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Preface

The year 2018 could be considered the year artificial general intelligence (AGI) became
mainstream. Since Apple’s Siri was first introduced in 2011, narrow AI technologies
have permeated increasingly more aspects of our everyday lives. AI systems such as
Google’s Assistant, Amazon’s Alexa, Microsoft’s Cortana, iPhone X’s
face-recognition software, self-driving vehicles, and IBM Watson’s text-reading AI for
medical research are just a few examples of how AI systems are changing how we live
and work on a daily basis.

As these narrow AI systems become increasing prevalent, attention has begun to
shift toward the next generation of AI research including AGI. MIT introduced an
online graduate course in AGI in 2018, magazines such as Forbes have published
articles about the potential future of general AI systems, and the Discovery Channel
included a segment about AGI in its program “This Is AI.” The humanoid robot,
Sophia, became the first robot citizen in 2017, and SingularityNET, founded in 2017,
began the process of integrating AGI with blockchain technology. These are indeed
exciting times.

Despite all the current enthusiasm in AI, the technologies involved still represent no
more than advanced versions of classic statistics and machine learning. Behind the
scenes, however, many breakthroughs are happening on multiple fronts: in unsuper-
vised language and grammar learning, deep-learning, generative adversarial methods,
vision systems, reinforcement learning, transfer learning, probabilistic programming,
blockchain integration, causal networks, and many more.

The 11th AGI conference took place in Prague, Czech Republic, during August
22–25, 2018. For the second time, the AGI conference was held as part of the larger
Joint Multi-Conference on Human-Level Intelligence, HLAI, which co-located AGI
2018 with BICA 2018 (the Annual International Conferences on Biologically Inspired
Cognitive Architectures), and NeSy 2018 (the Workshop Series on Neural-Symbolic
Learning and Reasoning). Also included as part of HLAI 2018 was a separate day-long
track, following the main sessions, discussing “The Future of AI.”

This volume contains the contributed talks presented at AGI 2018. Of the 52 papers
submitted to the conference and reviewed by two or more Program Committee
members, 19 long papers papers were accepted (37% acceptance) for oral presentation,
and ten papers were accepted for poster presentations. One hallmark of the AGI
conference series has always been the incredible diversity of ideas on display through
its collection of contributed papers, and this year continued that trend. There are papers
covering AGI architectures, papers discussing mathematical and philosophical foun-
dations and details, papers developing ideas from neuroscience and cognitive science,
papers on emotional modeling, papers discussing ethical strategies, and a host of other
papers covering a wide-ranging array of additional relevant topics.

Keynote speeches were shared by the participating organizations and included
speeches by Ben Goertzel (SingularityNET, and Hanson Robotics), Thomas Parr



(University College London), Tomas Mikolov (Facebook AI Research),
Paul Smolensky, (Microsoft), Dileep George, (Vicarious Systems), Dr. Vladimir G. Red’ko
(Russian Academy of Sciences), and Hava Siegelmann (DARPA). Josef Urban
delivered an additional AGI keynote on the topic “No One Shall Drive Us from the
Semantic AI Paradise of Computer-Understandable Math and Science.”

In addition, the AGI 2018 conference featured a “Tutorial on Comparing Intrinsic
Motivations in a Unified Framework”; workshops on “AI4Space, AI for Space
Exploration and Settlement,” and “AI Meets Blockchain”; a symposium on “AI Safety
and Societal Impacts”; a panel session covering “Machine Consciousness”; and a
demonstration session.

We thank the people of GoodAI, in particular Olga Afanasjeva and Daria
Hvizdalova, for all of their help planning and handling local organization; Tarek
Beshold for having the vision for the larger Human Level AI conference series; and all
the Program Committee members for their dedicated service to the review process. We
thank all of our contributors, participants, and tutorial, workshop, and panel session
organizers, without whom the conference would not exist.

Finally, we thank our sponsors: the Artificial General Intelligence Society, Springer
Nature Publishing, SingularityNET, Hanson Robotics, and OpenCog Foundation.

