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Abstract. The stability analysis and optimization of elastic web travelling
between two rollers with a constant velocity are presented. The mathematical
model for a layered travelling web (continuous isotropic composite plate) is
developed restricting the consideration to one open draw. The layered plate with
various mechanical properties of layers is considered and analytical expressions
for the effective characteristics are derived. As a result the composed structure
can be considered as an isotropic homogeneous plate and the obtained formulas
for computation of critical velocity can be applied. Then the isoperimetric
optimization problem is formulated and studied. The total mass of the layered
plate is considered as an isoperimetric condition. The critical divergence
velocity is taken as an optimized quality criterion. To this end consisted in
maximization of the web stability and for maximization of the divergence
velocity with respect to material distribution, the evolutionary optimization
method (genetic algorithm) is applied. The number of materials is supposed to
be given. Applying the genetic algorithm these materials are distributed on the
plate thickness (provide the optimal plate consisted of some layers of different
thickness) and the critical velocity is maximized under the constraint on the total
mass of the structure. Numerical results are presented for different sets of
problem parameters.
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1 Introduction

Travelling flexible strings, membranes, beams and plates are the most common models
of axially moving continua [1]. Previous studies of these models described by the
second and fourth order differential equations focus on aspects of free vibration
including the nature of wave propagation in moving media and the effects of axial
motion on the frequency spectrum and eigenfunctions. It has been shown that the
natural frequency of each mode decreases when transport speed increases and that the
travelling string, beam, panel and plate will experience divergence instability at a
sufficiently high speed (see, for example, [1, 2]).

This work concentrates on stability analysis and optimization of elastic web trav-
elling between two rollers with a constant velocity. We present a model for a layered
travelling web (continuous isotropic composite plate) restricting the consideration to
one open draw. The web is mechanically simply supported at the inflow and outflow
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ends of the span, with the rest boundaries of the span unsupported. The considered part
of the layered web is effectively isotropic, homogeneous and occupies the domain
having a rectangular shape in plan. The web is symmetrically composed with respect to
a middle plane and is consisted of elastic layers characterized by some important
parameters (mass per unit area, Young modular, Poisson ratio and distances from the
middle plane).

In this study we consider the layered plate with various mechanical properties of
layers and derive analytical expressions for the effective characteristics. As a result we
can consider the composed structure as an isotropic homogeneous plate and apply the
obtained formulas for computation of critical velocity. Then the isoperimetric opti-
mization problem is formulated and studied. As an isoperimetric condition it is con-
sidered the total mass of the layered plate. The critical divergence velocity is taken as
an optimized quality criterion.

To this end consisted in maximization of the web stability and for maximization of
the divergence velocity with respect to material distribution, we apply the evolutionary
optimization method (genetic algorithm) [3, 4]. This algorithm was developed in [4]
and effectively applied with some modifications in [5, 6] for layered structures. The
number of materials is supposed to be given. Applying the genetic algorithm we
distribute these materials on the plate thickness (provide the optimal plate consisted of
some layers of different thickness) and maximize the critical velocity under the con-
straint on the total mass of the structure. Numerical results are presented for different
sets of problem parameters. It is noted that the considered problem and applied
approach can be generalized and also used for the cases with incomplete data con-
cerning the properties of materials [7].

2 Problem Formulation

In this paper we present a model for a layered travelling web (continuous isotropic
composite plate), restricting the consideration to one open draw. The web is
mechanically simply supported at the inflow (x ¼ 0) and outflow (x ¼ l) ends of the
span, with the rest of boundaries of the span unsupported (y ¼ b and y ¼ �b). The
considered part of the layered web is effectively isotropic and occupies the region
X ¼ fðx; y; zÞ : 0\x\l;�b\y\b;�H=2\z\H=2g in the rectangular global coor-
dinate system x, y, z. The web is travelling at a constant velocity V0 in the x-direction.
The length l, the width 2b, the total thickness H, and the velocity V0 of the web are the
given positive numbers. The web is symmetrically composed with respect to a middle
plane and consisted of 2nþ 1 odd number elastic layers characterized by mass per unit
area mi, Young’s modulus Ei, Poisson’s ratio mi and distances hi from the middle plane.
Extreme layers have number of 1 and 2nþ 1 (see Fig. 1).

Taking into account the stacking symmetry with respect to middle plane (z ¼ 0)
and that the layers are pasting together we obtain the plate with the following effective
bending rigidity Def , Poisson’s ratio mef , and mass per unit area mef
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The dynamical out-of-plane mechanical behavior of the moving homogeneous
isotropic web is described by the following differential equations and boundary con-
ditions (D2 is a biharmonic operator)
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Fig. 1. Layers.
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Here the transverse (out-of-plane) displacement of the web is denoted by the
function w ¼ w x; y; tð Þ and the mechanical constant tension, applied at the web ends
ðx ¼ 0; lÞ is denoted by T0.

