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Abstract. Uncertainty quantification of identified parameters is an important
feature when some quality assessment of the results of model updating procedure
is necessary, or when important decisions depend upon these values. In this work,
a modification of the conventional sensitivity method is tested along with a
Bayesian Monte Carlo framework for identification of system parameters from
experimental data, and their probability distributions. First, the updating proce-
dure uses a metaheuristic algorithm (derivative-free) and the Euclidean norm
metric. Then, a modification of Markov Chain Monte Carlo method called
Transitional MCMC is applied to obtain an approximation of the mean values
and probability distributions of the updated parameters based on the scattering of
the experimental data. An example is presented with real structure experimental
data for updating discrete mass, stiffness and damping parameters, as well as a
comparison with previous results yielded by different methods, suggesting
equivalent levels of agreement in the updated parameters, but with the advantage
of MCMC formulation being practically independent of parameters vectors.
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1 Introduction

Limited available information, misinterpretation of underlying mechanisms, as well as
inherent randomness have been imposing the necessity of the study of engineering
systems in the presence of uncertainties. The problem of uncertainty quantification is
not trivial and depends immensely on the engineer’s ability to correctly choose the
uncertainties to be assessed. In principle, the presented discrepancies between model
and measurements can be accommodated by a set of uncertainty variables that may or
may not be the right ones related to the uncertainty in the measurement values. Besides,
the attributed uncertainty in the model’s parameters may group more than one source of
uncertainty. In any case, it is a consensus that a numerical model that behaves like, and
explain experimental values obtained from a real system is of immense value for
correct estimates and parametric studies.

Dynamical systems with different geometric configurations may present remarkable
distinct dynamic behavior. Differently from the case of damage detection, large
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changes in geometrical configurations will produce large measurable variations in the
dynamic behavior. Apart from symmetrical configurations, the source of this variability
is obvious and it is easily perceived/identified in the measured mode shapes and mode
frequencies.

Considering the significant levels of inaccuracy in the estimation of some important
parameters, various methods have been proposed, that now are broadly available, for
identification/updating of dynamic models (Friswell and Mottershead 1995; Maia and
Silva 1997). The former part of this work presents an application of the Bayesian
MCMC method (Patelli et al. 2017) in the updating of equivalent transverse motion
stiffness of a three-storey building model using experimental data from accelerometers.

2 Methodology

2.1 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo is now a well-established technique used to acquire
knowledge on distribution statistics based upon measured data. Several specialized
textbooks in the literature deal with the algorithm and their use in physics, engineering,
biology, etc. (Brooks et al. 2011; Gamerman et al. 2006; Yuen 2010). In the Bayesian
Model Updating framework, it is assumed a prior joint probability density function for
the unknown parameters. Using the Bayes theorem, this prior probability is updated
using an error estimation of the differences between measured output parameters and
the predicted ones. Let h be the vector of the unknown parameters, e ¼ zm � zp, the
vector of the errors between the measured output parameters and the predicted ones.
So, by the Bayes theorem (Yuen 2010) the conditional joint probability density
function pðhj�Þ of the unknown parameters, given the known error between the
measured and predicted output parameters had occurred, is given by:

pðhj�Þ ¼ pð�jhÞp hð Þ
p �ð Þ ; ð1Þ

where p hð Þ is the prior joint probability density function of the parameters, that should
be known a priori. The conditional bayesian probability pðhj�Þ is most frequently
called the posterior probability, and will be referred to in this manner in what follows.
Usually, in the absence of any information related to this probability, the first approach
is to assume a uniform multidimensional probability density function U hð Þ (all com-
binations of parameters are equally likely). pð�Þ is the probability of the errors. pð�jhÞ
means the joint probability density function of the errors given that the parameters h
had occurred (sampled). It is also known as the likelihood. This last probability is
assumed as a Gaussian, zero-mean joint probability, as:

Pð�jhÞ ¼ 1

ð2pÞ1=npj Sej jj1=2
e �TS�1

� �½ � ð2Þ

408 A. M. Löw and H. M. Gomes



where Se is the auto-correlation matrix between the measured output parameters and is
the probability of the errors, also known as the normalization factor, such that:

P �ð Þ ¼
Z

P �jhð ÞPðhÞdh ð3Þ

It should be noticed that P �jhð ÞP hð Þ can assume any shape in the multidimensional
space of the unknown parameters, differently from pð�jhÞ that is assumed as zero mean
Gaussian probability. Once the Posterior probability is obtained, a sampling technique
should be used in order to get the statistics of the unknown parameters. One way is
using a Markov Chain Monte Carlo (MCMC) simulation that is an improvement of the
Metropolis Hastings Algorithm to generate samples based on an unknown joint
probability density function.

