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Abstract. This article addresses the compliance problem along with the
piezoelectric actuator design for active vibration control. The structure
layout is obtained by solving a compliance minimization problem while
the actuators topology is found by the maximization of a controllability
index written in terms of the controllability Gramian, which is a measure
that describes the ability of the actuators input to move the system state
from an initial condition to a desired final state, at rest for instance, in
a finite time interval. Also, the polarization direction of each actuator
is defined according to the distribution of an additional design variable.
Therefore, it is possible to produce both tensile and compressive fields in
different points of the structure using the same applied control voltage. In
order to achieve this goal, a material interpolation scheme based on the
Piezoelectric Material with Penalization and Polarization (PEMAP-P)
model is employed and both the optimum structure/actuator layout and
polarization profile are obtained simultaneously. The sensitivities with
respect to the polarization and design variables are calculated analyti-
cally. Numerical examples are presented considering the control of bend-
ing vibration modes for a cantilever beam and a simply supported beam
in order to show the efficiency of the proposed formulation. The con-
trol performance of the designed structures are analyzed by means of
a Linear-Quadratic Regulator (LQR) simulation and these results are
compared to the ones obtained by a formulation that does not take into
account the actuator polarity in the optimization problem, i.e., the polar-
ization profile is stated a priori.
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1 Introduction

An active vibration control (AVC) strategy requires the use of sensors to collect
information related to the structural motion and actuators to apply an active
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524 J. F. Gonçalves et al.

damping which reduces the vibration effects. Moreover, a control law is also
required to calculate the input signal, which is applied to the actuators, with
appropriate magnitude, frequency and phase, based on the output signal from
the sensors [1]. Piezoelectric materials are frequently employed in AVC applica-
tions due to their fast response, easy implementation, and possibility to be used
either as sensor or actuator due to the direct and inverse piezoelectric effects
[2]. Several authors have proposed efficient strategies for the design of structures
with piezoelectric sensors and actuators since the control performance depends
on the geometrical parameters of these transducers. A detailed technical review
on the optimal placement of piezoelectric transducers can be found in Gupta
et al. [3]. Topology optimization problems based on controllability and observ-
ability were used to design piezoelectric actuators [4,5] and sensors [6].

In this work, a simultaneous optimization approach is employed to design
flexible structures with embedded in-plane piezoelectric actuators. The compli-
ance minimization with volume constraint is carried out along with the actuator
design. A controllability measure is maximized in order to define the optimized
actuator layout [7] and its polarization [8]. Thus, each part of the piezoelec-
tric domain can have different poling directions, which allows the actuators to
create tensile and compressive strain fields at different points of the structure
when a single-input control voltage is applied. The topology optimization method
based on the SIMP [9] and PEMAP-P [10] models is employed in this work to
find topologies that result in a minimum compliance structure and piezoelectric
actuators with improved control performance. Numerical examples are presented
considering the application of a Linear Quadratic Regulator (LQR) scheme in
order to verify the influence of the optimized polarization profile on the controller
gains and displacement responses.

2 Problem Description

The structure topology is characterized by the distribution of the design variable
χ that indicates the presence of material (Ω − Ωv) and void regions (Ωv), as
represented in Fig. 1.

A second design variable ρ indicates the presence of base material (Ωb) or
piezoelectric material (Ωa = Ωn ∪ Ωp), with its polarization direction described
by ϕ. Thus, Ωn and Ωp represent, respectively, negative and positive polarization
for the piezoelectric media.

The linear piezoelectric constitutive model is used to relate the mechanical
stresses (σi) and the electric displacements (Di) with the mechanical strain field
(εi) and the electric field (Ei), written as:

σi = cijεj − dkiEk, (1)

Di = dijεj + eikEk (2)

where cij = cij (χ, ρ), dij = dij (χ, ρ, ϕ) and eij = eij (χ, ρ, ϕ) are, respectively,
the elastic, piezoelectric and dielectric constants which make Eq. (1) becomes
the Hooke’s law when χ = 1 and ρ = 0.
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Fig. 1. General problem for the structure with multi-polarized piezoelectric actuators.

