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Abstract. This paper argues that according to the relevant discover-
ies of cognitive science, in AGI systems perception should be subjective,
active, and unified with other processes. This treatment of perception
is fundamentally different from the mainstream approaches in computer
vision and machine learning, where perception is taken to be objective,
passive, and modular. The conceptual design of perception in the AGI
system NARS is introduced, where the three features are realized alto-
gether. Some preliminary testing cases are used to show the features of
this novel approach.

1 The Nature of Perception

In general, “perception” refers to the organization and interpretation of sensory
information during the interaction between the system and its environment. The
perceptual process is usually taken as a multi-level generalization or abstraction,
by which the sensory information of various modularity is gradually transformed
and integrated into a concept-level description of the environment, then used to
carry out various types of task, like the recognition of objects and events [20].

A representative and influential work in this field is Marr’s work on vision [15].
Marr described vision as a computation where the input is a two-dimensional
signal array and the output is a three-dimensional description of the world. The
system implements an algorithm that carries out this computation. In the early
years, algorithms for perception (vision, speech, etc.) were designed directly by
the researchers. These algorithms extract certain predetermined features from
the input, and then decide the output according to them. Later, machine learning
let the computer system itself choose the features for a given problem, using the
training data as guidance [6]. Most of the recent achievements of deep learning
are obtained by designing special learning algorithms to take the advantage of
the abundance of training data and computational power [14].

Though the current techniques work well on many problems, they lack gen-
erality and flexibility, and the processes and results are hard to explain. These
issues are of special significance in AGI systems, where perception often faces
novel situations, and real-time response is required. These problems are all well
known, though most researchers attempt to solve them within the framework of
an existing technique, such as deep neural networks. What we want to propose
in this paper is an alternative approach.
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This new approach toward perception in AGI is mainly based on the research
results on human perception [2–5,7–13,16–19,22,23]. Because of the length
restriction of the paper, in the following we cannot survey these results, but
summarize them into three key features:
Subjective: Perception is a constructive process carried out according to the
current needs of the system, and the sensory information is organized using the
available percepts (patterns, mental images) and concepts (notions, categories)
of the system. Consequently, different systems may perceive the same situation
differently, and even the same system may perceive the same situation differently
in various time and context, though some similarity can be expected. According
to this opinion, perception should not be treated as a function or computation
that maps every sensory input into a unique “correct representation”, and the
aim of perception should not be considered as creating an “objective model”
of the world. Here “subjective” does not mean “arbitrary” or “random”, but
“depending on the system’s past experience and current status”.
Active: Perception should not be taken as a process in which the system pas-
sively processes the sensory information imposed on it by the user or the environ-
ment, but a goal-guided process in which the system selectively acquires certain
information via the execution of its own operations. According to this opinion,
perception is not a pure input process, but should be studied together with the
related actions of the system. Perception is not mainly about signal processing
or pattern recognition, but sensorimotor coordination where the system predicts
the sensory effects of its own actions.
Unified: Perception should not be considered as carried out by a separate mod-
ule that is independent of the other cognitive processes, but as closely tangled
with them. In particular, many basic perceptual operations can be treated as
inference, and learning in perception is not that different from learning in cogni-
tion in general. Though perception can still be considered mainly as a multi-level
generalization with a certain degree of modularity, it is not a purely bottom-up
process, but heavily influenced by top-down forces. In a system with multiple
types of sensor, the integration of the information happens at early stages of the
process, rather than until each modality-specific modules completes its work.

This new opinion about perception challenges the basic assumptions of many
existing AI techniques, and is not completely unknown to the AI community.
Various types of “top-down” influence introduce subjective factors into percep-
tion [28], the “active vision” approach integrates action into perception [1], and
to include reasoning in perception is a hot topic in the deep learning research
[21]. Even so, we have not seen an approach with these three features altogether.
Furthermore, in most projects perception is still treated as objective, passive,
and isolated.

