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Preface

This volume contains the papers presented at the joint IAPR International Workshops
on Structural and Syntactic Pattern Recognition (SSPR 2018) and Statistical Tech-
niques in Pattern Recognition (SPR 2018). S+SSPR 2018 was jointly organized by
Technical Committee 1 (Statistical Pattern Recognition Technique, chaired by Battista
Biggio) and Technical Committee 2 (Structural and Syntactical Pattern Recognition,
chaired by Antonio Robles-Kelly) of the International Association of Pattern Recog-
nition (IAPR). It was held held in Fragrance Hill, a beautiful suburb of Beijing, China,
during August 17-19, 2018.

In S+SSPR 2018, 49 papers contributed by authors from a multitude of different
countries were accepted and presented. There were 30 oral presentations and 19 poster
presentations. Each submission was reviewed by at least two and usually three Program
Committee members. The accepted papers cover the major topics of current interest in
pattern recognition, including classification, clustering, dissimilarity representations,
structural matching, graph-theoretic methods, shape analysis, deep learning, and mul-
timedia analysis and understanding. Authors of selected papers were invited to submit
an extended version to a Special Issue on “Recent Advances in Statistical, Structural and
Syntactic Pattern Recognition,” to be published in Pattern Recognition Letters in 2019.

We were delighted to have three prominent keynote speakers: Prof. Edwin Hancock
from the University of York, who was the IAPR TC1 Pierre Devijver Award winner in
2018, Prof. Josef Kittler from the University of Surrey, and Prof. Xilin Chen from the
University of the Chinese Academy of Sciences.

The workshops (S+SSPR 2018) were hosted by the School of Computer Science
and Engineering, Beihang University. We acknowledge the generous support from
Beihang University, which is one of the leading comprehensive research universities in
China, covering engineering, natural sciences, humanities, and social sciences. We also
wish to express our gratitude for the financial support provided by the Beijing
Advanced Innovation Center for Big Data and Brain Computing (BDBC), also based in
Beihang University.

Finally, we would like to thank all the Program Committee members for their help in
the review process. We also wish to thank all the local organizers. Without their con-
tributions, S+SSPR 2018 would not have been successful. Finally, we express our
appreciation to Springer for publishing this volume. More information about the
workshops and organization can be found on the website: http://ssspr2018.buaa.edu.cn/.

August 2018 Xiao Bai
Edwin Hancock

Tin Kam Ho

Richard Wilson

Battista Biggio

Antonio Robles-Kelly
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Image Annotation Using a Semantic
Hierarchy

Abdessalem Bouzaieni and Salvatore Tabbone(®)

Université de Lorraine-LORIA, UMR 7503, Vandoeuvre-les-Nancy, France
{abdessalem.bouzaieni,tabbone}@loria.fr

Abstract. With the fast development of smartphones and social media
image sharing, automatic image annotation has become a research area
of great interest. It enables indexing, extracting and searching in large
collections of images in an easier and faster way. In this paper, we pro-
pose a model for the annotation extension of images using a semantic
hierarchy. This latter is built from vocabulary keyword annotations com-
bining a mixture of Bernoulli distributions with mixtures of Gaussians.

Keywords: Graphical models + Automatic image annotation
Multimedia retrieval - Classification

1 Introduction

Image annotation has been widely studied in recent years, and many approaches
have been proposed [35]. These approaches can be grouped into generative mod-
els or discriminative models [13]. Generative models build a joint distribution
between visual and textual characteristics of an image in order to find corre-
spondences between image descriptors and annotation keywords. Discriminative
models enable converting the problem of annotation into classification problem.
Several classifiers were used for annotation such as SVM, KNN and decision trees.
Most of these automatic image annotation approaches are based on the formula-
tion of a correspondence function between low level features and semantic con-
cepts using machine learning techniques. However, the only use of learning algo-
rithms seems to be insufficient to surmount the semantic gap problem [11,31],
and thus to produce efficient systems for automatic image annotation. Indeed,
in most image annotation approaches, the semantic is limited to its perceptual
manifestation through the learning of a matching function associating low-level
features with visual concepts of higher semantic level. The performances of these
approaches depend on concepts number and the nature of targeted data. Thus,
the use of structured knowledge, such as semantic hierarchies and ontologies,
seems to be a good compromise to improve these approaches. Recently, sev-
eral works have focused on the use of semantic hierarchies to annotate images
[32]. These structures can be classified, as mentioned in [31], into three main
categories: textual, visual and visuo-textual hierarchies. Textual hierarchies are
© Springer Nature Switzerland AG 2018

X. Bai et al. (Eds.): S+SSPR 2018, LNCS 11004, pp. 3-13, 2018.
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conceptual hierarchies constructed using a measure of similarity between con-
cepts. Several approaches are based on WordNet [23] for the construction of
textual hierarchies [17,21]. Marszalek et al. [21] have proposed a hierarchy con-
structed by extracting the relevant subgraphs from WordNet and connecting all
the concepts of the annotation vocabulary. Although approaches in this category
exploit a knowledge representation to provide a richer annotation, they ignore
the visual information which is very important in image annotation task. Visual
hierarchies use low-level visual features where similar images are usually rep-
resented in the nodes and vocabulary words are represented in the leafs of the
hierarchy. Bart et al. [3] have proposed a Bayesian method to find a taxonomy
such that an image is generated from a path in the tree. Similar images have
many common nodes on their associated paths and therefore a short distance to
each other. Griffin et al. [12] built a hierarchy for a faster classification. They
classified at first images to estimate a confusion matrix. Then, they grouped con-
fusing categories in an ascending way. They also built a descendant hierarchy
for the comparison by successively dividing categories. Both hierarchies showed
similar results for speed and accuracy of classification. Hierarchies in this cate-
gory can be used for hierarchical image classification in order to accelerate and
improve classification. However, they present a major problem which is the dif-
ficulty of semantic interpretation since they are based on visual characteristics
only. Textual and visual hierarchies have solved several problems by grouping
objects into organized structures. They can increase the accuracy and reduce
the complexity of systems [31] but they are not adequate for image annota-
tion. Indeed, textual semantic is not always consistent with visual images, and is
therefore insufficient to build good semantic structures to annotate images [34].
Visual semantics alone can not lead to a significant semantic hierarchy since
it is difficult to interpret semantically. Therefore it is interesting to use these
two information together to obtain semantic hierarchies well suited to image
annotation task. Bannour et al. [1] have proposed a new approach for automatic
construction of semantic hierarchies adapted to images classification and anno-
tation. This method is based on the use of a similarity measure that integrates
visual, conceptual and contextual information. In the same vein, Qian et al. [29]
focused on annotating images in two levels by integrating both global and local
visual characteristics with semantic hierarchies.

We propose in this paper a semi-automatic method of building a semantic
taxonomy from the keywords of a given annotation vocabulary. This taxonomy
based on the use of visual, semantic and contextual information is integrated
in a probabilistic graphical model for the automatic extension of image annota-
tion. The use of taxonomy can increase annotation performance and enrich the
vocabulary used.

2 Building Taxonomy

A taxonomy is a collection of vocabulary terms organized into a hierarchical
structure. Each term in a taxonomy is in one or more parent-child relationships
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with other terms in the taxonomy. Recently, many works have been devoted
to the automatic creation of a domain-specific ontology or taxonomy [10,18].
The construction of manual taxonomy is a laborious process, and the resulting
taxonomy is often subjective, compared with constructed taxonomies by data-
driven approaches. In addition, automatic approaches have the potential to allow
humans or even machines to understand a highly targeted and potentially scal-
able domain. However, the problem of taxonomy induction from a keyword set
is a major challenge [18]. Although the use of a keyword set allows to more pre-
cisely characterize a specific domain, the keyword set does not contain explicit
relationships from which a taxonomy can be constructed. One way to overcome
this problem is to enrich the annotation vocabulary by adding new keywords. Liu
et al. [18] presented a new approach which can automatically derive a domain-
dependent taxonomy from a keyword set by exploiting both a general knowledge
base and a keyword search. To enrich the vocabulary, they used the conceptu-
alization technique by extracting contextual information from a search engine.
The taxonomy is then constructed by hierarchical classification of the keywords
using Bayesian rose tree algorithm [4]. In the rest of this section, we will present
the three types of information used as well as our method of building a taxonomy
from a keywords set.

2.1 Semantic information

Semantic information reflects the semantic significance of a given keyword from
a linguistic point of view. Many machine learning algorithms are unable to pro-
cess the text in its raw form. They need numbers as input to do any type of
work, be it classification, regression, .... Intuitively, the aim is to find a vec-
torial representation which characterizes the linguistic significance of a given
keyword. These methods usually attempt to represent a dictionary word by a
real number vector. Several strategies have been proposed for word embedding
but they proved to be limited in their representations until Mitolov et al. [22]
introduced word2vec into the natural language processing community. Word2vec
is a group of related models used to produce word embedding. These models are
neural networks with two layers formed to reconstruct the linguistic contexts
of the words. This model takes as input a large corpus of text and produces a
vector space, typically of several hundreds of dimensions, with for each single
word of the corpus a corresponding vector in space. Word vectors are positioned
in the vector space so that words which share common contexts in the corpus are
located near each other in the space. The Word2vec model and its applications
have recently attracted a lot of attention in the machine learning community.
These dense vector representations of words learned by word2vec have semantic
meanings and are useful in a wide range of use cases.

2.2 Visual information

Visual information reflects visual appearance of a given keyword in the learning
images annotated by this keyword. It is therefore a question of finding a vector
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representation which makes it possible to characterize this appearance in the
learning images. For a given keyword Kw;, a set of images Ry, is selected
from the learning set T' of size n. All images in the R set must be annotated
by Kw;. Thus, R, = U1<j<n {I;}/Kw; € Wi,. Wi, represents the set of
keywords annotating the image I; in T'. For each image in the set R,,, interest
points are detected using the SIFT detectors [19]. For each point found, a SIFT
descriptor is calculated. The images are matched by minimizing the distance
between their descriptors and the result of this matching is taken as visual
information representing the keyword Kw;. Thus, the visual information of a
keyword Kw;, denoted by Vis(Kw;), is defined by the following set: Vis(Kw;) =
(\matching(I;, I;) ¥ I;, I; € Riw, -

2.3 Contextuel information

Since real-world objects tend to exist in context, incorporating contextual infor-
mation is important to help understand the semantics of the image. Contextual
information is used to determine the context in which keywords appear by linking
those that often appear together in image annotation even if they are distant
visually or semantically. For example, the two keywords “horse” and “grass”
can annotate together an image to represent a natural scene, while they have
no visual similarity or semantic similarity since “horse” belongs to the family
of animals and “Grass” belongs to the family of plants. A simple method for
representing contextual information is to find the frequency of co-occurrence of
a pair of keywords. This information depends only on the annotation vocabu-
lary keywords used. Therefore, we use the mutual information to characterize
the contextual information between each keyword and the whole vocabulary.
This metric was used in [1]. Let Kw; and Kw; be two keywords. The contex-
tual information of Kw; and Kwj, denoted by cont(Kw;, Kw;), is defined by:

%ﬁ%. P(Kw;) represents the appearance proba-
bility of the keyword Kw; in the database image. P(Kw;, Kw;) represents the

joint appearance probability of the two keywords Kw; and Kw; together.

cont(Kw;, Kw;) = log

2.4 Proposed method

Once we have estimated the visual, contextual and semantic information for each
vocabulary keyword, it is important to group them into a semantic taxonomy.
The three type of information are used together in a single feature vector for the
taxonomy construction. The taxonomy construction process is divided into three
main stages: (1) Characterization: calculate the semantic, visual and contextual
information defined in the Sects. 2.1, 2.2 and 2.3 for each keyword in vocabu-
lary. A vector which characterizes each keyword is defined by concatenating the
three types of information; (2) Clustering: group the closest keywords according
to the information defined in a semantic group. We used K-means clustering
(Euclidean distance) algorithm with normalized (using the mean and standard
deviation) characteristic vectors of the keywords to group them into K groups;
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(3) Construction: build in a bottom up manner a hierarchy for each semantic
group found in the previous step. First, a new keyword is added for each of
the K groups. This new keyword represents the concept or family shared by all
keywords in the group. Then, arcs are added between all keywords of the group
and the new added keyword. These arcs represent the parent-child relationship
between the group’s keywords (children) and the newly added keyword (parent).

3 Annotation Model Using Taxonomy

Once the taxonomy is built, it is integrated in the probabilistic graphical model
whose structure is represented in the Fig. 1. This model is a mixture of Bernoulli
distributions and Gaussian mixtures. The visual characteristics of a given image
are considered as continuous variables which follow a law whose density func-
tion is a Gaussian mixture density. They are modeled by two nodes: (1) The
Gaussian node is modeled by a continuous random variable which is used to
represent the computed descriptors on the image; (2) The Component node is
modeled by a hidden random variable which is used to represent the weights
of the Gaussians. It may take g different values corresponding to the number
of Gaussians used in the mixture. The textual characteristics of a given image
are modeled by the constructed taxonomy nodes. Each node is represented by
a discrete random variable which follows a Bernoulli distribution. This variable
takes two possible values: 0 and 1. The value 1 taken by the variable repre-
senting the node kw; indicates that the image is annotated by the keyword i
in the vocabulary New_V and the value 0 indicates absence of this keyword
in the image annotation. A Class root node is used to represent the class of
image. It may take k values corresponding to the predefined classes C1, ..., Cj.
To learn the parameters of our model, we use the EM algorithm [7]. This algo-
rithm is the most used in the case of missing data. Given a new image Im;
represented by its visual characteristics VCy,...,VC)y and its existing key-
words Kwy, ..., Kw,, we can use the junction tree algorithm [16] to extend the
annotation of this image with other keywords. We can calculate the posterior
probability: P(Kw;|I;) = P(Kw;|VCy,...,VCy, Kwy,...,Kw,) and also the
posterior probability: P(C;|I;) = P(C;|VCy,...,VCuy, Kwy,. .., Kw,) to iden-
tify the class of image. The query image is assigned to the class C; maximizing
this probability. Most automatic image annotation methods assume a fixed anno-
tation length k (usually 5) for each image. However, the fixed-length annotation
may give insufficient or very long annotations. With a short length, it is possible
that some content in the image will not be captured by the annotation. Unlike
with a long length, it is possible that annotations generated contain words which
are irrelevant to the content. Thus, to solve this problem, we can define a thresh-
old A on the probability of a keyword and an image will be annotated by a Kw;
keyword if and only if: P(Kw;|I;) > A.
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Low-Level characteristics Built taxonomy

Fig. 1. Annotation model using the taxonomy.

4 Experimentation

In this section we present the evaluation of our model before and after the seman-
tic hierarchy integration. We test our approach on Corel-5K dataset which is
used as a benchmark in the literature for images annotation and retrieval. This
dataset is divided into 4500 images for learning and 500 images for tests with a
vocabulary of 260 keywords. For semantic information, we used the pre-trained
Word2vec model on Google News Corpus'. The length of each vector obtained
by this model is 300 characteristics. To compute the visual information of a key-
word Kw;, we need to define the set of images Rk, from the learning dataset.
Therefore, to ensure a robust visual description, we select images annotated
by the smallest set of keywords (including Kw;) and we limit the number of
images (set experimentally to 6). For the visual characteristics of each image, we
used the descriptors: RGB color histogram [30], LBP [27], GIST [28] and SIFT
[19]. Using visual, contextual and semantic information, we have grouped the
260 annotation vocabulary keywords of the Corel-5k database into 30 classes
following the main steps defined in Sect.2.4 and to keep a good compromise
between the depth of the hierarchy and the model complexity. For each group,
a new keyword is added as the parent of the group members. The parent must
describe the semantic concept shared by the whole group. Thus, 30 new key-
words obtained from the clustering were in turn grouped into 7 new groups.
Starting with a vocabulary of 260 keywords, we obtained a new vocabulary of

NS

Fig. 2. Graphic representation of “human” group.

! https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.
bin.gz.
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Table 1. Performance of our model against different image annotation methods on
Corel-5k dataset.

Method Corel-5K

P|R |F1| N+
MBRM [9] 242525 | 122
SVM-DMBRM [24] 36 |48 |41 | 197
NMF-KNN [15] 38|56 |45 | 150
2PKNN [33] 44146 | 45 | 191
CNN-R [25] 324137 | 166
HHD [26] 3114938 | 194
MLDL [14] 45149 |47 | 198
SLED [5] 35|51|42 | 196
RFC-PSO [8] 262224 | 109
Fuzzy [20] 27132(29 |-
Corr-LDA [6] 21/36(27 131
GMM-Mult [2] 27138(32 | 154
Our method without SH |34 | 45|39 | 175
Our method with SH 42 14744 | 182

298 keywords organized in a taxonomy form. This taxonomy which represents
the semantic relations between keywords is added to our model as shown in
Fig. 1. An example of clustering where the semantic concept “human” (added
manually) shared by members of a group is shown in Fig. 2. Table 1 shows the
performance of different image annotation methods on the Corel-5k database.
The rows in this table are grouped according to the models used by these meth-
ods. The first group contains methods based on relevance models. The sec-
ond row is focused on methods using algorithms based on nearest neighbors.
The third group represents methods using deep representations based on CNN.
The next row shows the performance of some methods based on sparse coding.
Variety of approaches such as random forests belong to the fifth row. The last
group shows the performances of methods close to our model and using prob-
abilistic graphical models. The last two lines show the results of our method
without semantic hierarchy (without SH) and with semantic hierarchy (with
SH). In this table, we automatically annotated each image in the test database
by 5 keywords and we calculated recall (R), precision (P), F1 and N+ measures.
Our method provides competitive results compared to state-of-the-art methods.
Indeed, it surpasses all the methods of the first and fifth group. It also gives good
results compared to the methods of the second group which use KNN. However,
these methods have the disadvantage of a large annotation time. Indeed, each
image to be annotated must be compared to all the images of the database. On
the contrary, for our method, the learning is done once at all, and to annotate
an image, we calculate the posterior probabilities only (see Sect. 3). In addition,
these methods suffer from the problem of choosing the number of neighbors and
the distance to use between visual characteristics. Although third group methods
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using deep learning offer good performance and reduce low-level feature calcula-
tions, these algorithms require a large amount of data in the learning phase and
require more computing power and storage. Compared to the methods listed in
the Table 1, except for the last group, our method has the advantage to be used
for the two tasks of image annotation and classification. Another advantage of
our model is the interpretation of the network structure which provides valuable
information about conditional dependence between variables. We observe that
the performances of our model are better than those close to our approach. The
superiority compared to Corr-LDA [6] is justified by the fact that we use a mix-
ture of multivariate Gaussians whereas this model uses a multivariate Gaussian.
Moreover, the addition of semantic relationships between keywords and the use
of more relevant visual characteristics increase the performance of our approach
compared to GMM-Mult [2]. We also note that the integration of the semantic
hierarchy into the model considerably increases the performance of annotations
and especially in terms of precision. Indeed, we obtained a precision of 34% with
the old model (“Our method without SH” in the table) and after the integration
of the semantic hierarchy, we reach a precision of 42% (“Our method with SH”
in the table). Another advantage of our approach is the possibility to enrich the
annotation by using new keywords which did not belong to the initial annotation
vocabulary, unlike the fourth group method in the Table 1. Figure 3 illustrates
the annotation of some images of Corel-5k database where labels of the ground
truth are given. We notice that the images are not annotated by the same number

’.

sky, sun, clouds, tree sky, jet, plane bear, po
sky, sun, clouds, tree, palm, sky, jet, plane, {-16, bear, polar, snow, ice,
natural_view, shaft, aviation, natural_view, various_animal,
natural_phenomenon, transport, nature extreme_environment,
nature animal

water, boats, bridge tree, horses,mare7 foals sky, buildings, flag

water, boats, bridge, arch, | tree, horses, mare, foals, sky, buildings, skyline,
pyramid, natural_resource, | field, herbivorous_animal, architectural_element,
town, structure, shaft, animal, nature natural_view, architectures,
architectures, nature street, nature

Fig. 3. Examples of image annotation using the semantic hierarchy for Corel-5k.
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of keywords because of the use of threshold A experimentally defined at 0.75. We
also notice that new keywords appear which do not belong to the initial vocab-
ulary. For example, the fourth image is annotated manually by three keywords
(“water”, “boats” and “bridge”), seven new keywords (“arch”,... and “nature”)
are automatically added after the automatic annotation extension. The two
keywords (“arch” and “pyramid”) belong to the initial annotation vocabulary
and the other five keywords belong to the new added vocabulary.

5 Conclusion

In this paper, we presented a semi-automatic method for building a semantic
hierarchy from a set of keywords. This hierarchy is based on the use of visual,
contextual and semantic information for each keyword. After building the hier-
archy, we integrated it into a probabilistic graphical model decomposed into a
mixture of Bernoulli distributions and Gaussian mixtures. The integration of the
constructed semantic hierarchy in the model greatly increases the performance of
annotations. The obtained results are competitive compared to state-of-the-art
methods. In addition, we can enrich the image annotation by using new keywords
which did not belong to the initial annotation vocabulary. In future works, we
want to automate the semantic hierarchy construction where new concepts could
be added automatically.

References

1. Bannour, H., Hudelot, C.: Building and using fuzzy multimedia ontologies for
semantic image annotation. Multimed. Tools Appl. 72, 2107-2141 (2014)

2. Barrat, S., Tabbone, S.: Classification and automatic annotation extension of
images using Bayesian network. In: da Vitoria Lobo, N., et al. (eds.) SSPR/SPR
2008. LNCS, vol. 5342, pp. 937-946. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-89689-0_97

3. Bart, E., Porteous, 1., Perona, P., Welling, M.: Unsupervised learning of visual
taxonomies. In: CVPR, pp. 1-8. IEEE (2008)

4. Blundell, C., Teh, Y.W., Heller, K.A.: Bayesian rose trees. arXiv preprint
arXiv:1203.3468 (2012)

5. Cao, X., Zhang, H., Guo, X., Liu, S., Meng, D.: SLED: semantic label embedding
dictionary representation for multilabel image annotation. IEEE IP 24(9), 2746—
2759 (2015)

6. Chong, W., Blei, D., Li, F.F.: Simultaneous image classification and annotation.
In: CVPR, pp. 1903-1910. IEEE (2009)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. JRSS Ser. B 39(1), 1-38 (1977)

8. El-Bendary, N., Kim, T.H., Hassanien, A.E., Sami, M.: Automatic image annota-
tion approach based on optimization of classes scores. Computing 96(5), 381-402
(2014)

9. Feng, S., Manmatha, R., Lavrenko, V.: Multiple Bernoulli relevance models for
image and video annotation. In: CVPR, vol. 2, pp. 1002-1009. IEEE (2004)


https://doi.org/10.1007/978-3-540-89689-0_97
https://doi.org/10.1007/978-3-540-89689-0_97
http://arxiv.org/abs/1203.3468

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A. Bouzaieni and S. Tabbone

Fountain, T., Lapata, M.: Taxonomy induction using hierarchical random graphs.
In: ACL, pp. 466-476 (2012)

Fu, H., Zhang, Q., Qiu, G.: Random forest for image annotation. In: Fitzgibbon,
A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol.
7577, pp. 86-99. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33783-3_7

Griffin, G., Perona, P.: Learning and using taxonomies for fast visual categoriza-
tion. In: CVPR, pp. 1-8. IEEE (2008)

Ji, P., Gao, X., Hu, X.: Automatic image annotation by combining generative and
discriminant models. Neurocomputing 236, 48-55 (2017)

Jing, X.Y., Wu, F., Li, Z., Hu, R., Zhang, D.: Multi-label dictionary learning for
image annotation. IEEE Trans. Image Process. 25(6), 2712-2725 (2016)

Kalayeh, M.M., Idrees, H., Shah, M.: NMF-KNN: image annotation using weighted
multi-view non-negative matrix factorization. In: CVPR, pp. 184-191 (2014)
Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. JRSS Ser. B 50(2),
157-224 (1988)

Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: classification,
annotation and segmentation in an automatic framework. In: CVPR, pp. 2036—
2043. IEEE (2009)

Liu, X., Song, Y., Liu, S., Wang, H.: Automatic taxonomy construction from key-
words. In: ACM SIGKDD, pp. 1433-1441. ACM (2012)

Low, D.G.: Object recognition from local scale-invariant features. In: Proceedings
of the International Conference on Computer Vision, vol. 2, pp. 1150-1157 (1999)
Maihami, V., Yaghmaee, F.: Fuzzy neighbor voting for automatic image annota-
tion. JECEI 4(1), 1-8 (2016)

Marszalek, M., Schmid, C.: Semantic hierarchies for visual object recognition. In:
CVPR (2007)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39-41 (1995)

Murthy, V.N., Can, E.F., Manmatha, R.: A hybrid model for automatic image
annotation. In: ICMR, pp. 369-376. ACM (2014)

Murthy, V.N., Maji, S., Manmatha, R.: Automatic image annotation using deep
learning representations. In: ICMR, pp. 603—-606. ACM (2015)

Murthy, V.N., Sharma, A., Chari, V., Manmatha, R.: Image annotation using
multi-scale hypergraph heat diffusion framework. In: ICMR. ACM (2016)

Ojala, T., Pietikdinen, M., Harwood, D.: A comparative study of texture measures
with classification based on featured distributions. PR 29(1), 51-59 (1996)

Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation
of the spatial envelope. Int. J. Comput. Vis. 42(3), 145-175 (2001)

Qian, Z., Zhong, P., Chen, J.: Integrating global and local visual features with
semantic hierarchies for two-level image annotation. Neurocomputing 171, 1167—
1174 (2016)

Swain, M.J., Ballard, D.H.: Color indexing. IJCV 7(1), 11-32 (1991)

Tousch, A.M., Herbin, S., Audibert, J.Y.: Semantic hierarchies for image annota-
tion: a survey. PR 45(1), 333-345 (2012)

Uricchio, T., Ballan, L., Seidenari, L., Bimbo, A.D.: Automatic image annotation
via label transfer in the semantic space. PR 71, 144-157 (2017)


https://doi.org/10.1007/978-3-642-33783-3_7
https://doi.org/10.1007/978-3-642-33783-3_7
http://arxiv.org/abs/1301.3781

33.

34.

35.

Image Annotation Using a Semantic Hierarchy 13

Verma, Y., Jawahar, C.V.: Image annotation using metric learning in semantic
neighbourhoods. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid,
C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 836—849. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33712-3_60

Wu, L., Hua, X.S., Yu, N., Ma, W.Y., Li, S.: Flickr distance: a relationship measure
for visual concepts. TPAMI 34(5), 863-875 (2012)

Zhang, D., Islam, M.M., Lu, G.: A review on automatic image annotation tech-
niques. PR 45(1), 346-362 (2012)


https://doi.org/10.1007/978-3-642-33712-3_60

)

Check for
updates

Malignant Brain Tumor Classification Using
the Random Forest Method

Lichi Zhang', Han Zhang?, Islem Rekik®, Yaozong Gao®,
Qian Wang', and Dinggang Shen®®9

! Institute for Medical Imaging Technology, School of Biomedical Engineering,
Shanghai Jiao Tong University, Shanghai, China
2 Department of Radiology and BRIC, University of North Carolina at Chapel
Hill, Chapel Hill, USA
dinggang_shen@med. unc. edu
3 Department of Computing, University of Dundee, Dundee, UK
* Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China

Abstract. Brain tumor grading is pivotal in treatment planning. Contrast-
enhanced T1-weighted MR image is commonly used for grading. However, the
classification of different types of high-grade gliomas using T1-weighted MR
images is still challenging, due to the lack of imaging biomarkers. Previous
studies only focused on simple visual features, ignoring rich information pro-
vided by MR images. In this paper, we propose an automatic classification
pipeline using random forest to differentiate the WHO Grade III and Grade IV
gliomas, by extracting discriminative features based on 3D patches. The pro-
posed pipeline consists of three main steps in both the training and the testing
stages. First, we select numerous 3D patches in and around the tumor regions of
the given MR images. This can suppress the intensity information from the
normal region, which is trivial for the classification process. Second, we extract
features based on both patch-wise information and subject-wise clinical infor-
mation, and then we refine this step to optimize the performance of malignant
tumor classification. Third, we incorporate the -classification forest for
training/testing the classifier. We validate the proposed framework on 96
malignant brain tumor patients that consist of both Grade III (N = 38) and
Grade IV gliomas (N = 58). The experiments show that the proposed framework
has demonstrated its validity in the application of high-grade gliomas classifi-
cation, which may help improve the poor prognosis of high-grade gliomas.

1 Introduction

Brain tumor is generally caused by uncontrollable cell reproductions, which has
become one of the major causes of death among people. The benign and malignant
brain tumors differ on the growth speed. Specifically, the benign tumors grow much
slower than the malignant tumors, and do not spread to the neighboring tissues. On the
other hand, the malignant tumors are more invasive, and have high chances of

spreading to adjacent regions [1] and recurring after resection.

It is highly demanded to achieve preclinical assessment of the brain tumors such as
grade, location, size, and border [2]. This can greatly help neurosurgeons administer
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treatments to patients. Conventional classification methods include biopsy, lumbar
puncture and etc., which is both time consuming and invasive. Hence, automatic
classification of the tumor based on pre-surgical images using computer-aided tech-
nologies may contribute to improving tumor prognosis. However, the main challenges
of tumor classification are attributed to high variations in the tumor location, size, and
complex shape. There have been numerous attempts in recent years for classifying
benign and malignant tumors using statistical and machine learning techniques, such as
Fisher linear discriminant analysis [3], k-nearest neighbor decision tree [4], multilayer
perceptron [5], support vector machine [6], and artificial neural network [7]. Further
detailed literature survey of tumor classification can be found in [8].

Currently about 45% of the brain tumors are recognized as gliomas. According to
the fourth edition of World Health Organization (WHO) grading scheme, gliomas are
classified into malignant tumors. Among them, high-grade gliomas are more fatal and
can be further classified into two types, named as WHO Grade III (including anaplastic
astrocytoma and anaplastic oligodendroglioma), and WHO Grade IV (glioblastoma
multiform). Differentiating the two types of high-grade gliomas is much more chal-
lenging, as they share similar imaging properties, e.g., both of them have enhanced
contrast in the most commonly used contrast-enhancement T1-weighted MR imaging.
It is noted that few literature has focused on the classification of the high-grade tumors.

Our goal in this paper is to alleviate the problems in classifying high-grade gliomas
using only T1-weighted MR images. We hypothesize that there are discriminative
features contained in this modality, which are complex and cannot be extracted using
conventional classification approaches. We therefore devise a novel framework for
WHO grading classification of high-grade gliomas based on contrast-enhancement T1-
weighted MR imaging. Specifically, we focus only on the intensity appearances in the
tumor and its surrounding regions, instead of extracting features from the whole brain.
This can optimize the obtained features and suppress the undesired noise from the rest
normal regions. Also, we follow a 3D patch-based strategy to implement the classifi-
cation, in order to alleviate the issues caused by the high variances of tumors’ shapes
and locations in different patients. State succinctly, the classifier is trained from the 3D
cubic patches in the training images, which is then applied to predict the grading
information of the selected patches in the testing images. All the estimated results from
the patches are then combined together to obtain the final classification predictions.

It is also noted that the features employed in training/testing the classifier are not
only the intensity-based features extracted from the patches (i.e., patch-wise features),
but also the demographic and general clinical information of the patients (e.g., age,
gender and tumor size, which are subject-wise features). Both sources of features are
combined for classification, which is implemented by adopting the random forest
method. The main advantage of the random forest technique is that it can handle a large
number of images, and provide fast and relatively accurate classification performance.
Besides, it has strong robustness to the noise information and is designed to prevent
overfitting issues, which definitely fits our needs.

To fulfill the goals mentioned above, there are generally three steps in the proposed
framework. First, numerous 3D patches are selected within and around the tumor
regions of the given MR images. Second, the feature extraction process is implemented
based on both patch-wise and subject-wise features. Third, the classification forest
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technique is utilized for training/testing the classifier. The strategies proposed in this
paper are optimized for the case of high-grade gliomas classification.

2 Method

In this section, we present the detailed description of the learning based framework,
which consists of the training and the testing stages. In the training stage, the training
images containing grading information are used to train the classifiers, while as in the
testing stage the trained forest is applied to predict the grading information of the input
images. Both the training and testing images follow the three steps mentioned in
Sect. 1 to train/test the classifiers. The detailed descriptions of the processes are pre-
sented in the subsequent sections.

2.1 Patch Extraction

Given the set of input T1-weighted MR images with their corresponding tumor label
maps, we randomly extract the group of 3D cubic patches from them. We follow the
importance sampling strategy introduced in [9] to avoid the large overlapping between
any pair of selected patches, since this will lead to highly-redundant information that
may affect the subsequent learning process.

The strategy for the patch extraction is given as follows. First, we expand the tumor
region by performing dilation process to the given label maps, and the patches are
selected within the dilated area. Therefore, the information in the boundary and the
surrounding area is also included for the afterward process, which may have equal
importance in tumor grading classification. We also construct a probability map, which
represents the priority distribution of individual voxels/patches selected for training.
The probability map is initialized that the dilated tumor region is marked as 1, whilst
the rest as 0. When a patch is selected, this patch region in the probability map is
marked and the probability values for following patch selection is reduced. This
strategy can suppress future selection of the neighboring patches, therefore preventing
the overlapping issues as mentioned above. In each intensity image, we select
m patches. Thus, the total number of the 3D patches in n input images is m x n. The
set of patches is denoted as P = {p1,pa, .. ., Pmxn}-

2.2 Feature Extraction

Figure 1 illustrates the process of feature extraction after patches are obtained from the
input images. Denote the i-th image ; with its set of patches P' = {p%,p},....p}},
each patch has its corresponding feature information, which is combined together in the
form of feature vector.

There are two types of features designed in this work: subject-wise and patch-wise
ones. The subject-wise features are identical for all patches belonging to the same
image from the same subject, which contain the general information of the corre-
sponding patients: age, gender and tumor size. The patch-wise features, on the other
hand, include the information relevant to the patch itself. There are four categories of
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Fig. 1. The feature extraction process from the obtained patches. The feature vector consists of
two types of information: subject-wise and patch-wise. The subject-wise features include the
background information of the patients, such as age, gender and tumor size. The patch-wise
features describe the information for the extracted patches, such as tumor cover rate, intensity
histogram and Haar-like features.

data for the patch-wise features. The experiments show that they can generally rep-
resent the patch information and help in the classification processes:

(1) Location of the patch center;

(2) Tumor coverage rate, which shows the percentage of the patch region that is
actually occupied by the tumor. This information can better describe the patches
located in the boundary area;

(3) Intensity histogram, representing the intensity distribution within the patch
region;

(4) Intensity feature of the patch, containing the details of the intensity information
extracted by the Haar-like operators.

In this paper, we apply the 3D Haar-like operators to extract more complex
intensity-based features due to computational efficiency and simplicity [10]. For the
patch p with its region R, we randomly find two cubic areas R, and R, within R. The
sizes of the cubic regions are randomly chosen from an arbitrary range of {1, 3, 5} in
voxels. There are two ways to compute the Haar-like features: (1) the local mean
intensity in Ry, or (2) the difference of local mean intensities in R; and R, [11]. The
Haar-like feature operator can be thus given as [12]:

1 1
fHarr(p) = mzp@‘) - Sm Z p(V),

UER, 2lveR, (1)
R CRy,R, CR,6 € {0,1},
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where fy.(p) is a Haar-like feature for the patch p, and the parameter J is 0 or 1 to
determine the selection of one or two cubic regions.

2.3 Classification Forest

In this section we present detailed descriptions of the classification forest in the training
and testing stages. The random forest is an ensemble of a groups of decision trees.
Based on the uniform bagging strategy [13], each tree is trained using a subset of
training samples with only a subset of features randomly selected from a large feature
pool. Since the randomness is injected into the training process, the over-fitting
problems can therefore be avoided, and also the robustness can be improved in the
classification performance. Note that although the patches are randomly extracted from
the images as mentioned in Sect. 2.1, to reduce computation complexity, each tree is
trained using features extracted from the whole set of obtained patches.

It is also noted that the parameter values to compute the Haar-like features are
randomly decided during the training stage, which are stored for future use in the
testing stage. In this way, we can avoid the costly computation of the entire feature pool
and then efficiently sample features from the pool.

In the training stage, each decision tree 7} learns a weak class predictor g(hlf(p),T;)
[14], where p is the input patch, / is the grading label, and f(p) the obtained feature vector
combined with the 3D Haar-like features and the other features in Sect. 2.2. There are
two types of nodes in the trained decision trees, which are the internal node and the leaf
node. Starting with the complete set of patches P at the root (internal) node, its split
function can be optimized to divide the input set into the left or right child (internal) node
based on their features. The split function is developed to maximize the information gain
of splitting the obtained feature vector [13]. Note that the settings of the optimal split
functions are also stored in the internal node for testing. Then, the tree recursively
computes the split in each of the child (internal) nodes and further divides the input patch
set. It keeps growing until either reaches the maximum tree depth, or the number of
training patches belonging to the internal nodes is less than a pre-defined threshold value.
Then, each partition set of patches are stored in its corresponding leaf nodes [ with its
predictor g; (h|f(p),T;) computed by averaging the values of the patches [12].

In the testing stage, the strategy of patch classification is given as follows. Denote
the forest that consists of b trained decision trees as F ={T, T, ..., T}, the test patch
p; for the test image I’ is first pushed separately into the root nodes of each tree 7;
Guided by the learned splitting functions in the training stage, for each tree T}, the patch
will arrive at a certain leaf node, and the corresponding probability result can thus be
obtained by g(h|f(p).T;). The overall probability from the forest F can be estimated by
averaging the obtained probability results from all trees, i.e.,

b
(hlpi, F) = 3> s (hlf (). T). ©)

The final classification estimation for the test image I’ can be measured by simply
averaging all probability values from all patches, which is written as:
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sty = 340 o)

i=1

3 Experimental Results

In this section, we evaluate the proposed framework for classifying the Grade III and
Grade IV gliomas using contrast enhanced T1-weighted MR images. The dataset
contains 96 MR images from patients diagnosed with high-grade gliomas intra-
operatively (age 51 + 15 years, 37 males), which are acquired from a 3.0 T MR
scanners. The diagnosis, i.e., tumor grading, was achieved by biopsy and
histopathology. All images were pre-processed following the standard pipeline intro-
duced in [15]. Further, we applied non-rigid registration by using SPM8' toolkit, to
warp all images into the standard space. We also implemented the ITK-based histogram
matching program to the acquired images, which were rescaled to a uniform intensity
range [0 255]. The gliomas regions were manually segmented by experts.

True Positive Rate
© © © © © © o o
N w =S [$,} [+2] ~ o<} [{e]
1 1 1 1 L 1 1 1

(=4
ey
T
1

0 1 1 1
0 0.2 0.4 0.6 0.8 1
False Positive Rate

Fig. 2. The ROC curve of the classifier.

For evaluation, we used 8-fold cross-validation setting. Basically, the 96 input MR
images are randomly divided into 8 groups with equal size. In each fold, we select one
fold as testing images, and the rest as training images. Also note that we follow the
same parameter settings in each fold of the experiments. The parameter settings are

! http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.
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optimized by considering its fitness to the conducted experiments and the computation
cost. In each image, we select 600 patches with the size of 15 x 15 x 15 mm?. There
are 15 trees trained in the forest, the maximum depth of each tree is set to 20, each leaf
node has a minimum of eight samples, and the number of Haar features is 1000.

We provide the classification results using the evaluation metrics of sensitivity
(SEN), specificity (SPE) and accuracy (ACC), which are 75.86%, 34.21% and 59.38%,
respectively. Also, Fig. 2 shows the receiver operating characteristic (ROC) curve
representing the performance of the trained classifier, which is created by plotting the
true positive rate (TPR) against the false positive rate (FPR). It is also noted that the
average runtime of the classification process is around 15 min using a standard com-
puter (Intel Core i7-3610QM 2.30 GHz, 8§ GB RAM).

4 Conclusion

In this paper, we present a novel framework using random forest to differentiate
between WHO Grade III and Grade IV gliomas. We provide detailed descriptions of
the three steps applied in both training and testing stages, which are patch extraction,
feature extraction and classifier training/testing. We demonstrate experimentally that
the proposed framework is capable of classifying high-grade gliomas using the com-
monly acquired MR images.

In the future works we intend to further explore other feature descriptors, such as
local binary pattern (LBP), histogram of oriented gradients (HOG), and find out if they
can be suitable to be applied in the proposed framework. We will also include the
feature selection process to optimize the extracted features from the patches, which is
expected to further improve the classification performance. Furthermore, we will use
multimodality images (including Diffusion Tensor Imaging and resting-state functional
MR Imaging) in the classification works, whose output results will be compared with
those reported in this paper to assess their value for glioma grading.
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Rotationally Invariant Bark Recognition
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Abstract. An efficient bark recognition method based on a novel wide-
sense Markov spiral model textural representation is presented. Unlike
the alternative bark recognition methods based on various gray-scale
discriminative textural descriptions, we benefit from fully descriptive
color, rotationally invariant bark texture representation. The proposed
method significantly outperforms the state-of-the-art bark recognition
approaches in terms of the classification accuracy.

Keywords: Bark recognition - Tree taxonomy classification
Spiral Markov random field model

1 Introduction

Automatic bark recognition is a challenging but practical plant taxonomy appli-
cation which allows fast and non-invasive tree recognition irrespective of the
growing season, i.e., whether a tree has or has not its leaves, fruit, needles, or
seeds or if the tree is healthy growing or just a dead stump. Automatic bark
recognition makes identification or learning of tree species possible without any
botanical expert knowledge through, e.g., using a dedicated mobile application.
Manual identification of a tree’s species based on a botanical key of bark images
is a tedious task which would normally consist of scrolling through a book. Since
bark can not be described as easily as leaves or needles [5,18], the user has to go
through the whole bark encyclopedia looking for the corresponding bark image.

An advantage of bark based features is their relative stability during the cor-
responding tree’s life time. Single shrubs or trees have specific bark which can
be advantageously used for their identification. It enables numerous ecological
applications such as plant resource management or fast identification of invad-
ing tree species. Industrial applications can be in saw mills or bark beetle tree
infestation detection.

1.1 Alternative Bark Recognition Methods

A SVM type of classifier and gray-scale LBP features are used in [1]. Their
dataset is a collection of 40 images per species and there are 23 species, i.e., a
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total of 920 bark color images of local, mostly dry subtropical-climate, shrubs
and trees (acacias, agaves, opuntias, palms). The classifier exploited in [9] is a
radial basis probabilistic neural network. The method uses Daubechies 3rd level
wavelet based features applied to each color band in the Y C,C, color space.
A similar method [8] with the same classifier uses Gabor wavelet features. Both
methods use the same test set which contains 300 color bark images. Gabor
banks features with a narrow-band signal model in 1-NN classifier was proposed
in [4]. The test set has 8 species with 25 samples per tree category. The author
also demonstrates a significant, but expectable, performance improvement when
color information was added. The 1-NN and 4-NN classifier [19] represent bark
textures by the run length, Haralick’s co-occurrence matrix based, and histogram
features. These methods are verified on a limited dataset of 160 samples from 9
species. Authors in [3] propose a rotationally invariant statistical radial binary
pattern (SRBP) descriptor to characterize a bark texture. Four types of multi-
scale LBP features (Multi-Block LBP (MBLBP) with a mean filter, LBP Fil-
tering (LBPF), Multi-Scale LBP (MSLBP) with a low pass Gaussian filter, and
Pyramid-based LBP (PLPB) with a pyramid transform) are used in [2]. Two
bark image datasets (AFF [5], Trunk12 [17]) were used to evaluate the multi-
scale LBP descriptors based bark recognition. The authors observed that multi-
scale LBP provides more discriminative texture features than basic and uniform
LBP and that LBPF gives the best results over all the tested descriptors on
both datasets. The paper [15] proposes a combination of two types of texture
features, the gray-level co-occurrence matrix metrics and the long connection
length emphasis [15] binary texture features. Eighteen tree species in 90 images
are classified using the k-NN classifier. The support vector machine classifier and
multiscale rotationally invariant LBP features are used in [16]. The multi-class
classification problem is solved using the one versus all scheme. The method is
verified on two general texture datasets and the AFF bark dataset [5]. A com-
parison of the usefulness of the run-length method (5 features), co-occurrence
correlation method (100) features for the bark k-NN classification into nine cat-
egories with 15 samples per category is presented in [19]. The method [5] uses
support vector machine classifier with radial basis function kernel applied with
four (contrast, correlation, homogeneity, and energy) gray-level co-occurrence
matrices (GLCM), SIFT based bag-of-words, and wavelet features. The bark
dataset (AFF bark dataset) consists of 1183 images of the eleven most common
Austrian trees (Sect.4). Color descriptor based on three-dimensional adaptive
sum and difference histograms was applied BarTex textures in [13,14].

The majority of the published methods suffer from neglecting spectral infor-
mation and using discriminative and thus approximate textural features only.
Few attempts to use multispectral information [8,9,11,19] independently apply
monospectral features on each spectral band or apply the color LBP features
[7,12]. Most methods use private and very restricted bark databases, thus the
published results are mutually incomparable and of limited information value.
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Fig. 1. The paths of the two “spirals” in an image. Left: octagonal, right: rectangular.
The numbers designate the order in which the pixels 7, i.e., I;® neighborhoods are
traversed and the red square means the center pixel. (Color figure online)

2 Spiral Markovian Texture Representation

The spiral adaptive 2D causal auto-regressive random (2DSCAR) field model
is a generalization of the 2DCAR model [6]. The model’s functional contextual
neighbour index shift set is denoted IS°. The model can be defined in the
following matrix equation:

}/:r :’YZT"’_er, (]‘)

where v = [a1, ..., a,] is the parameter vector, n = cardinality(It®), r = [ri,ra]
is spatial index denoting history of movements on the lattice I, e,- denotes driving
white Gaussian noise with zero mean and a constant but unknown variance o2,
and Z, is a neighborhood support vector of Y,_s where s € I¢°.

All 2DSCAR model statistics can be efficiently estimated analytically [6].
The Bayesian parameter estimation (conditional mean value) 4 can be accom-
plished using fast, numerically robust and recursive statistics [6], given the known

2DSCAR process history YYD ={V, 1Y} o,.... V1,21, Zs_1,..., Z1 }:

’%21 = Vzizltfl)vvzy(tfl)v (2)
Vier = Vier + Vo, (3)

-1 t—1 ¥ ¥
‘;}71 = (Zi—l YuYuT 22:1 YHZE) _ (Vyy(tl) Yzjl;(t—l)> (4)

Sy ZuYE YT Zu 2T Vay—1) Vaz(t-1)

where t is the traversing order index of the sequence of multi-indices, r is based
on the selected model movement in the lattice T (see Fig.1), V; is a positive
definite initialization matrix (see [6]). The optimal causal functional contextual
neighbourhood I¢° can be solved analytically by a straightforward general-
isation of the Bayesian estimate in [6]. The model can be easily applied also
to numerous synthesis applications. The 2DSCAR model pixel-wise synthesis is
simple direct application of (1) for any 2DSCAR model.
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2.1 Spiral Models

The 2DSCAR model’s movement r on the lattice I takes the form of circular
or spiral like paths as seen in Fig.1. The causal neighborhood I¢ has to be
transformed to be consistent for each direction in the traversed path to. The
paths used can be arbitrary as long as they keep transforming the causal neigh-
borhood into IS° in such a way that all neighbors of a control pixel r have
been visited by the model in the previous steps. We shall call all these paths as
spirals further on. We present two types of paths - octagonal (Fig. 1 on the left)
and a rectangular spiral (Fig. 1 - right). During our experiments they exhibited
comparable results with the octagonal path being faster thanks to its consisting
of fewer pixels for the same radius.

After the whole path is traversed, the parameters for the center pixel (shown
as red square in Fig.1) of the spiral are estimated. Contrary to the stan-
dard CAR model [6], since this model’s equations do not need the whole
history of movement through the image but only the given one spiral, the
2DSCAR models can be easily parallelized. If the spiral paths used have circu-
lar shape, the 2DSCAR models exhibit rotational invariant properties thanks to
the CAR model’s memory of all the visited pixels. The spiral neighborhood I¢*
(Fig. 1 - right) is rotationally invariant only approximately. Additional contextual
information can be easily incorporated if every initialization matrix Vy = V;_q,
i.e., if this matrix is initialized from the previous data gathering matrix.

Fig. 2. Examples of images from the individual datasets. Top to bottom (rightwards):
AFF (ash, black pine, fir, hornbeam, larch, mountain oak, Scots pine, spruce, Swiss
stone pine, sycamore maple, beech), BarkTex (betula pendula, fagus silvatica, picea
abies, pinus silvestris, quercus robur, robinia pseudacacia), Trunk12 (alder, beech,
birch, ginkgo biloba, hornbeam, horse chestnut, chestnut, linden, oak, oriental plane,
pine, spruce).

2.2 Feature Extraction

For feature extraction, we analyzed the 2DSCAR model around pixels in each
spectral band with vertical and horizontal stride of 2 to speed up the compu-
tation. The following illumination invariant features originally derived for the
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2DCAR model [6] were adapted for the 2DSCAR:

o =1+21'V;'2, (5)
ar= S (V% —A4Z) N, —AZ,), (6)
ag= [ (V=) X (Y — ), (7)

where p is the mean value of vector Y, and
_ T -1
Ato1 = Vyy(t—l) - sz(tfl)vzz(tfl)'
As the texture features, we also used the estimated v parameters, the posterior
probability density [6]
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and the absolute error of the one-step-ahead prediction
Abs(GE) = |[E{¥. YO0} v, = v = 4, (9)
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Fig. 3. Flowchart of our classification approach.

3 Bark Texture Recognition

To speed up the feature extraction part, we first subsample the images to the
height of 300px (if the image is larger), keeping aspect ratio. This subsampling
ratio depends on an application data, i.e., a compromise between the algorithm
efficiency and its recognition rate. The features are then extracted as described
in Sect. 2. The feature space is assumed to be approximated by the multivariate
Gaussian distribution, the parameters of which are then stored for each training
sample image.
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During the classification stage, the parameters of the Gaussian distribution
are estimated for the classified image as in the training step (the flowchart of
our approach can be seen in Fig. 3). They are then compared with all the distri-
butions of the training samples using the Kullback-Leibler (KL) divergence. The
KL divergence is a measure of how much one probability distribution diverges
from another. It is defined as:

D(f()llg(x)) < / /(@) 1°g£§3d:”'

For the Gaussian distribution data model, the KL divergence can be solved
analytically:

1 X _ -
DU @alo) = 5 (108 |52+ 0r(5557) = d g = )5 g = 1))
We use the symmetrized variant of the Kullback-Leibler divergence known
as the Jeffreys divergence

D.(f(@)[|g(x)) = D(f(x)||g(x)) ;— D(g(@)|lf (@)

The class of the training sample with the lowest divergence from the image
being recognized is then selected as the final result. The advantage of our app-
roach is that the training database is heavily compressed through the Gaussian
distribution parameters (as we extract only about 40 features, depending on
the chosen neighborhood, we only need to store 40 numbers for the mean and
40 x 40 numbers for the covariance matrix) and the comparison with the train-
ing database is extremely fast, enabling us to compare hundreds of thousands of
image feature distributions per second on an ordinary computer.

4 Experimental Results

The proposed method is verified on three publicly available bark databases
and our own bark dataset (not demonstrated here). Examples of images of the
datasets can be seen in Fig. 2. We have used the leave-one-out approach for the
classification rate estimation.

The AFF bark dataset provided by Osterreichische Bundesforste, Austrian
Federal Forests (AFF) [5], is a collection of the most common Austrian trees.
The dataset contains 1182 bark samples belonging to 11 classes, the size of each
class varying between 7 and 213 images. AFF samples are captured at different
scales, and under different illumination conditions.

The Trunkl2 dataset ([17], http://www.vicos.si/Downloads/TRUNK12)
contains 393 images of tree barks belonging to 12 different trees that are found
in Slovenia. The number of images per class varies between 30 and 45 images.
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Table 1. AFF bark dataset results of the presented method (MO - Mountain oak, SP
- Scots pine, SSP - Swiss stone pine, SM - Sycamore maple).

Ash |Beech |Black |Fir |Horn- |Larch|MO |SP |Spruce|SSP |SM |Sensitivity
pine beam (%]
Ash 22 0/0 1 0 0 0 0 0 0 1 91.7
Beech 0 70 0 0 0 0 0 0 0 0 100
B. pine 0 0139 0 0 9 0 8 0 1 0 88.5
Fir 0 00 105 |0 6 0 5 2 0 0 89.0
Horn. 0 01 0 32 0 0 0 0 0 0 97.0
Larch 0 06 0 0 156 |0 27 |0 2 0 81.7
MO 0 00 0 0 1 59 |0 3 5 0 86.8
SP 0 09 1 0 28 0 142 |1 0 0 78.5
Spruce 1 0|3 4 0 181 3 0 88.7
SSP 0 05 2 0 0 4 60 |0 69.0
SM 1 0/0 0 3 0 0 3 2 16.7

Precision [%]|91.7| 100|85.3 92.9/91.4 73.2 |80.8/76.3/94.8 |81.1/66.7| Accuracy
83.6

Bark images are captured under controlled scale, illumination and pose condi-
tions. The classes are more homogeneous than those of AFF in terms of imaging
conditions.

The BarkTex dataset [10] contains 408 samples from 6 bark classes, i.e., 68
images per class. The images have small (256 x 384) resolution and they have
unequal natural illumination and scale.

We have achieved the accuracy of 83.6% on the AFF dataset (Table1), 91.7%
on the BarkTex database (Table 2) and 92.9% on the Trunk12 dataset (Table 3).
In all the three tables, the name of the row indicates the actual tree type whereas
the column indicates the predicted class. The comparison with other methods

Table 2. BarkTex dataset results of the presented method (BP - Betula pendula, FS
- Fagus silvatica, PA - Picea abies, PS - Pinus silvestris, QR - Quercus robur, RP -
Robinia pseudacacia).

BP |FS |PA |PS |QR |RP | Sensitivity (%]

Betula pendula 64 |0 0 0 94.1

Fagus silvatica 0 68 0 100.0

Picea abies 3 62 |0 3 0 91.2

Pinus silvestris 0 0 1 67 |0 0 98.5

Quercus robur 1 9 48 |1 70.6

Robinia pseudacacia | 1 0 0 1 1 65 |95.6

Precision [%)] 92.897.1|88.6 | 84.8|88.9|98.5| Accuracy 91.7
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Table 3. Trunk12 dataset results of the presented method (A - Alder, Be - Beech, Bi
- Birch, Ch - Chestnut, GB - Ginkgo biloba, H - Hornbeam, HC - Horse chestnut, L -
Linden, OP - Oriental plane, S - Spruce).

A Be |Bi |Ch |GB H HC |L Oak | OP | Pine |S Sensitivity
(%]
Alder 33 |0 1 0 |0 0 0 0 0 |0 0 971
Beech 0 29 |0 0 |1 0 0 0 0 |0 0 ]96.7
Birch 0 0 36 |1 0 |0 0 0 0 0 |0 0 |97.3
Chestnut 2 0 0 24 |0 |0 0 0 4 0 |2 0 |75.0
Ginkgo biloba |0 0 0 0 30 |0 0 0 0 0 |0 0 |100
Hornbeam 0 2 0 0 0 |28 |0 0 0 0 |0 0 1]93.3
Horse chestnut |0 0 1 0 0 1 27 |3 0 0 1 0 |81.8
Linden 0 0 0 1 0 |0 4 25 |0 0 |0 0 |83.3
Oak 1 0 0 0 0 |0 0 0 29 |0 |0 0 ]96.7
Oriental plane |0 0 0 1 0 |0 1 0 30 |0 0 ]93.8
Pine 0 0 0 0 0 |0 0 0 |30 |0 |100
Spruce 1 0 0 0 0 |0 0 0 0 0 |0 44 |97.8
Precision [%] |89.2/93.5/94.7|88.9/100/93.3/84.4/89.3/87.9/10090.9 | 100 | Accuracy
92.9

Table 4. Comparison with the state-of-the-art. ‘x’ denotes lack of results in the par-
ticular article on the given dataset.

Dataset (%] | Our results | [3] | [5] |[16] |[7] |[11] |[12] | [14] |[13]
AFF 83.6 60.569.7|96.5 | - - - - -
BarkTex 91.7 84.6 |- - 81.4|84.781.482.1|89.6
Trunk12 92.9 62.8 | - - - - - - -

is presented in Table4. We can see that our approach vastly outperforms all
compared methods on the BarkTex and Trunkl2 datasets and has the second
best results on the AFF dataset.

5 Conclusion

The presented tree bark recognition method uses an underlying descriptive tex-
tural model for the classification features and outperforms the state-of-the-art
alternative methods on two public bark databases and is the second best on the
AFF database. Our method is rotationally invariant, benefits from information
from all spectral bands and can be easily parallelized or made fully illumination
invariant. We have also executed our method without any modification on the
AFF dataset’s images of needles and leaves, with results exceeding 94% accuracy.
This will be a subject of our further research.
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Abstract. Cancer diagnosis and treatment often require a personalized
analysis for each patient nowadays, due to the heterogeneity among the
different types of tumor and among patients. Radiomics is a recent medi-
cal imaging field that has shown during the past few years to be promising
for achieving this personalization. However, a recent study shows that
most of the state-of-the-art works in Radiomics fail to identify this prob-
lem as a multi-view learning task and that multi-view learning techniques
are generally more efficient. In this work, we propose to further investi-
gate the potential of one family of multi-view learning methods based on
Multiple Classifier Systems where one classifier is learnt on each view and
all classifiers are combined afterwards. In particular, we propose a ran-
dom forest based dynamic weighted voting scheme, which personalizes
the combination of views for each new patient to classify. The proposed
method is validated on several real-world Radiomics problems.

Keywords: Radiomics - Dissimilarity + Random forest
Dynamic voting - Multi-view learning

1 Introduction

One of the biggest challenges of cancer treatment is the inter-tumor heterogene-
ity and intra-tumor heterogeneity. It demands for more personalized treatment.
In Radiomics, a large amount of features from standard-of-care images obtained
with CT (computed tomography), PET (positron emission tomography) or MRI
(magnetic resonance imaging) are extracted to help the diagnosis, prediction or
prognosis of cancer [1]. Many medical image studies like [2,3] have already tried
to use quantitative analysis before the existence of Radiomics. However, with the
development of medical imaging technology and more and more available soft-
wares allowing for more quantification and standardization, Radiomics focuses
on improvements of image analysis, using an automated high-throughput extrac-
tion of large amounts of quantitative features [4]. Radiomics has the advantage of
using more useful information to make optimal treatment decisions (personalized
medicine) and make cancer treatment more effective and less expensive [5].
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Radiomics is a promising research field for oncology, but it is also a chal-
lenging machine learning task. In the work [1], the authors identify Radiomics
as a challenge in machine learning for the three following reasons: (i) small
sample size: due to the difficulty in data sharing, most of Radiomics data sets
have no more than 200 patients; (ii) high dimensional feature space: the
feature space for Radiomics data is always very high dimensional compared to
the sample size; (iii) multiple feature groups: different sources and differ-
ent feature extractors are used in Radiomics - the most used features include
tumor intensity, shape, texture, and so on [6] - and it may be hard to exploit
the complementary information brought by these different views [1].

When the three challenges are encountered in a classification task, it can
be seen as an HDLSS (High dimension low sample size) Multi-View learning
task. Now most studies in Radiomics ignore the third challenge and propose
to simply concatenate different feature groups and to use a feature selection
method to reduce the dimension. However, a lot of useful information may be
lost when only a small subset of features is retained [1], and the complementary
information that different feature groups can offer may be ignored [7].

In contrast to the current studies that treat Radiomics data as a single-view
machine learning task, we have proposed in our previous work to cope with
Radiomics complexity using an HDLSS multi-view paradigm [1]: we have used a
naive MCS (Multiple Classifier Systems) based method which turns out to work
well for Radiomics data but not significantly better than the state of the art
methods used in Radiomics. Here we want to further investigate the potential
of the MCS multi-view approach. Hence we propose several less simplistic MCS
based methods including static voting and dynamic voting methods to combine
classification results from different views. Our main contribution in this paper is
thus to propose a new dynamic voting scheme to give a personalized diagnosis
(decision) from Radiomics data. This dynamic voting method is designed for
small sample sized dataset like Radiomics data and uses a large number of trees
in random forest to provide OOB (Out Of Bag) samples to replace the validation
dataset.

The remainder of this paper is organized as follows. Related works in
Radiomics and multi-view learning are discussed in Sect.2. In Sect. 3, the pro-
posed dynamic voting solution is introduced. Before turning to the result analysis
(Sect. 5), we describe the data sets chosen in this study and provide the protocol
of our experimental method in Sect. 4. We conclude and give some future works
in Sect. 6.

2 Related Works

In the state of the art of Radiomics, groups of features are most often concate-
nated into a single feature vector, which results in an HDLSS machine learn-
ing problem. In order to reduce the high dimensionality, some feature selection
methods are used: in the work of [6,8], they used feature stability as a crite-
rion for feature selection While in the work of [9], they used a SVM (Support
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Vector Machine) classifier as a criterion to evaluate the predictive value of each
feature for pathology and TNM clinical stage. Different filter feature selection
methods have also been compared along with reliable machine learning meth-
ods to find the optimal combination [8]. Generally speaking, the embedded fea-
ture selection method SVMRFE shows good performance on different Radiomics
applications [1].

A lot of studies have been done on multi-view learning and according to the
work of [10], there are three main kinds of solutions: early integration, intermedi-
ate integration and late integration. Early integration concatenates information
from different views together and treats it as a single-view learning task [10].
The Radiomics solutions discussed above all belong to this category. Intermedi-
ate integration combines the information from different views at the feature level
to form a joint feature space. Late integration method firstly builds individual
models based on separate views and then combines these models. Compared to
intermediate and late integration methods, early integration always leads to high
dimensional problems and the feature selection methods used in the state of the
art of Radiomics can easily filter a lot of useful information.

In [1], MCS based late integration methods (with simple majority voting)
have shown a big potential and a lot of flexibility on Radiomics data. In this
work, to further investigate the potential of MCS for Radiomics applications,
both static and dynamic combinations are tested. The intuition behind static
weighted voting is that different views have different importances for a clas-
sification task. While the intuition behind proposing dynamic voting methods
is that, due to the heterogeneity among patients, different patients may rely
on different information sources. For example, for a patient A, there may be
more useful information in one view (e.g. texture or shape features) while for
a patient B, there may be more useful information in another view (e.g. inten-
sity or wavelet features). Three dynamic integration methods were considered
in the work of [11]: DS (Dynamic Selection), DV (Dynamic Voting), and DVS
(Dynamic Voting with Selection). The difficulty in multi view combination is
that the number of views is fixed and usually very small. In this case, dynamic
selection methods may not be applicable. Hence, we focus on dynamic voting
method in this work. However, traditional dynamic voting methods demand a
validation dataset [12]. In Radiomics, the data size is too small to have a valida-
tion dataset. In the next section, we propose a dynamic voting method based on
the random forest dissimilarity measure and the Out-Of-Bag (OOB) measure,
without the need of validation dataset.

3 Proposed MCS Based Solutions

As explained in the Introduction, the simple MCS based late integration method
used in [1] has shown a good potential for Radiomics. In this section, we use
several more intelligent voting methods including static voting and dynamic
voting to test if they can get significantly better.

For multi-view learning tasks, the training set T is composed of @Q views:

T@ — {(ng),yl),...,(X%),yN)},q = 1..Q. Generally speaking, the MCS



Dynamic Voting in Multi-view Learning for Radiomics Applications 35

based late integration method builds a classifier C(9) for each view T(9). During
test time, for each test data X;, C? will predict the class label labelg(n of X;.

Finally, the predicted labels from all the views {labelil), labelt@), cee labeng)}
can be combined either by majority voting or weighted voting.

Here Random forest is chosen as the classifier for each view T(9) because it
can deal well with different data types, mixed variables and high dimensional
data [1]. Random forest can also offer the OOB measure, which can be used
as a measure for static weight and also to replace extra validation dataset for
dynamic voting methods. In addition, random forest also provides a proximity
measure, which can be used to calculate the neighborhood of a test sample [13].

Firstly, for each view ¢, a Random Forest H(@ is built with M decision trees,
and is denoted as in Eq. (1):

H(X) = {he(X), k= 1,..., M} (1)

where hy(X) is a random tree grown using bagging and random feature selection.
We refer the reader to [14,15] for more details about this procedure.

For a J-class problem with labelgq) = 4, where ¢ € {1,2,...,J}, a weight
W@ is used for each view ¢ (for the case of majority voting, all W(® = 1). The
final decision is made by:

= M I(labell? = j) x W@ 2
Yt je{m‘i%}(; (labely™ = j) x ) (2)
I() is an indicator function, which equals to 1 when the condition in the paren-
thesis is fulfilled and 0 otherwise.

3.1 WRF (Static Weighted Voting)

To calculate the weights for static voting, we need a measure to reflect the
importance of each view to give a final decision. Usually, the prediction accuracy
over a validation dataset can be used for that. However, Radiomics data have
very small sample size, and it is impossible to have extra validation data. Hence
we propose to use the OOB accuracy of each random forest H(@ as the static
weight W (@) for each view:
W(Q)

static

= OOBaccuracy (H(Q)> (3)

When Bagging is used in a random forest, each bootstrap sample used to learn
a single tree is typically a subset of the initial training set. This means that some
of the training instances are not used in each bootstrap sample (37% in average;
see [16] for more details). For a given decision tree of the forest, these instances,
called the Out-of-bag (OOB) samples, can be used to estimate its accuracy. To
use OOB to measure the accuracy of a random forest, the concept of sub-forest
is used. When the forest size is big, all training data have a high probability
to be an OOB sample at least once. Hence, for each OOB sample Xpop, the
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trees that did not use this data as training sample are grouped together as a
sub-forest Hyup(x005) (which can be seen as a representative of the complete
random forest H) to give a prediction on Xpop. The overall accuracy of the
sub-forests predictions on all OOB samples is then used as OOB accuracy for a
random forest H. We refer the reader to the work of [16] for further information
about OOB measure.

3.2 GDYV (Global Dynamic Voting)

In static voting, we believe that different views have different importances for
classification. However, with dynamic voting, we can personalize this importance
with an assumption that the importances of views are different for different
patients. One easy access to this kind of “personalized” information is the pre-
diction probability of each test sample as it shows generally how confident the
classifier C'? is on the test data.

The predicted class probabilities of a test sample X; for random forest are
computed as the mean predicted class probabilities of the trees in the forest. The
class probabilities of a single tree is the fraction of samples of the same class in
a leaf. The global weight Wg;lqo)bal of view q for each test data X; is simply the
predicted probability (posterior probability obtained from H() for the most
confident class of random forest, which measures the overall confidence rate of
label prediction based on all the training data:

Wil = Pllabel}? | X, H) @)

Wq(fo)bal generally reflects how confident the classifier H(@) is when predicting
the label of a test sample. But it also means the global measure is not very
personalized. To capture more personalized information, we propose in the next

subsection the local weight measure.

3.3 LDV (Local Dynamic Voting)

A local weight usually means the performance or confidence of a classifier in a
smaller neighborhood in validation data of a test sample. It usually demands
two measures: firstly, a distance measure to find the neighborhood; secondly the
competence measure to evaluate the performance of the classifier in the neigh-
borhood. RFD (random forest dissimilarity) in this work is used as a distance
measure to find the neighborhood of a given test sample, while OOB measure is
used to replace the validation dataset.

The RFD measure Dy is inferred from a RF classifier H, learned from train-
ing data T. For each tree in the forest, if two samples end in the same terminal
node, their dissimilarity is 0 otherwise 1. This process goes over all trees in the
forest, and the average value is the RFD value (more details are given in [1]).
It can be told that compared to other dissimilarity measures, RFD takes the
advantage of class information to measure the distance [1].
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To calculate the local weight I/Vl(oqc)al7 RFD is used to find the neighborhood
0x of each test instance X by choosing the most n,cighpor similar instances in
training data. The OOB measure over 0x is then used to calculate the local
weight. Unlike in the work of [11] using OOB to measure the individual tree
accuracy, here OOB is used to measure the performance of the RF classifier.

With 6x, the local weight can be easily calculated with OOB measure:

W(q) = OOBaccuracy (H(q)a 9X) (5)

local —

The idea of local weight here is similar to OLA (Overall Local Accuracy)
used in dynamic selection [12]. There are two main differences: firstly, LDV uses
the random forest dissimilarity as a distance measure which carries both feature
information and class label information while OLA uses Euclidean distance which
may suffer from the concentration of pairwise distance [17] in high dimensional
space; secondly, OLA requires a validation dataset while LDV does not.

3.4 GLDYV (Global and Local Dynamic Voting)

From the previous two subsections, we can see that Wg(fo)bal uses global infor-
mation from all training data and measures the confidence of the classifier. But
it has also the risk of being too generalized and lacks of personalized informa-
tion. On the other hand, Wl(oqc)al uses information on the neighborhood of the
test sample to give a more personalized measure which can better represent the
heterogeneity among cancer patients but may lose the global vision at the same
time. Hence we propose a measure that takes both measures into account.

With each H(@, the global weight W\,

and the local weight Wl(fc)al are
calculated respectively and the combined weight WéqL) is calculated by taking

advantage of both global and local information together:
WL = Wotnar X Wigeu (6)

The reason why we choose to multiply global weight and local weight for
deriving a combined weight, is that, as it is explained previously, Wiopa: lacks

personalized information, but it can be counter-balanced by Wi,cq; to give more
(9)

preference in some situations. For example, when W oo

global ABTEES with W,

; on

a particular view ¢, if both weights are small, then WéqL) becomes even smaller
as we do not have confidence on this view; if both weights get bigger and bigger,

then Wéqg gets closer and closer to both weights, especially local weight. On

the contrary, when Wg(?gbal disagrees with V[/l(oqc)al7 it is hard to make a decision
with a disagreement (as we need prior knowledge to decide to choose global or
local weight); hence we penalize WéqL) as long as there is a disagreement (W((;QL)

is smaller than 0.5) but still with a preference to w9

local”
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4 Experiments

In this study, we use several publicly available Radiomics datasets. A general
description of all datasets can be found in Table1 where IR stands for the
imbalance ratio of the dataset. More details about these datasets can be found
in the work of [18].

Table 1. Overview of each dataset.

#Features | #Samples | #Views | #Classes | IR
nonlDH1 | 6746 84 5 2 3
IDHcodel | 6746 67 5 2 2.94
lowGrade | 6746 75 5 2 14
progression | 6746 75 5 2 1.68

The main objective of the experiment is to compare the state of the art
Radiomics methods to static and dynamic voting methods. In total six methods
are compared: one state of the art Radiomics method, i.e. SVMRFE; two static
weighting methods, i.e. MVRF (combines RF results with majority voting as
in [1]) and WRF (combines RF results with weights as in Sect. 3.1, the weights
are the OOB accuracy of each H(q)); three dynamic weighted voting methods,
i.,e. GDV, LDV and GLDV as described in the previous section.

For the two dynamic voting methods that use local weights, LDV and GLDV,
the neighborhood size npeighpor is set to 7 according to the work of [12]. For
SVMRFE, the number of selected features is defined as in [1] according to the
experiments of [19] and a Random forest classifier is then built on the selected
features. For all random forest classifiers, the tree number is set to 500 while the
other parameters are set to the default values given by the Scikit-Learn package
for Python.

Similar to our previous work [1,7], a stratified repeated random sampling
approach was used to achieve a robust estimate of the performance. The stratified
random splitting procedure is repeated 10 times, with 50% sample rate in each
subset. In order to compare the methods, the mean and standard deviations of
accuracy are evaluated over 10 runs.

5 Results

The results of mean accuracies, along with the corresponding standard deviation,
over the 10 repetitions are shown in Table2. GDV and the two static voting
methods have almost the same results over the four datasets, but these results
are different from the two dynamic weighted voting methods LDV and GLDV.
It is not surprising that there is no difference between MVRF and WRF because
the datasets we use in this work have only five views, which means that there is
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Table 2. Experiment results with 50% training
data 50% test data for Radiomics data

Dataset |SVMRFE MVRF |WRF |GDV |LDV |GLDV é’wv

+RF * e
nonIDH1 |76.28% |82.79%|82.79% |82.79%|76.98% 77.44% miRE

+4.39  |+2.37 |+2.37 |+2.37 |+£1.93 |+2.33 3 B F 3
IDHcodel |73.23%  |76.76%|76.76%|76.76%|74.11% 74.41%

+5.50  |+£2.06 |+£2.06 |+2.06 |+1.17 |+1.3¢  Fig. 1. Pairwise  comparison

lowGrade [62.55% |64.41%|64.41%64.41%64.41%|66.05%  between MCS solutions and SVM-
+3.36 +3.76 |+3.76 |+3.76 |+3.45 |+3.32 RFE. The vertical lines illustrate
progression |62.36% 61.31%|61.31%|61.57%|62.63%62.89% the critical values considering a

+3.73  |+4.25 |+4.25 |+4.27 |+4.37 |+4.62
confidence level o = {0.10,0.05}.
Average  |5.250  |3.250 |3.250 |2.875 |3.875 |2.500

rank

no situation like even votes (the worst case would be 3 against 2). Hence as long
as there is no extremely big difference among performance of different views, the
two static voting methods should have similar results. And the result of GDV
confirms our assumption in the previous section that the global weight alone
does not contain a lot of personalized information. We can also see that there
is a benefit of combining global and local weights as the performance of GLDV
is always better than LDV. From the average ranking value, it can be told that
the best method is the proposed GLDV method, followed by GDV. The state of
the art solution SVMRFE is ranked at the last place.

To see more clearly the difference between MCS based methods and SVM-
RFE, a pairwise analysis based on the Sign test is computed on the number of
wins, ties and losses as in the work of [12]. Figure 1 shows that, when compared to
SVMRFE, only the proposed methods LDV and GLDYV are significantly better
than SVMRFE with o = 0.10 and 0.05. These results show that the MCS based
late integration methods can also be significantly better than the state-of-art
Radiomics solutions.

When we compare GDV, LDV and GLDV, it can be seen that for nonIDH1
and IDHCodel data, the performance of GLDV is between LDV and GDV (LDV
is the worst while GDV is the best). However for the two other datasets, GLDV is
always better than both LDV and GDV, which means that for different datasets,
the best combination of LDV and GDV should be different. To further study the
preference of global weight Wy;ope; and local weight Wieq: for different datasets,
a new combination is formed as:

Wé?new = ( g(;]o)bal)lia X (I/Vl(q) )a (7)

From Eq.7 it can be told that when a = 1, the combination is only affected
by local accuracy while when a = 0 the combination is only affected by global
accuracy. The results of WéqL)new are shown in Table 3, from which we can confirm
our conclusion that for IDHCodell and nonIDH data, they get better results
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Table 3. The results of new combinations WC(;IL)” o With different a value.
Dataset a=0 a=0.1 [a=0.2 (a=0.3 |a=04 |a=0.5 a=0.6 |a=0.7 |a=0.8 |a=0.9 |a=1
(GDV) (LDV)
nonlDH  |82.79%|82.79%|82.79% 82.32% |81.16% |80.23% |79.99% |79.30% |77.90% |77.44% |76.97%
+2.37 |+£2.37 |£2.37 |£2.13 |£3.02 |£2.80 |£3.15 |£2.42 |£2.38 |£2.33 |+1.93
IDHCodell |76.76% | 76.76%|76.76% | 75.88% |75.58% |75.29% |75.29% |75.29% |75.00% |75.00% |74.41%
£2.06 |£2.06 |+2.06 |+£1.76 |£1.34 |£1.44 |+1.44 |+£1.95 |£1.97 |£1.97 |£1.34
lowGrade [64.41% |64.41% |64.41% |64.65% |64.41% |64.41% |64.65% 64.18% |63.48% |63.48% |63.95%
+3.75 |+£3.75 |£3.75 |£3.57 |£3.45 |£3.45 |£3.72 |+£4.18 |£3.75 |+£3.45 |+3.64

progression|61.57% |61.57% |61.84% |62.10% |62.36% |62.10% |62.36% |63.42% |62.89% |62.89% |62.36%
+4.27 |+£4.27 |£3.57 |£3.56 |£3.91 |+4.43 |+4.41 |+4.62 |+£4.77 |+£4.77 |+£4.56

when they use more global weight. For lowGrade and progression data, they get
better results when they use more local weight.

In general, all MCS based late integration methods are better than feature
selection methods. Majority voting is simple and efficient. GLDV is only bet-
ter than majority voting on two datasets. But LDV and GLDV are preferable
for Radiomics applications in the following three ways: (i) they give different
weights of each view to each test sample, so that each test sample uses a dif-
ferent combination of classifiers to give a personalized decision; (ii) they are
significantly better than the state of art work in Radiomics; (iii) the perfor-
mance of GLDV can be further improved by adjusting the proportion of local
weight and global weight. Note that other parameters like the neighborhood size
can also be adjusted to optimize the performance. Compared to static voting,
the disadvantage of dynamic voting is that it is more complex and less efficient.

6 Conclusions

In the state of art works of Radiomics, most studies used feature selection
methods as a solution for the HDLSS problem. In this work, we have treated
Radiomics as a multi-view learning problem and investigated the potential of
MCS based late integration methods, proposed earlier in [1]. In particular, we
have investigated some dynamic voting based MCS methods, that can give each
patient a personalized prediction by dynamically integrating the classification
result from each view. We believe these methods have a great potential and
can significantly outperform early integration methods that make use of feature
selection in the concatenated feature space.

To confirm our hypothesis, a representative early integration method, five
MCS methods including three dynamic voting methods and two static voting
methods, have been compared on four Radiomics datasets. We conclude from
our experiments that all MCS based late integration methods are generally better
than the state of art Radiomics solution, but only LDV and GLDV are signifi-
cantly better, which shows the potential of MCS based late integration methods
of being a better solution than the state-of-art Radiomics solutions.
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Abstract. Recently, deep learning has been widely used for subspace
clustering problem due to the excellent feature extraction ability of deep
neural network. Most of the existing methods are built upon the auto-
encoder networks. In this paper, we propose an iterative framework for
unsupervised deep subspace clustering. In our method, we first cluster
the given data to update the subspace ids, and then update the rep-
resentation parameters of a Convolutional Neural Network (CNN) with
the clustering result. By iterating the two steps, we can obtain not only
a good representation for the given data, but also more precise sub-
space clustering result. Experiments on both synthetic and real-world
data show that our method outperforms the state-of-the-art on subspace
clustering accuracy.