In the case of homogeneous isotropic moving web with parameters m, D, m the
explicit expression has been found for the critical divergence (instability) velocity Vdiv

0
[1]. This expression can be also used for the considered effective layered homogeneous
and isotropic web movement described by the presented boundary value problem.
Assuming m ¼ mef , D ¼ Def , m ¼ mef we will have

Vdiv
0

� �2¼ T0
mef

þ c2�p
2Def

mef l2
ð7Þ

where constant c� is a root of the following transcendental equation
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Thus, for each layered web with symmetrical internal structure and given param-
eters mi, Ei, mi (i ¼ 1; 2; . . .; nþ 1) we can obtain the values mef , Def , mef and conse-
quently to determine the critical divergence velocity Vdiv

0 using to this end the presented
expression. Using the expression for Vdiv

0 we will consider the following optimization
problem consisted in maximization of the web stability, i.e. maximization of Vdiv

0 by
means of the layers variation. To this end it is convenient to use natural
parametrization.

Taking into account that each of the given materials can be enumerated with one
parameter, we apply natural parametrization using the scalar variable t that takes given
values t1, t2, …, ts,…, tr, i.e.

t 2 t1; t2; . . .; ts; . . .; trf g

If the layers are characterized by Young’s modulus E, Poissons’s ratio m, mass per
unit area m then

Es ¼ E tsð Þ; ms ¼ m tsð Þ;ms ¼ m tsð Þ

Thus the layered optimized plate consists of discrete set of layers (materials),
distributed along the z-axis and characterized by the set of parameters Es; ms;msf g,
s ¼ 1; 2; . . .; r. Distribution of the parameters (EðzÞ, mðzÞ, mðzÞ) along the web depth
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are given by piece-wise constant functions defined of the segment 0� z�H=2. For
each point z 2 0;H=2½ � these functions take some values from given finite set, i.e.
E zð Þ 2 Esf g, m zð Þ 2 msf g, m zð Þ 2 msf g, s ¼ 1; 2; . . .; r.

In what follows, we apply discussed parametrization (Fig. 2) of the essential
parameters using the piece-wise constant function t ¼ tðzÞ (z 2 0;H=2½ �) taking the
value t ¼ ts ¼ s from the given set, i.e. t 2 ts ¼ sf g and such as the following
equalities are satisfied:

Es ¼ E t zð Þð Þt¼ts¼s; ms ¼ m t zð Þð Þt¼ts¼s;ms ¼ m t zð Þð Þt¼ts¼s ð9Þ

3 Problem of Optimization

Using this representation we consider the problem of maximization of critical diver-

gence function Vdiv
0 (or Vdiv

0

� �2) with a mass constraint

Vdiv
0

� �
�¼ max

t
Vdiv
0 t zð Þð Þ ð10Þ

mef ¼ mef t zð Þð Þ�M0 ð11Þ

t zð Þ 2 tsf g : zi�1\z\zi; i ¼ 1; 2; . . .; nþ 1; s ¼ 1; 2; . . .; r; z1 ¼ H=2; znþ 1 ¼ 0 ð12Þ

where M0 [ 0 is a given constant.
To solve the optimization problem (10)–(12) in general case, i.e. taking into

account the isoperimetric inequality (11), let us apply the approach (method of penalty
function), based on maximization of the augmented functional Ja defined by the
formulae

Ja ¼ Vdiv
0 � k mef �M0

� � ð13Þ

Fig. 2. Piece-wise constant distribution of material properties.
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k ¼ 0; if mef �M0
� �� 0

k ¼ k0 [ 0; otherwise
ð14Þ

where k0 is a positive penalty multiplier.

4 Genetic Algorithm

Solution of the problem of the functional Ja (13) maximization for the various values of
the problem parameters M0, H, T0 and material characteristics presented in Table 1 is
performed with the help of a genetic algorithm [3, 4].

We apply this algorithm of global optimization to overcome the complexity caused
by local extremums arising in the considered problem. It is supposed that the interval
0;H=2½ � of the variable z is divided by the points zi; i ¼ 0; 2; . . .; nþ 1 into nþ 1
subintervals. For each i-subinterval (i ¼ 1; . . .; nþ 1) the values E, m, m can take the
constant values corresponding to the chosen materials.

The index of the material can take the values form 1 to 3. Population under
consideration consists of N individuals represented admissible piece-wise homoge-
neous webs. The number N is supposed to be even and kept constant in the population
renewal process. Each j-individual of the population is described by the set of values
t j; ið Þ representing the design variables at a node. The “best” individual, i.e. the set
t� j; ið Þ maximizing the augmented functional, is sought by using the genetic algorithm.

The first step of algorithm consist in initialization of the population, that is
assigning random values taken from 1; 2; 3½ � to all elements t j; ið Þ; i ¼ 1; . . .; nþ 1. For
all created individuals (j ¼ 1; 2; . . .;N) of the initial population we compute the aug-
mented functional Ja jð Þ and find the individuals having the maximal value of the
functional. Using the initial data and the next step of the algorithm, it is possible to
determine a new population consisting of N individuals, and so to successively max-
imize the functional Ja.

