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Abstract. This paper summarize our work so far on reliability based
design optimization (RBDO) by using metamodels and present some new
ideas on RBDO using support vector machines. Design optimization of
complex models, such as non-linear finite element models, are treated by
fitting metamodels to computer experiments. A new approach for radial
basis function networks (RBFN) using a priori bias is suggested and
compared to established RBFN, Kriging, polynomial chaos expansion,
support vector machines (SVM), support vector regression (SVR), and
least square SVM and SVR. Different types of computer experiments are
also investigated such as e.g. S-optimal design of experiments, Halton-
and Hammersley sampling, and different adaptive sampling approaches.
For instance, SVM-supported sampling is suggested in order to improve
the limit surface by putting extra sampling points at the margin of the
SVM. Uncertainties in design variables and parameters are included in
the design optimization by FORM- and SORM-based RBDO. By estab-
lishing the most probable point (MPP) at the limit surface using a New-
ton method with an inexact Jacobian, Taylor expansions of the meta-
models are done at the MPP using intermediate variables defined by the
iso-probabilistic transformation for several density distributions such as
lognormal, gamma, Gumbel and Weibull. In such manner, LP- and QP-
problems are derived which are solved in sequence until convergence.
The implementation of the approaches in an in-house toolbox are very
robust and efficient. This is demonstrated by solving several examples
for a large number of variables and reliability constraints.
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1 Introduction

Over a period of many years an in-house toolbox named MetaBox for metamodel-
based simulations and optimization with and without uncertainties has been
develop during different research projects. Today, the toolbox contains several
approaches for DoE, a bunch of metamodels packed together as an ensemble of
metamodels, and methods for simulations and optmizations with uncertainties
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Fig. 1. Available options in MetaBox (www.oru.se).

such as Monte Carlo, FORM, SORM and RBDO. This paper presents the cur-
rent status of the toolbox concerning metamodel-based RBDO. An overview of
available options in MetaBox is given in Fig. 1.

The project of MetaBox was initiated by simulating rotary draw bending
using artificial neural networks (ANN) [1]. It was concluded that several hidden
layers are needed in order to get satisfactory results. Shortly after, we started to
develop a successive response surface methodology using ANN [2,3]. This app-
roach has proven to be very efficient for screening and generating proper DoEs.
Methods for DoE of non-regular spaces were developed in [4,5]. In particular,
the S-optimal DoE presented in this paper has proven to be very useful. Work on
metamodel-based simulations with uncertainties was initiated in [6]. Then, work
on metamodel-based optimization with uncertainties was started, during several
years [7–10] a framework for metamodel-based RBDO was developed. Mean-
while, several metamodels were also implemented in MetaBox such as Kriging,
RBFN [11–13], polynomial chaos expansion (PCE), SVM [14] and SVR.

The outline of the paper is as follows: in Sect. 2 a short overview of imple-
mented metamodels in MetaBox is given, in Sect. 3 the main ideas of FORM-
and SORM-based RBDO as well as our implemented SQP-based RBDO algo-
rithm are presented, in Sect. 4 a well-known benchmark is studied using different
choices of DoEs and metamodels with and without uncertainties. Finally, some
concluding remarks are given.

2 Metamodels

Let us assume that we have a set of sampling data {x̂i, f̂ i} obtained from design
of experiments. We would like to represent this set of data with a function, which
we call a response surface, a surrogate model or a metamodel. One choice of such
a function is the regression model given by

f = f(x) = ξ(x)T β, (1)

www.oru.se


238 N. Strömberg

where ξ = ξ(x) is a vector of polynomials of x and β contains regression coeffi-
cients. By minimizing the sum of squared errors, i.e.

min
β

N∑

i=1

(
Xijβj − f̂ i

)2

, (2)

where Xij = ξj(x̂
i) and N is the number of sampling points, then we obtain

optimal regression coefficients from the normal equation according to

β∗ =
(
XT X

)−1

XT f̂ . (3)

Examples of other useful metamodels are Kriging, radial basis functions, poly-
nomial chaos expansion, support vector machines and support vector regression.
The basic equations of these models as implemented in MetaBox are presented
in the following.