Keywords: Subspace clustering + Unsupervised deep learning
Convolutional Neural Network

1 Introduction

In many computer vision applications, such as face recognition [5,13], texture
recognition [16] and motion segmentation [7], visual data can be well character-
ized by subspaces. Moreover, the intrinsic dimension of high-dimensional data
is often much smaller than the ambient dimension [26]. This has motivated the
development of subspace clustering techniques which simultaneously cluster the
data into multiple subspaces and also locate a low-dimensional subspace for each
class of data.

Many subspace clustering algorithms have been developed during the past
decade, including algebraic [27], iterative [1], statistical [22], and spectral clus-
tering methods [2—4,7,13,15-17,31,32]. Among these approaches, spectral clus-
tering methods have been intensively studied due to their simplicity, theoret-
ical soundness, and empirical success. These methods are based on the self-
expressiveness property of data lying in a union of subspaces. This states that
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each point in a subspace can be written as a linear combination of the remaining
data points in that subspace. One of the typical method falling into this category
is sparse subspace clustering (SSC) [7]. SSC uses the £; norm to encourage the
sparsity of the self-representation coeflicient matrix.

Although those subspace clustering methods have shown encouraging perfor-
mance, we observe that they suffer from the following limitations. First, most
subspace clustering methods learn data representation via shallow models which
may not capture the complex latent structure of big data. Second, the methods
require to access the whole data set as the dictionary, and thus making difficulty
in handling large scale and dynamic data set. To solve these problems, we believe
that deep learning could be an effective solution thanks to its outperforming rep-
resentation learning capacity and fast inference speed. In fact, [19,29,30] have
very recently proposed to learn representation for clustering using deep neural
networks. However, most of them do not work in an end-to-end manner which
however is generally believed to be the major factor for the success of deep
learning [6,12].

In this work, we aim to address subspace clustering and representation learn-
ing on unlabeled images in a unified framework. It is a natural idea to leverage
cluster ids of images as supervisory signals to learn representations and in turn
the representations would be beneficial to subspace clustering. Specifically, we
first cluster the given data to update the subspace ids, and then update the
representation parameters of a Convolutional Neural Network (CNN) with the
clustering result. By iterating the two steps, we can obtain not only a good rep-
resentation for the given data, but also more precise subspace clustering result.

The main contributions of this paper are as follows:

1. We propose a simple but effective end-to-end learning framework to jointly
learn deep representations and subspace clustering result;

2. We formulate the joint learning in a recurrent framework, where merging
operations of subspace clustering are expressed as a forward pass, and repre-
sentation learning of CNN as a backward pass;

3. Experimental results on both synthetic data and real world public datasets
show that our method leads to a improvement in the clustering accuracy
compared with the state-of-the-art methods.

2 Related Work

2.1 Subspace Clustering

The past decade saw an upsurge of subspace clustering methods with various
applications in computer vision, e.g. motion segmentation, face clustering image
processing, multi-view analysis, and video analysis. Particularly, among these
works, spectral clustering based methods have achieved state-of-the-art results.
The key of these methods is to learn a satisfactory affinity matrix C' in which
Cj; denotes the similarity between the i-th and the j-th sample. Given a data
matrix X = [z; € RP]Y, that contains N data points drawn from n subspaces
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{S;}*_,. SSC [7] aims to find a sparse representation matrix C' showing the
mutual similarity of the points, i.e., X = XC. Since each point in S; can be
expressed in terms of the other points in .S;, such a sparse representation matrix
C always exists. The SSC algorithm finds C' by solving the following optimization
problem:

ngn IC]l1 s.t. X =XC, diag(C) =0, (1)

where diag(C') = 0 eliminates the trivial solution. Different works adopt different
regularization on C and three of them are most popular, i.e. /;-norm based
sparsity [7,8], nuclear-norm based low rankness [13,25,28], and Frobenius norm
based sparsity [18,21].

2.2 Deep Learning

During the past several years, most existing subspace clustering methods focus
on how to learn a good data representation that is beneficial to discover the
inherent clusters. As the most effective representation learning technique, deep
learning has been extensively studied for various applications, especially, in the
scenario of supervised learning [10,11]. In contrast, only a few of works have
devoted to unsupervised scenario which is one of major challenges faced by deep
learning [6,12]. In work [24], the authors adopted the auto-encoder network
to clustering. Specifically, Tian et al. [24] proposed a novel graph clustering
approach in the sparse auto-encoder framework. Furthermore, Peng et al. [19]
presented a deeP subspAce clusteRing with sparsiTY prior, termed as PARTY,
by combining the deep neural network and sparsity information of original data
to perform subspace clustering. This framework achieved a satisfactory perfor-
mance while extracting low-dimensional feature in the unsupervised learning.

3 Proposed Method

3.1 Problem Statement

Let X = [z; € RP]Y, € RP*N be a collection of data points drawn from
different subspaces. The goal of subspace clustering is to find the segmentation of
the points according to the subspaces. Based on the self-expressiveness property
of data lying in a union of subspaces, i.e., each point in a subspace can be
written as a linear combination of the remaining points in that subspace, we can
obtain points lying in the same subspace by learning the sparsest combination.
Therefore, we need to learn a sparse self-representation coefficient matrix C,
where X = XC, and Cj; = 0 if the i-th and j-th data points are from different
subspaces.

Our iterative method aims to learn data representations and subspace clus-
tering result simultaneously. We first utilize sparse subspace clustering algorithm
to cluster the given data to update the subspace ids, and then update the rep-
resentation parameters of a Convolutional Neural Network with the clustering
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result. By iterating the two steps, we can obtain not only a good representation
for the given data, but also more precise subspace clustering result.

Notation. We denote the data matrix as X = {x; € RP}Y | that contains N
data points drawn from n subspaces {S;}1 ;. The cluster labels for these data
arey = {y1,..., yN} 0 are the CNN parameters, based on which we obtain deep

representations X = {#1,..., 2y} from X. We add a superscript ¢ to {6, X, X, y}
to refer to their states at tlmebtep t.

3.2 An Iterative Method

We propose a iterative framework to combine the subspace clustering and rep-
resentation learning processes.

__ Asshown in Fig. 1, at the timestep ¢, we first cluster the data representation
X1 to get the subspace cluster labels y'. Then fed X and y' into the CNN to
get representations X¢. Hence, at timestep ¢

y' = 8SC(X') (2)

{X',0") = f(X[|y") (3)

where SSC is the classical sparse subspace clustering method [7], and f is a

function to extract deep representations X1 for input X using the CNN trained
with gt

Bt 0t+1 nnn BT

Fig. 1. The process of our proposed iterative method for deep subspace clustering.
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Fig. 2. An illustration of our updating process for subspace clustering.

Since the initialized clustering result may be not reliable. We start with an
initial over-clustering. As shown in Fig.2, we first cluster the data into 2 sub-
spaces, then increase the cluster number k£ and iterate until reaching a stopping
criterion.

In our iterative framework, we accumulate the losses from all timesteps, which
is formulated as

T

Ly, ..y"50", 071X = > Ly, 6']X) (4)
t=1

L'(y',0'1X) = [|X'~" = X' C|F + AlICH (5)

We assume the number of desired clusters is n. Then we can build up a
iterative process with 7' = n — 1 timesteps. We first cluster the data into 2
subspaces as initial clusters. Given these initial clusters, our method learns deep
representations for the data. Then for the new data representations, we cluster
them into 3 subspaces and learn update representations with the update sub-
space labels. As summarized in Algorithm 1, we iterate this process until the
number of clusters reaches n. In each iterative period, we perform forward and
backward passes to update y and 6 respectively. Specifically, in the forward pass,

Algorithm 1. Tterative method for deep subspace clustering

Input: A set of data points X = {x;};, the number of subspaces n.
Steps:

1.t=1.

2. Initialize y by clustering the data into 2 clusters.

3. Initialize 6 by training CNN with the initialize y.

4. Update y' to '+ by increasing one cluster.

5. Update 6" to #'T! by training CNN.

6.t=t+1.

7. Iterate step 4 to step 6 until £t = n.

Output: Final data representations and subspace clustering result.
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we increase one cluster at each timestep. In the backward pass, we run about 20
epochs to update 6, and the affinity matrix C' is also updated based on the new
representation.

4 Experiments

We have conducted three sets of experiments on both real and synthetic datasets
to verify the effectiveness of the proposed methods. Several state-of-the-art or
classical subspace clustering methods were taken as the baseline algorithms.
These included sparse subspace clustering (SSC) [7], low-rank representation
(LRR) [13], least squares regression (LSR) [14], smooth representation cluster-
ing (SMR) [9], thresholding ridge regression (TRR) [20], Kernel sparse sub-
space clustering (KSSC) [15] and deep subspace clustering with sparsity prior
(PARTY) [19].

Evaluation Criteria: we used the clustering accuracy to evaluate the perfor-
mance of the subspace clustering methods, which is calculated as

# of correctly classified points

100
total # of points x

clustering accuracy =

4.1 Synthetic Data

To verify the effectiveness of our method in the condition that each subspace with
different number of data points, we ran experiments on synthetic data. Follow-
ing [31], we randomly generated n = 5 subspaces, each of dimension d = 6 in an
ambient space of dimension D = 9. Each subspace contains N; data points ran-
domly generated on the unit sphere, where N; € {100,200, 500, 800, 1000, 1500,
2000}, so the number of points N € {500, 1000, 2500, 4000, 5000, 7500, 10000}.
For our iterative method, the total timestep T'=n — 1 = 4, i.e., iterating with
four times. With different number of sample points in each subspace, we con-
ducted experiments on all methods and report the clustering accuracy in Table 1.

As shown in Table 1, the clustering accuracy of our method has an improve-
ment compared with state-of-the-art methods. Our method also outperforms the
deep learning based subspace clustering method [19] by the iterative rule. From
Table 1, it is also clear that when the dataset size increases, our method achieves
more significant improvement than the other methods.

4.2 Face Clustering

As subspaces are commonly used to capture the appearance of faces under vary-
ing illuminations, we test the performance of our method on face clustering
with the CMU PIE database [23]. The CMU PIE database contains 41,368
images of 68 people under 13 different poses, 43 different illumination condi-
tions, and 4 different expressions. In our experiment, we used the face images
in five near frontal poses (P05, P07, P09, P27, P29). Then each people has 170
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Table 1. The subspace clustering accuracy on synthetic data.

Method Number of data points in each subspace
100 200 500 800 1000 1500 2000
SSC [7] 0.9415 | 0.9402 |0.9386 |0.9374 |0.9283 |0.9214 |0.9105

LRR [13] 0.9312 | 0.9323 |0.9284 | 0.9236 |0.9165 |0.9102 |0.9042
LSR [14] 0.9347 | 0.9315 |0.9241 | 0.9179 |0.9124 |0.9085 |0.9012
SMR [9] 0.9431 |0.9418 |0.9347 |0.9285 |0.9221 |0.9120 |0.9116
TRR [20] 0.9613 |0.9585 |0.9562 |0.9523 |0.9485 |0.9436 |0.9414
KSSC [15] 10.9213 | 0.9322 |0.9315 | 0.9236 |0.9152 |0.9103 |0.9021
PARTY [19]  0.9605 |0.9601 |0.9589 |0.9537 |0.9503 | 0.9479 |0.9453
Ours 0.9721 | 0.9754 | 0.9713  0.9685 | 0.9642 | 0.9612  0.9604

face images under different illuminations and expressions. Each image was man-
ually cropped and normalized to a size of 32 x 32 pixels. In each experiment,
we randomly picked n € {5, 10, 20, 30,40, 50,60} individuals to investigate the
performance of the proposed method. Then, for our method, the total timestep
T=n-1=1{4,9,19,29,39,49,59}. For different number of objects n, we ran-
domly chose n people with 10 trials and took all the images of them as the subsets
to be clustered. Then we conducted experiments on all 10 subsets and report
the average clustering accuracy with a different number of objects in Table 2.
In our experiment, the data size is in the range of N € {850, 1700, 3400, 5100,
6800, 8500, 10200}, corresponding to 5-60 objects per face. As shown in Table 2,
the clustering accuracy of other methods degrades drastically when N increases.
But our iterative method only has a slight degrades when N increases. Also, our
method achieves the best clustering accuracy among the existing methods.

Table 2. The subspace clustering accuracy on the CMU PIE database.

Method Different number of objects
5 10 20 30 40 50 60
SSC [7] 0.9247 |0.8925 |0.8431 |0.8345 | 0.8237 |0.8035 |0.7912

LRR [13] 0.9453 |0.8827 |0.8386 |0.8274 |0.8175 |0.8062 |0.8022
LSR [14] 0.9214 |0.9052 |0.8523 |0.8365 |0.8021 |0.7924 |0.7763
SMR [9] 0.9315 | 0.9106 |0.8732 | 0.8512 |0.8228 |0.8112 |0.8052
TRR [20] 0.9735 | 0.9605 |0.9454 | 0.9243 |0.9174 |0.9012 |0.8835
KSSC [15] 10.9621 |0.9532 |0.9201 |0.9023 |0.8837 |0.8413 |0.8105
PARTY [19] 1 0.9655 |0.9529 |0.9358 |0.9125 |0.9015 |0.8921 |0.8845
Ours 0.9675 | 0.9612 | 0.9546  0.9465  0.9384 | 0.9235  0.9068
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4.3 Handwritten Digit Clustering

Database of handwritten digits is also widely used in subspace learning and
clustering. We test the proposed method on handwritten digit clustering with
the MNIST dataset. This dataset contains 10 clusters, including handwritten
digits 0-9. Each cluster contains 6,000 images for training and 1,000 images
for testing, with a size of 28 x 28 pixels in each image. We used all the 70,000
handwritten digit images for subspace clustering. Different from the experimen-
tal settings for face clustering, we fixed the number of clusters n = 10 and
chose different number of data points for each cluster with 10 trials. Each clus-
ter contains N; data points randomly chosen from corresponding 7,000 images,
where N; € {50,100, 500, 1000, 2000, 5000, 7000}, so that the number of points
N € {500, 1000, 5000, 10000, 20000, 50000, 70000}. Then we applied all methods
on this dataset for comparison. For our models, the total timestep T =n—1 =9,
i.e., iterating with 9 times. The average clustering accuracy with different num-
ber of data points are shown in Table 3.

It can be seen that the average clustering accuracy of our method outperforms
the state-of-the-art methods, which indicates the effectiveness of the iterative
rule based deep subspace clustering method.

Table 3. The subspace clustering accuracy on the MNIST dataset.

Method Number of data points in each cluster
50 100 500 1000 2000 5000 7000
SSC [7] 0.8336 |0.8245 |0.8014 |0.7735 |0.7412 |0.7104 |0.6857

LRR [13] 0.8575 |0.8514 |0.8278 |0.8012 |0.7756 |0.7317 |0.7031
LSR [14] 0.8521 |0.8462 |0.8213 | 0.8016 |0.7721 |0.7316 | 0.7041
SMR [9] 0.8362 |0.8325 |0.8102 |0.7836 |0.7524 |0.7231 |0.7014
TRR [20] 0.9028 |0.8978 |0.8621 |0.8345 |0.8012 |0.7754 |0.7371
KSSC [15] | 0.8721 |0.8634 |0.8412 |0.8155 |0.7936 |0.7515 |0.7205
PARTY [19] 1 0.9132 | 0.9105 |0.8923 | 0.8731 |0.8516 |0.8213 |0.8031
Ours 0.9231 | 0.9225 | 0.9105  0.9056 | 0.8934 | 0.8865 | 0.8735

5 Conclusion

We have presented an iterative framework for unsupervised deep subspace clus-
tering. We first cluster the given data to update the subspace ids, and then
update the representation parameters of a Convolutional Neural Network with
the clustering result. By iterating the two steps, we can obtain not only a good
representation for the given data, but also more precise subspace clustering
result. Thanks to the superiority of the deep convolutional neural network in rep-
resentation learning capacity, the subspace clustering accuracy of our iterative
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method achieves significant improvement compared with several state-of-the-art
approaches (SSC, LRR, LSR, SMR, TRR, KSSC and PARTY). Experimental
results on both synthetic and real-world public data show the superiority of our
method. Moreover, by experiments designed with different conditions (different
number of data points in each cluster and different number of clusters), it is
obvious that our method is more scalable for different applications.

In the future work, we aim to solve the efficiency problem. Since the efficiency
of our iterative method suffers for the desired number of clusters, i.e., the number
of iterations.
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Abstract. We extend our recent work on scalable spectral clustering
with cosine similarity (ICPR’18) to other kinds of similarity functions,
in particular, the Gaussian RBF. In the previous work, we showed that
for sparse or low-dimensional data, spectral clustering with the cosine
similarity can be implemented directly through efficient operations on
the data matrix such as elementwise manipulation, matrix-vector multi-
plication and low-rank SVD, thus completely avoiding the weight matrix.
For other similarity functions, we present an embedding-based approach
that uses a small set of landmark points to convert the given data into
sparse feature vectors and then applies the scalable computing frame-
work for the cosine similarity. Our algorithm is simple to implement,
has clear interpretations, and naturally incorporates an outliers removal
procedure. Preliminary results show that our proposed algorithm yields
higher accuracy than existing scalable algorithms while running fast.

1 Introduction

Owing to the pioneering work [10,12,15] at the beginning of the century, spectral
clustering has emerged as a very promising clustering approach. The fundamental
idea is to construct a weighted graph on the given data and use spectral graph
theory [5] to embed data into a low dimensional space (spanned by the top few
eigenvectors of the weight matrix), where the data is clustered via the k-means
algorithm. We display the Ng-Jordan-Weiss (NJW) version of spectral clustering
[12] in Algorithm 1 and shall focus on this algorithm in this paper. For other
versions of spectral clustering such as the Normalized Cut [15], or for a tutorial
on spectral clustering, we refer the reader to [9].

Due to the nonlinear embedding by the eigenvectors, spectral clustering can
easily adapt to non-convex geometries and accurately separate non-intersecting
shapes. As a result, it has been successfully used in many applications, e.g.,
document clustering, image segmentation, and community detection in social
networks. Nevertheless, the applicability of spectral clustering has been limited
to small data sets because of its high computational complexity associated to
the weight matrix W (defined in Algorithm 1): For a given data set of n points,

© Springer Nature Switzerland AG 2018
X. Bai et al. (Eds.): S+SSPR 2018, LNCS 11004, pp. 52-62, 2018.
https://doi.org/10.1007/978-3-319-97785-0_6
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Algorithm 1. (review) Spectral Clustering by Ng, Jordan, and Weiss (NIPS 2001)

Input: Data points X1, ...,%x, € R%, # clusters k, tuning parameter o
Output: A partition of given data into k clusters C1,...,C}
1: Construct the pairwise similarity matrix

X;—X; 2 op . .
W = (w”) c Rnxn wij = eXp(f%)v if 4 7é J
0, ifi=j

2: Form a diagonal matrix D € R"*" with entries Di; = > wi;.

3: Use D to normalize W by the formula W = D~Y/2WD~1/2,

4: Find the top k eigenvectors of W (corresponding to the largest k eigenvalues) and
stack them into a matrix V = [vy]--- |vi] € R"*k,

5: Rescale the row vectors of V to have unit length and use the kmeans algorithm to
group them into k clusters.

the storage requirement for W is O(n?) while the time complexity for computing
its eigenvectors is O(n?).

Consequently, there has been considerable work on fast, approximate spectral
clustering for large data sets [2—4,8,11,14,16-19]. Interestingly, the majority of
them use a selected landmark set to help reduce the computational complexity.
Specifically, they first find a small set of { < n data representatives (called
landmarks) from the given data and then construct a similarity matrix A €
R™*¢ between the given data and selected landmarks (see Fig. 1), which is much
smaller than W. Afterwards, different algorithms use the matrix A in different
ways for clustering the given data. For example, the column-sampling spectral
clustering (cSPEC) algorithm [18] regards A as a column-sampled version of W
and uses the left singular vectors of A to approximate the eigenvectors of W,
while the landmark-based spectral clustering (LSC) algorithm [2] interprets the
rows of A as approximate sparse representations of the original data and applies
spectral clustering accordingly to group them into k clusters.

In our recent work [3] we introduced a scalable implementation of various
spectral clustering algorithms [6,12,15] in the special setting of cosine similarity
by exploiting the product form of the weight matrix. We showed that if the data
is large in size (n) but has some sort of low dimensional structure — either of low
dimension (d) or being sparse (e.g. as a document-term matrix), then one can
perform spectral clustering with cosine similarity solely based on three kinds
of efficient operations on the data matrix: elementwise manipulation, matrix-
vector multiplication, and low-rank SVD. As a result, the algorithm enjoys a
linear complexity in the size of the data.

In this work we extend the methodology in [3] to handle other kinds of
similarity functions, in particular, the Gaussian radial basis function (RBF). Like
most existing approaches, we also start by selecting a small subset of landmark
points from the given data and constructing an affinity matrix A between the
given data and the selected landmarks (see Fig. 1). However, we interpret the



[ skskosksk skekokek
o oo ° ° . T
o o ® ke ° given data o= T
'
oxe .;. o o ° * landmarks : .:: !
(X} e o ok ° = )
° ° ° e o ° s
*eo ° ° mm
oo ok @ ° Il:
° ° ° "
o o oke o ------ dommm o
L] [ ° nm
ok ] e o o ] [N ]
e o o o0k * ° ! omm
° e X ° ° ° . ° , mm
e o 0o 0 0 o o ° [
e o o ik ok ° H LR
* e o o L[] ° 1 (]
° ° . L

Fig. 1. Illustration of landmark-based methods. Left: given data and selected land-
marks; Right: the similarity matrix between them, with the blue squares indicating the
largest entries in each row (which correspond to the nearest landmark points). Here,
both the given data and the landmarks have been sorted according to the true clusters.
(Color figure online)

rows of A as an embedding of the given data into some feature space (RY),
and expect the different clusters to be separated by angle in the feature space.
Accordingly, we apply the scalable implementation of spectral clustering with
the cosine similarity [3] to the rows of A in order to cluster the original data.

The rest of the paper is organized as follows. In Sect. 2 we review our pre-
vious work in the special setting of cosine similarity. We then present in Sect. 3
a new scalable spectral clustering framework for general similarity measures.
Experiments are conducted in Sect. 4 to numerically test our algorithm. Finally,
in Sect. 5, we conclude the paper while pointing out some future directions.

Notation. Vectors are denoted by boldface lowercase letters (e.g., a,b). The
ith element of a is written as a; or a(i). We denote the constant vector of one
(in column form) as 1, with its dimension implied by the context. Matrices
are denoted by boldface uppercase letters (e.g., A,B). The (i,5) entry of A
is denoted by a;; or A(i,j). The ith row of A is denoted by A(¢,:) while its
columns are written as A(:, j), as in MATLAB. We use I to denote the identity
matrix (with its dimension implied by the context).

2 Recent Work

In this section we review our recent work on scalable spectral clustering with the
cosine similarity [3], which does not need to compute the n x n weight matrix
but instead operates directly on the data matrix.

Let X € R™*? be a data set of n points in R? to be divided into k disjoint
subsets by spectral clustering with the cosine similarity. We assume that X is
large in size (n) but satisfies one of the following low-dimension conditions:

(a) d is also large but X is a sparse matrix. This is the typical setting of
documents clustering [1] in which X represents a document-term frequency
matrix under the bag-of-words model.
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(b) d < n (but X can be a full matrix). This is the case for many image data
sets, for instance, the MNIST handwritten digits' (n = 70,000,d = 784).

The two conditions together are fairly general, because for high dimensional
non-sparse data, one can apply principal component analysis (PCA) to embed
them into several hundred dimensions (such that the condition d < n is true).

For the sake of calculating cosine similarity, we assume that the given data
points have nonnegative coordinates (which is true for document and image data)
and are normalized to have unit Lo norm. It follows that the cosine similarity
matrix is given by

W =XXT —1ecR™", (1)

To carry out a scalable implementation of spectral clustering with the above
weight matrix, we first calculate the degree matrix D = diag(W1) as follows
(which avoids the expensive matrix multiplication XXT):

D = diag((XX” —I)1) = diag(X(X*1) — 1). 2)

Next, to find the top k eigenvectors U of the symmetric normalization W =
D~ /?WD~1/2 (but without being given W), we write

W=D ?(xXX” —1)D /2 =XX" -D!, (3)

where X = D~1/2X. Note that the matrix X has the same size and sparsity
pattern with X. If D! has a constant diagonal, then the eigenvectors of W
coincide with the left singular vectors of X, in which case we can compute
U directly based on the rank-k SVD of X. In practical settings when D~!
does not have a constant diagonal, we propose to remove from the given data
a fraction of points that correspond to the smallest diagonal entries of D to
make D~! approximately constant diagonal and correspondingly use the left
singular vectors of X to approximate the eigenvectors of W. Such a technique
can also be justified from an outliers removal perspective, since the diagonal
entries of D measure the connectivity of the vertices on the graph. By removing
low-connectivity points which tend to be outliers, we can improve the clustering
accuracy and meanwhile obtain robust statistics of the underlying clusters.

We summarize the above steps in Algorithm 2, which was first introduced
in [3].

3 Proposed Algorithm

In this section we introduce a new scalable spectral clustering algorithm that
works for any similarity function. However, for the exposition of ideas, we shall
focus on the Gaussian similarity:

HG(X7y) = e_‘|x_§’||2/(2<72)7 A4 X,y € Rd (4)

! Available at http://yann.lecun.com/exdb/mnist/.
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Algorithm 2. (review) Scalable Spectral Clustering with Cosine Similarity

Input: Data matrix X € R"*? (sparse or of moderate dimension, with Ls normalized
rows), # clusters k, fraction of outliers «
Output: Clusters C4,...,Ck and a set of outliers Cp
1: Calculate the degree matrix D = diag(X(X71) — 1) and remove the bottom
(100cx)% of the input data (with lowest degrees) as outliers (stored in Cp).
2: For the remaining data, compute X = D /2X and find its top k left singular
vectors U by rank-k SVD.
3: Normalize the rows of U to have unit length and apply k-means to find k clusters
Ci,y...,Cl.

where o is a parameter to be tuned by the user. When applied to a data set
X1,...,%p € R?% this function generates an n x n symmetric similarity matrix

W = (wij), wij = ka(Xi,X;). (5)

It does not have a product form as in the case of cosine similarity, so we cannot
directly employ the computing techniques presented in Sect. 2.

To deal with the Gaussian similarity, we regard W not as a weight matrix,
but as a feature matrix:

x; €ERY —» W(i,:) eR", 1<i<n. (6)

That is, each x; is mapped to a feature vector (i.e., the ith row of W) containing
its similarity with every point in the whole data set, but having large similari-
ties only with points from the same cluster.? Collectively, different clusters in the
original space are mapped to (nearly) orthogonal locations in the feature space,
so that the original proximity-based clustering problem becomes an angle-based
one. This suggests that we can in principle apply spectral clustering with the
cosine similarity to the row vectors of W to cluster the original data.

To practically realize the above idea, we observe that many of the columns
of W (as features) carry very similar discriminatory information and thus are
highly redundant. Accordingly, we propose to sample a fraction of them for
forming a reduced feature matrix and expect the sampled columns to still contain
sufficient discriminatory information. We also point out that the columns of W
are defined by isotropic Gaussian distributions at different data points x;:

e 012 e —x;012

T
W(:,j)(e 22 ,...,€ 202 ), 1<j<n. (7)

Thus, sampling columns can be thought of as selecting a collection of small,
round Gaussian distributions (to represent the data distribution). Under such a
new perspective, we can relax the Gaussian centers {x;} to be any kind of data

2 This is similarity-based feature representation. Note that there is also work on dis-
similarity representation [7,13].
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representatives (e.g., local centroids). We denote such broadly defined Gaussian
centers by cy,...,cy (for some £ < n) and call them landmark points.

Two simple ways of choosing the landmark points are uniform sampling and
k-means sampling. The former approach samples uniformly at random a subset
of the data as the Gaussian centers while the latter applies k-means to partition
the data into many small clusters and uses their centroids as the landmark points.
The first sampling approach is obviously faster but the second may yield much
better landmark points.

Regardless of the sampling method, we use the selected landmark points to
form a feature matrix A € R"*¢:

2
e

A(i,j) = ka(xi,¢j) = e 27 . (8)

Since £ < n, the rows of A could already be provided directly to Algorithm 2
as input data. To improve efficiency and possibly also accuracy, we propose the
following enhancements before we apply Algorithm 2:

— Sparsification: Due to fast decay of the Gaussian function, we expect each
row A(i,:) to have only a few large entries (which correspond to the nearest
landmark points of x;). To promote such sparsity, we fix an integer s > 1 and
truncate each row of A by keeping only its s largest entries (the rest are set
to zero). This results in a sparse feature matrix with a moderate dimension,
which is computationally very efficient.

— Column normalization. After the row-sparsification step, we normalize
the columns of A to have unit Lo norm in order to give all landmarks equal
importance. This also seems to match the Ly row normalization performed
afterwards for calculating the cosine similarity.

Remark 1. The LSC algorithm [2] uses the same sparsification step on the matrix
A, but based on a sparse coding perspective. It then performs L; row normal-
ization on A, followed by square-root L; column normalization, which is quite
different from what we proposed above.

We now summarize all the steps of our scalable implementation of spectral
clustering with the Gaussian similarity in Algorithm 3.

Algorithm 3. (proposed) Scalable Spectral Clustering with Gaussian Similarity

Input: Data x1,...,%, € R?, # clusters k, landmark sampling method, # landmark
points £, # nearest landmark points s, % outliers o, tuning parameter o

Output: Clusters C1,...,C) and a set of outliers Co

1: Select £ landmark points {c;} by the given sampling method.

2: Compute the feature matrix A € R™** via (8), and apply the two enhancements
in turn: s-sparsification of rows and L2 normalization along columns.

3: Apply Alg. 2 with A as input data along with parameters k and « to partition the
data into k clusters {C;} and an outliers set Co.
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Finally, we mention the complexity of Algorithm 3. The storage requirement
is O(nf) (with uniform sampling) or O(nd) (with k-means sampling). The com-
putational complexity of Algorithm 3 with uniform sampling is O(nflk), as it
takes O(nf) time to compute the feature matrix A and O(nfk) time to apply
Algorithm 2 to cluster the row vectors of A (which have a moderate dimension
?). If k-means sampling is used instead, then it requires O(nd¢) time additionally.

4 Experiments

We conduct numerical experiments to test our proposed algorithm (i.e., Algo-
rithm 3) against several existing scalable methods: ¢SPEC [18], LSC [2], and the
k-means-based approximate spectral clustering algorithm (KASP) [19], which
aggressively reduces the given data to a small set of centroids found by k-means.

We choose six benchmark data sets - usps, pendigits, letter, protein, shuttle,
mnist - from the LIBSVM website? for our study; see Table 1 for their summary
information. These data sets are originally partitioned into training and test
parts for classification purposes, but for each data set we have merged the two
parts together for our unsupervised setting.

Table 1. Data sets used in our study.

Dataset | #pts(n) | #dims(d) | #classes(k) | £ = v/nk/2
usps 9,298 | 256 10 153
pendigits | 10,992 16 10 166
letter 20,000 | 16 26 361
protein 24,387 | 357 3 136
shuttle 58,000 9 7 319
mnist 70,000 | 784 10 419

We implemented all the methods (except LSC*) in MATLAB 2016b and
conducted the experiments on a compute server with 48 GB of RAM and 2
CPUs with 12 total cores. In order to have fair comparisons, we use the same
parameter values and landmark sets (whenever they are shared) for the different
algorithms. In particular, we fix £ = %\/ﬁ for all methods® (see the last column
of Table 1 for their actual values) and s = 6 (for LSC and our algorithm only;
the other two methods KASP and ¢SPEC do not need this parameter). For
our proposed algorithm and LSC, we implement both the uniform and k-means

3 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

4 Code available at http://www.cad.zju.edu.cn/home/dengcai/Data/Clustering.html.

5 This empirical rule is derived as ¢ = % . \/% k= %\/ﬁ, with the intuition that the
value of ¢ should be proportional to both the (average) cluster size and number of
clusters. For the data sets in Table 1, such an ¢ is always a few hundred.
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sampling methods for landmark selection, but for each of KASP and ¢SPEC,
we implement only one of the two sampling methods according to their original
designs: cSPEC(™ (only uniform sampling) and KASP (only kmeans sampling).
Lastly, for the proposed algorithm, we fix the a parameter to 0.01 in all cases,
and set the tuning parameter o as half of the average distance between each
given data point and its sth nearest neighbor in the landmark set.

We evaluate the different algorithms in terms of clustering accuracy and CPU
time (both averaged over 50 replications), with the former being calculated by
first finding the best match between the output cluster labels and the ground
truth and then computing the fraction of correctly assigned labels.

We report the results in Tables2 and 3. Regarding the clustering accuracy,
observe that our proposed algorithm performed the best in the most cases with
each kind of sampling, and was very close to the best methods in all other
cases. Regarding running time, all the methods are more or less comparable,
with our proposed method being the fastest in the case of uniform sampling and
KASP being the fastest when k-means sampling is used. Overall, our proposed
algorithm obtained very competitive and stable accuracy while running fast.

We next study the sensitivity of the parameter s by varying its value from
2 to 12 continuously for LSC and our proposed method (with both sampling

Table 2. Mean and standard deviation (over 50 trials) of the clustering accuracy (%)
obtained by the various methods on the benchmark data sets in Table 1.

Uniform sampling k-means sampling
Proposed | LSC c¢SPEC | Proposed | LSC KASP
usps 61.0+£1.8 |56.14+3.9 |65.84+4.4| 67.842.3 |65.7+5.1 |67.3+4.1

pendigits | 76.1+3.5 | 75.5+4.0 | 74.1+4.8 | 79.1+5.2 | 76.64+4.0 | 68.5+5.2
letter 28.941.3 | 28.34+1.5 | 30.2+1.4 | 29.7+1.3 |29.3+1.2 | 27.34+1.1
protein | 43.9+0.8 | 39.3+2.1 | 43.3+0.3 |42.8+0.7 |38.7£1.1 |44.2+1.7
shuttle |45.1+0.9 |36.3+4.7 |35.64+7.7 |44.2+8.2 |35.0+4.7 | 44.3+7.8
mnist 57.841.6 | 58.04+2.9|54.4+2.2 66.1+2.3 | 68.14+3.8|57.242.3

Table 3. Average CPU time (in seconds) used by the various methods.

Uniform sampling k-means sampling

Proposed | LSC | cSPEC | Proposed | LSC | KASP
usps 3.7 5.8 | 5.6 4.3 571 1.2
pendigits | 3.0 39| 5.5 3.4 46| 09
letter 20.5 16.7 | 42.3 22.3 19.5 | 3.2
protein 2.5 5.7 4.7 5.5 89| 3.7
shuttle 13.4 7.1/11.6 15.4 10.8 | 5.2
mnist 23.1 23.5 | 44.1 42.4 44.9 | 26.7
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schemes). For each data set, we fix £ to the value shown in Table 1. This exper-
iment is also repeated 50 times in order to compute the average accuracy and
time (for different values of s); see Fig.2. In general, increasing the value of s
tends to decrease the accuracy (with some exceptions). Observe also that the
proposed method lies at (or stays close to) the top of every plot for many values
of s, demonstrating its stable and competitive accuracy.
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Fig. 2. Effects of the parameter s. In all plots the color and symbol of each method is
fixed, so only one legend box is displayed in each row (the suffixes '-U’ and -K’ denote
the uniform and k-means sampling schemes, respectively). Since ¢SPEC and KASP do
not need this parameter, we have plotted them as constant lines. (Color figure online)

5 Conclusions and Future Work

We presented a new scalable spectral clustering approach based on a landmark-
embedding technique and our recent work on scalable spectral clustering with
the cosine similarity. Our implementation is simple, fast, and accurate, and is
naturally combined with an outliers removal procedure. Preliminary experiments
conducted in this paper demonstrate competitive and stable performance of the
proposed algorithm in terms of both clustering accuracy and speed.

We plan to continue the research along the following directions: (1) Our pre-
vious work on scalable spectral clustering with the cosine similarity actually
also covers the Normalized Cut algorithm [15] and Diffusion Maps [6], but they
have been left out due to space constraints. Our next step is to implement them
in the case of the Gaussian similarity. (2) In this paper we fix the number of
landmarks by the formula ¢ = % nk, and did not conduct a sensitivity study
of this parameter. We will run some experiments in this aspect and report the
results in a future publication. (3) Our methodology actually assumes a mixture
of Gaussians model for each cluster (when the Gaussian affinity is used), which
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opens a door for probabilistic analysis of the algorithm. We plan to study the
theoretical properties of the proposed algorithm in the near future.
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Abstract. We propose a fast hybrid statistical and graph-based sample
preselection method for speeding up CNN training process. To do so, we
process each class separately: some candidates are first extracted based
on their distances to the class mean. Then, we structure all the candidates
in a graph representation and use it to extract the final set of preselected
samples. The proposed method is evaluated and discussed based on an
image classification task, on three data sets that contain up to several
hundred thousands of images.

Keywords: Convolutional neural network
Training data set preselection - Relative Neighbourhood Graph

1 Introduction

Recently, Convolutional Neural Networks (CNN) [7] have achieve the state-of-
the-art performances in many pattern recognition tasks. One of the property
of the CNN, that allows to achieve very good performance, is the multi-layered
architecture (up to 152 layers for ResNet). Indeed, the additional hidden layers
can allow to learn complex representation of the data, acting like an automatic
feature extraction module. Another requirement to take advantage of CNN is
to have at disposal large amounts of training data, that will be used to build a
refined predictive model. By large amounts, we understand up to several millions
labelled data, that will allow to avoid overfitting and enhance the generalisation
performance of the model.

Nonetheless, the combination of deep neural networks and large amount of
training data implies that substantial computing resources are required, for both
training and evaluation steps. One of the solution that can be considered is the
hardware specialization, such as the usage of graphic processing units (GPU),
field programmable gate arrays (FPGA) and application-specific integrated cir-
cuits (ASIC) like Google’s tensor processing units (TPU). Another solution is
sample preselection in the training data set. Indeed, several reasons can support
the need of reducing the training set: (i) reducing the noise, (ii) reducing storage
and memory requirement and (iii) reducing the computational requirement.
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In a recent work [9], the relevance of a graph-based preselection technique has
been studied and it has been experimentally shown that it allowed to reduce the
training data set up to 76% without degrading the CNN recognition accuracy.
However, one limitation of the proposed method was that the graph computation
time could still be considered as high for large data sets. Hence, in this paper,
we aim at addressing this issue and propose a fast sample preselection technique
to speed up CNN training when using large data sets.

The contributions of this paper are as follows:

1. We propose a hybrid statistical and graph-based approach for preselecting
training data. To do so, for each class, some candidates are first extracted
based on their distances to the class mean. Then, we structure the candidates
in a graph and use it to gather the final set of preselected samples.

2. We discuss the proposed preselection technique, based on experimentation on
three data sets, namely CIFAR-10, MNIST and HW_R-OID (50,000, 60,000
and 740,348 training images, respectively), in image classification tasks.

The rest of the paper is organised as follows: Sect. 2 presents the paradigms
on sample preselection and briefly reminds the work that has been done previ-
ously in [9]. Section 3 presents the proposed hybrid statistical and graph-based
preselection method. The experimentation details are given in Sect.4 and the
results that have been obtained are discussed in Sect. 5. Finally, we conclude this
study in Sect. 6.

2 Related Work

2.1 Training Sample Selection

Several sample selection techniques have been proposed in the literature, to
reduce the size of machine learning training data sets. They can be organised
according to the following three paradigms:

1. “editing” techniques, that aim at eliminating erroneous instances and remove
possible class overlapping. Hence, such algorithms behave as noise filters and
retain class internal elements.

2. “condensing” techniques, that aim at finding instances that will allow to
perform as well as a nearest neighbour classifier that uses the whole training
set. However, as mentioned in [4], such techniques are “very fragile in respect
to noise and the order of presentation”.

3. “hybrid” techniques (editing-condensing), that aim at removing noise and
redundant instances at the same time.

These techniques exploit either: (i) random selection methods [8], (ii) cluster-
ing methods [15] or graph-based methods [12] to perform the sample selection.
One can refer to thorough surveys that have been done recently: in 2012, Garcia
et al. [2] focus on the sample selection for nearest neigbour based classification.
Stratification technique is used to handle large data sets and no graph-based
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Fig. 1. (Left) Relative neighbourhood (grey area) of two points p, g € R2. If no other
point lays in this neighbourhood, then p and ¢ are relative neighbours. (Right) Ilus-
tration of bridge vectors on a toy data set. The bridges vectors are highlighted with
colours and thicker borders. (Color figure online)

techniques has been evaluated. In 2014, Jung et al. [5] shed light on the sample
preselection for Support Vector Machine (SVM) [1] based classification. How-
ever, they evaluated only post-pruning methods, to address issues of application
engineers. As confirmed by the existence of the two aforementioned surveys,
sample selection has been widely studied for the nearest neighbour classifier and
the SVMs However, to the best of our knowledge, no similar studies has been
performed for CNN (or more generally neural networks). Conversely, the studies
that use CNN usually focus on the acquirement of large training data sets, using
crowdsourcing, synthetic data generation or data augmentation techniques.

2.2 Graph-Based Sample Selection

Toussaint et al. [12] have been the first in 1985 to study the usage of a proximity
graph [13] to perform sample selection for nearest neighbour classifiers using
Voronoi diagrams. Following this study, several other proximity graphs have
been used to perform training data reduction such as: the -skeleton, the Gabriel
Graph (GG), and the Relative Neighbourhood Graph (RNG). In this last study,
the authors conclude that the GG seems to be the best fit for sample selection.
More recently Toussaint et al. have used a graph-based selection technique and in
a comparison study [14] against random selection, they conclude that “prozimity
graph is useless for speeding up SVM because of the computation times” and
assert that “a mnaive random selection seems to be better”. However, they only
evaluated their work with a data set of 1641 instances.

In [9], the efficiency of using a condensing graph-based approach to select
samples for training CNN on large data sets has been experimentally shown. To
do so, the RNG, that has been proven a good fit to preselect high-dimensional
samples [14] in large training data sets [3], has been used. The method con-
sisted in: (i) building the RNG of the whole training data set and (ii) extracting
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so-called “bridge vectors”, that correspond to nodes that are linked to another
class node by an edge in the RNG. The bridge vectors are the final set of pre-
selected training samples that are then fed to the CNN. Figure 1 illustrates the
RNG relative neighbourhood definition (left) and the notion of bridge vectors
(right). This preselected set allowed to reduce the training data set up to 76%
without degrading the recognition accuracy, and performed better than random
approaches. However, the RNG computation of the whole training data sets can
remain an issue when dealing with large data sets. Hence, in this study, we aim
at addressing this issue by proposing a fast hybrid statistical and graph-based
preselection method.

3 Fast Hybrid Statistical and Graph-Based Sample
Preselection

Since the issue of the RNG computation is related to the number of data in the
whole training data set, one first idea that comes to mind is to take advantage of
the supervised property of the CNN-based classification, and build an RNG for
each class. Then, the preselection boils down to gather the data that lie in each
class border. However, both exact (e.g. cluster boundaries) and approximative
(e.g. low betweenness centrality nodes) approaches still require high computation
requirements (e.g. all-pair shortest path computation). To address this, we pro-
pose to first extract some candidates for each class using a statistical approach,
and then use a graph-based approach on the candidates subset.

3.1 Frontier Vectors

One of the goal of this study is to preselect samples that are similar to the
bridge vectors presented in 2 (see Fig. 1 (right)). Since these bridge vectors may
lie in the frontiers of classes, we propose to perform a simple statistical-based
candidates selection for each class. To do so, for each class C, we: (i) compute
the mean, uc, (ii) compute the distances of each element z € C to the mean,
0(z, ue), (iii) sort these distances by ascending order, (iv) select elements that
are above a given distance D to the mean.

The elements that are gathered in this way are among the farthest to the
mean, hence they have a better chance to lie in the boundary of the class. The
extracted candidates at this step are later called “frontier vectors” (FV). Figure 2
presents the plots of the sorted distance distribution of the two first classes of
the HW_R-OID data set.

3.2 Automatic Threshold Computation

The last step to gather the frontier vectors of a given class, is to select elements
that are above a given distance D to the mean. Given the shapes of the curves
presented in Fig. 2, it corresponds to select the elements on the right part of
the curve. The issue of the value of D arises: one naive solution could be to set



Fast Sample Preselection for CNN Training 69

Distribution of distances wrt. mean object Distribution of distances wrt. mean object

Distances
=
=
Distances
Y]

0 25000 50000 75000 100000 125000 150000 175000 0 10000 20000 30000 40000 50000 60000
Class objects Class objects

Fig. 2. Distribution of the sorted distances of a given class elements wrt. the class
mean. We present here the distribution only for the two first classes of the largest data
set (HW_R-OID), due to space allowance. The red vertical dotted line corresponds
to the threshold that is obtained using a basic maximum curvature criterion strategy,
and the green one corresponds to one obtained the sliding-window maximum curvature
criterion strategy. (Color figure online)

a value regarding the number of elements of the class. However, this strategy
has two drawbacks: (i) it introduces an empirical parameter that may have an
impact on the results and (ii) it does not fit the observations made during the
study of [9] on the bridge vectors. Indeed, no direct relation was found between
the number of elements of a class and its number of bridge vectors.

To address the automatic computation of this parameter, we propose to use
a maximum curvature criterion. For a given data set, let us consider a given
class C. We denote n the number of elements of C', 1 the mean of C, y the curve
defined by the sorted distances d(x,u) of each element x € C (in ascending
order), and ¥, ¢y the first and second derivative of y, respectively. Then, we
define the curvature criterion v as follows:

1
~y(z) = u_’_zw, where z € [1,n].

A naive strategy consists in finding the index of the maximum curvature
value of y; however, it may result in favouring indices associated to high values,
and will gather only a few number of the class elements. This phenomenon
could be seen in Fig. 2: the red vertical dotted lines correspond to the thresholds
computed using the naive strategy.

To circumvent this problem, we propose to use a sliding window maximum
curvature criterion strategy. Such a strategy has already been used efficiently in
a previous work [10]. Let us define the set of windows W = U1 n—mjWi, where
W; = {wi, ..., wh,}. wi € [1,n] are the indices of window W; and m is the size of
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the windows. Hence, we have |W| =n — m + 1 windows defined on the interval
[1,n]. We then define the window’s curvature ~;:

: Z %%
Yi = ’Y(”i) = mwelh o ’Y(U)) .
weW;

By selecting the maximum curvature over the set of windows, we have:
i* = argmax;c(;_w|}Vi, and thus deduce D = 6(i", p).

Figure 2 illustrates the relevance of the sliding-window maximum curvature
criterion strategy. We have set m = {5 to have a trade-off between the global
and local maximum curvature. For a given data set and a given class, the green
dotted vertical line in the plot corresponds to the value of ¢* that has been
automatically computed.

3.3 Overall Algorithm

Since the frontier vectors correspond to class boundaries, they may appear in
a part of the feature space that do not correspond to classes frontiers. Hence,
we use the bridge vectors extraction, proposed in the study of [9], but only on
the frontier vector subset, addressing the high RNG computation time. Further-
more, this also allows to balance the fact that the proposed automatic threshold
strategy does not extract only the farthest elements of a given class. The bridge
vectors extracted at this step form the final preselected set of samples. We refer
to these samples as “frontier bridge vectors” (FBV) in the rest of the paper.
Algorithm 1 summarises the proposed hybrid statistical and graph-based sam-
ple preselection strategy.

4 Experimental Setup

4.1 Data Sets

To evaluate the proposed preselection method, we have used three data sets.
First, the CIFAR-10 [6] data set is a subset of the Tiny Images [11] data set,
that has been labelled. It consists of ten classes of objects with 6000 images
in each class. The classes are: “airplane, automobile (but not truck or pickup
truck), bird, cat, deer, dog, frog, horse, ship, and truck (but not pickup truck)”,
as per the definition of the data set’s creator. We have used 50,000 images in
the training data set and 10,000 for testing purpose. Second, the MNIST [7]
data set, that corresponds to 28 x 28 binary images of centered handwritten
digits. Ground truth (i.e. correct class label (“07, ..., “97), is provided for each
image. In our experiments, we have used 60,000 images in the training data
set and 10,000 for testing purpose. Last, the HW_R-~OID data set is an original
data set from [16]. It contains 822,714 images collected from forms written by
multiple people. The images are 32 x 32 binary images of isolated digits and
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Algorithm 1. Fast hybrid statistical and graph-based sample preselection
algorithm

Input: DATA // data features per class

Input: 6 // distance function

Output: FBV // final preselected sample list

FV =

for each class c do

n = number of elements in ¢

m=1
Compute class mean p
list =]
for each x € ¢ do
‘ Append §(z, ) to list
end
Sort list (by ascending order)
Compute "
Append elements of ¢ at [i*,n] to FV
13 end
14 RNG = Build graph from FV
15 FBV = Extract BV from RNG

© 00N O AW N

[
N = O

ground-truth is also available. In this data set, the number of the samples of each
class is different but almost the same (between 65,000 and 85,000 samples per
class, except the class “0” that has slightly more than 187,000 samples). In our
experiments, we have split the data set in train/test subsets with a 90/10 ratio
(740,438 training + 82,276 test images). To do so, 90% of each class samples
have been to gathered to build the training subset.

For the three aforementioned data sets, the intensities of the raw pixels have
been used to described the images, and the Euclidean distance has been used to
compute the similarity between two images.

4.2 Workflow

The goal are to evaluate the relevance of the proposed preselection technique,
but also compare its performance to the bridge vectors of the study of [9]. To
do so, five different training subsets have been used for a given data set:

— WHOLE: the whole training data set,

— BV: only the extracted bridge vectors of the RNG build from WHOLE,

FV: only the extracted frontier vectors of WHOLE,

— FBV: only the extracted bridge vectors of the RNG build from FV,

— RANDOMgpy: a random subset of WHOLE, with approximatively the same
size as FBV.
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4.3 CNN Classification

Experiments were done on a computer with a i7-6850K CPU @3.60 GHz, with
64.0 GB of RAM (not all of it was used during runtime), and a NVIDIA GeForce
GTX 1080 GPU. Our CNN classification implementation relies on the usage of
Python (3.6.2), along with the Keras library (2.0.6) and a TensorFlow (1.3.0)
backend.

The same CNN structure and parameters of the study of [9] have been used.
Regarding the CNN architecture, namely modified LeNet-5 is used: the main
difference with the original LeNet-5 [7] is the usage of ReLU and max-pooling
functions for the two CONV layers. As mentioned in [16], it is “a rather shallow
CNN compared to the recent CNNs. However, it still performed with an almost
perfect recognition accuracy” (when trained with a large data set).

No pre-initialisation of the weights is done, and the CNN is trained with
an Adadelta optimiser on 10 epochs for the two handwritten digit data sets,
and an Adam optimiser on 100 epochs for the CIFAR-10 data set. The Adam
optimiser has been chosen for the CIFAR-10 data set to avoid the strong oscillat-
ing behaviour during the training observed when using the Adadelta optimiser.
During our experimentation, both computation times and recognition accuracies
have been measured for further analysis. For each training data sets, experiments
were run 5 times to compute an average value of the aforementioned metrics.

Table 1. BV and F BV preselection strategy computation times (in seconds).

Data set CIFAR-10 | MNIST | HW_R-OID
Data load 2 133 1,397

BV |RNG/BV computation | 211 304 61,270
Total 213 437 62,667
Data load 18 24 1,434

FBYV | Statistical pruning 3 4 147
RNG/BV computation| 9 5 622
Total 40 32 2,203

5 Results

5.1 Preselection Method Computation Times and Data Reduction

One of the goal of the present study is to address the high RNG computation
requirement observed during the preselection phase in large training data sets.
Table 1 presents the computation times of the previous preselection strategy,
namely the bridge vectors, and the one proposed in this study, namely the fron-
tier bridge vectors. For the three data sets, a major speed-up ratio is obtained:
5.33, 13.65 and 28.44 for CIFAR-10, MNIST and HW_R-OID, respectively.
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For the largest data set, it represents a reduction of the preselection compu-
tation time from 17h 25m to 37 m.

Table 2 presents for each data sets, the size of the underlying training data
sets in the first rows. Previously, using the bridge vectors as preselected samples,
we have obtained a reduction of the training data set, up to 76%. By using the
proposed hybrid preselection strategy, we achieve a data reduction that goes
up to 96.57% (for the largest data set). Furthermore, we note that the hybrid
approach, which extracts bridge vectors from the frontier vectors, allows its own
data reduction. Indeed, this step allows to reduced the data, up to 69% between
the F'V and the FBV.

This reduction of the training data set has an expected impact on the CNN
training time, with a speed-up ratio up to 15. The third rows of Table 2 present
the average computation time per epoch.

Table 2. Classification results: (i) size of the training data set, (ii) average recognition
accuracy and (iii) average training time per epoch (in seconds) are presented.

Training data set | WHOLE | BV FV FBV RANDOMFrgv
# training data | 50,000 | 41,221 8,713 6,845 | 6,850
CIFAR-10 | accuracy (%) 76.65 75.17 59.05 |58.63 |61.45

epoch time (s) 42 35 9 7 7
# training data |60,000 |22,257 |6,637 2,876 2,880
MNIST accuracy (%) 98.79 98.78 196.22 |95.25 |94.69
epoch time (s) 24 10 3 2 2
# training data |740,438 |173,808 80,477 | 25,395 |25,397
HW _R-OID | accuracy (%) 99.9343 |99.9314 | 99.7460 | 99.7085 | 99.4307
epoch time (s) 412 107 56 27 27

5.2 Preselection Method Efficiency

Table 2 also presents the average accuracies obtained for all the training data
sets introduced in Sect. 4.2 for the three data sets. Several observations can be
made from these results.

For the two handwritten isolated digit data sets, we have:

WHOLE ~ BV > FV > FBV > RANDOMgpy (1)

Furthermore, the average recognition rates obtained using only the FBV are in
the same order of magnitude to the ones obtained when using the whole train-
ing data set: —3.54% and —0.2258% for MNIST and HW_R-OID, respectively.
However, the same observation can be made for the RANDOMygpy training set,
which may be interpreted as an indicator that either the data sets are lenient
or that the FBV are not discriminative enough on their own in the training of
the CNN.
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For CIFAR-10, we observe a different behaviour that the one mentioned
above. First, the relation described in Eq.1 does not stand. Indeed, the aver-
age accuracy obtained for RANDOMygpgy is higher than both the ones of F'V
and FBV. Furthermore, the degradation in terms of average accuracy between
{WHOLE, BV} and {FV, FBV,RANDOMFrgy } is no more negligible: around
—16%. These results may be due to the strong dissimilarity between this data
set class elements.

6 Conclusion

In this paper, we have proposed a fast sample preselection method for speeding
up convolutional neural networks training and evaluation. The method uses a
hybrid statistical and graph-based approach to reduce the high computational
requirement that was due to the graph computation. Hence, it allows to dras-
tically reduce the training data set while having recognition rate of the same
order of magnitude for two of the studied data sets.

Future works will be to perform experimentation on another data set, to
evaluate the generalisation of the proposed method. We also aim at starting a
formal study on the existence of “support vectors” for CNN.
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Abstract. Inrecent years, the study of Unmanned Aerial Vehicle (UAV)
autonomous landing has been a hot research topic. Aiming at UAV’s
landmark localization, the computer vision algorithms have excellent
performance. In the computer vision research field, the deep learning
methods are widely employed in object detection and localization. How-
ever, these methods rely heavily on the size and quality of the training
datasets. In this paper, we propose to exploit the Landmark-Localization
Network (LLNet) to solve the UAV landmark localization problem in
terms of a deep reinforcement learning strategy with small-sized training
datasets. The LLNet learns how to transform the bounding box into the
correct position through a sequence of actions. To train a robust land-
mark localization model, we combine the policy gradient method in deep
reinforcement learning algorithm and the supervised learning algorithm
together in the training stage. The experimental results show that the
LLNet is able to locate the landmark precisely.

Keywords: Deep reinforcement learning - UAV
Landmark localization

1 Introduction

The Unmanned Aerial Vehicles (UAVs) have many advantages such as low costs,
easy-to-control flight routes and have the ability to automatically complete com-
plex tasks. The combination of UAV and computer vision has extensive appli-
cations in many fields such as public safety, post-disaster rescue, information
collection, video surveillance, transportation management and video shooting [1].
With the continuous development of UAVs, how to land successfully is an impor-
tant part in UAV’s applications. During the UAV’s landing procedure, the land-
mark localization is the first step, which tells the UAV where to land. The
landmark incorrect localization and the low accuracy of landmark localization
are the main reasons that lead to UAV’s landing failure [2]. Therefore, it is of
great value to study the landmark localization of UAVs.
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X. Bai et al. (Eds.): S+SSPR 2018, LNCS 11004, pp. 76-85, 2018.
https://doi.org/10.1007/978-3-319-97785-0_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97785-0_8&domain=pdf

UAV First View Landmark Localization via Deep Reinforcement Learning 77

In recent years, the problem of locating object in videos has been studied
by many researchers, which aims to identify the target object with a bound-
ing box [3,4]. To solve this problem, using convolution neural networks (CNNs)
has attracted a lot of attention [5-7]. Further more, these methods like the R~
CNN proposed by Girshick et al. [8,9] have been proved to have effective perfor-
mance [10,11]. However, due to the difficulties in identification and localization
problems, CNN models [5-7,12,13] require to be trained through a large amount
of labeled training sequences [14]. However, there is no existing training datasets
in the UAV landing scenarios. In contrast, reinforcement learning methods need
relatively less data to train the model.

Reinforcement learning is an important research topic in machine learning.
It does not require training based on samples, but interacts with the external
environment, and receives environmental feedbacks and evaluation results to
select the next action at the next time step. Reinforcement learning is inspired
by the organism’s ability which interacts with the environment through trial
and error mechanisms and learns the optimal strategy by maximizing the sum
of reward [15].

Markov Decision Process (MDP) is a fundamental method in reinforcement
learning. This mathematical frame provides a solution for decision making prob-
lems whose outcomes are partially random and partially under the control of
the decision maker. An MDP has five elements, including a finite set of states S,
a finite set of actions A, the state transition probability Ps,, the reward func-
tion R, and the discount factor . The agent chooses an action according to
the current state, interacts with the environment, observes the next action and
gets a reward. The target of reinforcement learning is to get an optimal policy
for a specific problem, such that the reward obtained under this strategy is the
largest [15].

Deep reinforcement learning combines the perception of deep learning with
the decision-making ability of reinforcement learning. It has the ability to control
agents directly based on input, achieve end-to-end learning, directly learn and
control strategies from high dimensional raw data. Deep reinforcement learning
is an altricial intelligence method that closing to human thinking. The DeepMind
group was among the first to conduct deep reinforcement learning research [16].
Then, DeepMind further developed an improved version of Deep Q Network [17],
which has attracted widespread attention. Deep reinforcement learning is able
to use perceptual information such as vision as input, and then output actions
directly through deep neural networks without hand-crafted features. Deep rein-
forcement learning has the potential to enable agents to fully autonomously learn
one or more skills like human.

Deep Q Network and policy gradient are two popular methods in deep rein-
forcement learning algorithms. The main method of the Deep Q Network algo-
rithm is experience replay, which stores the data obtained from the exploration of
the environment and then randomly sampling the samples to update the param-
eters of the deep neural network. Policy gradient method directly optimizes a
parameterized control policy by a variant of gradient descent [18]. Unlike value
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Fig. 1. State changes by taking a sequence of actions.

function approximation approach that gets policies from estimated value func-
tions indirectly, the policy gradient method maximize the expected return of the
policy. In our model we use the policy gradient method in the reinforcement
learning training stage. In our work, to deal with the problem of landmark local-
ization, we propose an effective method which is inspired by deep reinforcement
learning. Our method is achieved by transforming the bounding box through a
sequence of actions, making the box coincidence with the landmark. In Fig. 1,
we illustrate the steps of the network’s decision process about how to locate the
landmark.

2 Landmark Localization as an Action Dynamic Process

To solve the landmark localization problem, we exploit the LLNet, which con-
trols the sequential actions to locate the target. We describe the architecture
of the LLNet in Fig.2. To initialize our network, we use a small CNN, the pre-
trained VGG-M [19]. As shown in Fig. 2, the LLNet that we proposed has three
convolutional layers. {fc4, fc5} are the next two fully connected layers. The out-
put of the CNN is concatenated with the action history vector h;. The {fc6, fc7}
layer predict the action probability and the confidence score.

state transition

0 D — action

|
’~ cun&«»:wmto
- [[U =
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\

3 conv
o [] —s> confidence hi=fy(h.a)

|
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Fig. 2. Architecture of the proposed LLNet.
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The LLNet is trained by both supervised learning and reinforcement learning.
Training with supervised learning, the LLNet learns how to locate the landmark
when there is no sequential information. The trained network from the super-
vised learning training stage is used as the initial network for the reinforcement
learning training stage. We use the policy gradient method in reinforcement
learning to train action dynamics of the landmark.

2.1 Proposed Approach

To achieve the landmark localization process, we follow the MDP method. In our
landmark localization model, we describe the MDP as a process that the goal of
the agent is to locate the landmark with a bounding box. We consider a single
image as the environment. The way how the agent transforms the bounding box
follows a set of actions. For each image, the agent generates a sequence of actions
until it finally locates the landmark. The agent receives positive and negative
rewards at the last state of the image, the value of the reward is decided by
whether the agent locates the landmark successfully. Specifically, we follow the
deep reinforcement learning scheme [14] to construct our framework.

Action: The set of actions A is defined as an eleven dimensional vector as
shown in Fig.3. Specifically, the actions include four vertical and horizon-
tal actions {left, right, up, down}, their two times larger moves, scale changing
actions {bigger,smaller} and the trigger action to stop the locating process. In
this way, the localization box is able to transform in four degrees of freedom.

PR JLHDAVER

Left Right Up Down Bigger Smaller  Tigger

Fig. 3. The definition of the set of actions A.

State: We describe the state s; as a tuple (i, hy). i; represents the image block
in the localization box. h; € R0 is a binary vector contains the past 10 actions,
whose values are set to be zero except the one takes action. b; is a 4-dimensional
vector and by = [z, y®, w® 1], where (z(*,y®)) represents the center posi-
tion of the box, w® is the width of the bounding box and () is the length of
the box. In each image I, the i; is described as:

State Transition Function: The state transition function includes two parts:
landmark transition function f;(-) and action dynamic function f,(-). The box
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transition function is described as byy1 = fi(bt, a¢). The change of the bounding
box is described as:

Az = aw® and Ay® = al® (2)

in our experiments, we set a to be 0.03.
The action dynamic function f,(-) is described through the action history vector

hy ht+1 = fa(htvat)~

Reward Function: To improve the performance of the agent of locating the
landmark, the reward function is defined as R. It describes the reward that the
agent receives when it takes action a to move to state s;y; from state s;. In our
framework, we use Intersection-over-Union (IoU) between the located landmark
and the bounding box in every image to measure the performance of the model.
IoU(b, g) = area(bn g)/area(bU g).

We use b to represent the located target region and g to represent the ground
truth box of the target object. The reward function is defined as follows:

R (sy) = sign(IoU(b, g) — IoU(b, 9)) (3)

The reward is positive when the IoU improves from state s; to state s;41, and
negative otherwise. The reward function suits any action to transform the box.
When there are no other actions in transforming the bounding box, the agent
then achieves the final step T" and should choose the trigger action. The trigger
action does not change the bounding box, and the IoU is zero at the final step.
Thus, as for the trigger action, the reward function is assigned by

n, if IoU (bp,g) > 7
-, otherwise

R(sr) = { 0
where 7 is the reward for the trigger action, and 7 represents the minimum IoU
allowed. In our experiments, we set n as 1 and 7 as 0.7 during the training
process.

3 LLNet’s Training

In this section, we explain how to train the LLNet with both supervised learning
and reinforcement learning. In the supervised learning stage, the LLNet predicts
an action according to the current state. In the reinforcement learning stage,
we use the pre-trained network from the supervised learning stage as the initial
network and the LLNet is trained by using the policy gradient algorithm [20].

3.1 Supervised Learning Training

While training with the supervised learning, the training image samples includ-
act) cls)

ing three parts: image blocks i;, action labels lj(- and class labels lj(-
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The action dynamic is not taken into consideration in this part of training.
We describe the ground truth box as g. For each training sample image block,
the corresponding action label is defined as follows:

l;aCt) = arg maxlOU(f(%» a), g) (5)

where f (j,a) represents the changed box of i; after taking action a.
The class labels l§»ds) is defined as follows:

l(-CIS) _ 1, if ToU (ij,g) >T (6)
J 0, otherwise

The training batch includes training samples {(ij,l§aCt) l(ds))} . The sam-
j=1"
ples are formed by random selection. We train the LLNet by mmlmizing the

multi-task loss function, defined as:

n

Lsr, ZL l (act) l(act) lz l (cls) l(Cls)) (7)
n
] 1

where n represents the batch size, L represents the cross-entropy loss, and the
(act)

predicted action and class is represented by l and f;ols), respectively.

3.2 Reinforcement Learning Training

While training with reinforcement learning, we train the network parameters
Ngr(ni,...,ng), except the fc7 layer, which is needed in locating phase. The
purpose of reinforcement learning is to learn the state-action policy. At this train-
ing stage, the LLNet uses the training sequence and action dynamics to perform
the simulation. At each iteration, the action history vector h; is updated. In the
training process, the training sequences {I;};~, and the ground truth {g;},~, are
chosen randomly. In the simulation, the network produces a set of states {s;;},
actions {a;;} and rewards {R(s;;)}, | = 1,2,...,m at the steps t = 1,2,...,T;.
At the state s;, the action a;; is defined as:

ag; = arg mgxp(a|st’l;NRL) (8)

where Ngj, represents the initial reinforcement learning network, p(als;,;) rep-
resents the action probability.

When the simulation is finished, the scores of the localization {v;;} are cal-
culated with the ground truth {¢;}. In the final state, the localization score
is v;; = R(st,1). More specifically, the score increases by 1 if the localization
is successful. Otherwise, the score reduces by 1. To maximize the localization
scores, the Ny complies with the following condition:

L T

dlogp(a,|sei; NrL
ANgy o Z Z aZ\)RtL )v“ (9)
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Even if the ground truth is partially known, our framework is still able to train
the LLNet successfully. While training the LLNet with reinforcement learning,
the localization scores {v;;} should be determined. However, in the unlabeled
sequences, it is unable to determined the localization scores. To solve this prob-
lem, we assign the localization scores to the reward obtained from the result of
the simulation.

4 Experiments

In the experiments, we use the captured video with the UAV’s downward looking
camera to train and validate the proposed LLNet. For the training datasets, the
video frames are annotated with the coordinates of the corner of the landmark.
To make a robust landmark localization policy, we use the VOT2015 [21] and 300
captured video frames to train the LLNet. We evaluate the LLNet on other 500
unannounced video frames. The first frame is distortionless, and the landmark
can be localized by the edge detection methods. After that, the LLNet will locate
the landmark through deep reinforcement learning.

Fig. 4. UAV landmark localization results from different heights and rotations.

The results of the experiment are shown in Fig.4. The LLNet is able to
localize the landmark in all testing frames. It means that our LLNet method can
locate the landmark robustly with different heights and rotations. Furthermore,
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Fig. 5. Percentage of frames with respect to the pixel distance between located center
position and the ground truth.

to verify the effectiveness of the LLNet, we compare the performance of LLNet
with other two methods. In Fig. 5 we show the percentage of frames with respect
to the pixel distance of the located center position with that of the ground truth.
For the evaluation, we include the STC [22] and the SCT4 [23]. The results
indicate that the center position located by the LLNet is precise. Focus on the
distance between the located position and the ground truth at the range of 0
to 30 pixels, the LLNet has higher precision than the STC and the SCT4 at all
time. In the experiment of the LLNet there is no more than 30 error pixels in
over 80% testing frames while the percentage of the STC method is only 60%.
The comparison results show that our method achieved the better performance
compared to other methods.

5 Conclusion

In this paper, we have proposed the LLNet to solve UAV landmark localiza-
tion problems. The proposed approach is typically different from other object
localization method. Through our work, reinforcement learning is an efficient
algorithm for object localization problems. The agent is able to learn from its
own history mistakes and find the best policy to locate the landmark position
precisely.
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Abstract. In this paper, we present a method for content-free band
selection and reduction for hyperspectral imaging. Here, we reconstruct
the spectral image irradiance in the wild making use of a reduced set of
wavelength-indexed bands at input. To this end, we use of a deep neural
net which employs a learnt sparse input connection map to select relevant
bands at input. Thus, the network can be viewed as learning a non-linear,
locally supported generic transformation between a subset of input bands
at a pixel neighbourhood and the scene irradiance of the central pixel
at output. To obtain the sparse connection map we employ a variant
of the Levenberg-Marquardt algorithm (LMA) on manifolds which is
devoid of the damping factor often used in LMA approaches. We show
results on band selection and illustrate the utility of the connection map
recovered by our approach for spectral reconstruction using a number of
alternatives on widely available datasets.

1 Introduction

Compared to traditional monochrome and trichromatic cameras, hyperspectral
image sensors can provide an information-rich representation of the spectral
response of materials which poses great opportunities and challenges on material
identification [4]. Furthermore, imaging spectroscopy enables the capture of the
scene irradiance so as to recover the spectral reflectance and illuminant power
spectrum for applications such as material-specific colour rendition [7], accurate
colour reproduction [19] and material reflectance substitution [8]. Furthermore,
the accurate reproduction and capture of the scene colour across different devices
is an important and active area of research spanning color correction [6], camera
simulation [13], sensor design [5] and white balancing [11].

Note that hyperspectral imaging technologies can capture image data in tens
or hundreds of bands covering a broad spectral range. As a result, band reduc-
tion or selection on the spectral image data has been used in order to reduce its
dimensionality for tasks such as unmixing [22], super-resolution [1] and material
classification [9]. Here we note that, band selection is eminently task driven,
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Fig.1. Our approach aims at learning a generic mapping between a subset of
wavelength-indexed bands and the scene irradiance. At training, we use spectral images
to learn a sparse input connection map and a locally supported, non-linear generic
transformation between the subset of wavelength-indexed bands at a pixel neighbour-
hood and its actual spectrum. At testing, the subset of spectral bands are used to
reconstruct the full spectral irradiance.

whereby the task in hand determines the bands to be selected for further con-
sideration. In the other hand, band reduction often aims at preserving the infor-
mation in the spectral image for encoding and compression [3]. Moreover, band
selection is often aimed at removing the redundancy in the image data so as to
reduce the computational burden for encoding, classification and interpretation
tasks whereas dimensionality reduction approaches are often used so as to obtain
a lower-dimensional representation of the image. As a result, these methods often
lack the generality for “content-free” band selection aimed at reconstructing the
image irradiance “in the wild”. This is a major advantage of our algorithm,
which can perform band reduction independently of the image contents.

The work presented here is somewhat related to spectral reconstruction in
the sense that we seek to recover the spectral irradiance from a reduced set of
wavelength indexed bands. Here, however, we aim a developing a “content free”
approach that does not depend upon the application in hand or the sensitivity
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Fig. 2. Proposed framework for learning a spectral reconstruction mapping using only
a reduced set of input bands.

function of a particular trichromatic camera or rendering content. This is impor-
tant since, even when the camera has been radiometrically calibrated, the image
raw colour values are sensor specific [15]. For instance, in [16] the authors pro-
pose an approach to reconstruct the scene’s spectral irradiance by learning a
mapping between spectral responses and their RGB values for a given make and
model of a camera. In [18], the author employs sparse coding and texture fea-
tures to reconstruct the image irradiance assuming the sensitivity functions of
the camera used to acquire the RGB input image are known.

Here we employ a convolutional neural network which, by using a connection
table, can learn a input mapping. In this manner, we learn a generic non-linear
transformation between a subset of wavelength indexed bands and the scene
irradiance such that, once trained, our deep network can be used to obtain scene
irradiance spectra making use of a much reduced set of wavelength indexed
bands, i.e. channels, with a comparable spectral resolution to that of much more
complex hyperspectral cameras.

To the best of our knowledge, there are no similar learning based approaches
aiming to find the relevant input feature maps for band selection. However,
methods such as DropConnect do aim at regularising large fully connected layers
where a set of randomly selected weights is set to zero. In [2], sparse constraints
are used for regularising the training process of a deep neural network. Also, is
worth noting in passing that although connection maps are not currently used,
they were originally introduced in [12] to reduce the number of parameters and,
hence, the complexity of deep networks. In [12], however, the connection map is
a binary one which is used to “disconnect” a random set of feature maps. These
contrast with our method, which aims at recovering a sparse input connection
map with non-binary weights. To some extent, this architecture can be related to
a dropout layer [20]. However, in dropout layers each feature detector is deleted
randomly with a predefined probability and mainly aimed at regularising the
network by removing certain units and back-propagates through the others.
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2 Content-Free Band Selection

In this section we present our approach to learn a generic non-linear transfor-
mation between a subset of wavelength indexed bands and the scene irradiance.
Our approach not only learns the mapping to recover the spectral response of
every pixel in an image but also the optimal subset of bands (input channels) to
perform the reconstruction. Contrary to other methods, our approach is content-
free. That is, a method that does not depend on the application (contents of the
scene) or the camera being used for acquiring the images. As shown in Fig. 1, the
outcome is a model that, given a multispectral camera providing the subset of
wavelengths, can yield scene irradiance spectra that is in close accordance with
that captured by much more complex hyperspectral cameras. A straightforward
application of our algorithm is reducing the cost for obtaining hyperspectral
images while using acquisition sensors with lower number of bands.

2.1 Network Architecture

Our approach is based on the end-to-end architecture shown in Fig. 2 for simulta-
neously learning the parameters to recover the spectra response and optimising
the number of input wavelengths required. Intuitively, we need a procedure that
can disconnect an input component if its contribution is not relevant. In our
particular case, we target disconnecting information provided by an input wave-
length (image channel). To this end, our model introduces a connectivity map
to define whether an input channel is relevant to the process or, in the contrary,
it can be completely removed.

Consider a convolutional layer with convolutional kernel weights W &
Rm*nxdxd and bias b € R™, where n is the number of input channels (bands),
m is the number of outputs and d represents the size of the convolutional kernel.
The output of the ¢ — th neuron z; is related to the input data X according to,

zi =0 (>_(Wi; X +bi)), (1)
J
where o is the activation function which is set to ReLU in our experiments
o(z) = max(0, z).

Our goal is to learn a subset of input channels to recover with high precision
the spectral response of a camera. That is, we aim at reducing the redundancy
existing between input channels and estimating which of them are necessary to
recover the complete spectral response. To this end, we introduce a connectivity
map p to control the influence of each input channel:

zi = U(ij(Winj +b3)), (2)

where p; defines the connectivity of the j-th input channel to the network.
Therefore, setting p; to zero that particular feature map is made redundant
and thus, does not contribute to any of the output feature maps. Note that
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our formulation relaxes the binary constraint placed on selecting the number of
input planes. The entries of our input connectivity map are trainable and can
adopt any real number p; € [0...1] and thus, defining the relevance of the j-th
input channel to the reconstruction of the spectral response.

Our network architecture consists of five convolutional layers followed by
rectifier linear units after every convolution and pooling layers after the first
three convolutional layers. Specific details of the network are shown in Fig. 2.
The output of the network is a N-dimensional feature vector representing the
spectral response of the central pixel of the input patch. The loss is computed
as the mean squared error between the raw output and the spectral response
obtained during the acquisition process.

The parameters of the network and the connectivity map are learned jointly
using an alternating method. First, we fix the connectivity map and learn the
parameters of the network using stochastic gradient descent with momentum.
The loss for training the model is the minimum squared error between the output
of the network, that is, the estimation of the spectral response of the target pixel
and the spectral response of the same target pixel as acquired by the camera.
Then, given a set of parameters for the network, we optimise the connectivity
map enforcing its sparsity using the Levenberg-Marquardt algorithm. We train
the network from scratch and the connection map is initialized to 1. That is, at
the beginning of the process, all input channels are considered.

2.2 Sparse Connection Map Computation

Now, we turn our attention to the computation of a sparse connection map p.
To this end, we aim at solving the optimization problem given by

min {e + )\|p|1}
P

st. p? <7 V p,€EDP
pi>0 V p €Ep

3)

where € is the reconstruction error for the current state of the net, | - |, denotes
the p-norm and A is a scalar that accounts for the contribution of the second
term in Eq. 3 to the minimization in hand. Note that, in the equation above, we
have imposed a positivity constrain on p; and defined 7 as a bounding positive
constant which, in all our experiments, we have set to unity.

For the minimisation of the target function we have used a variant of the
Riemannian Levenberg-Marquardt approach presented in [23]. The Levenberg-
Marquardt Algorithm (LMA) [14] is an iterative trust region procedure [17]
which provides a numerical solution to the problem of minimising a function
over a space of parameters. For purposes of minimising the cost function, we
commence by writing the cost function above in terms of the connection map
entries.

Thus, at each iteration of the optimisation process, the new estimate of the
parameter set is defined as p+d, where § is an increment in the parameter space
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Fig. 3. Spectral irradiance plots for two sample regions on an testing image from the

NUS dataset. In the plots, the trace accounts for the mean spectral irradiance whereas

the error-bars represent the variance of the spectral difference for the corresponding
spectra yielded by our net trained using the Scyllarus dataset imagery with a A = 0.03.

and p is the current estimate of the transformation parameters. To determine
the value of 4§, let g(p) = v/e + A|p|1 be the posterior probability evaluated at
iteration t approximated using a Taylor series such that

g(p+0) =~ \/e+ Ap|L + 70 (4)

where 7 is the Jacobian of 22 (p+5)

The set of equations that need to be solved for § is obtained by equating to
zero the derivative with respect to § of the equation resulting from substituting
Eq. 4 into the cost function. Let the matrix J be comprised by the entries %:5),
i.e. the element indexed j,k of the matrix J is given by the derivative of the
reconstruction error for the j** training sample with respect to the &k element

of the vector p. We can write the resulting equations in compact form as follows
(373)0 = I"G(p) ()

where G(p) is a vector whose elements correspond to the values g(p) for each
of the training instances, i.e. the diagonal coefficients of the connection map.
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In [23], the increment ¢ is computed devoid of the damping factor 3 by
approximating the Hessian on the tangent bundle of the manifold. This yields

1
§=—=0J"[G(p)] (6)
p
where p is the product of the leading eigenpair, i.e. eigenvalue and eigenvector,
of JTJ and o denotes the Hadamard (entry-wise) product.

