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Abstract. Composite materials have gained prominence as an intensively used
material in the aerospace and mechanical industry due to their characteristics of
stiffness and low weight. The possibility of designing composite specimens with
continuous orientation of the fibers at the ply level, following smooth contours,
makes this material even more attractive, as it assess, in a more rational way, the
whole reserve of fiber stiffness in the directions of main loadings. This work
presents a methodology for the optimization of composite materials by the
definition of a continuous fiber orientation. Parameterized curves are used to
define the continuous orientation of the fibers and the control points are assumed
as design parameters during optimization. A Multiobjective Quantum Particle
Swarm Optimization (MO-QPSO) algorithm is used as an optimizer due to
desirable characteristics of good convergence and lower likelihood of being
stuck in local minima. Two examples are presented; both have as one of the
objective functions the Practicality Index (a value that defines the ease of exe-
cution of the continuous orientations of the fibers). The first one is a dynamic
analysis where the previous objective is confronted with the maximization of the
first natural frequency. The next example is a trade-off with the Tsai-Wu failure
criteria and the Practicality Index. The results are compared with literature
solutions (which uses an improved NSGA-II algorithm). In the end, the orien-
tation of the fibers found in the composite material was very similar to those
reported in the literature, confirming the validity of the proposed methodology.
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1 Introduction

Composite materials optimization is a trending topic in industry and academic research,
where the maximum performance commonly is the main objective for each application.
Usually, the available parameters for the project tuning are the number of plies, stack
sequence, a fixed fiber orientation per ply, and proprieties of fiber and matrix con-
stituents. Depending on the fabrication process, not all options and even some
uncertainties might be present. There are developments in that area to keep the project
under high standards and also providing new products configurations, such as

© Springer Nature Switzerland AG 2019

H. C. Rodrigues et al. (Eds.): EngOpt 2018 Proceedings of the 6th International
Conference on Engineering Optimization, pp. 1035-1044, 2019.
https://doi.org/10.1007/978-3-319-97773-7_89


http://orcid.org/0000-0001-5635-1852
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97773-7_89&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97773-7_89&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97773-7_89&amp;domain=pdf

1036 P. B. Santana et al.

continuous fiber orientation variation in the same ply. That is a new opportunity for the
development of highly efficient structures, where the static or dynamic behavior might
reach optimal efficiency.

This work aims the optimization of composite materials for continuous fiber ori-
entation, a recent and ongoing capability in new fabrication processes. It is presented
two examples for static and dynamic analysis, the first one taking into account the Tsai-
Wu index and the Practicality index (a value considering the fiber steering curvature,
representing its fabrication feasibility). The second example first two natural fre-
quencies of a composite plate are related, where the objective is its separation. The
results are compared with literature ones.

2 Brief Bibliographical Review

Composite materials optimization is a recurrent theme in the academic community,
since its wide applicability. Khandan et al. [1] presented a monobjective optimization
using a Simulated Annealing algorithm, where fibers orientation is the design variable
in a transverse shear sensitive model, where the minimization of the composite
thickness is the goal. The results were compared with prototypes and presented a very
good agreement with the numerical simulation.

In a similar objective of minimizing the plate thickness, Rettenwander et al. [2]
developed a hybrid algorithm where the fiber orientation is determined locally based on
the principal stresses. The results present a continuous fiber orientation through a
numerical example.

A methodology called level set is presented by Lemaire et al. [3] to maximize the
stiffness of composite materials for curved fiber trajectories. The fiber orientation free
of the stacking sequence, avoiding overlaps and voids between successive layers is the
main advantage.

Honda et al. [4] proposed a multiobjective optimization through continuous
curvilinear composite plates tailoring using a NSGA-II algorithm. Three numerical
examples were presented in the paper. Two aimed at maximizing the first natural
frequency and minimizing the sum of the curvature of the fibers (practicality index) in
different boundary conditions. The third one aimed at minimizing both the Tsai-Wu
index and the practicality index. These examples and results obtained by Honda et al.
were taken as the basis of validation in the present work.

3 Theoretical Basis

3.1 Formulation for Laminated Orthotropic Plates

The fiber-reinforced composites are anisotropic or, often, orthotropic materials where
its main stiffness and strength properties are in the longitudinal fiber direction. In the
constitutive formulation, it is considered different Poisson ratios and Young’s moduli
for each main direction. For the applied finite element method in this paper, the
orthotropic plates have null transverse stress and the cross shear stresses are assumed as
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a linear variation along the width, based on the First Order Shear Deformation Theory
(FSDT) model (Jones [5]). The displacement field is given by Mindlin’s theory of
plates by:

u(x,y, Z) = uo(x,y) +Z0x(xay>
v(x,y,2) = vo(x,y) +20,(x, y) (1)
W(xvyv Z) = wo(x,y)

The stiffness matrix for each element is divided into components corresponding to
effects from membrane stiffness, membrane-bending coupling, bending itself and shear,
as shown below:

K = Ky + Kb + Kpm + Ky + K (2)

More detailed information on this formulation can be obtained in Ferreira [6].
With the assembled global mass and stiffness matrices, the natural frequencies and
modes are the solutions of the eigenvalue equation

(0!ME —K&)g; =0 (3)
where ®; corresponds to the natural frequencies and ¢; the respective mode shape. In
this work, the finite element is the degenerate Serendipity element of eight nodes.

