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Abstract The Path Partition Conjecture (PPC) states that if G is any graph and
(a, b) any pair of positive integers such that G has no path with more than a + b

vertices, then there exists a partition (A,B) of the vertex set of G such that A has
no path with more than a vertices, and B has no path with more than b vertices.
We present a brief history of the PPC, discuss its relation to other conjectures and
examine results supporting the PPC that have appeared in the literature since its first
formulation in 1981. We conclude with a few related open problems.

1 It Must Surely Be True. . .

Some conjectures are built, creating a ‘next step’ in an evolving body of work.
Others are borrowed by changing some condition in an old respected conjecture
that’s too hard to prove just now. Another type of conjecture is the type that arises
almost organically, sprouting at different places on the globe from phrases like “it
must surely be true that. . . .”. The Path Partition Conjecture (PPC) is of the third
type. You can easily explain this intriguing conjecture to your grandchildren or to
the stranger seated next to you on the plane, by stating it as follows.

If G is a graph containing no path with more than τ vertices and a and b are two
positive integers whose sum equals τ , then we can colour all the vertices of G, using
only the colours amber and blue, in such a way that no path in G has more than a

consecutive amber vertices or more than b consecutive blue vertices.
If you check the validity of the PPC for some specific graphs, you will most

probably find that in each case it is easy to spot a colouring that will do the trick.
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In some cases you might even end up with fewer than a consecutive amber vertices
and fewer than b consecutive blue ones. However, we still do not know whether this
37-year-old conjecture holds for all graphs.

If you google ‘Path Partition Conjecture’ you will find that several graph theorists
have contributed results that lend support to the PPC and you are bound to stumble
on a paper in Arxiv which contains an obviously false ‘proof’ of the PPC.

This chapter outlines the details of our seemingly never-ending journey toward
settling the PPC. We also venture into unexplored territory to look at some new
conjectures and problems that have occurred in various detours along the way. The
most significant discoveries of our journey are presented here. We briefly illustrate
the techniques that were used, by providing only the main steps of the proofs of our
results.

2 Beginnings

A path with k vertices is denoted by Pk , and the detour order τ(G) of a graph G

is the number of vertices on any longest path of G. (Since the PPC concerns vertex
partitions, we prefer counting vertices, rather than edges in paths.) If S is any subset
of the vertex set V (G) of a graph G, we denote by G[S] the subgraph of G induced
by S. We call S a Pk-free set in G if τ(G[S]) < k.

In the early 90s, MF began working on a project to set up a framework for
studying generalized colourings linked to different graph invariants. She defined,
for a given graph invariant γ , an (m, k)γ -colouring of a graph G as a partition of the
vertex set of G into m subsets V1, . . . , Vm such that γ (G[Vi]) ≤ k for i = 1, . . . , m.
The kth γ -chromatic number χ

γ

k (G) of G is the minimum m for which G has an
(m, k)γ -colouring. The project was inspired by the pioneering paper [11] on τ -
chromatic colourings by Chartrand, Geller and Hedetniemi. Their Theorem 2 gives
an upper bound on the kth τ -chromatic number, depending only on k and τ .

Theorem 2.1 ([11]) χτ
k (G) ≤ � 1

2 (τ (G) − k)� + 2 for every graph G and every
k ≥ 3.

The Lovász Partition Theorem (Theorem 1 in [25]) yields an upper bound for the
kth �-chromatic number (where � denotes maximum degree), depending only on
k and �.

Theorem 2.2 ([25]) χ
�(G)
k ≤ ��(G)+1

k+1 � for every graph G and every k ≥ 0.

Lick and White [24] established an analogous upper bound for the kth
ρ-chromatic number (where ρ(G), the degeneracy of G, is the maximum of the
minimum degrees of the induced subgraphs of G.)
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Theorem 2.3 ([24]) χ
ρ(G)
k ≤ �ρ(G)+1

k+1 � for every graph G and every k ≥ 0.