3 Experiments

In this section, we commence by elaborating on the datasets used in our exper-
iments. Later on, we present a quantitative analysis for our approach and illus-
trate its utility for band selection and spectral reconstruction.

3.1 Datasets

For the experiments presented in this section, we use two widely available hyper-
spectral image datasets of rural and urban environments for both, training and
testing.

NUS Dataset'. This dataset consist of 64 images acquired using a Specim
camera with a spectral resolution of 10 nm in the visible spectrum. It is worth
noting that the dataset has been divided into testing and training sets. Here,
all our experiments have been effected using the split as originally presented in
[16]. Note that using the full set of pixels from the training images is, in practice,
infeasible. As a result, for training our neural network we have randomly selected
2,108,000 pixel patches from the training imagery of the dataset.

Scyllarus Series A Dataset of Spectral Images?. This dataset consists
of 73, 2Mpx images acquired with a Liquid Crystal Tunable Filter (LCTF)
tuned at intervals of 10nm in the visible spectrum. The intensity response was
recorded with a low distortion intensified 12-bit precision camera. For training
and testing, we have used a tenfold random 13-60 image testing-training split.
Similarly to the procedure applied to the NUS dataset, for the training involving
the Scyllarus images, we have selected 230,000 pixel patches.

3.2 Settings

All the spectral reconstructions performed herein cover the range [400nm,
700nm] in 10nm steps. For the computation of all the pseudocolour RGB
imagery shown herein we have made use of the CIE color sensitivity func-
tions [10]. Also, in all our experiments, we have quantified the error using both,

! The dataset can be downloaded from: http://www.comp.nus.edu.sg/~whitebal/
spectral_reconstruction/.
2 Downloadable at: http://www.scyllarus.com.
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Fig. 4. Sample results delivered by our net trained using the Scyllarus dataset on two
sample images, one from the NUS (top row) and another one from the Scyllarus dataset
(bottom row). In each row, from left-to-right: Input images in pseudocolour, images
delivered by our net also in pseudocolour, mean-squared difference and Euclidean angu-
lar error for the two sample images. (Color figure online)

the Euclidean angle in degrees and the absolute difference between the ground
truth and the image irradiance yielded by our network. We opt for this error
measure as it is widely used in previous works [21]. Note that the other error
measure used elsewhere is the RMS error [16]. It is worth noting, however, that
the Euclidean angle and the RMS error are correlated when the spectra is nor-
malised to unit L2-norm. Finally, for training, all patches for both datasets are
32 x 32 pixels.

3.3 Band Reduction Results

We commence by evaluating the capacity of our network to remove spectral
bands from further consideration while being able to recover the full spectral
radiance at output. To illustrate this, in Fig. 3, we show a sample spectral image
from the NUS testing set whose spectra has been recovered by our network.
At training, our net reduced the number of input bands from 31 to 16, i.e. by
approximately 50%. In the figure, we show the spectra delivered by our network
at testing, where the trace accounts fo the mean spectral irradiance whereas the
error-bars represent the variance of the spectral difference. Note that, from the
plots, we can see that the spectral difference is quite small.

We provide further qualitative results on Fig. 4. In the figure, we show a sam-
ple testing image, in pseudocolour, for both datasets, i.e. NUS and Scyllarus, the
mean-squared error and the Euclidean angle difference for the image recovered
by our network using the connection map yielded by setting the upper bound of
the regularisation term weight A to 0.03. For the NUS image, the mean squared
error is in average 1.1 x 1073 with a variance of 5.11 x 10~%. Similarly, the mean
Euclidean angle difference in degrees is 8.34 with a variance of 3.456. For the
sample Scyllarus image, the average mean-squared error and Euclidean angular
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Table 1. Qualitative results yielded by the network using both sets for training and
testing. In the table we show the mean and variance per-pixel Euclidean angle difference
(in degrees) and normalised absolute band difference between the reconstruction yielded
by our network and the testing ground truth imagery for different values of A. The
absolute lowest error per dataset is in bold font for each dataset and training set
option.

Training set|Parameters|Euclidean angle (degrees) |Absolute difference
AT Scyllarus NUS Scyllarus NUS

NUS 0.03/19 6.17 + 13.45(5.34 + 12.53(0.0428 + 1.49 x 10~ |0.0159 + 2.38 x 103
0.05(17 7.47 £15.53 |6.62 £ 12.97 |0.0430 & 1.50 x 1072 [0.0165 + 2.41 x 1073
0.07/16 8.06 + 16.15 (7.53 + 13.25 [0.0433 + 1.52 x 10~2 [0.0169 + 2.42 x 1073
0.09(14 9.98 + 18.23 (8.75 + 14.08 |0.0461 & 1.54 x 10~2 |0.0173 £ 2.45 x 10 °

Scyllarus 0.03/16 7.06 + 15.36 (8.64 + 15.12 [0.0312 £ 1.50 x 1072|0.0163 + 2.55 x 1073
0.05/16 7.28 £15.92 |8.77 £ 15.26 |0.0338 & 1.51 x 10~ [0.0166 + 2.57 x 1073
0.07/15 9.11 + 15.87 [9.78 + 16.18 [0.0346 + 1.51 x 10~2 [0.0168 + 2.58 x 10~ 3
0.09|14 9.23 + 15.39 [9.67 + 16.67 |0.0382 + 1.54 x 102 [0.0172 + 2.61 x 10~°

difference is 5.94 x 1073 and 10.81, respectively with corresponding variance
values of 3.3 x 1074 and 15.52.

In Table 1, we turn our attention to a more quantitative analysis of the results
yielded by our approach. Recall that, as presented in Sect. 2.2, the parameter A
controls the influence of the regularisation term in Eq. 3. Thus, in the table, we
show the angular error and the mean-squared spectral difference for the testing
result on both datasets as a function of both, the value of A and the dataset used
for training. Note that, as expected, the network performs best when A is the
smallest and the training and testing data arise from the same image set. This
is expected since a smaller A preserves more bands, i.e. the regularisation is less
“aggressive”. Nonetheless, as shown in our qualitative and quantitative results,
the network is quite competitive even for larger values of A and cross-dataset
training-testing operations.

4 Conclusions

In this paper we have proposed a generic, content-free, non-linear mapping
between a subset of wavelength indexed bands and the scene reflectance. Our
approach is based on a convolutional neural network that learns the mapping of
a pixel given its neighbourhood. The architecture incorporates a trainable input
connection map to learn the subset of wavelengths that is relevant. Our app-
roach does not depend on the contents of the scene nor on the camera used for
acquiring the images. Our experimental results show that, once the network is
trained, it is capable of recovering the spectral irradiance with a reduced number
of wavelength indexed bands at input. This opens up the possibility of recovering
the spectral irradiance of the scene with a much improved spectral resolution
making use of a reduced number of wavelength indexed bands.
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Abstract. Convolutional neural networks (CNN) have deeply impacted
the field of machine learning. These networks, designed to process objects
with a fixed topology, can readily be applied to images, videos and sounds
but cannot be easily extended to structures with an arbitrary topology
such as graphs. Examples of applications of machine learning to graphs
include the prediction of the properties molecular graphs, or the classifi-
cation of 3D meshes. Within the chemical graphs framework, we propose
a method to extend networks based on a fixed topology to input graphs
with an arbitrary topology. We also propose an enriched feature vector
attached to each node of a chemical graph and a new layer interfacing
graphs with arbitrary topologies with a full connected layer.

Keywords: Graph-CNNs - Graph classification - Graph edit distance

1 Introduction

Convolutional neural networks (CNN) [13] have deeply impacted machine learn-
ing and related fields such as computer vision. These large breakthrough encour-
aged many researchers [4,5,9,10] to extend the CNN framework to unstructured
data such as graphs, point clouds or manifolds. The main motivation for this
new trend consists in extending the initial successes obtained in computer vision
to other fields such as indexing of textual documents, genomics, computer chem-
istry or indexing of 3D models.

The initial convolution operation defined within CNN, uses explicitly the
fact that objects (e.g. pixels) are embedded within a plane and on a regular
grid. These hypothesis do not hold when dealing with convolution on graphs.
A first approach related to the graph signal processing framework uses the link
between convolution and Fourier transform as well as the strong similarities
between the Fourier transform and the spectral decomposition of a graph. For
example, Bruna et al. [5] define the convolution operation from the Laplacian
spectrum of the graph encoding the first layer of the neural network. However this
© Springer Nature Switzerland AG 2018
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Fig. 1. lllustration of our propositions on a graph convolutional network

approach requires a costly decomposition into singular Laplacian values during
the creation of the convolution network as well as costly matrices multiplications
during the test phase. These limitations are partially solved by Defferard et
al. [9] who propose a fast implementation of the convolution based on Chebyshev
polynomials (CGCNN). This implementation allows a recursive and efficient
definition of the filtering operation while avoiding the explicit computation of
the Laplacian. However, both methods are based on a fixed graph structure. Such
networks can process different signals superimposed onto a fixed input layer but
are unable to predict properties of graphs with variable topologies.

Another family of methods is based on a spatial definition of the graph convo-
lution operation. Kipf and Welling [12] proposed a model (CGN) which approx-
imates the local spectral filters from [9]. Using this formulation, filters are no
longer based on the Laplacian but on a weight associated to each component
of the vertices’ features for each filter. The learning process of such weights is
independent of the graph topology. Therefore graph neural networks based on
this convolution scheme can predict properties of graphs with various topologies.
The model proposed by Duvenaud et al. [10] for fingerprint extraction is similar

o [12], but considers a set of filters for each possible degree of vertices. These
last two methods both weight each components of the vertices’ feature vectors.
Verma et al. [17] propose to attach a weight to edges through the learning of
a parametric similarity measure between the features of adjacent vertices. Sim-
ilarly, Simonovsky and Komodakis [15] learn a weight associated to each edge
label. Finally, Atwood and Towsley [1] (with DCNN) remove the limitation of
the convolution to the direct neighborhood of each vertex by considering powers
of a transition matrix defined as a normalization of the adjacency matrix by
vertices’ degrees. A main drawback of this non-spectral approach is that there
exist intrinsically no best way to match the learned convolution weights with
the elements of the receptive field, hence this variety of recent models.

In this paper, we propose to unify both spatial and spectral approaches by
using as input layer a super-graph deduced from a graph train set. In addition,
we propose an enriched feature vector within the framework of chemical graphs.
Finally, we propose a new bottleneck layer at the end of our neural network which
is able to cope with the variable size of the previous layer. These contributions
are described in Sect.2 and evaluated in Sect. 3 through several experiments.
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2 Contributions

2.1 From Symbolic to Feature Graphs for Convolution

Convolution cannot be directly applied to symbolic graphs. So symbols are usu-
ally transformed into unit vectors of {0,1}%!, where £ is a set of symbols, as
done in [1,10,15] to encode atom’s type in chemical graphs. This encoding has
a main drawback, the size of convolution kernels is usually much smaller than
|£]. Combined with the sparsity of vectors, this produces meaningless means
for dimensionality reduction. Moreover, information attached to edges is usually
unused.

Let us consider a graph G = (V, E, 0, ¢), where V is a set of nodes, E C V xV
a set of edges, and o and ¢ functions labeling respectively G’s nodes and edges.
To avoid these drawbacks, we consider for each node u of V' a vector representing
the distribution of small subgraphs covering this node. Let N, denotes its 1-hop
neighbors. For any subset S C N,,, the subgraph M = ({u}US, EN({u}uUs) x
({u} U S),0,¢) is connected (through ) and defines a local pattern of u. The
enumerations of all subsets of N, provides all local patterns of u that can be
organized as a feature vector counting the number of occurrences of each local
pattern. Figure 2 illustrates the computation of such a feature vector. Note that
the node’s degree of chemical graphs is bounded and usually smaller than 4.

During the training phase, the patterns found for the nodes of the training
graphs determine a dictionary as well as the dimension of the feature vector
attached to each node. During the testing phase, we compute for each node of
an input graph, the number of occurrences of its local patterns also present in
the dictionary. A local pattern of the test set not present in the train set is thus
discarded. In order to further enforce the compactness of our feature space, we
apply a PCA on the whole set of feature vectors and project each vector onto a
subspace containing 95% (fixed threshold) of the initial information.

2.2 Supergraph as Input Layer

As mentioned in Sect. 1, methods based on spectral analysis [5,9] require a fixed
input layer. Hence, these methods can only process functions defined on a fixed
graph topology (e.g. node’s classification or regression tasks) and cannot be
used to predict global properties of topologically variable graphs. We propose
to remove this restriction by using as an input layer a supergraph deduced from
graphs of a training set.
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Fig. 3. Construction of a supergraph (b) using common subgraphs induced by the
graph edit distance (a).

A common supergraph of two graphs G and G is a graph S so that both G
and G5 are isomorphic to a subgraph of S. More generally, a common supergraph
of a set of graphs G = {Gy, = (Vi, Ex, 0%, ¢) }e= isagraph S = (Vs, Es, 05, ¢s)
so that any graph of G is isomorphic to a subgraph of S. So, given any two
complementary subsets G, G> C G, with G; UGy = G, it holds that a supergraph
of a supergraph of G; and a supergraph of G, is a supergraph of G. The latter
can thus be defined by applying this property recursively on the subsets. This
describes a tree hierarchy of supergraphs, rooted at a supergraph of G, with
the graphs of G as leaves. We present a method to construct hierarchically a
supergraph so that it is formed of a minimum number of elements.

A common supergraph S of two graphs, or more generally of G, is a minimum
common supergraph (MCS) if there is no other supergraph S’ of G with |Vg/| <
[Vs| or (|Vs/| = |Vs|)A(|Es/| < |Es|). Constructing such a supergraph is difficult
and can be linked to the following notion. A mazimum common subgraph (mcs)
of two graphs Gy and G is a graph Gy, that is isomorphic to a subgraph
ék of G and to a subgraph Gl of (z;, and so that there is no other common
subgraph G’ of both G} and G; with |Va/| > |Vg, | or ([Var| = [V, ]) A
(|Ea| > |Eg,,|)- Then, given a maximum common subgraph Gy, the graph S
obtained from Gy by adding the elements of Gy not in Gy and the elements
of Gy not in G, is a minimum common supergraph of Gy and G;. This property
shows that a minimum common supergraph can thus be constructed from a
maximum common subgraph. These notions are both related to the notion of
error-correcting graph matching and graph edit distance [6].

The graph edit distance (GED) captures the minimal amount of distortion
needed to transform an attributed graph Gy into an attributed graph G; by
iteratively editing both the structure and the attributes of Gy, until G; is
obtained. The resulting sequence of edit operations =y, called edit path, trans-
forms Gy, into G. Its cost (the strength of the global distortion) is measured by
Le(v) = 32 ¢ ¢(0), where c(0) is the cost of the edit operation o. Among all edit
paths from Gy to Gy, denoted by the set I'(G, Gy), a minimal-cost edit path is
a path having a minimal cost. The GED from G} to G; is defined as the cost of
a minimal-cost edit path: d(G, Gi) = min,epr(a,,a,) Le(7)-
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Under mild constraints on the costs [3], an edit path can be organized into a
succession of removals, followed by a sequence of substitutions and ended by a
sequence of insertions. This reordered sequence allows to consider the subgraphs
Gy of Gj, and G, of G;. The subgraph G is deduced from Gy by a sequence of
node and edge removals, and the subgraph Gl is deduced from Gy by a sequence
of substitutions (Fig. 3a) By construction, Gj, and G; are structurally isomor-
phic, and an error-correcting graph matching (ECGM) between Gy, and G| is a
bijective function f : Vk — Vl matching the nodes of Gk onto the ones of G’l
(correspondences between edges are induced by f).

Then ECGM, mcs and MCS are related as follows. For specific edit cost
values [6] (not detailed here), if f corresponds to an optimal edit sequence, then
Gk and Gl are mcs of Gy and G;. Moreover, adding to a mcs of G and G, the
missing elements from G and G, leads to an MCS of these two graphs. We use
this property to build the global supergraph of a set of graphs.

Supergraph Construction. The proposed hierarchical construction of a com-
mon supergraph of a set of graphs G = {G;}; is illustrated by Fig.3b. Each
level k of the hierarchy contains Ny graphs. They are merged by pairs to pro-
duce | N /2| supergraphs. In order to restrain the size of the final supergraph,
a natural heuristic consists in merging close graphs according to the graph edit
distance. This can be formalized as the computation of a maximum matching
M™, in the complete graph over the graphs of G, minimizing:

M* = argmin > dlgi,g)) (1)
(9i,95)EM

where d(-,-) denotes the graph edit distance. An advantage of this kind of con-
struction is that it is highly parallelizable. Nevertheless, computing the graph
edit distance is NP-hard. Algorithms that solve the exact problem cannot be rea-
sonably used here. So we considered a bipartite approximation of the GED [14]
to compute d(-,-) and solve (1), while supergraphs are computed using a more
precise but more computationally expansive algorithm [7].

2.3 Projections as Input Data

The supergraph computed in the previous section can be used as an input layer
of a graph convolutional neural network based on spectral graph theory [5,9]
(Sect. 1). Indeed, the fixed input layer allows to consider convolution operations
based on the Laplacian of the input layer. However, each input graph for which
a property has to be predicted, must be transformed into a signal on the super-
graph. This last operation is allowed by the notion of projection, a side notion
of the graph edit distance.

Definition 1 (Projection). Let f be an ECGM between two graphs G and S
and let (Vg, Eg) be the subgraph of S defined by f (Fig. 3). A projection of G =
(V,E,o,¢) onto S = (Vs, Es,05,¢s) is a graph Pg(G) = (Vs,Es,0p,dp) where
op(u) = (oo f~Y)(u) for any u € Vs and 0 otherwise. Similarly, ¢p({u,v}) =
d({f1(u), f~1(v)}) for any {u,v} in Es and O otherwise.
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Let {G1,...,G,} be a graph training set and S its the associated supergraph.
The projection Pg (G;) of a graph G; induces a signal on S associated to a value
to be predicted. For each node of S belonging to the projection of G;, this signal
is equal to the feature vector of this node in G;. This signal is null outside the pro-
jection of G;. Moreover, if the edit distance between G; and S can be computed
through several edit paths with a same cost (i.e., several ECGM f1, ..., fiu), the
graph G; will be associated to these projections PSJ.C1 (Gi), ... ,Pgm(Gi). Remark
that a graph belonging to a test dataset may also have several projections. In this
case, it is mapped onto the majority class among its projections. A natural data
augmentation can thus be obtained by learning m equivalent representations of
a same graph on the supergraph, associated to the same value to be predicted.
Note that this data augmentation can also be increased by considering pm non-
minimal ECGM, where p is a parameter. To this end, we use [7] to compute a set
of non-minimal ECGM between an input graph G; and the supergraph S and
we sort this set increasingly according to the cost of the associated edit paths.

2.4 Bottleneck Layer with Variable Input Size

A multilayer perceptron (MLP), commonly used in the last part of multilayer
networks, requires that the previous layer has a fixed size and topology. Without
the notion of supergraph, this last condition is usually not satisfied. Indeed, the
size and topology of intermediate layers are determined by those of the input
graphs, which generally vary. Most of graph neural networks avoid this drawback
by performing a global pooling step through a bottleneck layer. This usually
consists in averaging the components of the feature vectors across the nodes of
the current graph, the so-called global average pooling (GAP). If for each node
v € V of the previous layer, the feature vector h(v) € RP has a dimension
D, GAP produces a mean vector (ﬁ > wev e(v))e=1,....p describing the graph
globally in the feature space.

We propose to improve the pooling step by considering the distribution of
feature activations across the graph. A simple histogram can not be used here,
due to its non-differentiability, differentiability being necessary for backpropaga-
tion. To guarantee this property holds, we propose to interpolate the histogram
by using averages of Gaussian activations. For each component ¢ of a given a
feature vector h(v), the height of a bin k of this pseudo-histogram is computed

as follows:
1 —(he(v) = pte)?
i Y exp (<<>2uk>) @)

Ock

bck(h) =

The size of the layer is equal to D x K, where K is the number of bins defined
for each component.

In this work, the parameters p.; and o, are fixed and not learned by the
network. To choose them properly, the model is trained with a GAP layer for
few iterations (10 in our experiments), then it is replaced by the proposed layer.
The weights of the network are preserved, and the parameters u.x are uniformly
spread between the minimum and the maximum values of h.(v). The parameters
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ocr are fixed to ocp = 9,/3 with 8, = piciv1 — fei, V1 < i < K, to ensure an
overlap of the Gaussian activations.

Since this layer has no learnable parameters, the weights «..(¢) of the previous
layer h are adjusted during the backpropagation for every node i € V', according
to the partial derivatives of the loss function L: a(?CL(i) = 3b?kf‘(h) %bfl’:((?)) 228
The derivative of the bottleneck layer w.r.t. its input is given by:

8bck‘(h) o _2(hc(i) — ch) exp (_(hc(z) - ,uck)2> .

Vi eV, (3)

ahc(") B |V|Uzk Jgk
It lies between — Y2 —e~1/2 and Y2 ¢—1/2,
[V]ock [Viock

3 Experiments

We compared the behavior of several graph convolutional networks, with and
without the layers presented in the previous section, for the classification of
chemical data encoded by graphs. The following datasets were used: NCII,
MUTAG, ENZYMES, PTC, and PAH. Table 1 summarizes their main character-
istics. NCI1 [18] contains 4110 chemical compounds, labeled according to their
capacity to inhibit the growth of certain cancerous cells. MUTAG [8] contains
188 aromatic and heteroaromatic nitrocompounds, the mutagenicity of which
has to be predicted. ENZYMES [2] contains 600 proteins divided into 6 classes
of enzymes (100 per class). PTC [16] contains 344 compounds labeled as carcino-
genic or not for rats and mice. PAH' contains non-labeled cyclic carcinogenic
and non-carcinogenic molecules.

3.1 Baseline for Classification

We considered three kinds of graph convolutional networks. They differ by the
definition of their convolutional layer. CGCNN [9] is a deep network based on
a pyramid of reduced graphs. Each reduced graph corresponds to a layer of
the network. The convolution is realized by spectral analysis and requires the
computation of the Laplacian of each reduced graph. The last reduced graph is
followed by a fully connected layer. GCN [12] and DCNN [1] networks do not use
spectral analysis and are referred to as spatial networks. GCN can be seen as an
approximation of [9]. Each convolutional layer is based on F filtering operations
associating a weight to each component of the feature vectors attached to nodes.
These weighted vectors are then combined through a local averaging. DCNN [1]
is a nonlocal model in which a weight on each feature is associated to a hop
h < H and hence to a distance to a central node (H is thus the radius of a ball
centered on this central node). The averaging of the weighted feature vectors is
then performed on several hops for each node.

To measure the effects of our contributions when added to the two spatial
networks (DCNN and GCN), we considered several versions obtained as follows

! PAH is available at: https://iapr-tcl5.greyc.fr/links.html.
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Table 1. Characteristics of datasets. V' and E denotes resp. nodes and edges sets of
the datasets’ graphs, while Vs and Es denotes nodes and edges sets of the datasets’
supergraphs

NCI1 MUTAG ENZYMES | PTC PAH
#graphs 4110 188 600 344 94
mean |V|, mean |E| | (29.9,32.3) | (17.9,19.8) | (32.6,62.1) | (14.3,14.7) | (20.7,24,4)
mean |Vg| 192.8 42.6 177.1 102.6 26.8
mean |Eg| 4665 146 1404 377 79
#labels, #patterns (37,424) (7,84) (3,240) (19,269) (1,4)
F£classes 2 2 6 2 2
#positive, #negative | (2057,2053) | (125, 63) - (152,192) | (59,35)

(Table2). We used two types of characteristics attached to the nodes of the
graphs (input layer): characteristics based on the canonical vectors of {0, 1}l
as in [1,10,15], and those based on the patterns proposed in Sect.1 . Note that
PAH has few different patterns (Table 1), PCA was therefore not applied to this
data to reduce the size of features. Since spatial networks can handle arbitrary
topology graphs, the use of a supergraph is not necessary. However, since some
nodes have a null feature in a supergraph (Definition 1), a convolution performed
on a graph gives results different from those obtained by a similar convolution
performed on the projection of the graph on a supergraph. We hence decided to
test spatial networks with a supergraph. For the other network (CGCNN), we
used the features based on patterns and a supergraph.

For the architecture of spatial networks, we followed the one proposed by [1],
with a single convolutional layer. For CGCNN we used two convolutional layers
to take advantage of the coarsening as it is part of this method. For DCNN,
H = 4. For CGCNN and GCN, F = 32 filters were used. The optimization
was achieved by Adam [11], with at most 500 epochs and early stopping. The
experiments were done in 10 fold cross-validation which required to compute the
supergraphs of all training graphs. Datasets were augmented by 20% of non-
minimal cost projections with the method described in Sect. 2.3.

3.2 Discussion

As illustrated in Table 2, the features proposed in Sect. 2.1 improve the classifi-
cation rate in most cases. For some datasets, the gain is higher than 10% points.
The behavior of the two spatial models (DCNN and GCN) is also improved, for
every dataset, by replacing global average pooling by the histogram bottleneck
layer described in Sect. 2.4. These observations point out the importance of the
global pooling step for these kind of networks.

Using a supergraph as an input layer (column s-g) opens the field of action of
spectral graph convolutional networks to graphs with different topologies, which
is an interesting result in itself. Results are comparable to the ones obtained with
the other methods (improve the baseline models with no histogram layer), but
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Table 2. Mean accuracy (10-fold cross validation) of graph classification by three
networks (GConv), with the features proposed in Sect. 2.1 (feat.) and the supergraph
(s-g). Global pooling (gpool) is done using global average pooling (GAP) or with
histogram bottleneck layer (hist).

GConv |feat.| s-g | gpool | NCI1 | MUTAG | ENZYMES | PTC | PAH
DCNN |- - GAP 62.61 |66.98 18.10 56.60 | 57.18
v - GAP |67.81 |81.74 31.25 59.04 | 54.70
v - hist 71.47 |82.22 38.55 60.43 | 66.90
v v hist 73.95 | 83.57 40.83 56.04 | 71.35
GCN - - GAP |55.44 |70.79 16.60 52.17 |63.12
v - GAP 66.39 |82.22 32.36 58.43 |57.80
v - hist 74.76 | 82.86 37.90 62.78 | 72.80
v v hist 73.02 |80.44 46.23 61.60 | 71.50
CGCNN | v v - 68.36 | 75.87 33.27 60.78 1 63.73

this is a first result for these networks for the classification of graphs. The sizes
of supergraphs reported in Table 1 remain reasonable regarding the number of
graphs and the maximum size in each dataset. Nevertheless, this strategy only
enlarge each data up to the supergraph size.

4 Conclusions

We proposed features based on patterns to improve the performances of graph
neural networks on chemical graphs. We also proposed to use a supergraph as
input layer in order to extend graph neural networks based on spectral theory to
the prediction of graph properties for arbitrary topology graphs. The supergraph
can be combined with any graph neural network, and for some datasets the per-
formances of graph neural networks not based on spectral theory were improved.
Finally, we proposed an alternative to the global average pooling commonly used
as bottleneck layer in the final part of these networks.
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Abstract. Deep metric learning has gained much popularity in recent
years, following the success of deep learning. However, existing frame-
works of deep metric learning based on contrastive loss and triplet loss
often suffer from slow convergence, partially because they employ only
one positive example and one negative example while not interacting with
the other positive or negative examples in each update. In this paper,
we firstly propose the strict discrimination concept to seek an optimal
embedding space. Based on this concept, we then propose a new metric
learning objective called Margin-based Discriminate Loss which tries to
keep the similar and the dissimilar strictly discriminate by pulling multi-
ple positive examples together while pushing multiple negative examples
away at each update. Importantly, it doesn’t need expensive sampling
strategies. We demonstrate the validity of our proposed loss compared
with the triplet loss as well as other competing loss functions for a variety
of tasks on fine-grained image clustering and retrieval.

Keywords: Metric learning - Deep embedding
Representation learning * Neural networks

1 Introduction

Metric learning for computer vision aims at finding appropriate similarity mea-
surements between pairs of images that preserve distance structure. A good
similarity can improve the performance of image search, particularly when the
number of categories is very large [12] or unknown. The goal of classical met-
ric learning methods is to find a better Mahalanobis distance in linear space.
However, linear transformation has a limited number of parameters and can-
not model high-order correlations between the original data dimensions. With
the ability of directly learning non-linear feature representations, deep metric
learning has achieved promising results on various tasks, such as face recogni-
tion [16,17], feature matching [9,18], visual product search [13-15], fine-grained
image classification [19,20], collaborative filtering [11,22] and zero-shot learning
[10,21].
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A wide variety of formulations have been proposed. Traditionally, these for-
mulations encode a notion of similar and dissimilar data points. For example,
contrastive loss [23], which is defined for a pair of either similar or dissimilar
data points. Another commonly used family of losses is triplet loss [5], which is
defined by a triplet of data points: an anchor point, and a similar and dissim-
ilar data points. The goal in a triplet loss is to learn a distance in which the
anchor point is closer to the similar point than to the dissimilar one. Although
yielding promising progress, such frameworks often suffer from slow convergence
and poor local optima and their effects heavily depend on sampling strategies.
Hard negative data mining [5] could alleviate the problem, but it is expensive
to evaluate embedding vectors in deep learning framework during hard negative
example search.

To circumvent these issues, we firstly propose the strict discrimination con-
cept to seek the optimal embedding space on the entire database. Based on this
concept, we then propose a new metric learning objective called Margin-based
Discriminate Loss which aims to keep similar examples and dissimilar examples
strictly discriminate. The proposed loss function pulls more than one positive
examples together while pushing more than one negative examples away at a
time. Our method doesn’t require the training data to be preprocessed in any
rigid format. The proposed method is extensively evaluated on three benchmark
datasets and the results show its superiority to several other state-of-the-art
methods.

2 Related Works

2.1 Triplet Loss

The goal of triplet loss [5] is to push away the negative point ™~ from the anchor
z by a distance margin mgy > 0 compared to the positive 2.

Livipiet({z, 2,27} f(50)) = max{0,mo + || f = fHE - If = f7I3} (1)

where f, fT, f~ denote the deep embedding vector of x, z™, z~ respectively.

2.2 Lifted Structured Embedding

Song et al. [3] proposed lifted structured embedding where each positive pair
compares the distances against all the negative pairs weighted by the margin
constraint violation. The idea is to have a differentiable smooth loss which incor-
porates the online hard negative mining functionality using the log-sum-exp for-
mulation.

— .. 2
L= m 'meax((),jm)
(i,9)€ (2)

915 =1log( > exp{mo—Dix}+ > exp{mg—D;;})+ Dy
(i,k)EN (4,))eN
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Fig. 1. Deep metric learning with triplet loss (left) and margin-based discriminate
loss (right). The yellow, the black and the red stands for the anchor, the positive
and the negative respectively. Triplet loss pulls positive example while pushing one
negative example at a time. However, margin-based discriminate loss tries to keep a
strict margin between the positive and the negative so as to get the optimal distribution
with a minimum constraint by pulling multiple positive examples while jointly pushing
multiple negative examples. (Color figure online)

where P denotes the set of pairs of examples with the same class label, N indi-
cates the set of pairs of examples with different labels and D denotes Euclidean
distance between examples.

2.3 N-Pair Loss

Sohn et al. [4] extended the triplet loss into N-pair loss, which significantly
improves upon the triplet loss by pushing away multiple negative examples
jointly at each update.

N—-1

Ly—pair({, etz } 7 £(50)) = log(1+ Y exp(fTfi = fTfY)  (3)

i=1

3 Margin-Based Discriminate Loss

Inspired by the max-min margin for the optimal classification plane in Support
Vector Machines (SVM) [2], we want to utilize margin constraint to seek an opti-
mal embedding space to preserve similarity structure. In the optimal embedding
space, the distribution of the embedding vectors should at least have the follow-
ing property. For each data point, similar points and dissimilar points should be
strictly separated, which prevents that the dissimilar points are mistaken for the
similar ones. Importantly, it means that no errors happen in the following tasks
such as retrieval, clustering, etc. Precisely, it means that, as depicted in Fig. 1,
the distance between the closest negative data point and the anchor is at least
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myg greater than the distance between the farthest positive data point and the
anchor.

min{d(f, f;)}12, — max{d(f, f})}2, = m (4)

where d(x,y) = ||z —y||3, the positive constant mq denotes the margin distance,
and n; and n; are the number of the positive 2 and the negative 2~ respectively.
To enforce the above constraint, a common relaxation of Eq. 4 is the minimization
of the following hinge loss,

L(x, o}ty {25 1520 £ (5 ))
= max{0, mo + max{d(f, ;" )}, — min{d(f, f; )}?;1}

where © are deep network parameters.

If we directly mine the hardest negative(positive) with nested min(max) func-
tions during the training phase, the network parameters are updated only based
on the similarity relations between three examples (the anchor, the hardest pos-
itive and the hardest negative). In that case, the other examples may not jointly
change to make the loss (Eq.5) decrease after each update, which is greatly
unstable to learn the optimal embedding. And, empirically, it is a poor choice
because the network usually converges to a bad local optimum in practice. To
circumvent the issue, we replace max/min function with their smooth upper
bounds which can make the loss (Eq. 5) decrease steadily by imposing constraints
on multiple examples.

(5)

1 n
% In Z exp(Kwz;) — max{z;};_,

n

= (1t Y exp(K(r — max{ri),))) ©)

7:3éi7naz
< 1
— n
K

where the parameter K controls the approximate degree. Eq. 6 is always greater
than 0 and & InY_" | exp(Kz;) is a compact upper bound of max{z;}? ;.

n 1 -
max{z; i, < 174 aneXp(Kxi) (7)

=1

According to Eq. 7, we can derive the following.

—min{x;}7; = max{—z;}]-, < %aneXp(—Kwi) (8)

i=1
Hence we can derive the smooth upper bound of the loss function by substituting
the max and min functions in Eq.5 as follows.

L <In(1+ exp{mo +max{d(f, ;") }i=, — min{d(f, f;)}"1})

<In(1 ZeprHf f+|\ ZGXP —K||f - f_||2)) ®)
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In this way, the loss function pulls n; positive examples together while pushing
n; negative examples away at a time. Compared with triplet loss, it preserves
the similarity structure of much more than three examples. Intuitively, the more
examples are taken into account, the more global structure the loss function is
aware of. Then the upper bound is used as loss function to optimize. To make
full use of the batch, we rewrite the loss function to enhance the mini-batch
optimization.

MNmi Nmj

> exp(K||fm — £7113) Y exp(=K||fm — £;13)  (10)
i=1 j=1

M ™Mo
L=> I+ —;
m=1 K

where M is the batch size. It seems that the computation is complicated. To
alleviate the problem, we construct the dense pairwise squared distance matrix
D? efficiently by computing, D? = #1T +127T —2X X T, where X € R™*¢ denotes
a batch of d-dimensional embedded features and & = [||f(z1)||3, ..., || (zm)]3]T
indicates the column vector of squared norm of individual batch elements.

Relation to Npair loss [4]: Surprisingly, we find that N-pair Loss is the
special case of the proposed loss. When inner product is selected as the sim-
ilarity measure rather than FEuclidean distance, Eq.5 can be rewritten as
L = max{0,mo + max{foj’ }gzl — min{fTf;7)}1,}. Following the previous
analysis, the margin-based discriminate loss can be derived as follows.

L=+ 0 S exp(K )Y exp(K ;) (1)
=1

Jj=1

When mo = 0, K = 1 and n; = 1, Npair loss function (Eq.3) can be derived
from Eq. 11.

4 Implementation Details

We used the Tensorflow [23] package for all methods. For the embedding vec-
tor, we £5 normalize the embedding vectors before computing the loss for our
method. The model slightly underperformed when the embedding normalization
is omitted. For fair comparison. We use the ResNet-50 architecture with batch
normalization [24] pretrained on ILSVRC 2012-CLS data [25] and finetuned the
network on the tested datasets. The inputs are first resized to 256 x 256 pixels,
and then randomly cropped to 227 x 227. For the data augmentation, we used
random crop with random horizontal mirroring for training and a single cen-
ter crop for testing. The experimental ablation study reported in [3] suggested
that the embedding size doesnt play a crucial role during training and testing
phase so we decide to set the size of the learned embeddings to 64 throughout the
experiment. We use the RMSprop optimizer with the margin multiplier constant
~ decayed at a rate of 0.94.

The proposed method does not require the data to be prepared in any rigid
paired format (pairs, triplets, n-pair tuples, etc.). The proposed method just
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Fig.2. Comparison of different values for K and mo for our method on Stanford
cars196 dataset [8].

Table 1. Clustering and recall performance on CUB-200-2011 [7].

Method Clustering | Recall@R

NMI R=1 R=2 |R=4 |[R=8
Triplet semihard | 56.39 43.35 | 55.69 |66.58 | 77.69
Lifted struct 57.53 44.56 | 56.86 |68.23 | 79.58
Npairs 58.20 46.23 | 58.63 |69.53 | 79.52
Ours 59.18 48.53 | 59.59 | 71.24 | 81.87

requires each example to have at least one positive example and one negative
example in a batch. So we randomly sample P =64 groups of examples. Each
group is comprised of Q=4 examples with the same class label and different
groups have different class labels. Obviously, the batch size is M = P x Q = 256.
For fair comparison, we use the same batch size in the other methods.

5 Experiments

We evaluate deep metric learning algorithms on both image retrieval and cluster-
ing tasks on three datasets: CUB200-2011 [7], Stanford Online Products [3], and
Stanford Cars196 [8]. CUB-200-2011 [7] dataset has 200 species of birds with
11,788 images included, where the first 100 species (5,864 images) are used
for training and the remaining 100 species (5,924 images) are used for testing.
Online Products [3] dataset contains 22,634 classes with 120, 053 product images
in total, where the first 11, 318 classes (59,551 images) are used for training and
the rest classes (60, 502 images) are used for testing. Stanford Car [8] dataset is
composed by 16, 185 cars images of 196 classes. We use the first 98 classes (8, 054
images) for training and the other 98 classes (8,131 images) for testing. Clus-
tering quality is evaluated using the Normalized Mutual Information measure
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Table 2. Clustering and recall performance on Stanford Online Products [3].

Method Clustering | Recall@R

NMI R=1 R=10|R=100
Triplet semihard | 89.35 66.65 | 81.36 |90.56
Lifted struct 88.65 62.39 1 80.36 |91.36
Npairs 89.16 66.42 | 82.69 |92.69
Ours 89.43 66.83  83.12 | 93.21

Table 3. Clustering and recall performance on Stanford Cars196 [8].

Method Clustering | Recall@R

NMI R=1|R=2 R=4 |R=8
Triplet semihard | 53.36 51.54 |63.56 |73.45 | 82.43
Lifted struct 56.86 52.86 | 65.53 | 76.12 |84.19
Npairs 57.56 53.90 | 66.53 | 77.54 | 86.29
Ours 58.39 56.23 | 68.23 | 80.06 | 87.53

(NMI). NMI is defined as the ratio of the mutual information of the cluster-
ing and ground truth, and their harmonic mean. Let {2 = {w1,wa, ..., wi} be the
cluster assignments that are, for example, the result of K-Means clustering. That
is, wg contains the instances assigned to the ith cluster. Let C = {¢1,ca, ..., ¢m }
be the ground truth classes, where c¢; contains the instances from class j.

1(2,0)

NMI(2,C) = 2 Y BT

(12)
where I(.,.) and H(.) denotes mutual information and entropy respectively. Note
that NMI is invariant to label permutation which is a desirable property for our
evaluation. For more information on clustering quality measurement see [6].

We compare with three state-of-the-art deep metric learning approaches:
Triplet Learning with semi-hard negative mining [5], Lifted Structured Embed-
ding [3], and the N-Pairs deep metric loss [4].

We compare the proposed method with all baselines in both clustering and
retrieval tasks in Tables1, 2, and 3. These tables show that lifted structure
(LS) [3] and Npair loss (NL) [4], can always improve triplet loss. In particular,
N-pair achieves a larger margin in improvement because of the advance in its
loss design and batch construction. Compared to previous work, the proposed
margin-based discriminate loss consistently achieves better results on all three
benchmark datasets. We think the superior performance of Margin-based Dis-
criminate Loss is due to two reasons: (1). It tries to find the optimal embedding
space and keep the similar and the dissimilar strictly discriminate. (2). It pulls
multiple positive examples together while pushing multiple negative examples
away at each update during the training stage. The proposed method involves
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two important model parameters: the margin mgy and the approximate degree
K. The margin m( determines to what degree the discrimination would be acti-
vated. With the margin mg increasing, the network is more difficult to optimize
and the performance decrease slowly. We find that when K is greater than 2,
the performance decreases sharply. We select the parameters of our methods via
cross-validation on three different datasets. As Fig. 2 shows, choosing mg = 0.2
and K = 0.8 for Stanford Cars196 leads to the best performance for the proposed
method and our approach is robust to the change of these parameters.

6 Conclusion

Triplet loss has been widely used for deep metric learning, even though with
somewhat unsatisfactory convergence. In this paper, we firstly propose the strict
discrimination concept to seek the optimal embedding space. Based on this con-
cept, we present a novel objective, margin-based discriminate loss, for deep met-
ric learning, which significantly improves upon the triplet loss by pulling multiple
positive examples together while pushing multiple negative examples away at a
time. The proposed loss function aims to keep the similar and the dissimilar
strictly discriminate to find the optimal embedding space at the minimum cost.
The proposed method was validated on three benchmark datasets, where the
state-of-the-art results validated its efficacy on fine-grained visual object clus-
tering and retrieval.
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Abstract. A challenging Pattern Recognition problem in Bioinformat-
ics concerns the detection of a functional relation between two proteins
even when they show very low sequence similarity — this is the so-called
Protein Remote Homology Detection (PRHD) problem. In this paper
we propose a novel approach to PRHD, which casts the problem into a
Multiple Instance Learning (MIL) framework, which seems very suitable
for this context. Experiments on a standard benchmark show very com-
petitive performances, also in comparison with alternative discriminative
methods.

Keywords: Protein homology - N-grams + Multiple instance learning

1 Introduction

The Protein Remote Homology Detection (PRHD) problem represents a rele-
vant bioinformatics problem, widely studied in recent years [1,12,14]. It aims
at identifying functionally or structurally-related proteins by looking at amino
acid sequence similarity — where the term remote refers to some very challeng-
ing situations where homologous proteins exhibit very low sequence similarity.
Many computational approaches have been developed to face this problem —
see for example the very recent review published in [1]. In a broad sense, such
approaches are divided in three main categories [1]: alignment-based methods,
rank-based methods, and discriminative-based methods. Here we focus on this
last category, which casts the problem in a binary classification task (homolo-
gous/not homologous), and in particular on approaches based on the Support
Vector Machines (SVM) classifier — shown to reach top performances in many
different benchmarks [6,14-18,20].

To apply the SVM, the typical choice is to derive a vectorial representation,
so that classic kernels (such as RBF - Radial Basis Function- kernels) can be
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applied. In this scenario representations based on N-grams (or K-mers!) — short
subsequences of consecutive symbols — are widely employed [15-18]. The well
known Bag of Words representation is an example of such characterization [7,
15,17,18]. Here a vectorial representation is extracted consisting of the number
of times the dictionary N-grams appear in the sequence. Although this leads
to excellent results, the main problem of this class of approaches is that IV
(i.e. the length of the subsequence) is forced to remain small (such as 3). For
longer N-grams, the representation becomes too large (leading to the curse of
dimensionality) and too sparse (with too many zeros), thus creating problems
to the SVM [4]. Actually, due to the limited length, we can not fully exploit the
biological information present in longer sequences. An alternative is to devise
methods which directly compute kernels on the basis of long K-mers, avoiding
the explicit computation of the representation. One notable example is [11],
where authors propose a K-mer based string kernel approach. In their work they
showed that the best performances are obtained with K-mers of length 5.

In this paper we propose a novel approach to PRHD, which derives a novel
vectorial representation for SVM-based discriminative techniques. The approach
is based on the paradigm of Multiple Instance Learning (MIL — [5]), an exten-
sion of supervised learning where class labels are associated with sets (bags)
of feature vectors (instances) rather than with individual feature vectors. This
paradigm, which usefulness has been shown in many different contexts [2,8],
has not yet been investigated in the Protein Remote Homology Detection sce-
nario. Here we cast the PRHD problem in a MIL framework by interpreting
protein sequences as bags that contain fragments of a certain length &k (the
instances). The classification problem is solved using a recent MIL approach
based on dissimilarities between instances [3]. The MIL scenario, and in partic-
ular the dissimilarity-based approach of [3], seems to be very suitable for the
PRHD problem for different reasons. First, the MIL paradigm assumes that the
label of the whole bag is determined by only a small set of relevant instances
[5]. This assumption is reasonable in PRHD, where the homology between two
proteins is linked to the presence of a small set of highly informative fragments
(such as ligand sites). Second, it does not impose any limit to the length of the
K-mers, so that also biologically meaningful longer fragments can be included
in the analysis. Third, the approach of [3] relies on the computation of distances
between instances, which in the PRHD case can be easily defined via meaningful
sequence alignment methods.

The proposed approach, presented in some different variants, has been tested
using standard benchmarks based on the SCOP 1.53 dataset [14]. The results
confirm the suitability of the proposed approach, also in comparison with alter-
native discriminative methods.

! Along the text we will refer equivalently to K-mers or N-grams.
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2 General and Dissimilarity-Based MIL

In this section we introduce the general multiple instance learning paradigm,
together with the approach presented in [3] that we used. Multiple Instance
Learning (MIL — [5]) is concerned with problems where the objects originally
are not represented by a single feature vector, but by a so-called bag. A bag
is basically a set of feature vectors, the latter of which are also referred to as
instances in this context. As opposed to the standard classification setting, a
label is then assigned to the whole bag and not the individual feature vectors.
This can make classification quite difficult. The basic assumption behind MIL
is that a positive label of a bag indicates the presence of (at least) a positive
instance inside the bag — we will see that this assumption is very suitable for
our context.

Many different approaches have been proposed to solve MIL problems [2,8],
here we summarize the methods proposed in [3]. These methods are based on the
dissimilarity-based paradigm for classification [19], a paradigm where each object
is represented by a vector of dissimilarities with respect to a set of reference
objects (called prototypes). In the same spirit, in the approach of [3] each bag
is encoded into a vectorial representation based on the distances between the
instances of the bag and the instances of a set of prototypes.

More in detail, we are given N bags to encode and a set of L prototypes.
The choice of these prototypes is crucial, but in the basic version they can also
be the whole training set. Given prototype P; containing m instances, P; =
{zj1,...%jm}, we represent a bag B; = {1, ...x;n} with n instances, by some
signature extracted from the pairwise distances between all the instances of B;
and those of the prototype bag P;. Different features can be extracted from the
resulting n x m dissimilarity matrix.

1. dpag feature. This feature is a scalar, and represents the average of the min-
imum distances between each fragment of the bag and all the fragments of

the prototype.
| B

1 :
doag(Bi, Pj) = 1B Zmllnd(xz‘k,le)
k=1

where d(x;, x;;) represents a distance between instances of the bag.

2. d;nst feature. This is a vector of length m, where each component represents
the minimum distance between each fragment of the prototype and all frag-
ments of the bag.

dinst(Bi, Pj) = |:1'I1k11’1 d(xik,le), ...,mkind(xik,mjm)

In the first two MIL schemes, which are called Dy, and D;y,st, each bag is rep-
resented by concatenating all the dy,g and d;ys: features computed with respect
to all prototypes, i.e. Dyog(B;i) = [dpag(Bi, P1), dbag(Bi, P2), ...dpag(Bi, Pr)] and
Dinst(Bi) = [dinst(Bia Pl)» dinst(Bia P2)a ~~dinst(B7i7 PL)}
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These representations may have some limitations: Dyqq may hide the most
informative dissimilarities, since it is an average over all distances, not consid-
ering that only few instances are relevant. The D;,s; method, on the contrary,
considers all these dissimilarities, but the process of selection can be time con-
suming. Furthermore it may suffer from the curse of dimensionality. To overcome
these possible limitations, the authors in [3] proposed a variant which exploits
the combining classifier paradigm. The method, which we call the “ensemble”
approach, is based on considering each prototype as a single subspace where a
classifier is trained. Similarly to the D;,s; method, each direction of the sub-
space represents the minimum distance between each instance of the prototype
and all instances of the bag. The dimensionality of this subspace is therefore the
number of instances of the prototype. Given L prototypes, we built L different
representations, training L different classifiers. The final classifier is then found
by aggregating the results of the L different classifiers via a combining function
(in this sense it is an ensemble approach) — for further details please refer to [3].

3 MIL Solution to the PRHD Problem

In our proposed approach we first cast the PRHD problem into a MIL formula-
tion, i.e. we define bags, instances and labels. This is done in a reasonable and
straightforward way: (i) each protein sequence is a bag, i.e. a collection of N-
grams (instances); (ii) the fragments (N-grams) composing the protein sequence
are considered the instances; (iii) finally, the label, which is attached to the set
of instances, is the label of the sequence. Please note that MIL represents a nat-
ural representation for the PRHD problem: proteins typically contain a small set
of meaningful fragments, which are crucial to determine the 3D structure (e.g.
binding sites) and thus the function (namely the label). Clearly, the fragments
can be extracted from the sequence in many different ways (random sampling,
exhaustive list, and so on). Here we adopt a very simple scheme: from each
sequence of length n, fragments of a fixed length k are extracted with overlap
k — 1. Each bag B; will therefore have n — k + 1 instances. Once cast into a
MIL formulation, the PRHD problem is then input to the dissimilarity-based
approach presented in the previous section. In particular, a set of prototypes
P ={P,--- P} is chosen as a subset of the training set 7. Given a prototype
Pj, for each sequence S; we compute a dissimilarity matrix between all frag-
ments of P; and all the fragments of S; (i.e. the bag B;). As described in the
previous section, from this matrix we then derive two different representations: a
scalar (dpag) or a set of values (dinst). In the basic formulation, the dissimilarity
matrices are extracted for all prototypes and concatenated to obtain the final
representation of our sequence. The proposed representation can now be fed to
the SVM classifier. Alternatively, the ensemble method described in the previous
section can be used: the classifier is trained on d;,s: of a single prototype, called
a subspace, and then the obtained scores are combined together to obtain the
final results via an ensemble classifier. Summarizing, we have three different MIL
schemes: one using (Dpag), one using (Dipns¢), and the last using the ensemble
approach (Dens).
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One crucial aspect of this class of approaches is the choice of the prototypes.
First, the number of prototypes has to be chosen. Next, it is crucial to define the
strategy with which they are chosen. Here we studied three different options:

(i) Random choice of sequences: the prototypes are randomly selected pro-
tein sequences of the training set.

(ii) Informed choice of sequences: the prototypes are chosen exploiting some
a priori knowledge on the training set.

(iii) Random fragments: here the prototypes are not anymore objects of the
training set (i.e. whole sequences), but they are built using random frag-
ments extracted from sequences. After deciding on the number of fragments
that should compose each prototype, we randomly select those fragments
from the whole set of bags. Note that our proposed scheme allows to exploit
long K-mers without increasing in a significant way the dimensionality. In
fact, the dissimilarity matrix between bag’s instances, which is at the basis
of our scheme, does not depend from the length of the K-mers, but only the
the number. This permits to exploit longer fragments with respect to classic
N-grams methods, which may contain more important biological informa-
tion, such as that related to folding.

4 Experiments

The proposed approach has been tested on the standard benchmark dataset?,
based on the SCOP 1.53 [14]. Even if quite old and not complete, this represents a
standard dataset for protein remote homology detection, permitting to compare
most of the methods introduced in this field [6,14-18,20]. Following the standard
protocol introduced in [14], the PRHD problem has been cast in a set of 54 binary
classification problems, each one involving a specific protein family. As done in
some recent studies [15-17], before extracting N-grams we re-wrote each protein
sequence using information extracted from the corresponding profile, determined
by following the recent [16], which employed a public implementation of the
PsiFreq program?.

Once determined, the MIL representations are then employed to train a SVM
classifier. As done in many previous works [7,15-18,20], we used the public GIST
implementation?, setting the kernel type to radial basis, and keeping the remain-
ing parameters to their default values. Detection accuracies are measured using
the ROC50 score [9]. This score, specifically designed for the PRHD context,
improves the classic Area under the ROC curve. In particular, it represents the
area under the ROC50 curve (with a value ranging from 0 to 1), which plots
true positives as a function of false positives — up to the first 50 false positives.
A score of 1 indicates perfect separation of positives from negatives, whereas a
score of 0 indicates that none of the top 50 sequences selected by the algorithm
were positives [13].

2 Available at http://noble.gs.washington.edu/proj/svm-pairwise/.
3 Available at http://bioinformatics.hitsz.edu.cn/main/~binliu/remote.
* Downloadable from http://www.chibi.ubc.ca/gist/ [14].
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For the proposed approach, we repeated the experiment for k =
{2,3,4,5,6,9,12}. The distance between the K-mers was computed using the
classic Jukes-Cantor distance, based on the Hamming distance. Please note that
this is a basic distance between sequences, which does not imply any alignment. It
can be expected that performances may improve even more when more advanced
sequence comparison methods are used, for instance methods that allow for the
comparison of K-mers of different lengths. We tested different variants of the
proposed approach, trying to cover the most interesting combinations of the
basic scheme ((Dpqg), (Dinst), and (Dens)) and the way prototypes are chosen.
For all variants we investigated two possible options, which derive from the fact
that the benchmark contains 54 classification problems. In particular, in the first
version (called SfA — Same for All) the prototypes were kept identical among all
54 problems. In the second version (called DfA - Different for All) a different set
of prototypes is used for each family. In particular the following variants have
been investigated:

(i) Dpag-Info. In this variant, we used the Dy, information to build the
representation, choosing the prototypes in an informed way. In the SfA
version, we used 54 prototypes, equal for all families: each prototype is the
most central sequence of the positive training set of each family, that is
the one with lowest distance to all other sequences. In the DfA version, for
each family we used as prototypes all the sequences in the positive part of
training set.

(ii) Djpst-Info. In this variant we used the Dj,s information to build the
representation. Due to the high dimensionality of this representation, we
choose to employ a single prototype, chosen in an informed way. In par-
ticular, in the SfA version, the prototype was chosen as the most central
sequence among all positive training sequences of the 54 families. In the
DfA version, for each family the prototype was chosen as the most central
sequence among the positive training sequences of the considered family.

(iii) D;nst-RndFrag. In this variant we used again the D;,s; information to
build the representation, employing again one prototype. However the pro-
totype was chosen using random fragments. In the SfA version, the frag-
ments are extracted from the set composed by the fragments of all the
positive training sequences of all families. The cardinality of the prototype
P is the ratio between the total number of fragments of the just mentioned
bag and the total number of positive training sequences. In the DfA version,
for each family the random fragments are chosen among the set composed
by the fragments of all the positive training sequences of the considered
family. The cardinality of each prototype P is the ratio between the total
number of fragments of the just mentioned bag and the number of positive
training sequences.

(iv) Dens-RndSeg-Mean. In this variant we used the ensemble MIL scheme
to build the representation, using random sequences as prototypes. In par-
ticular, in the SfA version, we randomly chose 10 prototypes from the set
of all positive training sequences of the 54 problems. Then we extract the
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D;,st representation for each prototype, training a different SVM for each
of them. Once computed the SVM scores, a “mean” combiner function is
used to get the final score (i.e. the mean of all scores). In the DfA version,
the 10 prototypes were different for each classification problem. In par-
ticular, for each family we selected 10 prototypes from the set of positive
training sequences of that family. A study on the performances by using a
different number of prototypes is reported later.
(v) Dens-RndSeq-Max. This is identical to the D, s-RndSeqg-Mean except

that the combiner was a “max” combiner (i.e. the max among the scores).

(vi) Dens-RndFrag-Mean. This variant is similar to D.,s-RndSeq-Mean,
except that the prototypes are built using Random Fragments. Prototypes,
for both SfA and DfA versions are determined as described in the D;,, -
RndFrag variant. In this version we used the “mean” combiner.

(vii) D¢ps-RndFrag-Max. This is identical to the D.,s~-RndFrag-Mean
except that we used the “Max” combiner.

For each experiment we selected the best result among the different lengths
of N-grams (which can be reasonably different depending on the specific family
addressed). A further analysis on the preferred length has been reported later in
the section. ROC50 values, averaged over the 54 families, are reported in Table 1,
for the different variants. From the table we make different observations. First,
it is interesting to note that the most basic variant of our scheme, namely the
Dyq4-Info, is performing very well, at the same level of the most complicated
variants. This suggests that the extracted information, even in its basic form, is
already very informative. Second, it seems evident that choosing the same set
of prototypes for all families permits to reach better performances in almost all
cases. Actually we are convinced that the crucial point is not that the proto-
types are the same for all classification problem (each classification problem is
solved independently), but rather that this set is chosen among the whole set
of sequences rather than the single training set of a given family. This permits
to have a more variable set of prototypes which permits to get a richer repre-
sentation. Interestingly, the informed choice of the prototypes does not improve
in a substantial way the performances. As a final observation, it is important

Table 1. ROC50 accuracies of the different variants of the proposed approach.

Variant MIL scheme|Prot. Sel. ROC50 (SfA) ROC50 (DfA)
Dyqg-Info Dyay Informed 0.863 0.711
D;,st-Info Dinst Informed 0.820 0.781
Dinst-RndFrag Dinst Rand Frag 0.867 0.862
Dens-RndSeq-Mean Dens Rand Seq 0.878 0.792
De.ns-RndSeq-Max Dens Rand Seq 0.819 0.781
Dens-RndFrag-Mean Dens Rand Frag 0.882 0.847
D.,s-RndFrag-Max Dens Rand Frag 0.837 0.878
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Table 2. Results of the variant Dens-RndFrag-Mean (SfA) with varying number of
prototypes.

Nr. prototypes, 1 | 2 3 4 5 7 |10 15 20 30 | 40 50
ROC 50 0.867/0.872/0.886/0.892/0.880/0.882/0.882/0.874/0.879 0.868 0.8700.880

to note that when combining the classifiers in the D, class of approaches the
best result is obtained with the mean rule (in line with other studies in classifiers
combination [10]).

In order to see how critical the number of prototypes L is, we performed
another set of experiments using the best performing technique, i.e. the vari-
ant Dg,s-RndFrag-Mean (SfA). We varied the number of prototypes from
1 to 50, and the corresponding accuracies are reported in Table2. It appears
that performances do not vary too much when more than 3 prototypes are
used. This suggests that the approach is robust against variations in L, pro-
vided that this number exceeds a minimum (3 in this case). Another interesting
aspect to be analysed concerns the length of the K-mers. As already mentioned,
in our experiments we computed results by varying the length k of the frag-
ments, selecting, for each family, the length leading to the best accuracy. It
seems interesting to observe the distribution of such best &, in order to discover
if the MIL approach prefers short or long N-grams. To do that, for each variant,
we count how many times the best result is obtained with short N-grams (N-
grams of length 2 or 3) or with long N-grams (N larger than 3). Such analysis
is reported in Fig. 1(a). In all cases except the Dy,4-Info(DfA) variant, longer
fragments give better results. Furthermore, in Fig. 1(b) the accuracies obtained
by D.,s-RndFrag-Mean (SfA) are shown for an increasing number of proto-
types (results of Table2), divided in two cases: method with short N-grams and
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Fig. 1. Analysis of preferred N-gram length: (a) the distribution of the best length
over all approaches and (b) the ROC50 performance as a function of the number of
prototypes.
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method with long N-grams. The results with long N-grams are better and seem
to be more independent from the number of prototypes (whereas with short
N-grams there seems to be an increasing behaviour). All these findings confirm
our intuition that exploiting longer fragments can be beneficial for facing the
Protein Remote Homology Detection problem.

4.1 Comparison with the State of the Art

In Table 3 we compared the proposed scheme with alternative approaches present
in the literature. The SCOP 1.53 dataset, even if being old, has been widely
used as benchmark for many different approaches. We reported in the table
comparative results taken from the very recent [17], which are related to both Bag
of Words approaches as well as more complicated alternatives. We can see that
the proposed approach is very competitive, well comparing with alternatives. In
particular, the proposed approach is better than almost all methods presented in
the table, with the exception of the very complex Soft PLSA approach [17]: this
recent method, however, starts from a larger set of information — the complete
profile of each protein together with evolutionary probabilities — whereas our
approach only uses the most probable profile (for more information, interested
readers are referred to [17]).

Table 3. Comparison with state of the art. For the proposed approach we reported the
best obtained result, i.e. the result for D.,,~-RndFrag-Mean (SfA) with 4 prototypes
— see Table 2.

N-grams based approaches Other approaches

Method Year | ROC50 | Method Year | ROC50
BoW-row-2gram 2017 |0.772 [17] | SVM-pairwise 2014 | 0.787 [16]
Soft BoW 2017 |0.844 [17]  SVM-LA 2014 | 0.752 [16]
Soft PLSA 2017 |0.917 [17] | HHSearch 2017 | 0.801 [17]
SVM-N-gram 2014 |0.589 [16] | Profile (5,7.5) 2005 | 0.796 [11]
SVM-N-gram-LSA | 2008 |0.628 [15] | PSI-BLAST 2007 | 0.330 [6]
SVM-Top-N-gram | 2008 |0.713 [15] | SVM-Bprofile-LSA | 2007 | 0.698 [6]
(n=2)

SVM-Top-N-gram- | 2008 |0.763 [15] | SVM-Pattern-LSA | 2008 |0.626 [15]
combine

SVM-N-gram-p1 2014 |0.726 [16] | SVM-Motif-LSA | 2008 |0.628 [15]
SVM-N-gram-KTA | 2014 |0.731 [16] SVM-LA-pl 2014 | 0.888 [16]

ROCS50 of the proposed approach: 0.892
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5 Conclusions

In this paper we presented a Multiple Instance Learning approach for Protein
Remote Homology detection. The proposed scheme casts the PRHD problem
into the MIL paradigm by considering protein sequences as bags of N-grams, i.e.
short fragments of the sequence. A dissimilarity-based approach is then used to
face the MIL problem, based on the matrix of pairwise distances of fragments
of a given protein and fragments of a set of prototypes. An empirical evaluation
on standard datasets confirms the suitability of the proposed framework. Future
directions include analysis of richer dissimilaritites as well as the selection of
biologically relevant prototypes (e.g. binding sites).
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Abstract. In this paper, we propose a new local descriptor named
as PCA-LBP for face recognition. In contrast to classical LBP meth-
ods, which compare pixels about single value of intensity, our proposed
method considers that comparison among image patches about their
multi-dimensional subspace representations. Such a representation of a
given image patch can be defined as a set of coordinates by its projection
into a subspace, whose basis vectors are learned in selective facial image
patches of the training set by Principal Component Analysis. Based on
that, PCA-LBP descriptor can be computed by applying several LBP
operators between the central image patch and its 8 neighbors consider-
ing their representations along each discretized subspace basis. In addi-
tion, we propose PCA-CoALBP by introducing co-occurrence of adjacent
patterns, aiming to incorporate more spatial information. The effective-
ness of our proposed two methods is accessed through evaluation exper-
iments on two public face databases.

Keywords: Local Binary Pattern - Principal Component Analysis
Subspace Representation - Image Patch - One Sample per Person

1 Introduction

“One Sample per Person” problem is a challenging topic in face recognition due
to the limited representative of reference sample. The goal is to identify a per-
son from the database later in time in any different and unpredictable poses,
lighting, etc. from just one image [14]. For attacking that problem, many local
feature methods are applied and achieve good performance due to their compu-
tational simplicity and robustness to occlusion and illumination. One of the most
well-known is Local Binary Pattern (LBP). Although it is firstly introduced to
describe texture, which could be characterized by a nonuniform distribution of
intensity or colors [4], it is then extensively used in face recognition motivated
by the fact that face can be seen as a composition of micro-patterns which are
well described by such operator [1].

However, designing a robust local descriptor is not an easy job. And most
hand-crafted features cannot be simply adopted to new conditions [2,6]. In
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recent years, many learned-based methods are proposed for designing better
local descriptor. For example, PCANet [3] learns its binary descriptor by bina-
rizing the convolution results of local image patch with several learned linear
filters. Other methods such as L2-Net [16], which attempt to use CNN based
methods, are proposed to construct more robust descriptors for high matching
performance.

While for face recognition, it can be difficult for these learned descriptors to
caputure marco-structures due to their well-but-micro representation limited in
local patch. That limitation gives rise to our idea of PCA-LBP, aiming to encode
macro facial patterns by applying LBP operators among image patches. Since
classical LBP methods successfully capture micro-patterns in the level of pixel,
which is the smallest addressable element, it can be natural to consider that a
macro-pattern is possible to encode by applying LBP in the level of image patch,
which is a container of pixels in larger form.

To implement LBP in the level of image patch, there can be two main prob-
lems. The first is to find an efficient representation of facial image patch. Many
possible methods have been investigated for data characterization, one of the
most simple-but-efficient is Principal Component Analysis. The PCA allows us
to characterize an image patch by its projection on a linear subspace. However,
such a subspace representation can be multi-dimensional, thus leading to the
second problem about how classical LBP can be implemented for comparsion of
multi-dim values. Standard LBP compares pixels’ intensity, which is virtually
a single value, while the subspace representation can be multi dimensional. To
address that problem, we introduce a set of LBP operators instead of a single
one. And each LBP operator is discretely implemented between the object image
patch and its 8 neighbors considering their representations along the correspond-
ing subspace basis.

This concept of patch representation by PCA and patch comparsion by sev-
eral LBPs is at the heart of our proposed method, thus we name it as PCA-LBP.
Moreover, our proposed method can be generically described as a hybrid model
of original LBP in pixel level with learned descriptor in image patch level. This
characteristic makes it possible to be flexibly transferred with other LBP meth-
ods. Therefore, PCA-CoALBP, which considers co-occurrence of adjacent LBPs,
is also proposed. To confirm the robustness of our proposed two descriptors for
face representation, we assess them for attacking one sample per person prob-
lem in two public face databases: Extended Yale Face B Database and AR Face
Database.

The contributions of this paper are listed as follows:

— We review PCANet in the new perspectives from binary descriptor and image
patch subspace, which is critical in developing our proposed methods.

— We propose two new local descriptors: PCA-LBP and PCA-CoALBP, aiming
to explore a hybrid framework, which combines the classical LBP in pixel
level with the learned descriptor in image patch level.

— We confirm the effectiveness of our proposed methods for face recognition in
two benchmark face databases.
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Fig. 1. Configuration of CoALBP

2 Related Work

In this section, we review two related research: (1) local binary pattern, and (2)
PCANet.

2.1 LBP and CoALBP

LBP computes a bit string by comparing intensity in center pixel with its 8
neighboring pixels. In [12], the definition of LBP is mathematically given as
follows:

7
LBPx(x) = > sign(I(a)) — ()2 (1)
=0

Where R defines the distance of center pixel x to its neighborhood x;. Recent
studies show that encoding co-occurrences of local binary patterns can sig-
nificantly improve the performance [13]. In [11], a new descriptor based on
Co-occurrence of Adjacent Local Binary Patterns (CoALBP) is proposed and
achieve good performance both in texture classification and face recognition.
The core idea of it is to introduce a statistical count about the frequency of
adjacent LBP pairs in a fixed spatial distance. Figure 1 shows that CoALBP
computes frequency of LBP pairs in 4 directions with a configured Ar (scale
of LBP radius) and Ap (interval of LBP pairs). In addition, as can be seen,
CoALBP considers two sparse LBP configuration - LBP(+) and LBP(x), aim-
ing to reduce computational time.

2.2 PCANet

Given an image patch z, its descriptor by one layer PCANet (PCANet-1) may
be defined as a string of binary code. Elements in that binary string can be com-
puted by thresholding the convolution results of its local patch with several PCA
filters. While in the perspective of image patch subspace, the binary descriptor
of = can be described by thresholding its subspace representation, which is com-
puted by its projection into an image patch subspace. And the basis vectors
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of that subsapce are virtually the pre-learned PCA filters with vector notation.
The final binary descriptor of image patch x is obtained by thresholding each
element in its subspace representation by comparsion with zero.

In our study, we do not utilize that binary descriptor. Instead, we only intro-
duce the idea of finding subspace representation of image patch via Principle
Component Analysis into our proposed methods. In addition, our interpreta-
tion of PCANet is inspired by the pioneer research of BSIF [8], which illustrates
its binary descriptor from the perspective of image patch subspace. However,
the subspace basis in BSIF is generated by Independent Component Analysis.
Therefore, it is not the same as PCANet.

3 Proposed Method

In this section, we illustrate the core idea of PCA-LBP in constructing local
descriptor and extracting image histogram feature. Note that for PCA-CoALBP,
the only difference is to apply several CoALBP operators instead of LBP oper-
ators in the stage of encoding.

3.1 Local Descriptor

Figure 2 shows the process flow of constructing a PCA-LBP descriptor for a
given image patch z. As can be seen, its 8 neighbbors {xi};o are taken into
consideration for encoding marco-pattern. Overall, there are three stages in the
processing. The initial stage is to apply Principal Component Analysis to find
the subspace representation {S; (x)}j\;l of image patch z as shown in (2).

{8(@)} ity ={w] - 23}, (2)
Where W; defines the jth subspace basis, N indicates the dimension of pre-
learned subspace and = denotes vectorized image patch x with its DC compo-
nent removed. DC component refers to mean gray-value of the pixels in that
image patch [7]. And each S;(z) is virtually the projected length of  along the
corresponding jth subspace basis W;. In addtion, {W; }le can be constructed
by retaining first IV th principal component in a training set of image patches.
Next, such subspace represenations of « and it 8 neighbors are encoded by several
LBP operators. Specifically, each LBP operator compares the subspace represen-
tation S;(z) of image patch z along corresponding subspace basis W) with that
of its 8 neighbors. The stage is then followed by concatenating the encoding
result of those LBP operators. Finally, the PCA-LBP descriptor of image patch
is obtained and can be mathematically defined as {Pj(x)};vzl in (3).

PCA — LBPg x(z) = {Pj(z {Zszgn S](x))2’} (3)

Where R defines the radius distance between image patch = and its neighbors
{xi}zzo, sign functions as the LBP thersholding and N indicates the number of
LBP operators.
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Fig. 2. PCA-LBP descriptor of an image patch

3.2 Image Histogram Feature

Figure 3 shows the PCA-LBP histogram feature of an input image. Given an
input image X of size H x W pixels, its histogram representation by PCA-LBP
can be mathematically defined as F(X) in (4).

F(X) = [hist(X7); hist(Xa); -+ ; hist(Xn)] (4)

F(X) can be described as a concatenation of block-wise histograms of sev-
eral relabelled images {X; } _,. N indicates length of PCA-LBP descriptor and
{X; N j=1 denotes several shift-equivalent images of X by PCA-LBP processing.
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Fig. 3. PCA-LBP histogram feature of an input image
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Fig. 4. Examples in Extended Yale Face B Database

In addition, as can been seen, given a patch z(h,w) in input image X, its cor-
responding value X (h,w) in relabeled image X; can be computed as follows:

X;j(h,w) = Pj(z(h, w) (5)

Where Pj(z(h,w) indicates the jth element value in the PCA-LBP descriptor
of z(h,w).

4 Experiments and Considerations

In this section, we illustrate details of our experiments in two public face
databases for attacking one sample per person problem.

4.1 Face Recognition in Extended Yale Face B Database

In this experiment, we focus on attacking one sample per person problem under
difficult lighting conditions.

Database. Extended Yale Face B Database contains face images of 38 subjects
of 9 poses under 64 illuminations [9]. We use 2414 frontal-face images in our
experiment. Figure4 shows an example of frontal facial images of one subject
under variable lighting.

Setup. In our experiment, all facial images are resized to 126 x 126 pixels and
divided into 7 x 7 non-overlapped subregions. 38 frontal-lighting images (one
sample per person) are selected as reference images. The rest 2376 images are
used for testing. In addition, 114 images (3 for each sample) are synthesized
by artificially adding Gaussian noise and slight rotation into original refer-
ence images. Those synthesized images and reference images are transformed
into image patches for learning principal components. And the key parameters
involved in our proposed two methods are listed as follows:
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— size of image patch: k

— scale of LBP radius: Ar

— interval of LBP pair: Ap

— configuration on LBP: config (x or +)
— dimension of image patch subspace: N.

PCA-CoALBP considers all parameters while PCA-LBP considers three of them:
Ar,N and k. In this experiment, patch size k is empirically set as 5 x 5 pixels.
And 1-NN method based on L1 distance is used for classification.
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Fig. 5. Impact of dimension selection

Parameter Impact. Since there are several parameters included in our meth-
ods, a strategy to help us find the best parameter set is to utilize original LBP
methods. The best selection of parameters in original LBP and CoALBP helps to
define the range of those parameters in our methods such as Ar and Ap. There-
fore, the core parameter to be investigated is N - dimension of image patch sub-
space. Figure 5 plots recognition rate of proposed PCA-LBP and PCA-CoALBP
as a function of dimension of image patch subspace. As can be seen, dimension
selection of subspace representation of image patch does have a effect on face
recognition performance. It also indicates that face representation performance
will not be improved when dimension of patch descriptor is more than 6. In fact,
6 is nearly 25 % of original dimension of image patch with size 5 x 5 pixels. This
observation seems to be consistent with the theorem of canonical preprocessing.
In [7] Aapo Hyvérinen recommends that the number of retained principal com-
ponents in image patch be chosen as 25% of original dimension in order to avoid
aliasing problem. Virtually, that number of retained principal components is the
dimension of image patch subspace.
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Result. Table 1 shows the experimental result. PCA-LBP achieves 96.89%
recognition rate with parameters Ar = 3 and N = 6. And PCA-CoALBP
achieves 98.95% accuracy with parameters Ar =2, Ap =4, config=2and N =4.
It shows that our proposed method PCA-LBP and PCA-CoALBP achieved a
significant improvement compared to original LBP and CoALBP. Also, it is
worthwhile to note that PCA-CoALBP outperforms many state-of-art methods
such as P-LBP, CELDP and PCANet-1.

Table 1. Experiment Result in Extended Yale Face B Database

Method Accuracy (%)
LBP [1] 73.86
PCA-LBP 96.89

CoALBP [11] | 86.70
PCA-CoALBP | 98.95
PCANet-1 [3] | 97.77
P-LBP [15] | 96.13
CELDP [5] | 94.55

4.2 Face Recognition in AR Face Database

In this experiment, we focus on attacking one sample per person problem under
more variable conditions, including different occlusions, illuminations and facial
expressions. To simply access the effectiveness of our methods, we only make
comparison with original LBP and CoALBP.

Database. AR Face Database contains over 4000 images of frontal view faces
with different facial expressions, illumination conditions, and occlusions(sun
glasses and scarf) [10]. We use 1040 images of 40 individuals in our experiment.
Figure 6 shows an example of facial images of one subject.

Setup. In this experiment, facial images are transformed to gray value, resized
to 126 x 126 pixels and divided into 7 x 7 non-overlapped subregions. 40 face
images (one sample per person) with frontal-lighting and neural-expressing are
selected as the reference set, rest 1000 images are used as the testing set. The
image patches in reference gallery is used for learning principal components
in facial image patch. And 1-NN classifier based on L1 distance is used for
classification.

Result. Table 2 shows the experiment result. PCA-LBP with parameters
Ar = 3 and N = 4 achieves 96.9 % recognition rate . And proposed PCA-
CoALBP achieves 95.6 % with parameters Ar =1, Ap = 4, config =1 and N = 4.
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Fig. 6. Examples in AR Face Database

Both of them outperform the original LBP and CoALBP. In addition, we observe
that PCA-LBP outperforms PCA-CoALBP in this experiment. It seems related
with the problem of sparse configuration in CoALBP, which makes it sensitive
to noise.

Table 2. Experiment result in AR face database

Method Accuracy (%)
LBP [1] 92.4
PCA-LBP 96.9

CoALBP [11] |91.4
PCA-CoALBP | 95.6

5 Conclusion and Discussion

In this paper, we have proposed two local descriptors (PCA-LBP and it variant
PCA-CoALBP) for face recognition. In contrast to classic LBP methods, which
make intensity comparison between the central pixel and its neighborhood pix-
els, our proposed descriptors are obtained by comparing central image patch
with its neighbors about their subspace representations. Several LBP operators
based on subspace representation of image patch make it possible to incorporate
more spatial information and capture macro-patterns for face recogniton. Exper-
iments in two benchmark face databases shows that our proposed two methods
significantly outperform classical LBP methods and achieve good results in face
recognition task of one sample per person.

Moreover, our proposed method can be generically described as a hybrid
framework, combining the classic local descriptor in pixel level with the learned
descriptor in image patch level. This characteristic makes it possible and flexible
to be transferred. (e.g PCA-CoALBP is a transferred version of PCA-LBP).
Therefore, it might also be of interest to investigate other possible combinations
between various hand-craft local descriptors in pixel level and variant learned
descriptors in image patch level.
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Abstract. This paper proposes to study the relevance of image repre-
sentations to perform graph classification. To do so, the adjacency matrix
of a given graph is reordered using several matrix reordering algorithms.
The resulting matrix is then converted into an image thumbnail, that is
used to represent the graph. Experimentation on several chemical graph
data sets and an image data set show that the proposed graph represen-
tation performs as well as the state-of-the-art methods.

Keywords: Graph classification - Graph representation
Matrix reordering - Chemoinformatics

1 Introduction

Graphs are efficient and powerful structures to represent real-world data in
several fields, such as bioinformatics [5], social networks analysis [2] or pat-
tern recognition [30]. Formally, a graph is an ordered pair G = (V, E), where
V ={v1,...,v,} is a set of vertices (or nodes), and E C V x V is a set of edges
that represent relations between elements of V.

Graph classification [29] is an important and still challenging task, that has
been widely addressed by the research community. This task falls into the super-
vised learning field, where one has to predict the label of an object that is repre-
sent by a graph. More formally, given a training set {g;,l;} of graphs and their
labels, one has to predict the label [ of an unseen graph ¢g. Among the many
studies that have been proposed to address the graph classification problem,
the most used paradigms are the graph kernels [13], along with the graph edit
distance [8] (GED) for error-tolerant graph matching, and more recently graph
neural networks [17]. However, these paradigms face tough challenges such as the
computational requirement when performing pairwise graph comparison, which
is emphasised when dealing large data sets. Regarding neural networks, despite
the efforts from the research community, the adaptation of convolution and pool-
ing operations is non-trivial for non-Euclidean objects such as graphs, and still
remains a challenge.