3.2 Tsai-Wu Failure Criteria

The Tsai-Wu failure criterion is commonly used for composite materials in plane stress.
The failure occurs when the following relationship is violated:

Hyoy+H,y0, —&—Hllo'% —|—H220§ -|—H66‘E%2 +Hpo100 —1<0 4)
or
D<0 (5)
where H are strength tensors corresponding to tensile and compressive loads

1 1 1
Hl':—+—(_ and Hl]:— (6)
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3.3 Fiber Angles and Practicality Index

A third-degree polynomial function f with two variables is used as reference to obtain
the angle of each fiber, through the tangential direction of its contour lines, taken in the
central coordinates of each element.
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fx,y) = coo+ crox+cory + 20X + c11Xy + coay® + €30 + X%y + coxy® + cozy”

(7)
0, = tan™! [—(ﬁ)/(ﬁ)] (8)

where the subscripts refer to which variable the partial derivatives is calculated.
Depending on the boundary conditions and its symmetry, some constants of the
polynomial can be null. The surface curvature at any point is defined as:

wn e B7

The practicality index, a value that is associated with the ease of production, since it
is related with the level of fiber curvature in the plate, is calculated as the mean of k for
all n, elements:

k=300 k) (10)

4 Multiobjective Optimization

Many engineering design problems are multi-objective in nature because they often
involve more than one goal to be optimized. These objectives impose potentially
conflicting requirements such as the technical and economic performance of a given
system. The designer may formulate a multi-objective optimization problem if he wants
to study the trade-offs between these conflicting objectives and explore the available
design options. Once there are conflicting requirements or goals, a multiobjective
optimization is a suitable approach to a problem. The trade-off among the n different
objectives is a decision that should be taken by the designer, chosen from a Pareto front
of solutions. The solutions of that front are called non-dominated. A feasible solution
X! dominates another solution X? if (for a minimization problem):

g (Xl) ggi(Xz)Vi =1,2,...,n

11
g (Xl) <g (Xz) for at least one i (1)

where g;(X) are the objective functions.

4.1 Quantum Particle Swarm Optimization (QPSO)

The Quantum Particle Swarm Optimization method (QPSO) was developed by
Sun et al. [7] and has a better convergence behavior when compared to PSO (Yang
et al. 2013). Instead of position and velocity, the state of the particles in the QPSO is
updated by the square of the module of a wave function |1//(x,t)|2, that represents the
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probability density of particles in a position to appear. Using Monte Carlo method, the
state of the particles can be determined by Egs. (11), (12) and (13).

xj(t+1) = P; — B. (mbest_,-(t) - xij(t)). ln(l/uij(t)), forp>0.5 (12)
xj(t+1) = P+ B.(mbest;(t) — x;(1)). In(1/u;(z)), forp<0.5

Pi(t) = (pj(t).pbest,-j(t) + (1 — (pj(l)).gbest,-j(t) (13)
mbesti(t) = %ZL | Pbest;(1) (14)
B(t) = ((By — Bo)(T —1)/T) + By (15)

where pbest is the local best position of each particle, gbest is the global best position
of the swarm, and mbest is the mean best position of all best positions, pbest, of the
population. 7 is the size of the swarm population, ¢ is the iteration time-step, T is the
total number of iterations, and f; and f, are superior and inferior limits for the
coefficient, and f is called contraction-expansion coefficient, which controls the con-
vergence of the algorithm. p,u and ¢ are uniformly distributed random numbers
between 0 and 1.

4.2 Multiobjective Quantum Particle Swarm Optimization (MOQPSO)

The method applied by the authors is based on the Pareto Front archive strategy, as
described by Branke and Mostaghim [8]. The methodology consists in keeping all the
best particles of the current iteration stored in a database. Those particles will guide the
next generation, and a special treatment is given to the extreme particles, in the search
domain, that will stimulate a spread searching effort, avoiding a short and concentrated
Pareto Front. The MOQPSO considers 3 archives in objective function space:
(i) archive fp for storing local best positions, (if) archive f;; for storing global best
positions and (iii) archive fs,, for storing global best positions that are filtered by a
minimum distance criteria. The corresponding set of design variables vectors corre-
sponding to each of the archives are X, X1 and Xgp.

Instead of using the classical meanbest variable of the QPSO, this algorithm uses
guide-particles in order to direct the particles towards the Pareto Front. The guide
selection is made randomly in two ways: (i) using one of the previously explained
extreme solutions as a guide and (if) using the closest solution (in Euclidean Norm
sense) belonging to the Pareto Front in the current iteration.