Note that

χτ
1 = χ�

0 = χ
ρ
0 = χ(G),

where χ(G) denotes the ordinary chromatic number.
It is not unreasonable to expect that the bound in Theorem 2.1 could be reduced

to be more in line with Theorems 2.2 and 2.3. To prove Theorem 2.1, Chartrand
et al. considered a Pk+1-free set M of maximum order in G. They observed that
every vertex in G − M (in particular, each end-vertex of a longest path in G − M)
is adjacent to a vertex in M . From this they deduced that τ(G − M) ≤ τ(G) − 2
and their result followed by induction on the detour order. MF noticed that by the
maximality of M , every vertex in G − M (in particular, an end-vertex of a longest
path in G − M) is actually adjacent to an end-vertex of a path of order at least k/2
in M . This implies that τ(G − M) ≤ τ(G) − k/2. By using this stronger result in
the induction argument, it can be shown that χτ

k (G) ≤ 2τ(G)
k

for every graph G and
every k ≥ 1. MF then thought that it would be easy to take this a step further and
prove that χτ

k (G) ≤ τ(G)
k

for all k ≥ 1. This would be a nice extension of the classic
theorem of Gallai [17] that χ(G) ≤ τ(G) and it would be similar to Theorems 2.2
and 2.3.

After studying the proof of the Lovasz Partition Theorem in [25], MF decided
that she just needed to prove a ‘little lemma’ showing that if G is any graph with
detour order τ and (a, b) any pair of integers such that a+b = τ , then the vertices of
G may be partitioned into two sets A and B such that τ(G[A]) ≤ a and τ(G[B]) ≤
b. The desired upper bound for χτ

k would then follow easily. But after many fruitless
attempts she realized that proving the ‘little lemma’ was not going to be so easy.

In 1995, during a visit to Peter Mihók in Slovakia, she learned that this elusive
‘little lemma’ was in fact an existing conjecture (later dubbed the Path Partition
Conjecture). In 1981 Mihók and Lovász had a conversation related to the conjecture
and later each of them directed a graduate student thesis on the topic. Mihók’s
interest in the PPC arose from his work on a stronger conjecture, called the Path
Kernel Conjecture, which we shall discuss in the next section. Lovász was attracted
to the PPC since he had proved its �-analogue in [25]. (As explained in [20], the
similarity between the PKC and the partition result of Lovász becomes clear when
stated in the terminology of [3]). The PPC first appeared in 1983, in a paper by
Laborde et al. [23]. The main topic of their paper was the conjecture that every
digraph has an independent set meeting all longest paths (which happens to be the
case a = 1 of the directed version of the PPC). However, for some reason they
concluded the paper by stating the PPC for undirected graphs. Thus four different
routes, explored in different parts of the globe, had led to the PPC.

Before Google, information travelled slowly, so the place to learn about existing
results was at conferences or seminar coffee breaks. In November 1995, while MF
was visiting Lowell Beineke, he suggested she give a talk on the PPC at a Graph
Theory Day in Kalamazoo. Shortly afterwards she visited JD, who arranged for
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MF to give a similar talk at Clemson. We gradually learned that information on the
conjecture was scarce, so in 1996 we began working on the PPC in earnest.

3 Dead Ends and Revised Routes

Throughout this paper a and b will denote positive integers. If A and B are sets of
vertices in a graph G such that V (G) = A∪B and τ(G[A]) ≤ a and τ(G[B]) ≤ b,
then we call (A,B) an (a, b)-partition of G. Our preferred formulation of the PPC
is the following.

Conjecture 1 (PPC) If G is a graph with detour order τ and (a, b) is any pair of
positive integers such that a + b = τ , then G has an (a, b)-partition.

A graph that has an (a, b)-partition for every pair (a, b) such that a + b = τ(G)

is called τ -partitionable.
A subset K of the vertices of a graph G is called a Pk-kernel of G if K is Pk-free

and every vertex in G − K is adjacent to an end-vertex of a path of order k − 1 in
K . This concept is due to our friend Peter Mihok [28], who sadly passed away on
27 March 2012.

The connection between path kernels and path partitions is given by the following
proposition.

Proposition 3.1 If a graph G has a Pa+1-kernel K and a + b = τ(G), then
(K, V (G) − K) is an (a, b)-partition of G.

