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integers Z , such that for any two graphs G and H , if G is isomorphic to H then
f (G) = f (H). This glossary also contains a listing of some 70 conjectures related
to these parameters, more than 26 new parameters and open problem areas for study,
and some 600 references to papers in which these parameters were introduced and
then studied.
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1 Introduction

Keeping with the theme of this series of monographs, which is to provide extensive
discussions of favorite conjectures and open problems in graph theory, in this
chapter we present an annotated glossary of graph theory parameters along with
conjectures involving many of them. We also list several suggested new parameters
and open problems. Although this chapter deviates from the “story-telling style”
adopted in the other chapters, we hope that this glossary with its conjectures and
open problems serves as a useful tool for researchers, fitting in its own way within
the theme of this series.

LetG = (V ,E) be a finite undirected graph with vertex set V = {v1, v2, . . . , vn}
of order n = |V |, and edge set E with size m = |E|, consisting of unordered
pairs of distinct vertices in V . By a partition of the vertex set V we mean a family
π = {V1, V2, . . . , Vk} of pairwise disjoint sets whose union equals V , that is, for all

1 ≤ i < j ≤ k, Vi ∩ Vj = ∅ and
k⋃

i=1

Vi = V ; for such a partition π , we will say

that π has order k. Two graphs G and H are isomorphic, denoted G � H , if there
exists a bijection φ : V (G) → V (H) such that two vertices u and v are adjacent in
G if and only if the two vertices φ(u) and φ(v) are adjacent in H . Identifying when
two graphs are isomorphic is both practical and theoretically interesting, while the
decision problem is hard to categorize [28, 501, 505, 538]. A parameter of a graphG
is a numerical value (usually a non-negative integer) that can be associated with any
graph such that whenever two graphs are isomorphic, they have the same associated
parameter value. A finite set I of parameters is said to be complete if whenever two
graphs have the same values for every parameter in the set I , then the two graphs
are isomorphic. We know of no finite complete set of parameters for the class of all
finite, undirected graphs. Indeed, one could easily conjecture that a finite complete
set of parameters does not exist for the family of all graphs.

However, complete sets of parameters do exist for some limited families of
graphs. For example, the one parameter n, the order of a graph, is a complete set
of parameters for the family of all complete graphs Kn, the family of paths Pn, and
the family of cyclesCn. The two parameters {n,m}, the order and the size of a graph,
form a complete set for the family of all graphs of order n ≤ 3, that is, the value of
these two parameters uniquely identifies any graph of order n ≤ 3. It seems likely,
therefore, that complete sets of parameters can be discovered for various families of
graphs. But if complete sets of parameters for limited families of graphs exist, then
from what list of parameters can they be chosen?

This brings us to the first motivation for presenting a glossary of more than 300
parameters of graphs. From this listing, complete sets of parameters for limited
families of graphs can be chosen.

A second motivation for creating this glossary of parameters is the study of
graphical parameters themselves. What types of parameters have been defined and
studied? Indeed, what other types of parameters have not been defined? Merely
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reading through this listing of parameters and understanding how they are defined
will surely suggest even more parameters that can be studied.

A third motivation for creating this glossary has to do with results of the form:
a(G) + b(G) ≤ n + c, or a(G) + b(G) ≥ n + c, where a(G) and b(G) are two
parameters, n is the order of a graph G, and c is some, usually small, constant.
In 1969, Geller and Hedetniemi [282] showed that for many pairs of parameters,
inequalities like these exist, provided that the parameters are well-behaved under
either of the following two operations: (1) identifying two non-adjacent vertices u
and v in a graph G, called an elementary homomorphism, where Gε denotes the
resulting graph, or (2) contracting two adjacent vertices u and v to a single vertex,
called an elementary contraction, where Gθ denotes the resulting graph. By well-
behaved we mean that the value of a parameter does not change by more than, say, 1;
for example, if for any graphG, a(G) ≥ a(Gε)±1, or a(G) ≤ a(Gθ)±1. Often one
can prove that such inequalities as a(G)+b(G) ≤ n+c or a(G)+b(G) ≥ n+c exist
if one of the parameters remains unchanged while the second parameter changes by
at most 1 under either of these two elementary operations. The question then is:
for which pairs of parameters are such theorems possible? All that remains is to
study how any of the following parameters can change under either of these two
elementary operations.

A fourth motivation for creating this listing of parameters is to provide a partial
answer to the general question: has a proposed new parameter already been defined?
Or, has a parameter similar to a proposed parameter been defined?

A fifth, and final, motivation for creating this glossary is simply to have in
one place, a reasonably comprehensive list of most of the generally recognized
graph parameters, together with their definitions and a couple of references where
more information about them can be found. Of course, it is recommended that
one should consult a good search engine, like MathSciNet or GoogleScholar, in
order to thoroughly search what is known about any of these parameters. This
listing of parameters is not intended to be complete. While it may be reasonably
comprehensive, the number of graph theory parameters that have been studied in the
literature is much greater than the number presented here. We apologize in advance
if we have omitted anyone’s favorite parameters.

One might well say that many of the graph parameters that have appeared in
the literature are obscure and uninteresting. This is, of course, always a matter of
personal choice. But it is too easy to make small changes in any of these definitions
and thereby create a seemingly “new” parameter. Indeed, one of the criticisms of
graph theory is that it has too many uninteresting parameters. One should always
ask, is this “new” parameter worth studying? Is it interesting? What is the motivation
for studying this new parameter? Is there some real-world application for this
parameter? Is there some theoretical justification for studying it? Is it related in some
interesting or important ways to existing parameters? Does this parameter help us
understand better some other parameters? Just because it is “new” doesn’t mean that
it is worth studying.

Thus, having a glossary of parameters provides both a reference tool for
researchers and a source for open problems. In keeping with the theme of
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conjectures and open problems, following our glossary of parameters, we present a
sample of some 70 conjectures involving them.

This glossary is certainly not the first of its kind. A discussion of many of
these parameters can be found in the book Handbook of Graph Theory, Second
Edition edited by Gross et al. [314], the two books Fundamentals of Domination
in Graphs, [361] and Domination in Graphs, Advanced Topics [360] written and
edited by Haynes, Hedetniemi and Slater, and the two books on graph coloring,
Chromatic Graph Theory by Chartrand and Zhang [118], and Graph Coloring
Problems by Jensen and Toft [434].

Along the direction we are taking by listing conjectures in this glossary, similar
work has been conducted since 1968 by Vizing [627], Gallian’s survey of conjec-
tures in 1989 [277], Bollobás in 2004 [60], Broersma et al. in 2012 [85], Bonato
and Nowakoski in 2012 [65], and more recently by Bondy in 2014 [66]. While still
a survey of conjectures, in 2010 Aouchiche and Hansen [18] wrote an expository
work of conjectures in spectral graph theory conjectured by computers. In addition,
lists of open problems and conjectures can be found on West’s homepage http://
faculty.math.illinois.edu/~west/openp/ and the Graffiti website
http://cms.dt.uh.edu/faculty/delavinae/research/wowII maintained by DeLaviña.

This glossary, however, differs in several important respects from existing
glossaries and surveys. First, it is by far the most comprehensive in listing fairly
well-studied graph theory parameters. Second, it is more than a listing of definitions
of parameters in that it provides historical information about the origins and authors
of these parameters. Third, more than a glossary, we provide annotations to many of
these parameters. And fourth, we provide an extensive listing of conjectures about
many of these parameters, which provides depth to simple definitions, as well as a
collection of some two dozen new parameters and problems to study. In addition,
this glossary provides an overview of the nature of graph theory parameters, with
an eye toward the creation of new ideas in graph theory. The remainder of this
glossary contains some 300 graph parameters, some 70 conjectures, and around 600
references.

2 Categories of Parameters of Graphs

In this section we discuss the mathematical nature of different types of parameters
of graphs. A quick overview of these parameters shows that they naturally fall into
a few general categories, the most common being the following:

1. Basic structural characteristics of a graph, like the order (number of vertices), the
size (number of edges), the degrees of the vertices, the lengths of shortest paths
between pairs of vertices (geodesics), the maximum length of a path (detour

http://faculty.math.illinois.edu/~west/openp/
http://faculty.math.illinois.edu/~west/openp/
http://cms.dt.uh.edu/faculty/delavinae/research/wowII
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number), the minimum length of a chordless cycle (girth), the maximum length
of a cycle (circumference), or the maximum order of a complete subgraph (clique
number).

2. The minimum or maximum cardinality of a set of vertices or edges, and in a
few cases a set of vertices and edges, having some given property P . If the
property P in question is hereditary, meaning that every subset of a set of this
type, called a P-set, is also a P-set, then one is generally interested in sets of
maximum cardinality. A common example of a hereditary property is that a set
is independent, meaning no two vertices in the set are adjacent. But there is also
interest in finding maximal P-sets having minimum cardinality. Similarly, some
properties P are super-hereditary, meaning that every superset of a P-set is
also a P-set. A common example of a super-hereditary property is that of being
a dominating set, meaning that every vertex not in the set is adjacent to at least
one vertex in the set. In this case, one is interested in finding P-sets having
minimum cardinality, or minimal P-sets of maximum cardinality.

3. The minimum number of vertices or edges whose removal results in a graph
having some property P , such as being disconnected, planar or bipartite, or the
minimum number of vertices or edges which added to a graph results in a graph
having some property P .

4. The minimum or maximum order k of a partition π = {V1, V2, . . . , Vk} of the
vertex set V , or π = {E1, E2, . . . , Ek} of the edge set E, such that each set Vi or
Ej of the partition has some property P . Most commonly these include a wide
variety of chromatic numbers. Occasionally, a condition is placed on pairs Vi , Vj
of sets, for example, that the subgraph G[Vi ∪ Vj ] induced by two independent
sets Vi and Vj is acyclic, these being called acyclic colorings. Again, if the
property P is hereditary, e.g. being an independent set, then one is interested
in minimum order partitions, as in the chromatic number, but if the property is
super-hereditary, as is a dominating set, then one is interested in maximum order
partitions, like the domatic number.

5. An optimal linear arrangement of the vertices or edges of a graph which
minimizes or maximizes some number, as in the bandwidth of a graph, or in
the bipartite crossing number.

6. The dimension of a certain type of vector space associated a graph, such as
the rank of the adjacency matrix, incidence matrix, neighborhood matrix or the
Laplacian matrix, that is, the dimension of the row space of a matrix associated
with a graph.

7. The amount of time, or steps, necessary to accomplish some objective in a
connected graph, such as broadcasting, that is, disseminating a message from
one vertex in a graph to all other vertices, or in pebbling, whereby you must
move pebbles in a sequence of pebbling moves so that any vertex can receive a
pebble.
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3 Parameters of Graphs

Before we proceed with our compendium of parameters, we need to define a few
basic terms, which are used in the definitions in the following subsections.

Let G = (V ,E) be a graph with vertex set V = {v1, v2, . . . , vn}. The open
neighborhood of a vertex v ∈ V is the set N(v) = {u | uv ∈ E} of vertices u
that are adjacent to v; these vertices are called neighbors of v. The degree of a
vertex v is deg(v) = |N(v)|. The closed neighborhood of a vertex v is the set
N [v] = N(v) ∪ {v}. A vertex v with deg(v) = 0 is called an isolated vertex, and a
vertex v with deg(v) = 1 is called a leaf.

The open neighborhood of a set S ⊆ V of vertices is the setN(S) = ⋃
v∈S N(v),

and the closed neighborhood of S is the set N [S] = ⋃
v∈S N [v].

A walk in a graph G from a vertex u to a vertex v is an alternating sequence of
vertices ui and edges ei of the form W : u = u0, e1, u1, e2, u2, . . . , uk−1, ek, uk =
v, where for 1 ≤ i ≤ k, ei = ui−1ui . A walk W containing no repeated edges, i.e.
for 1 ≤ i < j ≤ k, ei �= ej , is called a trail. A walk W containing no repeated
vertices is called a path. A cycle is a path whose first and last vertices are the same.
A chord is an edge between two nonconsecutive vertices of a cycle. The length of
a walk equals the number of edges in the walk. The distance d(u, v) between two
vertices u and v, in a connected graphG, equals the minimum length of a path from
u to v. A shortest, or minimum length, path between two vertices u and v is called a
u−v geodesic; a v-geodesic is any shortest path from v to another vertex; a geodesic
is any shortest path in a graph.

A graph G is connected if there is a path between every pair of vertices of G.
A component of a graph is a maximal connected subgraph. A vertex v ∈ V is a
cutvertex if the graph G − v obtained by deleting v and all edges containing v has
more components than G. An edge e = uv is a bridge if the graph G − e obtained
by deleting e has more components than G.

A graph G of order n is called k-vertex-connected (or simply, k-connected) if
n ≥ k + 1 and the deletion of any k − 1 or fewer vertices leaves a connected graph.

If G = (V ,E) and S ⊆ V , then the subgraph of G induced by S is the graph
G[S], whose vertex set is S and whose edges are all the edges in E both of whose
vertices are in S. A subgraph G′ = (V ′, E′) of a graph G is called complete if for
every u, v ∈ V ′, uv ∈ E′, that is every pair of vertices in G′ are adjacent.

Let F be an arbitrary graph. A graph G is said to be F -free if G does not
contain F as an induced subgraph. A graph is bipartite if its vertex set V (G) can be
partitioned into two sets X and Y such that every edge in G joins a vertex in X and
a vertex in Y ; it is K3-free.
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3.1 Basic Numbers

In this subsection we list the most basic numbers that are used in defining the
parameters in the following subsections.

1. order n = |V |, number of vertices.
2. size m = |E|, number of edges.
3. minimum degree δ(G) = min{deg(u) : u ∈ V }, minimum degree of a vertex

in G.
4. maximum degree �(G) = max{deg(u) : u ∈ V }, maximum degree of a vertex

in G.
5. degree sequence of a graph, d1 ≥ d2 ≥ . . . ≥ dn, where di = deg(vi) equals

the degree of vertex vi .

6. average degree of a graph,
∑
v∈V deg(v)
n

= 2m
n

.

3.2 Connectivity and Subgraph Numbers

In this subsection we present parameters related to connectivity in graphs.

1. binding number bind(G), min{|N(X)|/|X| : ∅ �= X ⊆ V (G) and N(X) �=
V (G)}, defined by Katerinis and Woodall [445]. See also Lyle and Goddard
[492], and Nam [511].

2. blocks bl(G), number of blocks in G. A block of a graph G is a maximal
nonseparable subgraph ofG, that is, a maximal subgraph having no cutvertices.

3. bridges br(G), number of bridges in G.
4. circumference cir(G), maximum length or order of a cycle in G.
5. induced circumference, maximum length of an induced cycle in G, or equiva-

lently, maximum length of a chordless cycle in G.
6. clique number ω(G), maximum order of a complete subgraph of G.
7. components c(G), number of maximal connected subgraphs.
8. vertex connectivity κ(G), minimum number of vertices in a cutset. A vertex

cutset is a set S ⊂ V in a connected graph whose removal results in a graph
which is either not connected or consists of a single vertex. A graph is said to
be k-connected if κ(G) = k.

9. upper vertex connectivity κ+(G), maximum number of vertices in a minimal
vertex cutset.

10. edge connectivity λ(G), minimum number of edges in a cutset. An edge cutset
is a set S ⊆ E in a connected graph whose removal results in a graph which is
not connected. We assume that λ(K1) = 0.

11. upper edge connectivity λ+(G), maximum number of edges in a minimal edge
cutset.

12. cutvertices cut (G), number of cutvertices in G.
13. cycle number cycle(v), number of distinct cycles containing vertex v.
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14. girth(G), minimum length of a cycle in G.
15. intersection number �(G). Let F = {S1, S2, . . . , Sk} be a family of subsets of

a set S. The intersection graph of F is the graph G(F ) = (F , E(F )), where
two vertices Si and Sj are adjacent in G(F ) if and only if Si ∩ Sj �= ∅. The
intersection number �(G) equals the minimum number of elements in a set S
such thatG is isomorphic to an intersection graphG(F ) on some family F of
subsets of S; introduced by Erdös, Goodman, and Pósa in 1966 [226]; see also
Harary [337] and [338].

16. edge clique cover number θcc(G), minimum order k of an edge clique cover,
that is, a set E = {C1, C2, . . . , Ck} such that (1) for 1 ≤ i ≤ k, Ci is a complete
subgraph of G, and (2) for every edge uv ∈ E(G), there exists a j , 1 ≤ j ≤ k,
such that uv ∈ Cj . This number equals the intersection number �(G), defined
above; cf. Erdös, Goodman and Pósa in 1966 [226] and Harary [337].

Theorem 1 For any graph G, Ω(G) = θcc(G).
17. toughness t (G), maximum value of t for which G is t-tough. A graph G is

called t-tough if each subset S ⊆ V with c(G−S) > 1 satisfies |S|/c(G−S) ≥
t ; defined by Chvátal in 1973 [156]. We refer the reader to the survey by Bauer
[37] and also the chapter on toughness and related conjectures by Lesniak [481]
in Volume 1 of this series [287].

3.3 Degree and Distance Numbers

This subsection contains the definitions of parameters which are defined in terms of
the degrees of the vertices in a graph or the distances d(u, v) between vertices in a
graph.

1. convex number cvx(G). For two vertices u, v ∈ V , let I (u, v) denote the set of
all vertices lying on a u-v geodesic inG. For a set S, let I (S) = ∪u,v∈SI (u, v).
A set S is convex if I (S) = S. The convex number cvx(G) is the maximum
cardinality of a proper convex set of G; introduced by Chartrand and Zhang in
1999 [115].

2. detour length τ ′(G),1 maximum length of a path in G, and detour number
τ(G), maximum number of vertices in a path in G; introduced by Kapoor,
Kronk and Lick in 1968 [442]. See also Broere et al. [83].

3. induced detour number idn(G), maximum length of an induced path in G;
introduced by Buckley and Harary in 1988 [87].

4. detour number dn(G). For two vertices u, v ∈ V , the detour distance D(u, v)
is the length of a longest u − v path in G. A u − v path of length D(u, v) is
called a u− v detour. The closed detour interval ID[u, v] consists of u, v, and

1Defined in [83] as the order of the detour path.
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all vertices in some u− v detour in G. For S ⊆ V , ID[S] = ⋃
u,v∈S ID[u, v].

A set S of vertices is a detour set if ID[S] = V , and the detour number dn(G)
is the minimum cardinality of a detour set in G; cf. Chartrand et al. [128].

5. diameter, diam(G), maximum length of a geodesic in G, or equivalently,
diam(G) = max{ecc(v) : v ∈ V }.

6. eccentricity ecc(v), maximum length d(v,w) of a v-geodesic, or equivalently,
ecc(v) = max{d(v,w) : w ∈ V }.

7. geodetic number gn(G). The closed interval I [u, v] consists of vertices u and
v and all vertices that lie on some u − v geodesic in G. For a set S ⊆ V ,
let I [S] = ⋃

u,v∈S I [u, v]. A set S of vertices is a geodetic set if I [S] = V ,
and the minimum cardinality of a geodetic set is the geodetic number gn(G);
introduced by Harary et al. [347]; see also Chartrand et al. [127] and Chartrand
et al. [130].

8. Hamiltonian number h(G). Let c = v1, v2, . . . , vn, vn+1 = v1 be a cyclic
ordering of the vertices of a graph G. Let d(c) = ∑n

i=1 d(vi, vi+1). The
Hamiltonian number h(G) = min{d(c) : c a cyclic ordering of V }; introduced
by Chartrand, Thomas, Saenpholphat, and Zhang in 2004 [131].

9. upper Hamiltonian number h+(G) = max{d(c) : c a cyclic ordering of V };
introduced by Chartrand et al. [131].

10. Hamiltonian completion number hc(G), minimum number of edges not in
E(G), which when added to G create a graph G′ having a Hamiltonian cycle,
defined by Goodman and Hedetniemi in 1974 [309] and later expanded on by
Goodman et al. in 1975 [310] and by Slater et al. in 1976 [590].

11. Harary index.

H(G) =
∑

u,v∈V
d(u, v)−1

Introduced independently in 1993 by Plavšić et al. [523] and Ivanciuc et
al.[431].

12. Hosoya index. One plus the number of matchings in a graphG, or equivalently,
one plus the number of independent sets of edges, including the empty set;
introduced by Hosoya in 1971 [423], used in the study of organic compounds,
shown to be positively correlated with the boiling points of alkane isomers; also
called the Z index.

13. weak hub-integrity WHI(G) = min{|S| + me(G − S)}, where S is a hub set
and me(G− S) denotes the number of edges in a largest component of G− S;
introduced by Mahde and Mathad in 2017 [494].

14. periphery per(G), number of vertices v with ecc(v) = diam(G). The
periphery of a graph refers to either the set of all vertices having eccentricity
equal to diam(G) or the subgraph induced by this set of vertices.

15. radius rad(G), minimum eccentricity of a vertex in G, i.e. rad(G) =
min{ecc(v) : v ∈ V }. The center of a graph C(G) refers either to the set
of vertices having minimum eccentricity or the subgraph induced by this set of
vertices. A vertex v ∈ C(G) is called a central vertex.
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16. status s(v) = ∑
u∈V d(u, v). The medianM(G) of a graph G equals the set of

vertices having minimum status, or the subgraph induced by this set of vertices,
defined by Harary in 1959 [336], and by Buckley and Harary in 1990 [88].

17. average distance μ(G) = 1
n(n−1)σ (G) defined by Dankelmann in 1997 [181],

where

σ(G) =
∑

u,v∈V
d(u, v)

is the Weiner index of G ; see below in this subsection for the definition of
Weiner index.

18. rank r(G), the rank of the adjacency matrix A(G) of a graph G, that is, the
dimension of the vector space spanned by either the columns or the rows of the
adjacency matrix A(G). Let r ′(G) denote the rank of the closed neighborhood
matrix N(G) = A(G) + I ; as discussed by Hedetniemi, Jacobs and Laskar
in [386].

19. minimum rank mr(G), minimum rank of any generalized matrix of G. A
generalized adjacency matrix of an adjacency matrix A(G) is any matrix of
real numbers with the same pattern of non-zeroes as that of A(G); cf. Fallat
and Hogben [240], who show that (1) mr(G) ≤ n − 1, (2) for connected G,
mr(G) = 1 if and only ifG = Kn, (3)mr(Pn) = n−1, and (4)mr(Cn) = n−2.

20. orthogonal rank ε(G). An orthogonal representation of a graph G is function
φ : V → C from V to the non-zero vectors of some vector space C , such
that for every uv ∈ E, φ(u) is orthogonal to φ(v). The orthogonality graph
of φ is the graph φ(G) = (φ(V ),E(φ)), where φ(u) is adjacent to φ(v) if and
only if φ(u) and φ(v) are orthogonal. The orthogonal rank ε(G) equals the
smallest integer c such that G has an orthogonal representation in the vector
space C c. Let ε1(G) equal the smallest integer c such thatG has an orthogonal
representation in the vector space C c, such that every vector φ(v) has modulus
one. Let χ(G) denote the chromatic number of a graph G. In [96] Cameron et
al. show that for every graph G,

ω(G) ≤ ε(G) ≤ ε1(G) ≤ χ(G).

21. Randić connectivity index.

R(G) =
∑

uv∈E
(deg(u)deg(v))−1/2.

Introduced by Randić in 1975 [535].
22. metric dimension dim(G). Let S = {v1, v2, . . . , vk} be an ordered set of k

vertices in a graph G = (V ,E), and let w ∈ V be an arbitrary vertex. The
metric representation of w with respect to the set S is the k-vector

r(w|S) = (d(w, v1), d(w, v2), . . . , d(w, vk)).
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A set S is said to be a resolving set for G if distinct vertices in V have
distinct metric representations with respect to S. The minimum cardinality of a
resolving set for G is called its metric dimension and is denoted dim(G).

This concept was introduced by Slater in 1975 [584], who called the
metric dimension the location number loc(G). This concept was independently
introduced by Harary and Melter [343] in 1976, who used the term metric
dimension.

23. upper metric dimension dim+(G). A resolving set S for a graph G is said to
be minimal if no proper subset of S is a resolving set for G. The maximum
cardinality of a minimal resolving set for a graph G is called the upper metric
dimension of G and is denoted dim+(G); introduced by Chartrand, Poisson,
and Zhang in 2000 [125], see also Chartrand and Zhang [117].

24. total influence number ηt (G). Given a set S ⊆ V , and a vertex v ∈ S, the total
influence of v is ηt (v) = ∑

u∈V−S 1
2d(u,v)

. The total influence of set S is ηt (S) =∑
v∈S ηt (v). The total influence of a graph G is ηt (G) = maxS⊆V {ηt (S)};

defined by Daugherty, Lyle and Laskar in 2005 [183]; cf. also Aytac and Kartal
[27].

25. traceable number t (G). Let l = v1, v2, . . . , vn be a linear ordering of the
vertices of a graph G. Let d(l) = ∑n−1

i=1 d(vi, vi+1). The traceable number
t (G) = min{d(l) : l a linear ordering of V }; introduced by Saenpholphat,
Okamoto, and Zhang in 2006 [550]. The upper traceable number t+(G) can
also be defined as t+(G) = max{d(l) : l is a linear ordering of V }. The authors
also define the traceable number of a vertex v, as t (v) = min{d(l) : l is a linear
ordering of V in which v1 = v}. Thus, the traceable center T C(G) of G can
be said to consist of the set of vertices having minimum t (v), or the subgraph
induced by this set of vertices; this does not appear to have been studied.

26. trail number tr(G), maximum length of a trail in G; cf. Bollobás and
Harary [61], who determine tr(G) over all graphs of order n and size m. Note
that the trail number of a graph G equals its maximum m = |E| if and only if
G has at most two vertices of odd degree, that is, G has an Eulerian walk.

27. Wiener index.

σ(G) =
∑

u,v∈V
d(u, v)

Introduced by Wiener in 1947 [638], it is the oldest topological index of the
graph of a chemical compound related to molecular branching. Also studied
graph theoretically by Harary as gross status [336], by Entringer, Jackson and
Snyder as distance [222] and by Šoltés as the transmission number [594].

28. first Zagreb index, sum of the squares of the vertex degrees,

M1(G) =
∑

v∈V
deg(v)2
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Introduced by Gutman and Trinajstić in 1972 [319]; cf. Zhou and Gutman
[659].