In this paper, we propose a novel image-based representation to describe
graphs, and leverage this descriptor to perform fast graph classification, while
© Springer Nature Switzerland AG 2018
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obtaining accuracies comparable with the state-of-the-art methods. The rest of
the paper is organised as follows: Sect. 2 presents an overview of graph classifica-
tion and graph visualisation paradigms. Section 3 details the proposed framework
to obtain a graph’s image representation. The experimentation setup is given in
Sect. 4 and the results that have been obtained are discussed in Sect. 5. Finally,
we conclude this study in Sect. 6.

2 Related Works

2.1 Graph Classification

Many solutions can be found in the literature to perform graph classification.
These methods often boil down to compare graphs between them, and the match-
ing can be done in either:

1. a wvector space: in this paradigm, one aims to represent a graph in a vector
space to take advantage of statistical approaches. Often referred as graph
embedding, a mapping ¢ function projects the graph in R™:

¢:G—R"

Several approaches can be used, such as: (i) feature extraction [26] (e.g. num-
ber of nodes, number of edges, average degree of the nodes, number of cycles
with a certain length, ...), (ii) spectral method [18] or (iii) dissimilarity rep-
resentation [23] (based on distances to a set of prototype graphs).

2. the graph space: in this paradigm, one uses graph matching methods to com-
pare graphs in their original space. For instance, GED [8] is a well-known
error-tolerant inexact graph matching algorithm. Given a set of graph edit
operations (commonly insertion, deletion, substitution), the graph edit dis-
tance between two graphs g; and gy is given by:

k
GED(g1,92) = min )Zc(ei),

(e1,..,ex)EP(91,92 Pt

where P(g1,g2) is the set of edit paths to transform g¢; into go and c(e) is the
cost of a graph edit operation e.

3. a kernel space: here, one leverages the kernel trick [15] to compute a similar-
ity measure between two graphs. Kernel methods provide an implicit graph
embedding and use various type of kernel, such as: random walk kernel [31],
shortest-path kernel [4] or graphlet kernel [25]. One main limitation of such
methods is that the extracted features are often not independent [32].

More recently, the performance of artificial neural networks has motivated
their usage for graph classification. Three approaches can be considered:
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Fig. 1. Tixier et al. framework. First, a node embedding is done along with a PCA
compression (1 & 2). Then, 2D histograms are extracted and stacked to build a multi-
channel image-like structure (3). Illustration from the original paper [28].

1. adapting the architecture of convolutional neural networks (CNN) to deal
with graph structures (e.g. [20]),

2. building architecture dedicated to networks (e.g. [24]),

3. image-based graph representation: i.e. using an actual image representation
along with a CNN.

This latter approach is the first motivation of this work: computing an image
represention from a graph and leverage it to use a vanilla CNN. To the best of
our knowledge, only one study [28], parallel to ours and recently submitted to
the arXiv repository, adopts this strategy. Indeed, in [28], Tixier et al. compute
“a multi channel image-like structure to represent a graph”. The following steps
are performed: (i) graph node embedding using node2vec [14], (ii) embedding
space compression using Principal Component Analysis (PCA) and (iii) com-
putation of fixed-size 2D histograms (that will be considered as the channels
of the final image-like structure). Figure 1 illustrates their proposed framework.
Even if their framework achieves classification accuracies that are comparable to
baseline on several data sets, the embedding of nodes is a non-trivial step, and
many parameters have to be tuned (number of channel, node2vec parameters,

Hence, in this study, we propose to take advantage of existing graph visualisa-
tion techniques to build a relevant image representation for graph classification,
without the need of numerous parameters.

2.2 Graph Visualisation

Graph drawing is a field that addresses the issue of visual depiction of graphs in
two (or three) dimensional surfaces. To do so, it takes benefit of graph theory
and information visualisation fields. There is two common ways to draw graphs:

— node-link diagrams: in such depictions, vertices of the graph are represented as
disks, boxes, or textual labels. The edges are represented as segments or curves
in the plane. Producing aesthetic visualisations, it is the most commonly used
visualisation for graph. However, it suffers of limitations such as overlapping
nodes, edge-crossing, or slow interaction for large graphs.
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R

Graph Adjacency matrix Reordered matrix Image representation

Fig. 2. Proposed framework. To represent a graph as an image, we: (i) build its adja-
cency matrix, (ii) apply a matrix reordering algorithm on the adjacency matrix, and
(iii) convert the resulting reordered matrix into an image with predefined dimensions.
This thumbnail is then given to a classifier to predict its label.

— matriz-based visualisations: here, the adjacency matrix of the graph is visu-
alised. It is rarely used and most users are not familiar with this depiction,
despite its “outstanding potential” according to [12]. Its main limitation is the
fact that this visualisation is sensible to the node ordering and may produced
different matrices for two graphs that have the same structure.

3 Proposed Framework

In this study, we propose to use a matrix-based visualisation of a graph and
convert it to an image. This image-based representation is then be reshaped
into a vector a given to classic classifier (such as k-nearest neighbour or support
vector machines (SVM)) or directly feed a CNN.

Figure 2 illustrates the proposed framework. First, the adjacency matrix is
extracted from the graph. We build a binary matrix A € 9,,, where a;; =1
if there is an edge between vertices v; and vj, 0 otherwise. Second, a matrix
reordering algorithm is applied on the original adjacency matrix. An image ver-
sion of the reordered matrix is built, and normalised to a predefined and fixed
dimensions. A classic linear interpolation algorithm was used in our study. This
final thumbnail is the proposed image-based representation of the graph.

The second step, that consists in applying a matrix reordering algorithm
allows us to address the issue of the matrix-based visualisation node ordering
sensibility. This will make the representation non-stochastic and also maintain
spatial relevance in the obtained image. In this study, we investigate several
approaches to reorder matrices, that have been selected according to two studies
[3,19] on matrix reordering methods for graph visualisation. Indeed, the results
of theses algorithms generally present perceivable and interpretable patterns,
while heuristic implementations can be found in the literature to tackle their
complexity. Namely, we investigate the following algorithms:

1. minimum degree algorithm [10] (MD): in numerical linear algebra, this algo-
rithm is used to permute the rows and columns of a symmetric sparse matrix,
before applying the Cholesky decomposition.
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Fig. 3. Image representations of “4, 5-dimethylbenzo/[aJpyrene_’sloan” molecule appear-
ing in the PAH data set. From left to right: a node-link diagram obtained using the
Fruchterman-Reingold algorithm [7] and proposed thumbnails using minimum degree,
reverse Cuthill-McKee, Seriation and Sloan matrix reordering algorithms.

reverse Cuthill-McKee algorithm (RCM): the Cuthill-McKee [6] and the
reverse Cuthill-McKee [11] algorithm both aim at reducing the bandwidth
of sparse matrices.

a seriation algorithm [16] (Seriation): introduced by specialists of archaeology
and palaeontology, it boils down to finding the best enumeration order of a
set of objects according to a given correlation function (e.g. characteristic of
the data, chronological order or sequential structure within the data).

Sloan algorithm [27] (Sloan): this reordering algorithm aims at reducing the
profile and the wavefront of a graph. A main advantage of this algorithm is
that it takes into account both global and local criteria for the reordering
process.

We refer the interested readers to [3] for a more thorough survey and details

on reordering algorithms. Figure 3 illustrates the different image representations
obtained using the four aforementioned matrix reordering algorithms, for a given
graph.

4 Experimental Setup

4.1 Data Sets

Four real-world graph data sets have been used in our experimentation:

1.

2.

GREC: this data set consists of a subset of a symbol image database. It is
composed of 1100 graphs, spread among 22 classes.

MAQO: this data set is composed of 68 molecules divided into 2 classes:
molecules that inhibit the monoamine oxidase (antidepressant drugs) and
molecules that do not.

MUTA: this data set consists in 4, 337 molecules, divided in 2 classes: mutagen
and nonmutagen.

. PAH: this data set is composed of 94 molecules, also divided in 2 classes:

cancerous or not cancerous molecules.
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These data sets are publicly available from the TAM Graph Database Reposi-
tory [22] or the GREYC’s Chemistry dataset!. The 3 first data sets are weighted
and both nodes and edges are labelled. Only the PAH data set can be viewed as
unweighed and not labelled, since all atoms (nodes) are carbons and all bounds
(edges) are aromatics. However, for all the four data sets, we discard the weight
and the nodes/edges labels. This boils down to focusing on the structure of
the graphs, and generates binary adjacency matrix (1 if there is an edge, else
0), and thus binary image representation of the graphs. This choice is justi-
fied by the fact that the present study aims at evaluating the relevance of the
proposed image-based representation for graph classification. In future works,
greyscale and multi-channel images will be considering to handle edge weights
and node/edge labels.

4.2 Implementation

All graphs input are in .gxl format and can be viewed using the online GXL
Viewer platform?. Regarding the algorithm, we have used the C++ boost
(1.58.00) graph library® implementation of the minimum degree, the reverse
Cuthill-McKee and the Sloan algorithms. For the Seriation algorithm, we have
used the R seriation package®.

Once the image versions of the reordered matrix are obtained, we resize them
to a fixed sized of 28 x 28. This was inspired by our former goal of using CNN.
Indeed, CNN performs very well on MNIST?, an isolated handwritten digits data
set, that has 28 x 28 images. We did not investigate the sensibility of the sole
parameter of our approach at the present time.

Regarding the classifiers, we have used in these first experiments the 1-nearest
neighbour (1-NN) and the 3-nearest-neighbour (3-NN) classifiers. Experiments
have been done on both given train/test data sets for fair comparison with state-
of-the-art results but also on the whole data set (with 10-fold cross-validation)
for more generalised results.

5 Results and Discussion

5.1 Comparison with GDC 2016

During the ICPR 2016 conference, the Graph Distance Contest (GDC 2016)°
has been held. Two challenges have been proposed: (1) computation of the exact
or an approximate graph edit distance and (2) computation of a dissimilarity

! https://brunl0l.users.greyc.fr/CHEMISTRY /index.html.

2 http://rfai.li.univ-tours.fr/PublicData/gxlviewer/.

3 https://www.boost.org/doc/libs/1_58_0/libs/graph/doc/sparse_matrix_ordering.
html.

* https://CRAN.R-project.org/package=seriation.

5 http://yann.lecun.com/exdb/mnist /.

5 https://gdc2016.greyc.fr/.
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Table 1. Classification results. The recognition rate (in percentage) for the four studied
matrix reordering methods on the GREC, M AO and MUT A data sets. Both 1-NN and
3-NN classifier have been used, on the train/test data sets of the GDR 2016 challenge
2. The results obtained by the two participants of this challenge are also presented.

#train/test | Classifier MD | RCM | Seriation | Sloan | Algo 1 | Algo 2
GREC | 484/528 1-NN 91.67{90.53 |90.91 91.48 | - -
3-NN 89.58 |89.20 |89.20 90.53 1 93.39 |99.38
MAO |32/32 1-NN 81.25 | 87.50 | 75.00 81.25 | - -
3-NN 84.38 | 84.38 | 68.75 71.88 |68.75 | 75.00
MUTA | 1800/2337 | 1-NN 58.54 | 61.87|60.63 61.70 |- -
3-NN 57.60 |64.18 |59.35 61.45 | 73.50 | 48.55

measure for graph classification. Two participants have joined the second chal-
lenge, however, since the results of this challenge have not been published yet, we
do not disclose the name of the participants, and their methods will be referred
as Algo 1 and Algo 2 in the rest of the paper. The organisers of the contest
kindly provided us with the results of the challenge to allow us to compare our
contribution in a fair context. Only the 3-NN has been used in the challenge 2.

In order to compare the relevance of the proposed image-based representation
for graph classification, we used their train/valid /test partitioning of the GREC,
MAO and MUTA data sets (the organisers have removed 10% on the original
training data sets). Since the proposed approach do not need a validation step,
the classes of the test graphs are predicted using 1-NN and 3-NN classifiers on
the {train;valid} subsets.

The results of this experiment are presented in Table 1. As one can see, the
proposed image-based graph representations do not allow to always outperform
existing methods. However, the obtained results are comparable with the one of
Algo 1 and Algo 2 and for the MAO data set, we do indeed outperform the two
participant algorithm by 10%. Furthermore, unlike our proposed representations,
the participants may have used the attributes of the nodes and labels during
the classification process. This supports the fact that our proposed image-based
representation is a relevant graph representation for graph classification.

5.2 Overall Classification Accuracies

In order to generalise the results, but also to present results on the PAH data
set, we have conducted 10-fold cross-validation experiments. Indeed, according to
the organisers of the contest [1], “PAH represented the most challenging dataset
since it is composed of large unlabelled graphs” (all nodes are carbons and all
edges are aromatics).

Table 2 presents the results related to this second set of experiments. We
observe the same behaviour as the previous experiments: first, the accuracies
are comparable to state-of-the-art methods for the three first data sets. Regard-
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Table 2. Classification results (2). The recognition rate (in percentage) for the four
studied matrix reordering methods on the four data sets. Both 1-NN and 3-NN have
been used to perform a 10-fold cross-validation technique.

#train/test | Classifier MD | RCM | Seriation | Sloan
GREC | 990/110 1-NN 91.00 |91.64 |91.64 92.45
3-NN 90.45 1 91.18|90.36 90.36

MAO |61/7 1-NN 79.05 | 83.3376.19 81.90
3-NN 86.90 | 85.24 |80.95 79.52
MUTA | 84/110 1-NN 62.30 | 64.72|62.35 64.26
3-NN 59.65 | 65.09 61.59 63.15
PAH |84/110 1-NN 67.11 | 63.44 |61.89 72.56

3-NN 62.89 |70.00 | 59.44 67.00

ing the PAH data set, the GREYC’s Chemistry dataset website mention the
best classification accuracy achieved: 80.7% with the method presented in [9].
Second, we observe that using the 3 first nearest neighbours to classify unseen
graphs do not always allow to increase the overall recognition accuracy. Finally,
according to the results, even if MD and Sloan algorithms allow to have bet-
ter recognition accuracies, we can not definitely conclude that a specific matrix
reordering algorithm is best fit in our framework.

5.3 Discussion

We propose a framework where an image-based representation is leveraged to
perform graph classification. The main advantage of our framework is its simplic-
ity, that allows fast computation times while having promising accuracy results.
Indeed, using greyscale or multi-channel image (without any heavy additional
processes), we may considerer improving these recognition accuracies.

The major limitation of our framework, is that one does not actually compute
the graph matching function, which could be a relevant asset for understand-
ing the classification results. However, since our framework provides quickly the
(dis)similarities with the training data set, one can then run a graph matching
algorithm on the K first nearest neighbours in a parallel scheme, and then visu-
alise the obtained matching with a platform such as the one proposed by [21].

6 Conclusion

The main contribution of this study is to show the feasibility of using a simple
yet relevant image-based representation for graph classification. Our approach
allows to obtain recognition accuracies that are comparable or better than the
state-of-the-art methods, while avoiding the complexity of these methods.
These promising first results allow to consider several future works: (i) the
usage of greyscale and multi-channel images, to take into account edge weights
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and nodes/edges labels (the latter being more challenging), (ii) the usage of
a combination of images to represent a graph, or boosting technique, (iii) the
usage of another classifier such as SVM or CNN, that may allow to increase the
recognition accuracies. Finally, it could be interesting to apply our framework
on the data sets used by Tixier et al., to compare our approaches.
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Abstract. Bounding box description of target object usually includes
background clutter, which easily degrades tracking performance. To han-
dle this problem, we propose a general approach to learn robust object
representation for visual tracking. It relies a novel patch-based absorbing
Markov chain (AMC) algorithm. First, we represent object bounding box
with a graph whose nodes are image patches, and introduce a weight for
each patch that describes its reliability belonging to foreground object to
mitigate background clutter. Second, we propose a simple yet effective
AMC-based method to optimize reliable foreground patch seeds as their
qualities are very important for patch weight computation. Third, based
on the optimized seeds, we also utilize AMC to compute patch weights.
Finally, the patch weights are incorporated into object feature descrip-
tion and tracking is carried out by adopting structured support vector
machine algorithm. Experiments on the benchmark dataset demonstrate
the effectiveness of our proposed approach.

Keywords: Visual tracking - Absorbing Markov chain
Weighted patch representation + Seed optimization

1 Introduction

Visual tracking is a fundamental and active research topic in computer vision
due to its various applications, such as security and surveillance, human com-
puter interaction and self-driving system. Although many tracking algorithms
have made great progress recently, it still remains many challenges in practical,
including complex appearance, pose variations, partial occlusion, illumination
change and background clutter.

Many efforts have been devoted to weaken the effects of undesirable back-
ground information. Some methods [3,6,7] simply update the object classifiers
by considering the distances of samples in accordance with the bounding box
center, e.g., the samples far away from the center assigning smaller weights
because a farther distance means a higher possibility of being background noise.
Some [13-15] develop dynamic graph to learn robust patch weights. Recently,
Kim et al. [11] proposed a novel descriptor named spatially ordered and weighted

© Springer Nature Switzerland AG 2018
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patch (SOWP), which can better describe target objects and suppress back-
ground information. The method utilizes similarities between initialized patch
seeds with other image patches to represent patch weights via random walk algo-
rithm [19]. They indeed achieve much better performance than other trackers.
However, the random work algorithm adopted in this method still has two issues
as the follows: (1) it is an iterative algorithm, and (2) its performance relies on
initial seeds, which are usually contagious due to inaccurate tracking results and
deformation or occlusion of target objects.

To handle these issues, we propose a novel patch-based absorbing Markov
chain (AMC) algorithm [9] to compute robust patch weights for visual tracking.
First, we represent object bounding box with a graph whose nodes are image
patches as they are robust to object deformation and partial occlusion. To mit-
igate background noise of patches within the bounding box, we assign a weight
for each patch which describes its reliability belonging to foreground object.
Second, we propose a simple yet effective AMC-based method to optimize reli-
able foreground patch seeds as their qualities are very important for patch weight
computation. In particular, we design a criterion using the peak-to-sidelobe ratio
(PSR) [17] to measure the quality of foreground patches, and then select most
reliable ones as seeds for patch weight computation. Third, we utilize AMC once
again to compute patch weights with the optimized seeds as inputs, and the
patch weights are finally incorporated into object feature description and track-
ing is carried out by adopting structured support vector machine algorithm [6].
The pipeline of our approach is shown in Fig. 1.

Our approach has following advantages. First, it is able to mitigate noises of
foreground patch seeds based on the AMC algorithm and PSR criterion. Second,
it is efficient due to closed-form solution of AMC. Third, it achieves superior per-
formance against SOWP and other trackers on a large-scale benchmark dataset.

2 Related Work

2.1 Visual Tracking

Here we only discuss the most related visual tracking works with ours. And
comprehensive review can be found in [12,21].

To suppress background noise, some methods [5,22] integrate segmentation
results into tracking to alleviate the effects of background. These methods, how-
ever, are sensitive to segmentation results. Some [16,23] construct a graph for
absorbing Markov chain (AMC) using superpixels in two consecutive frames or
between the first frame and the current frame to estimate and propagate target
segmentations in a spatio-temporal domain. Also, one representative approach is
to assign weights to different pixels in the bounding box, such that [3,7] assume
pixels far away from the bounding box center should be less important, and
thus assign smaller weights to boundary pixels via the kernel-based method dur-
ing the histogram construction. However, these methods may be failed when a
target object has a complicated shapes or is occluded. Kim et al. [11] compute
patch weights within bounding box through a random walk with restart algo-
rithm which has a high computation burden. Moreover, they simply define all
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the inner patches as foreground seeds like the initial patch seeds shown in Fig. 1.
It is obvious that the SOWP descriptor inevitably has some improper initial
foreground seeds in this way, especially when the target object is occluded.

2.2 Absorbing Markov Chain

Our approach relies on absorbing Markov chain (AMC), so we describe it in
detail. AMC includes two kinds of nodes, absorbing nodes and transient nodes
representing absorbing states and non-absorbing states respectively. The tran-
sient nodes which have similar appearance and small spatial distance to absorb-
ing nodes can be absorbed faster. Therefore, the absorbed time can be regarded
as our patch weights because it represents the similarity between a pair of nodes.

Given n nodes S = {si, $2, ..., $n} including r absorbing nodes and ¢ tran-
sient nodes, the n x n transition matrix P, where p;; is the probability of moving
from node s; to node s;, have the following canonical form:

P (5T). W

where the first ¢t nodes are transient and the last r nodes are absorbing. Q €
[0,1]"** and R € [0,1]"*" denotes the transition probabilities between any pair
of transient nodes, and transient nodes with any absorbing node respectively. 0
is zero matrix and I is identity matrix. For an absorbing chain, we can derive its
fundamental matrix N = "7 QF = (I— Q) ', which is the expected number
of times that spends from the transient node s; to the transient node s;, and
the sum > ;i reveals the expected number of times before absorption. Thus,
we can compute the absorbed time z for each transient node by

z=N xc, (2)

where ¢ is a ¢t dimensional column vector all of whose elements are 1. Notice
that a small z(7) means a high similarity between the i-th transient node and
absorbing nodes.

3 Proposed Methodology

The proposed algorithm utilizes absorbing Markov chain (AMC) to reduce the
impacts of background information in object representation. In this section, we
describe how to use patch-based AMC to gain the patch weights. Also, we intro-
duce our AMC-based method for foreground seed optimization in order to remove
some improper foreground seeds.

3.1 Overview of Qur Approach

Given object bounding box of an unknown target in the first frame, we first rep-
resent it with a graph which takes image patches as nodes. The graph is described
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feature desriptor

patch weights

V
an AL o

Frame Initial patch seeds Optimized patch seeds weighted feature descriptor Tracking result

e —
L]

Fig. 1. Pipeline of our method. Input frame with patch partition, where the expanded,
original and shrunk bounding boxes are indicated by red, yellow and green colors. The
foreground seeds are highlighted by green color. (Color figure online)

with features constructed by a combination of Hog and RGB color histogram
and used for the absorbing Markov chain (AMC). Then we use a AMC-based
method to remove some improper foreground seeds because foreground seeds
sometimes have a large area of background region when the target object has
a complex appearance or is occluded. After that, we use AMC once again with
the optimized seeds to calculate patch weights and combine these weights with
corresponding patch features to construct a robust object descriptor. Finally,
the descriptor can be incorporated into the Structured SVM [6] to conduct our
tracking. The pipeline of our method is shown in Fig. 1.

3.2 Object Feature Learning with Patch-Based AMC

Graph Representation. We first decompose the bounding box into n non-
overlapping patches and characterize each patch with low-level features. Then
the spatially ordered patch feature descriptor for the bounding box is given by:
D(x4,y) = [flT7 .. ,fnT]T, which represents the contents in a bounding box y in
the t-th frame x;, and f; is the feature vector of the i-th patch.

We construct a graph G(V, E) with these patches as nodes V and the links
between patches as edges E. Each node is connected with the neighboring nodes
and nodes that share common boundaries with them. Then we can effectively
capture local smoothness cues as neighboring patches tend to share similar
appearance, and explore more intrinsic relationship among patches as the same
semantic region has likely similar appearance and high compactness. The weight
wj; of the edge e;; between adjacent nodes ¢ and j is defined as

Wi = emp(—vai - fjHQ) (3)

For AMC, we first renumber the nodes so that the first ¢ nodes are transient
nodes and the last r nodes are absorbing nodes. Then, the affinity matrix A is
defined as

0 otherwise.
where N(7) denotes the nodes connected to node i. Therefore, we can obtain the
transition matrix P on the sparsely connected graph which is given as

P=D"'xA, (5)
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I1
(b) (©) (©) ()

Fig. 2. Tllustration of effectiveness of optimized seeds for patch weight calculation. (a)
and (d) Input frame with patch partition, where the expanded, original and shrunk
bounding boxes are indicated by red, yellow and green colors. The patch seeds are
highlighted by green color. (b) and (e) Patch weight calculation via initial seeds. (c)
and (f) Patch weight calculation via the proposed optimized seeds. The results show
that our method is able to handle occlusion effectively. (Color figure online)

where D = diag(d_ j a;;) is the degree matrix of each node that records the sum
of the weights, and P is actually the raw normalized A. In this way, we get a
patch-based AMC that can achieve a graph representation. In the next section,
we will discuss our AMC-based method for foreground seed optimization.

Foreground Seed Optimization. Given the original bounding box, we expand
and shrink it respectively as shown in Fig.2. Then inner patches which are
located inside the shrunk region are taken as initial foreground seeds. To remove
some improper foreground seeds such that the seeds contain a large area of
background, specifically, we select only one inner patch as absorbing node one
time, and all the other patches as transient nodes. The corresponding absorbed
time can be obtained by the following steps: (a) Get the affinity matrix A by
Eq. (4); (b) Calculate the transition matrix P by Eq. (5); (¢) Extract the matrix
Q by Eq. (1); (d) Compute the fundamental matrix N; (e) Compute the absorbed
time z by Eq. (2) and normalize it to the range between 0 and 1.

Then we adopt PSR based on AMC as a confidence metric to remove some
improper seeds, which is widely used in signal processing to measure the signal
peak strength in a response map. Inspired by [1,17], we generalize the PSR as a
confidence function for the candidate seed as:

PSRsl _ maxps; — [e,s; (6)

O—Q,Si

where s; is the i-th candidate seed as absorbing node in a Markov chain and pg,
is its probability map (normalized absorbed time). {2 is the sidelobe area around
the peak which is 36% of the probability map area in this paper. pg s, and oo g,
are the mean value and standard deviation of p,, except area 2 respectively. It
can be easily seen that the function PSR, becomes large when the probability
peak is strong. Therefore, PSR, can be treated as the confidence function to
measure whether the candidate seed can be a seed properly. When PSR, <
threshold, we make the :—th improper absorbing node to be a transient node,
otherwise keep it unchanged. In this way, we can obtain the optimized foreground
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seeds. As shown in Fig. 2, the distribution of patch weights with foreground seed
optimization in Fig.2 (¢) and (f) is more accurate than the method without
foreground seed optimization in Fig.2 (b) and (e).

Patch Weight Calculation. After we obtain the optimized foreground seeds,
and take outer patches, which are located inside the expanded region but outside
the original region as background seeds, we can calculate the final patch weights.
At first, the optimized foreground seeds are taken as absorbing nodes and other
patches are taken as transient nodes. Then we can calculate the foreground
normalized absorbed time through steps (a) — (¢) mentioned above and get a
normalized absorbed time vector zf" = [zF'(1),2F(2),..., 2 (n)]. Then in turn
we take background seeds as absorbing nodes and others as transient nodes and
have the background absorbed time z? = [zP(1),25(2),..., 2P (n)]. Thus, for
the ¢—th patch at the t—th frame, we compute the final patch weight z.(¢) by
combining the foreground absorbed time with background absorbed time:

. 1
A e (B — )
where (3 controls the steepness of the logistic function. Thus, we incorporate the
patch weights with the feature descriptor, and consequently obtain our robust
weighted feature descriptor ®(x;,y) = [z(1)f,7, ..., z(n)f,T]T. In Fig.2 we
can find that the patches, which are assigned relatively large weights, reveal the
shape of the target object effectively.

(7)

3.3 Structured SVM Tracking

Given the bounding box of the target object in the previous frame t — 1, we first
set a searching window in the current frame t. For i—th candidate bounding
box within the search window, we obtain its weighted feature descriptor by the
proposed patch-based AMC algorithm and incorporate it into the conventional
tracking-by-detection algorithm, Struck [6]. Note that in addition to Struck,
there are other tracking-by-detection algorithms, such as [2,25], can also be
combined with our descriptor for tracking. We also adopt the schemes of scale
estimation [18] and model update [11] to handle scale variations and avoid drastic
appearance changes.

4 Experimental Results

4.1 Implementation

The proposed method is implemented in C++ on an Intel 17-6770K 4 GHz
CPU with 32GB RAM. We set 0.3 as the confidence score threshold, and the
parameters are empirically set as v = 5.0 in Eq.(3), § = 30 in Eq.(7) and
threshold = 3.0 for foreground optimization. The side length of a searching win-
dow is fixed to 2vW H, where W and H are the width and height of the scaled
bounding box respectively.
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Fig. 3. Evaluation results on the OTB100 benchmark. The representative score of
PR/SR is presented in the legend.

4.2 O0OTB100 Benchmark Dataset

We evaluate the proposed tracking method on the OTB100 benchmark
dataset [21] which contains 100 videos with ground-truth object locations and
different attributes for performance analysis. We use distance precision rate (PR)
and overlap success rate (SR) with the threshold of 20 pixels for quantitative
performance.

4.3 Evaluation on OTB100

We compare the performances of our proposed algorithm with other conventional
trackers whose results were reported in [11,21] including MEEM [24], LCT [18],
DSST [4], KCF [8], Struck [6], TLD [10], DLT [20] and SOWP [11]. The precision
and success rate are presented in Fig.3. Also, the results of attribute-based
evaluation are showed in Table 1.

Overall Comparison: As shown in Fig. 3, our proposed method shows a supe-
rior performance against SOWP and outperforms other conventional methods
significantly. In particular, our tracker outperforms SOWP with 2.2%/1.4% in
precision and success rates respectively. That means our method has a more
robust descriptor compared with SOWP and can better reduce the influence of
background information. In summary, the precision and success plots demon-
strate that our method performs well against these conventional methods.

Attribute-Based Comparison: We compare the precision and success scores
of our algorithm with the conventional trackers over 11 challenging factors in
Table 1. We can find that the proposed method performs favorably against con-
ventional trackers and always yields the top three scores in both precision and
success metrics. Specifically, most of our top scores are over 1% higher than
second place. There are also some issues that we can easily notice as follows:
The SOWP method does not perform well during fast motion and motion blur
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Table 1. Precision rate and success rate based on differ attributes of OTB100 bench-
mark [21] with recent 8 trackers. The attributes include scale variation (SV), fast
motion (FM), background clutter (BC), motion blur (MB), deformation (DF), illumi-
nation variation (IV), in-plane rotation (IPR), low resolution (LR), occlusion (OC),
out-of-plane rotation (OPR), out of view (OV). The best, second and third results are
in red, green and blue colors, respectively.

MEEM |LCT DSST |KCF Struck | DLT SOWP | Ours
SV |73.6/47.068.1/48.8|66.2/40.9 63.6/39.6|60.0/40.4|53.5/39.1| 74.6 /47.5|77.2/50.8
FM |75.2/54.2|68.1/53.4|58.4/44.2 | 62.5/46.3 | 62.6/47.0| 39.1/31.8|72.3/55.6 | 78.9/57.7

BC |74.6/51.9 73.4/55.0|70.2/47.7 | 71.8/50.0|56.6/43.8|51.5/37.2| 77.5/57.0| 78.5/58.3
MB | 73.1/55.6]66.9/53.3 61.1/46.7 | 60.6/46.3 59.4/46.8| 38.7/32.0 | 70.2/56.7 | 77.3/58.2
DF |75.1/48.9 68.9/49.9|56.8/41.2 | 61.7/43.6|52.7/38.3| 45.1/29.5| 74.1/52.7| 83.7/56.3
IV | 72.8/51.5|73.2/55.7 70.8/48.5 69.3/47.1 54.5/42.2|51.5/40.1 | 76.6/55.1 | 77.0/54.3
IPR |79.4/52.9|78.2/55.7|72.4/48.5 69.7/46.7 | 63.7/45.3| 47.1/34.8 | 82.8/56.7 | 30.7/55.3
LR 80.8/38.2/69.9/39.9|70.8/31.467.1/29.0|67.4/31.3|75.1/46.5|90.3/42.3|79.9/40.7
OC | 74.1/50.4|68.2/50.7|61.5/42.6 |62.5/44.1 | 53.7/39.4 | 45.4/33.5 75.1/52.8 | 76.2/53.1
OPR.| 79.1/52.5|74.6/53.8 | 67.0/44.8 | 67.0/45.0 59.3/42.4|50.9/37.1 | 78.7/54.7|79.8/51.6
OV |68.5/48.859.2/45.2|48.7/37.4 | 51.2/40.1|50.3/38.4| 55.8/38.4|63.3/49.7 | 73.0/53.1
ALL |78.1/53.0|76.2/56.2 69.5/47.5 69.3/47.6 64.0/46.3|52.6/38.4 | 50.3/56.0 | 82.5/57.4

or when the object is out of view. The MEEM method can not handle par-
tial occlusion well. The LCT and DSST methods do not perform well when the
object is out of view. And the DSST method drifts when fast motion happens
or the object has a complex deformation. The KCF and Struck methods have
a bad tracking result when target objects suffer from heavy occlusion and fast
motion. But overall it is obvious that our proposed algorithm can well handle
different challenging factors. And that is because we give the classifier a more
robust descriptor of target objects. We can see our tracking examples in Fig. 4.

4.4 Ablation Study

As shown in Fig. 3, our method with foreground seed optimization via PSR has a
higher precision and success rate curves than the method without it. The reason
is that the initial foreground seeds may have a large area of background noise
due to complex appearance or partial occlusion. It indicates that our method
can suppress background noise effectively. And it confirms our scheme of using
optimized foreground seeds can get a more robust patch weights and construct a
more reliable descriptor. Also, our method is 6.63-fps, a little lower than 8.26-fps
in SOWP because although absorbing Markov chain has a closed-form solution,
our AMC-based method for foreground seed optimization has to determine the
reliability of each initial foreground seed.
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Ours e DSST e TLD — Struck — SOWP

Fig. 4. The tracking results of the proposed method with other conventional trackers
on OTB100 benchmark.

5 Conclusion

In this paper, we propose an effective approach to learn robust object represen-
tation for visual tracking via a patch-based absorbing Markov chain algorithm
with foreground seed optimization. Note that the optimized foreground seeds
make great contributions for a more robust patch weights calculation. Exper-
iments on benchmark dataset demonstrate the effectiveness and robustness of
the proposed algorithm. In future work, we will improve the efficiency of our
approach and introduce more robust features.
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Abstract. A key issue in Gaussian Process modeling is to decide on the
locations where measurements are going to be taken. A good set of obser-
vations will provide a better model. Current state of the art selects such
a set so as to minimize the posterior variance of the Gaussian Process
by exploiting submodularity. We propose a Gradient Descent procedure
to iteratively improve an initial set of observations so as to minimize the
posterior variance directly. The performance of the technique is analyzed
under different conditions by varying the number of measurement points,
the dimensionality of the domain and the hyperparameters of the Gaus-
sian Process. Results show the applicability of the technique and the
clear improvements that can be obtain under different settings.

1 Introduction

In many analyses we are dealing with spatial phenomena modeled using Gaus-
sian Processes (GPs, [11]). When tackling the analysis of such spatial phenomena
in a data-driven manner, a key issue is to decide on the locations where mea-
surements are going to be taken. The better the choice of locations, the better
the GP will approximate the true underlying functional relationship or the fewer
measurements we need to get a model to a prespecified level of performance.

One example is environmental monitoring, where it is necessary to choose a
set of locations in space in which to measure the specific phenomenon of interest.
Such environmental analysis processes, required to characterize and monitor the
quality of the environment, typically includes two phases: (i) the collection of the
information and (ii) the generation of a model to effectively predict the spatial
phenomena of interest. The measurements through the use of mobile sensors
[1,2,8] or the displacement of fixed sensors [3,5,7] is, however, usually costly
and one would want to select observations that are especially informative with
respect to some objective function.

Recent research in this context has exactly aimed at selecting such a set of
measurement locations so as to minimize the posterior variance of the GP [6].
This selection of measurement locations is basically performed through the use of
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greedy procedures. In particular submodularity, which is an intuitive diminishing
returns property, is exploited [4,5,10].

Although submodular objective functions allows for a greedy optimization
with bound guarantees [9], the solution that these techniques offer can deviate
considerably from the optimum and there is definitely room for improvement.
This is the main goal of this work: we propose a direct Gradient Descent (GD)
procedure to minimize the posterior variance of the GP and present a study of
its performance. We basically use a GD algorithm to adapt the sensing locations
starting from a set of initial positions that can be given from any other algorithm.

The core contributions of our paper are GD approach to minimize the pos-
terior variance of a GP and an extensive empirical evaluation of the procedure
under different conditions by varying: (i) the hyperparameters of the GP; (ii) the
dimensionality of the dataset; (iii) the number of points to adapt; (iv) the method
of initialization of the points. Moreover, we present the results and discuss the
applicability and the improvements that our technique offers. In particular, we
show how submodular greedy solutions can be further improved.

The paper is organized as follows: Sect. 2 provides the required background
and the problem definition. Section 3 presents our algorithm and describes its
implementation. Section4 provides the detailed description of the experimen-
tal settings and Sect. 5 presents the results. Section 6 provides a discussion and
conclusions.

2 Background

2.1 Gaussian Processes

GPs are a widely used tool in machine learning [11]. A GP provides a statistical
distribution together with a way to model an unknown function f.

A GP is completely defined by its mean and a kernel function (also called
covariance function) k(x,2’) which encodes the smoothness properties of the
modeled function f. We consider GPs that are estimated based on a set K of
noisy measurements Y = {y1,y2, -+ ,yx} taken at locations {z1,xzo, - ,zx}.
We assume that y; = f(z;) + e; where e; ~ N'(0,02), i.e., zero mean Gaussian
noise. The posterior over f is then still a GP and its mean and variance can be
computed as follows [11]:

u(w) = k(2)" (K + 02D) 'Y (1)

o*(x) = k(z,2) — k(2)" (K + o71) " k(z) (2)

where k(z) = [k(z1,2), -, k(zk, )] and K = [k(2,2')]z0rex

Clearly, using the above, we can compute the GP to update our knowledge
about the unknown function f based on information acquired through observa-
tions.
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2.2 Problem Definition

Given a GP and a domain X, we want to select a set of K points where to
perform measurements in order to minimize the total posterior variance of the
GP. Specifically we want to select a set K of measurements taken at locations

{z1, 9, - ,xK} such that we minimize the following objective function:
J(K) = o*(x) 3)
zeX

where o02(x) is computed using Eq. 2.

2.3 Submodularity

Define a set function as a function which inputs are sets of elements. Particu-
lar classes of set functions turn out to be submodular, which can be exploited
in finding greedy solutions to optimization problems involving these types of
functions. A fairly intuitive characterization of a submodular function has been
given by Nemhauser et al. [9]: A function F' is submodular if and only if for all
ACBC X and z € X\B it holds that F(AU{z})—F(A4) > F(BU{z})—F(B).

The total posterior variance of a GP belongs to this class of functions, in
which the set K of noisy measurements represents the input. Research in this
context aimed at selecting such a set of measurement locations so as to minimize
the posterior variance of the GP [6] and we mainly compare to this state-of-the-
art method. Now, we are, in fact, going to exploit a much more direct method,
which, surprisingly has not been studied in this context.

3 Gradient Descent Variance Reduction

Rather than exploiting the submodularity property of the objective function in
Eq.3 to come to a greedy subset selection, we decide to rely on standard GD.
Specifically, starting from an initial configuration of measurement points in the
domain, we perform a GD procedure to minimize the total posterior variance of
the GP.

The main idea behind our algorithm is to exploit the gradient of the objective
function in Eq. 3 to iteratively re-adapt the location of the measurements points
across the domain. Notice that the value of the multi-dimensional objective func-
tion J(K) represents the total posterior variance of the GP given the K points
in a d dimensional space. Following the gradient of the objective function corre-
sponds to a simultaneous update of all the measurement points in the domain
space. Considering these points simultaneously is what the submodular greedy
approach does not do and what gives our approach an edge over that approach.
In the direction of the negative gradient we have, in principle, a better solution
and in our algorithm we take all the necessary precautions to avoid that the iter-
ative step produces a displacement that would lead to a worse solution. With
this, at every iteration the algorithm is guaranteed to obtain an improvement.
A sketch of the pseudo-code is listed in Algorithm 1.



Gradient Descent for Gaussian Processes Variance Reduction 163

Algorithm 1. Gradient Descent (GD) procedure
input: set of initial sampling locations Ky, domain X, convergence factor cf

1: Initialization

2: while not converged do

3 i «— 1+ 1; step « step + 1; improved +— false
4 while not improved and not converged do
5: Kl — Ki—l —VJ(Ki-l)/St@p

6 if J(K;) < J(K;—1) then

7 improved «— true

8

else
9: step «— step+ 1; K; — K1
10: end if
11: Check convergence using cf

12: end while
13: end while
14: return K;

Let us go through the procedure, starting out by describing the inputs and
output that it considers. One of the inputs is the set of initial sampling points K
that can be initialized using different choices. For example they can be chosen
randomly or through use of a different techniques, a detailed description regard-
ing our choices can be found in the experimental phase in Sect.4. The second
input, the domain X, represent the set of locations where we want to evaluate
our GP in order to compute the posterior variance using Eq.2. The remaining
input (cf) is used to determine the convergence of the procedure and it’s use will
be clearer in the following description. The output of the procedure is represent
by the final set K; of sampling locations after i iteration of the algorithm.

The procedure begins with an initialization phase, here we initialize the
required variables to manage the main loop and by computing the total pos-
terior variance given the initial set of sampling locations K. The main loop
(lines 2-13) iterates until the convergence is reached and it is made up of two
main components: (i) the GD iterative step that allows to minimize the objective
function (lines 4-12), described in Sect.3.1; (ii) the check of convergence (line
11) whose function is described in Sect. 3.2.

3.1 Gradient Descent Iterative Step

Here we describe the function of the iterative step (lines 4-12) that allows our
procedure to minimize the objective function. The iterative step computes for
all the points in K (line 5) what is the new position given the derivative of
the objective function. However, as any GD procedure, we have to keep into
account situations where the iterative step would “jump” over the current basin
of attraction. As noted earlier, in the direction of the negative gradient the objec-
tive function is decreasing in value and we want to guarantee that our algorithm
at every iteration improves the solution. A simple method is to check whether
the current step would make us improve the current solution or not. To this
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aim we recompute the value of the objective function (line 6) and verify that
this correspond to a net improvement with respect to the previous configuration.
Otherwise we roll-back to the previous solution K;_; and recompute a smaller
displacement (line 9). To this aim we make use of the additional variable step.
We can observe that this variable is used to compute the amplitude of the dis-
placement in line 5. The step is increased at each iteration of the algorithm at
least once (in line 3) to guarantee a slowdown, and an additional number of
times (line 9) to guarantee that at each iteration we obtain an improvement (i.e.
we minimize our objective function).

3.2 Convergence

As mentioned before, as part of the inputs we have cf which is used to determine
the convergence of the algorithm. This parameter is intended as a threshold to
determine whether the procedure has to terminate or not. cf specifies what is
the lowest percentage (with respect of the dataset diameter) of displacement
that any points we are adapting can move. At the beginning of the procedure
(line 1) we also compute the diameter of the dataset, let’s call it maxD. Inside
the main loop of the procedure, we check the convergence (line 11). When all the
points in K received a displacement that is lower than cf-maxD we consider the
procedure terminated. The cf parameter act as a trade-off between the precision
of the solution and the computation (number of iteration) required to converge.
For small values the algorithm is allowed to go through its iterations as long as at
least one of the points in space is moving by a small amount. Larger values will
make the procedure stop earlier with a solution that may of course be further
from an optimum than when small values are used.

4 Dataset and Experimental Settings

To test the performance of our procedure under different conditions we gener-
ated datasets with domains in 1 to 5 dimensions. Specifically we have generated
datasets with domain points X equally distributed over the dimensions. The
cardinality of the domain | X, that is the number of points on which we evalu-
ate the GP, has been adapted to be at least 1000 points. The two dimensional
dataset is simply a set of equally distributed points on a grid, while the three
dimensional dataset is a set of equally distributed points on a cube, etc.

The most widely used kernel is Gaussian one (also known as squared expo-

(z—a)?

52 which is therefore the obvious choice

nential): Kgp(z,z') = 0F exp <—

in our experiments. The hyperparameters of the kernel can vary considerably
however. Hence, to generally study the performance of our GD procedure we
varied these in our experiments. Specifically we used 20 different length-scale [
and 15 different oy. The former describes the smoothness property of the true
underlying function while the latter the standard deviation of the modeled func-
tion. As we can observe in Eq. 2 these are fundamental to determine the variance
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of the GP. Moreover, as mentioned in Sect.2.1 we assume that measurements
are noisy and in our experiments we also used 10 different o,.

In addition to the different number of dimensions of the datasets and the
hyperparameters previously described, we have tested the procedure by adapting
a different number of points (cardinality of the set K) from 2 up to 7. The case
of a single point has been excluded since the submodular greedy technique is
optimal by definition.

Some starting locations of the points are required to initialize our GD algo-
rithm. Here we initialized them using the submodular greedy procedure in
order to measure the magnitude of the possible improvements and to see under
what conditions we can obtain them. The additional input of the procedure as
described in Sect. 3 is ¢f = 1,/1000.

To summarize, by considering the different hyperparameters, dimensionality
of the datasets and number of measurement points, we have performed 90,000
different experiments that allows us to characterize and study the improvement
obtainable with the GD procedure with respect to the widely used submodular
greedy technique. Moreover, we also have performed the 90,000 experiments by
initializing the points randomly instead of using a submodular solution, this
allows us to study the average improvement obtainable without the needs to
previously perform a different algorithm. In addition we have selected a subset of
the hyperparameters and datasets to perform a test with many different random
initialization on the same instances. The results of the experiments are described
in the next section.

5 Results

We describe the results from different points of view and comment on the appli-
cability of the technique we proposed. To explain the performance of GD as a
function of the hyperparameters of the GP, we take as example the two plots in
Fig. 1. In this pictures we can observe the % of improvement that GD obtains
with respect to the submodular solution by varying the hyperparameters in the
two dimensional dataset by adapting 5 points: vertically the length-scale | of
the kernel and horizontally the standard deviation oy of the function. The two
pictures represent these improvements by fixing a single standard deviation of
the noise measurement o,; the one to the right with a o, that is almost three
times the one to the left.

To start with, independently of oy and 0, when we use very small length-
scales (top rows of the two pictures) the advantage we can obtain with GD is
very low. The reason why this happens is that with small length-scales the con-
tribution in variance reduction given by an observations is mostly concentrated
in a very narrow position. Consider that we are trying to estimate where to
make two observations, as long as they are a little separated one another we
are already obtaining most of the variance reduction possible. With very small
length-scale the position where we make observations influences little to nothing
the final amount of posterior variance. Hence with GD in these cases we cannot
obtain an advantage with respect to the submodular greedy technique.
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Fig. 1. Results as a function of the hyperparameters. Horizontally are variations in
the standard deviation oy and vertically the length-scale {. Colors represent the % of
variance reduction of GD relative to the submodular greedy solution. These results refer
to 5 points in the 2-dimensional dataset and each picture for a fixed o,. Specifically
in the right image o, is about three times higher then in the left one. (Color figure
online)

Secondly, when the length-scale of the kernel becomes bigger the reduction
in variance given by a measurement point has an effect on a larger portion of
the domain, hence the location where the measurements are taken affect the
total amount of posterior variance reduction. In this case we observe that the
locations selected by the GD procedure obtain an advantage with respect to the
submodular greedy technique.

Finally, when the length-scale becomes bigger we notice that the oy and o,
parameters affect the results differently. Consider, for instance, the left picture
in Fig. 1. The picture displays results for a fixed o,,, with the other two variables
on the two axes. We can observe that for small values of o we obtain a small
advantage and vice versa. These results are shifted to the right when the o,
parameter increases (right picture in Fig.1). This show that the ratio os/o,
affects the quality of the results: the higher the ratio the higher the improvements
we can obtain.

5.1 Varying the Number of Points and Dimensionality

In this section we study the performance of GD with respect to the submodular
greedy solution by varying the cardinality of the set K and the number of dimen-
sions of the domain. In Table1 we report the percentage of variance reduction
that the GD procedure obtain with respect to the total posterior variance of
the GP with the measurement locations selected with the submodular greedy
technique. Specifically, each entry of the table reflects the improvement obtained
for a specific combination of number of points and dimensionality of the domain.

Table 1 represents the average and maximum % gain of GD with respect to
the submodular greedy solution. On the average columns each entry represents
the average over all the 3000 hyperparameters for a specific combination of
dimensionality of the domain and number of measurement points. As we can
observe, in general the GD procedure allows us to improves significantly for small
dimensionality and number of points. Regarding the maximum improvement
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Table 1. Average and maximum % gain of GD with respect to the submodular solution

Average improvment Maximum improvement
per number of points per number of points

2 3 4 5 6 7 2 3 4 5 6 7

1-D 1 32.818.2/17.6 | 17.1 | 14.8| 8.5|59.9|86.889.889.2|71.6 | 71.7
2-D| 41]16.9]19.7| 9.2|13.7|14.5|21.1|60.3 | 54.9|33.4|76.7 | 72.3
3-D| 10| 2.8| 88| 80|106| 82| 6.2|15.8/52.1|29.9/41.2|31.0
4-D| 03| 1.0| 1.9 5.1| 3.5/ 49| 6.6|/11.5 12.2|31.1/20.7|22.6
5-D| 00| 06| 1.1 1.7 39| 22| 3.0/ 88| 82|17.5/40.1|22.6

each value reported is the maximum value encountered between all the possible
3000 combination of hyperparameters. Also in this case we can observe that GD
produces better results for small dimensionality and number of points.

5.2 Random Initialization

Here we report the results similarly to the previous section. In this case the GD
procedure has been initialized with points in randomly selected locations.

Table 2. Average and maximum % gain of GD with respect to a random configuration

Average improvement Maximum improvement
per number of points per number of points

2 3 4 5 6 7 2 3 4 5 6 7

1-D | 38.8 145.0 | 45.6 | 46.6 | 47.1 | 46.6 |99.4 | 99.3 | 99.6 | 99.8 | 99.7 | 99.6
2-D|19.7]35.0|36.4|35.8|37.0 38.6 | 78.3/99.1|97.4|96.9|94.4|96.5
3-D|18.3]18.0|32.330.1|30.9|30.7|70.0 | 81.198.4|96.6 | 94.1 | 88.9
4-D|17.2/14.6 1 16.9|30.3|27.4|25.9/62.9|66.1|76.296.7|94.2 | 94.4
5-D[15.9]13.4|12.9/15.9|28.025.159.9|58.8|62.3|75.3|95.6|97.1

Table 2 represents the average and the maximum improvement of GD with
respect to the random initial collocation of points. These results represent the
gain in terms of percentage of variance reduction with respect to the variance
of the GP with the measurement points in the random locations. Since the
random collocation of points can represent a very bad quality solution compared
to the submodular greedy procedure, results show much bigger improvements.
A more interesting point of view is offered in Table3. Here we compare the
total posterior variance of the GP after the gradient descent adaptation from a
random initialization with the total posterior variance after the gradient descent
adaptation starting from the submodular greedy solution.
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Table 3. Maximum % gain of gradient descent starting from a random configuration
with respect to GD starting from the submodular greedy solution

Number of points

2 3 4 5 6 7
1-D 1 43.4|76.0|74.0|39.1|53.2|36.9
2-D|14.2|34.6 1 31.9|35.3|52.1|52.1
3-D| 9.7/15.8/30.2|16.4|35.9|21.9
4-D| 4.9 7.7/14.1/26.6|15.3|15.3
5D| 1.2 70| 7.0| 7.2]26.7|/21.4

Specifically, Table3 reports the maximum improvements that have been
encountered by varying the 3000 hyperparameters. Although, the result can
vary considerably across the hyperparameters, results show that from a random
initialization of points we can obtain in some cases better results than using a
submodular greedy procedure to select the starting configuration.

Notice that the aforementioned Tables (2 and 3) report results consider-
ing a single random initialization per instance. Since the selection of the initial
measurement points is subject to a great variance we also performed a more
detailed test on a small subset of instances. Specifically, we have selected the
2-D dataset and we use gradient descent to adapt the location of two points
and the 3-D dataset with six points. By fixing also a specific 0,, parameter, we
performed experiments by using 100 randomly initialization for each of the 300
combinations of oy and /. Results are presented in Fig.2. As we can observe,
when we perform multiple randomly initialized executions on average we obtain
a spectrum of improvements similar as what shown in previous Fig. 1.
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Fig. 2. Average gain over 100 randomly initialized execution of GD. Left with 2 points
in the 2-dimensional dataset and right 6 points in the 3-dimensional dataset.

6 Discussion and Conclusions

In this paper we proposed a Gradient Descent procedure to minimize the pos-
terior variance of a GP. The performance of the technique has been analyzed
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under different settings. Results show that in many cases it is possible to obtain
a significant improvement with respect to a random or the well-known submod-
ular greedy procedure. Although with a random initialization the performance
can vary considerably, results show that in some cases it is possible to obtain
better solutions than with a submodular greedy initialization.

It is also interesting to notice that in some applications, the locations where
measurements are performed does not have to be confined in predetermined
points in space, but rather the domain is continuous. Approaching this context
by exploiting submodularity requires a discretization of the space. On the other
hand GD does not requires the domain to be discrete and it can iteratively
improve the solution by freely move the measurement points in a continuous
manner.

Finally, GD is of course a general technique that can be applied to any differ-
entiable objective function. It is therefore worthwhile to consider this technique
in contexts where observations have to satisfy additional constraints, for exam-
ple, when the points have to be confined to a specific region of the domain.
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Abstract. The recently proposed Kréin space Support Vector Machine
(KSVM) is an efficient classifier for indefinite learning problems, but
with a non-sparse decision function. This very dense decision function
prevents practical applications due to a costly out of sample extension.
In this paper we provide a post processing technique to sparsify the
obtained decision function of a Kréin space SVM and variants thereof.
We evaluate the influence of different levels of sparsity and employ a
Nystrom approach to address large scale problems. Experiments show
that our algorithm is similar efficient as the non-sparse Kréin space Sup-
port Vector Machine but with substantially lower costs, such that also
large scale problems can be processed.

Keywords: Non-positive kernel - Krein space + Sparse model

1 Introduction

Learning of classification models for indefinite kernels received substantial inter-
est with the advent of domain specific similarity measures. Indefinite kernels
are a severe problem for most kernel based learning algorithms because classical
mathematical assumptions such as positive definiteness, used in the underlying
optimization frameworks are violated. As a consequence e.g. the classical Sup-
port Vector Machine (SVM) [24] has no longer a convex solution - in fact, most
standard solvers will not even converge for this problem [9]. Researchers in the
field of e.g. psychology [7], vision [17] and machine learning [2] have criticized
the typical restriction to metric similarity measures. In fact in [2] it is shown
that many real life problems are better addressed by e.g. kernel functions which
are not restricted to be based on a metric. Non-metric measures (leading to
kernels which are not positive semi-definite (non-psd)) are common in many dis-
ciplines. The use of divergence measures [20] is very popular for spectral data
analysis in chemistry, geo- and medical sciences [11], and are in general not
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metric. Also the popular Dynamic Time Warping (DTW) algorithm provides a
non-metric alignment score which is often used as a proximity measure between
two one-dimensional functions of different length. In image processing and shape
retrieval indefinite proximities are often obtained by means of the inner distance
[8] - another non-metric measure. Further prominent examples for genuine non-
metric proximity measures can be found in the field of bioinformatics where
classical sequence alignment algorithms (e.g. smith-waterman score [5]) produce
non-metric proximity values. Multiple authors argue that the non-metric part of
the data contains valuable information and should not be removed [17].

Furthermore, it has been shown [9,18] that work-arounds such as eigen-
spectrum modifications are often inappropriate or undesirable, due to a loss
of information and problems with the out-of sample extension. A recent survey
on indefinite learning is given in [18]. In [9] a stabilization approach was pro-
posed to calculate a valid SVM model in the Kréin space which can be directly
applied on indefinite kernel matrices. This approach has shown great promise in
a number of learning problems but has intrinsically quadratic to cubic complex-
ity and provides a dense decision model. The approach can also be used for the
recently proposed indefinite Core Vector Machine (iCVM) [19] which has better
scalability but still suffers from the dense model. The initial sparsification app-
roach of the iCVM proposed in [19] is not always applicable and we will provide
an alternative in this paper.

Another indefinite SVM formulation was provided in [1], but it is based on
an empirical feature space technique, which changes the feature space represen-
tation. Additionally, the imposed input dimensionality scales with the number
of input samples, which is unattractive in out of sample extensions.

The present paper improves the work of [19] by providing a sparsification app-
roach such that the otherwise very dense decision model becomes sparse again.
The new decision function approximates the original one with high accuracy and
makes the application of the model practical.

The principle of sparsity constitutes a common paradigm in nature-inspired
learning, as discussed e.g. in the seminal work [12]. Interestingly, apart from an
improved complexity, sparsity can often serve as a catalyzer for the extraction
of semantically meaningful entities from data. It is well known that the problem
of finding smallest subsets of coefficients such that a set of linear equations can
still be fulfilled constitutes an NP hard problem, being directly related to NP-
complete subset selection. We now review the main parts of the Kréin space
SVM provided in [9] showing why the obtained a-vector is dense. The effect is
the same for to the Core Vector Machine as shown in [19]. For details on the
iCVM derivation we refer the reader to [19].

2 Kréin space SVM

The Kréin Space SVM (KSVM) [9], replaced the classical SVM minimization
problem by a stabilization problem in the Kréin space. The respective equiv-
alence between the stabilization problem and a standard convex optimization
problem was shown in [9]. Let z; € X,i € {1,..., N} be training points in the
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input space X, with labels y; € {-1, 1}, representing the class of each point. The
input space X is often considered to be R%, but can be any suitable space due
to the kernel trick. For a given positive C';, SVM is the minimum of the following
regularized empirical risk functional.

Jo(f.0) = min_ || fI3 + CH(7.b) (1)

fEH bER
b) = Zmax(o, 1—yi(f(z;) +0))

Using the solution of Equation (1) as (f&, b)) := argmin Jo(f,b) one can intro-
duce 7 = H(f&, b¢) and the respective convex quadratic program (QP)

2B st Zmax (0,1 —yi(f(x:) +)) <7 (2)

feH beR2

where we detail the notation in the following. This QP can be also seen as the
problem of retrieving the orthogonal projection of the null function in a Hilbert
space H onto the convex feasible set. The view as a projection will help to link
the original SVM formulation in the Hilbert space to a KSVM formulation in
the Krein space. First we need a few definitions, widely following [9]. A Kréin
space is an indefinite inner product space endowed with a Hilbertian topology.

Definition 1 (Inner products and inner product space). Let K be a real
vector space. An inner product space with an indefinite inner product (-, ) on K
is a bi-linear form where all f,g,h € K and o € R obey the following conditions:
Symmetry: (f,g)x = (g, f)c, linearity: (af + g, h)x = a(f,h)x + (9:h)x and
(f,9)k =0Vg € K implies f = 0.

An inner product is positive definite if Vf € K, (f, f)x > 0, negative definite
itV e K, {f, f)x <0, otherwise it is indefinite. A vector space I with inner
product (-, ) is called inner product space.

Definition 2 (Kréin space and pseudo Euclidean space). An inner prod-
uct space (K, (-, ")) is a Kréin space if there exist two Hilbert spaces Hy and
H_ spanning IKC such thatVf € K, f = f+ + f— with f+ € H4, f- € H_ and
Vi,ge K, (f,9)kx = (f+,94)n, — (f=,9-)n_. A finite-dimensional Krein-space
is a so called pseudo Euclidean space (pE).

If Hy and H_ are reproducing kernel hilbert spaces (RKHS), K is a repro-
ducing kernel Kréin space (RKKS). For details on RKHS and RKKS see e.g. [15].
In this case the uniqueness of the functional decomposition (the nature of the
RKHSs Hy and H_) is not guaranteed. In [13] the reproducing property is shown
for a RKKS K. There is a unique symmetric kernel k(z, z) with k(z,-) € K such
that the reproducing property holds (for all f € K, f(z) = (f, k(z,))x) and k =
k4 —k_ where k4 and k_ are the reproducing kernels of the RKHSs H and H_.

As shown in [13] for any symmetric non-positive kernel k that can be decom-
posed as the difference of two positive kernels k; and k_, a RKKS can be
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associated to it. In [9] it was shown how the classical SVM problem can be
reformulated by means of a stabilization problem. This is necessary because a
classical norm as used in Eq. (2) does not exist in the RKKS but instead the
norm is reinterpreted as a projection which still holds in RKKS and is used as
a regularization technique [9]. This allows to define SVM in RKKS (viewed as
Hilbert space) as the orthogonal projection of the null element onto the set [9]:

S={fek,beR|H(f,b) <7} and 0 € dH(f,)

where 0 denotes the sub differential with respect to b. The set S leads to a unique
solution for SVM in a Kréin space [9]. As detailed in [9] one finally obtains a
stabilization problem which allows one to formulate an SVM in a Kréin space.

1
stabfelcybeR%ﬁ, fr st Zmax((), 1—yi(f(z)+0b) <7 (3)
i=1

where stab means stabilize as detailed in the following: In a classical SVM in
RKHS the solution is regularized by minimizing the norm of the function f.
In Kréin spaces however minimizing such a norm is meaningless since the dot-
product contains both the positive and negative components. Thats why the reg-
ularization in the original SVM through minimizing the norm f has to be trans-
formed in the case of Kréin spaces into a min-max formulation, where we jointly
minimize the positive part and maximize the negative part of the norm. The
authors of [13] termed this operation the stabilization projection, or stabiliza-
tion. Further mathematical details can also be found in [6]. An example illustrat-
ing the relations between minimum, maximum and the projection/stabilization
problem in the Kréin space is illustrated in [9].

In [9] it is further shown that the stabilization problem Eq. (3) can be writ-
ten as a minimization problem using a semi-definite kernel matrix. By defining
a projection operator with transition matrices it is also shown how the dual
RKKS problem for the SVM can be related to the dual in the RKHS. We refer
the interested reader to [9]. One - finally - ends up with a flipping operator
applied to the eigenvalues of the indefinite kernel matrix! K as well as to the «
parameters obtained from the stabilization problem in the Kréin space, which
can be solved using classical optimization tools on the flipped kernel matrix.
This permits to apply the obtained model from the Kréin space directly on the
non-positive input kernel without any further modifications. The algorithm is
shown in Algorithm 1. There are four major steps: (1) an eigen-decomposition
of the full kernel matrix, with cubic costs (which can be potentially restricted to
a few dominating eigenvalues - referred to as KSVM-L); (2) a flipping operation;
(3) the solution of an SVM solver on the modified input matrix; (4) the appli-
cation of the projection operator obtained from the eigen-decomposition on the
« vector of the SVM model. U in Algorithm 1 contains the eigenvectors, D is a
diagonal matrix of the eigenvalues and S is a matrix containing only {1, —1} on
the diagonal as obtained from the respective function sign.

! Obtained by evaluating k(z,y) for training points z, ¥.
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Algorithm 1. Kréin Space SVM (KSVM) - adapted from [9)].
Kréin SVM:
[U, D] := EigenDecomposition(K)
K :=USDU" with S := sign(D)
[, b] :== SVMSolver(K, Y, C)
A:=USU"a (now & is dense)
return @, b;

As pointed out in [9], this solver produces an exact solution for the stabi-
lization problem. The main weakness of this Algorithm is, that it requires the
user to pre-compute the whole kernel matrix and to decompose it into eigen-
vectors/eigenvalues. Further today’s SVM solvers have a theoretical, worst case
complexity of ~O(N?). The other point to mention is that the final solution &
is not sparse. The iCVM from [19] has a similar derivation and leads to a related
decision function, again with a dense &, but the model fitting costs are =~ O(N).

3 Sparsification of iCVM

3.1 Sparsification of iCVM by OMP

We can formalize the objective to approximate the decision function, which
is defined by the & vector, obtained by KSVM or iCVM (both are structural
identical), by a sparse alternative with the following mathematical problem:

min \d|0
such that Y, @mn®(2,) &(z) ~ f(x)

It is well-known that this problem is NP hard in general, and a variety of
approximate solution strategies exist in the literature. Here, we rely on a popular
and very efficient approximation offered by orthogonal matching pursuit
(OMP) [3,14]. Given an acceptable error € > 0 or a maximum number 7 of non-
vanishing components of the approximation, a greedy approach is taken: the
algorithm iteratively determines the most relevant direction and the optimum
coefficient for this axes to minimize the remaining residual error.

Algorithm 2. Orthogonal Matching Pursuit to approximate the a vector.

1: OMP:

2: I :=(;

3 ri=y:=Ka; % initial residuum (evaluated decision function)
4: while |I| <n do

5. lop := argmax;|[K7];|; % find most relevant direction + index

6: I:=TU{l} % track relevant indices

7 A= (Knt-y % restricted (inverse) projection

8 ri=y—(Ki1)-¥ % residuum of the approximated decision function
9: end while
10: return 4 (as the new sparse &)
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In line 3 of Algorithm 2 we define the initial residuum to be the vector Ka
as part of the decision function. In line 5 we identify the most contributing
dimension (assuming an empirical feature space representation of our kernel -
it becomes the dictionary). Then in line 7 we find the current approximation of
the sparse @-vector - called 4 to avoid confusion, where T indicates the pseudo
inverse. In line 8 we update the residuum by removing the approximated K&
from the original unapproximated one. A Nystroem based approximation of the
Algorithm 2 is straight forward using the concepts provided in [4].

3.2 Sparsification of iCVM by Late Subsampling

The parameters & are dense as already noticed in [9]. A naive sparsification by
using only &; with large absolute magnitude is not possible as can be easily
checked by counter examples. One may now approximate & by using the (for
this scenario slightly modified) OMP algorithm from the former section or by
the following strategy, both compared in the experiments.

As a second sparsification strategy we can used the approach suggested by
Tino et al. [19], to restrict the projection operator and hence the transforma-
tion matrix of iCVM to a subset of the original training data. We refer to this
approach as ICVM-sparse-sub.

To get a consistent solution we have to recalculate parts of the eigen-
decomposition as shown in Algorithm 3. To obtain the respective subset of the
training data we use the samples which are core vectors?. The number of core
vectors is guaranteed to be very small [22] and hence even for a larger num-
ber of classes the solution remains widely sparse. The suggested approach is
given in Algorithm 3. We assume that the original projection function (line 6
of Algorithm 3, detailed in [9]), is smooth and can be potentially restricted to
a small number of construction points with low error. We observed that in gen-
eral few construction points are sufficient to keep high accuracy, as seen in the
experiments.

Algorithm 3. Sparsification of iCVM by late subsampling

: Sparse iCVM:

: Apply iCVM - see [19]

¢ - vector of projection points by using the core set points

. construct a reduced K’ using indices ¢ as K

[U,D] := EigenDecomposition(K)

a:=USU "« with S := sign(D) and U restricted to the core set indices
a:=0 ac:=a % assign @ to & using indices of ¢

b:=Ya' % recalculate the bias using the (now) sparse &

: return @&, b;

© XD wy

2 A similar strategy for KSVM may be possible but is much more complicated because
typically quite many points are support vectors and special sparse SVM solvers would
be necessary.
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4 Experiments

This part contains a series of experiments that show that our approach leads
to a substantially lower complexity, while keeping similar prediction accuracy
compared to the non-sparse approach. To allow for large datasets with two much
hassle we provide sparse results only for the iCVM. The modified OMP approach
will work also for sparse KSVM but the late sampling sparsification is not well
suited if many support vectors are given in the original model, asking for a sparse
SVM implementation. We follow the experimental design given in [9]. Methods
that require to modify test data are excluded as also done in [9]. Finally we
compare the experimental complexity of the different solvers. The used data are
explained in Table 1. Additional larger data sets have been added to motivate
our approach in the line of learning with large scale indefinite kernels.

Table 1. Overview of the different datasets. We provide the dataset size (N) and the
origin of the indefiniteness. For vectorial data the indefiniteness is caused artificial by
using the tanh kernel.

Dataset #samples | Proximity measure and data source

Sonatas 1068 Normalized compression distance on midi files [18]
Delft 1500 Dynamic time warping [18]

ala 1605 tanh kernel [10]

Zongker 2000 Template matching on handwritten digits [16]
Prodom 2604 Pairwise structural alignment on proteins [16]
PolydistH57 | 4000 Hausdorff distance [16]

Chromo 4200 Edit distance on chromosomes [16]

Mushrooms | 8124 tanh kernel [21]

Swiss-10k ~10k Smith waterman alignment on protein sequences [18]
Checker-100k | 100.000 | tanh kernel (indefinite)

Skin 245.057 | tanh kernel (indefinite)[23]

Checker 1 Mill tanh kernel (indefinite)

4.1 Experimental Setting

For each dataset, we have run 20 times the following procedure: a random split
to produce a training and a testing set, a 5-fold cross validation to tune each
parameter (the number of parameters depending on the method) on the training
set, and the evaluation on the testing set. If N > 1000 we use m = 200 randomly
chosen landmarks from the given classes. If the input data are vectorial data we
used a tanh kernel with parameters [1, 1] to obtain an indefinite kernel.
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4.2 Results

Significant differences of iCVM to the best result are indicated by a x (anova,
p < 5%). In Table2 we show the results for large scale data (having at least
1000 points) using iCVM with sparsification. We observe much smaller models,
especially for larger datasets with often comparable prediction accuracy with
respect to the non-sparse model. The runtimes are similar to the non-sparse
case but in general slightly higher due to the extra eigen-decompositions on a
reduce set of the data as shown in Algorithm 3.

Table 2. Prediction errors on the test sets. The percentage of projection points (pts)
is calculated using the unique set over core vectors over all classes in comparison to all
training points. All sparse-OMP models use only 10 points in the final models. Best
results are shown in bold. Best sparse results are underlined. Datasets with substan-
tially reduced prediction accuracy are marked by ®.

iCVM (sparse-sub) | pts iCVM (sparse-OMP) |iCVM (non-sparse)

Sonatas 12.64+1.71 76.84% |22.56 + 4.160 13.01 £3.82
Delft 16.53 £ 2.790 52.48%|3.27 £ 0.6 3.20+0.84
ala 39.50 £ 2.880G 1.25% |27.85 + 2.8 20.56 £1.34
Zongker 29.20 + 2.480 52.81%|7.50 £ 1.7 6.40 £2.11
Prodom 2.89 £1.17 26.31%(3.12 £ 0.11 0.87 £ 0.64
PolydistH57 |6.12 £ 1.38 12.92% (29.35 + 80 0.70 £0.19
Chromo 11.50 £1.17 33.76%|3.74 + 0.58 6.10 = 0.63
Mushrooms |7.84 +2.21 6.46% |18.39 £ 5.7 2.54+0.56
Swiss-10k 35.90 + 2.520 17.03%(6.73 £ 0.72 12.08 £ 3.47
Checker-100k |8.54 + 2.35 2.26% 19.54 £ 2.10 9.66 + 2.32
Skin 9.38 £ 3.30 0.06% | 9,43 £+ 2.41 4.22+1.11
Checker 8.944+0.84 0.24%/1.44+ 0.3 9.38 £2.73

A typical result for the protein data set using the OMP-sparsity technique
and various values for sparsity is shown in Fig. 1.

4.3 Complexity Analysis

The original KSVM has runtime costs (with full eigen-decomposition) of O(N3)
and memory storage O(N?), where N is the number of points. The iCVM
involves an extra Nystrom approximation of the kernel matrix to obtain K, )

and K !

(m,m
memory costs of O(mN) for the first matrix and O(m?) for the second, due to
the matrix inversion. Further a Nystrom approximated eigendecomposition has
to be done to apply the eigenspectrum flipping operator. This leads to runtime
costs of O(N x m?). The runtime costs for the sparse iCVM are O(N x m?)
and the memory complexity is the same as for iCVM. Due to the used Nystrom

) if not already given. If we have m landmarks, m < N, this gives
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Fig. 1. Prediction results for the protein dataset using a varying level of sparsity and
the OMP sparsity methods. For comparison the prediction accuracy of the non-sparse
model is shown by a straight line.

approximation the prior costs only hold if m < N, which is the case for many
datasets as shown in the experiments.

The application of a new point to a KSVM or iCVM model requires the
calculation of kernel similarities to all N training points, for the sparse iCVM
this holds only in the worst case. In general the sparse iCVM provides a simpler
out of sample extension as shown in Table 2, but is data dependent.

The (i) CVM model generation has not more than N iterations or even a
constant number of 59 points, if the probabilistic sampling trick is used [22]. As
show in [22] the classical CVM has runtime costs of O(1/€?). The evaluation of
a kernel function using the Nystrom approximated kernel can be done with cost
of O(m?) in contrast to constant costs if the full kernel is available. Accordingly,
If we assume m < N the overall runtime and memory complexity of iCVM is
linear in IV, this is two magnitudes less as for KSVM for reasonable large N and
for low rank input kernels.

5 Discussions and Conclusions

As discussed in [9], there is no good reason to enforce positive-definiteness in ker-
nel methods. A very detailed discussion on reasons for using KSVM or iCVM is
given in [9], explaining why a number of alternatives or pre-processing techniques
are in general inappropriate. Our experimental results show that an appropriate
Kréin space model provides very good prediction results and using one of the
proposed sparsification strategies this can also be achieved for a sparse model
in most cases. The proposed iCVM-sparse-OMP is only slightly better than the
former iCVM-sparse-sub model with respect to the prediction accuracy but has
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very few final modelling vectors, with an at least competitive prediction accu-
racy in the vast majority of data sets. As is the case for KSVM, the presented
approach can be applied without the need for transformation of test points,
which is a desirable property for practical applications. In future work we will
analyse other indefinite kernel approaches like kernel regression and one-class
classification.

Acknowledgment. We would like to thank Gaelle Bonnet-Loosli for providing sup-
port with the Kréin Space SVM.
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Abstract. In this paper, we propose a real data clustering method based
on active learning. Clustering methods are difficult to apply to real data
for two reasons. First, real data may include outliers that adversely
affect clustering. Second, the clustering parameters such as the num-
ber of clusters cannot be made constant because the number of classes
of real data may increase as time goes by. To solve the first problem, we
focus on labeling outliers. Therefore, we develop a stream-based active
learning framework for clustering. The active learning framework enables
us to label the outliers intensively. To solve the second problem, we also
develop an algorithm to automatically set clustering parameters. This
algorithm can automatically set the clustering parameters with some
labeled samples. The experimental results show that our method can
deal with the problems mentioned above better than the conventional
clustering methods.

Keywords: Clustering - Semi-supervised - Real data
Automatic parameters setting - Stream based - Active learning
Ward’s method - Classification

1 Introduction

Clustering has been widely used for data analysis [1-3]. The usages of clustering
are roughly divided into two types [4].

The first usage is data trend analysis. Since data trend analysis by cluster-
ing is unsupervised learning, people need to subjectively decide how to divide
clusters. People supplementarily use the clustering results for summarizing data
and acquiring knowledge. Thus, there are no correct or incorrect results in the
data trend analysis by clustering.

The second usage is data classification. Since the clustering is unsupervised
learning, it cannot be used for classification directly. However, for data with
objective classification criteria, we can use clustering methods to derive the
classifier. In the research area of classification using clustering, semi-supervised
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clustering has been studied [5-7]. This approach can create a classifier from the
clustering results on unlabeled data by introducing a small amount of labeled
data and clustering constraints [8]. Although researchers often use supervised
learning methods such as learning vector quantization [9] for classification prob-
lems, these methods are not designed to classify unlabeled data. Semi-supervised
clustering is a good approach to classify unlabeled data.

Since the utilization of big data has become common, demand for real data
analysis has been increasing. In this paper, we define real data as unprocessed
data for machine learning; that is, real data includes outliers and errors. In
addition, real data is not always labeled, and the number of the classes is not
always counted. For example, the raw data acquired by sensors is real data. Such
data exists in various environments and is accumulated every day in factories,
hospitals, and so on.

Semi-supervised clustering is suitable for real data classification because real
data is often unlabeled or sparsely labeled. However, the conventional semi-
supervised clustering methods are difficult to apply to real data directly for two
reasons. First, real data includes outliers and errors. If we use a conventional
method with such samples, the cluster to be divided may be mixed. Second,
the number of clusters and the thresholds of cluster division cannot be set to
be constant because the number of classes of real data may increase as time
goes by. In this paper, we consider the number of clusters and clustering thresh-
old as clustering parameters. When people use conventional clustering methods,
they usually decide clustering parameters in advance. For example, if we use
k-means [10], we have to decide the number of clusters k in advance. In contrast,
when we apply clustering methods to real data, we cannot decide k£ in advance.
Furthermore, we have to decide k whenever the number of classes increases.

In this paper, we propose a semi-supervised clustering framework based on
active learning for real data. We address a very specific type of semi-supervised
clustering, namely, working with hard cluster assignments. This exclude tech-
niques such as Gaussian mixture models [11] and fuzzy clustering techniques
[12]. Generally, active learning selects the unlabeled samples and then requests
annotators to label the samples. The annotator is a human who provides the
correct label. This technique is often used to have classifiers learn effectively
with few labeled samples. In our method, we use this technique to label outliers
and errors intensively. We introduce active learning [13] to Ward’s method [14]
as an example in this paper but also propose a framework. Therefore, Ward’s
method is compatible with the other clustering methods. We also develop an
algorithm to automatically set clustering parameters. This algorithm automati-
cally updates parameters in response to increases in the number of samples and
clusters.

The rest of this paper is organized as follows. Section 2 clarifies the problem
of real data clustering. We then present our approach to solve those problems
in Sect.3. In Sect. 4, we propose a clustering method based on active learning.
Section 5 describes the experimental results and discussions, and Sect.6 con-
cludes this paper.
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2 Problem Settings

2.1 Real Data Clustering

We use clustering methods for classification. Figure 1(b) is a schematic diagram
of clustering results. Hence, we can consider Fig. 1(b) as a schematic diagram of
a classifier made by clustering. If the input belongs to one of the clusters, the
input can be classified as a specific class. Therefore, when the condition

input € ¢; (1 <i <the number of clusters) (1)

is satisfied, input is classified as cluster i. ¢; is a cluster created by clustering on
learning data. Each cluster should contain only one class of learning data. Our
method is one of the hard clustering methods. Therefore, our task are different
from that of the conventional methods that allow ambiguity [11,12].

There are two main problems in classification by clustering in real data.

1. Outliers and errors
2. Changes in the number of samples and clusters.

Both problems cause abnormalities in the number of clusters and the number of
classes in a cluster. We describe each problem in detail in the next subsection.

2.2 Problem 1: Outliers and Errors

Outliers and errors rarely exist in the data processed for machine learning but
exist in real data. For example, errors may be acquired because the sensor mal-
functions or the measurement environment is different from usual by chance.