Proof Let Q be a longest path in G − K and let x be an end-vertex of Q. Then x

is adjacent to the end-vertex of a path P of order a in K . Since the concatenation of
P and Q is a path in G, it follows that n(Q) ≤ τ(G) − a = b. �

Every maximal independent set of a graph G is obviously a P2-kernel of G, and
conversely, every P2-kernel is a maximal independent set. Also for every k > τ(G),
the vertex set V (G) is the only Pk-kernel of G.

Vronka [30] proved that every graph has a Pk-kernel for every k ≤ 6. During a
conference in Palermo we designed an algorithm for constructing a P7-kernel in any
graph [13]. Melnikov and Petrenko showed in [26] that every graph has a P8-kernel,
and in [27] that every graph has a P9-kernel. These results are summed up in the
following theorem.

Theorem 3.2 ([13, 26, 27, 30]) Every graph has a Pk-kernel for every positive
integer a ≤ 9.

Thus the case a ≤ 8 of the PPC is proved. We also conclude that χτ
k (G) ≤ n/k

for every graph G and every positive integer k ≤ 8.
Broere, Hajnal and Mihók [6] conjectured that every graph has a Pk-kernel for

every integer k ≥ 2. This conjecture, which originated from a problem stated by
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Mihók [28], became known as the Path Kernel Conjecture (PKC). If the PKC were
true, it would obviously imply that the PPC is true.

Proving the PPC via the PKC seemed a good idea, but during a conference in
Poland in 2002, we learned that Aldred and Thomassen had disproved the PKC.
Their counterexample, which appears in [1], has detour order 364 and it has no P364-
kernel. (But it obviously has a (363, 1)-partition, so the PPC still survives.) Later,
Katrenic̃ and Semanis̃in [21] constructed a smaller counterexample to the PKC (a
graph with no P155-kernel) and they also showed that for each integer r ≥ 0, there
exists a graph with detour order τ having no Pτ−r -kernel. However, they pointed out
that in each of their examples τ − r is still bigger than τ/2. Note that if a + b = τ

and a ≤ b, then a ≤ τ/2, so in order to prove the PPC it will suffice to prove the
following conjecture, for which no counterexample is as yet known.

Conjecture 2 (Revised Path Kernel Conjecture) If G is any graph with detour order
τ , then G has a Pa+1-kernel for every positive integer a ≤ τ/2.

It could therefore still be possible to make progress towards proving the PPC by
following the path kernel route. The following result of He and Wang [19] implies
that the PPC holds for graphs with sufficiently large girth compared to their detour
order.

Theorem 3.3 ([19]) If G is any graph with girth g, then G has a Pa+1-kernel for
every a <

3g
2 − 1.

Corollary 3.4 If G is a graph with g(G) >
τ(G)+2

3 , then G is τ -partitionable.

A set M of vertices in a graph G is a maximal Pk+1-free set in G if τ(G[M]) ≤ k

and τ(G[M ∪ {v}]) ≥ k + 1 for every vertex v in G − M . A Pk+1-kernel of G is
obviously a maximal Pk+1-free set in G, but for 1 < k < τ(G) the converse is not
true, as is clear from the following proposition.

Proposition 3.5 ([10]) If M is a maximal Pk+1-free set in a graph G, 1 < k <

τ(G), then for every vertex x in G − M at least one of the following holds.

M1. There is a path P of order k in M such that x is adjacent to an end-vertex
of P .

M2. There are two vertex disjoint paths P and Q in M , each having an end-vertex
adjacent to x such that n(P ) + n(Q) = k.