In this paper, we explore a new direction with the above natures from the very
beginning. Such an attempt cannot be accomplished soon, but there are reasons
to give it a try. In the following we introduce a preliminary design, as a first step
in this direction. The following design is an addition to NARS (Non-Axiomatic
Reasoning System), which is an AGI system that has been described in a large



Perception from an AGI Perspective 261

number of publications, including [25,27]. Limited by paper length, here we only
describe the components of NARS that are directly related to perception.

2 Representation and Semantics

NARS uses the formal language Narsese for both internal representation and
external communication, and its grammar is given in [27]. Narsese is a term-
based language, in which each term is the identifier of a concept within the
system. Unlike traditional “symbolic AI” systems, the meaning of a term in
NARS is determined not by an entity outside the system it refers to, but by
its experienced relations with other terms, and sometimes also by its built-in
relations with certain sensorimotor component. Beside atomic terms, there are
also compound terms composed from other terms by logical connectors, whose
compositional relations with its components also contribute to the meaning of
such a term [24].

As far as perception is concerned, terms can be divided into the following
types:

– A sensory term is an array that represents concurrent sensations pro-
duced by the same type of sensor. An array can be 1-dimentional (vector),
2-dimensional (matrix), or 3-dimentional (space). The familiar format A[i,j,k]
will be used to indicate a component in array A. For example, after every
visual observation the sensors for brightness produce a 1024-by-1024 matrix
B, where each ‘pixel’ B[i,j] represents the brightness produced by a sensor at
the location indicated by the indexes.

– A perceptual term is also an array, though it is not directly produced by sen-
sors, but constructed from other sensory and perceptual terms. For example,
a perceptual term P can be obtained by taking a part of a sensory term S.
More descriptions on this type of term are in the following.

– An operational term represents an executable operator, and an operation is
an operator applied on a list of terms (as argument), which can be either a
physical operation on the external environment, or a mental operation on the
internal environment, i.e., the memory of the system. Operations can be com-
pounds, too, formed from other operations recursively and hierarchically [26].

– An abstract term does not have direct sensorimotor association as the above,
so is just an identifier that gets its meaning from its experienced or compo-
sitional relations with other terms [24].

Conceptually, sensory and perceptual terms can be taken as multi-
dimensional spaces with a coordinate defined on each dimension in the range
of [−1, 1], though each space is stored discretely in an array. In this way, many
operations on these terms can be defined independently of the storage size of
the arrays involved. For instance, an element of a matrix A can be identified
either as A[i, j] with index i and j, or as A(x, y) with coordinates x and y. For
each dimension, the coordinate x and the index i (from 1 to N) can be linearly
mapped into each other according to the relation (x + 1)/2 = (i − 1)/(N − 1),
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that is, x = (2i−N − 1)/(N − 1) and i = ((N − 1)x+N + 1)/2. Since an index
must be an integer, the mapping result for i may either be rounded, or used at
both integers around it with a confidence discount, depending on the nature of
the operation.

Terms are related by a number of copulas (which can be inheritance, similar-
ity, implication, or equivalence) to form a statement, and its truth-value measures
the evidential support the statement gets according to the system’s experience.
A truth-value consists of a pair of values, where the frequency value represents
the proposition of positive evidence among all evidence, so is in [0, 1], while
the confidence value represents the proposition of currently available evidence
among all evidence at a future time after a constant amount of new evidence
arrives, so is in (0, 1). NARS stands for “Non-Axiomatic Reasoning System”,
since in the system no empirical belief has the status of axiom whose truth-value
cannot be adjusted by future evidence [24].