Briefly, MCMC follows the main steps of the Metropolis Hastings algorithm (Yuen
2010). Let’s say that pðhj�Þ is available after a Bayesian Updating. For a given number
of samples to be generated, it starts with an initial vector of the unknown parameters h0
and then random perturbations are given for this guess point hp ¼ h0 þ dh. An
acceptance criterion is stated as:

So, at the end, the will exist a chain of parameters H ¼ h0; h1; . . .; hn that represents
the unknown joint probability density function. Statistics of the parameters, such as
mean, standard deviation, histograms (pdf estimate), c.d.f., skewness, etc. can be
obtained based on the values of the chains, discarding some very early initial values
when the chains had not converged to a stationary distribution. More details can be
found in (Ching and Chen 2007). The MCMC should contain a large number of
elements in the chain in order to obtain the reliable statistics to evaluate mean values,
cumulative distributions and even covariance matrix (Silva et al. 2016).

3 Numerical and Experimental Model

The three-storey building used in the experiments is composed of three polymer blocks
rigidly attached to two metal beams, one at each side, and the beams fixed to another
block serving as a base to whole structure. Figure 1 shows a sketch of the model with
main dimensions and variables.
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Due to the two lateral beams, the rotational degree of freedom is suppressed,
remaining only the lateral one. The nominal values for the masses are m1 = m2 =
m3 = 112 g. The lateral beams are made of steel and have a nominal Young’s modulus
E = 196 GPa, and so the equivalent stiffness of the relative transverse motion between
the blocks was calculated considering clamped-clamped Euler–Bernoulli beams, giving
1.215 N/m as a first estimate to be used in the iterative numerical procedure. With these
values, mass and stiffness matrices were assembled, as written below, and the predicted
natural frequencies were calculated considering the undamped case.

M ¼
m1 0 0
0 m2 0
0 0 m3

2
4

3
5; K ¼

2k1 þ 2k2 �2k2 0
�2k2 2k2 þ 2k3 �2k3
0 �2k3 2k3

2
4

3
5 ð4Þ

The corresponding (undamped) eigenvalue/eigenvector system is defined, as usual,
as:

K/i ¼ kiM/i ð5Þ

where /i is the i-th eigenvector and the i-th eigenvalue, ki, is the square of the i-th
natural frequency, xi, measured in rad/s (ki ¼ x2

i ).
Then, the nominal natural frequencies for the model are evaluated solving Eq. (5),

giving: f1 = 10.43 Hz, f2 = 29.24 Hz, f3 = 42.25 Hz.
The base of the block was rigidly fixed and each of the storeys was excited by

manual tapping. The acceleration of each story block was measured with an Analog

Fig. 1. Main dimensions and variables for the three-storey building example.
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Devices ADXL 203 accelerometer, with sensitivity of 970 mV/g and saturation of
±1.7 V, and the signals were acquired with a Measurement Computing 12 bit USB
acquisition board at a sampling rate of 500 Hz. The period of acquisition was defined
as 15 s, so that the frequency resolution of the discrete Fourier transform was
approximately 0.066 Hz, and the natural frequencies were obtained by simple peak
picking. Some additional treatments were performed on the experimental data. The
pick peaking process for natural frequencies determination was improved by tracing
splines over some few points around the picks in the acceleration spectrum. Moreover,
Chauvenet’s criterion was applied to detect and remove experimental recordings most
likely contaminated with gross human errors during the manual tapping process. The
experimental data (resonance frequencies and damping ratios) were then determined
again from the set of remaining observations, and the obtained mean values and
standard deviations are presented further, together with the outputs predicted by the
updated model.

Applying this procedure, the measured statistical data of damped frequencies,
summarized by Table 1, for a set of 130 samples, were obtained independently. The
corresponding correlation coefficients of the measured data are presented in Table 2.

4 Numerical Results

4.1 Model Updating of Stiffness and Mass Parameters Only

In this example, only stiffness and mass parameters were updated using MCMC,
leaving for a posterior analysis, the damping updating. It was allowed a range of 1% to
100% of variation in the initial nominal values for k1, k2, k3, m1, m2 and m3. It was used
200 updates for the MCMC method and 200 chains with an acceptance rate of 75% in
the metropolis Hastings algorithm and a rate of increment of 1%. Figure 2 shows the
scatter plot for the sample of 130 for three damped frequencies and those obtained with
the updated model. Tables 1 and 2 also shows the obtained frequencies and corre-
sponding correlation coefficient after MCMC model updating process (Fig. 3).

For the updated parameter, Fig. 4 shows the convergence of the MCMC algorithm
for the six parameters used in the model updating, where a burn in of 30% of the data
was applied. The statistics for the updated parameters are presented in Table 3.