Now let M be a maximal Pk+1-free set in a graph G, 1 ≤ k ≤ τ(G) − 1, and
suppose τ(G−M) > τ(G)−k. If L is a detour of G−M , then both end-vertices of L

(call them x and y) satisfy M2 of Proposition 3.5. Thus there are two vertex disjoint
paths P,Q, each with an end-vertex adjacent to x, and two vertex disjoint paths R,
S, each with an end-vertex adjacent to y, such that n(P )+n(Q) = n(R)+n(S) = k.
Among the four paths P,Q,R, S, let P be one of maximum length. Then each of
R and S is at least as long as Q, so they each intersect P and we have the situation
shown in Figure 1. (Thick lines represent paths and thin lines represent edges.)
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Fig. 1 A step in the proof of
Theorem 3.6

These observations form the basis of the proof of the following result, which was
proved in collaboration with Frank Bullock while JD was visiting MF in Pretoria in
2002.

Theorem 3.6 ([10]) If 1 ≤ k ≤ τ(G)−1 and M is any maximal Pk+1-free set in G,
then τ(G−M) ≤ τ(G)− 2

3 (k+1). Moreover, if k ≤ 5, then τ(G−M) ≤ τ(G)−k.

A corollary of Theorem 3.6 is that χτ
k G) ≤ 3

2 (τ (G)/k) for every k ≥ 1. In [8]
and [9] this bound is slightly improved.

In [10] we conjectured (very naively) that if 1 ≤ k ≤ τ(G) and M is any
maximum Pk+1-free set in G, then τ(G − M) ≤ τ(G) − k. Aldred and Thomassen
[1] easily disproved our conjecture by pointing out that if G is any hypotraceable
graph with detour order τ , then G contains a maximum Pτ -free set M such that
τ(G − M) = 2. (Just choose any edge xy in G and let M = V (G) − {x, y}.)
However, they kindly remarked that, in order to prove the PPC, it would suffice to
prove the following conjecture, for which they do not have a counterexample.

Conjecture 3 If M is any maximum Pa+1-free set in G with 1 ≤ a ≤ τ(G)/2, then
τ(G − M) ≤ τ(G) − a.

In connection with the previous two conjectures, we note that neither implies the
other, but each implies the PPC.
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4 The Cycle Route

Any graph without odd cycles is obviously τ -partitionable (since such a graph is
bipartite and hence has a (1, 1)-partition). The proof of our first result along the
cycle route uses the concept of distance sets, and is an adaptation of the classic
technique for showing that graphs without odd cycles are bipartite.

Proposition 4.1 ([7]) Suppose G is a connected graph, τ(G) = a + b, a ≤ b and
G contains a b-cycle. Then G has an (a, b)-partition.

Proof Let C be a b-cycle in G and let W0 = V (C). For i ≥ 1, let Wi be the ith
distance set with respect to C, i.e., v ∈ V (Wi) if and only if a shortest path between
v and a vertex in C has length i. If L is a path in Wi , i ≥ 1, then there is a path in G

that contains L as well as all the vertices on C. Hence τ(G[Wi]) ≤ a for all i ≥ 1.
Now let

B =
⋃

i even
Wi and A = V (G) − B.

Then (A,B) is an (a, b)-partition of G. �
At first we thought that Proposition 4.1 leads nowhere, since the requirement that

G has a cycle of length exactly b is very specific, but we included the proposition in
our first PPC paper [7] for “just in case”.

The girth g(G) and circumference c(G) of a graph G are, respectively, the length
of a shortest and longest cycle in G. While we were working on the sketch in
Figure 1 to prove Theorem 3.6, the following result suggested itself.

Proposition 4.2 ([2]) If τ(G) = a + b and a ≤ g(G) − 1 or b ≥ c(G) − 2, then
G has an (a, b)-partition.

Proof Let A be a maximal Pa+1-free set in G. Suppose L is a path of order b + 1
in G−A. Then we have the situation depicted in Figure 1, with A = M . Note that L

lies on a cycle in G that contains at least two vertices on P , so c(G) ≥ b+3. And if
C is the small cycle shown in Figure 1 that contains y and vertices of both R and S,
then G contains a path of order |V (C)|+b, which implies that a ≥ |V (C)| ≥ g(G).

�
A graph is called weakly pancyclic if it has a cycle of every length between

its girth and circumference. In 1998, Brandt, Faudree and Goddard [4] put weakly
pancyclic graphs firmly on the map, and we noted that Propositions 4.1 and 4.2
seemed tailor-made to prove the following.