29. second Zagreb index, sum of the products of the vertex degrees of adjacent
vertices,

M2(G) =
∑

uv∈E
deg(u)deg(v)

Introduced by Gutman and Trinajstić in 1972 [319]; cf. Došic et al. [203].
30. modified Zagreb indices. First modified Zagreb index:

∑

v∈V
(deg(v)2)−1.

Second modified Zagreb index:

∑

uv∈E
(deg(u)deg(v))−1.

Introduced by Nicolić et al. [515].

3.4 Bandwidth and other Labeling Numbers

All of the parameters in this subsection consider proper numberings of a graph
G of order n, that is, is a bijection f : V → {1, 2, . . . , n}, or a labeling of the
vertices ofG with distinct integers from 1 to n. The parameters are defined in terms
of a minimum or maximum of some objective function over all possible proper
numberings.

1. bandsize bs(G). For a proper numbering f , let bsf (G) = |{|f (u) − f (v)| :
uv ∈ E}| that is, the number of distinct differences |f (u)−f (v)| over all edges
uv ∈ E. The bandsize bs(G) = min{bsf (G) : f is a proper numbering ofG};
introduced by Heinrich and Hell in 1987 [401] and Erdös, Hell and Winkler in
1989 [229].

2. bandwidth B(G). For a proper numbering f , Bf (G) = max{|f (u) − f (v)| :
uv ∈ E}. The bandwidth B(G) = min{Bf (G) : f is a proper numbering of
G}; introduced by Harper in 1964 [349]. See surveys by Chinn et al. in 1982
[152] and Lai and Williams in 1999 [475].

3. additive bandwidth, B+(G). For a proper numbering f , B+
f (G) =

max{|f (u) + f (v) − (n + 1)| : uv ∈ E}. The additive bandwidth
B+(G) = min{B+

f (G) : f is a proper numbering of G}; introduced by
Bascuñán, Ruiz and Slater in 1992 [34] and further developed by Bascunan
et al. in 1995 [35].
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4. edge bandwidth B ′(G). For a proper edge numbering f : E → {1, 2, . . . , m}
of G, define B ′

f (G) = max{|f (ei) − f (ej )| : ei adjacent to ej }. The edge
bandwidth is defined as B ′(G) = min{B ′

f (G) : f is a proper edge numbering
of G}; see Jiang et al. [435].

5. edge sum or bandwidth sum s(G). For a proper numbering f , define sf =∑
uv∈E |f (u)−f (v)|. The edge sum ofG is defined as s(G) = min{sf (G) : f

is a proper numbering of G}; introduced by Harper in 1964 [349].
6. cutwidth cutw(G). For a proper numbering f and for every 1 ≤ i < n,

define Ei = {uv ∈ E : f (u) ≤ i < f (v)}. The cutwidth of f is
cutw(f ) = max{|Ei | : 1 ≤ i < n}. The cutwidth of G is cutw(G) =
min{cutw(f ) : f is a proper numbering of G}; cf. Korach and Solel [460].
One can also define the minimum cutwidth of a proper numbering f to be
mincutw(f ) = min{|Ei | : 1 ≤ i < n}. The maximinimal cutwidth,
maxmincutw(G) = max{mincutw(f ) : f is a proper numbering of G}.

7. MAX CUT, or maxcut (G), the maximum number of edges between V1 and V2
in a bipartition of V . Equivalently, maxcut (G) equals the maximum number
of bicolored edges in a 2 coloring of the vertices of G. This is a standard NP-
complete problem, found in Garey and Johnson, as problem ND17, on p.210 of
[281]. See also the upper edge connectivity λ+(G) in Section 3.2.

8. (vertex) irregularity strength vs(G). An edge k-labeling of a graph G is a
function λ : E → {1, 2, . . . , k}. An edge k-labeling λ is called vertex irregular
if for every v ∈ V , wt(v) = ∑

uv∈E λ(uv) is unique, that is, for no two
vertices u and v is wt(u) = wt(v). The vertex irregularity strength vs(G)
equals the minimum k such thatG has a vertex irregular k-labeling; introduced
by Chartrand, Jacobson, Lehel, Oellermann, Ruiz, and Saba in 1988 [119]. See
also Ebert et al. [216].

9. (edge) irregularity strength es(G). A vertex k-labeling λ : V → {1, 2, . . . , k}
is called edge irregular if for every edge uv ∈ E, wt(uv) = λ(u) + λ(v)
is unique, that is, for no two edges e, e′ ∈ E is wt(e) = wt(e′). The edge
irregularity strength es(G) equals the minimum integer k such that G has an
edge irregular k-labeling; introduced by Chartrand et al. in 1988 [119]: see also
Al-Mushayt [7].

10. total vertex irregularity strength tvs(G). A total k-labeling of a graph G is
a function λ : V ∪ E → {1, 2, . . . , k}. A total k-labeling λ is called vertex
irregular if for every v ∈ V , wt(v) = λ(v) + ∑

uv∈E λ(uv) is unique, that
is, for no two vertices u and v is wt(u) = wt(v). The total vertex irregularity
strength tvs(G) equals the minimum k such that G has a total vertex irregular
k-labeling; introduced by Bača, Jendrol, Miller and Ryan in 2007 [29]; see also
Nurdin et al. [516].

11. total edge irregularity strength tes(G). A total k-labeling of a graph G is a
function λ : V ∪E → {1, 2, . . . , k}. A total k-labeling λ is called edge irregular
if for every uv ∈ E, wt(uv) = λ(u) + λ(uv) + λ(v) is unique, that is, for no
two edges e, e′ ∈ E is wt(e) = wt(e′). The total edge irregularity strength
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tes(G) equals the minimum k such that G has a total edge irregular k-labeling;
introduced by Bača, Jendrol, Miller, and Ryan in 2007 [29].

12. profile P(G). For a proper numbering f and for every v ∈ V , define the profile
of a vertex v ∈ V to be pf (v) = max{{0} ∪ {f (v) − f (x)| : x ∈ N(v)}}.
Define Pf (G) = ∑

v∈V pf (v). The profile P(G) = min{Pf (G) : f a proper
numbering of G}; see Lin and Yuan [487] and Lai and Williams [475].

13. topological bandwidth B∗(G). We say that a graphG′ is a refinement of a graph
G ifG′ can be obtained fromG by subdividing some subset of the edges E(G).
The topological bandwidth B∗(G) = min{B(G′) : G′ is a refinement of G};
introduced by Makedon, Papadimitriou, and Sudborough in 1983 [495], see
also Kloks and Tan [456].

3.5 Decomposition and Partition Numbers

Most of the parameters in this subsection involve either a (vertex) partition π =
{V1, V2, . . . , Vk} or an (edge) partition π ′ = {E1, E2, . . . , Ek} so that each set Vi
or Ei has some given property. The remaining parameters involve a family of not
necessarily disjoint subsets of a graph whose union is the entire set, and which has
some given property.

1. (vertex) arboricity va(G), minimum order of a partition π = {V1, V2, . . . , Vk}
into forests, that is, the subgraphG[Vi] induced by each set Vi is a disjoint union
of trees; introduced and studied by Nash-Williams in 1964 [512],and Raspaud
and Wang in 2008 [537].

2. tree vertex covering number or tree arboricity ta(G), minimum order of a
partition π = {V1, V2, . . . , Vk} into trees, that is, the subgraph G[Vi] induced
by each set Vi is a tree. See Foregger and Foregger [268].

3. tree edge covering number or tree edge arboricity ta′(G), minimum order of a
partition π = {E1, E2, . . . , Ek} into trees, that is, the subgraph G[Ei] induced
by each set Ei is a tree. See Chung [438].

4. linear arboricity la(G), minimum order of a partition π ′ = {E1, E2, . . . , Ek}
into linear forests, that is, each component in each edge-induced subgraph
G[Ei] is a path; introduced and studied by Akiyama, Exoo, and Harary in
1981 [6], and Alon in 1988 [13].

5. star arboricity st (G), minimum order of a partition π ′ = {E1, E2, . . . , Ek}
into star forests. A star forest or galaxy is a forest (acyclic graph) whose
components are stars; introduced by Algor and Alon in 1989 [12]; see also
Hakimi, Mitchem, and Schmeichel [328], who show that every planar graph
has star arboricity at most 5.

6. star partition number γ ∗(G), minimum order of a partition π =
{V1, V2, . . . , Vk}, such that the subgraph induced by every set Vi is a star;
introduced by Walikar [633].
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7. clique edge partition number cep(G) or clique edge covering number cc(G),
minimum order k of an edge partition π = {E1, E2, . . . , Ek} such that for
1 ≤ i ≤ k, the induced graph G[Ei] is a complete subgraph, or clique, or
equivalently, the minimum number of pairwise-disjoint cliques which contain
every edge. See surveys by Pullman in 1983 [527] and Monson, Pullman,
and Rees in 1995 [509], the latter of which contains a bibliography of 131
publications on the topic and over 30 open problems.

8. clique vertex partition number cvp(G) or clique vertex covering number,
minimum order k of an vertex partition π = {V1, V2, . . . , Vk} such that for
1 ≤ i ≤ k, the induced graph G[Vi] is a complete subgraph, or clique. Note
that a clique vertex partition of a graphG is a proper coloring in the complement
G of G. See surveys by Pullman [527] and Monson et al. [509].

9. k-defective colorings. A graphG has a k-defective coloring of orderm if it has a
vertex partition π = {V1, V2, . . . , Vm} such that for all 1 ≤ i ≤ m,�(G[Vi]) ≤
k. The k-defective coloring number Dk(G) equals the minimum integerm such
thatG has a k-defective coloring of orderm; introduced by Cowen, Cowen, and
Woodall in 1986 [174]; see also Archdeacon [19]. It follows, therefore, that for
0 ≤ k ≤ �(G), 1 = D�(G)(G) ≤ Dk(G) ≤ D0(G) = χ(G), where χ(G) is
the chromatic number of G.

10. tree width. A tree decomposition of a graph G = (V ,E) is a tree T (G) with
vertices in order V (T (G)) = {V1, V2, . . . , Vp} having the following three
properties: (i)

⋃p

1 Vi = V (G), (ii) for every edge uv ∈ E(G), there is an i
such that u, v ∈ Vi , and (iii) for every 1 ≤ i ≤ j ≤ k ≤ p, Vi ∩ Vk ⊆ Vj .
It is important to point out that the significance of Condition (iii) is that for
every vertex v ∈ V (G), the set of vertices Vi ∈ E(T (G)) which contain vertex
v forms a subtree of T (G). The width of a tree decomposition tw(T (G)) =
max{|Vi | − 1 : 1 ≤ i ≤ p}. The tree width tw(G) = min{tw(T (G)) : T (G) is
a tree decomposition of G}.

Earliest references to the concept of tree width include the following by
Bertele and Brioshi [48], Halin noticed in 1976 that tree width has properties
in common with the Hadwiger number in [330]. But Seymour and Thomas
developed a min-max theorem for tree-width in 1993 [568], Robertson and
Seymour developed algorithms in 1996 [543] and re-discovered tree width in
developing their theory of graph minors in 1984 [542]. More details can be
found in the 1994 work of Bodlaender [57]; see also Korach and Solel [460].

11. path (decomposition) number, pn(G). A path decomposition is a family of
paths such that every edge e ∈ E lies on precisely one path. The path number
pn(G) equals the minimum number of paths in a path decomposition of G;
perhaps first discussed for directed graphs by Alspach and Pullman in 1974
[15], see also Arumugam et al. [22].

12. path width, pw(G) = min{pw(P (G)) : P(G) a path decomposition of G}.
The width of a path decomposition pw(P ) = max{|Vi | − 1 : 1 ≤ i ≤ p}; cf.
Korach and Solel [460].
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13. path length, pl(G) = min{pl(P ) : P a path decomposition of
G}. The path length of a path decomposition P of G is pl(P ) =
max1≤i≤p{maxu,v∈Vi d(u, v)}}. The reader is referred to Dragan et al. [204].

14. path partition number πp(G), minimum order of a partition π =
{V1, V2, . . . , Vk} such that each induced subgraph G[Vi] contains a spanning,
or Hamiltonian, path; cf. Vu Dinh [631].

15. induced path partition number πip(G), minimum order of a vertex partition
π = {V1, V2, . . . , Vk} such that each induced subgraph G[Vi] is a path; cf.
Broere et al. [84].

3.6 Covering, Packing, Independence, and Matching Numbers

A set S ⊆ V of vertices is independent if no two vertices in S are adjacent, and a set
M ⊆ E of edges is independent or a matching if no two edges in M are adjacent,
that is, have a vertex in common. Given a matching M , V [M] is the set of vertices
incident with an edge inM , andG[V (M)] is the subgraph induced by the vertices in
V (M). A graph G of even order n = 2k has a perfect matching if it has a matching
M of cardinality k.

A set S of vertices or edges is said to cover another set T if every element of T
either contains an element of S or is adjacent or incident to an element of S.

All of the parameters in this subsection have to do with sets that are independent
or cover other sets. These include some of the most basic of all parameters in graph
theory.

1. vertex independence numbers i(G) and α(G), minimum and maximum car-
dinality of a maximal independent set. While the notation i(G) is fairly
standard for the independent domination number, many papers denote the
vertex independence number by β0(G).

2. k-dependence number αk(G), maximum cardinality of a set S such that for
every vertex u ∈ S, |N(u) ∩ S| ≤ k; introduced by Fink and Jacobson in
1985 [264], whose conjecture, that the k-domination number γk(G) [defined
below] is a lower bound for the k-dependence number, was proved by Favaron
in 1985 [248]. Improved lower bounds for αk(G) were obtained by Favaron in
1988 [249] and Caro and Tuza in 1991 [99]. It is worth mentioning that today
most authors refer to sets S ⊆ V that are k-independent, for positive integers
k, meaning that the maximum degree of the induced subgraph G[S] is at most
k − 1. Thus, k-independent sets are precisely (k − 1)-dependent. The reader is
referred to the 2012 survey by Chellali et al. [138].

3. vertex covering numbers β(G) and β+(G), minimum and maximum cardinality
of a minimal vertex cover, that is, a set of vertices S such that for every edge
uv ∈ E, {u, v} ∩ S �= ∅. We note that in many papers the vertex covering
number is denoted by α(G). It should be noted that by a well-known theorem
of Gallai, for any graph G of order n, α(G)+ β(G) = n.
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4. edge covering numbers β ′(G) and β ′+(G), minimum and maximum cardinality
of a minimal edge cover, that is, a setM of edges such that every vertex v ∈ V
is incident with at least one edge inM .

5. triangle cover number τ3(G), minimum cardinality of triangle cover, that is, a
set F ⊂ E of edges such that every triangle in G contains an edge in F . See
Tuza [616] and Yuster [647].

6. triangle packing number ν3(G), maximum cardinality of a set of pairwise edge-
disjoint triangles. See Tuza [616], who conjectured that for every graph G,
τ3(G) ≤ 2ν3(G). See also Yuster [647].

7. clique covering number cc(G). A clique covering is a set of cliques containing
every edge at least once.

See Orlin [518].
8. clique packing number cp(G). A clique packing is a collection of cliques

containing every edge at most once.
9. 2-packing numbers p2(G) and P2(G), minimum and maximum cardinality of

a maximal 2-packing in G, that is, a set S such that for every vertex v ∈ V ,
|N [v] ∩ S| ≤ 1. Equivalently, a 2-packing can be defined as a set S having the
property that for any two vertices u, v ∈ S, d(u, v) > 2. From this, one can
naturally define a k-packing to be a set S having the property that for any two
vertices u, v ∈ S, d(u, v) > k.

10. matching numbers α′−(G) and α′(G), minimum and maximum cardinality of
a maximal matching in G. It should be noted that by a well-known theorem of
Gallai, for any graphG of order nwith no isolated vertices, α′(G)+β ′(G) = n.
In many papers, the matching number is denoted by β1(G). As far as we know,
the parameter α′−(G), called the lower matching number has not been studied
very much.

11. induced, or strong, matching number, α∗(G), maximum cardinality of a
matching M such that the subgraph G[V (M)] consists of disjoint K2’s, or
equivalently, no edge in E −M connects two edges inM . This was introduced
by Cameron in 1989 [95], and further studied by Horák et al. in 1993 [422],
by Golumbic and Laskar in 1993 [307], and by Brandstädt and Mosca in 2011
[73].

12. disconnected matching number α′
dc(G), maximum number of edges in a

matching M such that the subgraph G[V (M)] is disconnected; cf. Goddard
et al. [298].

13. forcing matching number. Let G be a graph that admits a perfect matching.
The forcing number of a perfect matching M of G is defined as the smallest
number of edges in a subset S ⊆ M , such that S is in no other perfect matching;
introduced by Harary, Klein, and Zívković in 1991 [346], and further studied
by Pachter and Kim in 1998 [519].

14. anti-forcing matching number of a perfect matchingM in a graph G is defined
as the minimum number of edges not in M , whose deletion results in a graph
G′ having onlyM as a perfect matching. The minimum (resp. maximum) anti-
forcing number of G is the minimum (resp. maximum) anti-forcing number
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of all perfect matchings M in G. It is shown by Deng and Zhang that the
maximum anti-forcing number of a graph is at most its cyclomatic number,
and the graphs with maximum anti-forcing number achieving the upper bound
are characterized;introduced by Deng and Zhang in 2017 [192].

15. isolate-free matching number α′
if (G), maximum number of edges in a match-

ing M such that either |M| = 1 or the subgraph G[V (M)] contains no K2
component; cf. Goddard et al. [298].

16. acyclic matching number, α′
ac(G), maximum cardinality of an acyclic matching

M , that is, a matching M such that the subgraph G[V (M)] is acyclic;
introduced by Goddard et al. in 2005 [298].

17. matchability number μ(G), minimum cardinality of a maximal matchable set of
vertices in G. A set S of vertices is called matchable if there exists an injection
φ : S → V − S such that for every vertex u ∈ S, u is adjacent to φ(u);
introduced by Cockayne, Hedetniemi and Laskar in 1998 [164], and further
studied by Dean et al. [186].

18. uniquely restricted matching number α′
ur (G), maximum cardinality of a match-

ingM such thatG[V (M)] has exactly one maximum matching, or equivalently,
G[V (M)] does not contain a cycle, the edges of which alternate between
edges in M and edges not in M . This was introduced by Golumbic, Hirst, and
Lewenstein in 2001, see also Mishra [506].

3.7 Coloring Numbers

In this subsection, a vertex k-coloring is simply a vertex partition π =
{V1, V2, . . . , Vk} into k color classes Vi , for 1 ≤ i ≤ k. We say that a vertex v ∈ Vi
is colored i or assigned the color i. Virtually all of the vertex coloring numbers in
this subsection have in common that they equal the minimum or maximum order
k of a coloring such that each color class Vi has some property P . A coloring is
called proper if every Vi is an independent set.

An edge k-coloring is defined similarly, namely an edge partition
π ′ = {E1, E2, . . . , Ek} into k color classes Ei .

1. chromatic number χ(G), minimum order k of a proper vertex coloring π =
{V1, V2, . . . , Vk} of G. If π is a proper coloring of G with χ(G) = k colors,
then the same partition is a partition of the complement G of G into complete
subgraphs, called a clique partition, as defined and discussed in Section 3.6.
The reader is referred to the book on graph coloring by Chartrand and Zhang
[118] and the large collection of 200 graph coloring problems in the 1995 book
by Jensen and Toft [434].

2. Grundy number �r(G), maximum order of a proper coloring π =
{V1, V2, . . . , Vk}, such that for every i, 2 ≤ i ≤ k, every vertex in Vi is
adjacent to at least one vertex in every Vj , for all 1 ≤ j < i; named after a
paper by P. M. Grundy in 1939 [316], and introduced by Christen and Selkow in
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1979 [153]; see also Hedetniemi et al. [382] and Zaker [648]. Grundy colorings
are also called greedy colorings, which result from the process of arbitrarily
ordering the vertices v1, v2, . . . , vn, coloring vertex v1 with color 1, and then
for i = 2 to n, coloring vertex vi with the smallest color not used to color a
vertex adjacent to vi . The Grundy number is the maximum number of colors
that can be used in any greedy coloring of G.

3. partial Grundy number ∂�r(G), maximum order of a proper coloring π =
{V1, V2, . . . , Vk}, such that for every i, 2 ≤ i ≤ k, there exists at least one
vertex in Vi , called a Grundy vertex, that is adjacent to at least one vertex in
every Vj , for all 1 ≤ j < i ≤ k; introduced by Erdös, Hedetniemi, Laskar, and
Prins in 2003 [233]. See also Shi et al. [579], Effantin and Kheddouci [220], and
Balakrishnan and Kavaskar [31]. Note that in a Grundy coloring, all vertices are
Grundy vertices, but in a partial Grundy coloring, each color class is required
to have only one Grundy vertex.

4. achromatic number ψ(G), maximum order of a complete proper coloring ofG.
A partition π = {V1, V2, . . . , Vk} is called complete if for every pair of distinct
color classes Vi and Vj , 1 ≤ i < j ≤ k, there is a vertex in Vi that is adjacent
to a vertex in Vj ; introduced by Harary and Hedetniemi in 1970 [342]. See also
Cairnie and Edwards [94], and Hughes and MacGillivray [428].

5. pseudo-achromatic number ψs(G), maximum order of a complete coloring of
G; introduced by Gupta in 1969 [318]. See also Bhave [49], Edwards [218] and
Hedetniemi [379]. Note than all proper colorings of a graph with χ(G) colors,
all Grundy colorings, and all partial Grundy colorings are complete colorings.
Therefore, for any graph G,

χ(G) ≤ �r(G) ≤ ∂�r(G) ≤ ψ(G) ≤ ψs(G).

6. acyclic chromatic number a(G), minimum number of colors in a proper
coloring π = {V1, V2, . . . , Vk} such that for any two color classes Vi and Vj ,
the bipartite subgraph induced by Vi ∪ Vj is acyclic; introduced by Grunbaum
in 1973 [315]. See also Borodin [67] and Goddard [293]. In his original paper
Grünbaum conjectured that for any planar graph G, a(G) ≤ 5; this was later
proved correct by Borodin in 1979 [67].

7. acyclic chromatic index a′(G), minimum order of a proper edge coloring π ′ =
{E1, E2, . . . , Ek} such that for every 1 ≤ i < j ≤ k, the induced subgraph
G[Ei ∪ Ej ] is acyclic, or equivalently, such that every cycle contains edges
with at least three different colors; introduced in 1978 and 1980 by Fiamčík
[259, 260].

8. b-chromatic number χb(G), maximum order of a proper coloring
π = {V1, V2, . . . , Vk} such that every set Vi contains at least one colorful
vertex. A vertex v ∈ Vi is colorful if it is adjacent to at least one vertex in
every color class Vj , j �= i; introduced by Irving and Manlove in 1999 [430].
See also Kouider and Mahéo [463].

9. broadcast chromatic number χb(G), minimum order of a proper vertex coloring
π = {V1, V2, . . . , Vk}, such that for 1 ≤ i ≤ k, the set Vi is an i-packing, that is,
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for any two vertices u, v ∈ Vi , d(u, v) > i. It can be seen that for any graph G,
χb(G) ≤ β(G)+ 1, where β(G) is the vertex covering number of G. This was
introduced by Goddard et al. [299], who showed that for any infinite grid graph
G, χb(G) ≤ 23. This has subsequently been improved by several authors, the
most recent, by Martin et al. [498] who show that 13 ≤ χb(Pn�Pn) ≤ 15. The
most recent papers on this parameter call this the packing chromatic number
χρ(G).

10. chromatic sum χσ (G), minimum sum of all of the colors used in a proper
vertex coloring of G with positive integers; introduced by Erdös, Kubicka and
Schwenk in 1990 [231] and further studied by Kubicka in 2004 [468] and in
2005 [469].

11. cd-chromatic number χcd(G), minimum order k of a proper coloring
π = {V1, V2, . . . , Vk} such that for every 1 ≤ i ≤ k, there exists a vertex ui ∈
V such that ui dominates Vi , that is, ui is adjacent to every vertex in Vi . These
are called cd-colorings; introduced by Venkatakrishnan and Swaminathan in
2014 [620]. See also Shalu et al. in 2017 [574] and Krithika et al. in 2017
[465].

12. chromatic dimension dim(G). Let S = {v1, v2, . . . , vk} be a vertex set in a
connected graph G. For each vertex v ∈ V , define the code

c(v, S) = (d(v, v1), d(v, v2), . . . , d(v, vk)).

The set S is a proper S-coloring of G if distinct vertices have distinct codes.
A proper S-coloring of minimum cardinality k is called a color basis for G
and the number of vertices in a color basis is called the chromatic dimension
dim(G); introduced by Chartrand and Zhang in 2000 [116].

13. circular chromatic number χc(G). Let Ar denote the set of open, unit length
arcs of a circle C of Euclidean length r . An r-circular coloring of a graph G
is a function c : V → Ar such that for every uv ∈ E, c(u) ∩ c(v) = ∅. A
graph G is r-circular colorable if it has an r-circular coloring. The circular
chromatic number χc(G) = inf {r : G is r-circular colorable }; introduced
by Vince in 1988 [623]. It can be seen that for any finite graph, the circular
chromatic number is always rational and χ(G) − 1 ≤ χc(G) ≤ χ(G). The
reader is referred to an extensive survey by Zhu [662] which contains, among
other things, many conjectures and some 28 open problems about the circular
chromatic number; see also Junosza-Szaniawski [437] and Zhu [660].

14. co-chromatic number z(G), minimum order k of a coloring π =
{V1, V2, . . . , Vk} such that for every 1 ≤ i ≤ k, the induced subgraph G[Vi] is
either a complete graph or an empty graph (that is, Vi is an independent set);
introduced by Lesniak-Foster and Straight in 1977 [482], who showed that if
G is triangle-free, then z(G) = χ(G). See also PhD thesis by Gimbel [290],
Erdös et al. [230], and Chudnovsky [154].

15. degree-bounded chromatic number. A degree-bounded coloring is a proper
coloring db : V → {1, 2, . . . , �(G)} having the property that for every
vertex v ∈ V , db(v) ≤ deg(v). The db-chromatic number χdb(G) equals
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the minimum integer k such that G is db-colorable using only the colors
1, 2, . . . , k. Note, not every graph is db-colorable; introduced by Hakimi,
Mitchem, and Schmeichel in 1995 [327]. The authors show that if a connected
graph G has a block, that is neither a complete graph nor an odd cycle, then G
is db-colorable.