The equation of motion can be written in terms of modal coordinates r, as:

r̈ + 2ZΩṙ + Ω2r + ΨTKupv = ΨTf (3)

where Z is the diagonal matrix of modal damping ratios, Ω is the diagonal matrix
of natural frequencies, Ψ is the modal matrix, Kup is the piezoelectric coupling
matrix, v is the vector of nodal voltages, f is the vector of nodal mechanical
forces, and the upper dot denotes time derivative.

3 Topology Optimization Problem

The design variables are penalized in order to push intermediate values toward
either 0 or 1, and, consequently, the elastic properties and density for the k-th
finite element are written as [9]:

cij = χk
p0

[
ρk

p1cpzt
ij + (1 − ρk

p1)cbase
ij

]
(4)

γ = χk

[
ρkγpzt + (1 − ρk)γbase

]
(5)

where cbase
ij and cpzt

ij are, respectively, the elastic properties of base and piezoelec-
tric material; γbase and γpzt are the density of base and piezoelectric material,
respectively; p0 and p1 are the SIMP penalization factors. The Piezoelectric
Material with Penalization and Polarization (PEMAP-P) takes into account the
possibility of define either positive or negative polarization. Then, the coupling
piezoelectric and dielectric properties for the k-th element are interpolated as
[10]:

dij = χk
p0ρk

p2 (2ϕk − 1)p3 dpzt
ij (6)

eij = χk
p0ρk

p2 (2ϕk − 1)p4 epzt
ij (7)
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where dpzt
ij and epzt

ij are, respectively, the electromechanical coupling and dielec-
tric properties of the piezoelectric material; p2, p3 and p4 are the PEMAP-P
penalization factors.

The structure topology problem is written as:

minimize
χ

: fs = fTu

subject to : gs =
∑n

i=1 χi∑n
i=1 Vi

≤ CV

: 0 < χi ≤ 1 i = 1, 2, . . . , n

(8)

where χi is the design variable associated with the i-th element, Vi is the volume
of the i-th element, CV is a threshold for the structure volume and n is the
number of elements.

The actuator design is defined by the maximization of the controllability
measure λ1, which is proportional to the energy transmitted from the actuator
to the first vibration mode [11]. Thus, the actuator topology problem is written
as [8]:

maximize
ρ,ϕ

: fc = λ1

subject to : gc =
∑n

i=1 ρi∑n
i=1 Vi

≤ CP

: 0 ≤ ρi ≤ 1 i = 1, 2, . . . , n

: 0 ≤ ϕi ≤ 1 i = 1, 2, . . . , n

(9)

where ρi and ϕi are the design variables related to the i-th element, Vi is the
volume of the i-th element and CP is a threshold for the actuators volume. The
controllability measure λ1 is the first eigenvalue of the controllability Gramian
W, which is obtained by solving the Lyapunov equation [12]:

AW + WAT + BBT = 0 (10)

where A and B are the system and control input matrices given by:

A =
[

0 I
−Ω2 −2ZΩ

]
B =

[
0

−ΨTKuφ

]
(11)

where 0 and I are the zero and identity matrices, respectively.

4 Numerical Results

In this section, the proposed formulation is examined by means of two numerical
examples, as represented in Fig. 2. The base material is defined as an isotropic
elastic material with aluminum constitutive properties (E = 71 · 109 N/m2, ν =
0.33, and γ = 2700 kg/m3), and a piezoelectric ceramic PZT-5A is considered
as the active material. The elastic, piezoelectric and dielectric constants for a
PZT-5A can be found in Gonçalves et al. [8].
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(a) Example A (b) Example B

Fig. 2. Description of the analyzed examples (all dimensions in millimeters).

Both structures are modeled using 1600 finite elements. For the volume con-
straints, CV and CP are set, respectively, as 0.5 and 0.2. The penalization expo-
nents of the material model are set as p0 = p1 = p2 = 3 and p3 = p4 = 1.
Uniform initial distribution is employed for the design variables as χi = CV ,
ρi = CP , and ϕi − 0.5. For the compliance problem, an unit static force (1N) is
considered for all examples.