2.1 Kriging

The Kriging model is given by

f(x) = ξ(x)T β∗ + r(x)T R−1(θ∗)
(
f̂ − Xβ∗

)
, (4)

where the first term represents the global behavior by a linear or quadratic
regression model and the second term ensures that the sample data is fitted
exactly. R = R(θ) = [Rij ], where

Rij = Rij(θ, x̂i, x̂j) = exp

(
−

N∑

k=1

θk(x̂i
k − x̂i

k)2
)

. (5)

Furthermore, θ∗ is obtained by maximizing the following likelihood function:

1
σN

√
det(R)(2π)N

exp

(
− (Xβ − f̂)T R−1(Xβ − f̂)

2σ2

)
(6)

and
β∗ =

(
XT R−1(θ∗)X

)−1

XT R−1(θ∗)f̂ . (7)

2.2 Radial Basis Function Networks

For a particular signal x̂k the outcome of the radial basis function network can
be written as

fk = f(x̂k) =
NΦ∑

i=1

Akiαi +
Nβ∑

i=1

Bkiβi, (8)
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where NΦ is the number of radial basis functions, Nβ is the number of regression
coefficients in the bias,

Aki = Φi(x̂
k) and Bki = ξi(x̂

k). (9)

Both linear and quadratic regression models are used as bias. Furthermore, Φi =
Φi(x̂

k) represents the radial basis function.
Thus, for a set of signals, the corresponding outgoing responses f = {f i} of

the network can be formulated compactly as

f = Aα + Bβ, (10)

where α = {αi}, β = {βi}, A = [Aij ] and B = [Bij ]. If we let β be given a
priori by the normal equation as

β =
(
BT B

)−1

BT f̂ , (11)

then
α = A−1

(
f̂ − Bβ̂

)
. (12)

Otherwise, α and β are established by solving
[

A B

BT 0

]{
α
β

}
=

{
f̂
0

}
. (13)

2.3 Polynomial Chaos Expansion

Polynomial chaos expansion by using the Hermite polynomials ϕn = ϕn(y) can
be written as

f(x) =
M∑

i=0

ci

NVAR∏

j=1

ϕi(xj), (14)

where M + 1 is the number of terms and constant coefficients ci, and NVAR is
the number of variables xi. The Hermite polynomials are defined by

ϕn = ϕn(y) = (−1)n exp
(

x2

2

)
dn

dxn

(
exp

(
−x2

2

))
. (15)

For instance, one has

ϕ0 = 1, (16a)
ϕ1 = y, (16b)

ϕ2 = y2 − 1, (16c)

ϕ3 = y3 − 3y, (16d)

ϕ4 = y4 − 6y2 + 3, (16e)

ϕ5 = y5 − 10y3 + 15y, (16f)

ϕ6 = y6 − 15y4 + 45y2 − 15, (16g)

ϕ7 = y7 − 21y5 + 105y3 − 105y. (16h)
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The unknown constants ci are then established by using the normal equation.
A nice feature of the polynomial chaos expansion is that the mean of f(X) in
(14) for uncorrelated standard normal distributed variables Xi is simply given by

E[f(X)] = c0. (17)

2.4 Support Vector Machines

Let us classify the sampling data in the following manner:

yi =
{

1 f̂ i ≥ f̃ ,
−1 otherwise,

(18)

where f̃ is a threshold value. The soft non-linear support vector machine separate
sampling data of different classes by a hyper-surface on the following format:

N∑

i=1

λ∗
i y

ik(xi,x) + b∗ = 0, (19)

where k(xi,x) is a kernel function, and λ∗
i and b∗ are obtained by solving

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
λ

1
2

N∑

i=1

N∑

j=1

λiλjy
iyjk(xi,xj) −

N∑

i=1

λi

s.t.

⎧
⎪⎨

⎪⎩

N∑

i=1

λiy
i = 0,

0 ≤ λi ≤ C, i = 1, . . . , N.