16. distance-s chromatic number χs(G). An Ls-coloring is a proper coloring c :
V → {1, 2, . . . , n} such that for all u, v ∈ V , c(u) = c(v) implies d(u, v) ≥
s+1. The s-chromatic number χs(G) equals the minimum integer s such thatG
has an s-coloring; introduced by Speranza in 1975 [595]. See also Gionfriddo
[292] and Marino and Puccio [497].

17. distinguishing chromatic number χD(G). A proper vertex k-coloring c : V →
{1, 2, . . . , k} is said to be k-distinguishing if the only automorphism of G
that preserves all vertex colors is the identity. The distinguishing chromatic
number χD(G) equals the minimum k such that G has a distinguishing proper
k-coloring; introduced by Collins and Trenk in 2006 [173].

18. distinguishing number D(G). A labeling h : V → {1, 2, . . . , k} is said to be
k-distinguishing if the only automorphism of G that preserves all vertex labels
is the identity. The distinguishing number D(G) equals the minimum k such
that G has a k-distinguishing labeling; introduced by Albertson and Collins in
1996 [10].

19. dominator chromatic number χd(G). A dominator coloring of a graph G is a
proper coloring π = {V1, V2, . . . , Vk} such that for every vertex v ∈ V , there
exists a set Vi such that v is adjacent to, or dominates, every vertex in Vi . The
dominator chromatic number χd(G) equals the minimum order of a dominator
coloring ofG; suggested by Hedetniemi, Hedetniemi, McRae and Blair in [393]
but introduced by Gera, Rasmussen, and Horton in 2006 [286], and further
studied by Gera in 2007 [284, 285], Chellali and Maffray in 2012 [136], and
Arumugam et al. in [24, 25].

20. edge chromatic number or chromatic index χ ′(G), minimum order of an edge
partition π ′ = {E1, E2, . . . , Ek}, such that every set Ei is an independent set
of edges, i.e. a matching; perhaps first studied by Vizing in 1965 [626], who
showed that for every nonempty graphG, χ ′(G) ≤ 1+�(G). See also Fiamčík
and Jucović [261] and Alavi and Behzad [8].

21. fall chromatic number χf (G). A vertex v ∈ Vi in a proper k-coloring π =
{V1, V2, . . . , Vk} is called colorful if it is adjacent to at least one vertex in every
color class Vj , i �= j . A fall coloring is a coloring in which every vertex is
colorful. The fall chromatic number χf (G) and fall achromatic number ψf (G)
equal the minimum and maximum integer k for which G has a fall coloring;
introduced by Dunbar, Hedetniemi, Hedetniemi, Jacobs, Knisely, Laskar, and
Rall in 2000 [213]. It should be noted that not every graph has a fall coloring.
See also Shaebani [569].

22. fractional chromatic number χf (G). Let I denote the family of all inde-
pendent sets in a graph G. A fractional coloring of G is a function c :
I → [0, 1] such that for every v ∈ V ,

∑
S∈I x∈S c(S) = 1. The value

of a fractional coloring c is
∑
(c) = ∑

S∈I c(S). The fractional chromatic
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number χf (G) = inf {∑(c) : c is a fractional coloring of G}; introduced as
the multicoloring number by Hilton, Rado, and Scott in 1973 [417] and as the
set chromatic number by Bollobás and Thomassen in 1979 [63]. See also the
book by Scheinerman and Ullman [562].

23. forcing chromatic number Fχ(G), minimum integer k such that there is a set
of k vertices in G and a coloring of those k vertices that extends uniquely to a
proper s-coloring of G, where χ(G) = s; introduced by Harary in [340]. See
also Pachter and Kim in [519].

24. harmonious chromatic number h(G). A harmonious k-coloring is a proper
coloring π = {V1, V2, . . . , Vk} with the added property that between any
two color classes Vi and Vj there can be at most one edge. The harmonious
chromatic number h(G) equals the minimum integer k for which G has a
harmonious coloring. This concept appears to have been independently discov-
ered by Harary and Plantholt in 1982 [345] and Hopcroft and Krishnamoorthy
in 1983 [420]. Lee and Mitchem [478] have shown that for any graph G,
1 +�(G) ≤ h(G) ≤ (1 +�(G)2)�√n�; see also Edwards [217] and Edwards
and McDiarmid [219].

25. upper harmonious chromatic number H(G). A harmonious k-coloring π =
{V1, V2, . . . , Vk} is called minimal if the partition which results by combining
any two color classes into one, Vi∪Vj , is no longer a harmonious coloring. The
upper harmonious chromatic number H(G) equals the maximum integer k for
which G has a minimal harmonious k-coloring. This was introduced by Chen,
Domke, Hattingh, and Laskar in 1999 [148]; see also Hattingh et al. [353].

26. line-distinguishing chromatic number or harmonic (chromatic) number h′(G),
the minimum number of colors which can be assigned to the vertices of a graph
G such that no two edges receive the same color pair. A line-distinguishing
coloring need not be a proper coloring, but if not, then for each color, at most
one edge can receive an identical color pair with that color. Stated, equivalently,
a line-distinguishing coloring is a vertex partition π = {V1, V2, . . . , Vk} such
that for every 1 ≤ i ≤ k, the induced subgraph G[Vi] can contain at most
one edge, and between any two color classes Vi and Vj there can be at most
one edge. Thus, a line-distinguishing coloring which is also a proper coloring
is called a harmonious coloring. This idea and name was introduced by Harary
and Plantholt in 1982 [345] but the same idea was independently discovered by
Hopcroft and Krishnamoorthy in 1983 [420]. One can show that for any graph
G, �(G) ≤ h′(G) ≤ h(G). See also Salvi [551].

27. upper line-distinguishing chromatic number H ′(G). A line-distinguishing k-
coloring π = {V1, V2, . . . , Vk} is called minimal if the partition which
results by combining any two color classes into one, Vi ∪ Vj , is no longer a
line-distinguishing coloring. The upper line-distinguishing chromatic number
H ′(G) equals the maximum integer k for which G has a minimal line-
distinguishing k-coloring. This was introduced by Chen, Domke, Hattingh, and
Laskar in 1999 [148]; see also Hattingh et al. [353].

28. incidence chromatic number χi(G). An incidence in a graph G is a pair (v, e)
where vertex v is incident to edge e. Two incidences (u, e) and (v, f ) are
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adjacent if either (1) u = v, (2) e = f , (3) uv = e or (4) uv = f . An incidence
coloring is an assignment of colors to the incidences such that adjacent
incidences are assigned different colors. The incidence chromatic number
χi(G) equals the minimum number of colors required to color the incidences of
G; introduced by Brualdi and Massey in 1993 [86]. See also Gregor et al. [312].
It is complex to see, but it appears that χi(G) = χ(L(S(G))2), where L(G) is
the line graph of G, S(G) is the subdivision graph of G, and G2 denotes the
square of a graph G.

29. interval chromatic number. Let G = (V ,E) be a graph with a nonnegative
weight function wt defined on the vertices in V . An interval coloring assigns
to each vertex v ∈ V an open interval of size wt(v), such that if two vertices
u, v are adjacent, then the corresponding intervals do not intersect. The size
of an interval coloring is the total size of the union of all assigned intervals.
The minimum possible size of an interval coloring is the interval chromatic
number. Stockmeyer (cf. Golumbic [306]) proved that determining the interval
chromatic number of NP-complete even if G is an interval graph and wt is
restricted to the values 1 and 2; see also Shalom [573].

30. irregular chromatic number χir (G). Let c : V (G)→ {1, 2, . . . , k} be a proper
vertex k-coloring of a graph G. Let code(v) = (a0, a1, . . . , ak), where a0 =
c(v) and for 1 ≤ i ≤ k, ai equals the number of neighbors of v colored i.
The coloring c is called irregular if distinct vertices have distinct codes, that is,
u �= v implies code(u) �= code(v). The irregular chromatic number χir (G)
equals the minimum k such that G has an irregular k-coloring; introduced by
Radcliffe and Zhang in 2006 [531].

31. irredundant chromatic number χirr (G). A set S is an irredundant set if for
every vertex v ∈ S, pn[v] = N [v] − N [S − {v}] �= ∅. An irredundant k-
coloring of a graph G is a vertex partition π = {V1, V2, . . . , Vk} such that for
all 1 ≤ i ≤ k, Vi is an irredundant set. The irredundant chromatic number
χirr (G) equals the minimum order k of an irredundant k-coloring; introduced
by Haynes, Hedetniemi, Hedetniemi, McRae, and Slater in 2008 [369]. Notice
that every proper coloring is an irredundant coloring, since every independent
set is irredundant. Thus,it follows that for any graph G, χirr (G) ≤ χ(G).

32. open irredundant chromatic number χoir (G). A set S is an open irredundant
set if for every vertex v ∈ S, pn(v) = N(v) − N [S − {v}] �= ∅. An open
irredundant k-coloring of a graph G is a vertex partition π = {V1, V2, . . . , Vk}
such that for all 1 ≤ i ≤ k, Vi is an open irredundant set. The open irredundant
chromatic number χoir (G) equals the minimum order k of an open irredundant
k-coloring, or the minimum order of a vertex partition into open irredundant
sets; cf. Arumugam et al. [23].

33. L(2, 1)-labeling number or L(2, 1)-coloring number λ(G), minimum value k
of a proper k-coloring f : V → {0, 1, 2, . . . , k}, such that if any two vertices
u and v are adjacent then |f (u)− f (v)| ≥ 2, and if d(u, v) = 2, then f (u) �=
f (v). The basic ideas for L(2, 1)-colorings originated with Hale in 1980 [329];
but was introduced for study by Yeh in 1990 [643] and Griggs and Yeh in 1992
[313]. See also Klavzar and Spacapan [454].
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34. list chromatic number χl(G), minimum integer k such that if every vertex
v ∈ V is assigned a list L(v) of at least k distinct colors, then G has a proper
vertex coloring, where the color chosen for every vertex v is an element of
L(v); introduced by Vizing in 1976 [628] and independently by Erdös, Rubin
and Taylor in 1979 [227].

35. list edge chromatic number, or list chromatic index χ ′
l (G), minimum integer k

such that if every edge e ∈ E is assigned a list L(e) of at least k distinct colors,
then G has a proper edge coloring, where the color chosen for every edge e is
an element of L(e); cf. Bollobás and Harris in 1985 [62], cf. also Galvin [279]
and Slivnik [592].

36. neighborhood-restricted achromatic number or [≤ k]-achromatic number
ψ[≤k](G). Given a vertex partition π = {V1, V2, . . . , Vk}, let degπ [v] = |{i :
N [v]∩Vi �= ∅}|. A partition π is said to be a [≤ k]-coloring if for every v ∈ V ,
degπ [v] ≤ k, that is, no vertex is adjacent to more than k distinctly colored
vertices. The [≤ k]-achromatic number ψ[≤k](G) is the maximum order of
a [≤ k]-coloring of G; introduced by Chandler, Desormeaux, Haynes, and
Hedetniemi in 2016 [107].

37. packing chromatic number. This is the same parameter as the broadcast
chromatic number χb(G), defined above, but called this by Korže and Vesel
[461].

38. proper connection number pc(G) and strong proper connection number
spc(G). Let G be a connected, arbitrarily edge-colored graph. A path P in
G is called a proper path if no two adjacent edges of P are colored the same. A
proper u− v geodesic is a proper path of length d(u, v). An edge coloring c is
called a proper-path coloring if every pair of vertices u, v ∈ V are connected
by a proper path, and is called a strong proper-path coloring if every pair u, v
of vertices are connected by a proper u − v geodesic. The minimum number
of colors in a proper-path coloring is called the proper connection number
pc(G) and the minimum number of colors in a strong proper-path coloring is
called the strong proper connection number spc(G). These coloring numbers
are related to the rainbow connection number rc(G), and strong rainbow
connection number src(G); cf. Andrews et al. [17] and Lumduanhom et al.
[491].

39. quorum coloring number ψq(G), maximum order k of a partition π =
{V1, V2, . . . , Vk} such that for every vertex 1 ≤ i ≤ k, every vertex v ∈ Vi
satisfies |N [v] ∩ Vi | ≥ |N [v]|/2, that is, at least half of the vertices in the
closed neighborhood of every vertex v have the same color as v; introduced
by Hedetniemi, Hedetniemi, Laskar, and Mulder in 2013 [398]. Quorum
colorings are very similar to satisfactory partitions due to Shafique and Dutton
[570] in which the condition is that at least half of the vertices in the open
neighborhood of every vertex v have the same color as v. Since not all graphs
have a satisfactory partition, for example complete graphs, the primary focus
of research on satisfactory partitions is to decide if an arbitrary graph G has a
satisfactory partition and to find classes of graphs that do or do not have them.
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On the other hand, since all graphs have quorum colorings, the primary focus of
quorum colorings is on determining the maximum order of a quorum coloring
of a given graph.

40. radio number rn(G). A radio labeling c of a connected graph G is an
assignment of distinct positive integers to the vertices v ∈ V such that
d(u, v)+|c(u)−c(v)| ≥ 1+diam(G), for every two distinct vertices u, v ∈ V .
The radio number rn(c) of a radio labeling c is the maximum integer assigned
to a vertex v ∈ V . The radio number rn(G) = min{rn(c) : c a radio labeling
ofG}. This concept was introduced by Chartrand, Erwin, Zhang, and Harary in
2001 [126].

41. rainbow connection number rc(G) or strong rainbow connection number
src(G), minimum number of colors required to color the edges of a connected
graph G so that between any pair of vertices u and v, there is a u − v path,
or u − v geodesic, no two edges of which are colored the same; introduced by
Chartrand, Johns, McKeon and Zhang in 2008 [132]. See also Li et al. [486],
Hao [335], Caro et al. [101], and Schiermeyer [563].

42. rank number and arank number χr(G) and ψr(G). A proper coloring c : V →
{1, 2, . . . , k} is a k-ranking if c(u) = c(v) implies that every u−v path contains
a vertex w such that c(w) > c(u). A k-ranking is minimal if decreasing the
value c(u) assigned to any vertex u ∈ V produces a coloring that is not a
k-ranking. The rank number χr(G) and the arank number ψr(G) equal the
minimum and maximum k, respectively, such that G has a minimal k-ranking;
cf. Iyer et al. [432], de la Torre et al. [184] and Ghoshal et al. [289].

43. strong chromatic index χ ′
s(G), minimum number of colors that can be used in a

proper edge coloring ofG so that for every vertex v ∈ V , the set C(v) of colors
incident to vertex v is unique; introduced by Burris and Schelp in 1997 [92].
See also Togni [612].

44. strong chromatic number χs(G), minimum order of a proper coloring π =
{V1, V2, . . . , Vk} having the property that for every 1 ≤ i ≤ k, no vertex v ∈ V
has two neighbors in Vi ; this is equivalent to saying that no vertex has two
neighbors with the same color, or that every set Vi is a 2-packing; introduced
by Sampathkumar and Pushpa Latha in 1995 [555]. See also Narahari et al.
[593].

45. strong chromatic index χ ′
s(G). A strong edge coloring of a graph G is a proper

edge coloring such that every color class is an induced, or strong, matching
in G, or equivalently, if no edge is adjacent to two edges with the same color.
The strong chromatic index χ ′

s(G) equals the minimum number of colors in a
strong edge coloring of G; introduced by Fouquet and Jolivet in 1983 [269].
This parameter was introduced independently by Faudree et al. [247] and by
Horák in 1990 [421]. See also Yang and Zhu [641] and Bensmail et al. [43].

46. subchromatic number χK(G), minimum order of a partition π =
{V1, V2, . . . , Vk}, such that the subgraph induced by every set Vi is a disjoint
union of complete subgraphs of G; introduced by Albertson, Jamison,
Hedetniemi, and Locke in 1989 [11]. See also Gimbel and Hartman [291].
Note the similarity of the subchromatic number and the co-chromatic number,
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z(G), also defined in this subsection, where each color class is either a complete
graph or an independent set. Note that for any graph G:

χK(G) ≤ z(G) ≤ χ(G) ≤ �r(G) ≤ ∂�r(G) ≤ ψ(G) ≤ ψs(G).

47. t-tone chromatic number χtt (G). For a positive integer t , a t-tone coloring c of
a graphG is an assignment of t-element subsets of [k] = {1, 2, . . . , k} for some
integer k > t to the vertices v ∈ V such that for every two vertices u, v ∈ V ,
if d(u, v) = d, then |c(u) ∩ c(v)| < d. The t-tone chromatic number χtt (G)
equals the minimum number of colors in a t-tone coloring of G. The concept
of t-tone colorings was introduced by Chartrand in 2009 and first studied by
Fonger, Goss, Phillips, and Segroves in [267]. Note that every t-tone coloring
is a proper coloring.

48. total chromatic number χ ′′(G), minimum order of a partition of the vertices
and edges, � = {S1, S2, . . . , Sk}, such that each set Si , consisting of a
collection of vertices and edges, contains no pair of adjacent vertices, no pair
of adjacent edges, and no vertex incident with an edge. Clearly, χ ′′(G) ≥
�(G) + 1. It remains an open conjecture, due independently to Behzad [39]
and Vizing [625], that for any graph G, χ ′′(G) ≤ �(G)+ 2. See also Campos
and de Mello [97], Vijayaditya [622] and Chartrand et al. [133].

49. adjacent vertex distinguishing total chromatic number χ ′′
a (G). A total coloring

c : E ∪ V → {1, 2, . . . , k} is called adjacent vertex distinguishing if for every
edge uv ∈ E, c(u)∪ c(E(u)) �= c(v)∪ c(E(v)), where E(u) denotes the set of
edges incident with vertex u. This concept has been attributed to Zhang, Chen,
Li, Yao, Lu and Wang in 2005 [657], but a paper by Chen precedes this by one
year [144]. Since then, many papers have been written on these colorings, cf.
two recent papers by Hu et al. [426] and by Huang et al. [427].

50. vector chromatic number χV (G). For t ≥ 2, a vector t-coloring of a graph
G with vertex set V = {v1, v2, . . . , vn} consists of an assignment p =
(p1, p2, . . . , pn) of real unit vectors to the vertices of V such that vivj ∈ E
if pTi pj ≤ −1

t−1 . The vector chromatic number χV (G) equals the minimum
real number t ≥ 2 for which G has a vector t-coloring; introduced by Karger,
Motwani, and Sudan in 1994 [443]. See also Godsil et al. [303, 304].

3.8 Domination Numbers

A set S ⊆ V of vertices is a dominating set if N [S] = V , that is, every vertex in
V −S is adjacent to, or equivalently is at distance one from, at least one vertex in S.
Thus, if every vertex in S has some desired resource, then every vertex in V −S has
easy, one edge access to a vertex in their neighborhood having this resource. From
the perspective of vertices in S they have the property that they can ‘observe’ over
one edge, every vertex in V − S. The many variations of dominating sets are based
on (1) conditions which are placed on the subgraph G[S] induced by a dominating



An Annotated Glossary of Graph Theory Parameters, with Conjectures 203

set S, (2) conditions which are placed on the vertices in V − S, or (3) conditions
which are placed on the edges between vertices in S and vertices in V − S.

1. domination numbers γ (G) and �(G), minimum and maximum cardinalities of
a minimal dominating set. The reader is referred to the two books on domination
in graphs by Haynes, Hedetniemi and Slater in 1998 [361] and in [360].

2. enclaveless numbers ψ(G) and �(G), minimum and maximum number of
vertices in a maximal enclaveless set. A set S is enclaveless if it does not contain
a vertex u ∈ S such that N [u] ⊆ S. It can be seen that for any graphG of order
n, γ (G) + �(G) = n, and �(G) + ψ(G) = n. It can also be seen that the
enclaveless number �(G) also equals the maximum number of pendant edges
in a spanning forest of G. The concept of enclaveless sets was introduced by
Slater in 1977 [586].

3.8.1 Conditions on S

1. independent domination i(G), minimum cardinality of a dominating set that
is also independent. Independent domination was introduced by Berge in
1962 [44].

2. total domination γt (G) and �t(G), minimum and maximum cardinalities of a
minimal total dominating set. A set S ⊆ V of vertices is a total dominating
set if N(S) = V , that is, every vertex in V is adjacent to at least one vertex in
S. These parameters were introduced by Cockayne, Dawes, and Hedetniemi
in 1980 in [163]. The definitive and most comprehensive treatment of total
domination is the book on this subject by Henning and Yeo in 2013 [411].

3. connected domination γc(G), minimum cardinality of a dominating set S such
that the induced subgraph G[S] is connected. This was introduced by Sam-
pathkumar and Walikar in 1979 [558]. One can also consider the k-connected
domination number γkc(G), the minimum cardinality of a dominating set S
such that the induced subgraph G[S] is k-connected; cf. Shang et al. [575].

4. acyclic domination γa(G), minimum cardinality of a dominating set S such
that the induced subgraphG[S] is acyclic. This was introduced by Hedetniemi,
Hedetniemi, and Rall in 2000 [390], see also Goddard, Haynes and Knisley in
2004 [296].

5. capacity-k domination γcapk (G), minimum order of a vertex partition
π = {V1, V2, . . . , Vk}, such that the subgraph induced by every set Vi has a
spanning star of order at most k + 1, or equivalently, a dominating set S in
which no vertex in S has to dominate more than k vertices in V −S; introduced
by Goddard, Hedetniemi, Huff, and McRae in 2010 [300].

6. clique domination γK(G), minimum cardinality k of a dominating set S ⊆ V

such that G[S] � Kk . Of course, such a dominating set might not exist for all
graphs G, cf. Labendia and Canoy [473].

7. convex domination γconv(G). A set S ⊆ V is called convex if for any two
vertices u, v ∈ S, the vertices contained in all u − v geodesics belong to S. A
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set S is a convex dominating set if it is convex and dominating. The convex
domination number γconv(G) equals the minimum cardinality of a convex
dominating set in G. This was introduced by Lemańska in 2004 [479].

8. weakly convex domination γwcon(G). A set S ⊆ V is called weakly convex
if for any two vertices u, v ∈ S, there exists at least one u − v geodesic, all
of whose vertices belong to S. A set S is a weakly convex dominating set if
it is weakly convex and dominating. The weakly convex domination number
γwcon(G) equals the minimum cardinality of a weakly convex dominating set
in G; first appeared in a paper by Lemańska in 2004 [479].

9. cycle domination γcy(G), minimum cardinality of a dominating set S ⊆ V such
that G[S] has a Hamiltonian cycle. Such a dominating set might not exist for
all graphs G. Harary and Nash-Williams have shown that the line graph L(G)
of a graph G is Hamiltonian if and only if G contains a dominating cycle or
G � K1,n, for n ≥ 3 [344].

10. equivalence domination γe(G), minimum cardinality of an equivalence domi-
nating set. A set S is called an equivalence set if G[S] is a disjoint union of
complete subgraphs; introduced by Arumugam and Sundarakannan in 2015
[21]. It is easy to see that equivalence domination generalizes 1-dependent
domination, and therefore, for any graph G,

γ (G) ≤ γe(G) ≤ γ[1](G) ≤ i(G).

11. forcing domination number Fγ (G). A subset T of a minimum dominating set S
is a forcing subset for S if S is the unique minimum dominating set containing
T . The forcing domination number Fγ (S) of S is the minimum cardinality
among the forcing subsets of S, and the forcing domination number Fγ (G) of
G is the minimum forcing domination number among the minimum dominating
sets S of G. It follows from the definition that Fγ (G) ≤ γ (G). Chartrand et al.
[123] show that for all integers 0 ≤ a ≤ b, with b positive, there exists a graph
G with Fγ (G) = a and γ (G) = b.

12. geodetic domination γg(G). A geodetic set S is a set such that I [S] =
∪x,y∈SI [x, y] = V , where the closed interval I [x, y] consists of x, y and all
vertices lying on some x − y geodesic. A geodetic dominating set is both a
geodetic set and a dominating set. In other words, S is a geodetic dominating
set if every vertex in V − S lies on a shortest path between two vertices in
S. The minimum cardinality of a geodetic dominating set of G is its geodetic
domination number; introduced by Chartrand, Harary, and Zhang in 1999 [124].
See also Hansberg and Volkmann in [333] and Escuadro et al. in [237].

13. global domination γg(G), minimum cardinality of a set S such that S is a
dominating set in G and S is also a dominating set in the complement G of G;
introduced by Sampathkumar in 1989 [553]. The reader is referred to a chapter
on global domination by Brigham and Carrington in 1998 [79], and a paper by
Rall [533].
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14. k-dependent domination γ[k](G), minimum cardinality of a dominating set S
such that for every vertex u ∈ S, |N(u) ∩ S| ≤ k, that is, each vertex in S
has at most k neighbors in S; first defined by Favaron et al. in 2002 [254]; see
also Fink and Jacobson [263] and Samodivkin [552]. Notice that if S is a 1-
dependent dominating set then the induced subgraph G[S] is a disjoint union
of isolated vertices and K2s. Thus, for any graph G, γ (G) ≤ γ[1](G) ≤ i(G).

15. paired domination γpr(G), minimum cardinality of a dominating set S such
that the induced subgraph G[S] has a perfect matching; introduced by Haynes
and Slater in 1995 [358] and [359]. We refer the reader to Desormeaux and
Henning’s [193] survey on paired domination. See also Henning [407] for
several conjectures related to paired and other variants of domination.

16. semipaired domination γpr(G), minimum cardinality of a semipaired domi-
nating set, that is, a dominating set S for which the vertices in S can be
partitioned into |S|/2 pairs {u, v} such that d(u, v) ≤ 2; introduced by Haynes
and Henning in 2018 [376].

17. semitotal domination γt2(G), minimum cardinality of a semitotal dominating
set, that is, a dominating set such that every vertex u ∈ S is within distance 2 of
a second vertex in S; introduced by Goddard, Henning, and McPillan in 2014
[302], but also defined in part by Hedetniemi et al. [395] in 2008.

3.8.2 Conditions on V (G) − S

1. α-domination γα(G), for 0 < α < 1, minimum cardinality of a set S such that
for every vertex v ∈ V − S, |N(v) ∩ S|/|N [v]| ≥ α; introduced by Dunbar et
al. in 2000 [214]. See also Gagarin et al. [275].

2. outer-connected domination γc(G), minimum cardinality of dominating set S
such that the induced subgraph G[V − S] is connected; cf. Akhbari et al. [5].