Figure 1(a) shows a schematic diagram when we try to divide learning data
into three clusters using the conventional unsupervised clustering method. To
clarify that the clustering result is wrong, correct labels are given to the samples
in this figure. Assuming that the clustering results such as those in Fig.1(a)
are a classifier, the classifier identifies the class of an input sample by checking
which cluster contains the input sample. Therefore, for classification, each cluster
should consist of the samples of only one class. However, outliers and errors cause
clustering mistakes. Explaining this more specifically with reference to the figure,
cluster 2 in Fig.1(a) includes errors that should not be included and therefore
is expanded by errors. Second, cluster 3 is expanded by the outlier of class 1. In
the case of such a classifier, the input satisfies Eq. (1) with an incorrect cluster.
As a result, incorrect classification occurs.

2.3 Problem 2: Change in Number of Samples and Clusters

The number of samples of real data may increase as time goes by. Furthermore,
the number of classes of real data may increase. Since many conventional cluster-
ing methods target the data whose classes do not increase, they have difficulty
dealing with real data. Figure 1(a) shows the case where three-class classification
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was assumed but a fourth class appeared. In this case, class 4 is forced into clus-
ter 3. If we use clustering to analyze data trends, the clustering results are not
a problem. The reason is that clustering is only analyzing data subjectively to
divide it into three classes. However, if we use clustering to classify samples, the
results are a problem. The classifier learns erroneously every time the number
of classes increases.

Cluster 1 Cluster 2
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(a) Incorrect clustering results for out-

liers, errors, and samples of a new class. (b) Ideal clustering results.

Fig. 1. Schematic diagram of clustering

3 Approach

3.1 Overview

The ideal clustering results are shown in Fig. 1(b). All clusters consist of samples
of one class in this figure. To obtain this result, we need to solve the two problems
mentioned in Sect. 2. We thus introduce two approaches.

1. Stream Based Active Learning
2. Automatic Parameter Setting.

To solve problem 1 (Sect.2.2), we label outliers and errors with stream based
active Learning. In addition, to solve problem 2 (Sect. 2.3), the classifier should
automatically set clustering parameters as samples increase. We define clustering
parameters as the number of clusters and the threshold of cluster division. The
following subsections present approaches in detail with reference to Fig. 1.

3.2 Stream Based Active Learning

In this paper, the annotator is a human. The annotators label the samples not
satisfying Eq. (1) to incorporate these samples into learning as teaching data. The
samples that does not satisfy Eq. (1) are regarded as outliers or errors at that
time. We introduce stream based active learning into clustering. This algorithm
contributes to labeling outliers and errors intensively with less effort. If the
annotators label a sample that does not belong to any clusters, the classifier
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can learn whether the sample is an error, an outlier of an existing class, or the
sample of a new class.

Active learning is a method to select samples effective for a learning classifier
and request annotators to label them. A stream based method [15,16] can deal
with the data that may increase as time goes by. Real data is not pooled; it is a
stream.

Referring to Fig. 1(a), we assume that clusters 1 and 2 are formed and cluster
3 is not. Then if the triangular sample is input there, it should be labeled “Outlier
of class 1”7 and incorporated into cluster 1 as in Fig. 1(b).

3.3 Automatic Parameter Setting

Since samples not in any clusters are labeled by active learning as described
in Sect. 3.2, an algorithm is needed to set clustering parameters automatically
by using the labeled samples. This is a semi-supervised clustering-like approach.
The contribution of this algorithm is that parameter setting by a person is unnec-
essary. As a result, this algorithm makes it easy to introduce clustering methods
because parameter setting based on domain knowledge will be unnecessary. In
this approach, each cluster has the individual threshold of a cluster division. The
individual threshold allows us to extend only one cluster with large variance such
as cluster 1 in Fig. 1(b).

Referring to Fig. 1(b), if the center sample is labeled “Outlier of class 17, set
the clustering parameters to expand cluster 1. If the upper right samples are
labeled “Error of class 17, generate “Error cluster 17, i.e. generate a new class
“Error 1”7. If the bottom right samples are labeled “Class 4”7, generate a new
cluster, “Cluster 4”.

In this way, the algorithm automatically decides the parameters that peo-
ple have to decide normally. In other words, this algorithm makes classifiers
re-learned when unclassifiable samples are input. If a sample similar to such
unclassifiable samples is input next time, the classifier will be able to classify it.

4 Proposed Method

4.1 Overview

In this section, we describe the details of our method, a semi-supervised cluster-
ing framework based on active learning. This method is based on the approaches
introduced in Sect. 3.

First, this subsection briefly presents the outline of the proposed method.
The proposed method consists of three algorithms: classification, active learn-
ing, automatic parameter setting. Since the classifier can be converted into an
arbitrary clustering method, our proposed method is a framework.

It starts when a new sample is entered. To classify a new sample, a clustering
method is used (Classification). If the new sample belongs to one of the existing
clusters, the classification is completed. On the other hand, if the new sample
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does not belong to any clusters, the sample is an error or outlier. Thus, the
sample is labeled by active learning (Active learning). Thereafter, the clustering
parameters are re-learned (Automatic parameter setting). This is one loop. We
continue the loop as long as a new sample enters.

4.2 Classification

We use a conventional clustering method for the classification. Monotonic clus-
tering methods are suitable for our method because the inclusion relationship
between clusters is clear in their clustering results. For that reason, we chose
Ward’s method [14], which is a monotonic and hierarchical clustering method.
This method joins two clusters in a bottom-up manner. Ward’s method selects
two clusters and joins them so as to minimize the value of the following equation.

d(cr, c2) = Var(er Ucg) — (Var(er) + Var(ez)) (2)

d(Cy,cz) is the distance between clusters ¢; and co. Var(c;) and Var(cz) are
variance in clusters ¢; and co. Ward’s method is only one example of a clustering
algorithm, and other hierarchical clustering methods can be also used. Since we
use Ward’s method with variance, we assume Gaussian distribution implicitly
for each class in classification. However, since this method separates outliers as
new classes (Fig. 1(b)), we do not forcefully assume Gaussian distribution on all
samples in each class.

4.3 Stream Based Active Learning

Algorithm 1 shows the details of stream based active learning. Since active learn-
ing involves all processes of our method, Algorithm 1 contains almost all the
details of our entire method.

With reference to Algorithm 1, we describe the learning process. In this algo-
rithm, input is a dataset X. Nx is the number of samples and increases as time
goes by. Output is a request to label z; for the annotator. First, Ward’s method
is used to obtain a dendrogram D representing a cluster configuration. Second,
labeled samples are collected and become labeled dataset Xj,. Third, classifier G
is trained by using Algorithm 2. At this time, G learns with dataset X labeled
in the previous loop. After that, the samples of dataset X are classified using
classifier G. A labeling request is presented to a sample that does not belong to
any clusters C' = {¢;} Y. This algorithm continues to run until there is no more
input. The more the algorithm loops, the more accurate the classification.

4.4 Automatic Parameters Setting

Algorithm 2 shows the details of automatic parameter setting. This is an algo-
rithm to learn a classifier using labeled data added by the active learning algo-
rithm in Sect. 4.3.
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Algorithm 1. Stream based active learning
Input : X = {xi}NX

1=1
Output: request annotators to label z;

1 while User_stop = False do // continue until Nx does not increase
2 D = Ward’s_method(X) // use Ward’s method with X
3 for i in range(N;) do

4 if z; s labeled then // make labeled dataset X
5 ‘ add x; to X

6 end

7 end

8 G = Algorithm 2(D, X)) // train classifier G by Algorithm 2
9 classify X by using G // determine to which cluster c¢; x; belongs
10 if exists z; ¢ C then // clusters C = {cj}j.vzcl
11 ‘ request annotators to label x;

12 end

13 stop // stop until a new sample is entered
14 if Nx increase then

15 ‘ start

16 end

17 end

In this algorithm, input is a dendrogram D and a labeled dataset X. Nx, is
the number of labeled samples. Output is a trained classifier G. This algorithm
repeats the matching of labels of two or more samples falling into the same node
s; in the dedrogram D. S = {57}5\7;1 is the nodes of D. N¢ is the number of
the nodes S. In other words, S is a cluster’s candidates and N¢ is the number
of the cluster’s candidates. If the labels of the matching samples are the same,
a cluster containing those samples is built. Then the division threshold of the
cluster is updated to a value for including matching samples.

5 Experimental Results and Discussions

5.1 Datasets

We use three datasets from the UCI Machine Learning Repository [17]: Iris,
Ecoli, and Leaf. The composition of each dataset is listed in Table 1. The same
experiment is performed for each dataset.

In this experiment, we do not divide the dataset into learning and testing.
We randomly rearranged each dataset and continue to input samples one by one
into the classifier as in reality. Therefore, the data entered when the classifier is
immature is used for learning. For example, learning outliers to extend clusters,
learning errors to generate new clusters. On the other hand, the data entered
when the classifier is mature is used for testing.
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Algorithm 2. Automatic parameters setting

Input : D, Xy = {CCLz}j\;)iL
Output: G

1 count N¢ k0

2 for j in range(N¢) do

3 if exists two or more xr, € S; then // check existence of labeled data
4 if s € S; are the same labeled then
5 construct c¢; from x;s € S; // construct a larger cluster
6 T, = distance between xrs € S; // set the threshold
7 register ¢, and Ty with G // construct a classifier
8 k—k+1

9 end

10 end

11 end

12 return G

Table 1. Datasets.

Dataset |Iris | Ecoli | Leaf
Samples | 150 | 336 | 340
Class 3 8 36
Attribute | 4 8 16

5.2 Performance Evaluation on UCI Machine Learning Datasets

We evaluate proposed method in the two viewpoints. The first is the number of
labeled samples. In this experiment, since all data is regarded as unlabeled and
input, the number of labeled samples leads to operational cost. The second is
the accuracy of classification expressed by the following equation.

correctly classified samples

3)

A =
cecuracy all samples — labeled samples

We show the performance after inputting all samples on each dataset in
Table 2. By labeling with active learning, the accuracy can be maintained while
responding to the increase in the number of classes. The accuracy is especially
high in the Iris dataset: 98.29% because the Iris dataset contains many linearly
separable samples. We labeled more samples in the Leaf dataset than the Iris
because the Leaf datasets have many classes and samples that are difficult to
linearly separate. Since the conventional method cannot cope with the increase
in the number of classes, it cannot be compared with the proposed method.

Figure 2 shows the accuracy and the number of labeled samples in the Iris
dataset. The number of labeled samples first increases linearly and gradually sat-
urates. Although the accuracy is basically high, this method misclassified two
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samples. The Iris dataset consists of three classes. Although one class is sepa-
rated, the other two are partly mixed in the feature space. The misclassification
occurred on these partly mixed samples. This tendency is the same in the other
datasets. Therefore, our method is the best at classifying data that can be lin-
early separated in the feature space. In addition, in this case, fewer labels are
required. As long as linear separation is possible, it seems that classification can
be done with less labeling cost no matter how much classes are increased. To
extend the application targets in the future, it is necessary to extract linearly
separable features or introduce classifiers capable of nonlinear classification. In
this case, the proposed framework can also be used.

Table 2. Number of labeled samples and accuracy after inputting all samples on each
dataset.

Dataset Iris | Ecoli | Leaf
Labeled samples | 33 98 199
Accuracy [%)] 98.29 1 90.34 | 88.65

150 — 100.00%
8135 90.00%
Q.

% 120 80.00%
g 105 70.00%
% 90 —The numberof _| &4 g0, z
B 75 labeled samples | 50.00% o
5 —— Accuracy e §
- 60 —t 40.00% <
[}
-g 45 30.00%
2 30 20.00%
5} 4_’_,-_/_"'-_
s 15 — 10.00%
0 0.00%
TOULNDDOMNMONMNIT TTOOLANDNDOMON v~ 0
The number of samples

Fig. 2. Number of labeled samples and accuracy involved in increase of learning data.

6 Conclusions

This paper has presented a real data clustering method based on active learn-
ing. We have introduced active learning into Ward’s method. This technique
makes clustering robust against outliers. In addition, we developed an automatic
parameter setting algorithm. This algorithm automatically sets parameters as
the number of classes changes. This enables our clustering method to cope with
the change in the number of classes without people setting the parameters. The
experimental results show that our method can deal with outliers and changes
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in the number of classes. In the Iris dataset, we constructed a classifier that
achieves 98.29% classification accuracy when labeling 33 samples.

For future work, we aim to use another clustering method for a classifier and

to extend the application targets.
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Abstract. In the paper we consider the supervised classification prob-
lem using feature space partitioning. We first apply heuristic algorithm for
partitioning a graph into a minimal number of cliques and subsequently
the cliques are merged by means of the nearest neighbor rule. The main
advantage of the new approach which optimally utilizes the geometrical
structure of the training set is decomposition of the I-class problem (I > 2)
into [ single-class optimization problems. We discuss computational com-
plexity of the proposed method and the resulting classification rules. The
experiments in which we compared the box algorithm and SVM show that
in most cases the box algorithm performs better than SVM.

Keywords: Supervised classification - Feature space partitioning
Graph partitioning - Nearest neighbor rule - Box algorithm

1 Introduction

This paper considers the supervised classification problem in which a pattern is
assigned to one of a finite number of classes. The goal of supervised classification
is to learn a function, f(z) that maps features z € X to a discrete label (color),
y €{1,2,...,1} based on training data (z;,y;). Our proposal is to approximate f
by partitioning the feature space into uni-colored box-like regions. The optimiza-
tion problem of finding the minimal number of such regions is reduced to the
well-known problem of minimum clique cover of a properly constructed graph.
The solution results in feature space partitioning. This geometrical approach
has been recently actively pursued in the literature. We provide a brief survey
of relevant results.

Many important intractable problems are easily reducible to minimum num-
ber of the Maximum Clique Problem (MCP), where the Maximal Clique is
the largest subset of vertices such that each vertex is connected to every
other vertex in the subset. They include the Boolean satisfiability problem, the

© Springer Nature Switzerland AG 2018
X. Bai et al. (Eds.): S+SSPR 2018, LNCS 11004, pp. 194-203, 2018.
https://doi.org/10.1007/978-3-319-97785-0_19


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97785-0_19&domain=pdf

Supervised Classification Using Feature Space Partitioning 195

independent set problem, the subgraph isomorphism problem, and the vertex
covering problem.

In the literature much attention has been devoted to developing efficient
heuristic approaches for MCP for which no formal guarantee of performance
exist. These approaches are nevertheless useful in practical applications. In [1] a
flexible annealing chaotic neural network has been introduced, which on graphs
from the Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS) has achieved optimal or near-optimal solution. In [2] the proposed
learning algorithm of the Hopfield neural network has two phases: the Hopfield
network updating phase and the gradient-ascent learning phase. In [3] annealing
procedure is applied in order to avoid local optima. Another algorithm for MCP
on arbitrary undirected graph is described in [4]. The algorithm presumes that
vertices from an independent set (i.e. a set of vertices that are pairwise nonad-
jacent) cannot be included in the same maximum clique. The independent sets
are obtained from heuristic vertex-coloring, where each set constitutes a color
class. The color classes are then used to prune branches of the maximum clique
search tree.

Another relevant work related to classification using graph partitioning is
transductive learning via spectral graph partitioning [5]. In [6] Vapnik intro-
duced transductive Support Vector Machines (SVM). The transductive setting
is different from the regular inductive setting since in this approach classifica-
tion algorithm uses not only training patterns, but also test patterns and can
potentially exploit structure in their distribution.

In [7] a graph partition algorithm is proposed. It uses the min-max clustering
principle with a simple min-max function: the similarity between two subgraphs
is minimized, while the similarity within each subgraph is maximized.

Another work addresses the solution of the supervised classification prob-
lem by reducing it to the solution of an optimization problem for partitioning
of the graph on the minimal number of maximal cliques, [8]. This approach is
similar to the one-versus-all SVM with a Gaussian radial basis function kernel,
however unlike in the previous case no assumptions are made about statistical
distributions of classes. The approach proposed in [8] differs from the integer
programming formulation of the binary classification problem where the classi-
fication rule is a hyperplane which misclassifies the fewest number of patterns in
the training set [9]. Initial results concerning the proposed approach have been
presented in [10].

We can formulate the supervised classification problem as a G-cut problem.
The feature space partitioning problem can be regarded as an m-dimensional
cutting stock problem and is thus equivalent to making, say k; guillotine cuts
orthogonal to the x; axis, then all k1 + 1 hyperparallelepipeds are cut into ko
parts by cuts orthogonal to the x5 axis, etc. Let us call such cuts “axes-driven-
cuts”. Thus, if only axes-driven-cuts are allowed, the classification problem by
parallel feature space partitioning could be stated as follows.

G-cut Problem. Divide an n-dimensional hyperparallelepiped into a minimal
number of hyperparallelepipeds, so that each of them contains either patterns
belonging to only one of the classes or it is the empty.
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Since the classes are separable according to their class label, the G-cut prob-
lem is solvable. This problem was first formulated and solved in [11] using parallel
feature partitioning. The solution was obtained by partitioning the feature space
into a minimal number of nonintersecting regions by solving an integer-valued
optimization problem, which leads to the construction of minimal covering. The
learning phase consists of geometrical construction of the decision regions for
classes in n-dimensional feature space.

Let two training sets of patterns X and Y be given. We can consider them
as points in the hypercube F' € R™. Suppose that they are colored in blue and
red, respectively.

During the learning phase the problem is to find for each group of points of
the same color, for instance blue ones, a function f(x) for x € R™ such that
the surface f(x) = 0 strictly separates the blue points from other points, i.e.
f(x) < 0 for the blue ones and f(x) > 0 for the others.

If the two half spaces determined by the optimal hyperplane w-x + b = 0 are
painted in red and blue, any new pattern is classified as red or blue, depending
on the color of the corresponding half space. Thus, once the optimal hyperplane
is found, the classification algorithm produces the output after n multiplications.

Nonlinear classifier looks for a function f and a constant b such that f(x) < b
for red points X and f(x) > b for blue points Y. In the nonlinear case the notion
of margin becomes complicated because the blue and red regions could not be
connected. The problem can be illustrated by the following example.

Example. Let n = 1 and the blue points in X are in the intervals [-6, —5] U [7, 12]
and the red points in Y are in [—1, 3]. The classifier (z—1)%2—16 = 0 paints [-3, 5]
in red and its complement in blue. Let now p(x,y) be the distance between x
and y. In this example the distance is |y — x|, but in general, the distance is
depending on the norm chosen in R™.

The problems with constructing of nonlinear classifiers f(x) are threefold:

(i) the construction of f(x) should be computationally effective;
(ii) the function has to be easily computable so that unknown patterns could
be quickly classified;
(iii) the function must yield large margins.

Next, we will consider the case when all patterns are points in R™. The paper
addresses the solution of the supervised classification problem by reducing it to
heuristically solving good clique cover problem satisfying the nearest neighbor
rule. First we apply a heuristic algorithm for partitioning a graph into a minimal
number of cliques. Next cliques are merged using the nearest neighbor rule.

The rest of the paper is organized as follows. The class cover problem by
colored boxes is discussed in Sect.2. The supervised classification formulated
as the minimum clique cover problem satisfying the nearest neighbor rule is
described in Sect. 3. An algorithm for solving this problem is proposed in Sect. 4.
Computational complexity of the proposed algorithm is discussed in Sect. 5 and
classification rule is discussed in Sect. 6. Results of experiments are presented in
Sect. 7. Finally, in Sect.8 we draw some important conclusions.
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2 Class Cover Problem by Colored Boxes

Recall that the patterns x = (z1,22,...,2,) are points in R"™ and x € M,
where M is the training set. In the sequel, the hyperparallelepiped P = {X =
(1,22,...,20),X € I x Iy x -+- x I,}, where I; is a closed interval, will be

referred to as a box. Suppose that the set K, of patterns belonging to class ¢ are
painted in color ¢. For any compact S C R", let us denote by P(S) the smallest
(in volume) box containing the set S, i.e. I; = [I;,u;], where [; = minx;,x € S
and u; = maxx;,X € S. A box P¢(x) is called painted in color ¢, if it contains
at least one pattern x € M and all patterns in the box are of the same color ¢,
ie. Pe(x) N M # & and P°(x) N M C K.. Under these notations, we obtain the
following Master Problem (MP):

M P: Cover all points in M with a minimal number of painted bozes.

Note that in the classification phase, a pattern x is assigned to a class ¢, if x
falls in some P¢(x). It is not necessary to require non-intersecting property for
equally painted boxes. Suppose now that P(c) = {P°(S1), P¢(S2),..., P°(S:.)}
(minimal set of boxes of color ¢, covering all ¢ colored points) is an optimal
solution to the following problem:

MP(c): Find the minimal cover of the points painted in color ¢ by painted
bozes.

Then, one can easily prove that UP(¢) (minimal cover) is an optimal solution
to M P. Thus MP is decomposable in M P(c),c =1,2,...,1. In [8] the M P(c)
problem has been considered as a problem of partitioning the vertex set of a
graph into a minimal number of maximal cliques.

In the next section we will show the relation of the M P(c) problem to the
nearest neighbor rule.

3 Relation to the Nearest Neighbor Rule

A reasonable classification rule, known as a nearest neighbor rule, is to classify
the pattern x as red if argmingexuy p(x,y) = y* and y* is red.

One could easily verify that any shift or scaling of the graphic in the example
given in the Introduction (z — 1)? — 16 = 0 will cause violation of the nearest
neighbor rule for points falling in the margins (-5, —3) and (5, 7).

In other words, a good classifier decomposes F' into painted areas (in linear
case they are only two) having the nearest neighbor property, i.e. for any point
in red (blue) area the nearest neighbor rule classifies the recognized pattern as
red (blue).

If box B=1; <x; <wu; i=1,...,n contains training patterns and p is the
Manhattan distance, then for the pattern y the distance is equal to p(y, B) =
> max(0,l; — y;) + maz(0,y; — u;). Now the idea of previously defined boxes
becomes clear. We first approximate the above mentioned painted areas (not
known in advance) by painted boxes (perfect candidates for Manhattan distance)
and then classify patterns according to point-to-box distance rule.

Now the M P(c) problem can be formulated as an heuristic good clique cover
problem satisfying the nearest neighbor rule.
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4 A Clique Cover Algorithm

To introduce the algorithm we need to introduce additional notation. Consider
again the master problem MP(c). Let B={x:0; <z; <w;, i=1,...,n}. If
u;—l; >0, i =1,...,nthen we call the box B a full dimensional box. Suppose
that two sets X and Y of training patterns (points in the hypercube F' € R™ )
are given and suppose that they are colored in blue and red, respectively.

We will call the box B colored iff it only contains points of the same color.
A pair of points y = (y1,¥2,.--,Yn) and z = (z1,29,...,2,) generates B if
l; = min{y;, z;} and u; = max{y;,2;}, i =1,...,n.

Problem A: Find a coverage of X UY with the minimal number of colored full
dimensional boxes.

Define a graph Gx = (V,E), V =X, E = {e = (v;,v;)} and let e be a
colored box generator. An edge e is colored green if it is a full dimensional box
generator.

Let now e = (a,b) and f = (¢,d) be green and let B, and By are the corre-
sponding full dimensional boxes. An operation e® f is color preserving if the full
dimensional box C, C' = B, @ By, l; = min{a,, b;, ¢;,d; }, u; = max{a;, b;, ¢;, d; }
is colored. An edge e dominates f (say e > f) if B, D By.

Obviously, there is one-to-one correspondence between full dimensional boxes
and the green edges. The dominance relation on the set of full dimensional boxes
(say Be > By) could be easily established. When the full dimensional box C
is colored then it dominates B. and By and the appropriate application of @&
operation allows generation of maximal colored cliques.

We call a clique colored if it contains green edges. The points contained in
the full dimensional box C' form the minimum clique cover, i.e., the vertex set
(points in C') is partitioned in cliques and the number of cliques is minimal.

Now we can reformulate the Problem A as follows.

Problem A: Cover the graph Gx with the minimum number of colored cliques.
The algorithm for solving Problem A is as follows.

Step 1. (Build the graph) Create the partial subgraph of Gx from the list GE
of all green edges.

Step 2. (Clique enlargement) Create a graph GGx = (Vgg, Eca), where
Vee = {v € EGE} and Egg = {(e, f),Be @ By} is colored. Call
try-to-extend (c).

Step 3. (Save the cliques (full dimensional boxes)) If EGE is the list of all
extended boxes then discard from GE all e not included in EGE.
Save the set EGE U GE. If all nodes are covered then stop else goto
Exceptions.

try-to-extend (c): In all connected components of GGx find c-clique cover
(cliques of size less or equal to c).

Exceptions. This function will be called if the set X is not coverable

by the full dimensional boxes only. This case could be

resolved by the algorithm above applied on the reduced
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X by covering it with lower dimensional boxes. Extreme
instances when all nodes of G x are singletons (nodes with
degree one) will require rotation of the set X and are not
discussed here.

Remark: singletons correspond to boxes of zero dimension
and without rotation the box approach becomes the nearest
neighbor approach.

5 Computational Complexity

Like many other methods, the optimal solution to the graph partitioning problem
is N P-complete because of its combinatorial nature. While in both versions of
the above-mentioned graph algorithm there is a call to a solver of a classical N P-
complete problem, it is far from evident that the instances of M P(c) are not
polynomially solvable. This is due to the fact that the vertices of the generated
graphs are points in a metric space and clustering the points according to the
Euclidian distance could result in forming cliques in the respective graphs.

We would like to point out that a new platform for solving the classification
problem has been proposed, which in the exact case leads to solving an N P-
complete problem. This can be avoided if approximate solution is sought.

To shed light on algorithm complexity, consider the following puzzle. Let
paint an arbitrary subset of cells of a chessboard-like grid in blue and call blue
piece a sequence of consecutive (horizontally or vertically) blue cells. The prob-
lem is to find the minimal number of blue pieces that cover all blue cells. If the
length of the blue pieces is restricted by a constant ¢ then so called absolute gap
could be large. In integer programming this term is called a duality gap 2 — z*.
In this definition z¢ is the optimal number of blue pieces of restricted length and
z* is the optimal number of blue pieces.

The lower bound of z* which is equal to the minimal number of rows and
columns which cover all blue cells can be found in a polynomial time. Algorithms
for strip covering are considered in [12].

To come closer to the optimization problem in the graph GG x let us define a
rectangle consisting of blue cells only. If it is possible to find a good lower bound
then this bound could be used to estimate the absolute gap. This estimate can
be used for evaluation of acceptance of this heuristic solution.

To make the correspondence of each instance of such a puzzle with the classi-
fication problem in R?, in the next step we will redefine pieces in an obvious way.
To keep the polynomial complexity of the algorithm we sacrifice the optimality
by using the threshold ¢ as a parameter in try-to-extend procedure. Call now
the speed-up s_up = |X|/|NB|, where N B is the cardinality of the clique cover.
Since the above approach is the nearest neighbor in disguise, the bigger s_up is
the faster classification procedure will become.

Step 1 finds a clique cover in O(| X |?) time. To keep this complexity in practi-
cal use of the algorithm, one could adjust the threshold ¢ to achieve a satisfactory
s_up. Note that the main idea of the algorithm is to reduce the size of the clique
cover problem on a graph with |X| nodes to much smaller size |GG x|, which is
decomposed into its connected components.
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We would like to point out that the proposed new classifier is more general
than the linear classifier. Note that considering blue and not blue points only
doesn’t diminish the applicability of the approach to more than two classes of
patterns. In case of [ classes for some integer [ > 2, our classifier is applied sequen-
tially for each class separately. The class membership is only used in the process
of building G.. This fact shows another advantage of the proposed algorithm.

6 Classification Rule

Cliques-to-Painted Boxes. Let S be any clique in the optimal solution of M P(c).
The box painted in color ¢ that corresponds to this clique is defined by
P(S) ={x=(z1,22,...,2n),x € [} x I3 x---x I}, where I; = [min &;, max z].
The points x correspond to the vertices in S. Geometrically, by converting cliques
to boxes, one could obtain overlapping boxes of the same color. The union of
such boxes is not a box, but in the classification phase the point being classified
is trivially resolved as belonging to the union of boxes instead of a single box. If
a pattern x from the test dataset falls in a single colored box or in the union of
boxes with the same color the element x is assigned to the class that corresponds
to this color.

If a pattern x from the test dataset falls in an empty (uncolored) box then
the pattern x is not classified. Another possible classification rule is that the
pattern x can be assigned to a class with color that corresponds to the majority
of adjacent colored boxes.

7 Experimental Results

In this section we compare the performance of our box algorithm and SVM
classifier for synthetic data generated from 3-variate normal distributions and
for real Monk’s Problems data from UCI Machine Learning Repository.

7.1 Normal Attributes

The samples for a binary classification problem are generated for three cases
and with 3-dimensional normal distributions with mean vectors and covariance
matrices given in Table 1 below. where e = (1,1,1)T. For each distribution 100
samples are generated and they are divided into 50 training samples and 50
testing samples. The simulation results are presented in Table 2 below.

Table 1. Parameter settings

Case | Covariance matrices | Mean vectors
1 1|1 0] 0.5e
2 1|21 01]0.6e
3 |14 0/0.8e
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Table 2. Confusion matrices in percentage ratio for box algorithm and SVM classifier
for normal data

Box algorithm SVM classifier
First normal distribution
Red points | Blue points | Red points | Blue points
Red points | 68.16 31.84 67.10 32.90
Blue points | 34.30 65.70 32.94 67.06
Second normal distribution
Red points | Blue points | Red points | Blue points
Red points | 72.84 27.16 74.92 25.08
Blue points | 36.24 63.76 40.92 59.08
Third normal distribution
Red points | Blue points | Red points | Blue points
Red points | 83.22 16.78 83.12 16.88
Blue points | 28.66 71.34 41.56 58.44

In Table 2 we use SVM with the standard Gaussian kernel. It can be noticed
that in most cases the box algorithm outperforms SVM classifier in terms of true
positive and true negative rates. For example, its advantage is 13% for the true
negative rate for blue points from the third normal distribution.

7.2 Nominal Attributes

In this section we present experimental results on three Monk’s Database prob-
lems from UCI Machine Learning Repository. Each problem consists of training
and testing data samples with the same 6 nominal attributes. Data sizes are
as follows: Monk1 - 124, Monk2 - 169, Monk3 - 122 (train) and Monkl - 432,
Monk?2 - 432, Monk3 - 432 (test), respectively. In Table 3 we used SVM classifier
with the standard Gaussian kernel. A 10-fold cross validation yields error 0.33
for Monk1 and Monk?2.

It can be noticed that in most cases the box algorithm clearly outperforms
SVM classifier in terms of true positive and true negative rates. For example,
its advantage for Monk1 is 33% and 15% for the true positive and true negative
rates, respectively.

It can be observed in Table4 that the box algorithm achieves better accu-
racy than SVM classifier for normal distributions and Monks and furthermore
it achieves better sensitivity for almost all normal distributions and Monks.

One can notice in Table 5 that in most cases the box algorithm achieves better
or the same specificity and precision as SVM classifier for normal distributions
and Monks.

Consequently, it can be seen from the experimental results presented in this
section that the box algorithm is superior to SVM in almost all cases.
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Table 3. Confusion matrices in percentage ratio for box algorithm and SVM classifier
for Monks data

Box algorithm SVM classifier
Monk1
Red points | Blue points | Red points | Blue points
Red points | 100 0 66.67 33.33
Blue points | 20.37 79.63 35.19 64.81
Monk?2
Red points | Blue points | Red points | Blue points
Red points | 55.86 44.14 47.93 52.07
Blue points | 36.62 63.38 41.55 58.45
Monk3
Red points | Blue points | Red points | Blue points
Red points | 88.24 11.76 89.71 10.29
Blue points | 21.05 78.95 25.88 74.12

Table 4. Accuracy and sensitivity of SVM classifier and the box algorithm for Monks
and normal data

Normal distributions | Monks

Accuracy

1 2 3 1 2 3
SVM classifier | 0.67 | 0.67 | 0.71 0.66 | 0.53 |0.82
Box algorithm | 0.67 | 0.68 | 0.77 0.90  0.60  0.84
Sensitivity
1 2 3 1 2 3
SVM classifier | 0.67 | 0.59 | 0.58 0.65 | 0.58 |0.79
Box algorithm | 0.66 | 0.64 | 0.71 0.80/0.63|0.79

Table 5. Specificity and precision of SVM classifier and the box algorithm for Monks
and normal data

Normal distributions | Monks

Specificity

1 2 3 1 2 3
SVM classifier | 0.67 | 0.75 | 0.83 0.670.48 | 0.90
Box algorithm | 0.68 | 0.73 | 0.83 1 0.56 | 0.88
Precision
1 2 3 1 2 3
SVM classifier | 0.67 | 0.70 | 0.78 0.66 | 0.53 | 0.88
Box algorithm | 0.67 |0.70 | 0.81 1 0.59 | 0.87
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8 Conclusions

We introduced a new geometrical approach for solving the supervised classifi-
cation problem. We applied graph optimization approach using the well-known
problem of partitioning the graph into a minimum number of cliques which were
subsequently merged using the nearest neighbor rule. Equivalently, the super-
vised classification problem is solved by means of a heuristic good clique cover
problem satisfying the nearest neighbor rule. The main advantage of the new
approach which optimally utilizes the geometrical structure of the training set is
decomposition of the [-class into [ single-class optimization problems. The com-
putational complexity of the proposed algorithm, the computational procedure,
and the classification rule are discussed. One can see that the box algorithm
performs better than SVM in almost all cases. A geometrical interpretation of
the solution and simulation examples are also given.

As a future work we are planning to compare the computational efficiency
of the proposed algorithm with the classical classification techniques such as
decision trees, ensembles of trees, and random forest.
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Abstract. Recent works have shown that deep learning methods can
improve the performance of the homography estimation due to the better
features extracted by convolutional networks. Nevertheless, these works
are supervised and rely too much on the labeled training dataset as
they aim to make the homography be estimated as close to the ground
truth as possible, which may cause overfitting. In this paper, we propose
a Siamese network with pairwise invertibility constraint for supervised
homography estimation. We utilize spatial pyramid pooling modules to
improve the quality of extracted features in each image by exploiting
context information. Discovering the fact that there is a pair of homo-
graphies from a given image pair which are inverse matrices, we propose
the invertibility constraint to avoid overfitting. To employ the constraint,
we adopt the matrix representation of the homography rather than the
commonly used 4-point parameterization in other methods. Experiments
on the synthetic dataset generated from MSCOCO dataset show that our
proposed method outperforms several state-of-the-art approaches.

Keywords: Homography estimation - Supervised deep learning
Invertibility constraint - Spatial pyramid pooling

1 Introduction

Homography estimation is one of fundamental geometric problems and is widely
applied to many computer vision and robotics tasks such as camera calibration,
image registration, camera pose estimation and visual SLAM [1-4]. A 2D homog-
raphy relates two images capturing the same planar surface in 3D space from
different perspectives by mapping one image to the other. Thus the homography
indicates the camera pose transformation which is a key factors in many tasks.
For example, in visual SLAM methods such as ORB-SLAM [5], homography
estimation is one of the options for camera motion initialization, especially in
some degenerate configurations, such as planar or approximately planar scenes,
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and rotation-only camera motions. To boost a visual SLAM system successfully,
a fast, accurate and robust homography estimation approach is demanded.

Traditional homography estimation method can be categorized as feature-
based methods and direct methods. Feature-based methods first detect keypoints
in each image and generate reliable feature descriptors such as SIFT [6] and ORB
[7] features. Then feature correspondences between keypoint sets in two images
are established by feature matching. The homography between these two images
is estimated by RANSAC [8] which generates multiple options and choose the one
with the minimum mapping error. Feature-based methods are the mainstream
methods because of better accuracy. However, feature-based methods rely too
much on the features, both in effectiveness and in efficiency. When keypoints
cannot be successfully extracted because of lack of texture, or wrong feature cor-
respondences exist due to occlusions, repetitive textures or illumination changes,
the correctness of estimated homography can be significantly degraded. More-
over, to maintain the distinctiveness and invariance of features, the computation
of man-made descriptors can be slow, leading to efforts of designing time-saving
descriptors while having worse performance.

Direct methods, such as Lucas-Kanade algorithm [9], use all pixels rather
than a few keypoints to establish correspondences between two images. The
standard pipeline is a pixel-to-pixel matching, initialized by warping one image
to another using a homography guess and followed by an iterative photometric
error minimization with an error metric such as the sum of squared differences
(SSD) and an optimization technique such as Gauss-Newton method or gradient
descent [10]. By utilizing all pixels over the images, the accuracy and robustness
of direct methods can be comparable to feature-based ones, while coming with
more computational cost and thus being slower.

Deep Convolutional Neural Network (CNN) methods have seen rapid devel-
opment and successful applications in many geometric computer vision problem
such as optical flow estimation [11], stereo matching [12], camera localization [13],
monocular depth estimation [14] and visual odometry [15]. CNN can be regarded
as a powerful image feature extractor which extracts more distinctive features
than direct methods and still maintains information of the whole image rather
than only preserving local features in feature-based methods, thus shows promis-
ing potential for improving the performance of homography estimation both in
accuracy and in robustness. DeTone et al. [16] firstly utilize a VGG-like CNN to
tackle the homography estimation problem. The HomographyNet can be decom-
posed to two parts: a feature extractor and a regressor/classifier to get the final
estimation. Both parts can be learned given the supervised ground truth labels
of the homography generated by manually warping an given image. Then, the
learned model starts with stacking two image patches together as input, and
processes them through the network to get a 4-point homography estimation.
Nowruzi et al. [17] use a hierarchical CNN architecture to reduce the error bounds
of the homography estimation. The model starts with a Siamese architecture to
extract features of two image patches independently and merges them later to
get a rough homography estimate. To reduce the estimation error, an iterative
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scheme is applied, leading to a hierarchical architecture of the network and an
iteratively updated homography estimate. Recently, Nguyen et al. [18] propose
an unsupervised method for homography estimation by minimizing a pixel-wise
intensity error metric between the target image and the warped one using the
estimated homography. Similar ideas can be seen in conventional direct SLAM
methods [19] and the unsupervised deep learning method for monocular depth
and camera pose estimation [20]. However, without labeled data as ground truth,
the estimation is not as accurate as that of supervised learning method. Besides,
the labeled data can be generated relatively easily, which reduces the significance
of unsupervised learning of this task to some extent.

In this paper, we propose a supervised method to improve the accuracy of
homography estimation from a given image pairs using convolutional neural net-
works. By employing a spatial pyramid pooling module inspired by the work of
stereo matching [21], feature extracting performance of the convolutional parts
can be improved due to exploiting context information of the image. Moreover,
we make a full use of an image pair in the training set by giving bidirectional
homography estimation. That will produce two homographies which are inverse
matrices. We explicitly combine this invertibility constraint into the loss func-
tion to improve the performance. We argue that the common 4-point homog-
raphy parameterization in other deep learning method is not suitable for the
proposed invertibility constraint, and we choose the classical matrix parame-
terization instead. We show that the proposed network and the loss function
improve the accuracy of the results.

Our main contributions are as follows:

— We propose a modified end-to-end learning framework for deep homography
estimation by using a Siamese architecture and spatial pyramid pooling mod-
ules. It is the first time that spatial pyramid pooling is integrated to solve
the homography estimation problem.

— We estimate two homographies from one image pair and make use of the
inherent invertibility of them into the loss function to avoid overfitting.

— We perform experiments and show that our methods achieve better accu-
racy of the results and the employment of the invertibility contributes to the
results.

2 The Proposed Model

In this section, we present in detail the network architecture and the loss function
we propose. The aim of our network is to estimate the homography between two
given images in an end-to-end manner. The image pair is firstly sent to the
Siamese architecture for feature extraction independently. These features are
then stacked and sent to another convolutional part to get pairwise relations.
The final fully connected layers are employed for the final estimated homography.
Details are given in the following subsections.
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2.1 Network Architecture

The network takes two normalized image patches in size of 128 x 128 pixels
as input. We adopt a Siamese network architecture, which uses 4 convolutional
layers as the first feature extractor part to treat two patches separately while
sharing the weights of these two streams to achieve the same feature extraction
result, and then uses another 4 convolutional layers as the second feature extrac-
tor part after stacking two feature maps together to explore the relation between
these two images. Each convolutional layer consists of the basic 3 x 3 residual
convolutional block with Batch Normalization and ReLUs, with a max pooling
layer after the fourth and the sixth convolutional layers. Among these layers, a
spatial pyramid pooling module is inserted after the second convolutional layer,
in order to capture different size of objects, especially in the case that there is a
belonging relationship between an object and its sub-regions. The pyramid mod-
ule incorporates the hierarchical context relationship to the extracted features
rather than only have features from pixel intensities. In our work, we adopt the
similar spatial pyramid pooling design pattern as [21] which tackles the stereo
matching problem for depth estimation. The pyramid has four fixed-size average
pooling blocks: 64 x 64, 32 x 32, 16 x 16, and 8 x 8, followed by 1 x 1 convo-
lution and upsampling. After concatenating two feature pyramid channel-wise,
the tensor are sent to the second part to extract correlations between these two
image patches, similar to the traditional feature matching procedure. Then two
fully-connected layers are followed with a dimensionality of 1024 and 9 to get
a real-valued vectorized homography estimate as the output. To avoid overfit-
ting, a dropout scheme with a drop probability of 0.5 is employed after the last
convolutional layer and the first fully-connected layer. The detail of the network
architecture is illustrated in Fig. 1.

1024

Spatial

conv puedl Pyraid fardl conv | 64x64x128 16x16x128 ,
Pooling H \ 9

I Weight Sharing I Weight Sharing I . — —). ]
Spatial d \
it > . i Concatenated /Output H
Pooling Feature Maps

Input images Feature Extraction Homography Estimation

Fig. 1. Network architecture for our proposed method. The network processes an image
pair twice with the order of the pair changing to get two estimated vectorized homo-
graphies hi2, ha1. Then we can utilize the invertibility constraint to this pair of homo-
graphies after normalization and matrixing.
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2.2 Invertibility Constraint of Homography

To enhance the performance of the homography estimation, a possible way is to
independently estimate two homographies related to the given image pair. That
is, given an image pair 74 and T2, a homography HZ4 can be checked by warping
I to a synthetic image that is close to the target 17, and also I® can be warped
to I” given the homography HAZ. Both homography results are related to the
same estimation scheme and the same input, except for the change of the image
pair’s order. In practical applications, both orders of the input image pair is valid.
Therefore, by utilizing one image pair twice, the training test is doubled. With
the promoted accuracy on the training dataset, there is potential for overfitting
on the training set and bad generalization to new image pairs. Particularly,
we are concerned that H24 and HAZ may tend to be more correlated to the
image information and the inherent relation between the homography pair is
neglected. Note that HB4 and HAP are inverse matrices, i.e., HEAHAE = T,
the invertibility constraint can be added to the loss function which encourages
the network to produce an estimation that satisfies the complete bidirectional
warping characteristic and thus avoids overfitting due to unidirectional transform
for one image pair.

2.3 Parameterization of the Homography

Most deep learning homography estimation works use a 4-point homography
parameterization based on the locations of the image patch corners [16-18]. The
parameterization is derived from the image warping procedure. To obtain the
warped target image, we need to know the pixel location (u,v) to be mapped
in the target image and the corresponding pixel location (u/,v’) in the source
image which have the desired pixel intensity. Then, the homography mapping
is established up to scale. Given 4 pairs of selected image patch corners, the
following equations can be solved using the normalized Direct Linear Transform
(DLT) algorithm [22].

u Hyy Hyip His u hi ho hs u
v = H21 H22 H23 'U, ~ h4 h5 h6 'U/ (1)
1 Hsy Hszy Hss 1 h7 hg 1 1

Noticing that the homography has only 8 degrees of freedom, the matrix
representation is over parameterized. The 4-point homography representation
denote the homography as the pixel coordinate offsets (Au, Av) = (u—u',v—1v")
of 4 pairs of selected image patch corners. Actually, by fixing the pixel coordi-
nates in the source frame, this representation is identical to the pixel coordi-
nates in the target frame, and can be uniquely transformed to the conventional
matrix representation. However, the values of the coordinate offsets depend on
the coordinates in the source frame, which may cause an inconsistent homog-
raphy estimate to other pixels inside the image patch. More importantly, the
matrix representation is more suitable for our proposed invertibility constraint.
The pair of computed pixel coordinate offsets, the 4-point homographies, are
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desired to be opposite to form the additional constraint as the offsets in the
image pair should indicate the same line segment in the scene. Nevertheless,
that assumption fails as the viewpoints of the images have changed. Therefore,
we adopt the conventional matrix representation rather than the 4-point param-
eterization.

2.4 Loss Function

Combining the invertibility loss with the original loss between the ground truth
and the estimate of the homography, we can define the loss function as

1| his « 1| hoy « A
loss = 5 W —hij, 5 W — h21 —+ 5 ||H12H21 — IHF . (2)
12 2 21 2

where his is the 9-dimensional output of the network which indicates the vec-
torized homography estimate from image 2 to image 1, and a similar notation
hy; is the vectorized homography from image 1 to 2. hgg) is the ninth dimen-
sion of the output vector and the output is divided by it for normalization.
H;: denoted the estimated matrix transformed from the normalized vector. h},
denotes the ground truth of the normalized homography vector that is given
during the generation of the training dataset. I is the identity matrix. And A
is the weighting parameter that balances the impact of the error terms and the
invertibility constraint. We choose Lo loss function for the first two error terms
and the Frobenius norm for the last one to keep the same loss metric among
them.

3 Experiments

In this section, we evaluate the performance of our proposed method on the syn-
thetic dataset generated from the MSCOCO dataset. We compare our method
to both the traditional method and supervised deep learning methods in terms
of the corner error. Further analysis and experiments are shown for the influence
of different parameterizations and the choice of the balancing parameter between
error terms and the invertibility constraint. We also visualize the results of our
method.

3.1 Dataset Description

We evaluate our method on the dataset constructed based on the commonly
used Microsoft Common Objects in Context (MSCOCO) 2014 dataset [23] as
in [16]. The images in the dataset are converted to gray-scale and resized to
a resolution of 320 x 240. We produce 5 patches from the given image by
choosing random squares of a 128 x 128 size within the image. To acquire the
warped patches, we perform a perturbation on the patch corner points within the
range of 32 pixels to determine which part the obtained image patches contain.
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(The perturbed corner positions should be still within the image.) The corre-
sponding homography can be derived as the ground truth from these 4 pairs of
corner positions with the OpenCV library. By applying the homography to the
given patches, the warped patches can be generated directly. Thus, we can get
both the image patch pairs and the homography ground truth in the training
and test dataset.
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Fig. 2. (a) The accuracy comparison of our proposed method to the state-of-the art in
terms of the Average Corner Error metric. The baselines are ORB+RANSAC, Homog-
raphyNet and Hierarchical Network. We also test our models when no invertibility loss
is appended to the loss function (no IC) and when utilizing the common 4-point param-
eterization (4-point corner) without the invertibility constraint. The results show that
all deep learning methods achieve better accuracy than the traditional ORB4+RANSAC
method except for HomographyNet (classification) which treats the homography esti-
mation as a classification problem rather than a regression problem. Our method with
the invertibility constraint (IC) and the matrix representation shows the best perfor-
mance among all the methods. (b) The sensitivity test of the balancing parameter A in
the loss function. The optimum of A lies around 1, and 0.9 is a more exact result after
further experiments.

3.2 Experiment Implementation

We implement the proposed network using the publicly available PyTorch frame-
work for all experiments. The model parameters are initialized using an uniform
distribution and then optimized with Adam optimizer. The model is trained
for 90,000 total iterations on a single Nvidia Titan X GPU with 64 images per
mini-batch. We use a base learning rate of 0.005 and decrease it by a factor of
10 after every 30,000 iterations.

3.3 Experiment Results and Comparison

In this experiment, we compare our model to the following traditional or deep
learning methods as the baselines. The first baseline is a traditional approach
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(a) Original Image (b) ORB+RANSAC (c) HomographyNet (d) HierarchicalNet (e) Ours

Fig. 3. Visualization of the test samples. The quadrangles represent the warped image
patches from the leftmost column of images, among which the blue ones are related to
the homography ground truth and the green ones are related to the estimated homo-
graphies. Significantly all deep learning methods perform better than the traditional
ORB+RANSAC scheme. And our proposed method achieves the best performance.
(Color figure online)

based on feature matching with ORB descriptors followed by a robust RANSAC
homography estimation scheme. The deep learning baselines are the Homogra-
phyNet proposed by [16] and the hierarchical network presented in [17], both of
which are supervised methods like the method we propose.

The result are shown in Fig. 2(a). We use the Mean Average Corner Error as
the error metric for each approach. To gain that, the Lo-distance between the
ground truth and the estimate of the corner position is firstly computed, and
then the averaged error is computed over the four corners of the given image.
The final mean is calculated over the entire test set. We found that our full
implementation performs the best compared to other baselines, especially to the
hierarchical homography network [17] which has a similar architecture to our
network. That proves the effectiveness of our invertibility constraint. And all
the regression networks for homography estimation outperform the traditional
ORB+RANSAC method due to better feature matching results. The visualized
results of homography estimation are illustrated in Fig. 3.

To investigate the impact of invertibility constraint, we also evaluate the
performance of our network without it. In Fig.2(a) we find that without the
invertibility constraint, the accuracy is lower than the hierarchical homography
network. Although the spatial pyramid pooling module may take effect, it doesn’t
lower the error bound of homography, which can be achieved by the hierarchical
architecture. That will lead to higher potential for inaccurate estimates.
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Moreover, different parameterizations can also influence the performance of
the network. We conduct an additional experiment using the 4-point represen-
tation without the invertibility constraint. We find that under the same network
architecture and loss function (no invertibility constraint), 4-point parameteri-
zation indeed outperforms the matrix representation, consistent with the con-
clusion in [24]. Thus the invertibility constraint can improve the performance
with the matrix representation over the 4-point parameterization.

3.4 Evaluation of the Balancing Parameter \

Another question is how to balance these two parts of the loss, the error terms
and the invertibility loss. In other words, which value should we choose for the
balancing parameter A? Figure2(b) shows some tests on the accuracy of our
method when changing the value of A. Clearly, there is an optimum for A around
1. By tuning A between 0.8 and 1.2 with a step of 0.1, the best value is identified
as A = 0.9. As the value gets smaller, the invertibility constraint has less influence
on the final estimation and the method tend to be similar like previous methods
which may cause overfitting to the training dataset. On the other hand, when
A becomes larger, the training set will take less effect and the final homography
matrix estimation will be close to the identity I which definitely fits to the
invertibility constraint but is not desired.

4 Conclusion

In this paper, we have presented a novel end-to-end model for homography esti-
mation using a convolution neural network. We argue that reusing the given
image pair can double the training set and give potential for more constraint
of homography estimation. Besides the common error term between the ground
truth and estimates of the homography, we add an extra invertibility constraint
loss to the training loss function in order to maintain the inherent property of
the homography and avoid overfitting to the training set. To apply this con-
straint, the 4-point parameterization of homography commonly used in other
deep learning methods cannot be accepted and we choose to utilize the conven-
tional matrix homography representation. Experiments on the synthetic dataset
generated from MSCOCO dataset show a promotion to the accuracy of homog-
raphy estimation compared to the state-of-the-art deep learning approaches.
Although the matrix representation itself cannot give a better performance to
the task compared to the 4-point parameterization, the accuracy can be improved
when accompanied by the additional invertibility constraint.
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Abstract. In this paper, we explore how Schreiber’s transfer entropy
can be used to develop a new entropic characterisation of graphs derived
from time series data. We use the transfer entropy to weight the edges
of a graph where the nodes represent time series data and the edges
represent the degree of commonality of pairs of time series. The result is
a weighted graph which captures the information transfer between nodes
over specific time intervals. From the weighted normalised Laplacian we
characterise the network at each time interval using the von Neumann
entropy computed from the normalised Laplacian spectrum, and study
how this entropic characterisation evolves with time, and can be used to
capture temporal changes and anomalies in network structure. We apply
the method to stock-market data, which represent time series of closing
stock prices on the New York stock exchange and NASDAQ markets.
This data is augmented with information concerning the industrial or
commercial sector to which the stock belong. We use our method not
only to analyse overall market behaviour, but also inter-sector and intra-
sector trends.

1 Introduction

Recent work has shown that the entropic analysis of graph-time series, can lead to
powerful tools for analysing their salient structure, distinct evolutionary epochs
and the identification of anomalous events [18]. Graph entropy captures the
structure of networks at a complexity level. For instance, highly random struc-
tures are associated with high entropy while non-random structures associated
with low entropy. Moreover, if a principled measure of graph entropy is to hand
then information theoretic measures such as the Kullback-Leibler and Jensen-
Shannon divergences can be used to measure the similarity of different graphs
and can lead to the definition of information theoretic graph kernels that can
be used to embed graph time series into low-dimensional vector spaces [2,3,21].
Moreover, they allow statistical models of the time evolution of graphs to be
learned. As a concrete example, Ye et al. have shown how to compute an approx-
imation of the von Neumann entropy of a graph, using simple degree statistics
[18]. Here the entropy associated with an edge in a graph depends on the recip-
rocal of the product of the node-degrees defining the edge.
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One domain where the analysis of graph or network time series has proved
particularly useful is the analysis of financial markets. Here the nodes represent
different stock or trading entities, and edges indicate the similarity of trading
patterns for a different stock. There are several ways to establish similarity over
time. The simplest of these is to compute the correlation of time series of trading
prices and to create an edge if the correlation exceeds a threshold value [19].
Alternatives include the use of Granger Causality [7] and most recently transfer
entropy [15]. In fact, Granger causality was originally introduced in the financial
domain and has recently found application in the brain-imaging domain where it
has been used to establish network representations of brain activation patterns
in fMRI data [17].

In this paper, we turn our attention to transfer entropy. The characterisation
adopted by Ye et al. [20] and Bai et al. [2] in their work on times-series and
kernel-based analysis of graphs, utilities von Neumann entropy to characterize
the structure of the networks and time-series correlation to construct the edges
of the network. Unfortunately, when posed in this way there is no information
theoretic characterisation for the evidential support for the edges of the network.
The aim of this paper is to fill this gap in the literature by developing a new
characterisation of network entropy in which the edges are weighted to reflect
their associated transfer entropy or information flow between nodes.

This leads us to a novel representation of network evolution with time. At
each time epoch we construct a weighted graph in which the edge weights are
computed from transfer entropies between pairs of nodes. This is an instanta-
neous time-snap of the pattern of information flow between nodes. We analyse
time series by observing how this network structure evolves with time. We apply
the method to financial market data. The newly constructed dataset contains
431 companies in 8 different commercial or industrial sectors from the NYSE
and NASDAQ markets. There are about 50 stocks in each of 8 different sectors.
These stock have the largest market capitalization in their respective sectors. The
period covered by the data ends in December 2016 and covers about 20 years,
and so the dataset covers 5500 trading days from January 1995. Several economic
and market crises are covered by the data, including global financial crisis and
FEuropean debt crisis. We use this data to analyse both the global structure of
the trading network and details its sub-sector structure with time. This includes
an analysis of how the inter-sector and intra-sector transfer entropy varies
with time, and in particular how they change during the market crises listed
above.

The outline of this paper is as follows. In Sect.2 we introduce the basic
definitions of transfer entropy and show how it can be used to characterise an
edge in a graph. Section 3 details our graph-based representation drawing on
transfer entropy. Section4 provides experimental results. Sectionb offers some
conclusions and directions for future research.
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2 Edge Transfer Entropy from Times Series

2.1 Basic Definitions

To compute transfer entropy, we first require some basic concepts from informa-
tion theory. Consider the random variable X, following a probability distribution
p(x), where x is particular values of X. The Shannon Entropy [16] of the distri-

bution p(z) is defined as
Zp z)log, p(z

The base of the logarithm determines the units used for measuring information,
and in base 2 the results are given bits [12] if base the is natural the results are
given in nits [6].

The joint entropy of the random variables X and Y is defined as [1]

=3 p(z,y)logy p(z,y)
z oy
and the conditional entropy of X given Y [1] is

H(X|Y) = ZZP%@/ )log, p(zy)

The mutual information of two random variables X and Y is I(X,Y) = H(X)+
H(Y) — H(X,Y) or equivalently I(X,Y) = H(X) — HX|Y) or I(X,Y) =
H(Y)—-H(Y|X) where H(X), H(Y) are the Shannon entropies and H(X,Y’) the
is joint entropy. Since the mutual information is symmetric H(X,Y) = H(Y, X).
Entropy is always positive, and so 0 < I(X,Y) < min{H(X), H(Y)}. As a result
if X and Y are independent, 0 = I(X,Y") [6].

Turning our attention to the case of three random variables X, Y and Z, the
Conditional Mutual Information [5,6,9] of X and Y given Z is then defined as,
I(X,Y|Z)=H(X,Z)+H(Y,Z)—H(Z)— H(X,Y, Z) in terms of joint entropies
of the random variables. It can be re-written as I[(X,Y|Z) = H(X|Z)+H(Y|Z)—
H(X,Y|Z), in terms of conditional entropies or as I(X,Y|Z) = H(X|Z) —
H(X|Y, Z).

We can now define the Transfer Entropy Ty _ x which is the information
transfer from the distribution of random variable Y to the distribution of random
variable X. This can be written as a Conditional Mutual Information

Ty . x = I(Xi41, V2| Xe) = H(Xp41|Xy) — H(Xp11] X, Y2)

at different time epochs ¢ and ¢ + 1. Here X; and Y; are the past states of the
X and Y respectively, and t is the time index.

While the mutual information is a symmetric measurement between two vari-
ables, the transfer entropy is asymmetric measurement between two variables,
as the transfer entropy represents the directional information transfer.

Ty . x = — Tiy1, T, Yp)lo
Z PTe1, 20 4e) logy p(Tet1]ze)

zeX,yeY



220 I. Caglar and E. R. Hancock

which can be reexpressed as

p(@es1, T, ye)p(a) (1)

TY—)X = — b\r 2 Lt 10
Z ( t+1, Tt yt) 82 p(xt+17xt)p($t;yt)

rzeX,ycyY

Transfer Entropy also can be expressed in terms of the Kullback-Leibler
Divergence (Dkr) as [9,12,15] using different time-samples. The Kullback-
Leibler Divergence between two probabilistic distribution between p(x) and ¢(x),

as Drr(p,q) = Zp(xl)logg pELg (11].

Therefore, transfer entropy can be expressed as Ty _,x = hx — hxy, where,

Tiy1,T
hx = - Z P(zes1,21) logy p(wriafre) = — Z p(ze41, 1) logy p(t(ﬂ)t)
zeX zeX Pty
hxy = — Z P(Tes1, 24, yr) 10gs p(zesa|e, yo)
zeX,yeY
P(Tt41, Tt
== Z P(Te41, e, ye) logy M

zeX,ycY p(mtvyt)

From which it is clear that,

hx = Dir(p(zit1,20),p(21))
hxy = Drr(p(@e1, 2, ye), p(2e, ye)

As a result,

Ty_x = Dky, (p($t+1, xt),p(xt)> — Dgkr, (p($t+1, Ty, Yt ), P(T4, yt))

There are a number of approaches to calculate the transfer entropy. Binning
method, k-nearest neighbor method [10], or Gaussian method [13]. Each method
has its own advantages or disadvantages. For instance, although the binning
method is very fast, it may create a lot of empty bins or very thick bins that
affects result accuracy.

2.2 Transfer Entropy for a Graph Edge

Suppose an edge connects node u and node v, and that associated with each node
are time series R, and R,. For each node the time series is over a time window of
duration At, and are denoted by R (t) = {x{'_ A, T} a4415---» 24} and similarly
Ry(t) = {x{_ap» T} _Ap41s-- -7} } respectively. To calculate the entropy transfer
from node u to node v introduce a time delay (7) for the windowed time series at
node u, i.e. we consider the series Ry, (t +7) = {@, | A s TH A 415+ THir )
With these ingredients the entropy transfer is computable with R, (), R;(t) and
Ry(t+7) [4,13).
P(Ru(t +7)[Ru(l), Ro(t))

T Zp (t)aRj(t))logz P(Ru(t + 7)[Ru(1))
P(Ru(t +7), Ru(t), Ro(t))p(Ru(t))
P(Ru(t+7), Ru(t))p(Ru(t), Ru (1))

Tueos(t) = = S p(Ru(t +7), Ru(t), Ru(t)) log,
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3 Graphs and Transfer Entropy

Schreiber’s transfer entropy can be used to develop a new entropic characteri-
sation of graphs derived from time series data. We use the transfer entropy to
weight the edges of a graph where the nodes represent time series data and the
edges represent the degree of commonality of pairs of time series. The result is
a weighted graph which captures the information transfer between nodes over
specific time intervals. From the weighted normalised Laplacian we characterise
the network at each time interval using the von Neumann entropy computed
from the normalised Laplacian spectrum, and study how this entropic charac-
terisation evolves with time, and can be used to capture temporal changes in
network structure.

To commence, we use the transfer entropy to define an edge weight W, ,(t) =
Tu—v(t). Suppose G(V, E) is a graph with vertex set V and edge set E CV x V
then the weighted adjacency matrix A is defined as follows

Auv) = {Wu if W > threshold. @
0, otherwise.

We have also constructed a sector graph to represent how the edge transfer
entropy distributes itself across both within and between sector links. To do this
suppose each node can be assigned a unique label p, and that these labels can
be partitioned into a set of m class-labels, = {w1,...,w;}. In the case of the
financial data analysed later in the paper, the node labels represent individual
stock, while sector labels represent different commercial or industrial sectors to
which individual stock belong. With the labels to hand, we can define a weighted
sector adjacency matrix, with elements

ATwa,wb - Z Z Wuﬂ) (3)

Hu€Wa fhoy EWp

The sector graph TG = (2, AT) with the sector labels as nodes and weighted
adjacency matrix AT. The diagonal elements are the total transfer entropy asso-
ciated within individual sectors, while the off diagonal elements are the total
transfer entropy between pairs of sectors.

For both graphs we need to compute the entropy. To do this we compute
the normalised Laplacian matrix and from the eigenvalues of this matrix we
compute the von Neumann entropy. The weighted degree matrix of graph G is
a diagonal matrix D whose elements are given by D(u,u) = dy = ), oy A(u,v)
The normalized Laplacian matrix of the graph G is defined as L= D-2(D —
A)D~'/? and has elements

1 ifu=vandd, #0
L= \/ﬁ if (w,v) € E

0 otherwise
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The spectral decomposition of the normalised Laplacian matrix is L =
> K‘l \i¢:#T where \; are the eigenvalues and ¢; the corresponding eigenvectors
of L.

The von Neumann entropy was defined in quantum mechanics and can be
expressed in terms of the Shannon entropy associated with the eigenvalues of
the density matrix. The normalized Laplacian matrix L can be interpreted as
the density matrix of an undirected graph [14], and the von Neumann entropy
of the undirected graph can be defined as,

Vi N

by i
H = — | ‘
N ;m v

where |V is the number of nodes in the graph. Han et al. have shown how
to approximate von Neumann entropy for undirected graph in terms of sim-
ple degree statistics using the quadratic approximation to the Shannon entropy
zlnx ~xz(l—x) [8].

1 1 1
Hynrel— — — —
vy V]V 2 d,d,
(u,v)EE

This allows the efficient calculation for the network entropy in O(N?) rather
than O(N?) from the normalised Laplacian spectrum.

In our experiments we explore how the von Neumann entropy of the weighted
graph G and the transfer entropies evolve with time for financial data covering
historical stock prices. To do this we construct graphs corresponding to the trad-
ing pattern on each trading day. This yields time sequences of weighted adjacency
graphs for individual stock and sector graphs for groups of stock. We represent
the transfer entropy content of each graph as a long vector, and perform principal
components analysis (PCA) on the time series of long-vectors. For the weighted
graph G the long-vector consists of the long-vector of weighted node degree
L = De, where e = (1,1,1....)T is the all-ones vector. For the sector graph the
long-vector is a vectorisation of the upper triangle, containing both the intra-
sector diagonal elements and the off-diagonal inter-sector elements. We perform
PCA on these different long-vectors. We commence by computing the covariance
matrix % over the complete time series, and then project the long-vectors into
the space spanned by the leading eigenvectors of the covariance matrix.

4 Experiments

We have created a new dataset covering the closing prices of 431 companies for
5400 days on the NYSE and NASDAQ. The companies selected in this dataset
come from 8 different commercial and industrial sectors, and have traded for
20 years or longer. So for example companies such as Facebook or Lehman
Brothers are not listed. After we collected the data, we applied log-return (R} =
In(P?) — In(P}* ;), where P} is the closing price of stock u on day ¢) to the
closing prices and use this to construct a time-series.
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At each day of trading we construct a graph to represent the trading pattern
in the markets studied. Each stock is represented by a labelled node. We compute
the cross-correlation and transfer entropy between the times series for each pair
of stock over a time window of 30 days. We create an edge if the cross-correlation
exceeds a threshold (we choose top 5 per cent of edges according to correlation
values), and attribute this edge with the transfer entropy for the time series.
In addition each company traded is labelled as belonging to one on 8 different
sectors. These sectors have been selected on the basis of Yahoo Finance and are
as follows, Basic Material (50 stocks), Consumer Goods (62 stocks), Financial
(50 stocks), Health-care (51 stocks), Industrial Goods (68 stocks), Services (49
stocks), Technology (44 stocks), Utilities (57 stocks).

approx. NVE
T

T LI % T
i
|3
) I I | j

5 A Ry ~ o
W AV o 5" o A’ A0 W
R o e e o o P o

Fig. 1. Comparison of von Neumann entropy change with time. (Color figure online)

In Fig. 1 we show the von Neumann entropy (in blue) of the weighted trans-
fer entropy graph as a function of time. For comparison (above in red) is the
von Neumann entropy computed from the normalised Laplacian spectrum, and
(below in red) is the approximate von Neumann entropy of Han et al. [8]. The
main features to note are that the different financial crises emerge more clearly
when we use transfer entropy to weight the edges of the graph than when the
two alternatives are used. From left to right the main peaks correspond to Asian
financial crisis (1997), dot-com bubble (2000), 9/11 (2001), stock market down-
turn (2002), global financial crisis (2007-08), European debt crisis (2009-12),
Chinese stock market turbulence (2015-16).

To take this analysis of the transfer entropy one step further we perform
principal components on a time series of long vectors whose components are
the total transfer entropies associated with each node in the graph. In Fig. 2 we
show different views of the leading three principal component projections of the
long-vector time series. The different colours correspond to the financial epochs
associated with different crises. It is interesting that the different crises corre-
spond to different subspaces in the plot, following clearly clustered trajectories.
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Fig. 3. Information flow through time for the finance sector and technology sector.

In Fig.3 we take this analysis one step further and show times series of
the within and between sector transfer entropy for the finance and technology
sectors. The financial sector dominates during the Global financial crisis when
compared to other sectors. Moreover, it seems to be quite effective in determining
the direction of the market. The technology sector, on the other hand, is generally
affected by the other sectors by the middle of the 2000s. After the Dot-com
bubble, it gradually moves to a position that has affected the market. In the
Europe and China financial crisis, it has been observed to be passive.

Finally, in Fig.4 we show PCA of the sector-graph. Here at each time step
we construct a long-vector containing the sum of transfer entropies within and
between the different sectors. We then project these long vectors onto the prin-
cipal component axes for the entire time series. The plot shows different views
of the three leading principal components. The different colours again represent
different financial crises. The long vectors now contain just 36 upper triangular
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Fig. 4. PCA for transfer entropy sector graphs. (Color figure online)

components rather than the 431 components for different stock, but a strong
cluster structure corresponding to different crises still emerges.

5 Conclusion

In this paper, we have used the transfer entropy to analyse a financial market
dataset covering the closing prices of stock traded over a 5400 day period. We
commenced by constructing a graph in which the edges represent information
flow between time series for stock, quantified using transfer entropy. The von
Neumann entropy of the resulting weighted graph has been demonstrated to give
a better localisation of temporal anomalies in network structure due to global
financial crises. Compared to the approximate von Neumann entropy of Han et
al. [8] it is less prone to noise. Moreover, PCA of the cumulative node trans-
fer entropy with time shows that the different financial crises occupy different
largely non-overlapping subspaces. Reducing the dimensionality of the problem
by considering a representation based on within and between sector cumulative
transfer entropy, we can still separate anomalous epochs, but less clearly.

So transfer entropy appears to capture information flow within the financial
trading networks in a manner which is less prone to noise than von Neumann
entropy. However, this is at the expense of computational cost.

Our future work will focus on how to use the transfer entropy representation
presented in this paper to construct kernel representations of graph time series.
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Abstract. Graph-based data has played an important role in represent-
ing complex patterns from real-world data, but there is very little work
on mining time series with graphs. And those existing graph-based time
series mining methods always use well-selected data. In this paper, we
investigate a method for extracting graph structures, which contain the
structural information that cannot be captured by vector-based data,
from the whole Chinese financial time series. We call them time-varying
networks, each node in these networks represents the individual time
series of a stock and each undirected edge between two nodes represents
the correlation between two stocks. We further review a linear-time graph
kernel for labeled graphs and show whether the graph kernel, together
with time-varying networks, can be used to analyze Chinese financial
time series. In the experiments, we apply our method to analyze the
whole Chinese Stock Market daily transaction data, i.e., the stock prices
data, and use the graph kernel to measure similarities between those
extracted networks. Then we compare the performances of our method
and other sequence-based or vector-based methods by using kernel prin-
ciple components analysis to map those results into low dimensional fea-
ture space. The experimental results demonstrate the efficiency and effec-
tiveness of our methods together with graph kernels in analyzing Chinese
financial time series.

Keywords: Chinese financial market - Time series + Graph kernel

1 Introduction

Graph-based representations are powerful tools to analyze complex real-world
data. For example, Hamilton et al. [1] have used graphs to represent online
social networks to predict which community the posts belong to. Li et al. [2]
have adopted a graph structure to represent each video frame where the vertices
denote super-pixels and the edges denote relations between these super-pixels.
Wu et al. [3] have used graphs to represent the texts inside a webpage, with
vertices denoting words and edges representing relations between words.
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Generally speaking, there are two main advantages of using graphs. First,
compared with simple structures like vectors, graphs can capture more com-
plex features from real-world data like time series, social networks, genetic data,
etc. Ignoring the structural information among those data will lead to signifi-
cant information loss [11,12], e.g., vectors can’t contain the correlations between
pairwise financial time series. Second, the development of kernel methods on
graphs [4-6] allows us to measure the similarity between a pair of graphs effi-
ciently [7]. Because of these benefits, a large number of works have employed
graph kernels [8-10] to solve classification or clustering problems. However there
is very little work on mining time series data with graph kernels, and those
graph-based time series mining works always use well-selected data rather than
the whole dataset to do experiments.

To overcome the aforementioned drawbacks, in this paper we propose a
method for analyzing Chinese financial time series by using graph kernel. This
is based on the idea that graphs can represent richer information than original
data, and graph kernel can detect the significant changes of graph structure,
which caused by extreme events in real-world data, effectively.

Our primary goal is to represent time series data such as financial data as
graph structures, i.e., the time-varying networks, and analyze them by using a
linear-time graph kernel. We commence by shifting a time window along time
to construct complete weighted graphs from the original data. The nodes in the
graphs are determined and labeled by the variate set of time series and connec-
tions between nodes change over time. Note that, most existing graph kernels
are based on the idea of decomposing graphs into substructures and measuring
pairs of isomorphic substructures [13,14], so directly employing graph kernels
to analyze such complete weighted graphs tends to be elusive. We can get the
time-varying networks after reducing the number of connections between nodes.
To measure the similarity of those time-varying networks, we introduce a graph
kernel, i.e., Neighborhood Hash Kernel, proposed in [15], whose time complexity
is related to the number of nodes times the average number of neighboring nodes
in the given labeled graphs. We apply our method on the whole Chinese Stock
Market data to validate the effectiveness.

The rest of the paper is organized as follows. Section 2 shows the details of
how to extract the time-varying networks from multivariate time series, e.g.,
financial data, etc. In Sect.3 we introduce the Neighborhood Hash kernel pro-
posed in [15], which uses a hash function with linear time complexity. Section 4
discusses the experimental performance of our method on the whole Chinese
Stock Market daily transaction data, i.e., stock closing price. Finally, in Sect.5
we summarize our contribution present in this paper and make a suggestion for
future works.

2 Time-Varying Network

In this section, we show the details of extracting time-varying networks from
multivariate time series. Broadly speaking, the workflow of time-varying net-
work consists of two steps, namely (a) constructing complete weighted graphs
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from multivariate time series and (b) reducing the connections between nodes
to extract the final form of time-varying networks. The details are as follows:

2.1 Complete Weighted Graph

We use a time window of size w to obtain a part of multivariate time series which
contains the data over a period of w. Thus we can take each variate in this tem-
poral window as a single vector with fixed length w. Then we create a complete
weighted graph, in which each node represents a variate of the multivariate time
series and the weights are determined by the Euclidean distances between those
vectors, for this temporal window.

Mathematically, given a time window of size w and a set of discrete time
series {X1, Xo,..., Xy}, in whichw is a positive integer and X; represents the
i'h variate of the multivariate time series. The distance between two variates in
a temporal window at time step ¢ can be computed as:

w—1
D(Xiwy, X)) = Z(xi(tfk) — Zj—k))% (1)
k=0
where X4y = (Zit), Tigt—1) - - - ,xi(t,wﬂ))T is the obtained vector of X; at time

step ¢ with time window of size w and x;;_j) denotes the value of X; at time
step t — k.

By definition, X;¢) and X, are exactly the same if and only if the dis-
tance between them is zero. On the other hand, we can tell that X, and X
are weakly related if their distance value is a large number. Also, this distance
contains some time-varying information since the vector is obtained by a time
window which contains the historical data. Hence, a distance matrix A(t) of
those variates at time step ¢ can be defined as:

A(t)ij = D(Xiqr), Xj(1))-

Clearly, the distance matrix A(t) is a symmetric matrix with zeros in the main
diagonal. And we can take this distance matrix A(t) as the adjacency matrix of
the complete weighted graph at that time step ¢. Then we can get a sequence of
complete weighted graphs by move the time window along the whole time steps.

2.2 Edge Reduction

Although we have already constructed graphs containing several correlation fea-
tures from multivariate time series, directly using graph kernel to measure the
similarities between complete weighted graphs is still time-consuming. We have
to reduce the number of connections between nodes in order to employ the ker-
nel method more effectively. Minimum spanning tree [16] is a good choice since
it selects the n — 1 shortest edges from the original complete weighted graph
where n is the number of nodes. Given an original weighted graph G = (V, €),



230 Y. Jiao et al.

the objective function of extracting minimum spanning tree 7 can be expressed
by:

minw(7)

3 w(u.v), (2)

u,veY

where w(u, v) is the weight between nodes u, v.

As we mentioned before, two nodes are considered to have strong correlation if
the distance between them is short. Thus, minimum spanning trees can preserve
the strongest correlation information from original graphs and reduce the edges
as much as possible.

We have to do some processing on the original graphs, in order to get more
potential structural information, before extracting minimum spanning trees from
complete weighted graphs. Specifically, we find the shortest paths between all
pairs of nodes in the graph, then we can update the adjacency matrix with
the weights of all shortest paths. Fortunately, since there are many existing
algorithms that can solve the all-pairs shortest path problem [17], we can simply
chose one. Then, given SP(v;,v;) which is the weight of shortest path between
nodes v; and v;, the updated adjacency matrix A’(t) at time step ¢ can be:

A/(t)ij = SP(’UZ',UJ‘).

We can get a new complete weighted graph based on the updated adjacency
matrix A’(t) which contains more structural information since the shortest path
preserves the correlations between two nodes by considering all possible weighted
path between them. Then we can extract a minimum spanning tree T; from the
new complete weighted graph at time step ¢, and this spanning tree is exactly
the final form of the time-varying network G;. Thus we can get a sequence of
time-varying networks extracted from the multivariate time series.

3 Neighborhood Hash Kernel

In section, we review the Neighborhood Hash Kernel, a linear-time graph kernel,
proposed by Hido et al. in [15] which maps each labeled graph into a binary
array set by using a hash function. The Neighborhood Hash kernel can be simply
computed by calculating the Jaccard similarity matrix, which has been proved to
be a positive semi-definite matrix [18], between those binary array sets. Thus we
can employ the graph kernel to measure the similarity of time-varying networks
and detect the extreme events among the whole time steps efficiently.

The details of Neighborhood Hash has been introduced in [15], in order to
facilitate the discussion in this paper, we make a brief review.

3.1 Neighborhood Hash

Generally speaking, the Neighborhood Hash is a hash function that consists
two main logical operations to map each node label into a binary array which
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contains the node’s neighborhood information. We commence by using a one-
to-one mapping function to update the original string-like label set L,,; into
a bit-like label set £ which consists of binary arrays with fixed length D, the
element [ in set L is like:

I1={b1,be,...,bp}, (3)
where D satisfies 2 — 1 > |£,,;| and b; € {0,1}, £ shares the same number
of labels with £,, i.e., |£| = |Lori|. Now we introduce the first logical operation
ROT, given a bit-like label | = {b1, ba,...,bp}, the operation ROT can be:

ROTO(l) = {bo+1;b0+2a"'abD;bla"'abO}a (4)

where o is a number between 0 to D. We can tell that ROT operation changes
the order of label [ to get a new binary array with the same length.

Then we review the other bitwise logical operation XOR, i.e., Exclusive OR.
Note that, XOR between two bits bi and bj gives 1 when bi = bj and 0 otherwise.
Clearly, let XOR (1;,1;) = 1; & 1;, XOR satisfies several properties:

lel= lzerm

l® lzero = l>
in which l;ero is a bit array full of zeros with length D, i.e., l;ero = {0,0,...,0}.
Given a node v and its neighborhood nodes {v‘fdj,v;dj, . ,vgd]}, we can

define the Neighborhood Hash N H(v) to map v’s label [(v) into a binary array
U'(v) as: ' . .

NH(v) = ROTy(I(v)) @ 1Y) @ vs¥ @ ... @ 1(v3Y). (5)
Since the hash value contains the information of neighborhood nodes, given two
nodes v;,v; € V, if NH(v;) = NH(v;), v; and v; can be considered to have

the same topology except for a hash collision, whose probability of occurrence is
2-D.