For perception, each group of sensor can be invoked by an operator to receive
certain signal (which can be physical, chemical, biological, electrical, etc.), and
the result corresponds to a statement S → [T ], where S is a sensory term, T
the type of the sensation, and ‘→’ the inheritance copula. In this context, the
statement just classifies the sensation as of a certain type. Since S is an array,
each element in it stores a Narsese truth-value, where frequency is intuitively
the “strength” of the sensation, and confidence is intuitively the “reliability”
of the sensation. The truth-values at different locations of the same array can
be different, where the frequency distribution corresponds to the spatial pattern
of the sensation, and the confidence distribution may summarize various factors
like noise, resolution, attention, etc. In particular, a perceptive field of any shape
can fit into a multi-dimensional array by assigning the irrelevant elements a 0
as confidence, so they will make no impact to the following perception process.

3 The Construction of Perceptual Terms

Terms in NARS can be obtained directly from the system’s experience, or con-
structed by the system from the existing terms using composing/decomposing
rules [27]. For the current discussion, sensory terms are produced by the sensors,
while perceptual terms are constructed by the system from the existing sensory
or perceptual terms.

To directly construct a perceptual term B from a sensory term A, four param-
eters are needed. Taken 2-dimensional terms as example: a pair of coordinate
(x, y) is taken to set a focus point at A(x, y) to be used as the center of B.
The other two parameters are used to decide the scope of perception: a center
value will be the radius of the circular area around A(x, y), in which the truth-
values of A will be copied into B as they are; a boundary value will be the
width of the peripheral zone around the central area, in which the truth-values
of A will be copied into B after a discount factor is multiplied to the confidence
value, and this factor decreases linearly from 1 to 0 when the point moves away
from the center. This operator will get a circular copy of a part of A, with the
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boundary blurred gradually. The elements of B outside the boundary will all
have confidence 0. For default, we set x = y = 0, center = boundary = 0.5.

Perceptual terms can also be constructed from other perceptual terms by a
mental operator that adjusts the parameters, where ‘⇑’ is the prefix of operators:

– ⇑focus(x, y) will set the focus point to the given coordinates.
– ⇑shift(dx, dy) is effectively focus(x + dx, y + dy). This operator allows the

focus point to be adjusted relatively to the current position.
– ⇑zoom(z) changes center and boundary by multiplying z to them. When

z > 1, it is “zoom out”; When z < 1, it is “zoom in”.
– ⇑rotate(a) turns the perception around the focus point clockwise to the

angle a.

Another group of constructors corresponds to the term connectors that are
already defined in NARS among statements: disjunction, conjunction, and nega-
tion [27]. For the latter, the NARS negation rule is applied to every element of
an array to get the negated perceptual term; for the formers, elements of two
given arrays are processed pair by pair by the disjunction or conjunction rule
to get the new array. If the given arrays have different sizes in terms of storage
space, coordinates are used to map one to the other before they are combined.

Using these constructors, a sensation of arbitrary complexity can be perceived
as a compound term consists of existing terms combined using the term connec-
tors and mental operations recursively and hierarchically. Perceptual knowledge
will be integrated with the other types of knowledge in NARS, including declara-
tive (eternal), episodic (temporal), and procedural (operational). A typical state-
ment in NARS will not be part of a description of the world as it is, but is more
like “When the condition c is satisfied, if I execute operation o, I will perceive
its effect e”, which is an extension of the previous form of procedural knowledge
described in [27].

4 Perception via Inference

All terms in NARS are treated by the inference rules basically in the same way,
no matter whether the term is associated directly with a sensorimotor component
(like the sensory, perceptual, and operational terms). Consequently, inference can
be carried out among mental images and operations, just like among abstract
concepts.

There are special variants of rules that are dedicated to sensorimotor mecha-
nism. For example, temporal induction/comparison do not require shared term in
the premises, but their closeness in time. Similarly, spatial induction/comparison
can be carried out among array elements that are close spatially to each other,
so as to achieve functions like auto-filling, associative memory, and “percep-
tual set”, which is a perceptual bias or predisposition or readiness to perceive
particular features of a stimulus.