3. b-disjunctive domination γ db (G), minimum cardinality of a set S having the
property that for every vertex u ∈ V − S, either u is adjacent to a vertex in
S or there exist b vertices in S such that u is at distance 2 from each of these
b vertices; introduced by Goddard, Henning, and McPillan in 2014 [301]. See
also Henning and Marcon [410].

4. distance domination γ≤k(G), minimum cardinality of a set S having the
property that for every vertex u ∈ V − S there exists a vertex v ∈ S such
that d(u, v) ≤ k; introduced by Slater in 1976 [585]. See Henning [403] for a
comprehensive chapter of results on distance domination.

5. upper distance-k domination �≤k(G), maximum cardinality of a minimal
distance-k dominating set inG, that is, a dominating set S such that every vertex
u ∈ V −S is within distance k of at least one vertex in S. The reader is referred
to a chapter on distance domination by Henning in [403].

6. edge-cut domination γ ′
ct (G). An edge dominating set F ⊆ E of a graph G =

(V ,E) is an edge cut dominating set if the subgraphG[E−F ] is disconnected.
The edge cut domination number γ ′

ct (G) equals the minimum cardinality of an
edge cut dominating set in G, cf. Fenstermacher et al. [258].
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7. step domination γstep(G). The k-neighborhood of a vertex v ∈ V is the
set N=k(v) = {u ∈ V |d(u, v) = k}, of vertices whose distance from v

is exactly k. A set S = {v1, v2, . . . , vk} is called a step dominating set
if there exists a set of k nonnegative integers i1, i2, . . . , ik , such that π =
{N=i1(v1), N=i2(v2), . . . , N=ik (vk)} is a partition of V (G). The step domina-
tion number γstep(G) equals the minimum cardinality of a step dominating set
in G; introduced by Chartrand, Jacobson, Kubicka, and Kubicki in 1998 [120].

8. exact 2-step domination γ=2(G). A set S ⊆ V is called an exact 2-step
dominating set if for every vertex v ∈ V , there exists a unique u ∈ S, such that
d(u, v) = 2. The exact 2-step domination number γ=2(G) equals the minimum
cardinality of an exact 2-step dominating set in G; introduced by Chartrand,
Harary, Hossain, and Schultz in 1995 [122]. See also Williams [639]. Note that
exact 2-step dominating sets do not exist for all graphs.

9. downhill domination γdn(G), minimum cardinality of a downhill dominating
set. A set S ⊆ V is a downhill dominating set if every vertex v ∈ V lies on
some downhill path from a vertex in S. A path P = v1, v2, . . . , vk is a downhill
path if for every 1 ≤ i ≤ k − 1, deg(vi) ≥ deg(vi+1); introduced by Haynes,
Hedetniemi, Jamieson, and Jamieson in 2014 [373]. See also Chen and Fujita
[145].

10. edge domination γ ′(G) and �′(G), minimum and maximum cardinalities of a
minimal edge dominating set. The edge domination number and the indepen-
dent edge domination number i′(G) were perhaps first discussed by Mitchell
and Hedetniemi in 1977 [381], who showed that for trees T , γ ′(T ) = i′(T ). It
is clear that for any graph G, and its line graph L(G), γ ′(G) = γ (L(G)).
Since 1977, relatively little research has been done on the various types of
edge domination in graphs. See, for example, Yannakakis and Gavril [642] and
Chaemchen [105].

11. edge-vertex domination γev(G), minimum cardinality of an ev-dominating set.
A set M ⊆ E is an ev-dominating set if every vertex v ∈ V is either incident
to an edge inM or is adjacent to a vertex that is incident to an edge inM . This
was introduced by Laskar and Peters in 1985 [477] and developed by Peters in
his PhD thesis in 1986 [522]. See also the PhD thesis of Lewis [483]. This is
closely related to vertex-edge domination γve(G) defined below.

12. exponential domination γe(G), minimum cardinality of a set S having the
property that for every vertex v ∈ V − S, ws(v) ≥ 1, where
ws(v) = ∑

u∈S 1
2d(u,v)−1

.

and d(u, v) equals the length of a shortest path in V −(S−{u}) if such a path
exists, and ∞ otherwise; introduced by Dankelmann, Day, Erwin, Mukwembi,
and Swart in 2009 [182].

13. inverse domination γ−1(G), minimum cardinality of a dominating set S∗ that
is contained in the complement of a minimum dominating set of G; introduced
by Kulli and Sigarkanti in 1991 [471]; cf. Domke et al. [200].

14. fair domination f d(G). A fair dominating set in a graph (or FD-set) is
a dominating set S such that all vertices not in S are dominated by the
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same number of vertices in S; that is, every two vertices not in S have the
same number of neighbors in S. The fair domination number f d(G) is the
minimum cardinality of an FD-set; introduced by Caro, Hansberg, and Henning
in 2012 [102].

15. k-domination γk(G), minimum cardinality of a dominating set S having the
property that for every vertex v ∈ V − S, |N(v) ∩ S| ≥ k; introduced by Fink
and Jacobson in 1985 [263]. See also DaLaVina et al.[190] and Chellali et al.
[138].

16. [1, k]-domination γ[1,k](G). A subset S ⊆ V is a [1, k]-(dominating) set if for
every vertex v ∈ V − S, 1 ≤ |N(v) ∩ S| ≤ k; introduced by Chellali et al. in
2014 [140].

17. liars domination. Liar’s domination is about the detection of intruders in a graph
G. We assume that an intruder can be located at any vertex v ∈ V . Intruders are
detected by devices placed at various vertices, say u ∈ V , which can detect the
presence and location of an intruder at any vertex in N [u]. A dominating set
S can therefore detect and locate any intruder in a graph G. Liar’s domination
considers the case of a single intruder in a graph, when a single detection device
in S can fail, or lie. In this case, at least a double dominating set is required, but
any triple dominating set will suffice. The reader is referred to the PhD Thesis
of Roden Bowie in 2008 [72] and the papers by Roden and Slater [546] and
Slater [588].

18. location domination γL(G), minimum cardinality of a dominating set S having
the property that for no two vertices v,w ∈ V − S is N(v) ∩ S = N(w) ∩ S;
introduced by Slater in 1975 [584]. See also Rall and Slater [534], Slater [587]
and Exoo et al. [238]. The reader is also referred to a bibliography maintained
by A. Lobstein, of more than 370 papers concerned with locating domination
and its variations at: https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf.

19. mixed domination γm(G), minimum cardinality of a set S of vertices and edges
such that every edge not in S is either adjacent to an edge in S or incident
to a vertex in S, and every vertex not in S is either adjacent to a vertex in S
or incident to an edge in S; introduced by Alavi, Behzad, Lesniak-Foster, and
Nordhaus in 1977 [9], and later called mixed domination by Sampathkumar and
Kamath in 1992 [554]. See also Zhao et al. [658].

20. P3-domination γP3(G), minimum cardinality of P3-dominating set. A set S is
P3-dominating if every vertex v ∈ V − S forms a P3 with two vertices in S.
This can happen in one of two ways: either v is dominated by two vertices
in S, or v is dominated by a vertex u ∈ S that is adjacent to another vertex
w ∈ S. Introduced by Haynes, Hedetniemi, Henning, and Slater in 2003 [366],
who showed that for any graph G, γP3(G) ≤ {γt (G), γ2(G)}, and that equality
holds for any tree. This equality was later shown to hold for chordal graphs by
Chellali and Favaron in [135].

21. power domination γP (G), minimum cardinality of power dominating set. A set
S is a power dominating set if all vertices in V are observed by vertices in S.
A vertex observes itself and all of its neighbors, and if an observed vertex has
all but one of its neighbors observed, then the remaining neighbor becomes

https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf
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observed; introduced by Haynes, Hedetniemi, Hedetniemi, and Henning in
2002 [364]. See also Guo, Niedermeier, and Raible [317] and generalizations to
k-power domination, in which a vertex is observed if all but k of its neighbors
have been observed. This was introduced by Chang et al. [111] and studied later
by Dorbec and Klavžar [202].

22. restrained domination γr(G), minimum cardinality of a dominating set S such
that every vertex in V − S has a neighbor in V − S; introduced by Domke,
Hattingh, Hedetniemi, Laskar, and Markus in 1999 [198]. See also Henning
[404] and Domke et al. [199]. See outer-connected domination.

23. secondary domination, γ1,2(G) and γ1,3(G), minimum cardinalities of a
(1, 2)− and (1, 3)-dominating set, respectively. A set S is a (1, k)-dominating
set if |S| ≥ 2 and for every vertex v ∈ V−S there exists two vertices u1, u2 ∈ S
such that d(v, u1) = 1 and d(v, u2) ≤ k. The following inequality chain exists
for these parameters:

γ (G) = γ1,4(G) ≤ γ1,3(G) ≤ γ1,2(G) ≤ γ1,1(G) = γ2(G).

This was introduced by Hedetniemi, Hedetniemi, Knisely, and Rall in 2008
[395]; see also Jamieson and Jamieson [433].

24. [1, 2]-domination γ[1,2](G), minimum cardinality of a dominating set such that
no vertex in V − S has more than two neighbors in S; introduced by Chellali,
Haynes, Hedetniemi, and McRae in 2013 [139].

25. split domination γsplt (G), minimum cardinality of a split dominating set in G.
A dominating set S of vertices is called split dominating if the induced subgraph
G[V − S] is either disconnected or K1; introduced by Kulli and Janakiram in
1997 [470].

26. vertex-edge domination γve(G), minimum cardinality of a ve-dominating set.
A set S ⊆ V is a ve-dominating set if for every edge e = uv ∈ E, either u ∈ S,
v ∈ S or there exists a vertex w ∈ S such that either uw ∈ E or vw ∈ E. This
concept was first suggested by Alavi, Behzad, Lesniak-Foster and Nordhaus in
1977 [9], but was clarified and developed by Peters in his PhD thesis in 1986
[522], by Laskar and Peters in [477], and later by Lewis in his PhD thesis in
2007 [483]. In Lewis et al. [484] the following inequality chain is established.

irve(G) ≤ γve(G) ≤ ive(G) ≤ αve(G) ≤ �ve(G) ≤ IRve(G).

See also Boutrig et al. [69].

3.8.3 Conditions on (V (G), S)

1. cost effective domination γce(G) and �ce(G), minimum and maximum cardi-
nalities of a dominating set that is cost effective. A vertex v ∈ S in a graph
G = (V ,E) is said to be cost effective if it is adjacent to at least as many
vertices in V − S as it is in S. A dominating set S is cost effective if every
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vertex in S is cost effective. This idea originates in a paper by Aharoni, Milner,
and Prikry in 1990 [4], and was later given the name cost effective domination
by Haynes, Hedetniemi, Hedetniemi, McCoy, and Vasylieva in 2012 [372]; see
also Haynes et al. [375].

2. very cost effective domination γvce(G) and �vce(G), minimum and maximum
cardinalities of a dominating set that is very cost effective. A vertex v ∈ S

in a graph G = (V ,E) is said to be very cost effective if it is adjacent to more
vertices in V −S than it is in S. A dominating set S is very cost effective if every
vertex in S is very cost effective; cf. Haynes et al. in 2012 [372] and [375].

3. detour domination γD(G). For a vertex v ∈ V , define D−(v) = min{D(u, v) :
u ∈ V − {v}}, where D(u, v) equals the maximum length of a u − v path in
G. A vertex u is called a detour neighbor of v if D(u, v) = D−(v). A vertex
v is said to detour dominate a vertex u if u = v or u is a detour neighbor of
v. A set S ⊂ V is called a detour dominating set if every vertex in V is detour
dominated by some vertex in S. The detour domination number γD(G) of G
equals the minimum cardinality of a detour dominating set in G; introduced by
Chartrand, Haynes, Henning and Zhang in 2004 [128].

4. independent distance-k domination numbers i≤k(G) and α≤k(G), minimum
and maximum cardinalities of a minimal independent distance-k dominating
set in G; cf. Fricke, Hedetniemi, and Henning [270].

5. total distance domination γ kt (G). A set S of vertices is called a total distance-k
dominating set if every vertex in V is within distance k of a vertex in S. The
total distance-k domination number γ kt (G) equals the minimum cardinality of
a total distance-k dominating set; introducted by Henning, Oellermann, and
Swart in 1995 [414].

6. weakly connected domination γw(G), minimum cardinality of a dominating
set that is weakly connected. A set S is weakly connected if the graph with
vertex set N [S] and all edges having at least one vertex in S is connected. This
was introduced by Dunbar, Grossman, Hattingh, Hedetniemi, and McRae in
1995 [210]; see also Domke et al. [201] and Hattingh and Henning [352].

7. secure domination γs(G), minimum cardinality of a secure dominating set. A
set S is a secure dominating set if for every vertex v ∈ V−S, there is an adjacent
vertex u ∈ S such that the set S − {u} ∪ {v} is a dominating set; introduced by
Cockayne, Favaron, and Mynhardt in 2003 [169]. See also Burger et al. [91].

8. eternal domination γ∞(G), minimum cardinality of an eternally secure set in
G. A set S of vertices is an eternal dominating set or eternally secure set if
for all possible sequences of vertices u1, u2, . . . , there exists a sequence of
dominating sets S = S1, S2, . . . and a sequence v1, v2, . . . such that for all i,
Si+1 = Si−{vi}∪{ui}, where vi ∈ Si∩N [ui]; introduced by Burger, Cockayne,
Gründlingh, Mynhardt, van Vuuren, and Winterbach in 2004 [90], and further
developed by Goddard, Hedetniemi and Hedetniemi in 2005 [297].

9. Hamiltonian domination γH (G). For vertices u, v ∈ V , let D(u, v) denote the
length of a longest u− v path inG. For a vertex v, letD+(v) = max{D(u, v) :
u ∈ V − {v}}. A vertex u is called a Hamiltonian neighbor of v if D(u, v) =
D+(v). A vertex v is said to Hamiltonian dominate a vertex u if u = v or u is
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a Hamiltonian neighbor of v. A set S ⊆ V is called a Hamiltonian dominating
set if every vertex in V is Hamiltonian dominated by some vertex in S. The
Hamiltonian domination number γH (G) equals the minimum cardinality of a
Hamiltonian dominating set in G; introduced by Chartrand et al. [129].

10. injective domination γin(G). The common neighborhood of two vertices u and
v is the set N(u, v) = N(u) ∩ N(v). A set S ⊆ V is called an injective
dominating set if for every vertex v ∈ V−S there exists a vertex u ∈ S such that
N(u, v) �= ∅. The injective domination number γin(G) equals the minimum
cardinality of an injective dominating set in G; introduced by Alqesmah,
Alwardi, and Rangarajan in 2018 [14].

11. k-tuple domination γ×k(G), minimum cardinality of a dominating set S having
the property that for every vertex v ∈ V , |N [v] ∩ S| ≥ k; introduced by Harary
and Haynes in 2000 [341].

12. k-emergency response number Rk(G), minimum cardinality of a k-emergency
response set. A set S is a k-emergency response set if a set of responders
stationed at the vertices in S can respond, by staying put or moving to a
neighbor, to simultaneous emergencies at each vertex of any set A ⊆ V of
size at most k; introduced by Blair et al. in 2009 [55].

13. movable domination number γ 1
m(G). A 1-movable dominating set is a domi-

nating set S ⊂ V (G), having the property that for every v ∈ S, there exists
a vertex u ∈ N(v) such that S − {v} ∪ {u} is a dominating set, capturing the
idea that every vertex v in the dominating set can be replaced by a neighbor in
N(v) and create another dominating set. The cardinality of a smallest movable
dominating set of G is the 1-movable domination number γ 1

m(G); introduced
by Blair, Gera, and Horton in 2011 [56].

14. odd domination γodd(G), minimum cardinality of a dominating set having the
property that for every vertex v ∈ V , |N [v] ∩ S| is an odd number. Odd
domination and the fact that every graph G has an odd dominating set was
introduced and proved by Sutner in 1989 [598]. See also Caro et al. [100] and
Caro and Klostermeyer [98].

15. partial domination γp(G). Let p ∈ [0, 1]. A set S ⊆ V is a p-dominating

set if |N [S]|
|V | ≥ p, that is, the set S dominates the fraction p of all vertices in

G. The partial domination number γp(G) equals the minimum cardinality of a
p-dominating set in G; introduced by Case et al. [103].

16. private domination �pvt (G), maximum cardinality of a dominating set, every
vertex in which has an external private neighbor, that is, for every vertex v ∈ S
there exists a vertex w ∈ V − S for which N(w) ∩ S = {v}; equivalently,
the maximum cardinality of an open irredundant dominating set. Notice that
by definition, for any graph G, �pvt (G) ≤ {�(G),OIR(G)}; introduced by
Hedetniemi, Hedetniemi, and Jacobs in 1990 [387]. See also Prasad et al. [524].
It should be noted that the minimum cardinality of a private dominating set of
any isolate-free graph always equals the domination number γ (G).

17. stratified domination. A graph F is called 2-stratified if its vertices are
partitioned into two non-empty sets, colored red and blue, but rooted at a given



An Annotated Glossary of Graph Theory Parameters, with Conjectures 211

blue vertex v. A graphG is said to be F -colored if it is two-colored red and blue
and every blue vertex v belongs to a copy of F rooted at v. The F -domination
number of G is the minimum number of red vertices in an F -coloring of G. It
can be seen that if F = K2 then F -domination is equal to normal domination in
graphs. This concept was suggested by Rashidi in his PhD thesis in 1994 [536],
and later developed by Chartrand et al. in 1995 [121], studied in Gera’s PhD
thesis in 2005 [283], and by Haynes, Henning and Zhang in 2009 [370].

18. strong domination γs(G), minimum cardinality of a dominating set S having
the property that for every vertex w ∈ V − S there exists a vertex v ∈ S such
that v is adjacent to w and deg(v) ≥ deg(w), that is, every vertex w ∈ V − S
is dominated by a vertex v ∈ S whose degree is greater than or equal to the
degree of w; introduced by Sampathkumar and Pushpa Latha in 1996 [556].

19. weak domination γw(G), minimum cardinality of a dominating set S having the
property that for every vertex w ∈ V − S there exists a vertex v ∈ S such that
v is adjacent to w and deg(v) ≤ deg(w), that is, every vertex w ∈ V − S is
dominated by a vertex v ∈ S whose degree is less than or equal to the degree of
w; introduced by Sampathkumar and Pushpa Latha in 1996 [556].

3.9 Dominating Function Numbers

All of the parameters in this subsection consider vertex labelings of the form f :
V → X where X is a finite set of integers, and the function satisfies the general
condition that for every vertex v ∈ V ,

∑
u∈N [v] f (u) ≥ 1. Unless otherwise stated,

the weight of a function f is �v∈V f (v).

1. broadcast domination γb(G) and �b(G), minimum and maximum weights,
respectively, of a minimal function f : V → {0, 1, 2, . . . , diam(G)}, such that
for every vertex v ∈ V , with f (v) = 0, there exists a vertex u ∈ V such that
f (u) ≥ d(u, v). In this case, we say that vertex v hears a broadcast from vertex
u, or in general, a vertex v hears a broadcast from a vertex u if f (u) ≥ d(u, v).
Such a function is called a dominating broadcast.

γb(G) ≤ min{γ (G), rad(G)} ≤ max{�(G), diam(G)} ≤ �b(G).

This was introduced by Erwin in 2004 [236]. See Dunbar et al. [215], Bresar
and Spacapan [75], and Dabney et al. [179].

Also defined in these papers are: pb(G) and Pb(G), the broadcast packing
numbers [in a packing broadcast no vertex in the set hears two or more
broadcasts], the broadcast independence numbers ib(G) and αb(G) [in an
independent broadcast no vertex with f (v) > 0 hears another broadcast],
and �ib(G) and �eb(G), the maximum weights of a minimal independent
and dominating broadcast [every vertex hears at least one broadcast] and
an efficient dominating broadcast [every vertex hears exactly one broadcast].
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It is noteworthy that a minimum weight dominating broadcast can always
be achieved with an efficient broadcast, and consequently the problem of
computing the broadcast domination number γb(G) of any graph can be
computed in polynomial time, cf. Heggernes and Lokshtanov [400].

2. fractional domination γf (G), minimum weight of a function f : V →
[0, 1] such that for every vertex v ∈ V ,

∑
u∈N [v] f (u) ≥ 1; introduced by

Hedetniemi, Hedetniemi, and Wimer in 1987 [384]. See also the PhD thesis by
Rubalcaba in 2005 [548].

3. {k}-domination γ{k}(G), minimum weight of a function f : V →
{0, 1, 2, . . . , k} such that for every vertex v ∈ V , �u∈N [v]f (u) ≥ k; introduced
by Domke et al. in 1991 [197]. See also Hou and Lu [424].

4. majority domination γmaj (G), minimum weight of a function f : V →
{−1, 0, 1} such that for at least half of the vertices v ∈ V , f (N [v]) ≥ 1;
introduced by Broere, Hattingh, Henning, and McRae in 1995 [82]. See also a
chapter on majority domination by Hattingh in 1998 [351], and papers by Yeh
and Chang [644] and Holm [418].

5. minus domination γ−(G), minimum weight of a function f : V → {−1, 0, 1}
such that for every vertex v ∈ V , f (N [v]) ≥ 1; introduced by Dunbar,
Hedetniemi, Henning, and McRae in 1999 [212]. See also Dunbar et al. [209]
and [208] and Zelinka [655].

6. k-rainbow domination γrk(G), minimum weight of a function that assigns
to each vertex a subset of colors chosen from the set {1, 2, . . . , k}, that is,
f : V (G) → P({1, 2, . . . , k}), such that for every vertex v ∈ V with
f (v) = ∅,

⋃
u∈N(v) f (u) = {1, 2, . . . , k}. Such a function f is called a k-

rainbow dominating function (kRDF) of G; introduced by Brešar and Kraner
in 2007 [76] and in 2008 by Brešar, Henning and Rall in 2008 [77].

7. signed domination γ±(G), minimum weight of a function f : V → {−1, 1}
such that for every vertex v ∈ V , f (N [v]) ≥ 1; introduced by Dunbar,
Hedetniemi, Henning, and Slater in 1995 [207]. See also Haas and Wexler
[323], Chen and Song [146] and Hosseini Moghaddam, Khodkar, and Samadi
[508].

8. Roman domination γR(G), minimum weight of a function f : V → {0, 1, 2}
such that every vertex u ∈ V , with f (u) = 0 is adjacent to a vertex v ∈ V with
f (v) = 2; introduced by Cockayne, Dreyer, Hedetniemi, and Hedetniemi in
2004 [170]. Since its introduction in 2004, many varieties of Roman domination
(RD) have appeared, too numerous to define all here. We define a few varieties
below.

9. weak Roman domination γr(G), minimum weight of a function f : V →
{0, 1, 2} such that every vertex u with f (u) = 0 is adjacent to a vertex v with
f (v) > 0, and the function f ′ obtained from f by setting f ′(u) = 1, f ′(v) =
f (v) − 1, and f ′(w) = f (w), for all w ∈ V − {u, v} has no vertex x with
f ′(x) = 0 and all neighbors y ∈ N(x) have f ′(y) = 0; introduced by Henning
and Hedetniemi in 2001 [408].
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10. Roman {2}-domination γR2(G), minimum weight of a function f : V →
{0, 1, 2} such that for every vertex v ∈ V with f (v) = 0, either v is adjacent
to a vertex w with f (w) = 2 or v is adjacent to two vertices x, y with
f (x) = f (y) = 1; introduced by Chellali, Haynes, Hedetniemi, and McRae in
2016 [141], but is called Italian domination in [409].

11. double Roman domination γdR(G), minimum weight of a function f :
V (G)→ {0, 1, 2, 3} satisfying the following conditions. For i ∈ {0, 1, 2, 3}, let
Vi = {v ∈ V (G)|f (v) = i}. (1) if f (v) = 0, then vertex v must have at least
two neighbors in V2 or one neighbor in V3. (2) if f (v) = 1, then v must have at
least one neighbor in V2 ∪ V3; introduced by Beeler, Haynes, and Hedetniemi
in 2016 [38].

12. Roman k-domination γkR(G), minimum weight of a function f : V → {0, 1, 2}
such that every vertex v for which f (v) = 0 is adjacent to at least k vertices
v1, v2, . . . , vk , where f (vi) = 2 for 1 ≤ i ≤ k; defined by Hansberg and
Volkmann in 2009 [332].

13. independent Roman domination iR(G), minimum weight of a Roman dominat-
ing function f for which the set of vertices assigned positive values under f
is independent; defined by Cockayne, Dreyer, Hedetniemi and Hedetniemi in
2004 [170].

14. edge Roman domination γ ′
R(G), minimum weight of a function f : E(G) →

{0, 1, 2} such that every edge e with f (e) = 0 is adjacent to some edge e′ with
f (e′) = 2; introduced by Pushpam and Mai in 2009 [528]. See also Chang et
al. [112].

15. signed Roman domination γsR(G), minimum weight of a function f : V →
{−1, 1, 2} such that for every vertex v ∈ V , (1) f (N [v]) ≥ 1, and (2) if f (v) =
−1 then v must have a neighbor w with f (w) = 2; introduced by Ahangar,
Henning, Löwenstein, Zhao, and Samodivkin in 2014 [2]. See also Haas and
Wexler [323], Chen and Song [146] and Hosseini Maghaddam et al. [508].

16. total Roman domination γtR(G), minimum weight of a Roman dominating
function with the additional property that the subgraph of G induced by the
set of all vertices assigned positive values under f has no isolated vertices;
introduced by Liu and Chang in 2013 [488]. See also Ahangar, Henning,
Samodivkin, and Yero in 2016 [3].

3.10 Domatic Numbers

In its most general form, a domatic number is the maximum order k of a vertex
partition π = {V1, V2, . . . , Vk}, such that each set Vi is a given type of dominating
set. Thus, there are as many types of domatic numbers as there are types of
dominating sets. In this subsection, we define only nine of the many types of domatic
numbers that have been studied. For more on domatic numbers, see the chapter by
Zelinka in [654].
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1. domatic number d(G), maximum order of a partition of V (G) into dominating
sets; introduced by Cockayne and Hedetniemi in 1975 [161].

2. total domatic number dt (G), maximum order of a partition of V (G) into total
dominating sets; introduced by Zelinka in 1989 [653].

3. connected domatic number dc(G), maximum order of a partition of V (G) into
connected dominating sets; introduced by Zelinka in 1986 [652].