An extreme-particle maintenance technique is applied in order to keep the
boundaries as wide as possible. A criterion of proximity in the objective function space
is also employed in order to avoid crowding of particles in some regions or unnecessary
movements in already populated regions of search space. This algorithm was suc-
cessfully tested and compared by Grotti et al. (2017) for multiobjective optimizations
of mode frequencies and accelerations of vehicle suspension models, using similar
algorithms such as NSGA-IL.
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5 Numerical Examples

5.1 Frequency Maximization on a Fully Clamped Square Plate (CCCC)

In this example, a square plate fully clamped, characterized in a mesh of 100 regular
size elements is analyzed, where the objectives are the maximization of the first natural
frequency while reducing the mean curvature (Practicality Index). The composite plate
has 8 layers with thickness 0.125 mm, and the following properties: E;= 138 GPa,
E, = 8.96 GPa, G;,= 7.10 GPa, v;,= 0.3 and p = 1578 kg/m3. The fiber arrangement
is defined in the first layer and the stack is configured as [(+layer/—layer),];.

The natural frequencies are normalized as indicated below:

Q = wd®+\/ph/Dy (16)

where a is the plate length, & the total thickness and Dy = E>h* /[12(1 — viavay)].

The Pareto Front is presented in Fig. 1, where the results are compared with the
ones obtained by Honda et al. [4]. Those objectives functions are conflicting since
larger bends will generate higher frequency values. There are three different configu-
rations of this optimal front indicated on Fig. 1 that has its fiber arrangement shown in
Fig. 2.
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Fig. 1. Pareto Front with results obtained by Honda et al. [4] and by the present paper.
Table 1 reports the values for the dimensionless natural frequency and the mean

curvature for the highlights points in the Pareto Front indicated in Fig. 1. Table 2
shows the polynomial coefficients for those cases.
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Fig. 2. From left to right, the configurations 1, 2 and 3, respectively, indicated in Fig. 1.

Table 1. Comparison between results obtained in the article and those obtained by the model
proposed in the work for the CCCC case.

Case Natural frequency [Hz] | Mean Curvature [1/m]
(1) Honda et al. [4] 93.64 53107

(2) Honda et al. [4]| 95.64 5.06

(3) Honda et al. [4] | 103.9 29.03

(1) this work 93.19 1.24-107*

(2) this work 95.64 4.73

(3) this work 104.25 41.41

Table 2. Polynomial coefficients for the CCCC case.

Pareto Solution | Polynomial Coefficients using MO-QPSO

€00 C10 | Co1 | €20 | C11 C02 €30 | C21 | C12 | Co3
1) 1.0/0.0{2.0/0.0| 0.0/—2.0/0.0/0.0(2.0| 2.0
?2) —-2.0/0.0/0.1/0.0 1.0/ 00/00/2.0|1.0/—2.0
3) -09/00/0.0/00[-02| 00/0.0(2.0/1.8] 0.0

5.2 Stress Concentration on a Plate with a Center Hole

Due to the symmetry of the problem, a quarter of the structure is modeled. This plate
has a width of 10 cm, 70 cm in length and a center hole of 5 cm radius. The stack
sequence pattern and the composite properties are similar to the previous example. The
mesh of 400 elements is shown in Fig. 3. The elongated plate is used to guarantee a
valid stress state near the hole, and the results are shown in an area of 10 cm by 10 cm
in the stress concentration region on the left. Since the stresses don’t change with
thickness, the evaluation is made only in the first two layers.

The load is applied distributed on the right end nodes, generating 10 MPa of axial
tensile. The failures stress parameters are: ¢! = g§ = 144800 N/cm?, o) = 5171
N/em?, 65 = 20685 N/em?® and ;5 = 9008 N/em®.

The Pareto Front for this example is shown in Fig. 4, where the results from
Honda et al. [4] and the present work are confronted. In Fig. 5 the first and second
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Fig. 4. Pareto Front with results obtained by Honda et al. [4] and by the present paper.
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Layer 1 Fiber Configuration Layer 2 Fiber Configuration
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Fig. 6. Results for configuration 2 in the first (left) and second (right) layers.

layers are presented for the configuration 1 indicated in Fig. 4, while in Fig. 6, are the
results for configuration 2.

6 Conclusions

The main objective of this work was the validation of the continuous fiber orientation
in plate models optimized with a MO-QPSO algorithm, tested in dynamic and static
conditions, confronted with a fabrication process index (practicality index). The
examples were selected to match literature results, mainly by Honda et al. [4]. In the
first example, the MO-QPSO was able to spread the Pareto Front, finding and extreme
configuration (number 3). But it lacked performance to populate the middle region of
the front. For the second example, the right side of the front presented an offset that is
subject of an ongoing investigation. In spite of that, the results of fiber orientation are
similar from that presented in the literature. The grown interest in multiobjective
optimization and in continuous fiber orientation is a strong incentive of research in that
subject.
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