(20)

The least-square support vector machine is established by solving
[

0 −yT

y A + γI

]{
b
λ

}
=

{
0
1

}
, (21)

where y = {y1; . . . ; yN}, γ = 1/C, 1 = {1; . . . ; 1} and

A = [Aij ], Aij = yiyjk(xi,xj). (22)

2.5 Support Vector Regression

The soft non-linear support vector regression model reads

f(x) =
N∑

i=1

λik(xi,x) −
N∑

i=1

λ̂ik(xi,x) + b∗, (23)
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where λi, λ̂i and b∗ are established by solving
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
(λ,λ̂)

1
2

N∑

i=1

N∑

j=1

(λi − λ̂i)(λj − λ̂j)k(xi,xj) +
N∑

j=1

(λ̂i − λi)f̂ i + δ
N∑

j=1

(λi + λ̂i)

s.t.

⎧
⎪⎨

⎪⎩

N∑

j=1

(λi − λ̂i) = 0,

0 ≤ λi, λ̂i ≤ C, i = 1, . . . , N.
(24)

Finally, the corresponding least square support vector regression model is
established by solving

⎡

⎣
0 −1T 1
1 B + γI −B

−1 −B B + γI

⎤

⎦

⎧
⎨

⎩

b
λ

λ̂

⎫
⎬

⎭ =

⎧
⎨

⎩

0
f̂ − δ1

−f̂ − δ1

⎫
⎬

⎭ , (25)

where γ = 1/C, 1 = {1; . . . ; 1} and

B = [Bij ], Bi,j = ϕ(xi)ϕ(xj) = k(xi,xj) (26)

is a matrix containing kernel values.

3 Reliability Based Design Optimization

By using the metamodels presented in the previous section it is straight-forward
to set up any design optimization problem as

{
min

x
f(x)

s.t. g(x) ≤ 0.
(27)

For instance the metamodel f = f(x) might represent the mass of a design and
g = g(x) is a metamodel-based limit surface for the stresses obtained by finite
element analysis.

A possible draw-back with the formulation in (27) is that it is not obvious
how to include a margin of safety. For instance, what is the optimal safety factor
to be included in g? An alternative formulation that includes a margin of safety is

{
min

μ
E[f(X)]

s.t. Pr[g(X) ≤ 0] ≥ Ps,
(28)

where X now is treated as a random variable, E[·] designates the expected value
of the function f , and Pr[·] is the probability that the constraint g ≤ 0 being
true. Ps is the target of reliability that must be satisfied.
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3.1 FORM

An established invariant approach for estimating the reliability is the first order
reliability method (FORM) suggested by Hasofer and Lind. The basic idea is
to transform the reliability constraint from the physical space to a space of
uncorrelated standard Gaussian variables and then find the closest point to the
limit surface from the origin. This point is known as the most probable point
(MPP) of failure. The distance from the origin to the MPP defines the Hasofer-
Lind reliability index βHL, which in turn is used to approximate the probability
of failure as

Pr[g ≤ 0] ≈ Φ(−βHL). (29)

Assuming that X is normal distributed with means collected in μ and σ
containing standard deviations, the MPP is obtained by solving

⎧
⎪⎪⎨

⎪⎪⎩
min

x
βHL =

√√√√
N∑

i=1

(
xi − μi

σi

)2

s.t. g(x) = 0.

(30)

3.2 SORM

The approximation in (29) is derived by performing a first order Taylor expansion
at the MPP and then evaluating the probability. Second order reliability methods
(SORM) is obtained by also including the second order terms in the Taylor
expansion. Based on these higher order terms the FORM approximation of the
reliability is corrected.

For instance, by letting λi denoting the principle curvatures of a second order
Taylor expansion of g, we can correct (29) by using e.g. Tvedt’s formula, i.e.

Pr[g ≤ 0] ≈ P1 + P2 + P3,

P1 = Φ(−βHL)
N−1∏

i=1

1√
1 + 2βHLλi

,

P2 = (βHLΦ(−βHL) − φ(−βHL))

(
N−1∏

i=1

1√
1 + 2βHLλi

−
N−1∏

i=1

1√
1 + 2(βHL + 1)λi

)
,

P2 = (βHL + 1)(βHLΦ(−βHL) − φ(−βHL))

(
N−1∏

i=1

1√
1 + 2βHLλi

−Re

[
N−1∏

i=1

1√
1 + 2(βHL + i)λi

])
.