4. paired domatic number dpr(G), maximum order of a partition of V (G) into
paired dominating sets; introduced by Haynes and Slater in 1995 [358].

5. k-domatic number dk(G), maximum order of a partition of V (G) into distance-k
dominating sets; introduced by Zelinka in 1983 [651].

6. edge-domatic number ed(G), maximum order of a partition of E(G) into edge
dominating sets; introduced by Zelinka in 1983 [650]. The edge-domatic number
of G is the domatic number of the line graph of G.

7. signed domatic number dS(G), maximum number of functions in a signed
dominating family (of functions) of G; introduced by Volkmann and Zelinka
in 2005 [629]. A set {f1, f2, . . . , fd} of signed dominating functions on G with

the property that
d∑

i=1

fi(v) ≤ 1 for each v ∈ V (G) is called a signed dominating

family (of functions) on G.
8. Roman domatic number dR(G), maximum number of functions in a Roman

dominating family (of functions) of G; introduced by Sheikholeslami and
Volkmann in 2010 [578]. A set {f1, f2, . . . , fd} of Roman dominating functions

on G with the property that
d∑

i=1

fi(v) ≤ 2 for each v ∈ V (G) is called a Roman

dominating family (of functions) on G.
9. fractional domatic number FD(G). A thoroughly distributed dominating family

Fdom of a graph G is a family of (not necessarily distinct) dominating sets of G.
Let dF denote the maximum times any vertex of G appears in Fdom, and define
the effective ratio of the family Fdom as the ratio of the number of sets in Fdom
to dF . The fractional domatic number FD(G) is defined as the supremum of the
effective ratio taken over all thoroughly distributed dominating families. That is,

FD(G) = sup
Fdom

|Fdom|
dF

.

The fractional domatic number was introduced in 1990 by Rall [532].
The fractional total domatic number is defined analogously. The fractional

total domatic number was introduced by Goddard and Henning [295], and
studied further, for example, by Abbas et al. [1] and Henning and Yeo [412].
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3.11 Domination and Coloring Related Numbers

In this subsection we list a variety of parameters having some relationships with
coloring or domination in graphs.

1. annihilation number a(G), maximum integer k such that the sum of the first
k terms of the non-decreasing degree sequence of G is at most the size
m = |E| of G. This was introduced and studied by Pepper in 2009 [521].
Desormeaux, Haynes, and Henning in 2013 [194] showed that for the total
domination number of any tree T , γt (T ) ≤ a(T ) + 1; Dehgardi, Norouzian,
and Sheikholeslami in 2013 [187] showed that for the domination number,
γ (T ) ≤ (3a(T ) + 2)/4; Dehgardi, Sheikholeslami and Khodkar in 2014
[188], showed that for the paired domination number, γpr(T ) ≤ 4a(T )+2

3 ;
Desormeaux, Henning, Rall and Yeo in 2014 [195] showed that for the 2-
domination number of trees T , γ2(T ) ≤ a(T ) + 1; and Amjadi in 2015 [16],
showed that for the double domination number, γ×2(T ) ≤ 3a(T )+1

2 .
2. acquisition number a(G). To a connected graph G, assign the value 1 to all

vertices, that is, let f (v) = 1 for all v ∈ V . An acquisition is the process
of selecting two adjacent vertices u and v where f (u) ≥ f (v) > 0, and
redefining f (u) = f (u)+ f (v) and f (v) = 0. This process continues until no
more acquisitions are possible. The acquisition number a(G) is the minimum
possible number of vertices having a nonzero value at the end of an acquisition
sequence. Note that if S is the set of vertices having nonzero value at the end
of an acquisition sequences, then S is an independent set. This parameter was
introduced in 1995 by Lampert and Slater [476] and further studied by Slater
and Wang [589].

3. R-annihilated number ra(G). For a vertex u ∈ S, whose set of private
neighbors pn[u, S] with respect to S is nonempty, a vertex v ∈ V − S is said to
annihilate u if v is adjacent to every vertex in pn[u, S]. This means that u has
a private neighbor with respect to the set S but does not have a private neighbor
with respect to the set S ∪ {v}. Let R = V − N[S] denote the subset of V
not dominated by S. Then S is said to be R-annihilated, or an Ra-set, if every
vertex in R annihilates some vertex in S. This is the property satisfied by every
maximal irredundant set. The minimum cardinality of an Ra-set is denoted by
ra(G); introduced by Cockayne, Favaron, Puech and Mynhardt in 1998 [167],
and further studied by Puech in 2000 [525].

4. bondage number b(G), minimum number of edges that can be deleted from
G in order to increase the domination number. This parameter was introduced
by Fink, Jacobson, Kinch, and Roberts in 1990 [265], and further studied by
Hartnell and Rall in 1994 [350], and Wang in 1996 [636].

5. cost effective numbers ce(G) and CE(G), minimum and maximum cardinali-
ties of a maximal cost effective set. A set S is cost effective if for every vertex
u ∈ S, |N(u) ∩ (V − S)| ≥ |N(u) ∩ S|, introduced by Chellali, Haynes, and
Hedetniemi in 2017 [142].
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6. very cost effective numbers vce(G) and VCE(G), minimum and maximum
cardinalities of a maximal very cost effective set. A set S is very cost effective if
for every vertex u ∈ S, |N(u)∩ (V − S)| > |N(u)∩ S|; introduced by Chellali
et al. in 2017 [142].

7. differential number ∂(G), maximum value of |B(S)| − |S|, for a set S ⊆ V ,
where B(S) = N [S] − S. Note that for any isolate-free graph G,

n− 2γ (G) ≤ ∂(G) ≤ n− γ (G)− 1 = �(G)− 1.

This was introduced by Mashburn, Haynes, Hedetniemi, Hedetniemi, and
Slater in 2006 [499]; see also Haynes et al. [374].

8. domination equivalence numbers de(G) andDE(G), minimum and maximum
number of vertices in a domination equivalent pair. A set S of vertices has a
domination equivalent if there exists a set R ⊆ V − S such that N [S] = N [R].
Similarly, one can define the open domination equivalence numbers, ode(G)
and ODE(G), in terms of two disjoint sets S and R such that N(S) = N(R).
Note that it is easy to see that for any graph G of order n, de(G) ≤ γ (G), and
DE(G) = n− γ (G); introduced by Blair, Goddard, Hedetniemi, Hedetniemi,
and Horton in 2005 [53].

9. domination subdivision number sdγ (G), minimum number of edges which
when subdivided once increase the domination number. This concept is due
to Arumugam, but was first defined and studied by Haynes, Hedetniemi and
Hedetniemi in 2000 [362]. See also Haynes et al. in 2001 [363] where it is
shown that for any connected graph of order n ≥ 3, sdγ (G) ≤ γ (G)+ 1.

A large number of variants of the domination subdivision number have
been studied since this parameter was introduced, including connected domina-
tion, double domination, independent domination, convex domination, weakly
convex domination, rainbow domination, game total domination, restrained
domination, doubly connected, and Roman domination subdivision numbers,
which are too numerous to discuss here. We mention only the following two
variants.

10. total domination subdivision number sdγt (G), minimum number of edges
which when subdivided once increase the total domination number; introduced
by Haynes, Hedetniemi, and van der Merwe in 2003 [367]. See also Haynes et
al. [368].

11. paired domination subdivision number sdγpr (G), minimum number of edges
which when subdivided once increase the paired domination number; intro-
duced by Favaron, Karami, and Sheikholeslami in 2009 [256].

12. efficiency of a graph ε(G). The efficiency of a set S ⊆ V is defined as ε(S) =
|{v ∈ V − S : |N(v) ∩ S| = 1}|, that is, the efficiency of a set S equals the
number of vertices in V − S that are adjacent to exactly one vertex in S. The
efficiency of a graph ε(G) equals the maximum efficiency of a set S ⊆ V , that
is, the maximum number of vertices that can be dominated exactly once by a
set S; introduced by Bernhard, Hedetniemi, and Jacobs in 1993 [47]. See also
Blair [52], Telle and Proskurowski [603] and Hedetniemi et al. [396].
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13. hub number hub(G). A vertex set S having the property that for every u, v ∈
V − S, there exists a u− v path, every internal vertex of which belongs to S is
called a hub set. The hub number of a graphG equals the minimum cardinality
of a hub set in G; introduced as the hub number by Walsh in 2006 [634], and
later studied by Grauman et al. [311], who showed that

h(G) ≤ hc(G) ≤ γc(G) ≤ h(G)+ 1,

where hc(G), the connected hub number, equals the minimum cardinality of a
hub set S for which the induced subgraph G[S] is connected, and γc(G) equals
the connected domination number of G.

However, the original idea seems to be due to Newman-Wolfe, Dutton, and
Brigham in 1988 [514], who gave the following definitions. A subset S is a
strong connecting set (SCS) if every pair of vertices not in S has a connecting
path through S. Similarly, S is a weak connecting set (WCS) if every pair of
nonadjacent vertices not in S has a connecting path through S. The minimum
cardinality of an SCS (resp. WCS) equals the strong connection number γs(G)
(resp.weak connection number γw(G)). They show that for any connected
graph G,

γw(G) ≤ γs(G) ≤ γc(G)≤γw(G)+ 1.

See also Johnson, Slater, and Walsh [436].
14. iterated independence numbers i∗(G) and α∗(G), minimum and maximum

number of iterations possible in a process of iteratively removing from G a
maximal independent set. It can be seen that i∗(G) = χ(G) and α∗(G) =
�r(G), the Grundy number of G.

15. iterated domination numbers γ ∗(G) and �∗(G), minimum and maximum
number of iterations possible in a process of iteratively removing from G a
minimal dominating set.

16. iterated irredundance numbers ir∗(G) and IR∗(G), minimum and maximum
number of iterations possible in a process of iteratively removing from G a
maximal irredundant set.

All of these iterated numbers were introduced by Hedetniemi, Hedetniemi,
McRae, Parks, and Telle in 2004 [392], who observed that for any graph G,

ir∗(G) ≤ γ ∗(G) ≤ i∗(G) = χ(G) ≤ α∗(G) ≤ �∗(G) ≤ IR∗(G).

It remains an open problem to show, without appealing to the Four Color
Theorem, that for any planar graph G, ir∗(G) ≤ 4 and γ ∗(G) ≤ 4.

17. neighborhood numbers n(G) and N(G), minimum and maximum cardinalities
of a minimal neighborhood set, that is, a set S such that

⋃
u∈S G[N [u]] = G;

introduced by Sampathkumar and Neeralagi in 1986 [557]. See also Brigham
and Dutton [80] and Chang et al. [109].
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18. reinforcement number r(G), minimum number of edges that have to be added
to G so that in the resulting graph G′, γ (G′) < γ (G); introduced by Kok and
Mynhardt in 1990 [459]. See also Blair et al. [54].

3.12 Alliance Numbers

The concepts related to an alliance in a graph G were introduced by Kristiansen,
Hedetniemi, and Hedetniemi in 2004 [391]. Since then more than 100 papers have
been written about these types of sets of vertices in a graph. The reader is referred to
a recent, extensive survey on alliances in graphs by González Yero and Ridríguez-
Velázquez [646].

1. defensive alliance number a(G), minimum cardinality of a set S having the
property that for every vertex u ∈ S, |N [u] ∩ S| ≥ |N(u)∩ (V − S)|; introduced
by Kristiansen, Hedetniemi, and Hedetniemi in 2004 [391]. See also Fricke et al.
[272] and Sigarreta and Rodriguez [580].

2. offensive alliance number a0(G), minimum cardinality of a set S having the
property that for every vertex v ∈ (V −S)∩N(S), |N(v)∩S| ≥ |N [v]∩(V −S)|;
introduced by Kristiansen et al. [391]. See also Chellali [134] and Rodriguez and
Sigarreta [547].

3. powerful alliance number ap(G), minimum cardinality of a set S that is both
a defensive alliance and an offensive alliance; introduced by Brigham, Dutton,
Haynes, and Hedetniemi in 2009 [81].

4. global defensive alliance number γa(G), minimum cardinality of a defensive
alliance S that is also a dominating set, that is, every vertex v ∈ V − S

is adjacent to at least one vertex in the defensive alliance S; introduced by
Haynes, Hedetniemi, and Henning in 2003 [365]. See also Favaron in [250] and
Bouzefrane, Chellali, and Haynes in [71].

5. global offensive alliance number γao(G), minimum cardinality of an offensive
alliance that is also a dominating set, that is, every vertex v ∈ V − S is adjacent
to at least one vertex in the offensive alliance S; introduced by Sigarreta and
Rodriguez in 2009 [581] and Bouzefrane and Chellali [70]. See also Chellali and
Volkmann [137].

6. global powerful alliance number γap (G), minimum cardinality of a powerful
alliance that is also a dominating set, that is, every vertex v ∈ V − S is adjacent
to at least one vertex in the powerful alliance S.

7. defensive alliance partition number ψa(G), maximum order k of a partition π =
{V1, V2, . . . , Vk}, such that each set Vi is a defensive alliance. This idea seems to
have originated in a paper by Gerber and Kobler in 2000 [288], was studied by
Shafique and Dutton in 2002 [570], and further studied by Haynes and Lachniet
in [357], and Eroh and Gera in [234, 235].

8. distribution center number dc(G), minimum cardinality of a distribution center
of a graphG. A non-empty set of vertices S ⊆ V is a distribution center if every
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vertex v ∈ (V − S) ∩ N(S) is adjacent to a vertex u ∈ S with |N [u] ∩ S| ≥
|N [v] ∩ (V \ S)|; introduced by Desormeaux et al in 2018 [196].

3.13 Irredundance Numbers

The concept of an irredundant set in a graph is a natural consequence of the property
of being a minimal dominating set. If S is a minimal dominating set, then for every
vertex v ∈ S, the subset S−{v} is no longer a dominating set. This means that every
vertex v ∈ S must either (i) dominate some vertex in V −S that no vertex in S−{v}
dominates, or (ii) no vertex in S−{v} dominates v. Any set S in which every vertex
v satisfies condition (i) or (ii) is an irredundant set; note that the set S itself need not
be a dominating set. From this one observation, all of the types of irredundant sets
defined in this subsection naturally arise. A very comprehensive and in-depth study
of the concept of irredundance in graphs can be found in the Ph.D. thesis of Finbow
[262].

1. irredundance numbers ir(G) and IR(G), minimum and maximum cardinalities
of a maximal irredundant set. A set S is an irredundant set if for every vertex
v ∈ S, pn[v] = N [v]−N [S−{v}] �= ∅. The set pn[v] is called the set of private
neighbors of v with respect to the set S. If v ∈ pn[v], then v is not adjacent to
any vertex in S − {v} and v is said to be its own private neighbor. Every vertex
w ∈ V − S for which w ∈ pn[v] is called an external private neighbor of
v. It is worth noting that every minimal dominating set is an irredundant set.
Irredundant sets were first defined and studied by Cockayne, Hedetniemi and
Miller in 1978 [162]. See also early survey paper by Hedetniemi et al. [383], and
a comprehensive paper showing the full generality of irredundance in graphs by
Cockayne and Finbow [160]. In [386], Hedetniemi, Jacobs and Laskar show that
IR(G) = p′(G) ≤ r(N(G)), where p′(G) equals the maximum integer k such
that the closed neighborhood matrix contains a k×k permutation submatrix, and
r(N(G)) equals the rank of the neighborhood matrix.

2. open irredundance oir(G) and OIR(G), minimum and maximum cardinalities
of a maximal open irredundant set in G. A set S is open irredundant if every
vertex u ∈ S has an external private neighbor; first studied by Farley and
Schacham in 1983 [245]; see also Farley and Proskurowski [244], Cockayne et
al. [171], and Cockayne [159].

3. open irredundance ooir(G) and OOIR(G), minimum and maximum cardinal-
ities of a maximal open irredundant set in G. A set S is open irredundant if
every vertex u ∈ S has an external or internal private neighbor. An internal
private neighbor of a vertex u ∈ S is a vertex v ∈ S whose only neighbor in
S is u; introduced by Cockayne, Finbow, and Swarts in 2010 [172]. In [386]
Hedetniemi, Jacobs and Laskar show that OOIR(G) = p(G) ≤ r(G), where
p(G) equals the maximum integer k such that the adjacency matrix contains a
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k × k permutation submatrix and r(G) denotes the rank of G, i.e. dimension of
the row space of the adjacency matrix A(G) of G.

4. closed open irredundance coir(G) and COIR(G), minimum and maximum
cardinalities of a maximal closed open irredundant set in G. A set S is closed
open irredundant if every vertex u ∈ S has either itself as a private neighbor, an
external private neighbor or an internal private neighbor.

5. total irredundance irt (G) and IRt (G), minimum and maximum cardinalities
of a maximal total irredundant set. A set S is a total irredundant if and only
if for every vertex v ∈ V , N [v] − N [S − {v}] �= ∅; introduced by Favaron,
Haynes, Hedetniemi, Henning, and Knisley in 2002 [253]. See also Hedetniemi,
Hedetniemi, and Jacobs [388].

6. co-irredundance, cir(G) andCIR(G), the minimum and maximum cardinalities
of a minimal co-irredundant set. A set S is a co-irredundant set if and only if the
complement V −S is an irredundant set; introduced by Arumugam, Hedetniemi,
Hedetniemi, Sathikala, and Sudha in 2015 [26], who showed the following:

ir(G) ≤ γ (G) ≤ cir(G) ≤ ψ(G) ≤ β(G) ≤ β+(G) ≤ �(G) ≤ CIR(G).

CIR(G) ≥ �(G) ≥ IR(G) ≥ �(G) ≥ α(G) ≥ i(G) ≥ γ (G) ≥ ir(G).

7. external redundance er(G) andER(G), minimum and maximum cardinalities of
a minimal external redundant set. A set S is external redundant if for all vertices
v ∈ V −S, there exists a vertex w ∈ S ∪{v} such that pn[w, S ∪{v}] = ∅, and if
w ∈ S then pn[w, S] �= ∅. An equivalent definition of external redundance is the
following. For any set S of vertices, define the private neighbor count pnc(S)
to equal the number of vertices in S that have a private neighbor. A set S is
pnc-maximal if for every vertex v ∈ V − S, pnc(S ∪ {v}) ≤ pnc(S). It can be
seen that er(G) and ER(G) equal the minimum and maximum cardinalities of a
pnc-maximal set in G. Note that:

er(G) ≤ ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G) ≤ ER(G).

External redundance was introduced by Cockayne, Hattingh, Hedetniemi,
Hedetniemi, and McRae in 1997 [166]; see also Goddard and Hedetniemi [294].

Arumugam et al. [26] have combined many of the domination and irre-
dundance parameters into the following inequalities and equalities, which they
have called the Extended Domination Chain, and the Extended Covering Chain,
respectively.
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ir(G) ≤ γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G) ≤ �(G) ≤ CIR(G)

+ + + + + + + +
CIR(G) ≥ �(G) ≥ �(G) ≥ β(G) ≥ ψ(G) ≥ cir(G) ≥ γ (G) ≥ ir(G)

= = = = = = = =
n n n n n n n n

They also added the following interesting comparison of two inequality
chains:

γ (G) ≤ i(G) ≤ α(G) ≤ �(G) ≤ IR(G) ≤ �(G)
γ (G) ≤ cir(G) ≤ ψ(G) ≤ β(G) ≤ �(G) ≤ �(G)

3.14 Perfect, Nearly Perfect, and Almost Perfect Numbers

A vertex v in a set S ⊆ V is called S-perfect if |N [v] ∩ S| = 1, that is, the closed
neighborhood N [v] contains exactly one vertex in S.

A vertex v in a set S ⊆ V is called almost S-perfect if it is either S-perfect or is
adjacent to an S-perfect vertex.

When we say more simply that a vertex is perfect or almost perfect it is always
with reference to some given set S.

1. perfect set numbers θp(G) and �p(G). A set S ⊆ V is perfect if every vertex
v ∈ S is perfect. It is easy to show that a set S is perfect if and only if it is
independent. Thus, the minimum cardinality of a maximally perfect set θp(G) =
i(G), the independent domination number i(G), while the maximum cardinality
of a perfect set �p(G) = α(G), the vertex independence number.

2. semi-perfect code, perfect domination,or externally perfect sets γp(G) and
�p(G), minimum and maximum cardinalities of a perfect dominating set. A
(dominating) set S is perfect if every vertex v ∈ V − S is adjacent to exactly
one vertex in S. Note that for the 2 × 3 grid graph G = P2�P3, γp(G) = 2
while �p(G) = 3; introduced by Fellows and Hoover in 1991 [257]. See also
Cockayne et al. [165], Chang et al. [110] and Yen and Lee [645].

3. almost perfect set numbers θap(G) and �ap(G). A set S is almost perfect if
every vertex v ∈ S is almost perfect; for brevity, we say that an almost perfect
set is an ap set. The minimum cardinality of a maximal ap set is θap(G), and
the maximum cardinality of an ap set is �ap(G); introduced by Hedetniemi,
Hedetniemi, and Hedetniemi in 2004 [397], where it is shown that for any graph
G, θap(G) = ir(G) and �ap(G) = IR(G).

4. externally almost perfect set numbers θeap(G) and �eap(G), minimum and
maximum cardinalities of a minimal eap set in G. A set S is externally almost
perfect if every vertex u ∈ V − S is either perfect or adjacent to a perfect vertex;
for brevity, we say that an externally almost perfect set is an eap set; cf. [397].
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5. completely almost perfect set numbers or perfect neighborhood numbers θ(G)
and �(G). A set S is completely almost perfect if every vertex v ∈ V is either
perfect or is adjacent to a perfect vertex. Completely almost perfect sets are
called perfect neighborhood sets in the literature. Let θ(G) and �(G) equal
the minimum and maximum cardinalities of a perfect neighborhood set in G.
This concept was introduced by Fricke, Haynes, Hedetniemi, Hedetniemi, and
Henning in 1999 [271], who showed that for any graph G, �(G) = �(G); see
also Cockayne et al. [168], Favaron and Puech [252], Fricke et al. [271] and
Hedetniemi et al. [389].

6. perfect codes, efficient domination, completely perfect sets or perfect total
domination γP (G), minimum cardinality of a set S ⊆ V having the property
that for every vertex v ∈ V , |S ∩ N [v]| = 1. Equivalently, a perfect code
consists of a set S = {v1, v2, . . . , vk} ⊆ V having the property that V =
{N [v1], N [v2], . . . , N [vk]} is a partition of V (G). It is important to point out
that not every graph has a perfect code or efficient dominating set, for example,
the cycle C5; introduced by Biggs in 1973 [51]. See also the survey of varieties
of perfect codes by Klostermeyer [457].

7. nearly perfect numbers np(G) and Np(G). A set S is perfect if every vertex in
V −S is adjacent to exactly one vertex in S. A set S of vertices is nearly perfect if
every vertex in V−S is adjacent to at most one vertex in S. Nearly perfect sets are
closely related to 2-packings of graphs, strongly stable sets, dominating sets and
efficient dominating sets. A nearly perfect set S is 1-minimal if for every vertex
u ∈ S, the set S − {u} is not nearly perfect. Similarly, a nearly perfect set S is
1-maximal if for every vertex u ∈ V −S, S∪{u} is not nearly perfect. Let np(G)
equal the minimum cardinality of a 1-maximal nearly perfect set, and Np(G)
equal the maximum cardinality of a 1-minimal nearly perfect set; introduced by
Dunbar et al. in 1995 [206]. See also Kwaśnik and Perl [472].

3.15 Broadcast Numbers

1. broadcast time bt (G), minimum time for a vertex in G to complete a broadcast
to every other vertex in V , by a series of phone calls, subject to (1) each call
involves only two vertices, (2) each call requires one unit of time, (3) a vertex
can participate in only one call per unit of time, and (4) a vertex can only call
a vertex to which it is adjacent. Broadcasting can also be described in terms of
matchings, as follows: Given V0 ⊆ V , we seek to broadcast to all vertices from
V0 by a broadcast sequence V0, E1, V1, E2, V2, . . . Ek, Vk = V , where Ei is a
matching (not necessarily a perfect matching) between Vi−1 and Vi and Vi =
Vi−1 ∪ {v : uv ∈ Ei, u ∈ Vi−1}. The broadcast time bt (G) equals the minimum
k for which there is a broadcast sequence in G from some vertex V0 = {v};
among the first to introduce this were Baker and Shostak in 1972 [30]. There are
many different and diverse models of broadcasting in graphs, too numerous to
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define here, quite a few of which are discussed in the 1988 survey by Hedetniemi
et al. [385] and the 1995 survey by Hromkovic et al. [425].

2. gossip time gt (G). In broadcasting, one vertex in a graph G has an item of
information and needs to communicate it to every other vertex. In gossiping,
every vertex in V has an item of information and needs to communicate it to
every other vertex. Thus, broadcasting is a one-to-all process, while gossiping is
an all-to-all process. The gossip time is the minimum time for all vertices in a
graph to complete a gossip; introduced by Tijdeman in 1971 [611].

3. polling time pt(G), minimum time for a vertex in G to poll all of the vertices in
a graph, subject to (1) each call involves only two vertices, (2) each call requires
one unit of time, (3) a vertex can participate in only one call per unit of time, and
(4) a vertex can only call a vertex to which it is adjacent. Polling is the process
of completing a broadcast to all vertices and then receiving a response from all
vertices. This was introduced by Cheston and Hedetniemi in 1984 [150].

3.16 Pebbling Numbers

Let G = (V ,E) be a graph. Let f : V → N be a pebbling function that
assigns to each vertex v ∈ V a nonnegative integer f (v) ∈ N . We say that
v has been assigned f (v) pebbles and that f is a pebbling configuration. Let
w(f ) = ∑

v∈V f (v) equal the total number of pebbles assigned by the function
f . A pebbling move consists of removing two pebbles from a vertex u ∈ V and
then adding one pebble to an adjacent vertex v ∈ N(u). A pebbling configuration
f is said to be solvable if for every vertex v ∈ V , there exists a sequence (possibly
empty) of pebbling moves that results in a pebble on v.

The concept of pebbling was introduced in 1989 by Chung [155], where she
proved that the pebbling number of the n-cube equals 2n. As with many graph theory
parameters, since the introduction of pebbling by Chung, many different variations
of pebbling have been studied; the reader is referred to a general discussion of these
by Hurlbert [429]. In this subsection we review only a few of the many variants of
pebbling.