Theorem 4.3 ([10]) Every connected weakly pancyclic graph is τ -partitionable.

Proof Suppose G is a connected weakly pancyclic graph with τ(G) = a+b, a ≤ b.
If g(G) ≤ b ≤ c(G) then, since G is weakly pancyclic, G has a b-cycle, and hence
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G has an (a, b)-partition by Proposition 4.1. If b < g(G) or b > c(G), then it
follows from Proposition 4.2 that G has an (a, b)-partition. �

The proof of Theorem 4.3 now seems incredibly easy, but over the years we
have had several queries as to whether we have tried proving the PPC for chordal
graphs, so we rather enjoyed saying: “We have proved that the PPC holds for weakly
pancyclic graphs, and chordal graphs are weakly pancyclic”.

Other interesting examples of weakly pancyclic graphs are maximal planar
graphs, squares of graphs [15] and the lexicographic product of any connected graph
with a graph that has at least one edge [22]. Theorem 4.3 proves the PPC for all these
classes.

In [14] we call a graph G semi-pancyclic if it has a cycle of every length from
�τ/2� up to c(G). Our next result follows immediately from Proposition 4.2 and the
fact that if a + b = τ and a ≤ b, then b ≥ τ/2.

Theorem 4.4 Every connected semi-pancyclic graph is τ -partitionable.

It follows from Theorem 3.3 that the upper bound for a in Proposition 4.2 may
be relaxed to a <

3g(G)
2 − 1. Let us call a graph G faintly pancyclic if it has a cycle

of every length from max{� 3g(G)
2 − 1�, � τ(G)

2 �} up to c(G)− 3. Theorem 4.4 can be
expanded as follows.

Theorem 4.5 Every connnected faintly pancyclic graph is τ -partitionable.

For a given cycle C, we say that a vertex v on C is an attachment vertex if its
open neighborhood contains a vertex not on C. In [14] we proved an expansion of
Proposition 4.1.

Theorem 4.6 If G is a connected graph with τ(G) = a +b and G has a cycle C of
length at least b with at most b attachment vertices, then G has an (a, b)-partition.

Proof Let X be the set of attachment vertices of C and let W0 consist of the vertices
in X together with b − |X| other vertices of C. The remainder of the proof is now
the same as that of Proposition 4.1. �
Corollary 4.7 Suppose a connected graph G has a circumference cycle with at
most �τ/2� attachment vertices. Then G is τ -partitionable.

We got into the habit of asking ourselves, whenever we encountered a nice result
or a new concept: “What can it do for the PPC?” At the turn of the century, Ryjáček’s
closure operation for claw-free graphs was a much discussed topic at the Cycles
and Colourings workshops in Slovakia. So we naturally decided to prove the PPC
for claw-free graphs. It turned out that Theorem 4.4, Corollary 4.7 and Ryjáček’s
closure operation were the exact ingredients that were needed.

A graph is called claw-free if it does not contain the complete bipartite graph
K1,3 as induced subgraph. Ryjáček [29] defined the closure of a claw-free graph G

in the following way. A vertex x in a claw-free graph G is eligible if the subgraph
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induced by the open neighbourhood N(x) of x is a connected noncomplete graph.
The local completion of an eligible vertex x is the operation of joining every pair
of nonadjacent vertices in G[N(x)] by an edge. The closure cl(G) of G is the
graph obtained from G by recursively performing the local completion operation
to eligible vertices of G until no eligible vertex remains.

A claw-free graph G is said to be closed if cl(G) = G. Brandt, Favaron and
Ryjáček [5] proved the following.

Theorem 4.8 ([5]) If G is a claw-free graph, then the following hold.

1 cl(G) is well defined. (It is independent of the order of the eligible vertices used
during the construction.)

2 cl(G) is also claw-free.
3 For every vertex v in cl(G) the graph induced by its neighbours in cl(G) is either

a complete graph or the disjoint union of two complete graphs.
4 τ(cl(G)) = τ(G).