(31)
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3.3 SQP-based RBDO Approach

Recently, a FORM-based SQP approach for RBDO with SORM corrections was
proposed in [10]. For non-Gaussian variables, we derive the following FORM-
based QP-problem in the standard normal space:

⎧
⎪⎨

⎪⎩

min
ηi

f(η)

s.t.
{

μg̃ ≤ −βtσg̃,
−ε ≤ ηi ≤ ε,

(32)

where

f(η) =
NVAR∑

i=1

∂f

∂Xi

∣∣∣∣
X=μk

φ(Y k
i )

ρi(μk
i ;θk

i )
ηi +

1
2

NVAR∑

i=1

NVAR∑

j=1

H̃ijηiηj ,

H̃ij =
∂2f

∂Xi∂Xj

∣∣∣∣
X=μk

φ(Y k
i )

ρi(μk
i ;θk

i )

φ(Y k
j )

ρj(μk
j ;θk

j )
,

μg̃ =
NVAR∑

i=1

∂g

∂Xi

∣∣∣∣
X=xMPP

φ(yMPP
i )

ρi(xMPP
i ;θk

i )

(
ηi − yMPP

i

)
,

σg̃ =

√√√√
NVAR∑

i=1

(
∂g

∂Xi

∣∣∣∣
X=xMPP

φ(yMPP
i )

ρi(xMPP
i ;θk

i )

)2

.

(33)

Here, βt = Φ−1(Ps) is the target reliability index which can be corrected by a
SORM approach as presented above or any Monte Carlo approach. The optimal
solution to (32), denoted η∗

i , is mapped back from the standard normal space to
the physical space using

μk+1
i ≈ μk

i +
Φ(Y k

i )
ρi(μk

i ;θk
i )

η∗
i .

Then, a new QP-problem is generated around μk+1 and this procedure continues
in sequence until convergence is obtained. The QP-problem in (32) is solved using
quadprog.m in Matlab.

4 Numerical Examples

In order to demonstrate the metamodel-based RBDO approach presented above,
we consider the following well-known benchmark:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
μi

(μ1 + μ2)
2

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Pr[g1 = 20 − X2
1X2 ≤ 0] ≥ Φ(3),

Pr

⎡

⎢⎣
g2 = 1 − (X1 + X2 − 5)2

30
− (X1 − X2 − 12)2

120
≤ 0

⎤

⎥⎦ ≥ Φ(3),

Pr[g3 = X2
1 + 8X2 − 75 ≤ 0] ≥ Φ(3),

1 ≤ μi ≤ 7,

(34)
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Fig. 2. Different design of experiments.

where VAR[Xi] = 0.32. A small modification of the original problem is done by
taking the square of the objective function. This problem was recently considered
in [10] by solving (32) sequentially. The example was in that work also generalized
to 50 variables and 75 constraints for five different distributions simultaneously
(normal, lognormal, Gumbel, gamma and Weibull). The analytical solution for
two variables with normal distribution is obtained to be (3.4525, 3.2758) 45.2702
with our RBDO algorithm. The corresponding deterministic solution is (3.1139,
2.0626) 26.7965.

Now, we will consider (34) to be a “black-box”, which we treat by setting up
design of experiments and metamodels. The quality of the metamodel is depen-
dent on the choice of DoE. Figure 2 presents four useful strategies of DoEs. In
Fig. 2a we adopt successive screening to set up the DoE, in Fig. 2b we use space-
filling with a genetic algorithm by maximizing the distance to the closest point,
and in the other two figures we apply Halton and Hammersley sampling. For
these four sets of sampling data, we set up 12 different metamodels automati-
cally and then find the deterministic solution for each metamodel-based problem
of our “black-box”. The solutions are presented in Table 1. One concludes that
the solutions depend on the choice of DoE and metamodel. For many combina-
tions the corresponding “black-box” solution is very close to the analytical one.

The choices of DoE strategy and metamodel is even more pronounced when
we perform metamodel-based RBDO. In Fig. 3, we set up the DoE for RBDO
by first performing successive screening with Halton sampling, then this DoE
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Table 1. Deterministic solutions for different DoEs and metamodels.