1. pebbling number π(G), minimum number k such that every pebbling configura-
tion f : V → N with w(f ) = k is solvable. Thus, the central focus of graph
pebbling is to determine a minimum number of pebbles so that no matter how
they are placed on the vertices of a graph G, there will always be a sequence of
pebbling moves that can move at least one pebble to any specified vertex of G.
Consider a path Pn of order n ≥ 1. It is easy to see that if all pebbles are initially
placed on one of the two endvertices of Pn, then 2n−1 pebbles will be required.
Thus, pebbling numbers can be exponential in the order n of a graph G.
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2. optimal pebbling number π∗(G). In 1995, Pachtor et al. [520] defined the optimal
pebbling number π∗(G) to be the minimum weight of a solvable pebbling
configuration of G.

3. cover pebbling number πc(G). In cover pebbling the goal is to eventually place
pebbles on all vertices of the graph simultaneously. If that can be achieved
starting with some particular initial configuration of pebbles, the configuration
is called solvable. The cover pebbling number πc(G) is the minimum integer
k such that every configuration containing k pebbles is solvable; cf. Sjöstrand
[582] and Crull et al. [175].

4. domination cover pebbling number ψ(G). In domination cover pebbling the goal
is to eventually place at least one pebble on all the vertices of a dominating set
of G. If that can be achieved starting with some particular initial configuration
of pebbles, the configuration is called solvable. The domination cover pebbling
number ψ(G) is the minimum integer k such that every configuration containing
k pebbles is solvable; cf. Gardner et al. [280].

5. t-pebbling number πt (G), minimum weight such that every pebbling configu-
ration weight πt (G) is t-fold solvable. A pebbling configuration f is said to
be t-fold solvable if for every vertex v ∈ V , there exists a sequence (possibly
empty) of pebbling moves that results in t pebbles on v; cf. Lourdusamy and
Somasundaram [489].

6. optimal t-pebbling number π∗
t (G), minimum weight of a t-fold solvable peb-

bling configuration of G: see Herscovici et al. [415].
7. t-restricted optimal pebbling number π∗

t (G). A pebbling configuration f is a t-
restricted pebbling configuration (abbreviated tRPC) if f (v) ≤ t for all v ∈ V .
The t-restricted optimal pebbling number π∗

t (G) is the minimum weight of a
solvable tRPC on G; introduced by Chellali et al. [143].

8. rubbling number ρ(G). In graph pebbling, only the pebbling move is allowed;
while in graph rubbling both pebbling and rubbling moves are available. A
rubbling move adds a pebble on a vertex v while removing a pebble from each
of two vertices adjacent to v. A rubbling configuration f is said to be solvable if
for every vertex v ∈ V , there exists a sequence (possibly empty) of pebbling and
rubbling moves that results in a pebble on v. The rubbling number of a graph G,
denoted ρ(G), is the minimum number k such that every rubbling configuration
of k is solvable.

9. optimal rubbling number ρ∗(G), minimum weight of a solvable rubbling
configuration of G. Rubbling and optimal rubbling were introduced by Belford
and Sieben in 2009 [42] and studied by Katona and Papp in [446] and Katona
and Sieben in [447].

3.17 Topological Numbers

In integrated circuit design the objective is to place the components of an electrical
circuit, such as resistors, capacitors, transistors and inductors, on a plane surface
and then connect them with wires in such a way that two wires do not overlap, or
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cross. This gives rise to the problem of minimizing the number of crossings in a
graph drawn on a surface, such as the plane. All of the parameters in this subsection
are concerned with embedding graphs on surfaces or decomposing graphs into
subgraphs which can be embedded on specific surfaces.

1. crossing number ν(G), minimum number of pairwise edge crossings in a plane
embedding of G. A plane embedding of a graph G is defined by a function f
which assigns to each vertex v ∈ V a unique point in the plane, and for every
edge uv ∈ E, a line is drawn in the plane connecting the two points f (u) and
f (v), in such a way that the line connecting u and v does not pass through any
points f (w), for any w ∈ V not equal to u or v. If the line connecting two
vertices u and v crosses the line connecting two other vertices w and x, this
counts as one pairwise edge crossing. A comprehensive, 113-page survey of
many types of crossing numbers has been written by M. Schaefer in 2017 [561].
The interested reader is also referred to the 2016 survey paper by Székely [599].

2. bipartite crossing number. A two-layer drawing of a bipartite graph G =
(X, Y,E) places vertices inX on one line and those in Y on another line parallel
to the first, and draws edges as straight line segments between the vertices on
these two parallel lines. A crossing in a two-layer drawing is a pair of edges that
intersect each other at a point not representing a vertex. The bipartite crossing
number crXY (G) equals the smallest number of crossings possible in a 2-layer
drawing of G; cf. Shahrokhi et al. [571], and Kobayashi et al. [458].

3. circular crossing number. A circular k-partite drawing of a k-partite graph G
is obtained by partitioning a circle into k arc segments, placing the vertices of
the ith partite set into the ith arc segment, and then drawing the edges as chords
of the circle, so that no more than two chords meet at the same crossing. The
circular crossing number cprk(G) is the minimum number of crossings taken
over all circular k-partite drawings, all possible assignments of vertices to arc
segments, and all numberings of the parts. This crossing number generalizes
both the bipartite crossing number and the outerplanar crossing number; cf.
Riskin [541].

4. outerplanar crossing number ν1(G). An outerplanar or convex drawing of a
graph places the vertices on a circle and draws the edges as line segments.
The outerplanar crossing number ν1(G) is the minimum number of pairs
of crossing edges among all such drawings. See Shahrokhi et al. [572], and
Czabarka et al. [178].

5. rectilinear crossing number. A rectilinear drawing of a graph is one where each
edge is drawn as a straight-line segment, and the rectilinear crossing number of
a graph is the minimum number of crossings over all rectilinear drawings; cf.,
for example, Bienstock and Dean [50].

6. point-coarseness and point-outercoarseness ξ(G) and ξ0, maximum number of
subsets into which V(G) can be partitioned so that each subset induces a graph
that is homeomorphic from K5 or K3,3, K4 or K2,3, respectively. Two graphs
G and H are homeomorphic if they become isomorphic after smoothing all
vertices of degree 2, that is removing a vertex v of degree two with neighbors
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u and w and then adding the edge uw. Point-coarseness was introduced by
Mitchem in 1973 [507]. See also Michalak in 1985 [504].

7. genus g(G), minimum integer g such thatG can be embedded on the orientable
surface Sg without any edge crossings/intersections; cf. Walsh et al. [635].

8. Hadwiger number had(G), maximum integer k such that the complete graph
Kk is a minor ofG. A graphH is a minor of a graphG ifH can be formed from
G by a finite sequence of edge deletions and edge contractions. The famous
Hadwiger Conjecture is that for any graph G, χ(G) ≤ had(G). Hadwiger’s
Conjecture has been shown to be true for k ≤ 6, and remains open for k > 6;
cf. Duchet and Meyniel [205], Robertson and Song [544], Böhme et al. [58],
and Chandran and Sivadason [108].

9. thickness θ(G), minimum number of planar subgraphs whose union is G; cf.
Tutte [614], Beineke [41], Kainen [439], Halton [331], Mutzel et al. [510], and
Kawano and Yamazaki [448].

10. outerthickness θ0(G). A graph is outerplanar if it can be embedded in the plane
so that every vertex lies on the outer face, or equivalently, if the graph contains
no subdivision of K4 or K2,3. The outerthickness of a graph G is the minimum
number of outerplanar graphs whose union is G; cf. Guy and Nowakowski
[321] and [322].

11. page number pn(G). A book embedding of a graph G consists of an ordering
of the vertices V along the spine of a book and an embedding of each edge
uv ∈ E on one page of the book so that no two edges embedded on the same
page intersect. The minimum number of pages in a book embedding of G is its
page number pn(G); cf. Malitz [496].

4 Conjectures

In this section, we give a sampling of conjectures involving the graph parameters
presented in this glossary.

4.1 Basic Structural

We begin with four easy-to-state conjectures.

Conjecture 1 (Erdös and Sós [223]) If G is a graph with average degree at least
k − 2 for a positive integer k, then every tree of order k is contained in G as a
subgraph.

There are many partial results on this conjecture. For example, McLennon [503]
proved that a graph with average degree at least k− 2 contains every tree of order k
whose diameter does not exceed 4 as a subgraph.
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We now consider the maximum number of edges that must be removed to make
a triangle-free graph bipartite.

Conjecture 2 (Erdös et al. [228]) Every triangle-free graph on n vertices can be
made bipartite by deleting at most n2/25 edges.

This bound, if true, is best possible. Consider a blow-up of a cycle C5, that is,
replacing each vertex of the C5 with k ≥ 1 independent vertices and replacing each
edge uv of C5 with the complete bipartite graph Kk,k . This conjecture was proved
for graphs with at least n2/5 edges by Erdös, Gyori and Simonovits in 1991 [232],
but the general conjecture remains open.

Given a graph G = (V ,E), a vertex-deleted subgraph of G, denoted Gv , is a
subgraph formed by deleting exactly one vertex v from G together with all edges
containing vertex v. Clearly, Gv is an induced subgraph of G. For a graph G, the
deck ofG is the multiset of all vertex-deleted subgraphs ofG. Each graph in the deck
is called a card. Two graphs that have the same deck are said to be hypomorphic.
A graphical parameter is recognizable if, for each graph G of order at least 3, it is
possible to determine it from the graph’s deck. It is easy to see that all of the basic
structural parameters in Section 3.1, e.g. order, size, δ(G), �(G), degree sequence,
the isolated vertices and leaves are recognizable. This leads to the 1957 conjecture
of Kelly [452] and the 1960 conjecture of Ulam [617]:

Conjecture 3 (Reconstruction Conjecture [452, 617]) Any two hypomorphic
graphs on at least three vertices are isomorphic.

Note that the requirement that the graphs have at least three vertices is necessary
because both graphs on two vertices have the same decks. In 1974, Harary suggested
a stronger version of the conjecture [339]:

Conjecture 4 (Set Reconstruction Conjecture [339]) Any two graphs on at least
four vertices with the same sets of vertex-deleted subgraphs are isomorphic.

Both the Reconstruction and Set Reconstruction Conjectures have been verified
for all graphs with at most 11 vertices by McKay, in 1997 [502]. In a proba-
bilistic sense, it was shown by Bollobás [59] in 1990 that almost all graphs are
reconstructible. This means that the probability that a randomly chosen graph on n
vertices is not reconstructible goes to 0 as n goes to infinity. In fact, it was shown
that not only are almost all graphs reconstructible, but in fact, the entire deck is not
necessary to reconstruct them as almost all graphs have the property that there exist
three cards in their deck that uniquely determine the graph. Conjecture 3 has been
verified for a number of infinite classes of graphs, including regular graphs, trees,
disconnected graphs, unit interval graphs, and maximal planar graphs.
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4.2 Connectivity and Subgraphs

In 1989 Thomassen [608] conjectured that any graph with high enough connectivity
should contain a k-connected spanning, bipartite subgraph.

Conjecture 5 (Thomassen [608]) For all k, there exists a function f (k) such that
for all graphs G, if κ(G) ≥ f (k), then G contains a spanning, bipartite H with
κ(H) ≥ k.

In 2015 Delcourt and Ferber [191] showed that Conjecture 5 is true up to a log n
factor.

In 2003 Kriesell [464] posted the following conjecture related to the connectivity
of a graph.

Conjecture 6 (Kriesell [464]) If G is a graph and S a subset of vertices of G such
that for any pair u, v ∈ S there are 2k edge-disjoint paths from u to v in G, then G
contains k edge-disjoint trees, each of which contains S.

It follows from Mader’s splitting-off theorem (see [493]) that Kriesell’s Conjec-
ture holds if the degree of every vertex in V − S is even. Kriesell’s Conjecture is
true if |S| ≤ 5.

The concept of toughness was introduced by Chvàtal [156] as a parameter related
to the hamiltonicity of a graph. The following conjecture by Chvátal [156] is still
open.

Conjecture 7 (The t0-Tough Conjecture [156]) There exists a constant t0 such that
every t0-tough graph is Hamiltonian.

For a long time, it was believed that t0 = 2 was sufficient for Conjecture 7.
However, Bauer et al. [36] showed that if such a constant exists, it must be greater
than 2. In fact, they showed that t0 ≥ 9/4 if the conjecture is true.

Conjecture 8 (Thomassen [607]) Every 4-connected line graph is Hamiltonian.

In 1991, Zhan [656] proved that every 7-connected line graph is Hamiltonian.
In 1994, Lai [474] proved that every 4-connected line graph of a planar graph is
Hamiltonian.

Conjecture 9 (Matthews-Sumner [500]) Every 4-connected claw-free graph is
Hamiltonian.

We remark that line graphs are claw-free, so the Matthews-Sumner Conjecture
implies the Thomassen conjecture. Fleischner conjectured that the two conjectures
were equivalent. This was verified by Ryjáček [549] and the result appeared in 1997.

Conjecture 10 (Sheehan [577]) Every Hamiltonian 4-regular graph has a second
Hamiltonian cycle.
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Combined with earlier results, Sheehan’s Conjecture would imply that
every Hamiltonian r-regular graph (r ≥ 3) has a second Hamiltonian cycle.
Thomassen [610] verified this for r ≥ 300.

A graph is called uniquely Hamiltonian if it contains precisely one Hamiltonian
cycle. In 2014, Fleischner posed the following conjecture.

Conjecture 11 (Fleischner [266]) Every uniquely Hamiltonian graph has connec-
tivity at most 4.

Fleischner’s Conjecture is true for planar graphs as shown by Tutte in 1956.
We remark that Fleischner [266] constructed an infinite family of uniquely Hamil-
tonian graphs of minimum degree 4 and of arbitrarily high maximum degree.
Fleischner [266] also showed that there exist infinitely many uniquely Hamiltonian
graphs in which every vertex has degree 4 or 14.

The following conjecture posed by David Barnette originally appeared in [33].

Conjecture 12 (Barnette [33]) Every 3-connected cubic planar bipartite graph is
Hamiltonian.

Holton et al. [419] proved Barnette’s conjecture for up to 64 vertices, inclusive.
Subsequently, the conjecture has been shown to be true for up to 84 vertices,
inclusive.

Thomassen [609] posed the following conjecture about chords of longest cycles.
A chord of a cycle C is an edge e so that e /∈ E(C), but both ends of e are in V (C).

Conjecture 13 (Thomassen [609]) IfG is a 3-connected graph, every longest cycle
in G has a chord.

A graph G is said to be locally connected if the subgraph induced by the open
neighborhood of each vertex of G is connected, and G is locally k-connected if
G[N(v)] is k-connected for every v ∈ V (G). Chartrand and Pippert [114] proved
that every connected, locally connected graph of order at least 3 with maximum
degree at most 4 is either Hamiltonian or the complete tripartite graph K1,1,3. In
1979, Oberly and Sumner [517] proved the following theorem and made a stronger
conjecture.

Theorem 2 ([517]) If G is a connected, locally connected, K1,3-free graph of
order at least 3, then G is Hamiltonian.

Conjecture 14 (Oberly-Sumner [517]) If G is a connected, locally k-connected,
K1,k+2-free graph of order at least 3, then G is Hamiltonian.

Note that Theorem 2 shows that Conjecture 14 is true for k = 1.
A factor of a graph G is a spanning subgraph of G. A graph G is factorable into

factors F1, F2, . . . Ft if these factors are (pairwise) edge-disjoint and
⋃t
i=1 E(Fi) =

E(G). If G is factorable into factors F1, F2, . . . Ft , then {F1, F2, . . . , Ft } is called
a factorization of G. Further, if Fi = H for 1 ≤ i ≤ t in a factorization of G, then
G is said to be H -factorable and G has an isomorphic factorization into copies of
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H . An k-regular factor of G is called an k-factor, and if G has a factorization into
k-factors, then G is k-factorable. In particular, a 1-factor of G is a perfect matching
of G.

It is believed that the following conjecture originated in a paper by Chetwynd
and Hilton [151].

Conjecture 15 (The 1-Factorization Conjecture) IfG is an r-regular graph of even
order n such that (1) r ≥ n/2 if n ≡ 2(mod 4) or (2) r ≥ (n−1)/2 if n ≡ 0(mod 4),
then G is 1-factorable.

Nash-Williams [513] conjectured that r-regular graphs can be factored into
Hamiltonian cycles and possibly one 1-factor.

Conjecture 16 (Nash-Williams [513]) If G is an r-regular graph of even order n
such that r ≥ n/2, then G can be factored into Hamiltonian cycles and at most one
1-factor.

Csaba et al. [176] showed that both Conjectures 15 and 16 hold for sufficiently
large n.

The following conjecture was made independently by Szekeres [600] in 1973
and Seymour [566] in 1979. This conjecture, known as the Cycle Double Cover
Conjecture, is now widely considered to be among the most important open
problems in graph theory.

Conjecture 17 (Cycle Double Cover Conjecture) For every graph G with no
bridge, there is a list of cycles inG so that every edge appears in exactly two cycles.

We remark that the list may have repeated cycles, as is the case with Cn.
Fan [242] used Seymour’s 6-flow theorem [567] to prove that G has a list of cycles
so that every edge is contained in exactly six cycles. The Cycle Double Cover
Conjecture is known to be true for every 4-edge-connected graph.

A k-cycle is a cycle of length k. Next we give a well-known conjecture of Erdös
and Gyárfás [225].

Conjecture 18 (Erdös - Gyárfás [225]) For every graph G with minimum degree
at least 3, there exists a non-negative integer k such thatG contains a cycle of length
2k .

Conjecture 18 is among the many problems for whose solution Erdös offered
money. Heckman and Krakovski [377] proved the conjecture is true for 3-connected
cubic planar graphs. They actually proved a stronger result by showing that every
3-connected, cubic, planar graph contains a cycle of length 2k for some 2 ≤ k ≤ 7.
The conjecture also holds for planar claw-free graphs [180] and forK1,k-free graphs
having minimum degree at least k + 1, or maximum degree at least 2k − 1 [576].
Other partial results have been obtained, but the general conjecture is still open.

It is well-known that every two longest paths in a connected graph have a
common vertex. Skupien [583] gave examples of connected graphs where seven
longest paths do not share a common vertex.
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Conjecture 19 (Gallai [276]) If G is a connected graph, then every three longest
paths have a vertex in common.

4.3 Distance and Degree

A graph G is called diameter-2-critical if its diameter is two, and the deletion of
any edge increases the diameter. The following conjecture was made independently
by Murty and Simon (see [93]).

Conjecture 20 (Murty-Simon Conjecture) If G is a diameter-2-critical graph with
n vertices and m edges, then m ≤ �n2/4�, with equality if and only if G is the
complete bipartite graph K� n2 �,� n2 �.

According to Füredi [274], Erdös said that this conjecture goes back to the work
of Ore in the 1960s. Fan [241] proved the conjecture for n ≤ 24 and for n = 26. In
1992 Füredi [274] gave an asymptotic result proving the conjecture is true for large
n, that is, for n > n0 where n0 is a tower of 2’s of height about 1014. The conjecture
remains open for general n.

Our next three conjectures involve the indices having applications in chemistry,
including the problem of finding a compound with a given Wiener index. A major
conjecture in this area is whether every positive integer is the Wiener index of some
tree.

Conjecture 21 (Wiener Index Conjecture [147, 305, 480]) For every positive inte-
ger k (except for some finite set), there exists a tree T with σ(T ) = k.
Conjecture 22 (DeLaViña and Waller [189]) IfG is a graph of diameter d ≥ 3 and
order 2d + 1, then σ(G) ≤ σ(C2d+1).

The next conjecture relates the Randić connectivity index R(G) to the average
distance μ(G).

Conjecture 23 (Fajtlowicz [239]) For all connected graphs G, R(G) ≥ μ(G).
Li and Shi [485] proved Conjecture 23 for graphs G having order n ≥ 15 and

minimum degree δ(G) ≥ n/5, and Cygan et al. [177] proved it for trees.

4.4 Labeling

A graph with m edges is graceful if the vertices can be assigned distinct numbers
from among 0, 1, . . . , m, so that the differences along the edges are precisely
1, 2, . . . , m. A dynamic survey, of some 415 pages, on graph labelings has been
written by Gallian [278]. The following conjecture, posed by Kotzig, Ringel and
Rosa, has attracted much attention.
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Conjecture 24 (Graceful Tree Conjecture) Every tree is graceful.

A graph of order n is called prime if one can bijectively label its vertices
with integers 1, . . . , n so that whenever two vertices are adjacent, their labels
are relatively prime. According to Gallian [278], this concept was introduced by
Entringer, who made the following conjecture.

Conjecture 25 Every tree is prime.

Haxell et al. [356] proved Conjecture 25 for trees having large enough order. The
conjecture is also proven for several families of graphs in [613].

The next conjecture involves the L(2, 1)-labeling number λ(G).

Conjecture 26 (Griggs and Yeh [313]) For any graph G with maximum degree
�(G) = �, λ(G) ≤ �2.

Conjecture 26 is known as the �2-conjecture and considered the most important
open problem in L(2, 1)-labeling. In their introductory paper, Griggs and Yeh [313]
proved that λ(G) ≤ �2 + 2�, and the best bound to date is �2 +�− 2 shown by
Goncalves [308]. Havet et al. [354] showed that Conjecture 26 holds for sufficiently
large�. Most of the work on this conjecture deals with particular classes of graphs.

4.5 Decomposition

As we have seen, a path-decomposition of a graph G is a set of paths whose edges
partition the edge set of G. Equivalently, a path-decomposition is a vertex partition
π = {V1, V2, . . . , Vk} such that for 1 ≤ i ≤ k, the subgraph G[Vi] induced by
Vi is a path, and every edge uv ∈ E is contained exactly one such path. Our next
conjecture is due to Gallai (see [490]).

Conjecture 27 (Gallai) If G is a connected graph on n vertices, then G can be
decomposed into �n/2� paths.

In 1968 Lovász [490] showed that a relaxed form of Conjecture 27 holds when
he proved that every graph on n vertices has a decomposition consisting of �n/2�
paths and cycles. Conjecture 27 has also been verified for many families of graphs,
for example, see [68, 185, 243, 251, 348, 529].

4.6 Covering and Matching

Recall that ν3(G) is the maximum number of pairwise edge-disjoint triangles in
G. In 1981, Tuza [615, 616] conjectured the following upper bound on the triangle
cover number τ3(G).

Conjecture 28 (Tuza [615, 616]) For any graph G, τ3(G) ≤ 2ν3(G).
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Conjecture 28 has been well-studied and many partial results obtained. For
example, Puleo [526] proved the conjecture for all graphs having no subgraph with
average degree at least 7. Fractional relaxations on the bound have been obtained.
Haxell [355] provided the best such result by showing that τ(G) ≤ 2.87ν(G) for all
graphs G.

The next well-known conjecture is attributed to Berge in [565], but it first
appeared in [273].

Conjecture 29 ([273, 565]) Every cubic bridgeless graph G contains six perfect
matchings such that each edge of G is contained in precisely two of the matchings.

4.7 Coloring

We now consider several conjectures involving graph coloring. It is well-known
that the clique number ω(G) is a sharp lower bound on the chromatic number χ(G)
for any graph G. Reed [540] conjectured in 1998 an upper bound on χ(G) also
involving ω(G). Recall that �(G) denotes the maximum degree of G.

Conjecture 30 (Reed [540]) For every graph G,

χ(G) ≤
⌈
ω(G)+ 1 +�(G)

2

⌉
.

If G has χ(G) = k, then G is said to be a k-chromatic graph. A graph H is
a subdivision of a graph G is H can be obtained from G by inserting vertices of
degree two into some, all, or none of the edges of G. Hajós [326] conjectured that a
k-chromatic graph contains a subdivision of the complete graph Kk as a subgraph.

Conjecture 31 (Hajós [326]) If G is a k-chromatic graph for k ≥ 2, then G
contains a subdivision of Kk .

Catlin [104] gave counterexamples to Conjecture 31 showing that the conjecture
is false for k ≥ 7. Hence, Conjecture 31 is open only for small values of k.

Erdös, Faber, and Lovász (see [224]) formulated the following graph coloring
conjecture in 1972.

Conjecture 32 (Erdös-Faber-Lovász Conjecture) Every graph which can be
decomposed into k complete graphs on k vertices (such that every pair of complete
graphs has at most one shared vertex) is k-colorable.

We remark that the Erdös-Faber-Lovász Conjecture can be restated in the
language of hypergraphs as follows: In every k-uniform linear hypergraph H with k
hyperedges, one may color the vertices of H with k colors in such a way that each
hyperedge has one vertex of each color.

Given two graphsG andH , we sayH is a minor ofG ifH can be obtained from
G by a series of operations: contracting edges, deleting isolated vertices and deleting
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edges. The following conjecture, due to Hadwiger [324] in 1943, is a generalization
of the four color theorem and is perhaps the most challenging conjecture in graph
theory.

Conjecture 33 (Hadwiger’s Conjecture [324]) Every k-chromatic graph G con-
tains the complete graph Kk as a minor.

Bollobàs et al. [64] claimed that Conjecture 33 is “one of the deepest unsolved
problems in graph theory” and showed it holds for almost every graph. Had-
wiger [324] proved the conjecture for k ≤ 4 in 1943 when he introduced his
conjecture. Before Hadwiger’s Conjecture was formally posed, Wagner [632] had
already shown that the case k = 5 is equivalent to the Four Color Theorem. Hence,
Hadwiger’s Conjecture 33 is true for k = 5. Also using the Four Color Theorem,
Robertson et al. [545] settled the conjecture for k = 6; their paper with this proof
won the 1994 Fulkerson Prize. Hence, Conjecture 33 is true for 1 ≤ k ≤ 6, but it
remains unsolved for all k > 6.

The categorical product G×H of two graphs G and H is the graph with vertex
set V (G) × V (H) and edges (u, v)(u′, v′) ∈ E(G × H) if and only if uv ∈ E(G)
and vv′ ∈ E(H). In 1966, Hedetniemi [378] made the following conjecture on the
chromatic number of categorical products.

Conjecture 34 (Hedetniemi’s Conjecture [378]) For any graphs G and H , χ(G×
H) = min{χ(G), χ(H)}.