Table 1. Statistical data of measured damped frequencies and identified damped frequencies by
MCMC using only stiffness and mass parameters.

Experimental Identified Difference
Mean (Hz) Std. Deviation (Hz) Mean (Hz) Std. Deviation (Hz) (Hz)

f1 10.754 0.01730 10.758 0.01751 −0.004
f2 28.806 0.03525 28.814 0.03551 −0.008
f3 42.909 0.01292 42.921 0.01308 −0.012
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4.2 Model Updating of Mass, Stiffness and Damping Parameters

In order to also update the mass and damping matrices, and at the same time evaluate
the uncertainties in these parameters, the procedure was performed again in two
sequential steps: (a) first with the components of the mass and stiffness matrices taken
as input parameters and the undamped natural frequencies as outputs; and (b) with only
the components of the damping matrix as the input parameters and damping ratios as
outputs (mass and stiffness matrices remaining fixed in the values achieved in the
previous step). In this last step the predicted values of the damping ratios were obtained
from polynomial eigensolution (Tisseur and Meerbergen 2001), while experimental
ones were extracted from measured time-domain data using exponential decrement
technique and Hilbert transform to obtain response envelopes (Feldman 2011).

Table 2. Correlation coefficient for the measured damped frequencies and those from the
updated model.

Experimental Identified
q f1 f2 f3 f1 f2 f3
f1 1 0.6185 0.7290 1 0.6333 0.7402
f2 0.6185 1 0.4576 0.6333 1 0.4902
f3 0.7290 0.4576 1 0.7402 0.4902 1
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Fig. 2. Scatter cloud data for the experimentally measured three damped frequencies and that
obtained with the updated numerical model.
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Fig. 3. Confidence ellipses for the experimentally measured three damped frequencies and those
obtained using the updated model.
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Fig. 4. Probability density functions and cumulative density function for each of the 6 updated
parameters (normalized) and the corresponding convergence of Markov Chain Monte Carlo
series (a burn in of 30% was applied).
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For the identification of the damping parameters, a viscous non-proportional model
was assumed and the physical system was idealized as a translational mass-spring-
damper oscillator, as described by the matrix below:

C ¼
c1 þ c2 �c2 0
�c2 c2 þ c3 �c3
0 �c3 c3 þ c4

2
4

3
5 ð6Þ

More details about this model can be found in Löw and Gomes (2017). Figure 5
shows the scatter plot of the measured damping ratios and those obtained with the
updated model (Fig. 6).

The mean updating dimensionless parameters for damping ratio obtained were:
1.63559, 0.01548, 1.66917 and 1.42906, with standard deviations of 0.17116, 0.41118,
0.23719 and 0.14540. Figure 7 shows the converged Markov Chains for the dimen-
sionless damping coefficients.

Table 3. Updating factors for input parameters in the case of stiffness and mass updating.

Parameters Mean (dimensionless) SD (dimensionless)

k1 1.2923 0.00360
k2 1.0797 0.00364
k3 0.9744 0.00323
m1 1.2209 0.00358
m2 1.1561 0.00360
m3 0.9223 0.00362

Fig. 5. Scatter cloud data for the experimentally measured three damping ratio and that obtained
with the updated numerical model.
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Fig. 6. Confidence ellipses for the experimentally measured damping ratios and those obtained
using the updated model.

Fig. 7. Probability density functions and cumulative density function for each of the 4 updated
dimensionless damping coefficient and the corresponding converged Markov Chains Monte
Carlo series (a burn in of 30% was applied).
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5 Conclusions

Bayesian model updating with uncertainty evaluation was applied to a shear frame
three dof-like structure for which a large set of experimental acceleration observations
was available. The procedure was first applied in the case that the whole uncertainty of
the system is considered as concentrated only in the stiffness and mass matrices
parameters. Fine agreement was achieved for mean values with obtained correction
factors in the order of ±10%. Confidence ellipses also suggest a good agreement, as
well in the size of their semi-axes as in the in-plane rotation.

Latter, fixing the mass and stiffness matrices in the updated values, damping
parameters were updated by matching predicted damping ratios with measured ones.
Extremely low error values and well fitted confidence ellipses suggest that the resultant
fitted model can reliably be used to predict dynamic behaviour. Finally, even though
fairly well fitted models were obtained in both cases, an inverse relation between
sensitivity and uncertainty level for the damping parameters could be perceived with
the comparison of the results. It was noted that damped natural frequencies were almost
insensitive to damping perturbations, but the uncertainty levels observed in measured
damping ratios, and consequently in the fitted damping parameters too, are much
greater than those of mass and stiffness components. Then, it was noticed that a more
robust way of prescribing uncertainty allocation among the parameters that describe the
physical system is needed for further developments of uncertainty quantification with
sensitivity analysis.
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