June 2018 Matthew Iklé
Arthur Franz
Rafal Rzepka
Ben Goertzel
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Hybrid Strategies Towards Safe
“Self-Aware” Superintelligent Systems

Nadisha-Marie Aliman1(B) and Leon Kester2

1 University of Stuttgart, Stuttgart, Germany
nadishamarie.aliman@gmail.com

2 TNO Netherlands, The Hague, Netherlands

Abstract. Against the backdrop of increasing progresses in AI research
paired with a rise of AI applications in decision-making processes,
security-critical domains as well as in ethically relevant frames, a large-
scale debate on possible safety measures encompassing corresponding
long-term and short-term issues has emerged across different disciplines.
One pertinent topic in this context which has been addressed by various
AI Safety researchers is e.g. the AI alignment problem for which no final
consensus has been achieved yet. In this paper, we present a multidis-
ciplinary toolkit of AI Safety strategies combining considerations from
AI and Systems Engineering as well as from Cognitive Science with a
security mindset as often relevant in Cybersecurity. We elaborate on
how AGI “Self-awareness” could complement different AI Safety mea-
sures in a framework extended by a jointly performed Human Enhance-
ment procedure. Our analysis suggests that this hybrid framework could
contribute to undertake the AI alignment problem from a new holistic
perspective through security-building synergetic effects emerging thereof
and could help to increase the odds of a possible safe future transition
towards superintelligent systems.

Keywords: Self-awareness · AI Safety · Human enhancement
AI alignment · Superintelligence

1 Introduction

Being a topic of major importance in AI Safety research, AI alignment – which is
often interchangeably used with the term of value alignment – has been analyzed
from diverse point of views and incorporates a variety of research subareas many
of which were reviewed by Taylor et al. [29]. Two highly relevant approaches in
the realization of AI alignment the authors considered in this context are value
specification and error tolerance which were both introduced by Soares and
Fallenstein [28]. In order to do justice to these two distinct issues, Taylor et al.
postulate that “we can do research that makes it easier to specify our intended
goals as objective functions” concerning the first and “we can do research aimed
at designing AI systems that avoid large side effects and negative incentives,
c© Springer Nature Switzerland AG 2018
M. Iklé et al. (Eds.): AGI 2018, LNAI 10999, pp. 1–11, 2018.
https://doi.org/10.1007/978-3-319-97676-1_1
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2 N.-M. Aliman and L. Kester

even in cases where the objective function is imperfectly aligned” concerning the
latter. We take these high-level considerations alongside additional multidisci-
plinary observations as point of departure and apply a more abstract and holistic
analysis than many prior papers have utilized in this particular context to iden-
tify solution approaches. For instance, we see the need for “self-awareness” in AI
systems for reasons such as safety, effectiveness, transparency or explainability
just as such a functionality is required from the perspective of Systems Engi-
neering for the effectiveness and safety of advanced models. Beyond that, we
agree that methods inspired from Cybersecurity practices [20] could provide a
valuable support for AI Safety including the safety of self-aware AGIs. Further-
more, we also focus on the human factor in the AGI development and suggest to
make allowance for human cognitive constraints in AI Safety frameworks taking
a perspective jointly considering ethical aspects.

In the next Sect. 2, we posit that a (yet to be defined) “self-awareness”
functionality might beside other benefits account for an enhanced error toler-
ance within a future human-level AGI model and might indirectly facilitate the
value or goal specification process. Thereafter, in Sect. 3, we suggest that a self-
aware AGI that should be deployed in a real-world environment will have to
be supplemented by additional AI Safety measures including for instance an
AGI Red Teaming approach in order to maintain a high error tolerance level.
In Sect. 4, we analyse how AGI developers could proficiently face the problem of
adequate value specification in the first place, which could interestingly imply
the need for an enhancement of human “self-awareness” to a certain extent
with respect to the goal to identify the values humans really intend on the one
hand and regarding the aim to subsequently encode this values into prioritized
goals a self-aware AGI will have to adhere to on the other hand. Finally, in
the last Sect. 5, we reflect upon this set of hybrid strategies as an interwoven
entirety, consider its possible ethical implications and place it in the context of a
hypothetically thereof emerging type of superintelligence.