It follows from Theorem 4.8 that every claw-free graph is a spanning subgraph of
a closed claw-free graph with the same detour order. Furthermore, every component
of a claw-free graph is claw-free, and a graph has an (a, b)-partition if each of
its components has an (a, b)-partition. Thus, in order to prove that the PPC holds
for claw-free graphs, it is sufficient to prove that every connected, closed claw-free
graph is τ -partitionable.

Observe that if C is a longest cycle in a graph G and x has a neighbour y in
G−V (C), then by the maximality of C, neither the predecessor x− nor the successor
x+ of x is adjacent to y. Hence, if G is claw-free, it contains the short chord x−x+
of C. Thus, in a claw-free graph any circumference cycle has at least as many short
chords as attachment vertices. Using this fact together with Theorem 4.8, it was
straightforward to obtain the following result.

Lemma 4.9 ([14]) Suppose G is a connected, closed claw-free graph such that
every circumference cycle of G has more than �τ(G)/2� attachment vertices. Then
G is semi-pancyclic.

From Theorem 4.4, Corollary 4.7 and Lemma 4.9, we obtain the desired result.

Theorem 4.10 ([14]) Every claw-free graph is τ -partitionable.

A cograph, or complement-reducible graph, is a graph that can be generated
from the single-vertex graph K1 by complementation and disjoint union. Thus
the class of cographs is the smallest class of graphs that includes K1 and is
closed under complementation and disjoint union. Corneil, Lerchs and Burlingham
[12] established several interesting characterizations of cographs, among them the
following:

Theorem 4.11 A graph G is a cograph if and only if G does not contain the path
P4 as induced subgraph.
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During a recent workshop at Salt Rock on the Kwazulu-Natal coast, the
participants (Ortrud Oellermann, Johan de Wet, JD and MF) observed that it follows
from the above characterization and Corollary 4.7 that the PPC holds for cographs.
We present the proof here.

Theorem 4.12 Every cograph is τ -partitionable.

Proof Let C be a circumference cycle of a connected cograph G. Suppose C has
more than τ(G)/2 attachment vertices. Then there are two consecutive vertices u, v

on C with respective neighbours x, y in G − V (C). But then xuvy is an induced
P4 by the maximality of C, contradicting Theorem 4.11. This proves that C has at
most τ(G)/2 attachment vertices, and hence G is τ -partitionable by Corollary 4.7.
We conclude that every component of a cograph is τ -partitionable, and this implies
that every cograph is τ -partitionable. �

A block of a graph G is a maximal 2-connected subgraph of G. Another
important consequence of Proposition 4.2 is this one.

Theorem 4.13 ([13]) If every 2-connected graph is τ -partitionable, then every
graph is τ -partitionable.

Proof The proof is by induction on the number of blocks. Suppose G is a graph
with more than one block and τ(G) = a + b. By Proposition 4.2 we may assume
that b < c(G), so G has a block X that contains a cycle C with at least b vertices.
Let Z be an end-block of G, with Z 
= X and denote its cut-vertex by z. Let G′ =
G − (V (Z) − z). By our induction hypothesis, G′ has an (a, b)-partition. Let Di =
{v ∈ Z : d(v, z) = i}. Then, since there is a path from z to the cycle C in G′, the
detour order of each distance set Di is less than a, so by the technique used in the
proof of Proposition 4.1, we obtain an (a, a)-partition of Z. Combining it with the
(a, b)-partition of G′, we obtain an (a, b)-partition of G. �

We call a graph G detour-saturated if τ(G + xy) > τ(G) for every pair of
nonadjacent vertices x, y in G. A detour-saturated graph with detour order k is
called k-detour-saturated. If G is a graph with detour order k, then G is obviously
contained in a k-detour-saturated graph G∗, and if G∗ is τ -partitionable, then so is
G. Thus, in view of Theorems 4.5, 4.7 and 4.13, proving the following conjecture
will prove the PPC.

Conjecture 4 If G is any 2-connected non-bipartite detour-saturated graph such that
every circumference cycle of G has at least τ(G)/2 attachment vertices, then G is
faintly pancyclic.