3.2 Neighborhood Hash Kernel for Time-Varying Network

It is easy to compute the kernel value with the help of Neighborhood Hash.
Given two labeled graphs G; and G;, we first apply the Neighborhood Hash to
all of the nodes in G; and G; to obtain two new bit-like label sets £} and E;:

L, ={NH(v1), NH(va),... NH(vg;)}
L) ={NH(v1), NH(va),... NH(vq;)}
As mentioned before, two nodes can be approximated as the same if they have

the same Neighborhood Hash value, and the kernel value of G; and G; can be
computed as:

k(Gi G5) = J (L3, £3), (6)
where J(L;, L) is the Jaccard similarity between L] and L}, then we have:
_LinLy |C; N LY

k(Gi, G;5) (7)

Clgiu il 1L+ L = 1L n Lhl
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And the time complexity of this kernel is only O(Ddn) in which D is the length
of bit label, d denotes the average number of neighbors and n is the number of
nodes.

In fact, there is another circumstance that two different nodes have the same
Neighborhood Hash values. Considering a node v; with three neighborhood nodes
Va, Vb, Ve, Where I(vg) = l(vp), the Neighborhood Hash of v; is:

NH(v;) = ROT 1 (I(v;)) ® l(vg) @ l(vp) @ l(ve)
or, equivalently,
NH(v;) = ROTy(1(v;)) ® l(ve),

since [(vq) B U(vp) = Lrero, 165 L(ve) = U(vp), and 1(ve) & Luero = 1(ve).
Now if we have another node v; with neighborhood node v4, and

H(vi) = U(v5),
l(ve) = U(va),
then we can get NH(v;) = NH(v;), but v; is different from v;. This kind of
error can be avoided, and the solution has been proposed in [15].

But we don’t need to take this circumstance into consideration, since our
time-varying networks are extracted from multivariate time series, which nodes
have unique labels. And the spanning tree algorithm ensures that each of our
time-varying networks only has n — 1 edges, which means the average number
of neighbors d is 1, the complexity of analyzing time-varying networks with this
graph kernel is linear-time, i.e., O(Dn).

4 Experiments

In this section, we evaluate the performance of our method on a set of Chinese
Stock Market data, which contains the historical transaction data of a large
number of stocks. We explore whether our method can be used to analyze time
series, i.e., detecting extreme financial events, effectively.

4.1 Dataset Preprocessing

The dataset used in this paper is extracted from Chinese Stock Market Database,
which consists of the daily closing prices of 2848 stocks from December 1990 to
June 2016. Due to the diversity of stock prices, we normalize the original data
by calculating the closing price change ratio. Mathematically, given a stock price
matrix S where Sy; denotes the closing price of stock j in day ¢, the normalized
data matrix can be computed as:

Stj — Si—1j

t ’
J St—lj
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in particular, if the stock j has null values from day t; to day ¢s in the original
data, which implies that this stock didn’t open deal in those days or that stock
was not existed in the market before, we set the closing price change ratio from
day t; to day t2 + 1 as 0 by default since a brand new period of trades begins
on day ts + 1.

In this way, we can get our normalized dataset which contains the closing
price change ratio of 2848 stocks from December 1990 to June 2016 (6218 days).

4.2 Financial Data Analysis

To explore the effectiveness of the proposed method for analyzing time series, i.e.,
detecting extreme financial events, we use a time window of 25 days and move the
window along the whole time steps to extract 6194 time-varying networks and
6194 sequences from day 25 to day 6218. Each network contains the structural
correlation information between 2848 stocks on one day, and each node in the
network is labeled by a stock code. On the other hand, we use a 2848-dimensional
vector to represent the price change ratio of 2848 stocks on one day from day
25 to day 6218. By using these methods, it is easy to obtain a network set
G ={G1,G2,...,G6104}, a sequence set S = {S1,8s,...,Ss104} and a vector set
V ={V1,Va,...,Vs104} from day 25 to day 6218.

Given a kernel method with a graph set G or a sequence set S or a vector
set V', we can compute a 6194 x 6194 kernel matrix

kig ki - Kisioa

ka1 koo - kosioa
K= . . .

k6194,1 k6194,2 e k6194,6194

where k; ; denotes the kernel value between time step ¢ and j, e.g., G; and G, etc.
We select a widely-used sequence kernel, i.e., Dynamic Time Warping (DTW)
kernel [19], and two vector-based kernels with default parameters in open source
tool scikit-learn [20], namely Radial basis function (RBF) kernel and Sigmoid
kernel, to compute three different kernel matrices from sequence set S and vector
set V. In order to study and visualize important features contained in the kernel
matrix, we use kernel principal component analysis (Kernel PCA) [21] to embed
the data to a three-dimensional principal component space.

Figure1 shows four kernel PCA plots of kernel matrices computed from
Neighborhood Hash kernel and the other three kernels during a financial cri-
sis period in 2007. Specifically, the financial crisis started on October 16" (day
4101) and lasted for two years, so we divide 100 days before and after day 4101
into two groups. From the first plot, the embedding points separated into two dis-
tinct clusters clearly, which indicates that graph kernel has a good performance
on measuring the similarity between time-varying networks. On the other hand,
there are many points in different colors mixed together in those three plots,
although the DTW kernel performs better than the other two kernels, which
suggests that those kernels can’t distinguish between these two groups well.
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Fig. 1. Kernel PCA plots of four kernel methods on financial crisis data in 2007. (Color
figure online)
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Fig. 2. Kernel PCA plots of Neighborhood Hash kernel on other financial crises.

That’s because a lot of meaningful structural information has disregarded in
simple structures like sequences or vectors, which, from another point of view,
shows our method has great potentials in analyzing time series.

To evaluate our method better, we select the other two financial crises: (a)
100 days before and after February 16" in 1993 (day 524) and (b) 100 days
before and after June 12¢" in 2015 (day 5964). We draw their Kernel PCA plots
respectively. The result displayed in Fig.2 also implies that our method is an
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Fig. 3. Path of time-varying financial networks in kernel PCA space. (Color figure
online)

efficient tool to analyze time series, which can simply distinguish the difference
between those two groups.

What’s more, we notice that the government had promulgated a number of
policies to prevent the financial crisis from getting worse in 2015, and the exact
date is July 8t" (day 5980) which is contained in the 100 days after day 5964.
We divide the 100 days after day 5964 into two groups. The first one, noted as
“during”, contains days from day 5964 to day 5980 and the other contains days
after day 5980, i.e., policies promulgated date. Then, in Fig.3, we explore the
evolution of time-varying financial networks in the kernel PCA space and the
experiment result is beyond our expectation. Before the financial crisis broke out,
the networks represented by pink points remained stable. But the “during” group
networks marked by green triangles are deviated from the pink cluster little by
little. After the government promulgated policies, the networks symbolled by
blue squares gradually gather into another cluster.

5 Conclusion

In this paper, we propose a method for extracting time-varying networks from
multivariate time series automatically. In essence, the method has two steps,
namely (a) generating complete weighted graphs from the time series by comput-
ing the Euclidean distance between nodes with a time window and (b) extract-
ing minimum spanning trees from the updated complete weighted graphs whose
weights are replaced by shortest paths between all pairs of nodes. Specifically,
the minimum spanning trees, which contain many meaningful structural infor-
mation, are the final form of time-varying networks. This extracting method,
together with a linear-time graph kernel proposed in [15], allows us to analyze
the time evolution of time series in a new way. In the experiments mentioned
above, we have evaluated the performance of our method combined with Neigh-
borhood Hash kernel on a set of Chinese financial data. The result clearly points
the potentials of analyzing time series with graph kernels, which is more effi-
cient than other learning techniques like sequences-based or vector-based kernel
methods.
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Abstract. In this paper, we investigate whether graph kernels can be
used as a means of analyzing time-varying financial market networks.
Specifically, we aim to identify the significant financial incident that
changes the financial network properties through graph kernels. Our
financial networks are abstracted from the New York Stock Exchange
(NYSE) data over 6004 trading days, where each vertex represents the
individual daily return price time series of a stock and each edge rep-
resents the correlation between pairwise series. We propose to use two
state-of-the-art graph kernels for the analysis, i.e., the Jensen-Shannon
graph kernel and the Weisfeiler-Lehman subtree kernel. The reason of
using the two kernels is that they are the representative methods of
global graph kernels and local graph kernels, respectively. We perform
kernel Principle Components Analysis (kPCA) associated with each ker-
nel matrix to embed the networks into a 3-dimensional principle space,
where the time-varying networks of all trading days are visualized. Exper-
imental results on the financial time series of NYSE dataset demon-
strate that graph kernels can well distinguish abrupt changes of finan-
cial networks with time, and provide a more effective alternative way
of analyzing original multiple co-evolving financial time series. We the-
oretically indicate the perspective of developing novel graph kernels on
time-varying networks for multiple co-evolving time series analysis in
future work.

Keywords: Graph kernels -+ Time-varying financial networks
NYSE dataset

1 Introduction

Recently, network based structure representations have been proven powerful
tools to analyze multiple co-evolving time series originating from time-varying
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complex systems [17,24]. This is based on the idea that the time-varying net-
works can well represent the interactions between the time series of system enti-
ties [7], and one can significantly analyze the system by exploring the structure
variations of the networks with time. For most existing approaches, one main
objective is to detect the extreme event that can significantly influence the net-
work structures. For instance, in the financial time-varying networks abstracted
from a financial market system, extreme events representing financial instability
of stocks are of interest [20] and can be inferred by detecting the anomalies in
the corresponding networks [23].

Generally speaking, many existing methods aim to derive network character-
istics based on capturing network substructures using clusters, hubs and commu-
nities [1,2,11]. Moreover, another kind of principled approaches is to characterize
the networks using ideas of statistical physics [13,14]. These methods use the par-
tition function to describe the network, and the associated entropy, energy and
temperature measures can be computed through the function [10,23]. Unfortu-
nately, all the aforementioned methods tend to approximate network structures
in a low dimensional space, and thus lead to information loss. This drawback
influences the effectiveness of existing approaches for time-varying network anal-
ysis. One way to overcome this problem is to use graph kernels.

In machine learning, graph kernels are important tools for analyzing struc-
ture data represented by graphs (i.e., networks). This is because graph kernels
can map graph structures in a high dimensional Hilbert space and better pre-
serve the structure information of graphs. The most generic principle for defining
a kernel between a pair of graphs is to decompose the graphs into substructures
and count pairs of isomorphic substructures. Within this scenario, most graph
kernels can be divided into three main categories, i.e., the graph kernels based on
counting all pairs of isomorphic (a) walks [12], (b) paths [6], and (c) subgraphs
or subtree structures [5,18]. Unfortunately, there are two common shortcomings
arising in these substructure based graph kernels. First, these kernels cannot
directly accommodate complete weighted graphs, since it is difficult to decom-
pose a complete weighted graph into substructures. Second, these kernels tend
to use substructures of limited sizes. Although this strategy curbs the notorious
inefficiency of comparing large substructures, measuring kernel values with lim-
ited sized substructures only reflects local topological characteristics of a graph.

To overcome the shortcomings of the substructure based graph kernels,
another family of graph kernels based on using the adjacency matrix to cap-
ture global graph characteristics have been developed by [3,15,22]. For instance,
Johansson et al. [15] have developed a family of global graph kernels based on
the Lovész number and its associated orthonormal representation through the
adjacency matrix. Xu et al. [22] have proposed a local-global mixed reproducing
kernel based on the approximate von Neumann entropy through the adjacency
matrix. Bai and Hancock [3] have defined an information theoretic kernel based
on the classical Jensen-Shannon divergence between the steady state random
walk probability distributions obtained through the adjacency matrix. Since the
adjacency matrix directly reflects the edge weighted information, these global
graph kernels can naturally accommodate complete weighted graphs.
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The aim of this paper is to explore whether graph kernels can be used as a
means of analyzing time-varying financial market networks. Specifically, we aim
to identify the significant financial incident that changes the financial network
properties through graph kernels. To this end, similar to [23], we commence by
establishing a family of time-varying financial networks abstracted from the New
York Stock Exchange (NYSE) data over 6004 trading days, where each vertex
represents the individual daily return price time series of a stock and each edge
represents the correlation between pairwise series. Note that all these networks
have a fixed number of vertices, i.e., these networks have the same vertex set. This
is not an entirely uncommon situation, and usually arises where the time-varying
networks are abstracted from complex systems having a known set of states or
components. With the family of time-varying financial networks to hand, we
compute the kernel matrix by measuring the graph kernel value between each
pair of the networks. In this work, we propose to use two state-of-the-art graph
kernels, i.e., the Jensen-Shannon graph kernel and the Weisfeiler-Lehman subtree
kernel. The reason of using the two kernels is that they are the representative
methods of global graph kernels and local graph kernels, respectively. We perform
kernel PCA associated with each kernel matrix to embed the networks into a
3-dimensional principle space, where the time-varying networks of all trading
days are visualized.

To make our investigation one step further, we compare the graph kernels
with a classical dynamic time warping kernel for original time series from the
NYSE dataset [8]. Moreover, we also compare the graph kernels with three clas-
sical graph characterization (embedding) methods and the visualizations are
spanned by these three graph characterizations for the time-varying networks.
Experimental results show that graph kernels can significantly outperform either
the graph characterization method or the dynamic time warping kernel for orig-
inal vectorial time series. We analyze the theoretical advantages of graph kernels
on the time-varying financial network analysis, and explain the reason of the
effectiveness. Our work indicates that graph kernels associated with time-varying
financial networks can provide us a more effective alternative way of analyzing
original multiple co-evolving financial time series.

This paper is organized as follows. Section?2 introduces the definitions of
the Jensen-Shannon graph kernel and the Weisfeiler-Lehman subtree kernel.
Section 3 provides the experimental results and analysis. Finally, Sect. 4 provides
the conclusion.

2 Preliminary Concepts

In this section, we will introduce two state-of-the-art graph kernels that will
be used to analyze the time-varying financial networks abstracted from NYSE
dataset.

2.1 The Jensen-Shannon Graph Kernel

The Jensen-Shannon graph kernel [3] is based on the classical Jensen-Shannon
divergence measure. In information theory, the Jensen-Shannon divergence is a
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non-extensive mutual information measure defined between probability distribu-
tions [16]. Let P = (p1,.-+,Pm,---,pm) and Q = (q1,---,¢m,---,qrn) be a pair
of probability distributions, then the divergence measure between the distribu-
tions is

P 1 1
D;s(P,Q) =Hg ( * Q)

) - §Hs(7’) - §HS(Q)

S Pt dm Pt | =
:*mz_:l 5 log— + ) pmlogpm

m=1

M
+ ) Gm 108 gm. (1)

m=1

where Hg(P) = fozl Pm 10g py are the Shannon entropies associated with P.
For each graph G(V, E), we commence by computing the probability distribution
of the steady state random walk visiting the vertices of G(V, E). Specifically, the
probability of the random walk on G(V, E) visiting each vertex v € V is

P(v) = d(v)/ Y d(u), (2)

ueV

where d(v) is the vertex degree of v. For a pair of graphs G,(V,, E,) and
G4¢(Vy, Eg) and their associated random walk probability distributions P and
Q, the Jensen-Shannon graph kernel kjs(G,,Gy) associated with the Jensen-
Shannon divergence is

kys(Gp,Gy) = exp(—=Djs(P, Q)). (3)

2.2 The Weisfeiler-Lehman Subtree Kernel

In this subsection, we review the concept of the Weisfeiler-Lehman subtree ker-
nel. This kernel is based on counting the number of the isomorphic subtree pairs,
as identified by the Weisfeiler-Lehman algorithm [19]. Specifically, for a sample
graph G(V, E) and a vertex v € V, we denote the neighbourhood vertices of v
as N(v) = {u|(v,u) € E}. For each iteration m where m > 1, the Weisfeiler-
Lehman algorithm strengthens the current label £y} ' (v) of each vertex v € V
as a new label £ (v) by taking the union of the current labels of vertex v and
its neighbourhood vertices in N (v), i.e.,

L) = | {Lw' o), £ ()}, (4)
uweN (v)

Note that, when m = 1 the current label LY (v) of v is its initial vertex label.
For each iteration m the new label £ (v) of v corresponds to a specific subtree
structure of height m rooted at v. Furthermore, for a pair of graphs G,(V,,, E,)
and G,(Vy, E,), if the new updated vertex labels of v, € V, and v, € V, at
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the m-th iteration are identical, the subtrees corresponded by these new labels
are isomorphic. Thus, the Weisfeiler-Lehman subtree kernel k%)(Gp, Gy), that
counts the pairs of isomorphic subtrees [19], can be defined by counting the
number of identical vertex labels at each iteration m, i.e.,

k) (G, Gy) Z ST LR (), L (vg)}, (5)

m=0v,EV, v4€V,

where

5(L31(09), L (0) = { Lif £ (vp) = L (04), "

0 otherwise.

3 Experiments

We establish a NYSE dataset that consists of a series of time-varying net-
works abstracted from the multiple co-evolving time series of the New York
Stock Exchange (NYSE) database [20,23]. The NYSE database encapsulates
daily prices of 347 stocks over 6004 trading days from January 1986 to February
2011, i.e., each of the financial network has 347 co-evolving time series of the
daily return stock prices. The prices are all corrected from the Yahoo financial
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Fig. 1. Path of financial networks over all trading days. (Color figure online)
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dataset (http://finance.yahoo.com). To extract the network representations, we
use a fixed time window of 28 days and move this window along time to obtain
a sequence (from day 29 to day 6004) in which each temporal window contains a
time series of the daily return stock prices over a period of 28 days. We represent
trades between different stocks as a network. For each time window, we compute
the correlation between the time series for each pair of stocks as the weight of
the connection between them. Clearly, this yields a time-varying financial mar-
ket network with a fixed number of 347 vertices and varying edge weights for
each of the 5976 trading days. Note that each network is a complete weighted
graph. To our knowledge, the aforementioned state-of-the-art graph kernels can-
not directly accommodate this kind of time-varying financial market networks,
since all these kernels cannot deal with complete weighted graphs.

3.1 Network Visualizations from kPCA

In this subsection, we investigate whether graph kernels can be used as a means
of analyzing the time-varying financial networks. Specifically, we explore whether
abrupt changes in network evolution can be significantly distinguished through
graph kernels. We commence by computing the kernel matrix using each of the
Jensen-Shannon graph kernel (JSGK) and the Weisfeiler-Lehman subtree kernel
(WLSK). Note that, the WLSK kernel cannot accommodate either complete
weighted graphs or weighted graphs. Thus, we apply the WLSK kernel to the
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sparser un-weighted version of the financial networks, where each sparse un-
weighted network is constructed by preserving only the original edges whose
weights fall into the larger 10% of weights and ignoring the weights. On the
other hand, the JSGK kernel can accommodate complete graphs, thus we directly
perform the JSGK kernel on the original financial networks. Moreover, since each
vertex label (i.e., the code of a stock represented by the vertex) appears just once
for each financial network, we establish the required correspondences between
a pair of networks through the vertex labels for the JSGK kernel. We perform
kernel Principle Component Analysis (kPCA) [21] on the kernel matrix of the
financial networks, and visualize the networks using the first three principal
components in Fig. 1(a) and (b) for the JSGK and WLSK kernels respectively.

Furthermore, we compare the proposed kernels to three classical graph char-
acterization methods (GC) that can also accommodate the original financial
networks that are complete weighted graphs, i.e., the Shannon entropy associ-
ated with the steady state random walk [4], the von Neumann entropy associ-
ated with the normalized Laplacian matrix [9], and the average length of the
shortest path over all pairwise vertices [20]. The visualization spanned by the
three graph characterizations are shown in Fig. 1(c). Finally, we also compare
the proposed kernels with the dynamic time warping kernel for original time
series (DTWK) [8]. For the DTWK kernel, we also use a time window of 28 days
for each trading day. We also perform kPCA on the resulting kernel matrix, and
visualize the original time series using the first three principal components in
Fig. 1(d). The visualization results exhibited in Fig.1 indicate the variations of
the time-varying financial networks in the different kernel or embedding spaces
over 5976 trading days. The color bar beside each plot represents the date in
the time series. It is clear that the results given by graph kernels form a better
manifold structure.

To take our study one step further, we show in detail the visualization results
during three different financial crisis periods. Specifically, Fig. 2 corresponds to
the Black Monday period (from 15th Jun 1987 to 17th Feb 1988), Fig.3
to the Dot-com Bubble period (from 3rd Jan 1995 to 31st Dec 2001), and
Fig. 4 to the Enron Incident period (the red points, from 16th Oct 2001 to
11th Mar 2002). Figures2, 3 and 4 indicate that Black Monday (17th Oct,
1987), the Dot-com Bubble Burst (18rd Mar, 2000, and the Enron Incident
period (from 2nd Dec 2001 to 11th Mar 2002) are all crucial financial
events, since the network embedding points through the kPCA of the JSGK and
WLSK kernels form two obvious clusters before and after the event. In other
words, the JSGK and WLSK graph kernels can well distinguish abrupt changes
in network evolutions with time. Another interesting feature in Fig.4 is that
the networks between 1986 and 2011 are separated by the Prosecution against
Arthur Andersen (3rd Nov, 2002). The prosecution is closely related to the
Enron Incident. As a result, the Enron Incident can be seen as a watershed at the
beginning of 21st century, that significantly distinguishes the financial networks
of the 21st and 20th centuries. On the other hand, the GC method and the
DTWK kernel on original time series can only distinguish the financial event of
Black Monday, and fail to distinguish other events.
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3.2 Experimental Analysis

The above experimental results demonstrate that graph kernels can be powerful
tools for analyzing time-varying financial networks. The reasons of the effective-
ness are twofold. First, unlike the original multiple co-evolving time series from
the NYSE dataset, the abstracted time-varying financial networks can reflect
rich co-related interactions between the original time series. Second, the graph
kernels can map network structures in a high dimensional Hilbert space, and
thus better preserve the structure information of original time series encapsu-
lated in the networks. By contrast, the GC method can also directly capture
network characteristics. However, as one kind of graph embedding methods, the
GC method tends to approximate the network structures in low dimensional
space and leads to information loss. On the other hand, although the DTWK
kernel can map the original time series in a high dimensional Hilbert space,
the DTWK kernel on original time series cannot directly capture the co-related
interactions between the time series. These observations demonstrate that graph
kernels associated with time-varying financial networks can provide us a more
effective alternative way of analyzing original multiple co-evolving financial time
series.

Although both the JSGK and WLSK graph kernels can well distinguish the
abrupt changes of financial networks with time. We can also observe some differ-
ent phenomenons between the kPCA embeddings through the two graph kernels.
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For instance, Fig. 1 indicates that the embedding points through the WLSK ker-
nel can form a better transiting with time than the JSGK kernel, when we
visualize all the financial networks over the 6004 trading days. Moreover, Fig. 4
also visualizes all the financial networks and the kPCA embeddings through the
WLSK kernel form better clusters before and after the Enron incident than the
JSGK kernel. This may be caused by the fact that the WLSK kernel is per-
formed on the sparser version of the original time-varying financial networks,
i.e., the edges corresponding to lower co-relations between pairwise time-series
represented by vertices are deleted. As a result, the WLSK kernel can capture
the dominant co-related information between pairwise time series, and ignore
the noises accumulated from the lower co-relations over all the 6004 trading
days. By contrast, although the JSGK kernel can completely capture all the
information through the original financial networks that are complete graphs,
its effectiveness may be also influenced by the lower co-relations with noises.
On the other hand, Figs. 3 and 2 indicate that sometimes the JSGK kernel can
form more separated clusters than the WLSK kernel, when we only visualize
the financial networks over a small number of trading days around the financial
event. This may be caused by the fact that only the JSGK kernel can accommo-
date the complete network structures and reflect global network characteristics.
Moreover, the effect of the lower co-related information between time series over
a small number of trading days may be minor and will not seriously influence
the effectiveness.
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The above observations indicate that how to balance the trade off between
capturing global complete network structures and eliminating noises through
sparser network structures is important for developing new graph kernels in
future works. Finally, note that, although the time-varying financial networks can
reflect richer co-relations between pairwise time series, these networks inevitably
lost the original time series information. One way to overcome this problem is
to associate the original vectorial time series to each corresponding vertex as
the vectorial continuous vertex label. Unfortunately, neither of the JSGK and
the WLSK graph kernels can accommodate such kind of vertex labels. Devel-
oping approaches of accommodating vectorial continuous vertex labels may be
an inspired way of developing novel graph kernels on time-varying networks for
multiple co-evolving time series analysis in future work.

4 Conclusion

In this paper, we have investigated that graph kernels are powerful tools of ana-
lyzing time-varying financial market networks. Specifically, we have established
a family of time-varying financial networks abstracted from the New York Stock
Exchange data over 6004 trading days. Experimental results have demonstrated
that graph kernels can not only well distinguish abrupt changes of financial net-
works with time, but also provide a more effective alternative way of analyzing
original multiple co-evolving financial time series. Finally, we theoretically indi-
cate the perspective of developing novel graph kernels on time-varying network
analysis for future work.
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Abstract. Ear detection in the wild with the varying pose, lighting, and com-
plex background is a challenging unsolved problem. In this paper, we study
affine invariant ear detection in the wild using only a small number of ear
example images and formulate the problem of affine invariant ear detection as a
task of locating an affine transformation of an ear model in an image. Ear shapes
are represented by line segments, which incorporate structural information of
line orientation and line-point association. Then a novel fast line based Haus-
dorff distance (FLHD) is developed to match two sets of line segments. Com-
pared to existing line segment Hausdorff distance, FLHD is one order of
magnitude faster with similar discriminative power. As there are a large number
of transformations to consider, an efficient global search using branch-and-
bound scheme is presented to locate the ear. This makes our algorithm be able to
handle arbitrary 2D affine transformations. Experimental results on real-world
images that were acquired in the wild and Point Head Pose database show the
effectiveness and robustness of the proposed method.

Keywords: Ear location * Affine invariant - Branch-and-bound

1 Introduction

Ear biometric has gained much attention in the recent years. Most of the ear biometric
techniques have focused on recognizing manually cropped ears. However, effective and
robust ear detection techniques are the key component of automatic ear recognition
systems. There have been some research works on the ear detection [2, 4-10]. Most of
the existing works are limited to laboratory-like setting that the images are acquired
under controlled condition. The problem of ear detection in uncontrolled environments
is still challenging, especially using a small number of samples, as ear image may vary

in shapes, sizes and colors under various viewing conditions.
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In this work, we try to address the gap. Our work is based on the following fact:
when the scale of the object is relatively small in comparison to its distance to the
camera, the group of affine transformation is a good approximation of the perspective
projection [1]. We formulate the ear detection in the wild as a task of locating an affine
transformation of an ear model in an image. Different from traditional methods that use
points to represent ear shapes [2], we represent the ear shapes using a set of line
segments, which not only have efficient storage capability, but also incorporate
structural information of line orientation and line-point association. Moreover, we offer
a fast line segment Hausdorff distance (FLHD) to compute the similarity of two sets of
line segments. Compared to existing line segment Hausdorff distance [3, 17], FLHD is
one order of magnitude faster with similar discriminative power. As there are a huge
number of transformations to consider, an efficient global search in affine transfor-
mation space using branch-and-bound scheme is presented to locate the ear. This
makes our method be able to handle arbitrary 2D affine transformations. Our approach
not only gives the location information of ear, but also can estimate the poses of ears.

1.1 Related Works

In this section, we review the most important techniques for ear detection. The first
well-known technique for ear detection is introduced by Berge et al. [4], which depends
on building neighborhood graph from the deformable contours of ears. However, it
needs user interaction and is not fully automatic. In [5], the authors propose a force
field technique to locate the ear. However, it only works in simple background. Prakash
and Gupta [6] make use of the connected components in a graph obtained from the
edge map of the side face image to locate ear’s area. Experimental results depend on
quality of the input image and proper illumination conditions. The ear detection method
in [7] uses features from texture and depth images, as well as context information for
detecting ears. The authors of [8] present an entropy-cum-Hough-transform based
approach for enhancing the performance of an ear detection system. A combination of a
hybrid ear localizer and an ellipsoid ear classifier is used to predict locations. In [2], an
automated ear location technique based on the template matching with modified
Hausdorff distance is proposed. It is invariant to illumination and occlusion in profile
face image. However, it is not invariant to the rotation. All of above methods are
limited to controlled image acquisition conditions and are not invariant to affine
transformation. Recently, some deep learning-based ear detections are proposed [9,
10]. In [9], the problem of ear detection was formulated as a two-class segmentation
problem and a convolutional encoder-decoder network based on the SegNet architec-
ture was trained to distinguish between image-pixels belonging to either the ear or the
non-ear class. However, deep learning based methods need a huge number of training
samples containing all the possible situations.

2 Line Based Ear Model and Matching

In this section, we first introduce the creation of a common ear template, and then
define the distance between two line-segments. Finally, a fast line segment Hausdorff
distance (FLHD) is proposed to match ear model and target image.
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2.1 Ear Template Generation

A good ear template should incorporate various ear shapes. Human ear can broadly be
grouped into four kinds: triangular, round, oval, and rectangular [2]. In this paper, we
select a few ear images manually by taking above mentioned types of ear shapes into
consideration. Edge detection and line segment fitting are carried out on each kind of
ear images [14]. The ear edge template is generated by averaging shapes of four kinds
of ears.

2.2 Distance Between Two Line Segments

After edge detection and line segment fitting, ear template and input target image
can be represented by two sets of line segments M = {m,my,...,m} and
I ={ny,ny,...,n;}. Then ear detection problem is converted to the matching of two
sets of line segments. To compare two line segments, three aspects of difference should
be considered [3]: perpendicular distance (d, ), parallel distance (d //) and orientation
distance (dy), as shown in Fig. 1.

Fig. 1. The distance between two line-segments. (a) The perpendicular distance d, and
orientation distance dg. (b) The parallel distance (d //).

e perpendicular distance: d, is simply the vertical distance [, between two line-
segments.

e parallel distance: (d //) is the displacement to align two parallel line-segments. As a
line-segment in the target image may correspond to multiple line segments in the
template (the resolution of target image is usually lower than the template, more line
segments will be fitted out on the high-resolution image with same threshold), or
some target lines may be partial occluded. In order to alleviate the effects of frag-
mentation and partial occlusion, we define it as the minimum displacement to align
any points on a target line-segment #; to the middle point of a model line-segment m;.

(dy) (miy nj) = mingen, (1)) (q,mi) (1)
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e orientation distance: dy computes the smallest intersecting angle between m; and
nj, which is defined as:

de:min(|9mr’_9"1‘7H9mi_9"j|_n|) (2)

where 0 € [0, n) is line segment direction angle and computed at modulo 7t = 180°.

In general, m; and n; would not be in parallel. We can rotate the model line-segment
with its mid-point as rotation center before the computation of d; and (d //). Then, the
distance between two line-segments is defined as

d(mi,n;) = \/dﬁ(m,-,nj) +dt (i 1) +wo - do G)

where w, is the weight for orientation distance and would be determined by a training
process. Suppose p; is the middle point of m;, then we have

d(mi, nj) = \/minqenjlﬁ(q, m;) +d> +w, - dy = Mmingen,d(pi, q) +wo -dy  (4)

where d(p, q) is the Euclidean distance between two points. Based on above definition,
the computation of FLHD built on it can be speed up with 3-dimension distance
transform.

2.3 Fast Line Segment Hausdorff Distance

The Hausdorff distance is a typical measure for shape comparison and widely used in
the field of 2D and 3D point set matching [11]. Dubuisson and Jain [12] investigated 24
forms of different Hausdorff distance and indicated that a modified Hausdorff distance
(MHD) gave the best performance.

Based on MHD, a directed line segment Hausdorff distance (LHD) is introduced to
eliminate the outlier of line segments. It is defined as

1 .
h(M,I) = WZWGM li - miny,e d(mi, nj) (5)

where [; is the length of the model line segment m;. The complexity of LHD is
O(k;N,,N;), where N, is the number of line segments in M, N; is the number of line
segments in the target image I, and k; is the time to compute d(m,-, nj). To accelerate
the computation of the LHD, a 3-dimension weighted Euclidean distance transform of a
line edge image is used, which defined as

A(x,y, 0) = miny,e; (mingen, d((x,y),q) +wo - do(0,0,,)) (6)

where x and y are bounded by the image dimension and 0 € [0, 7]. d((x,y), q) is the
Euclidean distance between point (x,y) and g. A can be computed in linear time [13].
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Suppose a model line segment m; are represented by 4-dimension vector
(xi,vi, 0, 1;), where (x;,y;) is the mid-point coordinates of my;, 0; is the direction angle
and /; is the length of m;. Then, we can get the FLHD as

hy (M. 1) l; ZmleM i'min"jeld(mi’"j) =

meM

S D ) 0 d) = (1)

1
S D e i A3 0)
m;eM "1

Given the array A, hy(M,I) can be computed in O(N,,) pass through A.

3 Efficient Transform Space Search for Ear Detection

Given ear model and target image encoded into line segment sets, affine invariant ear
detection can be formulated as locating an affine transformation ¢ that comes to min-
imize the hy(M,I). For any transformation ¢ € T, we assume a quality function as

f:T—R (8)

where T is the set of 2D affine transformations of the plane. f(r) = —hy(¢(M), 1) is the
quality of the prediction that an ear is located at the transformation ¢. To predict the best
location of the ear, we have to solve

topr = argmaxcrf (1) 9)

Exhaustively examining all affine transformations is prohibitively expensive to
perform. In the following, we propose an efficient affine transform space search (ETSS)
algorithm, which relies on a branch-and-bound scheme.

3.1 Branch-and-Bound Scheme

To increasing the efficiency of the transform space search, we discretize the space T of
affine transform by dividing each of the dimensions into ®(J) equal segments and split
the transformation space into a list of non-overlap cells. A cell 7; is a rectilinear axis-
aligned region of six-dimension transformation space. We parameterize 7; by its center
point and the radius from the center point in each dimension. This allows the efficient
representation of affine cells as 7; = {#;, r;}. The optimization works by hierarchically
splitting the cells into disjoint sub-cells. For each cell, the upper and lower bounds are
determined. Promising parts of cells with high upper bound are explored first, and large
parts of cells do not have to be examined further if their upper bound indicates that they
cannot contain the maximum.

The lower bound fj, (T;) is defined as the f(#;) provided by the center transformation #;
of acell. Itis an estimation of the similarity provided by the current cell. We also store the
largest value of fj,(T;) as the best similarity fp.,; and its associated transformation ., as
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best transform estimation. f;,,(7;) is the maximum similarity that can probably be
obtained for any transformation sampled from a cell. Algorithm 1 gives the pseudo-code.

Algorithm 1. Efficient Transform Space Search

Input: M, I; an initial cell T, which is assumed to  contain the optimum trans-
formation; fpess = —, €45

Output: A transformation t*.

1. Create a list of cells that cover T and do not overlap each other.

2. Compute each cell’s lower and upper bounds. Set fpese = maxy, er(fi1o(Tr)),
tyest be the associated transformation. Initializing P as empty priority queue.

3. For each cell Ty in the list, if f,,,(Tx) > fpese, push Ty into P, else kill it.

4. If fpest > €4 or P is empty, terminate the search, and return fpeq; and tpeg¢;
Else pop the top cell T* from P.

5. Decomposing the cell T* into 2° disjoint cells via dividing each dimension by 2.
Suchthat T* =T UT5 U ..U Tg,4.

6. ForeachT; (i={1,2...,64}):
a. Compute T;’ s lower and upper bounds
b. If fla (Tl) > fbest > update fbest and Lpest -
. If fup(Ti) > fpese. push T; to the priority queue P, else kill the cell

7. Return to step 4.

3.2 Fast Estimation of Similarity Bounds

The upper similar bound is the key to the branch-and-bound search. The tighter upper
bound we get, the more efficient branch-and-bound search will be. Suppose a model line
segment 7; is represented by its end-points (p; 1,p;2), and Ty (m;) = (Tk (Pi,l ), Ty (p,g))
be the transformed line segments of m; under any transform in cell 7, as shown in Fig. 2.
Ti(pi;) and Ty (pi2) associate with two uncertain regions, Br(p;1, Tx) and Br(p;2, Tx).
Each uncertain region corresponds to a bounding rectangle which contains all possible
positions of the line segment’s end-points under transformations in cell 7;. The mid-
points p;; = (x:‘ i y?‘d.) ,j=120of Br (pi i Tk) are the transformed end-points of model

line segment under the mid-transform #*. Using the transform parameters defined in the
cell Ty, the width w;; and height ;; of Br(p,gj, Tk) ,j = 1,2 can be calculated as

wij =2 (rf; -

X3 +riy- il +7l3) (10)

hij=2-(r5 -

x;j ‘*"12(2 : |y,*1\ ""’]2(3) (11)
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As the end-points’ positions of transformed line segment just can change in the
Br(p;j, Tt), the maximum angle 0,,,, and minimum angle 0,,, of the transformed line
segment can be easily computed using the end-points of Br(p,- s Tk), as illustrated in
Fig. 2. Before computing the upper similar bound, we define a three-dimension box
distance transform as

Awh()[x7y7 9] = min —W/2§A)C§W/2 A(X+Ax7y+Ayv 0) (12)
—h/2<Ay<h/2
Hmin S HS Hmax

Given the 3D distance transform array A, A,0[x,y, 0] can be computed in constant
time by using some prefix techniques [15]. As the mid-point of the transformed line
segment T (m;) can only change in the related uncertain region Br(p;, Ty), we can get
the upper bound by searching the minimum in Br(p;, Tx). Suppose 7 € Ty, pt =
(x?, Vi Hf) is the mid-point of the transformed line segment #(m;), we have

1 r ot 12 1
7 b AL < -
ZmiEM I meM

f(t) = - Z li ! Aw,~h,»0§ [X;,y;, 0?] (13)

Zml- emti m;eM

where w; and h; are the width and height of Br(p;, Ti), which can be computed using
Egs. (10) and (11). O < 0% < Oy

A Br(p,T)
/pi ______
1.._ Brin
Br(p,,,T))

Fig. 2. Fast estimation of similar bounds.

4 Experimental Results

In our experiments, we evaluated our method on two datasets: Head pose database [16],
and our own dataset (WildEar). The hardware used for experiment is a desktop PC with
Intel® Core™ 17-3770K CPU with 16 GB system memory. The orientation angle of a
line segment is quantified into 180 bins. To determine a value of w,, parameters €, are
fixed and the value with the smallest error rate of ear detection is selected. After
training, w, = 0.5 are obtained. For ¢, the smaller the value we set, the higher accuracy
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of the detection we can get, but the longer searching time is needed. In our experiments,
we set €, = —2.5.

We chose to test our algorithm in the PHP database because the PHP database
includes most of variations in head pose. As most of the existing ear databases are
taken under controlled conditions, we create an ear database named ‘“WildEar”, which
includes 200 images captured from real world under uncontrolled conditions or col-
lected from the Internet. All images in WildEar database are photographed with varying
poses, different lighting and complicated background. For all the test images consid-
ered for the experiment, ground truth ear position is obtained by manually labeling each
image prior to the experiment. As all the test images considered for this experiment
contain true ears, the performance in terms of accuracy is described as:

Number of true ear detection

Accuracy = x 100% (14)

number of test images

In our experiments, if detected ear regions overlapping with ground-truth position
is more than 50%, it is classified as successful detection. We compare the proposed
method with the MHD based ear detection method [2], which is also based on the ear
edge model. As the method in [2] is not invariant to affine transform, we also imple-
ment an affine invariant MHD based ear detection using our ETSS. Table 1 exhibits
results of our proposed method and the other two approaches. We can see that the
detection accuracy of the method in [2] is very low comparing to the other two
approaches. That is because ear images in WildEar database have varying poses, and
the MHD method in [2] is not invariant to rotation (in plane and out of plane). Our
approach also performs better than affine invariant MHD with ETSS. The reason is that
our approach incorporates structural information of line orientation and line-point
association.

Table 1. The comparisons of our method with the other two state-of-the-art methods

Dataset Methods Ear detection accuracy (%)
WildEar MHD [2] 43.50

MHD with ETSS | 87.50

Our method 94.50
PHP dataset | EHT [8] 89.88

Our method 92.35

We also compare our method with Entropy-cum-Hough-transform (EHT) based ear
detection approach in [8], since EHT also has been evaluated using PHP Dataset. We
selected all 93 pose-variant images from each person in PHP Dataset whose ears were
not occluded. Thus, a total of 837 images from 9 subjects form this customized Head
Pose database. It must be noted that authors of [8] only selected a total of 168 images
without any occlusions from 12 subjects to form their customized Head Pose database.
It shows that the proposed approach is able to outperform the state-of-the art approach
in [8].
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Figure 3 shows some ear detection results using our method. The ear edge template
was transformed and drawn on the test images using the located affine transform
matrix. The top 2 rows provide examples of detection results with the varying pose,
lighting conditions (indoor and outdoor) and extremely complicated background. We
also tested the proposed technique on images taken from top to bottom and taken from
bottom to top, as illustrated in third row of Fig. 3. This is one of the most likely
situations in the practical application. The bottom row is the ear detection results in the
images gathered from the web. Our results indicate that the proposed affine invariant
ear detection method is a viable option for ear detection in the wild.

Fig. 3. Ear detection in the wild.

5 Conclusion

In this paper, we present a novel ear detection method under unconstrained setting
based on the fast line segment Hausdorff distance and branch-and-bound scheme. The
main contributions of this paper are twofold: (1) the proposed FLHD not only incor-
porates structural and spatial information to compute the similarity, but also needs less
storage space and is faster than points based MHD. (2) A fast global search based on
branch-and-bound scheme makes our method capable of handling arbitrary 2D affine
transformations. Experiments showed that our approach can detect ears in the wild with
varying pose and extremely complex background. Our method also can be used in
affine invariant general planer object detection.



Few-Example Affine Invariant Ear Detection in the Wild 257

References

10.

11.

12.

13.

14.

15.

16.

17.

. Pei, S.-C., Liou, L.-G.: Finding the motion, position and orientation of a planar patch in 3D

space from scaled-orthographic projection. Pattern Recogn. 27(1), 9-25 (1994)

Sarangi, P.P., Panda, M., Mishra, B.S.P., Dehuri, S.: An automated ear localization
technique based on modified hausdorff distance. In: Raman, B., Kumar, S., Roy, P.P., Sen,
D. (eds.) Proceedings of International Conference on Computer Vision and Image
Processing. AISC, vol. 460, pp. 229-240. Springer, Singapore (2017). https://doi.org/10.
1007/978-981-10-2107-7_21

Gao, Y., Leung, M.K.H.: Line segment Hausdorff distance on face matching. Pattern
Recogn. 35(2), 361-371 (2002)

Burge, M., Burger, W.: Ear biometrics in computer vision. In: Proceedings 15th International
Conference on Pattern Recognition, pp. 822-826. IEEE, Barcelona (2000)

Hurley, D.J., Nixon, M.S., Carter, J.N.: Force field feature extraction for ear biometrics.
Comput. Vis. Image Understand. 98(3), 491-512 (2005)

Prakash, S., Jayaraman, U., Gupta, P.: Connected component based technique for automatic
ear detection. In: 16™ International Conference on Image Processing (ICIP), pp. 2741-2744.
IEEE, USA (2009)

Pflug, A., Winterstein, A., Busch, C.: Robust localization of ears by feature level fusion and
context information. In: International Conference on Biometrics (ICB), pp. 1-8. IEEE,
Madrid (2013)

Chidananda, P., Srinivas, P., Manikantan, K., Ramachandran, S.: Entropy-cum-hough-
transform-based ear detection using ellipsoid particle swarm optimization. Mach. Vis. Appl.
26(2), 185-203 (2015)

Emersi¢, Z., Gabriel, L.L., Struc, V., Peer, P.: Pixel-wise ear detection with convolutional
encoder-decoder networks. arXiv (2017)

Zhang, Y., Mu, Z.: Ear detection under uncontrolled conditions with multiple scale faster
region-based convolutional neural networks. Symmetry 9(4), 53 (2017)

Huttenlocher, D.P., Rucklidge, W.J., Klanderman, G.A.: Comparing images using the
Hausdorff distance under translation. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 654-656
(1993)

Dubuisson, M.-P., Jain, A.K.: A modified Hausdorff distance for object matching. In:
International Conference on Pattern Recognition, pp. 566-568. IEEE, Jerusalem (1994)
Liu, M.-Y., Tuzel, O., Veeraraghavan, A., Chellappa, R.: Fast directional chamfer matching.
In: Computer Vision and Pattern Recognition (CVPR), pp. 1696-1703, IEEE, San Francisco
(2010)

Kovesi, P.D.: MATLAB and octave functions for computer vision and image processing
(2008)

Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on
static arrays. SIAM J. Comput. 40(2), 465-492 (2011)

Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of
salient facial structures. In: FG Net Workshop on Visual Observation of Deictic Gestures,
Cambridge, UK, pp. 17-25 (2004)

Gao, Y., Leung, M.: Face recognition using line edge map. IEEE Trans. Pattern Anal. Mach.
Intell. 24(6), 764-779 (2002)


http://dx.doi.org/10.1007/978-981-10-2107-7_21
http://dx.doi.org/10.1007/978-981-10-2107-7_21

q

Check for
updates

Line Voronoi Diagrams Using Elliptical
Distances

Aysylu Gabdulkhakova®™), Maximilian Langer, Bernhard W. Langer,
and Walter G. Kropatsch

Pattern Recognition and Image Processing Group,
193-03 Institute of Visual Computing and Human-Centered Technology,
Technische Universitdt Wien, Favoritenstrasse 9-11, Vienna, Austria
{aysylu,mlanger,krw}@prip.tuwien.ac.at

Abstract. The paper introduces an Elliptical Line Voronoi diagram. In
contrast to the classical approaches, it represents the line segment by
its end points, and computes the distance from point to line segment
using the Confocal Ellipse-based Distance. The proposed representation
offers specific mathematical properties, prioritizes the sites of the greater
length and corners with the obtuse angles without using an additional
weighting scheme. The above characteristics are suitable for the practical
applications such as skeletonization and shape smoothing.

Keywords: Confocal ellipses * Line Voronoi diagram
Hausdorff distance

1 Introduction

Various branches of computer science - for example, pattern recognition, com-
puter graphics, computer-aided design - deal with the problems that are inher-
ently geometrical. In particular, Voronoi diagram is a fundamental geometrical
construct that is successfully used in a wide range of computer vision appli-
cations (e.g. motion planning, skeletonization, clustering, and object recogni-
tion) [1]. It reflects the proximity of the points in space to the given site set.
On one side, proximity depends on a selected distance function. Existing
approaches in R? explore the properties and application areas of particular met-
rics: Ly 2], Lo [3,4], L, [5]. Chew et al. [6] present the Voronoi diagrams for the
convex distance functions. Klein et al. [7] introduced a concept of defining the
properties of the Voronoi diagram for the classes of metrics, rather than ana-
lyzing each metric separately. A group of approaches proposes the site-specific
weights, e.g. skew distance [8], power distance [9], crystal growth [10], and convex
polygon-offset distance function [11]. This paper presents a new type of a Line
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Voronoi diagram that uses Confocal Ellipse-based Distance (CED) [12] as a met-
ric of proximity. In contrast to Hausdorff Distance (HD), CED (1) defines the line
segment by its two end points, (2) represents the propagation of the distance val-
ues from the line segment to the points in R? as confocal ellipses. The proposed
geometrical construct reconsiders the classical Euclidean distance-based space
tessellation, and introduces hyperbolic and elliptical cells, that have surprising
mathematical properties. Structure is added to a set of points by putting the
subsets of points in relation. The simplest relation that every structure should
have is a binary relation relating two points. That is why a new metric relating
points with pairs of points is extremely relevant for the community.

On the other side, proximity depends on the type of objects in the site set.
Polygonal approximations of objects are commonly agreed to be used in a major-
ity of geometric scenarios [13]. Therefore, in this paper the site set contains points
and/or line segments.

The remainder of the paper is organized as follows. Section2 presents the
Elliptical Line Voronoi diagram (ELVD), provides an analysis of the proximity
as defined by CED and HD, and introduces the Hausdorff ellipses. Section 3
shows the properties of ELVD with regard to the type of objects in the site set.
Section 4 discusses the advantages of applying the ELVD to skeletonization and
contour smoothing. Finally, the paper is concluded in Sect. 5.

2 Elliptical Line Voronoi Diagram (ELVD)

A Voronoi diagram partitions the Euclidean plane into Voronoi cells that are
connected regions, where each point of the plane is closer to one of the given
sites inside the cell. In the classical case the sites are a finite set of points and
the metric used is the Euclidean distance.

In our contribution we extend the original definition by (1) considering a site
to be a straight line segment, (2) measuring the proximity of a point to the site
using the parameters of a unique ellipse that passes through this point and takes
the two end points of the line segment as its focal points. We call the resultant
geometrical construct Elliptical Line Voronoi diagram, or in short ELVD.

As opposed to Euclidean distance in Voronoi diagram, proximity in the ELVD
is defined with respect to the Confocal Ellipse-based Distance. Similarly to the
Blum’s medial axis [14], ELVD can be extracted from the Confocal Elliptical
Field (CEF) [12] as a set of points which have identical distance value for at
least two sites.

2.1 Confocal Ellipse-Based Distance (CED)

Let 6(M,N) = /(M — N)2, M, N € R2, be the Euclidean distance between the
points M and N.
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Definition 1. The ellipse, E(Fy, Fy;a)! is the locus of points on a plane, for
which the sum of the distances to two given points Fy and Fy (called focal points)
18 constant:

O(M,F1) + 6(M, Fy) = 2a, (1)

where parameter a is the length of the semi-major axis of the ellipse.

Ellipses that have the same focal points F, and F; are called confocal ellipses.
Given two focal points F; and F, a family of confocal ellipses covers the whole
plane. Each ellipse in this family is defined as E(a) = {P € R?| §(P,F}) +
0(P,Fy) = 2a}, a > f. Here f = M denotes half the distance between the
two focal points F; and F5.

Definition 2. Let us consider two confocal ellipses E(a1) and E(as) generated
by focal points Fy, Fy € R2, where ay, ay > f. The Confocal Ellipse-based Dis-
tance (CED) between E(a1) and E(as), e : R2 x R2 — R, is determined as the
absolute difference between the lengths of their major azes:

e(E(a1), E(az)) = 2|a; — as| (2)

CED is a metric and E(a1) C E(az), if a1 < az.

2.2 Confocal Elliptical Field (CEF)

Consider a set of sites that contains the pairs of points: S = {(Fy, Fz),
(F3,F4)y .., (Fn—1,FN)}. A site s = (Fy, Fip1),4 € [1,...,N — 1] generates a
family of confocal ellipses with F; and Fjy; taken as the focal points. The dis-
tance from the point P€R? to the site s, is defined with respect to CED as:

d(P,s) = e(E(ap), E(ao)) 3)

where E(ap) corresponds to the unique ellipse with focal points F; and Fjyq
that contains P; E(ag) corresponds to the ellipse with the same foci F; and
F; 11, whose eccentricity equals 1. In other words, this distance is defined as:
d(P,s) = 6(P, F}) + 0(P, Fi1) — 0(F;, Fiy1) = 2(a — f).

Definition 3. Confocal Elliptical Field (CEF) is an operator that assigns to
each point P € R? its distance to the closest site from S':

CEF =d(P,S) =inf{d(P,s) | s€ S} (4)

Definition 4. Separating curve is a set of points in CEF that have an identical
value as generated from multiple (more than one) distinct sites.

For the given set of sites that contain points and line segments, separating
curves define the ELVD.

L If for several ellipses the focal points are the same, we denote it as E(a).
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2.3 Relation Between CED and Hausdorff Distance

As opposed to CEF, in classical Line Voronoi diagram, the line segment is a set
of all points that form it. Therefore, for each point in space the proximity to the
line segment can be defined with respect to the Hausdorff Distance.

Definition 5. The Hausdorff Distance (HD) between a point P and a set of
points T is defined as the minimum distance of P to any point in T. Usually the
distance is considered to be Euclidean:

HD = dy(P,T) = inf{6(P,t) | t € T} (5)

By introducing a scaling factor of % for the CED we obtain the same distance
field for HD and CED, in case the two focal points coincide. Another property
is that the A-isoline of the CED {P|d(P,s) = A} encloses the r-isoline of HD
{P|du(P,T) = r}, with s being a site containing the two foci F; and Fy, T is a
set of points that form the line segment F} F5. Figure 1a shows multiple isolines
for HD and CED that have the same A and r. Note that both, HD and CED,
have zero distance values along the line segment Fj F5.

We can derive a value A for any given r so that the CED A-isoline is enclosed
by the HD r-isoline (see Fig.1b). To find A we are looking for the value where
the minor ellipse radius b equals r. In an ellipse b> = a? — f2, that in this case
can be reformulated to 72 = a? — f2, solving for a:

A=2a—f=2r2+ 2 f. (6)

By similar reasoning we can also derive r for a given A that will ensure the
r-isoline of the HD is enclosed by the CED A-isoline:

r=2FAF A% (7)

We can construct ellipses around a line segment by starting with a distance
Ao = 1 and increasing according to the sequence:

A1 =V 2f A + A2 (8)

We name these isolines Hausdorff Ellipses of a line segment.

(a) A=r by A=2yr2+f2—f

Fig. 1. Comparison of HD (dashed) and CED (solid) isolines
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3 Properties of ELVD

The proximity depends not only on the type of metric used, but also on the
type of object in the site set. In this paper site is considered to be a point or a
line segment. According to the Definition 3 of CEF, the distance field of a point
contains concentric circles, and of a line segment - confocal ellipses. Thus, the
separating curve varies according to the different combinations of the site types.

3.1 Point and Point

In terms of CED, the site that represents a point contains identical foci. The
resultant distance field of each site is formed by concentric circles. The separating
curves are the perpendicular bisectors, and the ELVD is identical to the Voronoi
diagram with Euclidean distance (Fig.2a).

(a) Point-Point (b) Point-Line (c) Line-Line

Fig. 2. Comparison of ELVD (solid red) and Voronoi diagram (dashed green). (Color
figure online)

3.2 Point and Line

Consider the site set that contains point P and line segment (A, B). The receptive
field of the point P depends on the position of the line segment, and ELVD is
represented by a higher-order curve (Fig. 2b).

3.3 Line and Line

For the site set that contains two line segments (A, B) and (C, D), the ELVD
is represented by a high-order curve of a different nature than for the Point-
Line case (see Fig. 2c). The steepness and the shape of the curve depends on the
length of the line segments, and their mutual arrangement (parallel, intersecting,
non-intersecting). The mutual arrangement does not consider (A, B) and (C, D)
to be connected as a polygon, i.e. B # C. This case is covered in Sect. 3.5.
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3.4 Triangle

The simplest closed polygonal shape - a triangle - can be represented by:

— three points corresponding to its vertices

In the classical Voronoi diagram on the point set, the separation curves of
the (Delaunay-) triangle are the perpendicular bisectors of its edges, they
intersect at the center of the circumscribed circle.

by a set of N points, that form the contour of the triangle

In the extension of the classical Line Voronoi diagram on the line set using
the Euclidean distance, the separating curves of the triangle are its angular
bisectors which intersect at the center of the incircle.

by three line segments corresponding to the edges of the triangle

For the ELVD the separating curve between the two line segments that share
one endpoint is a hyperbolic branch [12]. Therefore, the separation curves in
the triangle are three hyperbolic branches, each passing through one vertex
of the triangle, i.e. A, B or C, and intersecting the sides at the points K, L,
M respectively (Fig. 3a).

(a) Hyperbolic branches of the ELVD in- (b) The tangents on the hyperbola in the
tersect at the Equal Detour Point (EDP) intersection points A, B, C and K, L, M
and Isoperimetric Point (IP). intersect at the incircle center (I).

Fig. 3. Properties of the Equal Detour Point, Isoperimetric Point and incenter.

The separating curves of the triangle as obtained from ELVD have the fol-

lowing geometric properties:

1.

The separating curves intersect at a common point, known in the literature
as the Equal Detour Point (EDP) [15] (see Fig. 3a).

. The complementary branches of the hyperbolas intersect at a common point,

known as the Isoperimetric Point (IP) [15] (Fig. 3a).
The six tangents of the hyperbolas at the six points A, B, C, and K, L, M
intersect all at the center of the incircle I (Fig. 3b).
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4.

5.

The intersection EDP of the three hyperbolas is located inside the triangle
formed by the shortest side of the triangle and I (Fig. 3b).

The tangents at the triangle’s corners A, B, C are the angular bisectors of
the two adjacent sides respectively (Fig. 3b).

The three tangents at K, L, M form a right angle while intersecting the edges
of the triangle (Fig. 3b).

The hyperbola chords AK, BL and IM intersect at the Gergonne point
(G) [15] (Fig.4).

The EDP distance value of the CEF equals the radius of the inner Soddy
circle.

Let P € R? be an EDP, and K, L, M - be the points of intersection between
separating curves and the edges of the triangle AABC'. Consider the following
distances: (1) rp = CEF(P) - distance value at P in the confocal elliptical
field; (2) ra = 6(A, M) = 6(A,L); (3) rp = 6(B, M) = 6(B,K); (4) rc =
d(C, L) = 6(C, K). The circle with the center at P and radius rp is an inner
Soddy circle [16], thus, it is tangent to the circles with the centers at A, B,C
and radii r4,7p,rc correspondingly. This property is valid not only for the
EDP, but for all points of the separation hyperbola branches that lie on the
curves PM, PK, and PL. In addition, according to the Soddy theorem, the
following equation holds true:

11 1 1Y) 1 1 1 1
<+++) :2(2+2+2+2) )
rA B rc rp TA TB TC ’r‘P

In case of a regular triangle, radii r4,7p,r¢c are identical. Otherwise, their
values vary depending on the angle at the corresponding vertex, and length of
the edges that contain this vertex. The ELVD implicitly encodes the weighting
factors, as compared to the classical Voronoi diagram.

Fig. 4. The incenter (I), Gergonne point (G), Isoperimetric Point (IP) and Equal
Detour Point (EDP) are collinear.
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3.5 Polygon

Consider a site set that defines an open polygon S = {(F1, F2),..., (Fn-1,Fn)},
N € R. For any s; = (Fi7Fi+1), F; 75 Fi+17 s; €8,i€ [1,N — 1].

If the sites are consecutive, i.e. have a common point F;, the separating curve
is a branch of a hyperbola that passes through F;, i € [1, N] [12]. If the sites
are non-consecutive, but their receptive fields overlap (e.g. the sites cross each
other), then the separating curve is defined as in Line and Line case.

Let P be the point of intersection of two separating curves Hp, and Hp,_ ,,
that pass through F; and F;;; correspondingly. For the triangle AF; PF; the
separation hyperbola branch that passes through P and intersects (F;, F;11) at
the point M defines the following distances: rp, = 6(F;, M), rg,, = 0(Fij11, M).
The circle with the center at P and radius rp is tangent to the circles with
centers at F;, Fi; 1 and radii g, 7F,,, respectively. This property holds true for
all points on the separating curve between P and M.

4 Applications

In this section we discuss the properties of ELVD that are valuable for the
practical problems on an example of contour smoothing and skeletonization.

4.1 Contour Smoothing

By considering three successive points P;_;, P; and P;;+; on a contour as a tri-
angle A; we can smooth the contour by replacing the middle point P; with the
EDP of the triangle A;. Conventional average smoothing is related to the cen-
troid of the triangle 4;. This smoothing procedure can be iteratively repeated.
Figure 5 shows a comparison between F D P-based smoothing and Mean-based
smoothing, i.e. averaging over three successive contour points. Note that ED P-
based smoothing does not affect low frequencies as much as high frequencies.
Let us denote the angles in the triangle A; as «,3,v. The angles formed
by the vertices of the triangle and the incenter are ’T;—a, #, L‘QM This means

(a) EDP-based smoothing (b) Mean-based smoothing (c) Preserved sharp corners

Fig. 5. Contour smoothing achieved by five iterations.
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that the sharp angle (<% ) will be replaced by the obtuse angle after smoothing.
The shortest side has the smallest opposite angle and an angle of more than 7
is always the largest in a triangle. Hence: (1) the shortest side before smooth-
ing becomes the longest, (2) the smoothing slows down with more iterations.
According to the ELVD Properties 4 and 8, in case of a triangle, the same holds
true for the EDP. The difference is that the incenter is equidistant from the
corner sides, whereas EDP is closer to the shorter edge and obtuser angle than
the incenter. This property is important in case of the outliers - the contour is
smoothed with the less number of iterations.

Additionally we can preserve selected sharp corners by including the same
point twice in the contour. Figure 5c gives an example of preserved sharp corners
in the hooves of the horse.

4.2 Skeletonization

The ELVD can be successfully applied to create a skeleton of the shape [12],
where the weighting is implicitly encoded in the length of the site (see Fig.6).
As compared to the classical Voronoi diagram-based skeletonization, the sites
contain pairs of vertices. The skeletal points are not equidistant from the opposite
sides of the shape - they are shifted towards the sites that represent the shorter
edges. As a result, the longer edges have a greater receptive field.

Fig. 6. Examples of the ELVD-based skeletons (red). The polygonal approximation of
the shape (cyan) contains 90 vertices in each case. (Color figure online)

5 Conclusion and Outlook

This paper presents a novel approach to the line Voronoi diagram by considering
the distance from the point to the line segment by CED. The discussion of the
ELVD proximity (from the point of metric and types of objects in the site set)
shows that the classical Voronoi diagram is a special case of ELVD. The proposed
approach has also the practical value: (1) skeletonization algorithm enables pri-
oritization of the longer edges without extra weighting schema, (2) smoothing
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of the shape enables a closer approximation of the contour and preservation
of the sharp corners. The ongoing research considers ELVD properties regard-
ing the weighting factors and the semantic interpretation of the corresponding
geometrical construct.
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Abstract. On the one hand, classification applications modelled by
structural pattern recognition, in which elements are represented as
strings, trees or graphs, have been used for the last thirty years. In these
models, structural distances are modelled as the correspondence (also
called matching or labelling) between all the local elements (for instance
nodes or edges) that generates the minimum sum of local distances. On
the other hand, the generalised median is a well-known concept used to
obtain a reliable prototype of data such as strings, graphs and data clus-
ters. Recently, the structural distance and the generalised median has
been put together to define a generalise median of matchings to solve
some classification and learning applications. In this paper, we present an
improvement in which the Correspondence edit distance is used instead
of the classical Hamming distance. Experimental validation shows that
the new approach obtains better results in reasonable runtime compared
to other median calculation strategies.

Keywords: Generalised median - Edit distance + Optimisation
Weighted mean

1 Introduction

A correspondence is defined as the result of a bijective function which designates
a set of one-to-one mappings between elements representing the local information
of two structures i.e. sets of points, strings, trees, graphs or data clusters. Each
element (a point for sets of points; a character for strings, or a node and its edges
for trees or graphs) has a set of attributes that contain specific information.
Correspondences are usually generated, either manually or automatically, with
the purpose of finding the similarity or a distance between two structures. In the
case that correspondences are deduced through an automatic method, this is
most commonly done through an optimisation process called matching. Several
matching methods have been proposed for set of points [32], strings [25], trees
and graphs [29].
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Correspondences are used in various frameworks such as measuring the accu-
racy of different graph matching algorithms [4,31], improving the quality of other
correspondences [5], learning edit costs for matching algorithms [6], estimating
the pose of a fleet of robots [7], performing classification [17] or calculating the
consensus of a set of correspondences [18-21]. While most of these methods use
the classical Hamming distance (HD) to calculate the dissimilarity between a
pair of correspondences, in [23] authors have shown that this distance does not
always reflect the dissimilarity between a pair of correspondences, and thus, a
new distance called Correspondence Edit Distance (CED) was defined.

The median of a set of structures is roughly defined as a sample that achieves
the minimum sum of distances (SOD) to all members of such set. This concept
has been largely considered as a suitable representative prototype of a set [13]
because of its robustness. For the case of strings [3], graphs [2], and data clusters
[11], computing the median is an N P-complete problem. Thus, some suboptimal
methods have been presented to calculate an approximation to the median. For
instance, an embedding approach has been presented for strings [14], graphs [§]
and data clusters [10]. Likewise, a strategy known as the evolutionary method for
strings [9] and correspondences [22] has proven to obtain fair approximations to
the median in reasonable time. Moreover, [22] presented a minimisation method
which obtains the median using optimisation functions based on the HD. This
work proved that it is possible to obtain the exact median for a set of correspon-
dences using this framework, provided that the distance considered between
the correspondences is the HD. In this paper our work is devoted towards
revisiting the median calculation frameworks presented in [22], this time using
the CED.

The rest of the paper is structured as follows. Section 2 establishes the basic
definitions. Afterwards, in Sect.3 we present the method to calculate the gener-
alised median based on the CED. Then, Sect.4 provides an experimental vali-
dation of the method. Finally, Sect. 5 is reserved for the conclusions and further
work.

2 Basic Definitions

2.1 Distance Between Structures

Consider a structure G = (X, ), where v; € X denotes the elements (i.e. local
information) and p is a function that assigns a set of attributes to each element.
This structure may contain null elements which have a set of attributes that
differentiate them from the rest. We refer onwards to these null elements of G
as ¥ C X. Moreover, given G = (X, ) and G’ = (X', 1t') of the same order n
(naturally or due to the aforementioned null element presence), we define the
set of all possible correspondences T', such that each correspondence in T maps
all elements of G to elements of G, f: X' — X’ in a bijective manner.

For structures such as strings [30], trees [1] and graphs [12,26,28], one of
the most widely used frameworks to calculate the distance is the edit distance.
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The edit distance is defined as the minimum amount of required operations that
transform one object into the other. To this end, several distortions or edit oper-
ations, consisting of insertion, deletion and substitution of elements are defined.
Edit cost functions are introduced to quantitatively evaluate the edit operations.
The basic idea is to assign a penalty cost to each edit operation considering
the amount of distortion that it introduces in the transformation. Substitu-
tions simply indicate element-to-element mappings. Deletions are transformed
to assignments of a non-null element of the first structure to a null element of
the second structure. Insertions are transformed to assignments of a non-null
element of the second structure to a null element of the first structure. Given G
and G’ and a correspondence f between them, the edit distance is obtained as
follows:

EditCost(G,G', f)= Y dw,v))+ Y K+ Y K (1)
’Uiezfi' ’L)iesz] vieﬁ'
A S > vies’ viex-%

where f(v;) = v; and function d is a distance function between the mapped
elements. Moreover, K is a penalty cost for the insertion and deletion of elements.
Thus, the edit distance ED is defined as the minimum cost under any bijection
inT:

ED(G,G") = IfneiITlEditCost(G,G’,f) (2)

2.2 Mean, Weighted Mean and Median

In its most general form, the mean of two structures G and G’ is defined as a
structure G such that:

Dist(G,G) = Dist(G,G') and Dist(G,G") = Dist(G,G) + Dist(G,G’) (3)

where Dist is any distance metric defined on the domain of these structures.
Moreover, the concept of weighted mean is used to gauge the importance or the
contribution of the involved structures in the mean calculation. The weighted
mean between two structures is defined as:

Dist(G,G) =X and Dist(G,G") = X+ Dist(G,G") (4)

where ) is a constant that controls the contribution of the structures and holds
0 < X\ < Dist(G,G’). G and G’ satisfy this condition, and therefore are also
weighted means of themselves.

From the definition of the median, two different approaches are identified:
the set median (SM) or the generalised median (GM). The first one is defined as
the structure within the set which has the minimum SOD. Conversely, the GM
is the structure out of any element in the set which obtains the minimum SOD.
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2.3 Distance Between Correspondences

Given structures G and G’ and two correspondences f! and f? between them,
we proceed to define the HD and the CED.

Hamming Distance. The HD is defined as:

n

HD(f',f%) =Y (1= 6(vy,v3)) ()

i=1
where a and b such that f!(v;) = v, and f%(v;) = v}, and § being the Kronecker

Delta function:
1 ifz=y
0(x,y) = 6
(@,9) {0 otherwise (6)

Correspondence Edit Distance. The CED is defined, in a similar way to
Egs. 1 and 2, as:

CED(fl, f2) = inlg Corr,EditCost(fl,fz,h) (7)
€
where
Corr EditCost(f', f2,h) = > dmbmi)+ S K
mleM'—M1 mleM'—M1
m2eM?—M?2 mieM?
(8)
+ Y K
mleM?t

m2eM?—M?

where M' and M? are the sets of all possible mappings, M?! and M2 are the
sets of null mappings.
The distance between mappings, d(m}, m?) was defined using Eq. 9 as:

d(m%,mi) = dn(v;,vg) + dn (fl(vi),fz(vk)) (9)

where dn is a distance between the local parts of the structures, which is appli-
cation dependent.

Notice that the elements used by CED are the mappings within f! and
2. More formally, correspondences f! and f2? are defined as sets of mappings
fL=mi,...oml ... omband 2 =m3,... ,m2, ..., m2, where m! = (v;, f1(v;))
and m2 = (v, f2(vy))-
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2.4 Generalised Median Correspondence Based on the Hamming
Distance

In [22], authors presented a method to calculate the exact GM f of a set of corre-
spondences based on the HD. Such method is based on converting a set of corre-
spondences f1,..., f%, ..., f™ into correspondence matrices F',... F' ... F™.
Afterwards, a linear solver [15,16,24] is applied to the sum of these matrices as
follows:

f = argmin Z(C o Fi[z,y]) (10)
i=1
where [z, y] is a specific cell and C is the following matrix:

€= (1 - File.y) (1)

i=1
where
; 1 if fi(vy) =0y
Filz,y] = 12
[,y] {0 otherwise (12)

The idea is that by introducing a value of either 0 or a 1 in the correspondence
matrix, the HD is being considered and thus minimised by the method.

3 Methodology

The aim of this paper is to model the GM of a set of correspondences through
the CED. As commented in the introduction, it only has been modelled through
the HD and we supposed that through the CED, much more interesting or useful
median could be generated from an application point of view. Therefore, we only
want to redefine matrix C in Eq. 11 since the current one makes the median to
be generated through the HD. Equation 13 shows our proposal:

C = Z B[z, (13)
i=1
where ‘ . '
B'[z,y] = Dist (vx,fl (v;)) + Dist (vy,, f*(va)) (14)

Suppose that m is the mapping m = {v,, v, }. Then, B[z,y] is defined as the
distance between this supposed mapping f(v,) = v; and the mappings imposed
by correspondence f* that relates elements v, and vy, That is,

B'lz,y] = d (m,m%) + d (m,m}) (15)

As the distance between two mappings becomes higher, so does the value of
B'[z,y]. Likewise, the value of (1 — F[z,y]) in Eq.11 is higher for mappings
that are not present in any correspondence of the set. As a result, matrix C in
Eq. 13 is a generalisation of matrix C in Eq. 11.

Finally, considering Eqgs.9 and 15, we arrive to Eq. 14. Figurel graphically
shows the computation of B[z, y]:
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g B
Dist(uy, £ (Wy)) o DistWy, f(u)

¢ O, fiwy

v =)

Fig. 1. o —: Mappings in correspondences. —: Computation of the distance

Notice that the first part of the expression is similar to how the bijective
function A is calculated in Eq. 7, in the sense that it only computes the distance
between mappings that have the same element on the output structure G. More-
over, notice that according to the Dist measure used, null elements (and thus
null mappings) are considered accordingly. Finally, matrix C'is minimised in the
same way as in Eq. 10.

4 Validation

The experimental validation was carried out as follows. We have gener-
ated two repositories S° (with graphs/correspondences of a cardinality of
5 nodes/mappings) and S3° (with graphs/correspondences of a cardinality
of 30 nodes/mappings), with the attributes of the nodes being real num-
bers, and edges being unattributed and conformed through the Delaunay
triangulation. Each repository is integrated by 3 datasets consisting of 60
8—tuples S1 = {Gl, ll,fll,...7f16},..,5i = {GZ,G;, Z-l,...,f?},...,Sf,'o =
{Geo, Ggo, fao, -+ -5 S} All correspondences for each dataset are obtained
through the following three correspondence generation scenarios:

— Completely at random: Six bijective correspondences are randomly generated
for each tuple.

— Evenly distributed: From a “seed” bijective correspondence generated using
[27], two mappings are swapped randomly and a new correspondence is cre-
ated. This process is repeated six times for each tuple. The seed correspon-
dence is not included in the tuple.

— Unevenly distributed: From a “seed” bijective correspondence generated using
[27], pairs of mappings are swapped a random number of times and a new
correspondence is created. This process is repeated six times for each tuple.
Due to the randomness of the swaps, the seed correspondence may be included
in the tuple.
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The median was calculated for HD and CED by using the following methods:

1. SM as the correspondence in the set with the lowest SOD (A* method).

2. Evolutionary method for GM correspondence approximation presented in [22]
(EVOL1).

3. Evolutionary method for GM correspondence approximation presented in [22]
using a modified weighted mean search strategy (EVOL2).

4. Minimisation method (Min-GM). Method presented in [22] for HD and the
method presented in this paper for CED.

Tables 1, 2 and 3 shows the average SOD of the mean with respect to the set
(SOD v ¢q), the reduction percentage of SOD of methods 2, 3 and 4 with respect
to 1 (RED) and the average runtime in seconds (RUN) for the three datasets in
the two repositories. Notice that since the HD and the CED are distances which
exist in different spaces, a comparison of SOD 4v ¢ results between HD and CED
methods is not viable. Moreover, RED scores are mostly meant to illustrate the
improvement of each method with respect to the SM in its own distance space,
since the increment of HD is linear while CED depends on the attributes of the
graphs.

For the “Completely at random” datasets, Table1 shows lower SOD sy ¢
values for Min-GM than for the rest of methods on both S® and $3°. Moreover,
it can be observed that Min-GM achieves a 10% RED on the dataset in the
S30 repository. However, this case is also the one that takes the most time to
be computed. In contrast, although RED is not that considerable for Min-GM
in the HD case, the runtime for this method is always comparable to the SM
calculation. Finally, it can be noticed that EVOL1 never outperforms the SM,
while EVOL2 does for the dataset in S3°. Both EVOL1 and EVOL2 have similar

runtimes.

Table 1. Average SOD (SOD avg), reduction percentage of average SOD with respect
to SM (RED) and runtime (RUN) using the “Completely at random” scenario.

Completely at random

S5 §30
SODava | RED |RUN | SODasve | RED | RUN
HD |SM 19 - 0.0009 141 - 0.01
MIN-GM 18 6 0.002 137 3 0.008
EVOL1 19 0 0.004 141 0 0.1
EVOL2 19 0 0.009 139 1.5 0.2
CED | SM 62000 - 0.01 | 642000 - 4.4
MIN-GM | 60000 4 0.02 | 580000 10 9.3
EVOL1 | 62000 0 0.014 | 642000 0 4.7
EVOL2 | 62000 0 0.007 | 628000 3 4.8
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In the “Evenly distributed” datasets shown in Table2, the best SOD sy g
and RED results are obtained by Min-GM. In fact, this experiment proves that
Min-GM always obtains the exact GM, given that the median calculated for
S5 and S30 always has a SOD of 12 towards the correspondences in the set.
This value results from multiplying the number of correspondences (six) times
the mappings swapped from the seed correspondence (two), which is known in
advance to be the GM. Given the attribute dependant nature of the CED, this
rule is not visible for the SOD 4v ¢ and thus RED scores of Min-GM using CED

appear to be lower compared to Min-GM using HD.

Table 2. Average SOD (SODav¢), reduction percentage of average SOD with respect

to SM (RED) and runtime (RUN) using the “Evenly distributed” scenario.

Evenly distributed

S5 530
SODava |RED | RUN | SODsve | RED | RUN
HD |SM 13 - 0.006 19 - 0.01
Min-GM 12 8 0.002 12 37 0.003
EVOL1 13 0 0.003 15 22 0.004
EVOL2 13 0 0.007 14 27 0.02
CED | SM 18400 - 0.02 | 63100 - 4.1
Min-GM | 18100 2 0.03 | 49300 22 9
EVOL1 | 18400 0 0.003 | 63100 0 3.5
EVOL2 | 18400 0 0.007 | 59000 7 3.5

Table 3. Average SOD (SODav¢), reduction percentage of average SOD with respect

to SM (RED) and runtime (RUN) using the “Unevenly distributed” scenario.

Unevenly distributed

g5 30
SODave | RED |RUN | SODave | RED | RUN
HD |SM 17 - 0.006 66 - 0.001
MIN-GM 16 6 0.002 53 20 0.003
EVOL1 17 0 0.003 65 22 0.006
EVOL2 17 0 0.007 64 27 0.02
CED | SM 76500 - 0.005 | 839000 - 4.9
MIN-GM | 69100 10 0.002 | 669000 21 9.9
EVOL1 76500 0 0.006 | 839000 0 5.3
EVOL2 | 765000 0 0.01 | 779000 8 5.3

Finally, Table 3 shows the results for the “Unevenly distributed” datasets,
where although the GM may be included in the set, larger SOD 4y ¢ values are
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obtained compared to the previous two scenarios. In this case, it is observed that
RED is larger for Min-GM using CED than for HD. Nonetheless, the compu-
tation of Min-GM using CED for the S3° dataset conveys the largest runtime.
Meanwhile, EVOL1 and EVOL2 maintain a similar trend to the previous two
scenarios.

The following conclusions can be drawn from these experiments. If the cor-
respondences have a low number of mappings or high precision is required, then
Min-GM with CED is the best option. In contrast, HD has a better accuracy
to runtime trade-off for correspondences with a high mapping order. It is also
interesting to notice that the evolutionary methods, regardless of the weighted
mean strategy, only outperformed the SM approach on the S3° repository, since
the low amount of mappings in S° did not allow an effective weighted mean
computation.

5 Conclusions and Further Work

In this paper, we presented a method for computing the GM correspondence
based on an edit distance for correspondences called CED, which is a gener-
alisation of a method based on the HD. Experimental validation shows that
this approach is the best option to find the exact GM in three different corre-
spondence scenarios, considering that by using the CED, a better represented
GM is obtained at the cost of a larger computational complexity, especially as
the number of mappings in correspondences increases. As future work, we are
interested in comparing our method with more options for the GM calculation,
putting particular emphasis in embedding approaches. It is also necessary to
perform more experiments on real life repositories which contain structures and
correspondences.
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Abstract. Graph edit distance has become an important tool in structural pat-
tern recognition since it allows us to measure the dissimilarity of attributed
graphs. One of its main constraints is that it requires an adequate definition of
edit costs, which eventually determines which graphs are considered similar.
These edit costs are usually defined as concrete functions or constants in a
manual fashion and little effort has been done to learn them. The present paper
proposes a framework to define these edit costs automatically. Moreover, we
concretise this framework in two different models based on neural networks and
probability density functions.

Keywords: Graph edit distance * Edit costs - Neural network
Probability density function

1 Introduction

Graph edit distance [1, 2] is the most well-known and used distance between attributed
graphs. It is defined as the minimum amount of required distortion to transform one
graph into another. To this end, a number of distortion or edit functions consisting of
deletion, insertion, and substitution of nodes and edges are defined. The basic idea is to
assign an edit cost to each edit operation according to the amount of distortion that it
introduces in the transformation to quantitatively evaluate the edit operations.

