l − Dlα

i‖22 + λ2‖αi‖22. (1)

Each column of Dl is called as an atom, dl. In A+ researchers use atoms as
anchor points in ̂Ml to anchor offline projectors. Given a target low dimensional
feature f t

l researchers use a neighbor set of its nearest atom to reconstruct f t
l .

This reconstruction leads to a reconstruction parameter x. The reconstruction
process can be formulated as,

x = arg minx ‖f t
l − Nl(dl)x‖22 + λ2‖x‖22 (2)

where Nl(dl) is a neighbor set of dl. The Eq. (2) can be solved with a closed-form,

x = Pf t
l ,



410 Z. Zhang et al.

where P = (NT
l Nl+λ2I)−1NT

l . Obviously for each atom its corresponding P can
be prepared offline. With parameter x and the one-to-one mapping H(ph) = fl(∈
̂Ml) high-dimensional patch pl can be reconstructed in the way used in LLE [10].

The SR problem in the NE framework is to construct a generalized function
G(fl) ≈ ph : Ml → Ph where Ph is continuous high-dimensional image patches
manifold space. Referring to the former one-to-one mapping H. During testing,
a given evaluation criterion is used, such as PSNR (Peak Signal to Noise Ratio),
SSIM (Structural Similarity Index) and IFC (Information Fidelity Criterion), to
estimate the performance of G. The estimator is,

C(I(G(f (i)l )) − I(p(i)
h )),

where C is a chosen image evaluation criterion, I is a patch combining function
which generates final patch-combining images. And f (i)l ∈ ̂Ml,p

(i)
h ∈ ̂Ph, ̂Ph are

HR patch sets harvested from the training database.
The object fun of SR is,

max
G

∑

i

C(I(G(f (i)l )) − I(p(i)
h )).

2.2 The Neighbor Reconstruction Method

As in A+ when we are training the function G, given a target feature f t
l , we

want to obtain a reconstruction coefficient vector x. Then we directly transfer
the coefficient vector into HR patch space, and construct the interest pt

h with
one-to-one mapping H. In the HR patch space we use the coefficient vector
x and the corresponding neighbor to reconstruct target pt

h. So it is crucial to
choose a good neighbor. Inspired by a Euclidean theorem in plane space, namely
the parallelogram axiom of vectors, we have designed a neighbor reconstruction
method denoted NRM, more detailed in Fig. 2(a). Based on the cosine similarity
metric we construct a closer, or more highly correlative, neighbor set for f t

l which
will be beneficial in generating a more accurate reconstruction coefficient x.

Denote the neighbors Nl(dl) of f t
l as the set of vectors [f t1

l , f t2
l , . . . , f tk

l ]. We
concatenate the central point and its corresponding neighbors together as column
in the matrix F̄ = [f t1

l , f t2
l , . . . , f tk

l , f t
l ]. We induce a reconstruction operator,

R =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
c 0 . . . 0 0
0 1

c . . . 0 0
...

...
. . .

...
...

0 0 0 1
c 0

1
c

1
c

1
c

1
c 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
(k+1)×(k+1) (3)

where c(>1) is an adjustable parameter. For the jth (1 ≤ j < k + 1) column Rj ,
it can generate the jth reconstructed neighbor 1

c f
t
l + 1

c f
tj
l by the right multipli-

cation F̄Rj . For the (k + 1)th column, it is used to preserve central point f t
l for

the next iteration. In NRM, reconstruction manipulation is achieved in parallel
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by right multiplying R by F̄. This manipulation can be done achieved itera-
tively. F̄(r) = F̄Rr(r ∈ {0, 1, 2, 3, . . . , s}) where s is a truncation number. After
operating on F̄ for s times, NRM collects ±F̄(r) as a large set F = {±F̄(r)}s

r=0.
The final step in NRM is to select k the nearest points for f t

l from F to replace
the original neighbor set. Further details of the iterative approach are shown in
Fig. 2(b).

−1 before F̄(r) reverse the sign, if we want to employ the parallelogram axiom
of vectors to efficiently generate a closer neighbor feature, we must ensure f t

l and
f tj
l lie on the same side of the anchor. Considering the existence of antipodal

points we reverse the neighbor set by multiplying a negative one (−1) on its
features, and utilize these reversed antipodal points to generate reconstructed
points.

2.3 Solving the Model

First, given a target feature f t
l , we employ NRM to generate a corresponding

neighbor set Nl. To obtain reconstruction coefficients x in a low resolution space,
we need to solve the optimization problem,

min
x

‖f t
l − Nlx‖22 + λ2‖x‖22. (4)

For the problem, in A+, the solution is,

x = Pf t
l ,

where the projector P = (NT
l Nl + λ2I)−1NT

l .
In our method, we reconstruct a closer neighbor leading to a greater condition

number of Nl . If we still apply the projector P which is deduced with normal
equation method to obtain x in Eq. (4), this will lead to poor results. Because in
normal equation method an inverse of matrix is needed to be computed, a large
condition number will lead to a big numerical error which can be a deviation
from our best results about 6 dB as shown in Fig. 3.