Successive factorial DoE S-optimal DoE

Metamodel x y Objective x y Objective

Quadratic 3.248886 2.171088 29.37613 0.999117 0.999117 3.992936

Kriging lin 3.117074 2.078969 26.92165 2.982927 1.763172 24.45783

Kriging quad 3.11152 2.060563 26.75044 3.099117 2.049533 26.50859

RBFN-pri lin 3.113471 2.062579 26.79215 3.113773 1.950322 26.24357

RBFN-pri quad 3.114144 2.062872 26.8015 3.111254 2.060329 26.74527

RBFN-post lin 3.113685 2.061552 26.78975 3.091999 1.948156 25.93791

RBFN-post quad 3.11443 2.063122 26.80704 3.097684 2.048247 26.48061

PCE 3.113883 2.062643 26.79654 3.108187 2.064329 26.7493

SVM 3.369155 2.145621 30.41275 2.82942 3.13867 35.61809

SVR 3.114132 2.061862 26.80731 3.055823 2.079891 26.35382

LS-SVM 3.18866 2.244347 29.51756 3.192832 2.747977 35.29321

LS-SVR 3.113104 2.059959 26.79126 3.054317 2.078361 26.36171

Halton DoE Hammersley DoE

Quadratic 3.067359 2.383666 29.71367 3.182894 2.305653 30.12416

Kriging lin 3.13906 2.131108 27.46664 3.151871 2.10432 27.50435

Kriging quad 3.09325 2.044249 26.3939 3.071617 2.024385 25.96924

RBFN-pri lin 3.12314 2.083498 27.03036 3.112407 2.050659 26.68024

RBFN-pri quad 3.113361 2.062185 26.78627 3.087332 2.038875 26.278

RBFN-post lin 3.123084 2.082355 27.02246 3.111633 2.062253 26.72894

RBFN-post quad 3.113447 2.06226 26.78794 3.084073 2.035896 26.21409

PCE 3.113601 2.063178 26.79957 3.134014 2.057725 27.06369

SVM 3.113337 2.025036 26.40287 2.734435 2.019023 22.59537

SVR 3.112977 2.088567 26.96864 3.142191 2.091771 26.98728

LS-SVM 2.821295 2.031644 23.55102 1.367785 1.794423 9.999563

LS-SVR 3.11431 2.08876 26.97181 3.144679 2.092451 26.99588

is augmented by adding the sampling points (green dots) based on the optimal
solutions (deterministic and RBDO solution) and the active most probable points
as well as points (red dots) along the limits surface based on a global SVM [14].
The corresponding metamodel-based RBDO solutions are presented in Table 2 as
well as the corresponding solutions for the successive factorial DoE presented in
Table 1. One concludes that the choices of augmented successive Halton sampling
and RBFN, PCE or SVR produce the best performance. For these choices the
metamodel-based “black-box” solution is close to the analytical one.
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Fig. 3. Left: successive screening using Halton sampling, right: adaptive sampling using
MPP and SVM.

Table 2. RBDO solutions for different DoEs and metamodels.

Successive factorial DoE Succ. halton DoE

Metamodel x y Objective x y Objective

Quadratic 3.639523 3.339185 48.70235 3.502828 3.292923 46.18223

Kriging lin 3.252461 2.716889 35.51783 3.258552 2.712108 35.6467

Kriging quad 3.248491 2.705792 35.45348 3.262384 2.713804 35.71483

RBFN-pri lin 3.497476 3.16193 44.2991 3.439621 3.286656 45.24157

RBFN-pri quad 3.307214 3.216166 42.55449 3.452365 3.257389 45.02079

RBFN-post lin 3.477641 3.204944 44.54576 3.439076 3.286574 45.23413

RBFN-post quad 3.412853 3.260071 44.52793 3.439088 3.286576 45.23457

PCE 3.45374 3.274712 45.27401 3.453746 3.274719 45.27224

SVM 3.771719 3.070926 46.82181 3.509136 3.332413 46.80679

SVR 3.467335 3.259169 44.79304 3.438362 3.286197 45.20416

LS-SVM 2.907908 6.991473 97.9982 2.756372 1.71142 19.96117

LS-SVR 3.466073 3.24107 44.55684 3.438703 3.286368 45.21783

5 Concluding Remarks

A framework for metamodel-based RBDO has been developed and implemented
in MetaBox. Several options of DoEs, metamodels and optimization approaches
are possible. In a near future, optimal ensemble of metamodels will also be
available as an option.
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