Inheritance/similarity statements between arrays can be built between sen-
sations and perceptions of the same type. From S1 → [T ] and S2 → [T ], by
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abduction S1 → S2 and S2 → S1 can be derived. While in ordinary abduc-
tion each premise only has one truth-value, here both S1 and S2 are arrays, so
abduction between the corresponding element pairs are carried out first [27],
then the results are merged by the revision rule to get an overall truth-value for
the relation between the two arrays.

As perception is closely related to the system’s operations, 3-D perception
may start at the three degrees of freedom of body movements, combined with
the feedbacks in the related sensorimotor channels (visual, auditory, kinesthetic,
tactile, etc.). Consequently, an object is usually represented according to the
system’s interaction with it, or its “affordance” [7], rather than “as it is”.

As movements are sequence of events, object movements are similarly per-
ceived with compensation of movements of sensor and perceptive field. Like other
knowledge, such compensation is learned by the system in its interaction with
the environment.

NARS supports multiple input/output channels. Besides the primary chan-
nels that directly recognize Narsese tasks, there can also be multiple sensory
channels, each dedicated to a special type of sensor or several types of related
sensor. Within the system, there is also an “overall experience” channel that is
not directly connected to any sensor, but integrates significant events from all
other channels.

Perception is the process where relations are derived among the sensory
terms, as well as between them and the other (non-sensory) terms. Beside the
semantic relations provided by the copulas and the syntactic relations by the
term connectors, there are also temporal-spatial relations directly coming from
the input channels.

As a result of processing sensory experience, spontaneous forward inference
happens as far as the significance of the signal is above the threshold of the
sensory channel, which can be adjusted by factors including the system’s antic-
ipation, extent of busyness, emotional status, etc. This spontaneous inference
can be triggered by the results of the system’s observation operations.

Perception will summarize the sensory experience into descriptions at mul-
tiple levels of generalization and abstraction in parallel, where the array-based
“sensory” representation and the concept-based “symbolic” representation will
co-exist. The system represents the situation both as a mental image and as
a judgment like “A cat is on a mat”, where the latter is formed by matching
the parts of the image with concepts in the system and recognizing their rela-
tions. These two types of representation will interweave at all levels and are
irreducible into each other. An image corresponds to an existing concept will be
remembered better and accessed easier than an incomprehensible image. This
feature should allow the model to explain phenomena like Gestalt shapes, visual
illusions, Bongard figures, and so on.

During perception, the bottom-up signal-compression and the top-down
anticipation will form a mutual confirmation process. The sensory input first
suggests some patterns with associated concepts, and anticipation and inference
then increased the confidence of the suggestions, which in turn lead the fill-in of
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details. As the system changes its internal states, it is normal for the same sit-
uation to be perceived differently, with different objects and events recognized.
The result of perception is under constant revision with the coming of new expe-
rience, as well as with the continuous thinking process of the system. Therefore,
the perception mechanism is not a function that maps the input signals into a
unique “correct” representation. Instead, it will be more similar to the human
perception process.

Beside the automatic self-organizing process in perception, the most common
deliberative tasks are “recognition” and “imagination”. Roughly speaking, the
former is to find a concept for an image, while the latter is to find an image
for a concept, where the relation from the image to the concept is the inher-
itance copula. In NARS, both processes are carried out by inference, with all
types of uncertainty involved, and the final answer is chosen among the available
candidates by balancing truthfulness, simplicity, and usefulness [25].

5 A Simple Example

The conceptual design described above is being experimented in NARS, and
currently the sensory terms have been implemented, while the perceptual terms
have not. While our prototype is at an early stage, we can nevertheless demon-
strate some results on gray scale images, as well as using such a concrete example
to explain the proposed approach to perception.