The interested reader is referred to Hedetniemi’s chapter [380] in Volume 1
of this series [287] and to the following three survey papers on Hedetniemi’s
Conjecture by Zhu [661], Sauer [560] and Tardif [601].

A similar conjecture was made for the circular chromatic number in [660].

Conjecture 35 (Zhu [660]) For any graphs G and H , χc(G × H) =
min{χc(G), χc(H)}.

In a 2001 survey paper on circular chromatic numbers, Zhu [662] remarks that
Conjecture 35 is equivalent to the following conjecture.

Conjecture 36 (Zhu [662]) For any number r , if G and H are not r-circular
colorable, then G×H is also not r-circular colorable.

When r is an arbitrary integer, this becomes Hedetniemi’s Conjecture (Conjec-
ture 34). Conjecture 36 is known to be true for r = 1, r = 2, and r = 2 + 1/k,
where k is any positive integer (see [221, 325, 662]). As far as we know, the problem
is open for all other values of r .

Vizing’s Theorem [626] is a major result for edge coloring.

Theorem 3 (Vizing’s Theorem [626]) For any non-empty graph G,

Δ(G) ≤ χ ′(G) ≤ Δ(G)+ 1.



An Annotated Glossary of Graph Theory Parameters, with Conjectures 235

A graph is said to belong to Class 1 if χ ′(G) = �(G) and to Class 2 if χ ′(G) =
�(G)+ 1.

For each k where k = �(G) ≤ 5, there exists planar graph having �(G) = k of
Class 1 and a planar graph of Class 2. Vizing [626] showed that every planar graphG
with �(G) ≥ 8 is of Class 1, and conjectured that every graph with �(G) ∈ {7, 8}
is of Class 1. In 2001, Sanders and Zhao [559] verified the case for �(G) = 7.
Hence, Vizing’s conjecture is as follows.

Conjecture 37 (Vizing [626]) If G is a planar graph with �(G) = 6, then G is of
Class 1.

A subgraph H with order n′ and size m′ is called an overfull subgraph of G if
n′ is odd and m′ > �(G) · (n− 1)/2. Chetwynd and Hilton [151] conjectured that
for graphs G with order n and �(G) > n/3, G belongs to Class 2 if and only if G
contains an overfull subgraph.

Conjecture 38 (Chetwynd and Hilton [151]) Let G be a graph with order n and
�(G) > n/3. Then G belongs to Class 2 if and only if G contains an overfull
subgraph.

Behzad [40] and Vizing [625] independently conjectured that a bound similar to
the upper bound of Vizing’s Theorem on the edge chromatic number holds for the
total chromatic number.

Conjecture 39 ([40, 625]) For every graph G, χ ′′(G) ≤ �(G)+ 2.

The following conjecture involving the edge chromatic number χ ′(G) and the
list chromatic index χ ′

l (G) first appeared in [62].

Conjecture 40 ([62]) For every nonempty graph G, χ ′(G) = χ ′
l (G).

The next conjecture involves the strong chromatic index χ ′
s(G).

Conjecture 41 (Burris and Schelp [92]) If G is a graph of order n and every
component of G has order 3 or more, then χ ′

s(G) ≤ n+ 1.

We next consider nonproper edge colorings. Given an edge coloring of a graph,
the induced color of a vertex is the sum of the colors of its incident edges. The
following conjecture, explored by Chartrand [113] in Volume 1 of this series [287],
is due to Karoński et al. [444].

Conjecture 42 (The 1-2-3 Conjecture [444]) For every connected graphG of order
3 or more, each edge of G can be assigned one of the colors 1, 2, 3 in such a way
that the induced colors of every two adjacent vertices are different.

Karoński et al. [444] showed that there is an infinite class of graphs for which the
1-2-3 Conjecture holds. They also proved that the conjecture holds for connected
graphs of order 3 or more having chromatic number at most 3. We note that if you
allow four colors, then the conjecture is true.
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Our final conjecture in this subsection involves the achromatic number ψ(T )
and the pseudo-achromatic number ψs(T ) of trees T . For more details on this
conjecture, the reader is referred to [380] in Volume 1 of this series [287], and to
Edwards [218].

Conjecture 43 (Achromatic-Pseudoachromatic Tree Conjecture) For any tree T ,
ψ(T ) ≤ ψs(T ) ≤ ψ(T )+ 1.

4.8 Domination

We next give sampling of conjectures involving domination. Arguably the main
open problem in the area of domination in graphs is Vizing’s Conjecture, posed as a
problem in [624] and later as a conjecture in [627]. Vizing’s conjecture asserts that
the domination number of the Cartesian product of two graphs is at least as large as
the Cartesian product of their domination numbers.

Conjecture 44 (Vizing’s Conjecture 1963 [624, 627]) For graphs G and H ,

γ (G�H) ≥ γ (G)γ (H).

In 2000, Clark and Suen [157] proved the looser result that for all graphs G
and H , γ (G�H) ≥ 1

2γ (G)γ (H). Suen and Tarr [597] strengthened Clark and
Suen’s result by showng that γ (G�H) ≥ 1

2γ (G)γ (H) + 1
2 min{γ (G), γ (H)}.

Furthermore, Krop [466, 467] proved that for any graphs G and H , γ (G�H) ≥
γ (G)

2γ (G)−1γ (G)γ (H), and if G is claw-free or P4-free, then γ (G�H) ≥
2
3γ (G)γ (H). Employing the packing number, Brešar [74] also improved the result
of Clark and Suen. However, Vizing’s Conjecture still remains open. For a survey
on Vizing’s Conjecture in 2012, see [78].

Reed [539] conjectured that the domination number of a connected, cubic graph
of order n is at most �n/3�. But Kostochka and Stodolsky [462] gave a counterex-
ample to disprove this conjecture. However, Kostochka and Stodolsky [462] and
Kelmans [453] independently claim that Reed’s conjecture holds for 3-connected
cubic graphs.

Conjecture 45 (Kostochka and Stodolsky [462], Kelmans [453]) If G is a 3-
connected cubic graph of order n, then γ (G) ≤ ⌈

n
3

⌉
.

In Chapter 15 of the first volume of this series, Henning [407] discusses other
families for which Reed’s bound is conjectured to hold and poses the following.

Conjecture 46 (Henning [407]) If G is a cubic, bipartite graph of order n, then
γ (G) ≤ n

3 .

The next two conjectures claim that given large enough girth, Reed’s bound
holds.
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Conjecture 47 (Verstraete’s Domination Conjecture [407]) If G is a connected,
cubic graph on n vertices with girth at least 6, then γ (G) ≤ 1

3n.

Recall that i(G) is the independent domination number of G.

Conjecture 48 (Verstraete’s Independent Domination Conjecture [621]) If G is a
connected, cubic graph on n vertices with girth at least 6, then i(G) ≤ 1

3n.

Note that for every graph G, γ (G) ≤ i(G). Thus, Conjecture 48 is a stronger
conjecture that Conjecture 47.

We next consider a conjecture involving the ratio of the independent domination
and the domination numbers.

Conjecture 49 (Rad and Volkmann [530]) If G is a graph with maximum degree
�(G) ≥ 6, then i(G)/γ (G) ≤ �(G)/2.

Wang and Wei [637] proved Conjecture 49 for trees.
Recall that the k-domination number γk(G) denotes the minimum cardinality of a

dominating set S having the property that for every vertex v ∈ V−S, |N(v)∩S| ≥ k.
Conjecture 50 (Fink and Jacobson [263]) For a graph G with δ(G) ≥ k, there
exists function f (k) such that for j ≥ f (k), γk(G) < γj (G).

Our next conjectures involve the total domination number γt (G). Thomasse and
Yeo [606] posed the following 4

11 -conjecture.

Conjecture 51 (Thomasse, Yeo [606]) If G is a graph of order n with δ(G) ≥ 5,
then γt (G) ≤ 4

11n.

Henning and Yeo believe the 4/11-bound can be improved to a 1/3-bound if we
forbid 4-cycles. Recall that a graph is quadrilateral-free if it contains no 4-cycles,
not necessarily induced.

Conjecture 52 (Henning, Yeo [413]) If G is a quadrilateral-free graph of order n
with δ(G) ≥ 5, then γt (G) ≤ 1

3n.

Conjecture 53 (Henning [405]) If G is a planar graph of diameter 3, then
γt (G) ≤ 6.

A graphG is called total domination edge critical if γt (G+e) < γt (G) for every
edge e ∈ E(G). Further, if γt (G) = k, then we say that G is a kt -critical graph.
This concept was introduced in [619] and, in the same paper, the authors showed
that the addition of an edge to a graph can change the total domination number by
at most 2. Total domination edge critical graphsG with the property that γt (G) = k
and γt (G+ e) = k − 2 for every edge e ∈ E(G) are called kt -supercritical graphs.

Hanson and Wang [334] showed that a graph is diameter 2-critical if and only if
its complement is 3t -critical or 4t -supercritical, relating this concept to the Murty-
Simon Conjecture (Conjecture 20). The 4t -supercritical graphs were characterized
in [618] as the disjoint unions of two complete graphs. Since the complement of
a 4t -supercritical graph is a complete bipartite graph and the number of edges is
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minimized when the partite sets are of equal cardinality, Conjecture 20 holds for
this case. Therefore, proving Conjecture 20 is equivalent to proving the following
conjecture.

Conjecture 54 If G is a 3t -critical graph with order n and size m, then m(G) >
n(n−2)

4 .

In [619] it was proved that any 3t -critical graph has diameter 2 or 3. After the
result of Hanson and Wang in [334], Conjecture 54 was verified in [334, 371] for
the 3t -critical graphs of diameter 3. Conjecture 54 remains open for the 3t -critical
graphs of diameter 2.

Balbuena et al. [32] posed the following stronger conjecture.

Conjecture 55 (Balbuena, et al. [32]) If G is a 3t -critical graph with order n, size
m, and diam(G) = 2, then m ≥ �(n2 − 4)/4�.

The following conjecture on paired domination was posed by Henning in [407].

Conjecture 56 (Henning [407]) If G is a bipartite, cubic graph of order n, then
γpr(G) ≤ 1

2n.

Recall that γ−1(G) and α(G) denote the inverse domination number and the
vertex independence number, respectively. The following conjecture first appeared
in [471] as a “theorem,” but later an error was found in the proof.

Conjecture 57 For any isolate-free graph G, γ−1(G) ≤ α(G).
Although to date Conjecture 57 remains unsettled, several partial results offer

support of its validity. For more information on Conjecture 57 and these results, the
reader is referred to Hedetniemi’s chapter [380] in Volume 1 of this series [287].

Our next conjecture is an upper bound on the Roman domination number in
terms of the order of a graph. It is known that γR(G) ≤ n − γ (G)

2 where n ≥ 3
and the domination number γ (G) ≥ 2 (see Favaron et al. [255]). Also, Chambers et
al. [106] proved that γR(G) ≤ 8n

11 for any graph G with order n ≥ 9 and minimum
degree at least 2.

Bermudo et al. [46] proved that the Roman domination number and the dif-
ferential are complementary with respect to the order n of the graph G, that is,
∂(G) + γR(G) = n. Hence, determining a bound on one of them with respect to
n yields a bound on the other. Using this fact, Bermudo [45] proved that for any
graph G with order n ≥ 9 and minimum degree at least 2, ∂(G) ≥ 3γ (G)

4 , and so,

γR(G) ≤ n− 3γ (G)
4 . Furthermore, Bermudo [45] conjectures that these bounds can

be improved for graphs with minimum degree at least 3.

Conjecture 58 (Bermudo [45]) If G is a graph with minimum degree at least 3,
then ∂(G) ≥ γ (G).

Conjecture 58 can be stated equivalently in terms of Roman domination as
follows.
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Conjecture 59 (Bermudo [45]) If G is a graph with minimum degree at least 3,
then γR(G) ≤ n− γ (G).

The next two conjectures involve the bondage number b(G) of a graph G.

Conjecture 60 (Teschner [604]) For any graph G, b(G) ≤ 3
2�(G).

Teschner [604] proved that Conjecture 60 holds for graphs having domination
number at most 3. Hartnell and Rall [350] and Teschner [605] showed that the bound
of Conjecture 60 is sharp for the Cartesian product Kn�Kn. Dunbar et al. [211]
conjecture the following upper bound on the bondage number.

Conjecture 61 (Dunbar et al. [211]) If G is a planar graph with maximum degree
�(G), then b(G) ≤ �(G)+ 1.

Kang and Yuan [441] have shown that for any connected planar graphG, b(G) ≤
min{8,�(G) + 2}, solving Conjecture 61 for planar graphs with �(G) ≥ 7 and
Conjecture 60 for planar graphs with �(G) ≥ 4.

Next we consider a conjecture involving the paired domination subdivision
number.

Conjecture 62 (Favaron et al. [256]) For every connected graphG of order n ≥ 3,
sdγpr (G) ≤ n− 1.

A graph G is called irredundance perfect if ir(H) = γ (H), for every induced
subgraph H of G. A graph that is not irredundance perfect is called irredundance
imperfect. We conclude this subsection with two conjectures involving irredundance
perfect graphs.

Conjecture 63 (Volkmann and Zverovich [630]) The number of minimal irredun-
dance imperfect graphs is finite.

In [630], Volkmann and Zverovich modified a conjecture of Henning [402] as
follows.

Conjecture 64 A graphG is irredundance perfect if and only ifG is 5-irredundance
perfect.

4.9 Domatic

Recall that the domatic number d(G) of a graph G is the maximum number of
disjoint dominating sets inG. The following conjecture was first posed as a question
by Kostochka in 2009: Is it true that the vertex set of every cubic, bipartite graph can
be partitioned into three dominating sets? This question was subsequently posed as
a conjecture by Henning [407] in Volume 1 of this series [287].

Conjecture 65 (Henning [407]) If G is a cubic, bipartite graph, then d(G) = 3.
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Recall that the total domatic number dt (G) of a graphG is the maximum number
of disjoint total dominating sets. We remark that this parameter is equivalent to the
minimum (not necessarily proper) coloring of the vertices of a graph where every
color appears in every open neighborhood. Such a coloring in called the coupon
coloring problem by Chen et al. [149].

Goddard and Henning [295] showed that if G is a planar graph, then dt (G) ≤ 4
and this bound is best possible. Further, they showed that if G is a toroidal graph,
then dt (G) ≤ 5 and this bound is best possible. By a planar triangulation we mean a
maximal planar graph. Goddard and Henning [295] posed the following conjecture
about the total domatic number of planar triangulations.

Conjecture 66 (Goddard, Henning [295]) IfG is a planar triangulation of order at
least 4, then dt (G) ≥ 2.

Conjecture 67 (Goddard, Henning [295]) Every planar triangulation with at least
four vertices has a proper 4-coloring (C1, C2, C3, C4) such that C1 ∪C2 and C3 ∪C4
are total dominating sets.

Equivalently, Conjecture 67 claims that V (G) can be partitioned into two total
dominating sets both of which induce a bipartite subgraph ofG. The authors in [295]
show that if G is a planar triangulation and the dual of G is Hamiltonian, then
Conjecture 66 holds. As remarked in [295], to prove Conjecture 66 it would be
enough to show that every 3-connected cubic planar graph has a 2-factor that does
not include a facial cycle. If one imposes larger minimum degree, it appears that
even more can be said.

Conjecture 68 (Goddard, Henning [295]) If G is a planar triangulation with
δ(G) ≥ 4, then dt (G) ≥ 3.

It is noted in [295] that if Conjecture 68 is true, then the bound is sharp, and the
authors in [295] also posed the following conjecture.

Conjecture 69 (Goddard, Henning [295]) IfG is a connected cubic graph, thenG
has a family of four (not necessarily distinct) total dominating sets such that every
vertex is in at most two of these.

4.10 Pebbling

Chung [155] attributed the following conjecture to Graham.

Conjecture 70 (Graham’s Conjecture [155]) For graphs G and H , π(G�H) ≤
π(G)π(H).

We conclude this subsection with an open question on optimal pebbling.

Question ([89]) Is it true that π∗(G) ≤ �n/2� whenever G is a connected n-vertex
graph with minimum degree at least 3?
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4.11 Topological

Determining the crossing number of the complete bipartite graph, known as Turan’s
brick factory problem, is one of the oldest and most famous crossing number
problems. Zarankiewicz [649] conjectured an exact value.

Conjecture 71 (Zarankiewicz [649]) For the complete bipartite graph Km,n,

ν(Km,n) =
⌊n

2

⌋ ⌊
n− 1

2

⌋ ⌊m
2

⌋⌊
m− 1

2

⌋
.

Kleitman [455] proved that Conjecture 71 holds for complete bipartite graphs
Km,n for min(m, n) ≤ 6.

Guy [320] posed a similar conjecture for complete graphs.

Conjecture 72 (Guy [320]) For the complete graph Kn,

ν(Kn) = 1

4

⌊n
2

⌋ ⌊
n− 1

2

⌋ ⌊
n− 2

2

⌋ ⌊
n− 3

2

⌋
.

5 New Parameters and Open Problems

It seems only natural that any careful study of graph theory parameters will lead to
the discovery of new parameters or parameters which have been defined but little
studied. In the course of writing this glossary, quite a number of these parameters
have come to mind, which might be worth studying. In this section we present these
for your consideration. We cannot vouch 100% for the originality of some of these
parameters; it has been joked that “no one ever discovers anything for the first time.”
We can only say that as of the publication of this chapter, we are not aware that
some of these parameters have been defined or under what name, or if they have
been studied. Of course, we are always reminded that just because it hasn’t been
defined, it doesn’t mean that it is worth studying; only time will tell.

5.1 β-Packing Number

A β-packing of a graphG is a maximal set S having the property that for all vertices
v ∈ V − S, |N(v) ∩ S|/deg(v) ≤ β.

This is inspired by α-domination, as originally defined and studied by Dunbar et
al. [214]. A set S is called an α-dominating set, for some value α, 0 < α ≤ 1, if
for every vertex v ∈ V − S, |N(v) ∩ S|/deg(v) ≥ α. The α-domination number
of a graph G equals the minimum cardinality of an α-dominating set in G, and is
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denoted γα(G). Similarly, the β-packing number equals the maximum cardinality
of a β-packing set in G, which could be denoted by ρβ(G).

5.2 Upper Binding Number

In Section 3.2 we define the binding number, bind(G) = min{|N(X)|/|X| : X ⊆
V,N(X) �= V }. For this parameter, we could just as well ask, what about the
maximum? Let the upper binding number be Bind(G) = max{|N(X)|/|X| :
X ⊆ V,N(X) �= V }. It follows that bind(G) ≤ δ(G) ≤ �(G) ≤ Bind(G).
Furthermore, if N(X) = V , then X is a total dominating set, and therefore,
bind(G) ≤ n/γt (G) ≤ Bind(G).

5.3 Broadcasting in Trees with Multiple Originators

There are several papers that consider the problem of partitioning or decomposing
trees into sub-trees of various types:

In [246], Farley, Hedetniemi and Proskurowski give a linear algorithm for
partitioning the vertices of a tree into a minimum number of sub-trees of diameter
at most k. In [640], Yan, Chang, Hedetniemi and Hedetniemi give a linear algorithm
for decomposing a tree into a minimum number of paths each of which has at most
k vertices. So consider variations on this theme. Partition the vertices (or edges) of
a tree into a minimum number of sub-trees, each of a given type. What types would
you choose?

Let us suggest minimum broadcast trees. In fact, let us suggest an even more
general problem at the same time. Let S ⊆ V be an arbitrary subset of vertices,
which act as originators of some common message. Each vertex in S makes a phone
call to one neighbor and relays the information, at time t = 1. At time t ≥ 2, any
vertex having this information can make a phone call to one neighbor not having
this information. This is repeated every time step until all vertices in the graph have
received the information.

Thus, we have two parameters: the number of originators, and the amount of time
to complete the broadcast. We can define the following parameters:

Let bt (G) equal the minimum number of originators necessary to complete
broadcasting within time t in a graph G. Note that any bt -set is, by definition, a
distance t dominating set. But a minimum distance t dominating set in general can
be much smaller than bt (G).

Let bk(G) equal the minimum number of time steps necessary to reach all
vertices of G from a set of k originators.

In particular, consider these two problems when restricted to trees.
In [591], Slater, Cockayne and Hedetniemi develop an algorithm to find all single

vertices from which a broadcast can be completed in minimum time in an arbitrary
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tree. They show that this broadcast center always consists of a star with two or more
vertices. Thus, in this paper they give an algorithm for computing the value b1(T ).

Can you construct polynomial algorithms for computing the values of bk(T ) for
any tree T ?

5.4 Cycle Number Cycle(G)

The definition of the cycle number cycle(v) in Section 3.2, as the number of distinct
cycles containing vertex v, suggests that one define the cycle number Cycle(G) =
max{cycle(v) : v ∈ V }. Similarly, the cycle center CC(G) of a graph G consists
of the set of vertices v for which cycle(v) is a maximum. What can you say about
the cycle center of a graph G?

5.5 Concave Number ccv(G) and Weakly Convex Number
wcvx(G)

The definition of a convex set in Section 3.3 suggests the following two parameters.
A set S is said to be concave if for every pair of vertices u, v ∈ S, no shortest u− v
path contains a vertex other than u and v in S. The concave number or the concavity
ccv(G) is the maximum cardinality of a concave set in G. Note, for example, that
any clique in a graph G is a concave set. Similarly, the set of all leaves in a tree is a
concave set. Indeed, we conjecture that for any nontrivial tree T , ccv(T ) equals the
number of leaves of T .

A set S is said to be weakly convex if for every pair of vertices u, v ∈ S there
exists a u − v geodesic, every vertex of which belongs to S. Since, by definition,
the entire vertex set V is weakly convex, and convex, we seek either the maximum
order of a proper subset of vertices that is weakly convex, or the minimum order of
a maximal weakly convex set in a graph G.

5.6 Degree-Defined Sets

Let S ⊆ V be an arbitrary set of vertices and consider the three induced subgraphs
G[S],G[V −S] and the bipartite subgraphG[S, V −S] induced by the set of edges
between vertices in S and vertices in V − S. Let deguG[S] denote the degree of a
vertex u ∈ S inG[S]; degvG[V −S] the degree of a vertex v ∈ V −S inG[V −S];
deguG[S, V −S] the degree of a vertex u ∈ S inG[S, V −S] and degvG[V −S, S]
the degree of a vertex v ∈ V − S in G[V − S, S].



244 R. Gera et al.

By placing conditions on the various combinations of these degrees one defines
a wide variety of sets, many of which have been studied. However, even more have
received little or no attention, including those in bold in the table below. The basic
framework of the table below is due to Telle [602] in his PhD thesis; parts of this
table appear on page 292 of [361]. In the table, X denotes that the degree of the
vertex can be anything, i.e. it does not matter. We also assume that the graph G in
question is a non-trivial connected graph.

Type of set deguG[S] deguG[S, V − S] degvG[V − S, S] degvG[V − S]
1. dominating X X ≥1 X

2. total/open dominat-
ing

≥1 X ≥1 X

3. maximal induced
matching

1 X ≥1 X

4. 1-dependent domi-
nating

0,1 X ≥1 X

5. independent domi-
nating

0 X ≥1 X

6. perfect dominating X X 1 X

7. perfect total domi-
nating

≥1 X 1 X

8. perfect induced
matching

1 X 1 X

9. 1-dependent perfect
dominating

0,1 X 1 X

10. efficient dominating 0 X 1 X

11. nearly perfect X X 0, 1 X

12. total nearly per-
fect

≥1 X 0, 1 X

13. nearly perfect
induced matching

1 X 0, 1 X

14. open packing/total
nearly perfect

0,1 X 0, 1 X

15. packing 0 X 0, 1 X

16. restrained dominat-
ing

X X ≥1 ≥1

17. dominating biparti-
tion

X ≥1 ≥1 X

18. Nearly perfect
bipartition

X 0, 1 0, 1 X

19. perfect matching X 1 1 X
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5.7 Distance-2 Domination Parameters

Distance-k domination has been fairly well studied; the reader is referred to
the chapter on distance domination by Henning in [403]. However, distance-2
domination is particularly interesting in view of the fact that quite a few types
of sets that have been studied are distance-2 dominating sets. These include the
following:

1. all maximal irredundant sets, and there are some 12 varieties that are hereditary,
2. a perfect neighborhood set (θ(G));
3. a maximal two-packing (ρ(G));
4. a minimal external redundant set (er(G));
5. a maximal matchable set (μ(G));
6. a maximal nearly perfect set;
7. a pnc-maximal set;
8. a maximal total irredundant set (IRt (G));
9. an R-annihilated set (ra(G)), and

10. an R-annihilated and irredundant set (rai(G));

In addition, a variety of types of maximal matchings are also distance-2 edge
dominating sets, including:

11. a variety of maximal matchings may not produce edge dominating sets,
but produce distance-2 edge dominating sets, including a maximal induced
matching; a maximal disconnected matching, a maximal acyclic matching; a
maximal total matching. The general problem is: how do these types of sets
compare as distance-2 dominating sets?

5.8 k-Domatic Number dk(G)

You are given the problem of assigning to any given vertex v ∈ V a set of at most k
different resources, that is, each vertex has a capacity of storing at most k resources.
The resources are chosen from a list of r different resources, where k ≤ r . You
must do this in such a way that every vertex has access, in its closed neighborhood,
to all r resources. For a given integer k, how large can r be? Denote this by dk(G).
Note that if k = 1, then d1(G) = d(G), the domatic number. Thus, we could say
that d(G) is the first domatic number, while d2(G) is the second domatic number,
etc. This resource allocation problem appears in an unpublished technical report
by Hedetniemi, Hedetniemi and Wimer in 1987 [384] and recently by Abbas et al.
in [1].
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5.9 Dominator Colorings

A dominator partition of a graph G is a partition of the vertex set into sets
{V1, V2, . . . , Vk}, such that every vertex v ∈ V dominates all of the vertices in
at least one block Vi of the partition. The dominator partition number of a graph G
equals the smallest order of a dominator partition of G and is denoted �d(G). This
concept was introduced and studied by Hedetniemi et al. [399].

In this paper the authors observed the following interesting result:

Theorem 4 For any graph G, γ (G) ≤ Πd(G) ≤ γ (G)+ 1.

At the end of this paper, they observed that if you stipulate that every vertex
v ∈ V must dominate all of the vertices in at least one block Vi of the partition,
other than its own block, then what you get is called a total dominator partition.
You also get the following result, where �td(G) is the total dominator partition
number and γt (G) is the total domination number of a graph G.