However, the structural and semantic dissimilarity of graphs is only correctly
reflected by graph edit distance if the underlying edit costs are defined appropriately.
For this reason, several methods have been presented to learn these costs. Most of them
assume the substitution costs are weighted Euclidean distances and learn the weighting
parameters [3-5]. Another one, [6], considers the insertion and deletion costs as con-
stants and then applies optimisation techniques to tune these parameters. There are two
other papers that define the edit costs as functions. The first one introduces a proba-
bilistic model of the distribution of graph edit operations that allows them to derive edit
costs [7]. The second paper is based on a self-organising map model [8] in which the
edit costs are the output of a neural network. In both papers, the learning set is
composed of classified graphs and the edit costs are optimised with regard to Dunn’s
index.

In the first part of this paper, we present a general model to learn the functions that
define edit costs of the graph edit distance. This model opens the door to some techniques
to learn these costs. In the second part of the paper, we present two concretisations of this
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model. The first one is based on a probability density model learned through a multi-
distribution Gaussian; the second one is based on a linear model learned through a neural
net. The main difference between our model and the ones defined in [7, 8] is that in our
model, the edit functions are learned using a local structure of the graphs but in the other
ones, the edit functions are learned using only the attributes of the nodes or edges
themselves.

This paper is structured as follows; in Sect. 2, we define the attributed graphs and
the graph edit distance. In Sect. 3, we explain our learning model and in Sect. 4, we
move to explain the embedding domain. Section 5 concretises two options of the
presented learning model. Finally, Sect. 6 shows the experimental evaluation and
Sect. 7 concludes the paper.

2 Attributed Graphs and Graph Edit Distance

Let G = (Zv,Ze,yv,ye) be an attributed graph representing an object. X, = {v,|i =
1,...,n} is the set of nodes and X, = {exy‘x,y € 1,...,n} is the set of edges. With the
aim of properly defining the graph matching, these sets are extended with null nodes
and edges to be a complete graph of order n. We refer to null nodes of G by 3, C 2,
and we refer to null edges of G by &, C X,. Functions y, : ¥, — RY and y, : X, — R
assign N attribute values to nodes and M attribute values to edges.

We also define the star of a node v,, named S,, on an attributed graph G, as another
graph S, = (Zf", Zf", ySa, yfa). S. has the structure of an attributed graph but it is only
composed of nodes connected to v, by an edge and these connecting edges. Formally,
Zf“ = {vb|eab e, — fe} and Zf,“ = {eab cX, — 26}. Finally, yﬁ“(vb) =7,(v),
Yy, € 25“ and ’yf“ (eab) = ye(eab), Veu € Z‘j”.

Given two attributed graphs G and G’, and a correspondence f between them, the
graph edit cost, represented by the expression EdirCost(G, G, ), is the cost of the edit
operations that the correspondence f imposes. It is based on adding the functions:

e (,, is a distance that represents the cost of substituting node v, of G by node f (va)
of G.

e C, is a distance that represents the cost of substituting edge ¢, of G by edge e;j of

G'.f(va) =V andf(vb) =V

C,q is the cost of deleting node v, of G (mapping it to a null node).

C,; is the cost of inserting node v; of G’ (being mapped from a null node).

C.q is the cost of assigning edge e, of G to a null edge of G'.

C.; is the cost of assigning edge ¢j; of G’ to a null edge of G.

For the cases in which two null nodes or two null edges are mapped, this cost is 0.
Then, the graph edit distance, GED, is defined as the minimum cost under any possible
bijective correspondence f in the set F, which is composed of all bijective corre-
spondences between G and G’
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GED(G,G') = r}ii;z{EditCost(G, G, )} (1)
fe

If we consider f(v,) = v, and f(v,) =/, the EditCost is,

EditCost(G, G, f) =
Z Cvs (Vav V;) + Z C€5 (ealﬂ e;) +

W,€5,~5, st Vex, -5, Ve, €Z,~%, st. €3, -3,
Z C"d (va) + Z Cfd (eab) + (2)
VVUEZ‘,ff.V s.t. v;ei)(, Veabezgfﬁle s.L. efjei:
/ /
) Cu(V) + ) C,i (ej)
Vvaeiv s.t. v;eZ(fﬁ(, Veubeﬁe .. e;jei'ﬂf)i'a

We define the optimal correspondence f as the one that obtains the minimum
EditCost(G, G, f).

2.1 Sub-optimal Computation of the Graph Edit Distance

The optimal computation of the GED is usually carried out by means of the A*
algorithm [11, 12]. Unfortunately, the computational complexity of these methods is
exponential in the number of nodes of the involved graphs. For this reason, several sub-
optimal methods to compute the GED have been presented. The main idea is to
optimise local criteria instead of global criteria [9, 10] and therefore a sub-optimal GED
can be computed in polynomial time. To this end, the Edit Cost between two graphs
(Eq. 1) is the addition of the costs of mapping their local structures:

Edil‘Costwb(G, lef) = ZVVGEZ»rfzvs.[. Vex -3 ¢ (Sa’ Si)
+ S CUs)+ > C(s) (3)

Vv, €L —3, s.t. vaZ: Vv, €L, .t V?EZ:fﬁlL

Where f (v,) = v.. Besides, C* denotes the cost of substituting the star S, centred at
node v, by the star S, centred at node v,. C? denotes the cost of deleting the star S, and
C' denotes the cost of inserting the star vi. These costs depend on the structure of the
stars and also on the costs on nodes and edges: C,s, Cyq, Cyi, Ces, Ceq and C,;. These
costs are computed in the same way as it is done with graphs, since stars are defined as
graphs with a concrete structure.

Similarly to the optimal GED, we define the sub-optimal edit distance as the
minimum of the edit cost:

GED"(G,G') = minsep{EditCost" (G, G, f)} “)

And also, we define f“'”b as the correspondence in F such that
EditCost*" (G, G, f”‘b ) is the minimum one.
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Bipartite graph matching algorithm (BP) is one of the most used methods to solve
the GED [9] and new optimisation techniques of this algorithm have recently appeared
[10]. Experimental validation shows that, currently, it is one of the best sub-optimal
algorithms since it frequently obtains a good approximation of the distance value in
cubic computational cost. This algorithm is composed of three main steps. The first step
defines a cost matrix (Fig. 1), the second step applies a linear solver such as the
Hungarian method to this matrix and deduces the correspondence f“‘b . The third step
adds the selected star edit costs to deduce EditCost(G, G/, foub )

Figure 1 shows the cost matrix of the algorithm in which n and m are the graph
orders. The first quadrant denotes the combination of substituting stars of both graphs.
The diagonal of the second quadrant denotes the costs of deleting the stars. Similarly,
the diagonal of the third quadrant denotes the costs of inserting the stars. Filling some
cells with infinitive values is a trick to speed-up the linear solver. The fourth Quadrant
is filled with zeros since the substitution between null stars has a zero cost.

Ci1 - Cym|C1e @ -9
H ) .
Ci,j ; Cn: ;
. 0
§ -]
cnd Cn,m ® «© an
n+m
cz.l «© =]
il - w0
. CE-j :
® w
® ® C.om

Fig. 1. Cost matrix of the BP algorithm.

3 The Learning Model

We want to learn the substitution, insertion and deletion costs of stars C*, C? and C*
through a supervised learning method. Suppose that we have some pairs of graphs
(G?,G"), 1 < p < L, together with their ground-truth correspondences f”. These
ground truth correspondences have been deduced by an external system (human or
artificial) and they are considered to be the best mappings for our learning purposes.
Note that these ground truth correspondences are independent of the definition of the
edit costs. The aim of the learning method is to define these edit costs as functions so
that the optimal correspondences f”, become close to the ground-truth correspondences
f? for all pairs of graphs (G?, G"").

Fingerprint matching could be a good example of the generation of these ground
truth correspondences. Given two fingerprints, a specialist decides which is the best
mapping between minutiae of these fingerprints. Thus, the specialist knows nothing
about the graph edit distance nor edit costs and therefore the correspondence that the
specialist decides is not influenced by these parameters.
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If the ground truth correspondence f” imposes two nodes to be substituted then it
may hold that the substitution cost of the involved stars might be lower than the
substitution costs of the combinations of the other stars. Moreover, if the ground truth

correspondence f” imposes a node to be deleted then it may hold that the deletion cost
of the involved star might be lower than the deletion costs of the stars that the ground
truth correspondence imposes they have to be substituted. Similarly occurs with the
node insertions. This method was used in [13].

Figure 2 shows an example of a ground truth correspondence f” . It may happen that
c* (Sf , S’f/> would have to be lower than C* (S’l’ , Sgl) and C* (S‘z’ , S‘l’/). Similarly occurs

with C* (Sg7 S’z’l). Moreover, it may happen that C?(S5) would have to be lower than

C?(S7) and €?(S5). Similarly occurs with C(S}). Finally, it also may happen that
C;(S5) would have to be lower than C'(S}") and C'(S'). The same for C*(S5).

To fix these initial ideas into a learning model, we have defined two classes of
mappings in the substitution cases; two other classes of mappings in the deletion cases;
and another two classes of mappings in the insertion cases.

@@ﬂ@

Fig. 2. Ground-truth correspondence f” from G” to G”'.

If a ground-truth correspondence f” defines the mapping f” (VZ) =W " between non-
null nodes then we say that the pair of stars {7, S '} belongs to class True_Substitution.

Contrarily, all combinations of pairs {Sg,Sf '} that j # i and also all combination of

pairs {SZ, 7 /} that b # a between non-null nodes belong to class False_Substitution.
Moreover, if the ground-truth correspondence f” imposes the node v has to be deleted,
then we consider that the star S2 belongs to class True_Deletion. Contrarily, all stars S,
such that their central nodes v} are substituted, (nodes v, such that f* (1)) =¥, b # a),
belong to class False_Deletion. Similarly occurs with the insertion operations. If the
ground-truth correspondence fp imposes the node V/ " has to be inserted, then we con-
sider that the star S " belongs to class True_Insertion. Contrarily, all stars Sf " such that
their central nodes vjp " are substituted (all nodes such that f” (VZ) = vf ', j # i) belong to

class False_Insertion.
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Figure 3 shows the classes of pairs of stars previously defined, given the substi-
tutions, deletions and insertions of the example in Fig. 2.

True False True False True False
Correspondence Correspondence Deletion Deletion Insertion Insertion

Fig. 3. Classes and mappings given example in Fig. 2.

(s, s} {8, s}

{S5. S5} s, S5}

We proceed to formalise the definition of these six sets. Suppose that we have L pairs
of graphs (G”,G"), 1 <p <L, together with their ground-truth correspondences f7.
Then for all correspondences f” and for all node-to-node mappings fp (vg) =W " we set,

(82,87} € True_Substitutionif 2, € 30 — 5 andV) € XV — ¥/

{0, 8"} € False_Substitutionif k # iand V! € £’ — 37/

{S0, S} € False_Substitutionif b # aand v}, € P — P

{SZ} € True_Deletionif vi € flv’ (5)
{8r} € False_Deletionif v € 2P — b4

{SV'} € True_nsertionif v} € £’

{Sf/} € False_Insertion if vlp/ ez — f‘v"

4 Embedding Stars into Vectors

The aim of this paper is to present a model to learn costs C*, C? and C' based on a
classical machine-learning method. To do so, we need these costs to be modelled as
functions, in which the domain is a point in a vector space and the codomain is a Real
number. Therefore, we have to map the stars to points in a suitable vector space. This
mapping has to encode the stars by equal size vectors and produce one vector per star.
Mathematically, for a given star S, our star embedding is a function @, which maps S,
to a point E, in a T dimension space R”. It is given as <I)(Sa) = E,. The value T is
concretised above.

Figure 4 graphically shows the embedding of the star S,. The first N elements are
the attributes on the nodes and the next one is the number of nodes of the star, ns. . The
next cells are filled by the histograms generated by the attributes of the external nodes
and the attributes of the external edges. Histograms 4,(; and . ;) represent histograms
generated by the i™ attribute of the nodes and edges, respectively. N and M are the
number of attributes on the nodes and edges, respectively. Finally, N and M are the
number of bins of the node and edge histograms, respectively. This representation has
been inspired by the one presented in [14]. In that case, the model embedded a whole
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graph into a vector. Since we want to embed a star, which is a special structure of a
graph, we have somewhat concretised the embedding model. Thus, 7 = N+ 1 + N
N+M * M.

Yv(va) n(Sa) hr(1)(sa) hr(N)(Sa) he(1)(Sa) he(M)(Sa)

<“«—N—>—]—><«—N—> <«—N—>c—0N—> <«—\—>

Fig. 4. The E, embedding of star S,.

Then, given the six sets, our method defines three matrices as shown in Fig. 5. The
Substitution_Matrix has three sets of columns. The first two ones have the embedded
stars E, and E, that their pairs of stars are in the sets True_Substitution or
False_Substitution. The third set is composed of only one column that has ones and
zeros. A zero in this column informs the pair of stars belongs to the True_Substitution
set and a zero informs that it belongs to the False_Substitution set. The
Deletion_Matrix has two sets of columns: E, and a column of ones and zeros. A zero in
this column informs the star S, belongs to the True_Deletion set and a zero informs that
it belongs to the False_Deletion set. Similarly occurs with the Insertion_Matrix but
considering the stars S; of the other graph.

Deletion Insertion Substitution
Matrix Matrix Matrix

e g o AEED

134 0 Ey 1

E | o B | o E | B[ 1

g | o e | o nxnxL

E EY 0

=3 =

Fig. 5. The E, embedding of star S,.

Then, we define the substitution, deletion and insertion functions as the output of a
machine learning method using these matrices as follows:
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C* = Machine_Learning(Substitution_Matrix)
C? = Machine_Learning(Deletion_Matrix)

C' = Machine_Learning(Insertion_Matrix).

5 Graph Matching Algorithm and Learning Methods

In the previous sections, we have presented a general framework to learn the edit
functions. Although this framework could be concretised into different methods, we
present, in this section, only two different examples. Moreover, several graph-matching
algorithms could be adapted to use these edit functions. In the experimental evaluation,
we computed the graph distance through the bipartite graph-matching algorithm [9]. In
this case, adapting the algorithm only means how C*, C% and C' are defined in the first
step of the algorithm (Sect. 2). In the original definition of the algorithm [9], these costs
were computed considering that stars are graphs with a concrete structure. In the next
two sub-sections, we show how we deduce these costs.

5.1 Neural Network

We model C* by a regression function learned through an artificial neural network, nn°,
given the Substitution_Matrix. When the neural net has learned the regression function,

the substitution cost C* (Sa, S;) is computed as the output of this neural network, nn’, as
follows:

C*(S,,S!) = Output(nn*, [E,, E]) (6)

a’™~i

We also model C? by a regression function based on an artificial neural network,
nn?, learned from Deletion_Matrix, in a similar way than C°. Nevertheless, in this case,
we only use the information of the first graph. Then, we have,

C*(S,) = Output(nn’,E,) (7)

Similarly occurs with the insertion cost but using the information of the second
graph. We model C’ by an artificial neural network, nn', learned from Insertion_Matrix.
Then, we have,

C'(S}) = Output(nn', E.) (8)

5.2 Probability Density Distribution

We define C* by two probability density functions based on a mixture of Gaussians,
pdf _true® and pdf _false®. The first density function is modelled by columns that have

the information about E, and E; in the Substitution_Matrix, but with only the rows that
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have a 1 in the last column. The second density function is modelled in a similar way
but with only the rows that have a 0 in the last column.

Thus, the substitution cost C* (Sa,S;) is defined as the subtraction of the proba-
bilities obtained from these probability density functions (Eq. 9). Constant 1 is needed
to assure the cost is always positive. We want the cost to be low if the probability
obtained from the set True_Substitution is high or the probability obtained from the set
False_Substitution is low.

C*(S,,87) = 1 — Prob(pdf _true*, [E,, E}|) + Prob(pdf _false*, [E,, E])  (9)

Functions C% and C' are modelled in a similar way. Nevertheless, matrices
Deletion_Matrix and Insertion_Matrix are used. Thus, we have:

Cd(Sa) =1- Prob(pdf_trued,Ea) +Pr0b(pdf_falsed,Eu) (10)

C'(S!) = 1 — Prob(pdf_true',E}) + Prob(pdf _false', E}) (11)

6 Experimental Evaluation

The presented method has been validated using four databases in the public graph
repository Tarragona_Graphs presented in [15]. The main characteristic of this
repository is that its registers are not only composed of a graph and its class, but
composed of a pair of graphs and a ground-truth matching between them, as well as
their class. This register structure is useful to analyse and develop graph-matching
algorithms and to learn their parameters in a broad manner.

Table 1 shows the accuracy (in bold the highest scores) computed by the Bipartite
graph matching and the Learning Bipartite graph matching (our proposal). In the first
case, we have considered the Degree and the Star as a local structure. In the second
case, we have considered the Neural Network (Sect. 5.1) and the Probability density
function (Sect. 5.2). In the case of the Neural Network, we have tested the embedding
presented in Fig. 4 and also a reduced embedding in which the histogram of the
neighbours’ attributes has not been considered. Note that depending on the number of
nodes and the number of bins per attribute, this information of the embedding is the
part that could take more space. The Neural Networks have been configured with only
one hidden layer that have half of the width of the input layer. The probability density
functions have been configured as multimodal Gaussians. In the case of Letter High
and Letter Med, we used two modal and in the case of the Letter Low, only one modal.
The House Hotel database always returned “ill condition”.

Star configuration returns higher accuracies than Degree configuration, as reported
in other papers. The neural network returns the highest accuracies and it seems as the
histogram information positively contributes to the embedding model since there is an
important reduction on the accuracy if it is discarded.
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Table 1. Accuracy of four databases in Tarragona Graphs repository given the original
Bipartite graph matching and the Learning Bipartite graph matching (our proposal). We have
considered several configurations.

Algorithm | Configuration Letter high | Letter med | Letter low | House hotel
Original | Star 0.89 0.90 0.97 0.88
Bipartite | Degree 0.87 0.85 0.97 0.71
Learning | NN 0.91 0.90 0.98 0.98
Bipartite | NN (No histogram) | 0.89 0.87 0.97 0.99

Prob. density function | 0.83 0.76 0.93 111 condition

7 Conclusions

Edit costs functions are application dependent and usually set manually based on
maximising the accuracy in the recognition process. We have proposed a general
framework to learn the substitution, deletion and insertion costs based on reducing the
hamming distance between the deduced correspondences and the ground-truth corre-
spondences. Moreover, we have concretised our framework on two models, one based
on neural networks and the other one based on multimodal probability density
functions.

We have tested our framework on four public databases and we have empirically
deduced that the neural network achieves the highest accuracies, therefore, it seems to
be worth learning these costs.
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Abstract. The graph edit distance (GED) is a flexible graph dissimilar-
ity measure widely used within the structural pattern recognition field.
A widely used paradigm for approximating GED is to define local struc-
tures rooted at the nodes of the input graphs and use these structures to
transform the problem of computing GED into a linear sum assignment
problem with error correction (LSAPE). In the literature, different local
structures such as incident edges, walks of fixed length, and induced sub-
graphs of fixed radius have been proposed. In this paper, we propose to
use rings as local structure, which are defined as collections of nodes and
edges at fixed distances from the root node. We empirically show that
this allows us to quickly compute a tight approximation of GED.

Keywords: Graph edit distance + Graph matching - Upper bounds

1 Introduction

Due to the flexibility and expressiveness of labeled graphs, graph representations
of objects such as molecules and shapes are widely used for addressing pattern
recognition problems. For this, a graph (dis-)similarity measure has to be defined.
A widely used measure is the graph edit distance (GED), which equals the min-
imum cost of a sequence of edit operations transforming one graph into another.
As exactly computing GED is NP-hard [17], research has mainly focused on
the design of approximative heuristics that quickly compute upper bounds for
GED. The development of such heuristics was particularly triggered by the intro-
duction of the paradigm LSAPE-GED, which transforms GED to the linear sum
assignment problem with error correction (LSAPE) [10,17]. LSAPE extends the
linear sum assignment problem by allowing rows and columns to be not only
substituted, but also deleted and inserted. LSAPE-GED works as follows: In a first
step, the graphs G and H are decomposed into local structures rooted at their
nodes. Next, a distance measure between these local structures is defined. This
measure is used to populate an instance of LSAPE, whose rows and columns cor-
respond to the nodes of G and H, respectively. Finally, the constructed LSAPE
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instance is solved. The computed solution is interpreted as a sequence of edit
operations, whose cost is returned as an upper bound for GED(G, H).

The original instantiations BP [10] and STAR [17] of LSAPE-GED define the
local structure of a node as, respectively, the set of its incident edges and the set
of its incident edges together with the terminal nodes. Since then, further instan-
tiations have been proposed. Like BP, the algorithms BRANCH-UNTI [18], BRANCH,
and BRANCH-FAST [2] use the incident edges as local structures. They differ from
BP in that they use distance measures for the local structures that also allow
to derive lower bounds for GED. In contrast to that, the algorithms SUBGRAPH
[6] and WALKS [8] define larger local structures. Given a constant L, SUBGRAPH
defines the local structure of a node u as the subgraph which is induced by the
set of nodes that are within distance L from u, while WALKS defines it as the
set of walks of length L starting at u. SUBGRAPH uses GED as the distance mea-
sure between its local structures and hence runs in polynomial time only if the
input graphs have constantly bounded maximum degrees. Not all instantiations
of LSAPE-GED are designed for general edit costs: STAR and BRANCH-UNTI expect
the edit costs to be uniform, and WALKS assumes that the costs of all edit opera-
tion types are constant. As an extension of LSAPE-GED, it has been suggested to
define node centrality measures, transform the LSAPE instance constructed by
any instantiation of LSAPE-GED such that assigning central to non-central nodes
is penalized, and return the minimum of the edit costs induced by solutions to
the original and the transformed instances as an upper bound for GED [12,16].

Not all heuristics for GED follow the paradigm LSAPE-GED. Most notably,
some methods use variants of local search to improve a previously computed
upper bound [4,7,11,14]. These methods yield tighter upper bounds than
LSAPE-GED instantiations at the price of a significantly increased runtime, and
use LSAPE-GED instantiations for initialization. They are thus no competitors of
LSAPE-GED instantiations and will hence not be considered any further in this
paper.

In this paper, we propose a new instantiation RING of LSAPE-GED that is
similar to SUBGRAPH and WALKS in that it also uses local structures whose sizes are
bounded by a constant L—namely, rings. Intuitively, the ring rooted at a node
u is a collection of disjoint sets of nodes and edges which are within distances
l < L from u. Experiments show that RING yields the tightest upper bound of
all instantiations of LSAPE-GED. The advantage of rings w.r.t. subgraphs is that
ring distances can be computed in polynomially. The advantage w.r.t. walks is
that rings can model general edit costs, avoid redundancies due to multiple node
or edges inclusions, and allow to define a fine-grained distance measure between
the local structures. The rest of the paper is organized as follows: In Sect. 2,
important concepts are introduced. In Sect. 3, RING is presented. In Sect. 4, the
experimental results are summarized. Section 5 concludes the paper.

2 Preliminaries

In this paper, we consider undirected labeled graphs G = (V¢ B¢, fg, Eg), where
V& and EY are sets of nodes and edges, and ($ : VE — 2y (¢ . EY — Xp
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Table 1. Edit operations and edit costs for transforming a graph G into a graph H.

Edit operation Edit cost Short notation
Substitute node u € VE by node v € V| ey (5 (u), £ (w)) | ev (u,v)
Delete isolated node u € V¢ from V¢ ev (05 (u), €) cv (u, €)
Insert isolated node v into V' cv (e, 68 (v)) cv(€,v)
Substitute edge e € E by edge f € Ef | cp(tG(e), (2 (f)) | ce(e, f)
Delete edge e € E€ from Eg ce(f%(e),€) ce(e,€)
Insert edge f into EX ce(e, L5 (f)) ce(e f)

are labeling functions. Furthermore, we are given non-negative edit cost functions
ey Dy U{e} x EyU{e} = Rypandcg : YgU{e} x YgU{e} — R, whereeisa
special label reserved for dummy nodes and edges, and the equations cy (o, @) = 0
and cg(8,8) = Ohold for all &« € Xy U{e} and all B € Xg U {e}. An edit path
P between graphs G and H is a sequence of edit operations with non-negative edit
costs defined in terms of ¢y and ¢ (Table 1) that transform G into H. Its cost ¢(P)
is defined as the sum over the costs of its edit operations.

Definition 1 (GED). The graph edit distance between graphs G and H is
defined as GED(G, H) = minpeyq,m)c(P), where W(G, H) is the set of all
edit paths between G and H.

The key insight behind the paradigm LSAPE-GED is that a complete set of
node edit operations—i. e., a set of node edit operations that specifies for each
node of the input graphs whether is has to be substituted, inserted, or deleted—
can be extended to an edit path, whose edit cost is an upper bound for GED [3,
4,17]. For constructing a set of node operations that induces a cheap edit path,
a suitably defined instance of LSAPE is solved. LSAPE is defined as follows [5]:

Definition 2 (LSAPE). Given a matric C = (¢ ) € R(>"0+1)X(m+1) with
Cnt1m+1 = 0, LSAPE consists in the task to compute an assignment ©* €
argmin, 7 C(m). Il is the set of assignments of rows of C to columns
of C such that each row except for n+ 1 and each column except for m + 1 is
covered ezxactly once, and C(mw) = Z?Ill > keni) Cisk-

Instantiations of LSAPE-GED construct a LSAPE instance C of size (|[VE| +
1) x (JVH]| + 1), such that the rows and columns of C correspond to the nodes
of G and H plus one dummy node used for representing insertions and dele-
tions. A feasible solution for C can hence be interpreted as a complete set of
node edit operations, which induces an upper bound for GED. An optimal solu-
tion for C can be found in O(min{n, m}? max{n,m}) time [5]; greedy subop-
timal solvers run in in O(nm) time [13]. For populating C, instantiations of
LSAPE-GED associate the nodes u; € VE and v, € V# with local structures

SY(u;) and SH (vy), and then construct C by setting ¢; x = ds(SY (u;), SH (vr.)),
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Ci|vH|41 = ds(8%(u;),S(€)), and ClVG 41,k = ds(S(e),SH (v1,)), where ds is a
distance measure for the local structures and S(e) is a special local structure
assigned to dummy nodes.

3 Ring Based Upper Bounds for GED

3.1 Definition of Ring Structures and Ring Distances

Let u;,u; € VY be two nodes in G. The distance d$} (u;, u;) between the nodes
u; and u; is defined as the number of edges of a shortest path connecting them
or as oo if they are in different connected components of G. The eccentricitiy
of a node u; € VY and the diameter of a graph G are defined as e{}(u;) =
max,, cye d$ (ui, u;) and diam(G) = max,cye e (u), respectively.

Definition 3 (Ring, Layer, Outer Edges, Inner Edges). Given a constant
L € Nug and a node u; € VE, we define the ring rooted at u; in G as the
sequence of disjoint layers RS (u;) = (LE (u;))i=y" (Fig. 1). The 1™ layer rooted
at u; is defined as L& (u;) = (V. (u;), OBF (w;), IEY (u;)) where:

- VE(u;) = {u; € VG| d$(ui,uj) =1} is the set of nodes at distance 1 of u;,

~ IE{ (u;) = ES N (V& (u;) x V(u;)) is the set of inner edges connecting two
nodes in the I layer, and

~ OE%(u;) = ES N (Vi€ (ui) x Vi, (uq)) is the set of outer edges connecting a
node in the I layer to a node in the (I + 1) layer.

For the dummy node €, we define Ry (e) = ((0,0,0),)},"-

Fig. 1. Visualization of Definition 3. Inner edges are dashed, outer edges are solid.

Remark 1 (Properties of Rings and Layers). The first layer £§ (u;) of a node u;
corresponds to u;’s local structure as defined by BP, BRANCH, BRANCH-FAST, and
BRANCH-UNI. We have OE (u;) = 0 just in case | > e§(u;) — 1 and £ (u;) =
(0,0,0) just in case I > % (u;). Moreover, the identities E¢ = IL:BI(OElG(ui) U
IES (u;)) and VG = lL:_Ol V¢ (u;) hold for all u; € V just in case L > diam(G).

In our instantiation RING of LSAPE-GED, we use rings as local structures,
i.e., define S%(u;) = R¥(u;). The next step is to define a distance measure
dgr that maps two rings to a non-negative real number. For doing so, we first
define a measure d. that returns the distance between two layers. So let £& (u)
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and L (v) be the I*! layers rooted at nodes u € VE U {e} and v € VH U {¢},
respectively. Then d is defined as

de (LF (w), £ (v)) = aody (ViF(w), Vi (v)) + a1¢5 (OET (u), OE{ (v))
+asep (IE] (), IE{ (v)) ,

where ¢y : P(VY) x P(VH) — Ry and ¢p : P(EC) x P(ET) — Ry are
functions that measures the dissimilarity between two sets of nodes and edges,
respectively, and ag,aq,a2 € R>o are weights assigned to the dissimilarities
between the nodes, the outer edges, and the inner edges. We now define dr as

dr (RS (u), RE (v ledﬁ L (u), L (v)), (1)

where \; € R>q are weights assigned to the distances between the layers.

Recall that we are defining dz to the purpose of populating a LSAPE instance
C which is then used to derive an upper bound for GED. Since we want this
upper bound to be as tight as possible, we want dg (Rf(u), R (v)) to be small
if and only if we have good reasons to assume that substituting u by v leads to
a small overall edit cost. This can be achieved by defining the functions ¢y and
¢E in a way that makes crucial use of the edit cost functions ¢y and cg:

LSAPE Based Definition of ¢y and ¢p. Let U = {uy,...,u,} C VE and
V ={v1,...,us} €V be two node sets. Then a LSAPE instance C = (¢; ) €
R(r+1)x(s+1) ig defined by setting c; , = cy (ui, i), ¢isr1 = cv (i,€), and ¢, 11 5 =
cv(evg) for all i € {1,...,r} and all k € {1,...,s}. This instance is solved—
either optimally in O(min{r, s}? max{r, s}) time or greedily in O(rs) time—and
¢y is defined to return C(7*)/ max{|U]|,|V], 1}, where C(n*) is the cost of the
computed solution 7*. We normalize by the sizes of U and V in order not to
overrepresent large layers. The function ¢ can be defined analogously.

Multiset Intersection Based Definition of ¢y and ¢g. Alternatively, we
suggest to define ¢y as

ov(UV) = [ 0wz (U] = VD) + &7 (1= dups ) (V] = [U])

+ Y (min{|U], [V} = [(F (U] 0 6 ([V]]]) ]/ max{ [T, [ V'], 13,
where 6)y>|v| equals 1 if [U| > |V] and 0 otherwise, cgﬁ, c;V, and Cv are the
average costs of deleting a node in U, inserting a node in V', and substituting
a node in U by a differently labeled node in V, and ¢$[[U]] and ¢H[[V]] are the
multiset images of U and V under the labelling functions ¢§/ and ¢#. Again, ¢
can be defined analogously. Note that, if the edit costs are quasimetric, then the
LSAPE based definition of ¢y and ¢ given above leads to the same number of
node or edge substitutions, insertions, or deletions as the multiset intersection
based definition; and if all substitution, insertion, and deletion costs are the
same, then the two definitions are equivalent (cf. Proposition 1). Therefore, the
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multiset intersection based approach for defining ¢y and ¢ can be seen as a
proxy for the one based on LSAPE. The advantage of using multiset intersection
is that it allows for a very quick evaluation of ¢y and ¢g. In fact, since multiset
intersections can be computed in quasilinear time [17], the dominant operation is
the computation of the average substitution cost, which requires quadratic time.
The drawback is that we loose some of the information encoded in the layers.

Proposition 1. If all node substitution costs are equal to a constant cﬁ, all
node removal costs to c{;, and all node insertion costs to c{, with C‘S/ < c{} + c{,,
then both definitions of ¢y coincide. For ¢, an analogous proposition holds.

Proof. We assume w. 1. 0. g. that |U| < |V|. Then, from c¢j- < cff +¢f, and by the
first proposition in [5], the optimal solution 7* does not contain removals and
contains exactly |V| — |U]| insertions. The optimal cost C(n*) is thus reduced
to the cost of |V| — |U| insertions plus cj; times the number of non identical
substitutions. This last quantity is provided by min{|U|, |V} —I([[U]] NI [[V]].
We thus have:

C(7*) = ey (V] = |U]) + ey (min{|U], [V} = (F[[U]] N 1 [[V]))

Since costs are constant, we have cg’e = C‘R;,cg’v = ¢y, and ci}v = c,, which
provides the expected result. The proof for ¢ is analogous. a

3.2 Algorithms and Choice of Meta-parameters

Construction of the Rings and Overall Runtime Complexity. Figure 2
shows how to build the rings via breadth-first search. Clearly, constructing all
rings of a graph G requires O(|VE|(|[VE| + |EY|)) time. After constructing the
rings, the LSAPE instance C must be populated. Depending on the choice of
év and ¢, this requires O(| supp(N) ||V E||[VH[22) or O(|supp(A)||[VE ||V H|£22?)
time, where (2 is the size of the largest set contained in one of the rings of
G and H, and supp(A) is the support of A. Finally, C is solved optimally in
O(min{|VE|, [VHE}2max{|VE|,|VH|}) time or greedily in O(|VE||[VH]|) time.

Choice of the Meta-parameters a, A\, and L. When introducing d, and
dr in Sect. 3.1, we allowed a and A to be arbitrary vectors from R3 ) and R%,.
However, we can be more restrictive: Since LSAPE does not care about scaling,
we can assume w.l.o.g. that a and A are simplex vectors, i.e., that we have
Zi:o g = ZL:_Ol A; = 1. This reduces the search space for a« and A but still
leaves us with too many degrees of freedom for choosing them via grid search. We
hence suggest to learn av and A with the help of a blackbox optimizer [15]. For
a training set of graphs 7 and a fixed L € N, the optimizer should minimize

. _ |supp(A)] — 1 bv.bp
(G,H)eT?

and respect the constraints that a and A are simplex vectors. RINGﬁVXqﬁE (G,H)
is the upper bound for GED(G, H) returned by RING given fixed a, A, ¢y, and
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Input: A graph G, a node u € VY, and a constant L € Nxo.
Output: The ring R (u) rooted at u.

1+ 0; V 0; OF «— 0; IE « 0; RE (u) «— ((0,0,0):)/" // initialize ring
dfu] < 0; for v’ € VO \ {u} do d[u'] — oo; // initialize distances to root
for e € EY do discovered[e] « false; // mark all edges as undiscovered
open — {u}; // initialize FIFO queue
while open # ) do // main loop
u’ + open.pop(); // pop node from queue

if d[u’] > [ then // the I layer is complete
RE(u)y = (V,0FE,IE); | 141 ; // store I'™ layer and increment 1

V «—0; OFE «— 0; IE «— (; // reset nodes, inner, and outer edges

V— Vui{d} // u' is node at 1" layer

for v'v” € E€ do // iterate through neighbours of u'

if discovered[u'u”] then continue; // skip discovered edges

if d[u"] = co then // found new node

L dfu] — 1+ 1; // set distance of new node

if d[u”] < L then open.push(u”); // add close new node to queue

if dju”’] =1 then IE «— IEU {u'u"}; //W/u" is inner edge at I™ layer

else OF «— OE U {u'u"}; // u'u' is outer edge at I™ layer
discovered[u'u”] < true; // mark v'u" as discovered
RE(u), = (V, O, IE); return RY (u); // store last layer and return ring

Fig. 2. Construction of rings via Breadth-first search.

¢p, and p € [0,1] is a tuning parameter that should be close to 1 if one wants
to optimize for tightness and close to 0 if one wants to optimize for runtime.
We include | supp(A)| — 1 in the objective, because if A’s support is small, only
few layer distances have to be computed (cf. Eq. 1). In particular, |supp(A)| =1
means that RING’s runtime cannot be decreased any further via modification of
A, which is why, in this case, the (1 — p)-part of the objective is set to 0.

Before building the rings for the graphs contained in the training set, L should
be set to an upper bound for their diameters, e. g., to L = 14+maxger |V . After
the rings have been build, L can be lowered to L = 1+max{l | 3G € T,u € V& :
RE(u); # (0,0,0)} = 1 +maxger diam(G) (cf. Remark 1). In the next step, the
blackbox optimizer should be run, which returns an optimized pair of parameter
vectors (a*, A\*). As the I*" layers contribute to dg only if [ € supp(A*) (cf.
Eq.1), L can then be further lowered to L = 1 4+ max;equpp(a+) -

4 Empirical Evaluation

We tested on the datasets MAO, PAH, ALKANE, and ACYCLIC, which
contain graphs representing chemical compounds. For all datasets, we used the
(non-uniform) edit costs 1 defined in [1]. We tested three variants of our method:
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A RING™' O RING® [ RING'™ + WALKS
> SUBGRAPH | BRANCH x BRANCH-FAST — BP
ALKANE (no centralities) x> ALKANE (pagerank centralities)
0
g 10 * 2200 il
= o 7
g 10 2 100
Z 107" éu + £ @ +
g * 2 0B
12 14 16 Z 0 2 4
upper bound tightness gain in %
ACYCLIC (no centralities) x> ACYCLIC (pagerank centralities)
0
g 1 * £ 200 X
g ¥ 2
g 10° 2 100
£ 19 £y + o) E PR +
z * v 0Lk
19 20 21 22 Z 1 2 3 4
upper bound tightness gain in %
PAH (no centralities) S PAH (pagerank centralities)
n
g * = X
g 10! 2 ;’88 +
v 7 + 2
ERR ¢ 100
= 10! * £ oL g 1
30 35 40 45 E 0 02 04 06 08
upper bound tightness gain in %
MAO (no centralities) S MAO (pagerank centralities)
e * 8300 Tx
g 10 2900 +
) o &0 2
g 10°g0 + g 100
=
§ 10—t * £ 0 &8
25 30 35 40 Z 0 0.5 1 15

upper bound tightness gain in %

Fig. 3. Results of the experiments.

RING®T uses optimal LSAPE for defining the distance functions ¢y and ¢z,
RING® uses greedy LSAPE, and RING"™ uses the multiset intersection based
approach. We compared them to instantiations of LSAPE-GED that can cope
with non-uniform edit costs: BP, BRANCH, BRANCH-FAST, SUBGRAPH, and WALKS.
As WALKS assumes that the costs of all edit operation types are constant, we
slightly extended it by averaging the costs before each run. In order to handle
the exponential complexity of SUBGRAPH, we enforced a time limit of 1 ms for
computing a cell ¢; ; of its LSAPE instance. All methods were run with and
without pagerank centralities with the meta-parameter 3 set to 0.3, which, in
[12], is reported to be the setting that yields the tightest average upper bound.
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For learning the meta-parameters of RING?T, RING®®, RING™S, SUBGRAPH, and
WALKS, we picked a training set 7 C D with |7| = 50 for each dataset D.
As suggested in [6,8], we learned the parameter L of the methods SUBGRAPH
and WALKS by picking the L € {1,2,3,4,5} which yielded the tightest average
upper bound on 7. For choosing the meta-parameters of the variants of RING, we
proceeded as suggested in Sect. 3.2: We set the tuning parameter p to 1 and used
NOMAD [9] as our blackbox optimizer, which we initalized with 100 randomly
constructed simplex vectors e and A. All methods are implemented in C++
and use the same implementation of the LSAPE solver proposed in [5]. Except
for WALKS, all methods allow to populate the LSAPE instance C in parallel and
were set up to run in five threads. Tests were run on a machine with two Intel
Xeon E5-2667 v3 processors with 8 cores each and 98 GB of main memory.!

For each dataset D, we ran each method with and without pagerank central-
ities on each pair (G, H) € D x D with G # H. We recorded the runtime and the
value of the returned upper bound for GED. Figure3 shows the results of our
experiments. The first column shows the average runtimes and upper bounds of
the tested methods without centralities. The second column shows the effect of
including centralities. On all datasets, RING®7 yielded the tightest upper bound.
Also RING™ performed excellently, as its upper bound deviated from the one
produced by RING®T by at most 4.15% (on ALKANE). At the same time, on
the datasets ACYCLIC, PAH, and MAO, RING"™ was around two times faster
than RING®T. On the contrary, RING® was not significantly faster than RINGOFT
and, on ACYCLIC, produced a 16.18 % looser upper bound.

All competitors produced significantly looser upper bounds than our algo-
rithms. In terms of runtime, our algorithms were outperformed by BRANCH,
BRANCH-FAST, and BP, performed similarly to WALKS, and were much faster than
SUBGRAPH. Adding pagerank centralities did not improve the overall performance
of the tested methods: It lead to a maximal tightness gain of 4.90 % (WALKS on
ALKANE) and dramatically increased the runtimes of some algorithms.

5 Conclusions and Future Work

In this paper, we have presented RING, a new instantiation of the paradigm
LSAPE-GED which defines the local structure of a node u as a collection of node
and edge sets at fixed distances from u. An empirical evaluation has shown that
RING produces the tightest upper bound among all instantiations of LSAPE-GED.
In the future, we will use ring structures for defining feature vectors of node
assignments to be used in a machine learning based approach for approximating
GED. Furthermore, we will examine how using RING for initialization affects the
performance of the local search methods suggested in [4,7,11,14].

! Source code and datasets: http://www.inf.unibz.it/~blumenthal /gedlib.html.
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Abstract. This paper presents a new Mixed Integer Linear Program
(MILP) formulation for the Graph Edit Distance (GED) problem. The
contribution is an exact method that solves the GED problem for
attributed graphs. It has an advantage over the best existing one when
dealing with the case of dense of graphs, because all its constraints are
independent from the number of edges in the graphs. The experiments
have shown the efficiency of the new formulation in the exact context.

Keywords: Graph Edit Distance - Graph Matching
Mixed Integer Linear Program

1 Introduction

Graphs are very powerful in modeling structural relations of objects and pat-
terns. A graph consists of two sets of vertices and edges. The vertices repre-
sent the main components, while the edges show the link between those com-
ponents. In a graph, it is also possible to store information and features about
the object, by assigning attributes to vertices and edges. Graphs have been used
in many applications and fields, such as Pattern Recognition to model objects
in images and videos [13]. Also, graphs form a natural representation of the
atom-bond structure of molecules, therefore they have applications in Chemin-
formatics field [11]. A common task is then, the ability to compare graphs or
find (dis)similarities between them. Such a task enables comparing objects and
patterns that are represented by graphs, and this is known as Graph Matching
(GM). GM has been split into different sub-problems, which mainly fall under
two categories: exact and error tolerant. The first one is very strict, while the
second is more flexible and tolerant to differences in topologies and attributes,
which makes it more suitable for real-life scenarios.

Graph Edit Distance (GED) problem is an error-tolerant graph matching
problem. It provides a dissimilarity measure between two graphs, by computing
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the cost of editing one graph to transform it into another. The set of edit opera-
tions are substitution, insertion and deletion, and can be applied on both vertices
and edges. There is a cost associated to each edit operation. Solving the GED
problem consists in finding the sequence of edit operations that minimizes the
total cost. GED, by concept, is known to be flexible because it has been shown
that changing the edit cost properties can result in solving other matching prob-
lems such as, maximum common subgraph, graph and subgraph isomorphism
[4]. GED is a minimization problem that was proven to be NP-hard. The prob-
lem is complex and hence it was mostly treated by heuristic methods in order to
compute sub-optimal solutions in reasonable time. A famous heuristic is called
Bipartite Graph Matching (BP), which is known to be fast [12]. BP breaks down
the GED problem into a linear sum assignment problem that can be solved in
polynomial time, using the Hungarian algorithm [10]. BP was integrated later in
other heuristics such as Fast BP, Square BP and Beam-search BP [6,14]. Two
new heuristics: Integer Projected Fized Point (IPFP) and Graduate Non Con-
vexity and Concavity Procedure (GNCCP), were proposed by Bougleux et al. [3].
Both are adapted to operate over a Quadratic Assignment Problem (QAP) that
models the GED. These heuristics aim at approximating the quadratic objective
function to compute a solution and then improve it by applying projection meth-
ods. In a recent work by Darwiche et al. [5], a heuristic called Local Branching
GED was proposed, that is based on local searches in the solution space of a
Mized Integer Linear Program (MILP). On the other hand, and in the exact
context (e.g. methods that compute optimal solutions), there are three MILP
formulations in the literature. Only two of them are designed to solve the general
GED problem [8]. The third formulation was designed by Justice and Hero [7],
and it is the most efficient formulation. However, it only deals with a special
case of the GED problem, where attributes on edges are ignored and a constant
cost is assigned to edges edit operations. As well, in the exact context, there is a
branch and bound algorithm [2], which was shown later to be less efficient than
MILP formulations.

The present work is with the interest of designing a new MILP formulation
to solve the GED problem, and so contributes to the exact methods for GED. A
new efficient formulation is proposed that has good performance w.r.t. existing
formulations in the literature. The new formulation is inspired by F'2, which is
proposed by Lerouge et al. [8]. It is an improvement to F'2 by modifying the
variables and the constraints. It has the advantage over F'2, that the constraints
are independent from the number of edges in the graphs. The remainder is
organized as follows: Sect. 2 presents the definition of the GED problem, followed
with a review of F2 formulation. Then, Sect. 3 details the improved formulation.
Section4 shows the results of the computational experiments. Finally, Sect.5
highlights some concluding remarks.
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2 GED Definition and F'2 Formulation

2.1 GED Problem Definition

An attributed graph is a 4-tuple G = (V, E, u, §) where, V is the set of vertices,
E is the set of edges, such that E CV xV, u:V — Ly (resp. £ : E — Lg) is
the function that assigns attributes to a vertex (resp. an edge), and Ly (resp.
L) is the label space for vertices (resp. edges).

Next, given two graphs G = (V, E, u, &) and G' = (V', E’', 1/, ¢’), GED is the
task of transforming one graph source into another graph target. To accomplish
this, GED introduces the vertices and edges edit operations: (i — k) is the
substitution of two vertices, (i — ¢) is the deletion of a vertex, and (e — k) is the
insertion of a vertex, with ¢ € V, k € V' and € refers to the empty node. The same
logic goes for edges. The set of operations that reflects a valid transformation
of G into G’ is called a complete edit path, defined as \(G,G’) = {o1, ..., 0},
where o; is an elementary vertex (or edge) edit operation and k is the number
of operations. GED is then

dmin(G,G') = _min > (o)) (1)

AeI(G.G")

where I'(G, G") is the set of all complete edit paths, d,,;, represents the minimal
cost obtained by a complete edit path A(G, G’), and £(.) is the cost function that
assigns costs to elementary edit operations.

2.2 Mixed Integer Linear Program

The general MILP formulation is of the form:

min Lz (2)

Az >b (3)
z;€{0,1},Yi € B (4)
z;eNVjel (5)

zy ERVE e C (6)

where ¢ € R™ and b € R™ are vectors of coefficients, A € R™*" is a matrix
of coefficients. x is a vector of variables to be computed. The variable index
set is split into three sets (B, I, C), respectively stands for binary, integer and
continuous. This formulation minimizes an objective function (Eq.2) w.r.t. a set
of linear inequality constraints (Eq.3) and the bounds imposed on variables x
e.g. integer or binary. A feasible solution to this formulation is a vector  with the
proper values based on their defined types, that satisfies all the constraints. The
optimal solution is a feasible solution that has the minimum objective function
value. This approach of modeling decision problems (i.e. problems with binary
and integer variables) is very efficient, especially for hard optimization problems.
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2.3 F'2 Formulation

F2 is the best MILP formulation for the GED problem in the literature, it was
proposed by Lerouge et al. [8]. It is based on a previous and straightforward
MILP formulation, referred to as F'1, by the same authors. F'2 formulation is a
more compact and improved version of F'1 by reducing the number of variables
and constraints. The compactness of F'2 comes from the design of the objective
function to be optimized. At first, it considers all vertices and edges of G as
deleted and vertices and edges of G’ as inserted. Then, it solves the problem
of finding the cheapest assignments/matching between the two sets of vertices
and the two sets of edges. The matching in this context is the substitution edit
operations for vertices and edges. Once, the cheapest matching is computed, the
deletion and insertion operations can be concluded. All the remaining vertices
in V (resp. in V’) that are not matched with any vertex in V’ (resp. in V), are
considered as deleted (resp. inserted). The edges are treated in the same manner.
Such design is helpful in reducing the number of variables and constraints in the
formulation. In the following, F'2 is detailed by defining the data of the problem,
variables, objective function to minimize and constraints to respect.

Data. Given two graphs G = (V, E, 1, &) and G' = (V', E' 1/, £'), the cost func-
tions, in order to compute the cost of each vertex/edge edit operations, are
known and defined. Therefore, vertices cost matrix [c,] is computed as in Eq.7
for every couple (i, k) € V x V'. The € column is added to store the cost of dele-
tion 4 vertices, while the € row stores the costs of insertion k vertices. Following
the same process, the matrix [c.] is computed for every ((4,j), (k,1)) € E x E,
plus the row/column e for deletion and insertion of edges.

U1 Vo ... 'U|V’| €
C1,1 €12 ... CL|v/| Cle | W1
C2,1 C22 ... Cyr| C2 | U2
Co = L . . . (7)
CVI,L CVI2 -+ VIV CVie UV
Cel Ce2 --o Ce|v| 0 €

Variables. As mentioned earlier, F'2 formulation focuses on finding the corre-
spondences between the two sets of vertices and the two sets of edges. That is
why two sets of decision variables are needed.

- xip € {0,1} Vi € V,Vk € V'; x; ), = 1 when vertices ¢ and k are matched,
and 0 otherwise.

- yijr € {0,1} ¥Y(4,4) € E,¥(k,l) € E'; yij;u = 1 when edge (4, ) is matched
with (k,1), and 0 otherwise.
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Objective Function. The objective function to minimize is the following.

mlnz Z co(i, k) — cu(iye) — cule, k) ik

i€V keV/

+ Y (eelig kl) = celij, €) — cele, kL)) ijm + (8)

(i,j)€E (k,1)eEE’

The objective function minimizes the cost of assigning vertices and edges with
the cost of substitution subtracting the cost of insertion and deletion. The -,
which is a constant and given in Eq.9, compensates the subtracted costs of the
assigned vertices and edges. This constant does not impact the optimization
algorithm and it could be removed. It is there to obtain the GED value.

’y:ch(i,e)—Fch(e,k)—F Z ce(ij,€) + Z ce(€, kl) (9)

eV keVv’ (i,9)€E (k,l)eE’

Constraints. F2 has 3 sets of constraints.

Y min<1VieV (10)
keV’
Y wip<1VkeV! (11)
i€V
> ik S @ik 3k VEEV VG, §) €E (12)
(k,l)eE’!

Constraints 10 and 11 are to make sure that a vertex can be only matched with
maximum one vertex. It is possible that a vertex is not assigned to any other, in
this case it is considered as deleted or inserted. Here is the key point of this for-
mulation: F'2 is flexible by allowing some vertices/edges not to be matched. The
objective function gets to decide whether a substitution is cheaper than a dele-
tion/insertion or not. 7 takes care of the unmatched vertices/edges and includes
their deletion or insertion costs to the objective function. Finally, constraints 12
guarantee preserving edges matching between two couple of vertices. In other
words, to match two edges (i,5) — (k, 1), their vertices must be matched first,
ie.i—kand j -1l OR¢—1land j— k.

The presented version of F2 formulation, and for the sake of simplicity, is
applied to undirected graphs. For the directed case, it simply splits the con-
straints 12 into two sets of constraints. For more details, please refer to the

paper [8].

3 Improved MILP Formulation (F'3)

3.1 F'3 Formulation

F3 is a new and an improved MILP formulation, inspired by F'2, to solve the
GED problem. It shares some parts of F'2 and it is defined as follows.



Graph Edit Distance in the Exact Context 309

Data. Same as in F'2 formulation, F'3 uses the cost matrices [¢,] and [c.].

Variables. F'3 introduces two sets of decision variables x;; and y;;r as in F2.
However, it includes more y variables, by creating two variables: y;; 1 and y;; 1%
for every ((i,j), (k,1)) € E x E’. Let T = {(l,k) : V(k,1) € E'}. The variables
of the formulation are as follows.

— x5 € {0,1} Vi € V,Vk € V'; x; ), = 1 when vertices ¢ and k are matched,
and 0 otherwise.

— yiim € {0,1} V(i,§) € EN(k,1) € E' UE; yijp = 1 when edge (i,5) is
matched with (k,1), and 0 otherwise.

Objective Function. It is basically the same function as in F'2 formulation, except
for the cost sum over the y variables to include all of them.

min Z Z (cu(iy k) — cp(iy€) — co(e k) ik (8-a)

‘,1;7
Y i€V keV’

+ Y D (celi ) — celig, €) — ce(e, kD)) Yijr +

(i,7)€E (k,1)e E'UE’

Constraints. F'3 formulation shares the same sets of constraints 10 and 11, that
assure a vertex is only matched with one vertex at most. However, it re-writes
the constraints 12 in a different fashion.

> > vim Sdigxmip Vie V,VEEV! (12-a)
(i,7)€E (k,1)e E'UE’

With d; , = min(degree(i), degree(k)). The degree of a vertex is the number of
edges incident to the vertex. The constraints stands for: whenever two vertices
are matched, e.g. (i — k), the maximum number of edges substitution that can
be done is equal to the minimum degree of the two vertices. Figure 1 shows an
example of the case. Two edges at most can be substituted and the third of 7 has
to be deleted. Of course, the deletion of all edges is possible, if it costs less than
the substitutions. These constraints force matching the edges and respecting the
topological constraint defined in the GED problem.

The given formulation handles the case of undirected graphs. Though, it can
be adapted to deal with the directed case, by setting F = {¢} (because edges
(i,7) are different from (74, ¢) and they are already included in E), and replacing
the objective function Eq. 8-a by the objective function of F2 Eq.8.

3.2 F2vs. F3

The most important improvement in the proposed formulation is that F'3 has sets
of constraints independent of the number of edges in the graphs. Constraints 10
and 11 are shared by both formulations and they do not include edges. However,
constraints 12 rely on the edges of G, which is not the case of the constraints
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~

d(i,k) = min(3,2)

Fig. 1. Example of edges assignment when assigning two vertices

12-a in F'3. Table 1 shows the number of variables and constraints in both formu-
lations. Clearly, F'3 has (2 times) more y variables than F'2. The reason behind
creating two y variables for each couple of edges, is to accommodate to the sym-
metry case that appears when dealing with undirected graphs, i.e. (¢,7) = (J,1%).
By doing so, the constraints 12 can be re-written differently by relying only on
the vertices of the graphs (constraints 12-a). Note that, this comparison is done
for undirected graphs. In the other case, the symmetry is discarded, and both
formulations have the same number of variables.

Table 1. Nb. of variables and constraints in F'2 and F'3

Nb. of variables Nb. of constraints
F2 V| x |V'|+|E| x |E'| VI+ V| +[V] x |E|
F3 VI |V'[+|E| x |[E'|x 2| [V]+|V'[+ V] x [V|

In the GED problem, edge operations are driven by vertex-vertex matching.
On this basis, the difficulty in F'2 and F'3 comes from the z decision variables,
rather than the y variables. Moreover, F'2 formulation is more sensitive to the
density of the graphs (% connectivity, D = %)7 because its constraints
depend on the edges, which is not the case in F'3. This reasoning led to make

the following two assumptions, by distinguishing between two cases:

1. Non-dense graphs: even if F'3 has more y variables than in F'2, its performance
will not be degraded compared to F'2.

2. Dense graphs: F'3 will have less constraints than F2, since '3 has a number
of constraints independent from the number of edges. Consequently, F'3 tends
to perform better than F2.

To validate those assumptions, both formulations are tested over two graph
databases. The results are discussed in the next section.

4 Computational Experiment

4.1 Databases

Two databases are selected from the literature in order to evaluate F'3.
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MUTA. This database consists of graph that model chemical molecules [1].
It is commonly used when testing GED methods, mainly because it contains
different subsets of small and large graphs. It allows exploiting GED methods
and shows their behaviors when the instances get more difficult. There are 7
subsets, each of which has 10 graphs of same size (10 to 70 vertices) and a subset
of also 10 graphs with mixed graph sizes. Each pair of graphs is considered as
an instance. Therefore, a total of 800 instances (100 per subset) are considered
in this experiment. The density of the graphs is very low (D = 7%), hence they
are considered as non-dense graphs. The choice of the edit operations costs is
based on the values defined in [1].

CMUHOUSE. This database contains 111 graphs corresponding to 3-D images
of houses [9], each graph consists of 30 vertices with attributes described using
Shape Context feature vector. The graphs are extracted from 3-D house images,
where the houses are rotated with different angles. This is interesting because it
enables testing and comparing graphs that represent the same house but posi-
tioned differently inside the images. For this database, there are 660 instances
in total. The density of these graphs is higher than MUTA graphs, D = 18%.
Two versions of this database are considered: CMUHOUSE-NA is the version
where attributes are not considered when calculating the costs; CMUHOUSE-A
a second version with costs computed based on the functions given in [15].

4.2 Experiment Settings

Both formulations are implemented in C language, and solved by CPLEX 12.7.1
with time limit 900s. The tests were executed on a machine with the fol-
lowing configuration: Windows 7 (64-bit), Intel Xeon E5 4 cores and 8 GB
RAM. For each formulation, the following values are computed for each sub-
set of graphs: ¢4, is the average CPU time in seconds for all instances, dg.q4
is the deviation percentage between the solutions obtained by one formula-
tion, and the best computed by both formulations. For example, given an

F3
instance I, the deviation percentage for I'3 is equal to % % 100, with

best; = min(solf?, solf3). Lastly, n; and 7} represent, respectively, the num-
ber of optimal solutions obtained by a formulation, and the number of solutions
for which, a given formulation has provided the minimum (smaller objective
function value, without necessarily a proof of optimality).

4.3 Results and Analysis

MUTA Results. Table 2 shows the results obtained for both formulations for each
subset of graphs. Looking at d4.4 for F2, it scores the smallest values for all the
subsets, except for subset 70. However, the gap between both formulations is
small, especially with small instances (0% for subsets 10 and 20). In terms opti-
mal solutions (1), F'3 has higher numbers for subsets 30,40, 50 and Mized, with
greater differences: for subsets 30 at 76 optimal solutions against 48, and subset
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50 at 31 optimal solutions against 19. Regarding 7', F'2 has higher numbers for
most of the subsets (30, 50,60 and Mixzed). However, 1 of F3 are not far the
ones of F'2. At last, F'2 is faster than F'3 for small and medium subsets (10, 20, 30
and Mized). But, for the rest of the subsets, both formulations suffer from high
computation time and reach the time limit set (900s). The conclusion of this
experiment: both formulations seems to be very close in terms of performance
and efficiency in computing optimal solutions. It is hard to tell which formu-
lation is better. This result corroborates the first assumption, that is F'3 is as
good as F'2 in the case of non-dense graphs.

Table 2. Results of MUTA instances

10 |20 |30 40 50 60 70 Mixed
F3 | tavg(s)  0.10 |3.07 | 365.44 | 575.65 |770.61 |810.51 |811.10 |410.08

davg 0.00 | 0.00|0.74 0.54 1.78 3.60 2.55 0.80
n 100 |100 |81 76 31 10 10 62
n 100 |100 |91 90 68 53 61 78

F2 | taug(s) 0.05|0.99|320.35|571.65 | 766.63 | 802.94 | 802.69 | 370.36
davg 0.00|0.00 | 0.21 0.51 1.52 1.46 2.76 0.15

n 100 [ 100 |79 48 19 11 11 61

n 100 |100 |93 84 69 69 60 91

Table 3. Results of CMUHOUSE instances

CMUHOUSE-NA | CMUHOUSE-A

F3 | tavy(s) | 497.07 416.75

davg | 0.70 0.22

n 365 633

n 644 652
F2 | taug(s) | 880.74 278.78

davg | 604.11 4.68

n 25 505

" 54 548

CMUHQOUSE Results. Table 3 presents the results of both formulations for both
versions of CMUHOUSE. In the case of CMUHOUSE-NA (no attributes), the
instances seem to be harder than the version with attributes. When ignoring the
attributes, the similarities between vertices and edges are high and it does not
allow to easily differentiate between them. The average deviation for F'3 is 0.70%
against 604.11% for F'2, the difference is remarkably high. This is also seen when
looking at n and 7/, respectively, 365,644 for F'3 against 25,54 for F2. F'3 was
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able to compute optimal solutions for more than 50% of the instances. It looks
like F'2 had hard time with these instances in converging towards good solutions.
The version with attributes (CMUHOUSE-A) is easier, but still F'3 has scored
davg = 0.22% against 4.68% for F'2. F'3 has solved more instances to optimality
(652) than F'2 (505). Based on these results, the second assumption also holds
true. CMUHOUSE graphs are more dense than MUTA, which means that F'3
has less constraints, since all its constraints are independent from the number
of edges in the graphs. As a result, F'3 has performed better than F'2.

5 Conclusion

In this work, a new MILP formulation is proposed for the GED problem. The
new formulation is an improvement to the best existing one. The results of the
experiments have shown the efficiency of this formulation, especially in the case
of dense graphs. This is due to the fact that, the constraints are independent from
the edges in the graphs. The next step will be to evaluate the new formulation
against more graph databases with different settings, i.e. graphs with high and
very high densities.
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Abstract. We have recently intoduced VF3, a general-purpose sub-
graph isomorphism algorithm that has demonstrated to be very effective
on several datasets, especially on very large and very dense graphs.

In this paper we show that on some classes of graphs, the whole power
of VF3 may become overkill; indeed, by removing some of the heuristics
used in it, and as a consequence also some of the data structures that
are required by them, we obtain an algorithm that is actually faster.

In order to provide a characterization of this modified algorithm,
called VF3-Light, we have performed an evaluation using several kinds of
graphs; besides comparing VF3-Light with VF3, we have also compared
it to RI, a fast recent algorithm that is based on a similar approach.

1 Introduction

Graphs are a popular representation in Structural Pattern Recognition, where the
object of interest can be decomposed into parts (represented as nodes) and signif-
icant information is attached to the relationships between parts (represented as
edges). Applications where this kind of representation have been profitably used
include computer vision, chemistry, biology, social network analysis, databases.

A common task on such representations is finding suitable correspondances
between the structures of two graphs (graph matching); an important special case
is the search for occurrences of a smaller graph (called pattern) inside a larger
graph (called target). Subgraph isomorphism is a possible formulation of this
problem, that has been widely investigated in the literature: see [1-3] for exten-
sive reviews on subgraph isomorphism and other graph matching algorithms in
the field of Pattern Recognition.

Many subgraph isomorphism algorithms (e.g. Ullmann’s [4], VF2 [5], L2G
[6], RI/RI-DS [7]) are based on Tree Search. In this approach, the search space
(also called state space) is conceptually defined as a tree of states, where each
state correspond to a partial mapping of the pattern nodes onto target nodes.
The root of the tree is the state corresponding to an empty mapping, while a
new state is obtained from an existing one by adding to the mapping a pair
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(pattern node, target node) that ensures the preservation of the structural con-
straints imposed by problem formulation. Algorithms based on this approach
perform a depth-first visit of the state space with backtracking, in order to
avoid the explicit construction of the whole state space. The algorithms essen-
tially differ from each other in the order they visit search space, the heuristics
they adopt for pruning unfruitful portions of the space, and the data structures
they need to keep and update during the visit process; these factors, although
they do not change the asymptotic worst case complexity (the problem is NP-
complete), may greatly affect the actual execution times on graphs commonly
found in applications.

The choice of the heuristics is often subject to a trade-off: a given heuristic
may allow the algorithm to detect in advance that a candidate state is a dead
end, saving the need to explore its successors. However, the time for evaluating
this heuristic must be added to the time spent on each state. Furthermore,
sophisticated heuristics usually need additional data structures to be kept during
the visit process, and the contents of these structures have to be updated for
each examined state, adding more time and in some cases more space to the
requirements of the algorithm.

In [8] the authors have presented VF3, a recent algorithm based on this app-
roach, especially devised to be effective on large and dense graphs, which are
often problematic for other matching algorithms. VF3 is defined as an extension
of a previous algorithm, named VF2. The authors demonstrate, using an exten-
sive experimentation, that this algorithm is not only significantly faster than the
original VF2, but also faster than other recent state-of-the-art algorithms.

In this paper, we introduce a simplfied version of VF3, named VF3-Light, that
avoids some of the heuristics used in VF3 and in its predecessor VF2. While the
removal of these heuristics imply that the new algorithm has a reduced pruning
ability, and thus may visit more states than VF3, VF3-Light can avoid keeping
and updating some of the data structures needed by its predecessor. This in turn
makes the visit of each state faster, and on some kinds of graphs the time saving
is such to obtain a smaller overall matching time.

As we will show in the experimental section, a preliminary experimentation
has demonstrated that this is indeed the case on several kinds of graphs, while on
other types of graphs the full power of the complete VF3 heuristics still proves
to be able to achieve the fastest results.

2 The Proposed Method

In this section, we will first present a short description of the original VF3
algorithm (the reader is referred to [8] for more details). Then we will discuss
the heuristics that have been removed to obtain VF3-Light, highlighting the
impact on the data structures that the algorithm needs maintain.

We will denote as G = (V, E) a graph with the set of its nodes V' and the
set of its edges E C V x V. The pattern (smaller) graph will be G; = (V1, Ey),
and the target (larger) graph will be Gy = (Va, E3). Nodes and edges usually
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have also labels or attributes, that are represented using two labeling functions:
Ay : V1 UV, — L, for the nodes, and A, : B4 U Ey; — L, for the edges. Given a
node u € Vi, we will denote as Sy (u) the set of all the successors of u, i.e. the
nodes reached by an edge starting from u, and as P (u) the predecessors, i.e. the
starting nodes of edges arriving to u. We similarly define Sy(v) and Po(v) for
v € V5. Graph matching is the problem of finding a mapping function M : V; —
Vo satisfying some structural constraints. For subgraph isomorphism [1], the
constraints are that M is injective and structure preserving, i.e. the nodes put
in correspondance must have the same structure considering both the presence
and the absence of edges.

2.1 Overview of the VF3 Algorithm

Before describing the algorithm, let us introduce some notations that will be used
in the following. As previously said, the algorithm visits a search space that is
conceptually organized as a tree of states, with each state s representing a partial
mapping built so far by the algorithm. In this tree two states are connected if the
second can be obtained from the first by adding a pair of nodes (u,v) € Vi x V;
to its partial mapping.

function VF3(G1,G2)
Ng, :=ComputelOrdering(G1,G2)
S0, Parent=PreprocessPatternGraph(Gi, Ng,)
Results := {}
Match(sp, Gi1, G2, Ng,, Parent, Results)
return Results

end

Fig. 1. Outline of the VF3 algorithm. The VF3 function returns the set of solutions
found. Ng, is the node exploration sequence precomputed for G, so is the initial state
and Parent is a precomputed data structure used during the visit. The Match procedure
is shown in Fig. 2.

A state is consistent if its partial mapping satisfies the constraints imposed by
the required matching (subgraph isomorphism, in this case). A state represents
a solution if it is consistent, and the mapping involves all the nodes in V;. Since
it can be demonstrated that a solution cannot be reached from an inconsistent
state, the algorithm only generates consistent states in the search tree. For each
state s the algorithm maintains the following information:

— M(s) C Vi x Va, the partial mapping; for the initial state sg, M(so) = {};
we will denote as M (s) and Ma(s) the projections of M (s) onto V4 and V5
respectively; B

— P1(s) € V1 and Pa(s) C Vo, the sets of nodes outside M (s) having an edge
whose destination is a node in M;(s) (for Py) or in May(s) (for Py);
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~ 8i(s) € V4 and Sy(s) C Va, the sets of nodes outside M(s) having an edge

whose origin is a node in M;(s) (for Sy) or in Ma(s) (for S,).

If the nodes have labels, VF3 can make use of them by partitioning the nodes
into equivalence classes (each class corresponds to a disjoint subset of the labels)
in order to speed up the search; in this case, the algorithm will keep for each
state the projection of P1(s), Pa2(s), S1(s) and S2(s) onto each of the classes.

procedure Match(s, Gi, G2, Ng,, Parent, out Results)
if IsGoal(s) then append M(s) to Results
else
for (un,v,) € NextCandidates(s, Ng,, Parent, Gi, G2)
if IsFeasible(s, un, v,) then
Sn := ExtendState(s, un, vn)
Match(s,, Gi1, G2, Ng,, Parent, Results)
RestoreState(s, un, Un)
end if
end for
end if

end

Fig. 2. The recursive match procedure. Here s is the search state, u, and v,, are nodes
evaluated for being added to the current partial mapping, and s,, is a new state obtained
adding (un,vn) to s

An outline of the VF3 algorithm is given in Fig. 1. The algorithm, before com-
mencing the depth-first visit of the search space, performs some preprocessing.
First, the node exploration sequence for the nodes of the pattern graph (Ng,, a
permutation of V1) is defined, in order to explore first the nodes that are more
rare and constrained, evaluating for each node u € V; the following criteria: the
probability Pr(u) of finding a node v € V5 that has the same label as u and
a compatible degree (for subgraph isomorphism, the degree of v must be not
smaller than that of u); the number of connections of u to other nodes already
inserted in the sequence N¢,, since each connection becomes a constraint in the
mapping; the degree of u, since nodes with larger degrees will introduce more
constraints in the mapping.

After defining Ng,, a preprocessing of G is performed to precompute, for
each level of the search space, the following information:

— the sets Py (s) and S (s), since as shown in [9] they only depend on the depth
level of s;

— an associative array Parent that links each node of V; the first node that is
both connected to it and present in N¢, before it;

— the initial state sg, having an empty associated mapping.

After the preprocessing, the actual depth-first visit starts. Figure 2 shows the
algorithm used for the visit, in the case that all the solutions are desired; the
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algorithm is slightly different if only the first solution is requested. Each pair of
nodes that is considered for addition to the current partial mapping, is examined
using the IsFeasible function, described later, and if it passes this test, a new
state s, is built by extending s; then the visit proceeds recursively on s,. In
order to save space, the data structures for s, are not allocated from scratch;
instead, the ExtendState function destructively reuses the data structures of
s. Indeed, this allows VF3 to run with a space complexity that is linear in the
number of nodes, as we will show in the next subsection. Because of this, after
each recursive call, the Match procedure has to restore the previous condition of
the data structures belonging to s; this is done by the RestoreState procedure.

The IsFeasible function plays a central role in the algorithm: first, it checks
if the addition of (u,v,) will produce a new state that is consistent with the
subgraph isomorphism constraints; furthermore, it includes the so-called look-
ahead functions, that are heuristics to check if any consistent state can be reached
in one or two steps from the obtained new state:

IsFeasible(s, Un, Un) = Fis(8, Un, V) A Fo(8, Uy, vp)A (1)

Fia1 (57 Unp, Un) A Ea2(57 Un, vn)
where Fy is the semantic feasibility function, checking if u,, and v,, have the same
labels and if the edges connecting them to M; (s) and Ms(s) have the same labels.
F, checks the structural consistency of the new state: if an edge exists between w,,
and a node in M;(s), an edge must also exist between v,, and the corresponding
node in Ms(s), and vice versa. F,; is the 1-look-ahead function: it is a heuristic
necessary condition that must be satisfied to ensure that at least one of the
states derived by adding another pair of nodes to s,, is consistent; similarly Fj,o
is the 2-look-ahead function, regarding the states derived by adding two pairs of
nodes to s,. Notice that Fj,; and Fj,s are necessary but not sufficient conditions
to ensure that a solution can be reached from s,,. For graphs without labels, the
look-ahead functions are the following:

Flal(sa U, Un) —

[P1(un) NP1(s)| < [P2(vn) N Pa(s)]
[P1(un) NS1(s)| < [P2(vn) N Sa(s)] (2)
1S1(un) NP1(s)] < [S2(vn) N Pa(s)]
1S1(un) N S1(s)| < [S2(vn) N Sa(s)]
Floa(s,up,v,) <~
1Py () N T2(3)] < [Py(on) 1 Tals) 3)

where Vi (s) = V4 — My(s) — Si(s) — P1(s) and similarly Va(s) = Vo — Ma(s) —
S5(s) — Pa(s). In the case of labeled graphs the sets S;(s) and P;(s) are kept
separately for each equivalence class into which the node labels are divided, and
so the above equations are replicated for each class.
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2.2 VF3-Light: Removing the Look-Ahead Rules

The look-ahead functions described by Eqgs.2 and 3 are not needed to ensure
the correctness of the found solutions. Without them, the algorithm would find
exactly the same solutions, but will possibly have to explore more states to reach
them. The same is true for the reordering of the nodes of the pattern graph:
the algorithm would be correct with whatever order of the nodes, but the one
chosen in VF3 aims at introducing as soon as possible the nodes that have more
constraints, so as to discard earlier unfruitful portions of the state space. The
combined effects of these two heuristics results in the high performance shown
by VF3 on large and dense graphs [8]. However, we decided to investigate if on
simple graphs these two heuristics may be somewhat redundant.

The node reordering does not require the use of additional data structures,
and does not take time during the recursive visit of state space. Conversely,
for computing the look-ahead functions the algorithm needs to keep the Pa(s)
and S,(s) sets for each state s (as we said earlier, S;(s) and Py(s) can be
precomputed). In principle, these sets could occupy a memory that is O(Nz)
(where N7 and N are the number of nodes in G; and G3). Since the depth-first
visit of the tree keeps in memory at most O(N;) states, the memory requirement
would be O(N; - Na). However, in the implementation of VF3 we have reused the
data structure of the parent state when a child state is derived from it, restoring
its original content when the exploration of the child is finished. Thus, the overall
memory occupation remains O(Na).

On the other hand, the time needed to compute g(sn) and ﬁ(sn) from the
corresponding sets of s is proportional to the degrees of u,, and v,, and must be
spent for each new state that is visited. A similar time is needed to restore the
previous content of the data structures when the visit of the state is finished.
So, in the trade-off between the number of visited states and the time spent on
each state, it is entirely possible that the use of the feasibility rules may worsen
the performance of the algorithm on those graphs where the reordering heuristic
already removes most of the unfruitful paths. To verify that this is the case, we

Table 1. Characteristics of the datasets used to benchmark VF3-light

Dataset Graphs| Target size Pattern size Labels
MIVIA BVG 6000 | 20-1000 nodes 20% of target size| -
MIVIA M2D 4000 | 16-1024 nodes 20% of target size| -
MIVIA M3D 3200 | 27-1000 nodes 20% of target size| -
MIVIA M4D 2000 | 16-1096 nodes 20% of target size| -
MIVIA RAND| 3000 | 20-1000 nodes 20% of target size| -
Proteins 300 | 535-10081 nodes| 8-256 4-5
Molecules 10000 | 8-99 nodes 8-64 4-5
Scale-free 100 | 200-1000 nodes | 90% of target size| -
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have defined and implemented a modified algorithm, called VF3-Light, which
has the following modifications with respect to VF3:

— removal of the computation of S; and Py in the preprocessing phase;

— removal of S(s) and Pa(s) from the state data structure, and of their com-
putation and restoring in ExtendState and RestoreState;

— removal of Fj,; and Fj,o from IsFeasible.

3 Experiments

Due to the complexity and variety of subgraph graph isomorphism there is no
single algorithm that is able to outperform the others for all the possible kind
of graphs and applications. For this reason, we have chosen a group of datasets
that, at the same time, contain different graph families and are representative
to some relevant fields applications of subgraph isomorphism, i.e. biology and
social networks. The first dataset is the MIVIA [5,10], which is well-known and
widely used; it is composed of more that 10000 unlabeled graphs belonging to
three main typologies: bounded valence, random graphs and open meshes (regu-
lar and irregular). This dataset was proposed more than ten years ago to profile
the performance of VF2, but is still considered an important benchmark for any
new exact graph matching method [11]. Additionally, we have considered two
biological datasets of graphs extracted from real protein and molecule structures,
proposed during the International Contest on Graph Matching Algorithms for
Pattern Search in Biological Databases hosted by the ICPR 2014 [12]; and a
synthetic dataset of scale-free graphs, proposed by Solnon in [13,14], generated
using the Barabdsi-Albert model [15], that is representative both of social net-
works and of protein-protein interaction networks. In Table1l we briefly show
the characteristics of these datasets. The experiments have been conducted on a
cluster infrastructure with VMWare ESXi 5. All the virtual machines have been
configured with two dedicated AMD Opteron running at 2,300 MHz, with 2 Mb
of cache and 4 Gb of RAM.

Table 2. Overall execution time of the algorithms on each dataset. Time is the match-
ing time in seconds; relative time is the ratio between the time of the algorithm and
the one of the fastest algorithm on the same dataset.

VF3 [ VF3-Light [ RI
| Time [Relative Time| Time [Relative Time[ Time [Relative Time)|
BVG 1.41e405 1.92 7.33e+04 1.00 2.10e+05 2.87
RAND 1.58e+404 12.96 1.33e+404 10.87 1.22e+03 1.00
M2D 9.02e+05 1.63 5.55e+05 1.00 9.76e+05 1.76
M3D 6.89e+05 2.22 3.56e+05 1.15 3.11e+05 1.00
M4D 1.33e+405 1.98 6.73e+04 1.00 7.62e+04 1.13
Molecules 2.25e+401 2.19 1.02e+401 1.0 2.30e+01 2.24
Proteins 1.94e+4-01 1.0 2.62e+401 1.35 5.69e+01 2.93
Scale-Free [6.32e+402 1.00 1.48e+-05 233.65 1.04e4-05 164.09
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Table 3. Matching time vs target size on the MIVIA datasets. For each kind of graphs,
time is the average matching time in seconds; relative time is the ratio between the
average matching time of the algorithm and that of the fastest algorithm for the same
target size.