Figures 3 and 4 present the interpreted designs for examples A and B, respec-
tively, considering uniform and optimized polarization. Design variables greater
than or equal to 0.5 are lead to 1 while the remaining variables are lead to 0
(except for χ where a lower bound 0.001 is considered to avoid ill-conditioning
problems). In these figures, blue and red represent piezoelectric domains with
negative and positive polarizations, respectively, while white represents base
material elements. Void domains, i.e., elements with χ = 0.001, are removed
from the mesh to better represent the interpreted structures.

fs = 5.752 · 10−4 Nm fs = 5.807 · 10−4 Nm
fc = 3.679 · 10−6 fc = 8.505 · 10−6

(a) (b)

Fig. 3. Interpreted design for the example A with: (a) uniform and (b) optimized
polarization.

For both examples, the controllability measure fc is improved when the polar-
ization is taken into account in the optimization problem.

A Linear-Quadratic Regulator (LQR) scheme is employed to compare the
control performance of the designed structures and actuators. For this controller,
the optimal feedback gain matrix is chosen to minimize the quadratic cost func-
tion [13]:

J =
1
2

∫ tf

0

(
xTQx + φ2

)
dt (12)
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fs = 5.687 · 10−5 Nm fs = 5.683 · 10−5 Nm
fc = 9.010 · 10−6 fc = 1.109 · 10−5

(a) (b)

Fig. 4. Interpreted design for the example B with: (a) uniform and (b) optimized
polarization.

where x is the state vector containing the modal displacements (r) and veloci-
ties (ṙ), φ is the single-input control voltage, and Q is a semi-positive definite
weighting matrix for the state variables x, defined as:

Q =

⎡

⎣
qI 0

0 I

⎤

⎦ (13)

where q is a scalar weighting factor.
Assuming that all states are known during the analyzed time interval, the

gain matrix is:
G = R−1BTP (14)

where P is the solution of the algebraic Riccati equation [13]:

ATP + PA − PBBTP + Q = 0 (15)

The structure is considered at rest initially, i.e., x(0) = 0, and then an unit
impulsive load f(t) is applied at the input point represented in Fig. 2. Dis-
placement responses u(t) are evaluated at the same point. The LQR weigh-
ing factor q was chosen as the maximum value that satisfies the condition
−250 V < φ(t) < 250 V for any t ∈ [0, tf ], as presented in Fig. 5.

An overview of the simulated control models is presented in Table 1 for both
examples in terms of the LQR weighing factor (q), RMS displacement (uRMS),
and RMS control voltage (φRMS).

Table 1. Displacements and input voltages when applying the LQR controller.

Example Polarization Weighting factor q uRMS (m) φRMS (V)

A Uniform 2.040 · 1017 2.357 · 10−8 9.620

A Optimized 3.270 · 1017 1.839 · 10−8 10.482

B Uniform 1.068 · 1019 4.445 · 10−9 6.804

B Optimized 6.547 · 1019 2.556 · 10−9 6.944
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Fig. 5. Maximum absolute control voltage as a function of the LQR weighing factor q.

Solutions with optimized polarization resulted in piezoelectric actuators with
improved control performances. For both cases, higher control gains can be
applied without exceeding a maximum voltage condition. This operating con-
dition is a suitable way to define the control gains since exceeding the maximum
voltage may cause depolarization and irreversible damage to the piezoelectric
material.

5 Concluding Remarks

A simultaneous approach for the design of flexible structures with minimal com-
pliance and optimized piezoelectric actuators was studied. One can observe that
there is no significant differences in the topologies. It is explained by the assump-
tion of computing only the design variables ϕ when minimizing the compliance
objective function (fs). The solver would distribute the piezoelectric material
aiming at maximizing the structural stiffness if the design variables ρ were cal-
culated in this optimization problem and, therefore, it could depreciate the con-
trollability objective function (fc). Related to the AVC problem, the optimized
structures were analyzed by means of an LQR controller and the piezoelectric
actuators with optimized polarization presented improved controllability mea-
sure and control performance. An important feature of this approach is that, for
the studied examples, higher control gains can be applied to the actuators with
optimized polarization without exceeding a control voltage limit.
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5. Gonçalves, J.F., De Leon, D.M., Perondi, E.A.: Topology optimization of embedded
piezoelectric actuators considering control spillover effects. J. Sound Vib. 388,
20–41 (2017). https://doi.org/10.1016/j.jsv.2016.11.001

6. Menuzzi, O., Fonseca, J.S.O., Perondi, E.A., Gonçalves, J.F., Padoin, E., Silveira,
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