At the second step of the algorithm we select N/2 individual pairs, “parents”, to
obtain N/2 pairs of individuals, “children”, which constitute new population. Selection
of the first parent (“a”) is performed by a following manner. Some natural number NT is
chosen and then NT individuals are selected randomly. From this set of individuals we
preserve and use only one individual having the maximal value of augmented func-
tional Ja. Similarly we find the second parent (“b”) and put together the first pair of
individuals. All together we choose N/2 such pairs.

Table 1. Characteristics of materials.

Material E (kg/cm2) m m, (g/m2)

1 14.0*106 0.460 450
2 1.7*106 0.038 400
3 9.36*106 0.017 410
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The third step of algorithm consists in obtaining of two children from each pair of
parents. For this purpose we generate some random value pr from interval ½0; 1� and a
random natural number nr from 1; 2; . . .; nþ 1½ �. If pr � pco (pco is the crossover
probability, given constant value) then the values of design variables of children at the
nodes 1; 2; . . .; nr½ � are copied from their parents “a” and “b”, but the meaning of these
values at the nodes nr þ 1; . . .; nþ 1½ � are obtained with the help of crossover. The latter
means that for child “a” we copy the values in the corresponding nodes of the parent
“b” and vice versa.

Successive sorting of all parent pairs and performing of described operations lead to
N individuals (children), that compose the new population.

The fourth step of the algorithm consists in mutation of the new population. This
step is necessary to avoid staying at the local maximum of the functional. To realize the
mutation procedure we take some small (*0.005) parameter pm (probability of
mutation). Then for all nodes of each individual of the population we generate a
random number pr from interval 0; 1½ �. If pr � pm then the value of design variable at
this node is replaced by the arbitrary value satisfying given constraint. For the next
population, we compute the functionals Ja jð Þ and select the best individual. Then we
go to the second step of applied algorithm. Note that if the best child from the new
population is worse than the best parent from the previous population then we replace it
by this parent. This makes the process of finding of global maximum a monotonic one.

The optimal distribution of material t zð Þ was determined with the help of the
genetic algorithm. Here the parameters of computational process were taken as n ¼ 10,
N ¼ 10, NT ¼ 4, pco ¼ 0:5, pm ¼ 0:05. Calculations were completed after 500 gen-
erations. Characteristics of materials considered as admissible for optimal design of the
non-homogeneous isotropic layered web are presented in Table 1.

The results of numerical solution for the case of k ¼ 0 (no constraint on mef ) and
for the cases when M0 ¼ 430; 420; 410 (g/m2) are presented in Fig. 3 (variants a–d) for
the following problem parameters: l ¼ 1:2 m, b ¼ 0:47 m, T0 ¼ 16 N/m, H ¼ 10�3 m.

Fig. 3. Material distributions.
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Material 1 is shown by white color, material 2 and material 3 are shown by red and blue
colors respectively.

The dependence of the constant c� on the Poisson’s ratio mef for considered problem
parameters is presented in Fig. 4.

5 Appendix

The calculus of effective moduli Def , mef , and mef has been performed in the paper with
the help of the formulas (1)–(3). The formula (3) for effective mass mef per unit area of
the layered web is obtained by direct summation of the corresponding masses (the
summation is taken over 2nþ 1 layers).

Let us derive more complicated formulas (1) and (2) for effective bending rigidity
Def and effective Poissons’s ratio mef of the considered non-homogeneous layered web.
To this end we apply the formulas for stresses and strains and will use the expression
for bending moment

ZH=2

�H=2

rxzdz ¼
ZH=2

�H=2

z2E zð Þdz
1� m zð Þð Þ2

0
B@

1
CA @2w

@x2
¼ Def @2w

@x2

� �
ð15Þ

Taking into account the symmetry of internal web structure, i.e.

E zð Þ ¼ E �zð Þ; m zð Þ ¼ m �zð Þ ð16Þ

Fig. 4. The dependence of the constant c� on the Poisson’s ratio mef .
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we find the expression for effective bending rigidity in the form

Def ¼ 2
ZH=2

0

z2E zð Þ
1� m zð Þð Þ2 dz ð17Þ

Using mechanical and geometric characteristics of the web layers Ei, mi, hi we
evaluate the integral in (17). We will have the following formula

Def ¼ 2
3

Enþ 1

1� m2nþ 1
h3nþ 1 þ

2
3

Xn
i¼1

Ei

1� m2i
h3i � h3iþ 1

� � ð18Þ

that coincides with (1).
In analogous manner we derive the formula for effective Poisson’s ratio of non-

homogeneous isotropic layered web. Thus, we obtain

mef ¼ 2
Def

ZH=2

0

z2m zð ÞE zð Þ
1� m zð Þð Þ2 dz ¼

2
Def

mnþ 1Enþ 1h3nþ 1

1� m2nþ 1
þ

Xn
i¼1

Eimi
1� m2i

h3i � h3iþ 1

� �" #

ð19Þ

that coincides with (2).
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