To regular this great condition number problem we design a new projector
based on matrix QR decomposition in which we do not have to compute a inverse
of matrix. Rewriting Eq. (4) in the least-squares form:

min‖
[

λI
Nl

]

(m+n,n)

x −
[

O
f t
l

]

(m+n,1)

‖22, (5)

where m is the dimension of the features in Nl, n is the number of neighbor
features, (m � n). And Nl ∈ R

m×n, λI ∈ R
n×n,O ∈ R

n×1, f t
l ∈ R

m×1.
Applying the QR decomposition method to Eq. (5) gives:

[

λI
Nl

]

(m+n,n)

= QR,

where Q is unitary, R is upper-triangular, Q ∈ R
(m+n)×(n+m),R ∈ R

(m+n)×(n).
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Fig. 3. PSNR results of proposed projector and original projector in A+. The red line
shows PSNR performance of our method employing with proposed projector. The green
one shows the performance of our method employing with original projector. (Color
figure online)

Our problem now becomes:

(QR)x =
[

O
f t
l

]

(m+n,1)

,

Rx = Q̂
[

O
f t
l

]

(m+n,1)

=
[

Q̂n Q̂m

]

[

O
f t
l

]

(m+n,1)

⇒ Rx = Q̂mf t
l ,

y = Q̂mf t
l ,

Rx = y,
(6)

where, Q̂ = Q∗, and Q̂m is the last mth columns of Q̂, Q∗ is conjugate transpose
of Q, and Rx = y can be solved by substitution method. The performance com-
parison between normal equation method based and our method based projector
is shown in Fig. 3.

3 Experiments

We now comprehensively analyze the performance of our proposed NRM in rela-
tion to its design parameters and benchmark it in quantitative and qualitative
comparison with A+ and other state-of-the-art methods.

We use the training set of images as proposed by Yang et al. [16], Timofte
et al. [15] and by Zeyde et al. [17]. However we use a different way to harvest
patches from these images. Timofte et al. [15] repeatedly harvested dense patches
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Table 1. Performance of x2, x3, and x4 magnification in terms of averaged PSNR
(dB), SSIM and execution time (s) on data set Set5, Set14 and BSD100. Best results
in red and runner-up in blue.

by means of image pyramid. Because NRM can group a set of dense patches by
reconstruction, we employ the Augmented Data set proposed by Timofte et al.
in [13], which is a more general sparse data set, and harvest it once. To compare
with A+ as fairly as possible, we also trained A+ on the Augmented Data set
with the same harvest configuration. However, this configuration degraded A+s
quality results. So in the following we use the original configurations of A+.

Note that Set5 and Set14 contain respectively 5 and 14 commonly used
images for super-resolution evaluation. B100 aka Berkeley Segmentation Dataset
is the B100 data set proposed by Timofte et al. in [15]. We use the same LR
path features as Zeyde et al. [17] and Timofte et al. [15].

We compare with the following six methods which share the same train-
ing data set: standard bicubic upsampling method, the efficient sparse coding
method of Zeyde et al. [17], neighbor Embedding with Locally Linear Embed-
ding (referred to as NE+LLE) [1], Adjusted Anchored Neighborhood Regression
(referred to as A+) of Timofte et al. [15], Convolutional Neural Network Method
(referred to as SRCNN) of Dong et al. [4] and Fast and Accurate Image Upscaling
with Super-Resolution Forest (referred to as RFL) of Schulter et al. [12].

3.1 Results

In order to assess the quality of our proposed method, we tested on 3 datasets
(Set5, Set14, B100) used by Timofte et al. [15] for 3 upscaling factors (x2, x3, x4)
in the same CPU (Intel Core i7 4750HQ 2 GHz) and memory (8 Gb). Considering
quality and time cost, we use dictionary with 4096 atoms and a neighborhood
size of 2048. The method of Zeyde et al., NE+LLE, the similarity to Chang
et al. [1], and A+ is set up with its common parameters. SRCNN and RFL are
training on the same training data set proposed by Timofte et al. leading to
a decrease compared to their best performance reported in articles. We report
quantitative PSNR and (structural similarity) SSIM results, as well as running
times for our bank of methods. In Table 1 we summarize the quantitative results.

In Table 1 we show the averaged PSNR, SSIM and execution times of the
benchmark. NRM almost obtains the best PSNR values, around 0.12 dB higher
across all scale and data set when compare to the most related algorithm A+.
We also outperform some very recent methods (SRCNN and RFL) which are
less competitive when trained on the same 91 images training data set. In the
terms of computation time, our algorithm is very slightly slower than A+ but
still faster than all other methods.
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4 Conclusion

In this paper we present a new method for regression-based SR that is built on
a novel neighbor reconstruction method (NRM). Via manipulations on anchored
points and corresponding neighborhoods, NRM can reconstruct new points
which are more closer to anchor point on the assumed manifold. Our con-
tributions are: (1) a new sample reconstruction method with application to
regression-based SR; (2) Supported by matrix QR decomposition, we design a
more condition-number-stable regressor to compute effective result under closer
neighborhood situation. Our results confirm the effectiveness of this approach
using various accepted benchmarks, where we clearly outperform the current
state-of-the-art. Finally, when the harvested samples are sparse on the manifold,
NRM can still construct much closer points and perform well.
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