We began investigating detour-saturated graphs in collaboration with Lowell
Beineke at a Salt Rock workshop in 2001. In the paper [2] that resulted from this
workshop, we conjectured that every bipartite detour-saturated graph is acyclic. If
this is the case, the “non-bipartite” condition may be omitted from Conjecture 4.
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5 Are We There Yet?

The detour deficiency p(G) of a graph G is the difference between its order and its
detour order. A graph with detour deficiency p is called p-deficient. A 0-deficient
graph is also called a traceable graph.

Now suppose G is a p-deficient graph and a + b = τ(G), a ≤ b. Then the order
of G is a + b + p. If p = 0, then an (a, b)-partition of G can obviously be obtained
by placing any a vertices in A and the remaining b vertices in B. If G is 1-deficient,
it follows from Dirac’s classic degree condition for traceability that G has a vertex
x of degree at most τ(G)

2 ≤ b. Thus we can choose a set B of exactly b vertices
from G − x such that N(x) ⊆ B. Now, if A = V (G) − B, then |A| = a + 1 and
τ(G[A]) ≤ a, since x has no neighbour in A. Thus (A,B) is an (a, b)-partition
of G.

During the final coffee break at the International Conference in Graph Theory in
the Ithala Game Reserve in 2001, Ingo Schiermeyer suggested that we try to extend
the above partition strategy for graphs with larger deficiency. In general, if a ≤ b

the strategy would be to find a set X consisting of p vertices such that X has at most
τ(G)/2 neighbours in G−X. Ingo eventually succeeded in carrying out the strategy
for p = 2, 3, so the following result is proved.

Theorem 5.1 ([16]) For 0 ≤ p ≤ 3, every p-deficient graph is τ -partitionable.

For p-deficient graphs with p > 3, Ingo managed to get his partition strategy
to work for graphs of sufficiently large order in relation to p. He achieved this
by considering attachment vertices and independent sets on longest paths and
applying our cycle route strategy (in particular, Theorem 4.2 and Corollary 4.7).
This culminated in the following asymptotic result for the PPC. (Ingo proved the
crucial step in 2003, during a two-hour journey from the Pilanesberg Game Reserve
to Pretoria.)

Theorem 5.2 ([16]) For p ≥ 4, every p-deficient graph of order at least 10p2−3p

is τ -partitionable.

Theorem 5.2 seems to indicate that the end of our journey is almost in sight. But
the horizon is forever shifting.

6 Uncharted Routes

In this section we discuss a few open problems that have crossed our path during
our PPC journey. The ideas and techniques presented in the previous sections
go some way towards solving them, but not far enough. Perhaps the reader can
contribute some innovative new ideas for making further progress or even solving
these problems.
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1. Does the PPC hold for planar graphs?. We know that every maximal planar
graph is weakly pancyclic and hence τ -partitionable, but that does not necessarily
imply that all planar graphs are τ -partitionable. (Note that if edges are added to
a planar graph to obtain a maximal planar graph, the detour order may increase.)
The only results that we have found on this problem are the following, by Glebov
and Zambalaeva [18].

Theorem 6.1 ([18]) The PPC holds for planar graphs with girths 5, 8, 9 and
16. Moreover, planar graphs with girths 8, 9 and 16 have a (2, 3)-partition, a
(2, 2)-partition and a (1, 2)-partition, respectively.

2. Does the PPC hold for locally connected graphs? A graph G is locally connected
if for each v ∈ V (G), the graph induced by the open neighbourhood N(v) of
v is connected. Ryjáček [31] conjectured that every locally connected graph is
weakly pancyclic. If his conjecture is true, it would imply that every locally
connected graph is τ -partitionable. Ryjacek’s Conjecture seems a tough nut to
crack, so we suggest trying to prove the following weaker conjecture, which
would still imply that every locally connected graph is τ -partitionable.

Conjecture 5 If G is any connected locally connected graph such that every
circumference cycle of G has at least τ(G)/2 attachment vertices, then G is
faintly pancyclic.

3. One could consider replacing ‘locally connected’ in Problem 2 with ‘locally
traceable’ or ‘locally hamiltonian’.
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