[Size| VF3 [ VF3-Light [ RI
[ | Time [Relative Time| Time [Relative Time[ Time [Relative Time]|
80 2.54e-03 2.49 1.02e-03 1.00 1.67e-03 1.64
100 | 7.06e-04 2.16 3.26e-04 1.00 9.32e-04 2.86
BVG 200 | 2.41e-01 2.08 1.15e-01 1.00 2.90e-01 2.52
400 | 4.34e-01 1.98 2.19e-01 1.00 3.33e-01 1.52
600 [7.54e+02 1.92 3.93e+02 1.00 1.13e403 2.87
800 [8.82e+00 3.39 4.30e+00 1.65 2.60e+00 1.00
80 8.13e-03 1.91 4.25e-03 1.00 1.18e-02 2.77
100 | 4.07e-03 1.61 2.52e-03 1.00 7.40e-03 2.93
200 | 6.00e-02 1.69 3.54e-02 1.00 6.04e-02 1.71
RAND 400 | 9.91e-02 1.37 7.23e-02 1.00 1.29e-01 1.78
600 [3.74e+01 56.12 2.96e+01 44.39 6.66e-01 1.00
800 [2.63e+00 3.53 2.71e+00 3.63 7.45e-01 1.00
1000{1.26e+01 5.15 1.19e+01 4.85 2.45e+00 1.00
81 9.81e-04 1.72 5.70e-04 1.00 1.22e-03 2.14
100 | 2.77e-03 1.87 1.49e-03 1.00 3.08e-03 2.07
196 | 5.18e-03 1.69 3.07e-03 1.00 7.84e-03 2.55
M2D 400 | 2.78e-01 1.78 1.56e-01 1.00 8.84e-01 5.67
576 [1.83e+02 1.67 1.10e+4-02 1.00 1.81e+402 1.65
784 [4.64e+03 1.63 2.85e+03 1.00 5.05e+03 1.77
1024(2.68e+03 1.32 2.03e+03 1.00 3.28e+03 1.61
64 3.64e-04 1.84 1.98e-04 1.00 3.24e-04 1.64
125 | 5.19e-04 1.81 2.87e-04 1.00 4.93e-04 1.72
216 | 2.93e-03 2.36 1.24e-03 1.00 2.09e-03 1.68
M3D 343 |6.21e-03 2.10 2.96e-03 1.00 4.07e-03 1.38
512 | 2.25e-01 2.26 9.95e-02 1.00 1.09e-01 1.09
729 [1.43e+02 2.31 7.42e+01 1.20 6.20e+01 1.00
1000{1.59e+03 2.21 8.20e+02 1.14 7.19e+02 1.00
16 3.46e-05 1.80 1.92e-05 1.00 2.22e-05 1.16
81 2.09e-04 1.55 1.35e-04 1.00 1.69e-04 1.26
M4D 256 | 1.56e-03 1.83 8.51e-04 1.00 1.33e-03 1.57
625 [1.72e+01 2.02 9.34e+00 1.09 8.53e+00 1.00
1296 (4.68e+03 1.99 2.36e+03 1.00 2.70e+03 1.15

We have compared VF3-Light against VF3 [9] and RI [11], a three-search
based algorithm approaching subgraph isomorphism without look-ahead, simi-
larly to our algorithm, but with different heuristics and sorting procedure. The
matching times for the three considered algorithms to find all the sugbraph iso-
morphism solutions are shown in Figs. 3a-h. Table 2 show the overall matching
time for each algorithm on each entire dataset. Table 3 provides more detailed
information on the matching times with respect to target size. In these tables,
beside the absolute value of the matching times, we have also reported the rela-
tive times, normalized with respect to the fastest time (e.g. 1 means the fastest
time, 1.3 means 30% longer than the fastest time and so on).

As we expected, VF3, which is designed to deal very large and dense graphs
(more than a thousand nodes), is confirmed to be the most effective algorithm
on large labelled graphs extracted from protein (Fig. 3g), where it outperforms
both VF3-Light and RI (that are respectively 35% and almost 200% slower).
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Fig. 3. The total mathing times on each dataset.

Similarly, on scale-free graphs (Fig.3h), that are dense random graphs gen-
erated using a power law distribution of degrees [15], the full VF3 is again con-
siderably faster than VF3-Light and RI, by more than two orders of magnitude.
On this dataset, for some of the graphs RI turns out to outperform both, but on
the hardest graphs VF3 is by a large margin the fastest algorithm, thus yielding
a much shorter overall matching time. On the remaining datasets, VF3-Light
is always faster than the full VF3. In particular, it becomes significantly faster
on Bounded Valence graphs (Fig. 3a), 2D/3D/4D meshes (Fig. 3¢, d and e) and
molecules (Fig. 3f), where VF3 requires a time that is respectively 92%, 63%,
93%, 98% and 112% longer than VF3-Light. Moreover, on Bounded Valence
graphs, 2D meshes and molecules, VF3-Light is also able to significantly out-
perform RI (being 187%, 76% and 124% faster), resulting the fastest algorithm.
On the other hand, on the MIVIA Random graphs RI is faster than VF3-Light
by an order of magnitude, and on 3-D and 4-D meshes these two algorithms are
quite close to each other (about 15% of difference).
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From the exam of Table 3, we can see that VF3-Light always result the fastest
algorithm of the three for small to medium-sized graphs (up to about 500 nodes).
Notice that on Random graphs there is an anomaly at 600 nodes: a single pat-
tern/target pair that makes the average the matching time of both VF3 and
VF3-Light considerably longer. We will have to better study this particular pair,
understanding why it is so problematic for our algorithms, in order to further
improve their heuristics.

4 Conclusions

In this paper we have introduced VF3-Light, a subgraph isomorphism algorithm
obtained by removing some of the heuristics used in VF3, namely the so called
look-ahead functions. The removal of these heuristics makes the algorithm faster
in the visit of each search state, but also implies that a larger number of states
may need to be visited for finding the solutions. An experimental evaluation on
several kinds of graphs shows that indeed on very large or very dense graphs,
for which the VF3 algorithm was designed, the look-ahead heuristics give an
advantage, but on other, simpler kinds of graphs VF3-Light is able to outperform
VF3. These are only the first results obtained on the new algorithm; further
experiments will be performed in the future in order to provide a more precise
characterization of the situations where the balance is in favor of either VF3 or
VF3-Light, so as to give the users some criteria for deciding which algorithm to
choose for a given application problem.
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Abstract. The problem of finding a distance and a correspondence between a
pair of graphs is commonly referred to as the Error-tolerant Graph matching
problem. The Graph Edit Distance is one of the most popular approaches to
solve this problem. This method needs to define a set of parameters and the cost
functions aprioristically. On the other hand, in recent years, Deep Neural Net-
works have shown very good performance in a wide variety of domains due to
their robustness and ability to solve non-linear problems. The aim of this paper
is to present a model to compute the assignments costs for the Graph Edit
Distance by means of a Deep Neural Network previously trained with a set of
pairs of graphs properly matched. We empirically show a major improvement
using our method with respect to the state-of-the-art results.

1 Introduction

Graphs are defined by a set of nodes (local components) and edges (the structural
relations between them), allowing to represent the connections that exist between the
component parts of an object. Due to this, graphs have become very important to model
objects that require this kind of representation. In fields like cheminformatics, bioin-
formatics, computer vision and many others, graphs are commonly used to represent
objects [1].

One of the key points in pattern recognition is to define an adequate metric to
estimate distances between two patterns. The Error-tolerant Graph Matching tries to
address this problem. In particular, the Graph Edit Distance (GED) [2] is an approach
to solve the Error-tolerant Graph Matching problem by means of a set of edit operations
including insertions, deletions and node assignments, also referred to as node substi-
tutions. On the other hand, Deep Neural Networks (DNNs) have become a very
powerful tool applied in several domains due to their ability to find models.

The aim of this paper is to propose a new way to estimate node assignment costs for
GED, using a DNN trained with a set of graphs correspondences properly labelled. The
document is organized as follows: in Sect. 2 are presented the definitions to understand
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the paper, in Sect. 3 is presented the state-of-the-art, in Sect. 4 we describe the
architecture and de details of our model while Sect. 5 shows the experimental results.
Finally, the conclusions are presented in Sect. 6.

2 Definitions and Methods

2.1 Attributed Graph

Formally, we define an attributed graph as a quadruplet G = (X, X, v,,Y.), Where
Y, ={vili =1,...,n} is the set of nodes, X, = {eij|i,j el,.. .,n} is the set of edges
connecting pairs of nodes, v, is a function to map nodes to their attributed values and
Y. maps the structure of the nodes.

2.2 Graphs Correspondence

We define a correspondence between two graphs GP and GY as a set of assignments

f : 2P — X that univocally relate the nodes of GP to the nodes of GY. Where f (vf’) =

v{! if exist the assignment v — v.

2.3 Node Assignment Costs for the Graphs Edit Distance

The basic idea of the GED [2] between two graphs GP and GY, is to find the minimum
cost to transform completely GP into G by means of a set of edit operations, including
insertions, deletions and node assignments, commonly referred to as editpath. Cost
functions are introduced to quantitatively evaluate the level of distortion that each edit
operation introduces.

p q) _ p q p q
c(vi —>Vj>—cv<vi —>Vj> +ce(vi—>vj> (1)

The cost of an assignment edit operation (1) is typically given by the

distance measure between the nodes attributes c, (vf — V?) = local_distance

(yg (vP),vd (vf)) and by the cost of substituting the local structures c, (vf — v?) =

structural _distance (yg (vf’ ),yg (qu)) These cost functions estimate the degree of

separation between a pair of nodes v and v{ belonging to graphs GP and GY. The
Euclidean distance is a common way to estimate the local_distance between the nodes
attributes, while in [3] are presented different metrics to estimate the structural_dis-
tance. Our model, as we will see, automatically learns the costs of these assignations
from a set of training correspondences previously labeled without having to define the
cost functions.

In order to allow the maximum flexibility in the matching process and taking into
account that graphs can have different cardinality and that a node that appears in GP
could not be in GY, graphs can be extended with null nodes adding penalty costs when
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an existing node of one graph is assigned to a null one of the other graph. In this paper
we do not consider this option since we focus on the problem of node assignments
comparing our results with other works that face the same problem, as in [4, 5].
However, our model can be easily combined with other models that consider null nodes
by adding penalty costs for insertions and deletions.

2.4 Hamming Distance

The hamming distance is a metric to compare graph correspondences used typically to
assess the correctness of a correspondence comparing the correspondence that we are
evaluating with respect to the ground-truth one. This metric evaluates the ratio between
the number of correct assignments and the total number of assignments in the evaluated
correspondence. Formally:

Let f : X — 29 the automatic correspondence and f : ¥ — X9 the ground-truth
correspondence between two graphs GP and GY? with cardinality n (graphs can be
extended with null nodes to manage insertions or deletions of nodes), the hamming
distance is formally defined as:

(1) - Sl =800 () o

n

Where, 6 is the Kronecker Delta function:

stan =\ a7 ®

2.5 Deep Neural Networks

DNNs are a computational model inspired by the neural networks existing in many
biological organisms [6]. They have become very popular in many fields due to its
adaptability and learning capacity.

The classical architecture of a DNN consists of an input layer, an output layer and a
cascade of multiple hidden layers in the middle. Each layer contains several neurons
connected with the neurons of the previous layer. The connections between neurons
have different weights fixing the strength of the signal at the connection. Each neuron
executes an activation function having as inputs the values of the connections with the
previous layer and sending the output to the neurons of the next layer. The signal path
goes from the input layer to the output layer. Depending on the connections weights
and the bias values, the output can be different given the same input.

During the training process the learning algorithm adjust the weights and bias
according to the values of a training set trying to minimize the error between the given
inputs and the expected outputs.
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3 State of the Art

The distance value of the GED depends on the edit costs, in particular ¢, (distance
between the nodes attributes), c. (distance between the local structures) and the
penalties costs for insertions and deletions. Typically, these costs must be defined and
parameterized aprioristically. Depending on how these parameters and costs functions
are defined the performance in terms of hamming distance between the automatically
deduced correspondence and a ground truth correspondence or graphs classification
accuracy, can be different.

Recently, in order to maximize the performance of different Error-Tolerant Graph
Matching approaches, some researchers have focused their work on automatically learn
the parameters and the cost functions instead of using the traditional trial-error method.

We can divide the learning methods in three main groups depending on the
objective function. The first group [7-10] addresses the recognition ratio for graph
classification, while the second group [4, 5, 11, 12] targets the hamming distance.
Finally, there is a special case in [13] that does not learn the parameters to estimate the
costs but tries to predict if an assignment between nodes is correct or not depending on
the values of the costs matrix (the matrix with the costs of each edit operation).
Moreover, another subdivision can be considered depending if the methods try to learn
the assignments costs or the insertions and deletions. The aim of our paper is to propose
a model to estimate only the assignments costs minimizing the hamming distance, as in
[4, 5]. As we have commented before, our model can be combined with other models
that consider nodes insertions and deletions but we do not address this particularity in
this paper.

4 Proposed Architecture

In this section we describe a new architecture based on DNNs to estimate assignments
costs (Sect. 2.3) between a pair of nodes by means of a DNN (Sect. 2.5) in order to
minimize the hamming distance (Sect. 2.4).

c(vf — vj]) = DNN (Vf — qu) (4)

4.1 Node Assignment Embedding

The first step of our model consists of transforming the local and structural information
of both nodes into a set of inputs for the network. In this section we show how to
embed this information into an input vector.

Let G? and GY two attributed graphs, v? = {v} — ¥P|i = 1...n} a function that
assigns t attribute values from an arbitrary domain to each node of G?, where ¥ € R'
is defined in a metric space of t € R dimensions and 2 = {v%D — E(vf) i=1.. .n}
where E(.) refers to the number of edges of a certain node (the Degree centrality [3]).
And similar for yd and £ in G%.
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Vector x' ™ = [yg (VP), yR (vD), v4 (v;*),yg (vf)] € R+ 12 js the embedded rep-

resentation of the assignment v — v

sponds to one of the values of the input layer of the DNN that estimates the assignment
cost between the node v!' of GP and the node qu of GY (Fig. 1).

where each position of the vector x'~1 corre-

/N

- PP
wP(1) Attributtes of the first node V,,(vi )
‘I’f(t) Structure of the first node yi.’(v:’)
E@’) N |

- =
wi(1)

9 l
q’i (t) - Attributtes of the second nodeyg (v;')
E(v;’) —*

\|< Structure of the second node yg (v?)

Input Vector xt=

Fig. 1. An illustration showing the embedding process of two nodes (red and blue) into an input
vector. (Color figure online)

4.2 Network Architecture

The topology we propose is a classical topology for parameters fitting consisting of a
multi-layer network using the sigmoid activation function for the hidden layers and a
linear function for the output layer (Fig. 2). In the experimental section we shown the
results achieved with different configurations changing the number of neurons and the
number hidden layers.

'I_nput Hidden layers Output layer
: ayer ‘
eli) oo/ BB, o v

® / ‘
el Rl =

Fig. 2. DNN architecture for node assignments costs. Z is the number of inputs (size of the
vector xiJ). L the number of neurons of each hidden layer, w the weights and b the bias.

The input of the network representing the nodes to be assigned is the vector
x71 € RT12 (defined in Sect. 4.1) and the output is a real value theoretically defined
within a cost range from zero to one viz. yiﬂj ={ceR:0<c < 1}. Zero is the
expected value when there is no penalty for the assignment and one is the maximum
expected value penalizing a node assignment.



A DNN Architecture to Estimate Node Assignment Costs for the GED 331

4.3 Training the Model

We manage the problem of training the DNN as a supervised learning problem. The
training set has K observations. Each observation is composed of a triplet consisting of

pair of graphs and the correspondence that relates its nodes {ka, qu, fX}. The ground-

truth correspondences fX must be provided by an oracle according to the problem
(images, fingerprints, letters...).

a) b)

Assignment | Expected | Assignment | Expected | Assignment | Expected
Output Output Output

p—tl o [(—2] v =1 -
Vod —») 1 |« —»| 1 [e— > 0
OSSP IR ORI R )
Fig. 3. (a) Correspondence between a pair of graphs. Colored circles: Nodes. Black lines:

Edges. Green arrows: Graphs correspondence. (b) Set of all possible node assignments and
expected DNN outputs given the correspondence in (a). (Color figure online)

Then, assuming that the assignment cost must be low if two nodes are matched and
high in the opposite case and taking into account that the outputs range goes from zero
to one (Sect. 4.2), we propose to feed the learning algorithm with a set of R inputs-

. pr—> a N1
outputs pairs {xvi Vi ,or} that we deduce from the training set {ka, qu, 5}, Where

r r . ) P
P and vJg are two nodes belonging to graphs G and G respectively. x"i ~Vi are the

Vi

inputs of the DNN representing the assignment between v’ " and qu.- (Sect. 4.1). And 0"

is the expected output, zero if fk(v?l) = qur and one otherwise.

In Fig. 3b, we show the expected outputs between nodes when the ideal corre-
spondence is the correspondence shown in Fig. 3a. Zero when there is an assignment in
the ground-truth correspondence and one when not. Note that there are more cases in
which the expected output must be one because the correspondences between graphs

are bijective by definition in our framework. That means, each node of G is assigned

to a single node of GY while it is unassigned to all the other nodes. For this reason and
in order to prevent unbalancing problems we propose to oversample the positive
assignments between nodes (when the expected output is zero) repeating them in the
set of inputs-outputs that feeds the learning algorithm n — 1 times, where n is the
graphs cardinality.

The training algorithm used to learn the bias and weights of the network is the
Leveberg-Marquardt [14].
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4.4 Graph Matching Algorithm

The graph matching method we propose is inspired by the Bipartite-GED [15] which is
one of the most popular methods used to reduce the computational complexity of the
GED problem to a Linear Sum Assignment Problem (LSAP). First, we build a cost
matrix in which each cell corresponds to the cost of an assignment. The algorithm fills
the values of this matrix with the DNN outputs. Our algorithm does not extend the
matrix for insertions and deletions since we only consider the assignments between
nodes. The process of assigning nodes can be solved as a LSAP on C matrix. In our
experiments we used the Hungarian [16] solver. The final step is to sum the costs of the
solution provided by the solver.

Algorithm: Neural Graph Matching

Input: Graph G1, G2; DNN network;

Output: Correspondences Co; Cost Ct;

1 Initialisation:

2 foreach Node Nodel of G1

3 foreach Node NodelJ of G2

4: x:=inputVector(Nodel,NodeJ);
S: y:=computeCosts(network,x);
6

7

8

9

CLH=y;
end
end
[Co, Ct] = solveLSAP(C);

Algorithm 1. Learning Graph Matching methods.

5 Experiments

We divided the experimental section in three parts. First, we describe the database used
in the experiments. Second, we show the resultant costs matrix using different network
configurations. Finally, we present the hamming distance results using our model
compared with the state-of-the-art algorithms that face the same kind of problem.

5.1 Databases

The HOUSE-HOTEL database described in detail in [17] consists of two sequences of
frames showing two computer modeled objects, 111 frames of a HOUSE and 101
frames of a HOTEL, rotating on its own axis. Each frame of these sequences has the
same 30 salient points identified and labelled. Each salient point represents a node of
the graph and it is attributed by 60 Context Shape features. They triangulated the set of
salient points using the Delaunay triangulation to generate the structure of the graphs.
They made three sets of frames pairs taking into account different baselines (number of
frames of separation in the video sequence). One set was used to learn, another to
validate and the third one to test the model. Since the salient points are labelled we
know the ground-truth correspondence between the nodes of the graphs.
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5.2 Costs Matrix

This section shows the heatmaps of the resultant costs matrix (C matrix in Sect. 4.4)
using our model. The aim of this experiment is to find a cost matrix minimizing the
costs when the nodes must be assigned and maximizing the costs when not. Since we
know the ground-truth correspondence we can deduce the ground-truth cost matrix.
Figure 4a shows the results using a single hidden layer while Fig. 4b shows the same
results using 5 hidden layers and Fig. 4c shows the results using 10 hidden layers with
different configurations of numbers of neurons per layer. Blue color represents low
costs values while yellow color represents high costs values. The experiment was
performed using the first pair of graphs of the test set in the HOUSE sequence sepa-
rated by 90 frames and the model has been trained with all the graphs separated by 90
frames in the training set.

a) b)

Ground truth 5 neurons 10 neurons Ground truth 5 neurons 10 neurons Gr onnd tr uth 5 neurons 10 neurons
T T T Em | - 5 1= M
; i ; . \.\ F\_\wf ko S J
Bl © PN ‘ ek
20 neurons 30 neurons 40 neurons 20 neurons 30 neurons 40 neurons 20 neurons | 30 neurons | 40 neurons

Fig. 4. Costs matrix heatmaps between two graphs corresponding to the HOUSE dataset (90
frames of separation) using (a) 1 hidden layer, (b) 5 hidden layers and (c) 10 hidden layers.
(Color figure online)

Fig. 5. Correspondences found between two graphs of the HOTEL sequence using our model.
Left: single-layer and 10 neurons per layer, Right: five-layers and 10 neurons per layer. Blue lines
are the edges between these nodes. Green lines: correct assignments. Red lines: incorrect
assignments. (Color figure online)

We observe how the model tends to separate better the correct assignments from the
incorrect ones when we increase the number of neurons and layers until reaching a
point where the improvement is no longer increasing and even it could decrease. This
can be explained because when we increase the network complexity, the model is able
to find deeper non-linear correlations between the attributes that feature the nodes, but
reached a critical point, could present overfitting problems due to there are more
neurons than the ones that can be justified by the data.
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Figure 5 shows the obtained correspondences computing a cost matrix with a
single-layer (left) and with five-layers (right) of 10 neurons each layer in order to
illustrate the performance of the model with different network configurations in terms
of matching accuracy.

5.3 Hamming Distance Results

The main goal of our model is to reduce the hamming distance performing the GED. In
the following experiment we show the hamming distance results between the corre-
spondence found by our model and the ground-truth correspondence. In Table 1, we
compare our results with respect to the state-of-the-art, note that smaller values mean
better performance. We train, validate and test the model using different pairs of graphs
as we described in Sect. 5.1. The baseline of our experiments is the number of frames
of separation in the video sequence. Since the objects are in motion, consecutive frames
are more similar than the distant ones. Therefore, the problem tends to be more
complex when we increase the number of frames of separation. A single-layer network
with 30 neurons per layer has been enough to reduce the hamming distance to zero for
all the experiments, however, in Fig. 4, we show how deeper networks tend to increase
the gap between the costs, generally separating better the correct assignments from the
incorrect ones. The achieved results using our model represent a major improvement
with respect to the previously presented results. We discuss the results in the next
section.

Table 1. Hamming distance results on House and Hotel datasets.

House Hotel

#Frames | [4] |[5] |Our model | #Frames | [4] |[5] | Our model
90 0.14/0.24 |0 90 0.09(0.21|0
80 0.14/0.18 |0 80 0.17]0.18 |0
70 0.13/0.10/0 70 0.14]0.15|0
60 0.090.06|0 60 0.13]0.16 |0
50 0.19/0.04 0 50 0.09|0.07|0
40 0.02/0.02|0 40 0.07{0.04 0
30 0.02/0.01|0 30 0.0410.02/0
20 0.01|0 0 20 0.02|0 0
0 o o [0 0 o o 0

*Results obtained with 1 layer of 30 neurons

6 Conclusions

We have presented a new model to estimate assignment costs for the Graphs Edit
Distance using a Deep Neural Network. We experimentally show that our model is able
to find the ideal solution independently of the number of frames of separation. These
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results represent a major improvement with respect to the previous state-of-the-art
results, in particular, when the number of frames of separation is large. This means that
the model can manage important distortions in the representations when it tries to find
the best correspondence. We conclude that the improvement is because using neural
networks allows to find multiple correlations between nodes attributes when per-
forming the matching and our model is not limited by having to define a particular
distance metric aprioristically since it learns the costs functions.

We consider that this work represents an important step to define the costs func-
tions for node assignments in the problem of the Graph Edit Distance. However it is
necessary to train the network with a set of examples properly labeled. The next step is
to expand the model including insertions and deletions costs.
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Abstract. Graph matching is the task of computing the similarity
between two graphs. Error-tolerant graph matching is a type of graph
matching, in which a similarity between two graphs is computed based
on some tolerance value whereas within exact graph matching a strict
one-to-one correspondence is required between two graphs. In this paper,
we present an approach to error-tolerant graph similarity using geometric
graphs. We define the vertex distance (dissimilarity) and edge distance
between two graphs and combine them to compute graph distance.

Keywords: Graph matching -+ Geometric graph - Graph distance

1 Introduction

Computing the similarity between two graphs is one of the fundamental problems
of computer science. Graph Matching (GM) is the process of finding similarity
between two graphs. It has become one of the engaging areas of research over the
last few decades. The major GM applications include structural pattern recogni-
tion, computer vision, biometrics, chemical and biological applications, etc. GM
is usually classified into two types which are known as exact GM and inexact or
error-tolerant GM. Exact GM is like graph isomorphism problem, where a bijec-
tive mapping is required from the nodes of the first graph to the nodes of the
second graph such that if there is an edge in the first graph connecting two nodes,
then there exists an edge in the second graph connecting the corresponding set
of nodes.

Error-tolerant GM provides a flexible approach towards GM problem as
opposed to exact GM which performs a strict matching. In many practical appli-
cations, the input data get modified due to the presence of noise and therefore
exact GM may not be suitable [6]. For such kind of applications, error-tolerant
GM offers the tolerance to noise by computing a similarity score between two
graphs.

The optimal solution to exact GM problem takes exponential time as a func-
tion of the number of nodes in input graph. The complexity of graph isomorphism
problem is neither known to be in N P-complete nor in P, whereas subgraph iso-
morphism is known to be in class N P-complete. Since exact polynomial time
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algorithms for GM problem is not available, several suboptimal solutions to GM
problem have been proposed in the literature.

An extensive survey of various GM methods is given in [6,8]. In [2] author
describes a precise framework for error-tolerant GM. A* search technique for
finding minimum cost paths is described in [10]. Error-tolerant GM for the
attributed relational graph (ARG) is described in [26]. In [21] authors specify a
distance measure for ARG by considering the cost of recognition of nodes.

A class of GM algorithms using spectral method is described in [4,17,24].
The spectral technique relies on the fact that the adjacency matrix of a graph
does not change on node rearrangement accordingly adjacency matrix will have
equivalent eigendecomposition for similar graphs.

A novel class of GM methods utilizing graph kernel is described in [9,15].
Kernel methods enable us to apply statistical pattern recognition techniques
to graph domain. The major types of graph kernel include convolution kernel,
diffusion kernel and random walk kernel [11,13].

Graph Edit Distance (GED) is one of the most widely used method for
error-tolerant GM [3,21]. GED between two graphs is defined as the minimum
number of edit operations needed to transform the first graph into another one.
GED is the generalization of string edit distance. Exact algorithms for GED are
computationally expensive and is exponential on the size of input graphs. In
order to make GED computation more feasible, many approximation techniques
based on local search, greedy approach, neighborhood search, bipartite GED etc.
have been proposed [7,14,19,20,25].

Another class of GM methods is based on geometric graphs in which every
vertex has an associated coordinate in two-dimensional space. In [12] authors
have shown that geometric graph isomorphism can be performed in polynomial
time. Geometric GM using edit distance approach is demonstrated to be N P-
hard in [5]. Geometric GM using probabilistic approach is described in [1] and
in the paper, [16] authors have presented geometric GM based on Monte Carlo
tree search. In [23] authors defines spectral graph distance using the difference
between the spectra of the Laplacian matrices of the two graphs. In [22] authors
introduced a method for network comparison that can quantify topological dif-
ferences between networks.

The geometric graph is a graph in which each vertex has a unique coordi-
nate point. Due to this additional information, geometric graphs may offer an
alternative approach to traditional GM techniques. In this paper, we propose an
approach to error-tolerant graph similarity for geometric graphs. We define the
vertex distance between two geometric graphs as the minimum of the sum of the
Euclidean distances between the corresponding coordinates from one geometric
graph to another one. We define edge distance by representing each edge of a
geometric graph using two parameters, its angular orientation from positive z-
axis and its length. Finally, we integrate both vertex distance and edge distance
to compute a measure of similarity between two geometric graphs.

This paper is organized as follows. Section 2, contains basic definitions and
notation. Section 3, defines vertex distance, edge distance and algorithm to
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compute the graph distance between two graphs. Section4, describes results
with discussion and finally Sect. 5, contains the conclusion.

2 Basic Concepts and Notation

In this section, we review the basic definitions and notations used in exact and
error-tolerant GM.

A graph g is defined as g = (V, E, u,v), where V is the set of vertices, E is
the set of edges, p : V — Ly is a mapping that allocates a vertex label alphabet
l € Ly to each vertex v € V, v : E — Lg is a mapping that allocates an edge
label alphabet I, € Lg to every edge in E. Where, Ly and Lg are vertex label
set and edge label set respectively. If Ly, = L = () then g is called the unlabeled
graph.

A graph g is said to be a subgraph of graph go, if V} C Va5; E; C FEs; for
every node u € g1, we have pi(u) = po(u); similarly, for every edge e € g1, we
have v1(e) = va(e).

A graph isomorphism between two graphs g; and g is defined as a bijective
mapping between every vertex u € g; to a unique vertex v € go, such that their
labels and edges are preserved.

Let g1 and g2 be two graphs. A function f: V3 — V5 from g1 to go is called
as subgraph isomorphism if there is a graph isomorphism between ¢g; and a
subgraph of gs.

Let g1 and g5 be two graphs. A one-to-one correspondence function f : V{ —
Vy from g1 to gs is called an error-tolerant GM, if V/ C V; and V5 C V4 [2].

A geometric graph G is defined as G = (V, E,l,¢), where V is the set of
vertices, E is the set of edges, [ is a labeling function ! : {V U E} — X which
assigns a label from X to each vertex and edge, c is a function ¢ : V' — R? which
assigns a coordinate point to each vertex of G. If X = () then G is called the
unlabeled geometric graph.

3 Geometric Graph Similarity

In this section, we introduce vertex distance and edge distance between the
geometric graphs G; and G5. We use these distance measures to compute the
dissimilarity or graph distance between two graphs.

Definition 1. Let Gy = (Vi,E1,l1,¢1) and Gy = (Vo,Eyla,c0) be
two geometric graphs with |Vi| = |Va| = n. Let coordinate points
of Vi be {(a1,b1),(az2,b2),...,(an,bn)} and coordinate points of Vau be
{(x1,91), (x2,Y2), - -, (Tn,Yn)} then the vertex distance or dissimilarity between

the two graphs Gy and Gs is defined as

VD(G1,G2) = min Z\/ a; — ;)% + (b; — y;)? (1)

1<4,5<n
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Here, V' D represents the minimum sum of the distance of each pair of assigned
vertices from V; to Va. Larger deviation of corresponding coordinates between
G1 and G implies a larger V D value.

We can show that V. D(G1, G2) is a metric. Here VD(G1,G2) > 0. if G1 = G4
then ‘/Y.D(G'l7 GQ) =0, and if ‘/Y.D(le7 GQ) = 0 then minlgi’jgn Z[(az — .%‘j)Z +
(b; — yj)Q]l/ 2 = 0, which implies that each individual sum of this expression
is 0 and therefore Gy = Ga. Also VD(G1,Gs) = VD(Ge,G1), therefore it is
symmetric, and finally VD(G1,G2) < VD(G1,G3) + VD(G3,G2) follows from
the Euclidean distance property d(z,y) < d(z, z) + d(z, y).

For a geometric graph Gy, let |Vi| = n. Then the n X n adjacency matrix
A = (aij)nxn of Gi can be defined by

0 — {{(ai,bi), (a;,0)}, if {(ai, bi), (a;,b;)} € Er

g, otherwise

Similarly, the n x n adjacency matrix A = (x;;)nxn of G2 can be defined by

Ty = {{(Ihyi)v(zjayj)}, if {(xivyi>7(l'j,yj)} € Fy

g, otherwise

Let 01(a,b),(c,d)y denote the angle subtended between the line joining the coor-
dinate points (a, b), (¢,d) and positive z-axis.

Definition 2. Let Gy = (V1, F1,1l1,¢1) and Go = (Va, Es, la, ¢2) be two geomet-
ric graphs with |Vi| = |Va| = n. Then the edge distance or dissimilarity between
the two graphs G1 and Gy is defined as

ED(G1,G2) = min (\/((Qij - 923-)1;)0)2 +4/(di; — Dij)?)  (2)

1<ij<n

where, ©ij = 0{(a, b.),(a;.6)}> Oij = (@i (@i v}
dij = \/(ai — a;)? + (b; = bj)2, and Dij = \/(xi — x;) + (i — y;)*.

The first term in the above definition of ED accounts for the angular distance
in radian between each pair of corresponding edges selected from E; and FEj,
whereas the second term of ED represents the difference of edge length between
each pair of assigned edges. Similar to V' D, we can show that ED(G1,G3) > 0.
If G1 = GQ then ED(Gl,GQ) = 0. But when ED(Gl,GQ) = 0 then G1 is not
necessarily equal to G3. We can observe that ED between two translated or
rotated version of same geometric graph remains 0. Also, ED follows triangle
inequality since both first and second term of ED follows triangle inequality

property.

3.1 Graph Distance Algorithm

The computation of graph distance between two geometric graphs G; and Go
is described in Algorithm 1. The input to the algorithm is two geometric graphs
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G1 and G and three weighting parameters wy, ws and ws, which are application
dependent. By default we take equal weighting factors, that is w; = wy = ws.
The output of the algorithm is graph distance between G and G3. One optional
step of this algorithm is preprocessing of input graphs. If one graph is identical
to other by performing geometric transformation like translation, rotation, and
scaling, then the input graphs are processed to make their coordinate reference
frame aligned. Line 1 of the algorithm computes the assignment of vertices from
Vi1 to V5 based on their coordinate such that VD is minimum. We can use the
Munkres algorithm for optimal assignment of vertices, or we can start with the
lowest z-coordinate of the vertex from V; and assign it to the nearest vertex
from V5 and so on. Similarly, assignment of edges from F; to E5 is performed in
line 2. Vertex distance V' D is evaluated in line 3, and edge distance is computed
in lines 3—4. Whereas ED; consists of the difference of angular distance between
two assigned edges, on the other hand, ED> contains difference of Euclidean
distance between two assigned edges. Finally, graph distance is computed in line
6, using the weighting factors wy, wo, and ws.

Algorithm 1. Graph-Distance (G1, G2, w1, ws, w3)

Require: Two undirected unlabeled geometric graphs G1, Ga2, where G; = (V;, E;, ¢;)
for ¢ = 1,2, and weighting factors w; for i =1 to 3
Ensure: Graph distance or dissimilarity value between G and G2
> preprocessing of input graphs G1 and Ga
Compute vertex assignment from Vi to Vs
Compute edge assignment from F; to Fa

VD — 37/ (ai —x5)? + (bi — ;)2
EDi — 537, (\ (64 — 6),) 555 )2
EDy — 327 1 V/(dij — Dij)?
GD<—U}1 VD+w2 ED1 +w3 EDQ
return (GD)

Proposition 1. Graph-Distance algorithm executes in O(n®) time.

We can observe that the assignment of vertices and edges in lines 1-2 can be
performed in O(n3) by Munkres algorithm and the remaining steps can be com-
puted in O(n?); therefore overall execution time remains O(n?).

4 Results and Discussion

The proposed graph distance measure can be used to compare the structural
similarity between different graphs. In the definition of vertex distance and edge
distance, we have assumed that |V;]| = |V3| this limitation can be resolved by
adding extra vertices with (0, 0) coordinate to the smaller vertex set so that the
size of the graph becomes equal. A more reasonable option is to use coordinates
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with the mean value for z and y in the smaller graph. That is, if |[Vi| = m and
|V2| = n where m > n then (m — n) vertices of Gy are allocated the coordinates
(Zimeans Ymean) 10 the preprocessing step of the Graph-Distance algorithm. Here
Tmean aNd Ymean are the mean of x and y values of coordinates of n vertices
of Gg.

In order to compare graph distance computed using Graph-Distance algo-
rithm and GED computed using A* algorithm we use Letter dataset of TAM
graph database repository [18]. Letter dataset consists of graph representing
capital letters of alphabets, drawn using straight lines only. Distortions of three
different levels are applied to prototype graphs to produce three classes of Letter
dataset, which are high, medium and low. Letter graphs in high class are more
deformed than that of graph is medium or low class. Table 1 shows the compar-
ison of graph distance with GED computed between the first graph and next 10
graphs of each three classes of Letter dataset. GDyiay, GDyep and GDpow
in this table represents Graph-Distance computed for graphs of high, medium
and low classes respectively. Similarly, GEDgrauy, GEDypp and GEDpow
denotes GED computed for graphs of high, medium and low classes respectively.
In this table, we observe that largest graph distance under GDy gy also corre-
sponds to largest GED under GED g g, whereas the smallest graph distance
under GDgrgy corresponds to second smallest GED under GEDg;gy. One
advantage of distance computed using Graph-Distance algorithm is that it is
symmetric, on the other hand, GED may not be symmetric. Another advantage
is that Graph-Distance algorithm is efficient and it can process the graph having
even more than 100 nodes, whereas GED may not be executed on graphs having
more than 10-20 nodes.

Table 1. Graph distance vs Graph edit distance

GDurea | GEDuicr | GDyep | GEDyEp | GDrow | GEDrpow
7.061 3.152 7.267 2.307 4.643 1.285
6.347 3.050 10.347 3.056 7.186 2.293
4.551 2.111 7.131 3.433 5.275 1.387
5.669 3.092 12.015 2.843 5.163 1.358
8.926 3.067 10.048 4.061 6.066 2.458

12.251 4.148 6.971 2.371 4.891 1.317
5.651 2.808 7.457 2.402 5.430 1.339
5.588 2.342 7.563 3.830 5.862 2.336
4.114 2.318 6.753 3.528 4.827 1.036
6.414 2.238 5.582 2.025 3.486 1.778

Geometric graph similarity can be particularly useful in real-world applica-
tions, where the graph data is large and can be modified by noise or distortions.
Depending on application requirement, we can select weighting factors such that
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Zle w; = 1. In the above experiment we used equal weighting parameters, i.e.,
w1 = wy = wz = 1/3. When the position of vertices is more dominant, we can
select wy to be higher, if angular structures are more important then ws can be
prominent. Otherwise, if edge differences are more essential, we can select ws to
be higher.

5 Conclusion

In this paper, we described an approach to compute inexact geometric graph
distance between two graphs. In a geometric graph, every vertex has an asso-
ciated coordinate, which specify its distinct position in the plane. We can use
this fact to define the distance between two graphs. First, we introduced vertex
dissimilarity between two geometric graphs. Then we defined edge dissimilar-
ity between two geometric graphs. Then we used them to find the similarity
between two graphs. Also, we applied the graph distance similarity measure to
some Letter graphs and observed some of its advantages.

References

1. Armiti, A., Gertz, M.: Geometric graph matching and similarity: a probabilistic
approach. In: SSDBM (2014)

2. Bunke, H.: Error-tolerant graph matching: a formal framework and algorithms. In:
Amin, A., Dori, D., Pudil, P., Freeman, H. (eds.) SSPR/SPR 1998. LNCS, vol.
1451, pp. 1-14. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0033223

3. Bunke, H., Allerman, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recogn. Lett. 1, 245-253 (1983)

4. Caelli, T., Kosinov, S.: Inexact graph matching using eigen-subspace projection
clustering. Int. J. Pattern Recogn. Artif. Intell. 18(3), 329-355 (2004)

5. Cheong, O., Gudmundsson, J., Kim, H.-S., Schymura, D., Stehn, F.: Measuring
the similarity of geometric graphs. In: Vahrenhold, J. (ed.) SEA 2009. LNCS,
vol. 5526, pp. 101-112. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02011-7_11

6. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18(3), 265-298 (2004)

7. Dwivedi, S.P., Singh, R.S.: Error-tolerant graph matching using homeomorphism.
In: International Conference on Advances in Computing, Communication and
Informatics (ICACCI), pp. 1762-1766 (2017)

8. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 years. Int. J. Pattern Recogn. Artif. Intell. 88, 1450001.1—
1450001.40 (2014)

9. Gartner, T.: Kernels for Structured Data. World Scientific, Singapore (2008)

10. Hart, P.E., Nilson, N.J., Raphael, B.: A formal basis for heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 100-107 (1968)

11. Haussler, D.: Convolution kernels on discrete structures. Technical report, UCSC-
CRL-99-10, University of California, Sant Cruz (1999)

12. Kuramochi, M., Karypis, G.: Discovering frequent geometric subgraphs. Inf. Syst.
32, 1101-1120 (2007)


https://doi.org/10.1007/BFb0033223
https://doi.org/10.1007/978-3-642-02011-7_11
https://doi.org/10.1007/978-3-642-02011-7_11

344

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

S. P. Dwivedi and R. S. Singh

Lafferty, J., Lebanon, G.: Diffusion kernels on statistical manifolds. J. Mach. Learn.
Res. 6, 129-163 (2005)

Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the compu-
tation of graph edit distance. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F.,
de Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 163-172. Springer,
Heidelberg (2006). https://doi.org/10.1007/11815921_17

Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and
Kernel Machines. World Scientific, Singapore (2007)

Pinheiro, M.A., Kybic, J., Fua, P.: Geometric graph matching using Monte Carlo
tree search. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2171-2185 (2017)
Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE
Trans. Pattern Anal. Mach. Intell. 27, 365-378 (2005)

Riesen, K., Bunke, H.: TAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., et al. (eds.) SSPR
/SPR 2008. LNCS, vol. 5342, pp. 287-297. Springer, Berlin (2008). https://doi.
org/10.1007/978-3-540-89689-0_33

Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(4), 950-959 (2009)

Riesen, K., Bunke, H.: Improving bipartite graph edit distance approximation using
various search strategies. Pattern Recogn. 48(4), 1349-1363 (2015)

Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353-363 (1983)
Schieber, T.A., Carpi, L., Diaz-Guilera, A., Pardalos, P.M., Masoller, C., Ravetti,
M.G.: Quantification of network structural dissimilarities. Nature Commun.
8(13928), 1-10 (2017)

Shimada, Y., Hirata, Y., Ikeguchi, T., Aihara, K.: Graph distance for complex
networks. Sci. Rep. 6(34944), 1-6 (2016)

Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., Zucker, S.: Indexing hier-
archical structures using graph spectra. IEEE Trans. Pattern Anal. Mach. Intell.
27(3), 365-378 (2005)

Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In:
Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172-182. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31988-7_16

Tsai, W.H., Fu, K.S.: Error-correcting isomorphisms of attributed relational graphs
for pattern analysis. IEEE Trans. Syst. Man Cybern. 9, 757768 (1979)


https://doi.org/10.1007/11815921_17
https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1007/978-3-540-31988-7_16

®

Check for
updates

Learning Cost Functions for Graph
Matching

Rafael de O. Werneck! ™) Romain Raveaux?, Salvatore Tabbone?,
and Ricardo da S. Torres?

! Institute of Computing, University of Campinas, Campinas, SP, Brazil
{rafael.werneck,rtorres}@ic.unicamp.br
2 Université Franois Rabelais de Tours, 37200 Tours, France
romain.raveauxQuniv-tours.fr
3 Université de Lorraine-LORIA UMR 7503, Vandoeuvre-les-Nancy, France
tabbone@loria.fr

Abstract. During the last decade, several approaches have been pro-
posed to address detection and recognition problems, by using graphs
to represent the content of images. Graph comparison is a key task in
those approaches and usually is performed by means of graph match-
ing techniques, which aim to find correspondences between elements
of graphs. Graph matching algorithms are highly influenced by cost
functions between nodes or edges. In this perspective, we propose an
original approach to learn the matching cost functions between graphs’
nodes. Our method is based on the combination of distance vectors asso-
ciated with node signatures and an SVM classifier, which is used to
learn discriminative node dissimilarities. Experimental results on differ-
ent datasets compared to a learning-free method are promising.

Keywords: Graph matching - Cost learning - SVM

1 Introduction

In the pattern recognition domain, we can represent objects using two methods:
statistical or structural [4]. On the later, objects are represented by a data struc-
ture (e.g., graphs, trees), which encodes their components and relationships; and
on the former, objects are represented by means of feature vectors. Most methods
for classification and retrieval in the literature are limited to statistical repre-
sentations [17]. However, structural representation are more powerful, as the
object components and their relations are described in a single formalism [18].
Graphs are one of the most used structural representations. Unfortunately, graph
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comparison suffers from high complexity, often an NP-hard problem requiring
exponential time and space to find the optimal solution [5].

One of the widely used method for graph matching is the graph edit dis-
tance (GED). GED is an error-tolerant graph matching paradigm that defines
the similarity of two graphs by the minimum number of edit operations neces-
sary to transform one graph into another [3]. A sequence of edit operations that
transforms one graph into another is called edit path between two graphs. To
quantify the modifications implied by an edit path, a cost function is defined
to measure the changes proposed by each edit operation. Consequently, we can
define the edit distance between graphs as the edit path with minimum cost.

The possible edit operations are: node substitution, edge substitution, node
deletion, edge deletion, node insertion, and edge insertion. The cost function is
of first interest and can change the problem being solved. In [1,2], a particu-
lar cost function for the GED is introduced, and it was shown that under this
cost function, the GED computation is equivalent to the maximum common sub-
graph problem. Neuhaus and Bunke [14], in turn, showed that if each elementary
operation satisfies the criteria of a metric distance (separability, symmetry, and
triangular inequality) then the GED is also a metric.

Usually, cost functions are manually designed and are domain-dependent.
Domain-dependent cost functions can be tuned by learning weights associated
with them. In Table 1, published papers dealing with edit cost learning are
tabulated. Two criteria are optimized in the literature, the matching accuracy
between graph pairs or an error rate on a classification task (classification level).
In [13], learning schemes are applied on the GED problem while in [6,11], other
matching problems are addressed. In [11], the learning strategy is unsupervised
as the ground truth is not available. In another research venue, different opti-
mization algorithms are used. In [12], Self-Organizing Maps (SOMs) are used to
cluster substitution costs in such a way that the node similarity of graphs from
the same class is increased, whereas the node similarity of graphs from different
classes is decreased. In [13], Expectation Maximization algorithm (EM) is used
for the same purpose. An assumption is made on attribute types. In [7], the
learning problem is mapped to a regression problem and a structured support
vector machine (SSVM) is used to minimize it. In [8], a method to learn scalar
values for the insertion and deletion costs on nodes and edges is proposed. An
extension to substitution costs is presented in [9]. The contribution presented in
[16] is the nearest work to our proposal. In that work, the node assignment is
represented as a vector of 24 features. These numerical features are extracted
from a node-to-node cost matrix that is used for the original matching process.
Then, the assignments derived from exact graph edit distance computation is
used as ground truth. On this basis, each node assignment computed is labeled
as correct or incorrect. This set of labeled assignments is used to train an SVM
endowed with a Gaussian kernel in order to classify the assignments computed
by the approximation as correct or incorrect. This work operates at the matching
level. All prior works rely on predefined cost functions adapted to fit an objec-
tive of matching accuracy. Little research has been carried out to automatically
design generic cost functions in a classification context.
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Table 1. Graph matching learning approaches.

Ref. | Graph matching | Supervised | Criterion Optimization
problem method

[12] | GED Yes Recognition rate | SOM

[13] | GED Yes Recognition rate | EM

[8,9] | GED Yes Matching accuracy | Quadratic

programming

[6] | Other Yes Matching accuracy | Bundle

[7] | Other Yes Matching accuracy | SSVM

[11] | Other No Matching accuracy | Bundle

In this paper, we propose to learn a discriminative cost function between
nodes with no restriction on graph types nor on labels for a classification task. On
a training set of graphs, a feature vector is extracted from each node of each graph
thanks to a node signature that describes local information in graphs. Node
dissimilarity vectors are obtained by pairwise comparison of the feature vectors.
Node dissimilarity vectors are labeled according to the node pair belonging to
graphs of the same class or not. On this basis, an SVM classifier is trained. At
the decision stage, two graphs are compared, a new node pair is given as an
input of the classifier, and the class membership probability is outputted. These
adapted costs are used to fill a node-to-node similarity matrix. Based on these
learned matching costs, we approximate the matching graph problem as a Linear
Sum Assignment Problem (LSAP) between the nodes of two graphs. The LSAP
aims at finding the maximum weight matching between the elements of two sets
and this problem can be solved by the Hungarian algorithm [10] in O(n?) time.

The paper is organized as follow: Sect.2 presents our approach for local
description of graphs, and the proposed approaches to populate the cost matrix
for the Hungarian algorithm. Section 3 details the datasets and the adopted
experimental protocol, as well as presents the results and discussions about them.
Finally, Sect. 4 is devoted to our conclusions and perspectives for future work.

2 Proposed Approach

In this section, we present our proposal to resolve the graph matching problem
as a bipartite graph matching using local information.

2.1 Local Description

In this work, we use node signatures to obtain local descriptions of graphs.
In order to define the signature, we use all information of the graph and the
node. Our node signature is represented by the node attributes, node degree,
attributes of incident edges, and degrees of the nodes connected to the edges.
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Given a general graph G = (V, E), we can define the node signature extraction
process and representation, respectively, as:

I'(G) ={v(n)lvn eV}

’Y(n) - {QS,GS,AS,QS}
where o is the attributes of the node n, S is the degree of node n, A is the
set of degrees of adjacent nodes to n, and 25 is a set of attributes of the incident
edges of n.

2.2 HEOM Distance

One of our approaches to perform graph matching consists on finding the min-
imum distance to transform the node signatures from one graph into the node
signatures from another graph. To calculate the distance between two node sig-
natures, we need a distance metric capable of dealing with numeric and symbolic
attributes. We selected the Heterogeneous Euclidean Overlap Metric (HEOM)
[19] and we provided an adaptation for our graph local description.

The HEOM distance is defined as:

HEOM(i,j) =

S 8(iar jo)?, 1)
a=0

where a is each attribute of the vector, and (i, j,) is defined as:

1 if i, or j,is missing,
5(insja) 0 if ais symbolic and i, = j,, @)
Z b = . . . . .
arJa 1 ifais symbolic and iy # j4,
lia—Jal

if a is numeric.
range,

In our approach, we define the distance between two node signatures as
follow. Let A = (V,,,E,) and B = (W4, E}) be two graphs and n, € V, and
ny € Vp be two nodes from these graphs. Let y(n,) and y(ny) be the signature
of these nodes, that is:

Y(na) = {om, . 05, An, 20}

Ng? Mg

and

V(nb) = {afbv ofbv Afb,

B
2.1
The distance € between two node signatures is:

e(v(na),¥(ny)) = HEOM (0 ,al ) + HEOM (0,653 )

MNg? "Ny

Sl HEOM (22 (1), 28 (i) ®)
|22,

+HEOM(A; Al ) +
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Fig. 1. Proposed SVM approach to compute the edit cost matrix.

2.3 SVM-Based Node Dissimilarity Learning

We propose an SVM approach to learn the graph edit distance between two
graphs. In this approach, we first define a distance vector € between two node
signatures. Function € is derivated from e, but instead of summing up the dis-
tance related to all structures, the function considers each structure distance
score as a value of a bin of the vector. This distance vector is composed of the
HEOM distance between each structure of the node signature, i.e., the distance
between the node attribute, node degree, degrees of the nodes connected to the
edges, and attributes of incident edges are components of the vector, i.e.,

€' (v(na),v(ny)) = [HEOM (y(na)i, (ns)i)]
Vi€ {0,---,|v(n)|} | v(n); is a component of y(n).

To each distance vector €, a label is assigned. These labels guide the SVM
learning process. We propose the following formulation to assign labels to dis-
tance vectors. Let Y = {y1,y2,...,u} be the set of [ labels associated with
graphs. In our formulation, denominated multi-class, distance vectors, which are
associated with node signatures extracted from graphs of the same class (say y;),
are labeled as y;. Otherwise, a novel label y;11 is used, representing that the dis-
tance vectors were computed from node signatures belonging to graphs belonging
to different classes.

Figure 1 illustrates the main steps of our approach. Given a set of train-
ing graphs (step A in the figure), we first extract the node signatures from all
graphs (B), and compute the pairwise distance vectors (C). We then use the
labeling procedure described above to assign labels to distance vectors defined
by node signatures extracted from graphs of the training set and use these labeled
vectors to train an SVM classifier (D).
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2.4 Graph Classification

At testing stage, each one of the graphs from the test set (E) has its node sig-
natures extracted (F). Again, distance vectors are computed, now considering
node signatures from the test and from the training set (G). With the distance
vectors, we can project them into the learned feature space and obtain the prob-
ability of a test sample that belongs to the training set classes considering the
SVM hyperplane of separation (H). These probabilities are used to populate a
cost matrix for each graph in the training set (I), in such a way that, for each
node signature from the test graph (row) and each node signature from the train-
ing graph (column), we create a matrix of probabilities for each combination of
test and training graphs. This matrix is later used in the Hungarian algorithm.
As the resulting cost matrices encodes probabilities, we compute the maximum
cost path using the Hungarian algorithm instead of the minimum. The test sam-
ple classification is based on the k-nearest neighbor (kNN) graphs found in the
training set, where graph similarity is defined by the Hungarian algorithm.

3 Experimental Results

In this section, we describe the datasets used in the experiments, we present
our experimental protocol, and how our method was evaluated. At the end, we
present our results and discuss them.

3.1 Datasets

In our paper, we perform experiments in three labeled datasets from the TAM
graph database [15]: Letter, Mutagenicity, and GREC.

The Letter database compromises 15 classes of distorted letter drawings.
Each letter is represented by a graph, in which the nodes are ending points of
lines, and edges are the lines connecting ending points. The attributes of the
node are its position. This dataset has three sub-datasets, considering different
distortions (low distortion, medium distortion, and a high distortion).

Mutagenicity is a database of 2 classes representing molecular compounds.
In this database, the nodes are the atoms and the edges the valence of the linkage.

GREC database consists of symbols from architectural and electronic draw-
ings represented as graphs. Ending points are represented as nodes and lines and
arcs are the edges connecting these ending points. It is composed of 22 classes.

3.2 Experimental Protocol

Considering that the complexity and computational time to calculate the dis-
tance vectors for the SVM method is soaring, we decide to perform preliminary
experiments where we randomly selected two graphs of each class from the train-
ing set to be our training, and for our test, we selected 10% of the testing graphs
from each class. As we are selecting randomly the training and testing sets, we
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need to perform more experiments to obtain an average result, to avoid any
bias a unique experiment selecting training and testing sets can have. Thus, we
performed each experiments 5 times to obtain our results. To evaluate our app-
roach, we present the mean accuracy score and the standard deviation of a k-NN
classifier (k = 3). Table 2 presents detailed information about the datasets.

Table 2. Informations about the datasets.

Datasets
Letter-LOW | Letter-MED | Letter-HIGH | Mutagenicity | GREC
# graphs 750 750 750 1500 286
# classes 15 15 15 2 22
# graphs 50 50 50 830/670 13
per class
# graphs 30 30 30 4 44
in learning
# distance | 210,000 ~ 10,000 ~ 10,000 ~ 14,000 ~130, 000
vectors
# graphs 75 75 75 129/104 44
in testing

3.3 Results

In our first experiments, to provide a baseline, we performed the graph matching
using the HEOM distance function between the node signatures to populate the
cost matrix. We also populated the cost matrix with random values between 0
and 1 for comparison. Table 3 shows these results for the chosen datasets. The
HEOM distance approach shows improvement over a simple random selection of
values.

Table 3. Accuracy results for HEOM distance and random population of the cost
matrix in the graph matching problem (in %).

Approach | Datasets

Letter-LOW | Letter-MED | Letter-HIGH | Mutagenicity | GREC
Random 0.53 £0.73 | 1.60 £2.19| 1.60 + 1.12 ' 54.85 & 4.22 | 1.36 £ 2.03
HEOM 40.53 £ 11.7215.73 £ 3.70 | 10.93 £ 3.70 | 49.44 4+ 10.69 | 52.27 £ 7.19
distance

As we can see in Table 3, the HEOM distance presents a better result than
the random assignment of weights, except for the Mutagenicity dataset, which
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is the only dataset with two classes. In this case, the obtained results are sim-
ilar, considering the standard deviation of the executions (£4.22 for Random
approach, and +10.69 for the HEOM approach).

Next, we run experiments using the proposed multi-class SVM approach
to compare with the results obtained using the HEOM distance in the cost
matrix. We used default parameters for the SVM for the training step (RBF
kernel, C' = 0). We also present results of experiments in which we normalize
the distance vector, using min-max (normalizing between 0 and 1) and zscore
(normalization using the mean and standard deviation) normalizations. Table 4
shows the mean accuracy of the experiments made.

Table 4. Mean accuracy (in %) for the HEOM distance and SVM multi-class approach
in the graph matching problem. The best results for each dataset are show in bold.

Datasets

Letter-LOW

Letter-MED

Letter-HIGH

Mutagenicity

GREC

HEOM distance

40.53+11.72

15.73 £ 3.70

10.93 £ 3.70

49.44 + 10.69

52.27 + 7.19

SVM multi-class

min-max

30.67 £ 5.50

28.00 + 9.80

18.93 £ 5.77

71.24 £29.50

18.64 £ 6.89

33.33 £ 7.12

20.27 + 6.69

14.40 £ 5.02

63.26 £+ 15.61

20.00 + 7.43

zscore

37.87 £ 9.83

21.87 + 1.52

20.27 + 8.56

64.12 £ 7.68

30.91 + 2.59

Table4 shows us that the SVM approach is promising, obtaining better
results for three of the five datasets considered. The improvement in the Muta-
genicity dataset was above 20 % points from the HEOM distance baseline. As for
the other cases, the Letter-LOW dataset had similar results for the HEOM dis-
tance and SVM approach (standard deviation of the HEOM is +11.72 and for the
SVM is £9.83). The GREC dataset was the only dataset with a distant results
from the HEOM approach. We discuss that it is because the dataset has more
classes than the others, so its “different” class contains more distance vectors
combining node signatures of different classes. With this imbalanced distribu-
tion, the “different” class shadows the other classes in the SVM classification.

Table4 also shows that a normalization step can help separate the classes
in the SVM, being successful in improving the result of three of five approaches
used, specially the zscore normalization, that considers the mean and standard
deviation of the vectors.

To better understand our results, we also calculated the accuracy of the SVM
classification for the same training used in it. Our experiments shows that the
“different” class does not help the learning, especially in the datasets with more
classes, as this “different” class overlook the other classes, preventing the classi-
fication as the correct class. It also shows the necessity of a bigger training and
a validation set to tune the parameters of the SVM. Figure 2 shows a confusion
matrix of a classification of the training data in the Letter-LOW dataset.

To improve our results, we propose to ignore the “different” class in the
training set. Table 5 shows the accuracy for this new proposal.
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Fig. 2. Classification of the training set for the Letter LOW dataset.
Table 5. Accuracy scores for four datasets (in %).
Modification| Multi-class | Datasets
Letter-LOW | Letter-MED | Letter-HIGH | GREC
Without min-max | 37.87 & 5.88|34.134+9.78 | 29.07+4.36 | 38.18 + 8.86
“different” 30.13 + 6.34 [30.13 + 9.31 | 27.47 & 7.92 | 35.45 + 2.03
class zscore 44.80+5.94 | 25.87 & 0.73 [29.07 + 5.99 | 41.82 + 7.11

As we can see in Table5, our proposed modifications improved the results
obtained in our experimental protocol. The dataset Letter-LOW achieved the
best result when we do not consider the “different” class in the training step,
avoiding misclassification as “different” class. With this, we show that our pro-
posed approach to learn the cost to match nodes are very promising.

4 Conclusions

In this paper, we presented an original approach to learn the costs to match
nodes belonging to different graphs. These costs are later used to compute a dis-
similarity measurement between graphs. The proposed learning scheme combines
a node-signature-based distance vector and an SVM classifier to produce a cost
matrix, based on which the Hungarian algorithm computes graph similarities.
Performed experiments considered the graph classification problem, using k-NN
classifiers built based on graph similarities. Promising results were observed for
widely used graph datasets. These results suggest that our approach can also be
extended to use similar methods based on local vectorial embeddings and can
be exploited to compute probabilities as estimators of matching costs.

For future work, we want to perform experiments considering all training
and testing sets to compare with our results presented in this paper, and also
make a complete study on the minimum training set necessary to achieve a good
performance not only in classification, but also in retrieval tasks.
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Abstract. Partially occlusion is a common difficulty arisen in applica-
tions of face recognition, and many algorithms based on linear represen-
tation may pay attention to such cases. In this paper, we consider the
partial occlusion problem via inner-class linear regression. Specifically, we
develop a matrix regression-based classification (MRC) method in which
every sample from the same class are represented as matrices instead of
vector and adopted to encode a probe image under. In the regression
step, a L21-norm based matrix regression model is proposed, which can
efficiently depress the effect of occlusion in probe image. Accordingly, an
efficient algorithm is derived to optimize the proposed objective function.
In addition, we argue that the corrupted pixels in probe image should not
be considered in decision step. Thus, we introduce a robust threshold to
dynamically eliminate the corrupted rows in probe image before making
decision. Performance of MRC is evaluated on several datasets and the
results are compared with those of other state-of-the-art methods.

1 Introduction

Recently, face recognition (FR) has been widely used in many fields [3,14]. How-
ever, robust face recognition is still a difficult problem due to the varied noises,
such as real disguise, continuous or pixel-wise occlusion. In such case, it is usu-
ally unable to know the occlusion position and the percentage of occluded pixels
in advance.

For FR, samples from a specific subject can be assumed to lie in a subspace
of all the face space [1,2]. So, a coming probe image can be well represented as a
linear combination of all images from the same class. Based on this assumption,
linear representation based FR methods arise. These methods can be catego-
rized into two groups: collaborative representation and inner-class representa-
tion. Collaborative representation uses whole gallery images to represent probe
image while inner-class representation query image by the linear combination of
class-specific images superlatively.

The most typical approach of collaborative representation is the sparse rep-
resentation classification (SRC) [15]. SRC selects a part of training samples that
are strongly competitive to represent a query image. Then the decision is made
by identifying which subject yields the minimal reconstruction residual. In SRC,
© Springer Nature Switzerland AG 2018
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linear regression uses L1-norm as the regularization term, which is also called
Lasso problem. SRC believes that this regularization technique makes the coeffi-
cients sparse and sparse coefficients are more discriminative in classifying. How-
ever, in the later research, Zhang et al. [18] argue that it is the collaborative
representation rather than sparsity that contributes to classifying. They pro-
posed collaborative representation based classification (CRC), which applying
L2-norm constraint to representation coefficients and obtaining a competitive
result. Compared with SRC which solves an optimization with an iterative algo-
rithm, CRC has a closed-form solution.

Following SRC and CRC, Yang et al. [16] propose nuclear norm based matrix
regression (NMR) classification framework by applying nuclear norm on resid-
ual errors. NMR shows better FR performance in the presence of occlusion and
illumination variations. He et al. [5] proposed Correntropy-Based Sparse Rep-
resentation (CESR) which combines the maximum correntropy criterion with
a nonnegative constraint on representation vector to obtain a sparse represen-
tation. Yang et al. [17] propose the Regularized Robust Coding (RRC) which
determines the representation coefficient with maximum a posterior (MAP) esti-
mation to get a good fidelity term and use a flexible shape to describe the dis-
tribution of residual error.

Apart from collaborative representation methods, inner-class representation
methods such as linear regression based classification (LRC) [8] also have good
performance in FR. Unlike collaborative representation methods, in LRC probe
images are represented by a special class at each time. Although collaborative
representation makes all training samples compete with each other, which is ben-
eficial to produce a discriminative representation vector, a drawback is that once
dealing with an occluded probe the representation residual contains both within-
class variation and between-class variation. Besides, at representation step, the
produced coding coefficient vector is not aware any information of class label.
That is to say, the permutation of training samples is ignored at representation
step. Those drawbacks may lead to misclassification. For LRC, the representa-
tion residual from the correct class contains only within-class variation while
those from the other classes contain both within-class variation and between-
class variation. Thus, residual error in the correct class should be the smallest
one and that is helpful for classification.

Most of the mentioned methods treat images as vectors which ignores the
existent correlation among pixels. Occlusions such as sunglasses, scarf and veil
are always structural. So, we argue that classifier should preserve the two-
dimensional (2D) correlation. On the other hand, in those approaches, all the
pixels on the probe sample are used to classify probe samples. In the case where
probe samples with occlusion, it is hard to guarantee the stability of these meth-
ods since occlusion part could unpredictably favor some classes. So, we intro-
duce dynamic threshold to ensure occlusion is entirely depressed. Combining
the two points, we develop a novel method named Matrix-based Linear Regres-
sion (MRC) which treats all image as matrices. In representation step, a probe
image is regressed as a linear combination of samples from each class and MRC
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uses L21-norm to compute the regression loss. Finally, dynamically threshold is
employed to eliminate occlusion before decision step. Three main contributions
of MRC are outlined as follows:

(1) MRC represents every image as a 2-D matrix. Pixels in a local area of an
occlusion image are generally highly correlated. Transforming the image as
a vector may discard those correlations while 2-D matrix can preserve does
not.

(2) MRC uses L21-norm based regression loss. L21-norm has two advantages:
the robust nature of L1-norm, which is efficient for error detection, and the
ability of preserving the spatial information. The use of L21-norm based
regression loss can depress the effect of occlusion in regression step.

(3) MRC employs a self-adaptive threshold to construct a robust classifier. As we
claim, corrupted pixel should not participate in classifying. The threshold
restricts large residual error dynamically before our decision step. In this
way, MRC can be more robust to occlusion.

The rest of paper is organized as follows: In Sect. 2, we review some related
works. In Sect. 3, we present the MRC model with an effective solution. In Sect. 4,
we conduct extensive experiments. Finally, the conclusion is drawn in Sect. 5.

2 Related Work

2.1 L21-Norm

L21-norm is an element-wise matrix norm and has been used in feature selection
and other machine learning topics for years [9,11]. For a matrix M € R™*", the

norm can be defined as || M|z, = 3770, />0 [ Mi |2, where M;; donates

elements located in the i-th row and the j-th column. L.21-norm can be seen as
a balance between L1-norm and L2-norm.

2.2 LRC

LRC is an inner-class linear regression model. Assume there are N number of
distinguished classes with p; number of training images from the i-th class. Each
training image is transform into a m-dimensional vector so the i-th class samples
can be described as X; = 1,22, ..., zp,] € R™*Pi, where z,, is the p;-th image
in the class. Given a probe image y € R™*!, LRC regresses y with training
images from each class: y = X;3;, where 3; is the coefficient of y in i-th class.
LRC uses (3; to predict the response vector for each class as y; = X;3;. Then
LRC calculates the distance between the predicted response vector g; and the
original response vector y:

dt(y) = Hy_yAL“Q) Z:172aaN (1)
Finally, the class label of y is determined by the class with minimum distance:

1D(i) = mind; (y) (2)
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3 Matrix-Based Linear Regression

In this section, we first present the motivation of MRC. Then, we give the objec-

tive function of our model. Finally, an iterative optimal solution is given for
MRC.

3.1 Motivation of MRC

As the previous statement, linear representation is easily affected by serious
occlusion, in order to decrease the influence, we introduce L21-norm to inner-
class representation and treat images as matrices. Real disguise can be approx-
imately considered as some row occlusion in an image. If we consider an image
as a matrix, regression under L21-norm constraint can easily depress the influ-
ence of row occlusion. Another problem is that the residuals corresponding to
corrupted parts will be very large and make classification difficult. We argue
that large residuals should not be taken into consideration during decision step.
Therefore, a robust threshold is employed to restrict the large residuals.

3.2 Proposed MRC

Follow the previous thoughts, we now develop the MRC model. First, we intro-
duce some denotations. Assume the training set contains images belonging to N
classes and each class including p; images. The image size is m x n. A»7 € R™*"
represents the j-th image in the i-th class. For computing convenience, we define
matrix D! € RPI*™ which is the combine of the I-th row in the i-th class. More
specifically, we stack all images in the i-th class and extract the I-th row of
all images to construct D! (see Fig.1). Given a probe image Y € R™*" Y is
regressed in each class as follows:

Pi o
min [V — 3 A

J=1

l21, 1=1,2,..,N (3)

Fig. 1. An illustration of D}.
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where 7 is the corresponding coefficient of A%J. Equation (3) can be reformu-
lated as

min » [|Y; = X/ Djll, i=12,..,N (4)
=1
where Y] is the l-th row of Y and X; = [2%!, 252, ..., 2Pi]T. Then we propose an

iterative reweight method to solve Eq. (4). We introduce an auxiliary variable

1

' V- X7 Dl ®)
and Eq. (4) becomes
min Y [|Y = X{Djl2 = min Yy wi|yi - X' Dj3 (6)
=1 =1

We first fix w} and minimize Eq. (6) to obtain the X;. Now we take derivative
of Eq. (6) with the respect to X; and set it to zeros. Then, we get

ZwlDl Dl Zw;Dl?Jz (7)

After computing X; we go back to update w} according to Eq.(5). Then
we repeated update X; and wli until converge. We outline the algorithm in
algorithm 1.

Algorithm 1. Reweighted algorithm for MRC in i-th class

Input: Dataset D}, probe image Y.

1: initial X; with a random vector

2: while not converge do

3:  calculate w! according to Eq.(5).
4:  calculate X; according to Eq.(7).
5: end while
Output: The coefficient of i-th class: X'Z

Based on X’i, we can make the decision of the label by using the nearest
subspace criterion under L21-norm. X; along with the A*7 is used to calculate
the residual error for each class,

Pi

el =y — Z AT I (8)
=1

d(i) = ||e' |21 (9)

In previous methods using NS decision rules, such as LRC and SRC, y is
assigned to class with minimum d(7). However, as we claim before, the residuals



362 J.-X. Mi et al.

are produced not only by fidelity pixels but also complexity noises. The distances
between probe image and its representation could not reflect the real conditions
by putting all the residuals into the measurement. In order to ensure make the
classification result is stable and reliable, only the representation residuals of
the fidelity pixels should be taken into consideration during decision. In MRC,
thanks to the L21-norm constraint, residuals corresponding to occlusion parts
will be very large, which provides evidence to possibly remove the occlusion.

Here, we let MRC adopt a threshold to crop the large residuals. A natural
thought is to set the threshold to mean of residuals. However, the mean of
data can be easily affected by extreme. To achieve robust detection of occlusion,
we consider a robust estimation of the non-contaminated part of facial feature
by setting a threshold under which only small Gaussian noise passes, not the
occlusion. Therefore, in MRC, the median absolute deviation (MAD), which
also is known as a robust estimation of standard deviation, is employed. MAD
can be used to detect outliers [6]. Given data a, its MAD is calculated as:

mad(a) = median(|a — median(a)|) (10)

where median(-) aims to find median value of the data.

Now we put MAD into MRC. Equation (9) can be seen as a two step pro-
cedure. First, calculate L2-norm of each row of e’ then sum up all the results.
The L2-norm of the occlusion rows would be large than other rows. Then we
apply MAD threshold to the L2-norm of each row before summing them up. The
Eq. (9) becomes

& = lella (1)

where &} is the l-th row of £'. We define the threshold on as
threshold = median(£') + k x mad(&") (12)

where k € [0,1] is a parameter to adjust the ratio between the two statistics.
And we apply threshold to &:

: &, & < threshold
gl = i (13)
0, & > threshold
d(i) = [I€]x (14)
Finally MRC assigns y to the class with minimum d(3)
label = arg min(d(i)) (15)

Here we outline the MRC classification algorithm in Algorithm 2.

4 Experiments

In this section, we perform experiments on face databases to demonstrate the
performance of MRC. We first evaluate MRC for FR under different sizes of
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Algorithm 2. MRC Classification algorithm
Input: Dataset A, probe image Y.

1: for all each class in A do

2:  Construct D}.
Compute X; according to algorithm 1.
Compute ¢' according to Eq.(8) and Eq.(11).
Compute threshold of ¢* according to Eq.(12).
Cope ¢ according Eq.(13)
Compute distance d(i) according to Eq.(14).
8: end for

9: Categorize Y accroding to Eq.(15)
Output: Class of Y

simulated occlusion. Further, we carry out experiments under real disguise to
demonstrate the robustness of MRC. The proposed MRC is compared to related
existing methods including SRC [15], CRC [18], LRC [8], RRC [17], and CESR
[5]. Five standard databases, including the AR face [7], The CMU PIE face
[13], the Extended Yale B database [4] the ORL database [12] and the FERET
database [10] are employed to evaluate the performance of these methods.

4.1 Recognition with Row Occlusions

We carry out the first experiment in FR with row occlusions. The YaleB
database, the PIE database, the ORL database and the FERET face database
are employed for this purpose. In the first experiments, for each probe image,
we randomly set a certain percentage of its row to zeros. We run the experi-
ments 10 times and the average recognition rates are shown in Fig.2 It can be
seen that MRC achieve the highest recognition rates among all methods in all
dataset. When the occlusion rate is zero all methods perform well. But with
increasing of occlusion, the recognition rate of SRC, CRC and LRC decreases
sharply. The CESR method shows its robustness to occlusion in FERET, PIE
and ORL dataset. The RRC method has the almost same performance as MRC.
However, MRC has an improvement of it over with respectively 0.009%, 0.07%,
0.04%, 0.03% in the four datasets.

4.2 Recognition with Block Occlusions

From the first experiments results, we can see that MRC has strong robustness
to deal with large-scale line-based occlusions. In the second experiments validate
the robustness of MRC to block occlusions. In this experiment, we choose subset
1 of Yale dataset as the training set. And subset 2 and subset 3 with various
sizes of block are selected as test set respectively. We vary the block size from
10% to 40% of an image. The experiment is run 10 times and the average results
are shown in Table 1.

Subset 1, 2, 3 of YaleB are with few illumination changes. So it is easy to
obtain high recognition rate in the subsets. We can observe for the table that
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Fig. 2. Face recognition rate versus with the row occlusion percentage ranging from
10% to 40% in Yale, FERET, PIE and ORL.

Table 1. Recognition rate with block occlusions.

Methods | Subset2 Subset3

10% |20% |30% |40% |10% |20% |30% |40%
LRC 81.72 |79.301 | 77.957 | 72.043 | 77.688 | 75.269 | 70.699 | 68.28
CRC 71.237|72.312 | 69.624 | 53.226 | 58.602 | 55.108 | 50.538 | 34.409
RRC 100 100 100 99.462 | 100 99.731199.194 | 95.161
CESR | 99.731 | 98.656 | 97.849 | 97.043 | 68.548 | 63.978 | 64.247 | 55.914
SRC 76.344 | 70.968 | 67.473 | 56.183 | 62.366 | 58.602 | 56.72 | 54.57
MRC 100 100 100 100 100 100 100 98.387

MRC achieve 100% recognition rate except for one case. Similar to the first
experiment, MRC outperforms all other methods. SRC, LRC and CRC are not
good at resisting the block occlusion. In subset 2, the CESR method has high
recognition rate when 40% of an image is occupied. While in subset 3 the CESR
only obtain 55.91% recognition rate under the same condition. The RRC method
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also has good performance with less occlusion. In subset 3, it is equal to MRC
when the occlusion percent is 10%. When the occlusion percent is 20%, 30%
and 40%, MRC has an improvement of 0.27%, 0.81% and 4.84% over RRC,
respectively.

4.3 Recognition with Real Disguises

After experimenting with random row occlusion and block occlusion scenarios,
we further test different approaches in coping with real possible disguise. In this
experiments, AR dataset is employed. The dataset contains samples wearing
scarf and glasses. We choose images which do not have any occlusion from each
subject for training and 6 images were scarf or glasses from each subject for
validation. The scale of occlusion by sunglasses and scarf about 20% and 40%
respectively. The average recognition rates of 10 runs are shown in Table 2.

Table 2. Recognition rate in AR

Method SRC |LRC|CRC | CESR | RRC | MRC
Recognition rate (%) | 50.75 |38 | 74.7560.75 | 95.5 | 96.25

The difficulty in AR dataset not only because probe images contain glass
and scarf but there are illumination and expression changes. This may make
classifiers misclassification. Taking into account such a complex situation, all
the used methods faced a huge challenge. The performances of some algorithms
are not satisfactory. However, MRC has an advantage over all methods in this
experiment. The proposed MRC approach copes well with the real disguise,
achieving high recognition rates of 96.25%, which is 40%, 58%, 22%, 36% and 1%
higher than SRC, LRC, CRC, CESR and RRC, respectively. The high recognition
rate of MRC indicates the proposed method are robust to real disguises.

5 Conclusion

In this paper, we propose a novel classification-based method (MRC) for face
recognition which considers classifying probe images as a problem of matrix-
based linear regression. The MRC algorithm is extensively evaluated using the
standard five databases and compared with the state-of-the-art methods. The
experimental results prove our viewpoint that the structural information is useful
for face recognition. The good performance of MRC benefits from the combina-
tion of the matrix representation and L21-norm fidelity term, which can detect
errors and make sure the face features are represented in the matrix regres-
sion. The dynamic selection of the representation residuals by the self-adaptive
classifier also provides more discriminative information.
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Abstract. Atmospheric distortion is one of the main barriers to imaging
over long distances. Changes in the local refractive index perturb light
rays as they pass through, causing distortion in the images captured
in a camera. This problem can be overcome to some extent by using a
plenoptic imaging system (one which contains an array of microlenses
in the optical path). In this paper, we propose a model of image distor-
tion in the microlens images and propose a computational method for
correcting the distortion. This algorithm estimates the distortion field in
the microlenses. We then propose a second algorithm to infer a consis-
tent final image from the multiple images of each pixel in the microlens
array. These algorithms detect the distortion caused by changes in atmo-
spheric refractive index and allow the reconstruction of a stable image
even under turbulent imaging conditions. Finally we present some recon-
struction results and examine whether there is any increase in perfor-
mance from the camera system. We demonstrate that the system can
detect and track distortions caused by turbulence and reconstruct an
improved final image.

1 Introduction and Related Work

It is an unfortunate fact for long-range high magnification imaging that the atmo-
sphere perturbs light as it passes through. This is well known to astronomers,
who go to great lengths to find locations with optimum viewing conditions. When
light passes through the atmosphere, it is bent by areas of different refractive
indices caused by pressure differences. Long-range imaging with normal cam-
eras suffers greatly from atmospheric distortion, as the distance which the light
rays travel through the atmosphere is generally long. This is particularly appar-
ent, for example, when the ground is warmed by the sun and causes turbulent
convection [1].

A number of solutions have been proposed to this problem. Lucky imaging [6]
relies on identifying short windows of time when the conditions are optimal and
sharp images can be recovered. The turbulence is chaotic and there are moments
when the distortion subsides and a clear image can be captured. This, however,
limits the rate at which data can be captured. Another approach is speckle
interferometry aims to reconstruct an image from multiple short exposures [7].
This is based on the fact that the largest atmospheric distortions are at low

© Springer Nature Switzerland AG 2018
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frequencies. The high frequency information present in the images is combined
to form one high resolution image.

The modern solution is to use adaptive optics. In an adaptive system, the
shape of the reflector can be rapidly altered to compensate for the wavefront
distortion introduced by the atmosphere. This results in a sharp image at the
sensing plane. The 