The first example is to choose a label for a given image. To keep the exam-
ple simple, 5× 5 images are used. Initially, a diamond, M1, and a cross, M2,
are entered as Narsese sentences and categorized. In the input, the pixels not
mentioned are black by default:

//Input: Bright pixels in M1: //Input: Bright pixels in M2:
<{M1[-1.0,0.0]} --> [bright]>. <{M2[0.0,1.0]} --> [bright]>.
<{M1[1.0,0.0]} --> [bright]>. <{M2[0.0,0.5]} --> [bright]>.
<{M1[0.0,1.0]} --> [bright]>. <{M2[-1.0,0.0]} --> [bright]>.
<{M1[0.0,-1.0]} --> [bright]>. <{M2[-0.5,0.0]} --> [bright]>.
<{M1[0.5,0.5]} --> [bright]>. <{M2[0.0,0.0]} --> [bright]>.
<{M1[-0.5,0.5]} --> [bright]>. <{M2[0.5,0.0]} --> [bright]>.
<{M1[0.5,-0.5]} --> [bright]>. <{M2[1.0,0.0]} --> [bright]>.
<{M1[-0.5,-0.5]} --> [bright]>. <{M2[0.0,-1.0]} --> [bright]>.
//It is a diamond: <{M2[0.0,-0.5]} --> [bright]>.
<{M1} --> diamind>. //It is a cross:

<{M2} --> cross>.

Then a noisy pattern M3 is entered, and followed by a question asking what
it is:
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//Input: Pixels at these locations in M3 are bright or half-bright:
<{M3[-1.0,1.0]} --> [bright]>. %0.5%
<{M3[0.0,1.0]} --> [bright]>.
<{M3[-0.5,0.5]} --> [bright]>.
<{M3[0.5,0.5]} --> [bright]>. %0.5%
<{M3[-1.0,0.0]} --> [bright]>. %0.5%
<{M3[1.0,0.0]} --> [bright]>.
<{M3[-0.5,-0.5]} --> [bright]>.
<{M3[0.5,-0.5]} --> [bright]>. %0.5%
<{M3[1.0,-0.5]} --> [bright]>. %0.5%
//How to categorize M3?
<{M3} --> ?what>?

From these inputs, by merging pixel-wise comparisons of the matrices, two
similarity judgments are derived, then by analogy, the new pattern is recognized
as most likely to be a diamond (among the existing categories):
//M3 is quite similar to M1
<M1 <-> M3>. %0.61;0.88%
//M3 is not similar to M2
<M2 <-> M3>. %0.19;0.91%

<{M3} --> diamond>. %0.61;0.48% //M3 is likely a diamond
<{M3} --> cross>. %0.19;0.16% //M3 is unlikely a cross

Answer <{M3} --> diamond>. %0.61;0.48% //System answer, M3 is taken as a diamond

After the perceptual terms are fully implemented, this example will be
enriched further, using the mental operators introduced previously. We can imag-
ine an input matrix M4 which looks like a diamond above a small cross (which
will surely need a large matrix than 5× 5). At the beginning the system will
attempt to classify the new sensation using the existing categories. Since in
NARS every conclusion is true to a degree, such an attempt often can produce
some answer, even though the quality of the solution will not be very high. For
this example, M4 will probably have a relatively higher similarity to M1 (by
ignoring the small cross) than to the other candidate. If the system is not sat-
isfied enough by this conclusion, it will continue to look for better answers by
decomposing M4 into simpler shapes plus some structures combining them.

Starting at default parameters at the sensation M4, an operation “⇑
shift(0, 0.5)” will turn its top part into a perceptual term M41, which matches
reasonably well with M1, so “{M41} → diamond” can be derived, which will
have less negative evidence than “{M4} → diamond”.

After that, operation “⇑shift(0,−0.8)” followed by operation “⇑zoom(0.4)”
on the current sensation will generate M42 that matches M2, a cross of the
default size. Now the question “{M4} → ?what” will be answered by judgment

{M4} → (⇑shift(0, 0.5),M41,⇑shift(0,−0.8),⇑zoom(0.4),M42)

which will have less negative evidence than the other candidate answers, though
being more complicated in syntax.