Theorem 5 For any graph G, γt (G) ≤ Πtd(G) ≤ γt (G)+ 1.

Total dominator partitions are studied in [406, 449–451].
Furthermore, if you stipulate that every block Vi of the partition be an indepen-

dent set, i.e. that the partition is a proper coloring, then you define what is called
a dominator coloring of G. The dominator coloring number χd(G) equals the
minimum order of a dominator coloring of G. Gera, Rasmussen and Horton have
produced the first paper on dominator colorings [286].

But so far what has eluded us is the hoped-for linear algorithm for determining
the dominator coloring number, or dominator chromatic number χd(T ) of any
tree T .

5.10 Edge Degree Sequences

We often speak of the vertex degree sequence of a graph G of order n, d1 ≥ d2 ≥
. . . ≥ dn. But in this glossary we say nothing about the edge degree sequence,
deg(e1) ≥ deg(e2) ≥ . . . ≥ deg(em). These integer sequences are just the vertex
degree sequences of line graphs of graphs. But since line graphs form a proper
subfamily of the family of all graphs, these edge degree sequences are different. By
the edge degree, we mean deg(uv) = deg(u)+deg(v)−2. What can you say about
edge degree sequences of graphs?
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5.11 Edge-Vertex Connectivity λv(G) and Vertex-Edge
Connectivity κe(G)

The definitions of vertex connectivity and edge connectivity in Section 3.2 suggest
the following. Let S ⊂ V be a vertex cutset. Recall the definition that a vertex cutset
is a set S ⊂ V in a connected graph whose removal results in a graph which is either
not connected or consists of a single vertex. Thus, when the vertices in a cutset S
are removed, all edges which are incident with a vertex in S are also removed. Let
λv(G) equal the minimum number of edges incident with a vertex in a vertex cutset
of G.

If F ⊂ E is an edge cutset of a graph G, then when the edges in F are removed,
resulting in a disconnected graph G − F , all vertices incident with an edge in F
will have their degrees reduced. Let κe(G) equal the minimum number of vertices
incident with an edge in an edge cutset of G.

5.12 Flower Number f lower(G) and Petal Number petal(G)

The definition of the cycle number cycle(v) in Section 3.2, as the number of distinct
cycles containing vertex v, suggests that one define the petal number petal(G) of
a graph G to be maximum number of cycles k in a set C1, C2, . . . , Ck , having the
property that for any i �= j , Ci ∩ Cj = {v}, that is, these cycles are pairwise vertex
disjoint except for having vertex v in common. Each cycle in such a collection is
called a petal, and the union of all such cycles defines a flower, the petals of which
are centered at v. These subgraphs have applications in distribution networks, in
which the central vertex is called a hub and the cycles represent circular routes taken
by vehicles, delivering items from the hub and picking up items to be taken back
to the hub. Given this, one can define the flower number f lower(G) of a graph
G to equal the maximum order of a flower subgraph of G, and the petal number
petal(G) to equal the maximum number of petals in a flower of G.

5.13 Spider Number spider(G)

A spider is a tree which consists of a collection of paths which are pairwise vertex
disjoint, except for having exactly one vertex v in common. These subgraphs have
applications in distribution networks, in which the vertex v is called a hub and the
paths represent routes taken by vehicles; each vehicle travels from the hub to all of
the vertices along the path, delivering items from the hub, and returns from the end
of the path, picking up items to be taken back to the hub along the same path. Given
this, one could define the spider number spider(G) to equal the maximum order of
a (not necessarily induced) spider subgraph in G.
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5.14 Four Color Theorems

Arguably the most famous theorem in all of graph theory is the Four Color Theorem,
about which volumes have been written. From the perspective of parameters of
graphs, the chromatic number χ(G) is a parameter whose largest value over the
infinite class of planar graphs is 4, that is, for any planar graph G, χ(G) ≤ 4.

In Sections 3.5 and 3.7 of this Glossary, we have listed and defined about 65
decomposition, partition and coloring parameters of graphs, where we have assumed
that graphs are simple, undirected, and have no loops or multiple edges. Consider
doing the following: (1) list all 65 such parameters, (2) for each parameter, say
generically ρ(G), ask: does there exist a finite constant k, such that for any planar
graph G, ρ(G) ≤ k?

For example, the Grundy number, �r(G) of a tree can be arbitrarily large, and
therefore, so can the partial Grundy number ∂�r(G), the achromatic number,ψ(G),
and the pseudoachromatic number, ψs(G). Thus, when restricted to planar graphs,
none of these coloring parameters can be bounded above by a constant.

As another example, we have seen that for the infinite square grid graphs, which
of course are planar, the packing chromatic number is bounded between 13 and
15. Does the packing chromatic number have a constant upper bound for the class
of planar graphs? Another interesting example is the b-chromatic number; is this
number at most 4 for planar graphs?

In Sections 3.6 and 3.7, we define several numbers that are lower bounds for the
chromatic number χ(G). From the Four Color Theorem we know that for any planar
graph G, χ(G) ≤ 4, and therefore, each of these numbers is at most 4 for planar
graphs. But can you prove directly, without using the Four Color Theorem, that any
of the following numbers are at most 4 for planar graphs?

1. the co-chromatic number, z(G) ≤ χ(G), each color class is either a clique or an
independent set.

2. the sub-chromatic number, χs(G) ≤ χ(G), each color class is a union of cliques.
3. the iterated domination number, γ ∗(G) ≤ χ(G), each color class is a minimal

dominating set in the graph remaining after removing all previous color classes.
4. the iterated irredundance number, ir∗(G) ≤ χ(G), each color class is a maximal

irredundant set in the graph remaining after removing all previous color classes.
5. the k-dependent chromatic number, for any fixed k, χ≤k(G) ≤ χ(G), each color

class is a k-dependent set.
6. the irredundant chromatic number, χirr (G) ≤ χ(G), each color class is a, not

necessarily maximal, irredundant set.
7. forest arboricity, χF (G) ≤ χ(G), each color class is an induced forest of trees.
8. path arboricity, χP (G) ≤ χ(G), each color class is an induced forest of paths.
9. star arboricity, χ∗(G) ≤ χ(G), each color class is an induced forest of stars.

10. spider arboricity, χS(G) ≤ χ(G), each color class is an induced forest of spiders.
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5.15 Generalized Irredundant Sets

In 1999, Cockayne [158] introduced many new kinds of generalized irredundant
sets, but perhaps the most interesting ones are the 12 types of irredundant sets
that are hereditary, meaning that every subset of a given type of irredundant set,
is also an irredundant set of the same type. Let S denote that a vertex has itself as a
private neighbor; let I denote that a vertex has an internal private neighbor, and let
E denote that a vertex has an external private neighbor, all with respect to some set
S. Consider the following 12 types of irredundant sets, that is let IRi(G) equal the
maximum cardinality set S having each of the following properties with regard to
private neighbors for the elements of S.

1. IR1[S ∧ E] . . . . . . . . ..independent open irredundant sets
2. IR3[S] . . . . . . . . . . . . . . ...independent sets
3. IR5[(S ∨ I ) ∧ E]
4. IR7[S ∨ (I ∧ E)]
5. IR9[(S ∧ E) ∨ (I ∧ ¬E)]
6. IR11[S ∨ (I ∧ ¬E)]
7. IR13[(S ∧ E) ∨ I ]
8. IR15[S ∨ I ] . . . . . . . . . 1-dependent sets
9. IR21[E] . . . . . . . . . . . . . . .open irredundant sets

10. IR23[S ∨ E] . . . . . . . . .irredundant sets
11. IR29[I ∨ E] . . . . . . . . . . . ..open-open irredundant sets
12. IR31[S ∨ I ∨ E] . . . . . ..closed-open irredundant sets

Cockayne points out the following inequalities between various of these irredun-
dance parameters.

Theorem 6 For any graph G,

1. IR1 ≤ IR5 ≤ IR21
2. IR9 ≤ IR13 ≤ IR29
3. IR3 ≤ IR7 ≤ IR23
4. IR11 ≤ IR15 ≤ IR31
5. IR1 ≤ IR3 ≤ IR11
6. IR1 ≤ IR9 ≤ IR11
7. IR5 ≤ IR7 ≤ IR15
8. IR5 ≤ IR13 ≤ IR15
9. IR21 ≤ IR23 ≤ IR31

10. IR21 ≤ IR29 ≤ IR31

Taken together, these parameters define a 2 × 3 × 2 cube of inequalities, or in
other words, they form the prism consisting of two parallel copies of a 2 × 3 grid.

Irredundant sets of types 5, 7, 9, 11, and 13 have not been studied.
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5.16 Hall Ratios

The Hall Ratio of a graphG is defined to equal max{|V (H)|/α(H) : H a subgraph
of G}, where α(G) is the vertex independence number of a graph G. This ratio was
first introduced by Hilton and Johnson in 1990 [416], and is related to the study of
the chromatic number and list colorings of graphs. But the Hall ratio is really quite
generic, and brings to mind other ratios, like the binding number and toughness.
This suggests that it might be worthwhile to consider the ratios of any number of
parameters to the orders of a graph.

5.17 Hamiltonian Bottleneck Number hbn(G)

The definition of the Hamiltonian number h(G) in Section 3.3 suggests the
following. Let c = v1, v2, . . . , vn, vn+1 = v1 be a cyclic ordering of the vertices
of a graph G. Let the Hamiltonian bottleneck number of a cyclic ordering c be
hbn(c) = max{d(vi, vi+1) : 1 ≤ i ≤ n}, that is, hbn(c) equals the maximum
distance between two consecutive vertices of c. The Hamiltonian bottleneck number
is hbn(G) = min{hbn(c) : c a cyclic ordering of V }. It follows immediately that
hbn(G) = 1 if and only ifG is Hamiltonian. The same parameter can be considered
for linear orderings l = v1, v2, . . . , vn of the vertices of graphs of order n, in which
case one is considering Hamiltonian paths, and one can define the Hamiltonian
path bottleneck number hpbn(G). Obviously, hpbn(G) = 1 if and only if G has
a Hamiltonian path. In 1964, Sekanina [564] asked, in effect, for which graphs G
is hpbn(G) = 2? The author states: “For trees this problem was solved in a paper
of F. Neuman, to appear in Čas. Pěst. Mat.”; however, we have not been able to find
such a paper. It appears that the graphs for which hbn(G) = 2 are those graphs G
whose square G2 is Hamiltonian, and these graphs have been studied.

5.18 Minimaximal Path Number mmp(G) and Minimaximal
Trail Number mmt(G)

The definition of the trail number in Section 3.3 suggests the following. Recall that
a trail is a walk having no repeated edges. A path or a trail is maximal if its length
cannot be increased by the addition of an edge at either end. It does not appear
that the minimum length of a maximal path mmp(G) or the minimum length of a
maximal trail mmt(G) have been studied.
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5.19 New Inequality Chains from Hereditary and
Super-Hereditary Properties

The well-studied domination chain is the following:

er(G) ≤ ir(G) ≤ γ (G) ≤ i(G) ≤ α(T ) ≤ �(T ) ≤ IR(G) ≤ ER(G).

where

er(G) and ER(G) denote the lower and upper external redundance numbers,
ir(G) and IR(G) denote the lower and upper irredundance numbers,
γ (G) and �(G) denote the lower and upper domination numbers, and
i(G) and α(G) denote the independent domination number and the independence

number.

We think we understand why these inequality chains exist. For example,
independence is a hereditary property, domination is a superhereditary property,
and irredundance is a hereditary property. But we do not understand why external
redundance is not a superhereditary property.

Thus, in order to figure this out, we think it would be a good idea to study several
other inequality chains. The idea is simple.

Start with any hereditary property P1. Then define two parameters: the minimum
cardinality of a maximal P1-set and the maximum cardinality of a P1-set, say β1(G)

and α1(G), respectively.
Next, use the maximality condition of a P1-set to define a second property P2.

This property P2 should be super-hereditary. Use this property to define two new
parameters: the minimum cardinality of a P2-set and the maximum cardinality of a
minimal P2-set, say β2(G) and α2(G), respectively.

At this point it should be the case that: β2(G) ≤ β1(G) ≤ α1(G) ≤ α2(G).

Now, continue in the same way. Use the minimality condition of a P2-set to
define a third property P3. This property should be hereditary. Use this property to
define two new parameters: the minimum cardinality of a maximal P3-set and the
maximum cardinality of a P3-set, say β3(G) and α3(G), respectively.

At this point it should be the case that:

β3(G) ≤ β2(G) ≤ β1(G) ≤ α1(G) ≤ α2(G) ≤ α3(G).

As we said, you can start to build such an inequality chain with any hereditary
property. Examples of hereditary properties of sets S ⊆ V include the following,
where G[S] denotes the subgraph induced by S:

1. G[S] is acyclic,
2. S is k-dependent, i.e. the maximum degree �(G[S]) ≤ k,
3. S is a packing,
4. G[S] is bipartite,
5. S is matchable,
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6. S is irredundant, open irredundant, open-open irredundant, etc.,
7. S is a restrained set, i.e. for every u ∈ (V − S), N(u) ∩ (V − S) �= ∅, or
8. S is enclaveless, i.e. for every u ∈ S, N(u) ∩ (V − S) �= ∅.

We should also point out that one can start an inequality chain with a super-
hereditary property just as well. Examples of super-hereditary properties include:

1. G[S] contains a cycle,
2. �(G[S]) ≥ k,
3. S is a dominating set,
4. S is a total dominating set,
5. S is a strong dominating set,
6. S is an internally strong dominating set,
7. S is a vertex cover,
8. S is a global offensive alliance,
9. S is a distance-k dominating set,

10. S is a P3-dominating set,
11. S is a capacity-k dominating set.

5.20 New Max and Min Domination Parameters

Subramanian [596], and later Arumugam and Subramanian [20] introduced an
independence idea that spawns a whole host of new parameters.

Define the following for every vertex v ∈ V :

ir(v) = min {|S|, v ∈ S and S is a maximal irredundant set}
γ (v) = min {|S|, v ∈ S and S is a minimal dominating set}
i(v) = min {|S|, v ∈ S and S is a maximal independent dominating set}
α(v) = max {|S|, v ∈ S and S is an independent set}
�(v) =max {|S|, v ∈ S and S is a minimal dominating set}
IR(v) = max {|S|, v ∈ S and S is an irredundant set}

Now, over all vertices v ∈ V define the following:

irmax(G) = max {ir(v) : v ∈ V }
γmax(G) = max {γ (v) : v ∈ V }
imax(G) = max {i(v) : v ∈ V }
αmin(G) = min {α(v) : v ∈ V }
�min(G) = min {�(v) : v ∈ V }
IRmin(G) = min {IR(v) : v ∈ V }

The following inequalities follow from these definitions:

Proposition 1 For any graph G,

(i) ir(G) ≤ irmax(G)
(ii) γ (G) ≤ γmax(G)
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(iii) i(G) ≤ imax(G)
(iv) αmin(G) ≤ α(G)
(v) Γmin(G) ≤ Γ (G)

(vi) IRmin(G) ≤ IR(G)
These parameters have received very little study.

5.21 P -Matchings and the Independent Matching Number
α′

ind
(G)

Let e1 = x1y1, e2 = x2y2, . . . , ek = xkyk be the edges of a matching M , and
let X(M) = {x,x2, . . . , xk} and Y (M) = {y1, y2, . . . , yk}. We can think of the
edges of M as being oriented vertically, with the vertices in X(M) being situated
above, or to the north of, the vertices in Y (M) to the south. One can see that
V (M) = (X(M), Y (M)) represents one of 2k possible orientations of the edges
of M . We say that a matching M is independent if it has an orientation such
that the set X(M) is an independent set. Thus, the independent matching number
α′
ind(G) equals the maximum cardinality of an independent matching inG. For this

parameter, for example, it is not difficult to show that for any nontrivial tree T ,
α′(T ) = α′

ind(T ).
This, in turn, suggests a broad new concept. A P -matching is a matching

M = {x1y1, x2y2, . . . , xkyk}, such that the set X = {x1, x2, . . . , xk} is a set having
property P . There are many properties P of interest. For example, one can define
α′
c(G) to equal the maximum cardinality of a connected matching; in this case,

there exists a matching M having an orientation V (M) = (X(M), Y (M)) such
that the induced subgraph G[X(M)] is connected. Another interesting example
are matchings M where the set X(M) is a dominating set, in which case M is
a dominating matching, or where the set X(M) ∪ Y (M) is a dominating set. In
this case, V (M) = X(M) ∪ Y (M) is a paired dominating set, as defined in
Section 3.8.1. Still another interesting case occurs where both setsX(M) and Y (M)
are dominating sets; these could be called matched dominating sets.

5.22 P,Q-Matchings

Let P and Q be two properties of sets of vertices. A matching M is called a P,Q-
matching if it has an orientation V (M) = (X(M), Y (M)) such that X(M) has
property P and Y (M) has propertyQ. For example, if P = Q and P is the property
of being an independent set, then a doubly independent matching is a matching M
having an orientation V (M) = (X(M), Y (M)) in which both X(M) an Y (M) are
independent sets.



254 R. Gera et al.

5.23 Regular and Uniformly Regular Colorings

A partition π = {V1, V2, . . . , Vk} of the vertices V of a graph G = (V ,E) is called
a regular coloring if the subgraphG[Vi] induced by each color class Vi is a regular
graph. The regular chromatic number χr(G) of a graph G equals the minimum
order of a regular coloring of G.

A partition π = {V1, V2, . . . , Vk} of the vertices V of a graph G = (V ,E) is
called a uniformly regular coloring if the subgraph G[Vi] induced by each color
class Vi is a disjoint union of regular graphs. The uniformly regular chromatic
number χur(G) of a graph G equals the minimum order of a uniformly regular
coloring of G.

Uniformly regular colorings are closely related to what are called sub-chromatic
colorings which are defined in Section 3.7. The sub-chromatic number χK(G)
equals the minimum order of a partition π = {V1, V2, . . . , Vk} of the vertices V of a
graph G = (V ,E) such that every color class Vi induces a subgraph consisting of a
disjoint union of complete subgraphs. Thus, sub-chromatic colorings are uniformly
regular colorings, but not conversely.

Proposition 2 For any graph G, χur(G) ≤ χr(G) ≤ χ(G).
Can you prove that either χur(G) ≤ 4 or χK(G) ≤ 4 for planar graphs G,

without appealing to the Four Color Theorem?

5.24 Two Disjoint P-Sets

Hedetniemi et al. [394] considered the minimum cardinality of two disjoint domi-
nating sets in a graph G, called the dual domination number, denoted by γ γ (G). It
follows, by definition, that 2γ (G) ≤ γ γ (G) ≤ γ (G) + γ−1(G), where γ−1(G) is
the inverse domination number.

One can also define the upper dual domination number, ��(G), to equal the
maximum cardinality of two disjoint minimal dominating sets in a graph G. This
parameter was not studied. But there is more. One can define iγ (G) and αγ (G)
to equal the minimum and maximum cardinality of an independent dominating set
and a disjoint minimal dominating set, respectively. It then follows from all of these
definitions that:

2γ (G) ≤ γ γ (G) ≤ iγ (G) ≤ α�(G) ≤ ��(G) ≤≤ 2�(G),

and, in addition, we have:

irir(G)≤ irγ (G)≤ γ γ (G)≤ iγ (G)≤α�(G)≤��(G)≤�IR(G)≤ IRIR(G).

None of these parameters, other than γ γ (G), appear to have been studied.
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5.25 Uniformly Strong Sets

In [440], Kamath and Bhat define a vertex v in a graph G = (V ,E) to be strong if
deg(v) ≥ deg(u) for every vertex u adjacent to v. Similarly, a vertex is called weak
if deg(v) ≤ deg(u) for every vertex u adjacent to v. These two definitions suggest
a variety of new things that can be studied.

Let us define a set S ⊆ V to be uniformly strong if every vertex u ∈ S is a strong
vertex in the induced subgraph G[S]. The maximum cardinality of a uniformly
strong set is called the uniformly strong number of a graph G and is denoted S(G).
Similarly, the minimum cardinality of a maximal uniformly strong set S, denoted
s(G), is called the lower uniformly strong number of G.

Notice that uniformly strong sets are essentially sets S such that the induced
subgraph G[S] consists of a disjoint union of regular graphs. Note that the property
of being a strong set is neither hereditary nor super-hereditary. The following results
follow immediately from the definitions.

Proposition 3 For any regular graph G of order n, s(G) = S(G) = n.

Recall that α(G), the independence number of G, equals the maximum cardi-
nality of an independent set in G. Similarly, α1(G) is the 1-dependence number,
i.e. the maximum cardinality of a set S such that �(G[S]) ≤ 1. Similarly, i(G)
equals the minimum cardinality of a maximal independent set in G (also called the
independent domination number), while i1(G), the lower 1-dependence number,
equals the minimum cardinality of a maximal 1-dependent set in G.

Notice that the subgraphs induced by maximal 1-dependent sets are just disjoint
unions of K1’s and K2’s. Thus, they are strong sets.

Proposition 4 For any graph G of order n,

s(G) ≤ i1(G) ≤ i(G) ≤ α0(G) ≤ α1(G) ≤ S(G) ≤ n.

Proposition 5 For any tree T , S(T ) = α1(T ).

What can you say about the values of s(G) and S(G)?

6 Conclusions

In this glossary we have enumerated some 300 parameters commonly used in graph
theory, and for many of these we have presented related conjectures. We also
listed several new suggested parameters and open problems. While many of the
numbers listed in the glossary and still other parameters have been discussed in
other comprehensive books, we feel this is the most comprehensive glossary ever
assembled of graph theory parameters. Within the given time and page limitations
for producing this glossary, we have annotated many of these parameters with
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basic properties, results, and conjectures about them, in order to provide a clearer
understanding of these parameters beyond their mere definition.

No attempt has been made in this glossary of parameters and related conjectures
to be complete. Indeed, it would be a formidable task to construct a complete listing.
Furthermore, no attempt has been made to provide a complete bibliography of the
publications in which these parameters first appeared or have been studied.

But with an eye toward the creation of future areas of research in graph theory,
and their corresponding new parameters, let us close with this thought. Consider
each of the following five combinatorial optimization problems, all found in the
classic NP-completeness book by Garey and Johnson [281], which is well-known
to researchers in graph algorithms and complexity. Each of these five problems has
become a well-known, basic NP-complete decision problem.

[SP3] Set Packing Given a collection S of finite sets and a positive integer k ≤ |S|,
does S contain at least k mutually disjoint sets?

[SP4] Set Splitting Given a collection S of subsets of a finite set S, is there a
bipartition S = {S1, S2} of S, such that no subset in S is contained entirely in S1 or
S2?

[SP5] Minimum Cover Given a collection S of finite subsets of a set S, and a
positive integer k ≤ |S|, does S contain a cover for S of cardinality at most k? that
is, a subset S′ ⊆ S where |S′| ≤ k and every element of S belongs to at least one
member of S′?

[SP6] Minimum Test Set Given a collection S of finite subsets of a set S, and a
positive integer k ≤ |S|, does S contain a subset S′ ⊆ S of cardinality at most k,
such that for every u, v ∈ S there is at least one set in S’ that contains exactly one
of u and v?

[SP7] Set Basis Given a collection S of finite subsets of a set S, and a positive
integer k ≤ |S|, is there a collection B of k subsets of S such that for each set S" ∈ S
there is a sub-collection of B whose union is precisely S"?

Each of these five general set problems has many instances when applied to
graphs G = (V ,E). First of all, one can speak of the families of sets of vertices in
(1) open neighborhoods, (2) closed neighborhoods, (3) paths, (4) induced paths, (5)
cycles, (6) induced cycles, (7) complete subgraphs, (8) independent sets, or maximal
independent sets, and (9) dominating sets or minimal dominating sets, and many,
many more instances.

Next, one can speak of the families of sets of edges in similar sets, e.g. paths,
induced paths, cycles, induced cycles, cliques and independent sets of edges, but
including the sets of edges E(v) incident to a given vertex v or the sets of edges
defining a spanning tree, and many, many more instances.

With each instance of any one of these five general problem types, there will be
corresponding minimum, maximum, mini-maximal or maxi-minimal parameters.
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Thus, this glossary not only provides a fairly comprehensive collection of
parameters that have been defined and studied, but provides many ideas for the
discovery and future study of parameters.
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260. J. Fiamčík, Acyclic chromatic index of a graph with maximum valency three. Arch. Math.,

Brno 16(2), 81–87 (1980)
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535. M. Randić, Characterization of molecular branching. J. Am. Chem. Soc. 97(23), 6609–6615

(1975)
536. R. Rashidi, The Theory and Applications of Stratified Graphs, PhD thesis, Western Michigan

University, 1994
537. A. Raspaud, W. Wang, On the vertex-arboricity of planar graphs. Eur. J. Comb. 29(4), 1064–

1075 (2008)
538. R.C. Read, D.G. Corneil, The graph isomorphism disease. J. Graph Theory 1(4), 339–363

(1977)
539. B. Reed, Paths, stars and the number three. Comb. Probab. Comput. 5(3), 277–295 (1996)
540. B. Reed, ω, δ, and χ . J. Graph Theory 27(4), 177–212 (1998)
541. A. Riskin, The circular k-partite crossing number of K{m, n} (2006). ArXiv preprint

math/0605235



An Annotated Glossary of Graph Theory Parameters, with Conjectures 277

542. N. Robertson, P.D. Seymour, Graph minors. III. Planar tree-width. J. Combin. Theory, Ser. B
36(1), 49–64 (1984)

543. N. Robertson, P.D. Seymour, Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms 7(3), 309–322 (1986)

544. N. Robertson, Z.-X. Song, Hadwiger number and chromatic number for near regular degree
sequences. J. Graph Theory 64(3), 175–183 (2010)

545. N. Robertson, P. Seymour, R. Thomas, Hadwiger’s conjecture for K6-free graphs. Combina-
torica 13(3), 279–361 (1993)

546. M.L. Roden, P.J. Slater, Liar’s domination and the domination continuum. Congr. Numer 190,
77–85 (2008)

547. J.A. Rodriguez, J.M. Sigarreta, Offensive alliances in cubic graphs. Int. Math. Forum 1, 1773–
1782 (2006)

548. R. Rubalcaba, Fractional Domination, Fractional Packings, and Fractional Isomorphisms of
Graphs, PhD thesis, Auburn University, 2005
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