Of course, the above result assumes a proper sequence of mental operations.
In the initial experiment, it can be either predetermined or obtained from exhaus-
tive search, while in the future it will be learned together with the components
themselves. That means the system’s knowledge about an image also includes
information on how it is usually perceived as a sequence of events and operations.
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With a properly trained natural language interface, M4 can be described as
“A diamond above a small cross”. The given knowledge used in the example, such
as “{M1} → diamond”, can also be learned from the repeated co-occurrence of
an image and a word in the system’s experience, as they will both be associated
with a concept in the system which is named by diamond. However, it is impor-
tant to remember that in NARS, neither the image of a diamond nor the word
“diamond” will be used to “define” the term diamond (or whatever the term is
labeled), as the meaning of the an abstract term like diamond is not determined
only by its (visual) exemplifiers or (verbal) labels, but also by its relations with
the other terms, including the abstract ones.

Though only partially implemented, this example still shows the desired fea-
tures of this new approach to perception when compared with the conventional
computer vision techniques:

– Subjective: The answer to a question like “{M4} → ?what” not only
depends on M4, but also on the existing knowledge of the system and its
resource allocation situation when the question is processed.

– Active: The answer “(⇑ shift(0, 0.5),M41,⇑ shift(0,−0.8),⇑ zoom(0.4),
M42)” contains operational components, so perception is based on action.

– Unified: The question answering process is carried out by the inference rules,
and mingled with all the other co-existing processes in the system.

6 Discussion

This paper proposes a new conceptual design for perception in AGI systems.
Though this approach has not been fully implemented in NARS, and no enough
empirical results have not been obtained to support a definite conclusion about
its feasibility, the design nevertheless has the desired features observed in human
perception.

Psychologists have reached the consensus long ago that perception is multi-
level abstraction, and deep learning just realizes this in special-purpose systems
[14]. The approach we proposed also has the potential to carry out multi-level
abstraction, though with the following characteristics that distinguishes it from
deep learning and the other traditional approaches:

– Using meaningful term connectors to carry out abstraction from level to level.
It is assumed that the existing term connectors of NARS [27] are sufficient
for all necessary patterns — convolution and neuron models are basically
weighted average functions followed by a non-linear step, which should be
achievable using the set-theoretic operators of NARS.

– Carrying out multiple tasks, so the intermediate results are not bounded
to a single task, but have independent meaning. Therefore, learning results
are naturally transferable. As there is no distinction between “hidden layer”
and “input/output layer”, results at any layer are understandable (to various
degrees), and are adaptive with experience-grounded meaning.
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– Using multi-level abstraction to solve “over-fitting” and “inductive bias”, and
to keep multiple hypotheses for a given problem. For the same observation,
more abstract results are less confident, though they are simpler and can be
supported by other observations later, so can become preferred than the more
specific results.

– Using dynamic resource allocation to carry out local and incremental adjust-
ments to provide real-time responses. Compared to the global iterations
demanded by neural network models, this approach can meet various time
requirements associated with the tasks. The control mechanism of NARS is
not introduced in this paper, but can be found in other publications on NARS,
such as [25].

– Having stronger top-down influences, in the form of anticipation, familiar-
ity, emotion, etc. The existing conceptual hierarchy plays a significant role in
deciding what is perceived, while being adjusted in the process, as Piaget’s
assimilation-accommodation process, with stable perceptions as their equilib-
rium [18].

– Integrating perception with action, in the sense that (1) perception is carried
out by operation, (2) perception and operation have unified representation,
and (3) perceptive patterns are identified as invariants during related opera-
tions.

Like the other processes, perception in NARS will not attempt to simulate
human perception in all details, but its general principles and major features.
Consequently, it will still be closer to human than the existing AI techniques.

This research is still at its early stage, so the purpose of this paper is to raise
this possibility for the AGI community to consider and discuss. Though there
are many issues to be resolved, there are reasons to believe that this is a suitable
approach for AGI systems to carry out perception.
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