2 Self-Awareness

While the notion of “self-awareness” which is often used in the context of con-
cepts like “self-conciousness”, “self-control” or “self-reference” is not in the focus
of classical AI research, it is considered to be one of the key elements out of
the crucial competency areas for Human-Level General Intelligence according
to many AGI researchers (as investigated by Adams et al. [1]) and the notion
itself or related terms have been considered in some ways within various AGI
designs (e.g. in [5,6,12,13,18,25,31,32]). However, the relevancy of AGI self-
awareness from the perspective of AI Safety remains a poorly studied topic, even
though the omission of such a functionality in an AGI architecture might lead
to far-reaching implications in the future in regard to the safety of this system
if deployed in a dynamic real-world environment. Given that a definition of this
relatively abstract term is controversial and nontrivial, we will in the following
first provide a simple technically oriented definition of AGI self-awareness – for
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which we do not claim any higher suitability in general, but which is specifically
conceptualized for our line of argument – and then subsequently elucidate the
reasons for its crucial importance in AI Safety frameworks.

The definition is inspired by Systems Engineering practices with applications
to diverse types of dynamic systems as e.g. adapted by Kester et al. [14,15] or
van Foeken et al. [10] and is not restricted to the choice of any particular AGI
architecture provided that the AGI acts in a not further defined goal-oriented
manner, possesses sensors and actuators as well as the ability to somehow com-
municate with human entities. For clarity, when we refer to an AGI exhibiting
self-awareness in this work, we explicitly mean an AGI which is able to indepen-
dently perform self-assessment and self-management, whereby self-assessment
designates a set of processes enabling the AGI to determine the performance
of its various functions with respect to its goals (e.g. for associated physical
instances, internal cognitive processes, own abilities, own resources,...) by itself
and self-management the capability to adapt its behavior in the real-world on
its own in order to reach its goals based on the information collected through
self-assessment. In addition, the AGI is presupposed to be able to communicate
the insights obtained after having performed self-assessment and the choices
made in the self-management step to specified human entities.

In the following, we collate some possible highly relevant advantages for a
self-awareness functionality within an AGI architecture from the perspective of
AI Safety:

– Transparency: Through the ability of a self-aware AGI to allow important
insights into its internal processes to its designers, it by design does not
correspond to a “black-box” system as it is the case for many contemporary
AI architectures. The resulting transparency presents a valuable basis for
effective AI Safety measures.

– Explainability: Since the AGI performs self-management on the basis of
a transparent self-assessment, its decision-making process can be indepen-
dently documented and communicated, which might increase the possibility
for humans to extract helpful explanations for the actions of the AGI.

– Trustworthiness: An improved AGI explainability might increase its trust-
worthiness and acceptance from a human perspective, which might in turn
offer more chances to test the self-aware AGI in a greater variety of real-world
environments and contexts.

– Controllability: Through the assumed communication ability of the AGI, a
steady feedback loop between human entities and the AGI might lead to
an improved human control offering many opportunities for testing and the
possibility to proactively integrate more AI Safety measures. More details on
possible proactive measures are provided in the next Sect. 3.

– Fast Adaptation: Self-awareness allows for faster reactions and adaptations
to changes in dynamic environments even in cases where human intervention
might not be possible for temporal reasons which allows for an improved error
tolerance and security. Unwanted scenarios might be more effectively avoided
in the presence of negative feedback from the environment.
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– Cost-Effectiveness: There is often a tradeoff between security and cost-
effectiveness, however a self-aware system is inherently more cost-effective for
instance due to the better traceability of its errors, the facilitated maintain-
ability through the transparency of its decision-making processes or because
the system can adapt itself to optimal working in any situation, while lacking
any obvious mechanism which might in exchange lower its security level – by
what a double advantage arises.

– Extensibility : Finally, a self-aware AGI could be extended to additionally for
instance contain a model of human cognition which could consider human
deficiencies such as cognitive constraints, biases and so on. As a consequence,
the AGI could adapt the way it presents information to human entities and
consider their specific constraints to maintain a certain level of explainability.

However, after having compiled possible advantages AGI self-awareness could
offer to AI Safety, it is important to note that up to now, it was not specified
on what basis the goals of the self-aware goal-oriented AGI are crafted in the
first place. Moreover, the odds that a self-aware AGI spawns many of the men-
tioned desirable properties are even largely dependent on the quality of the goals
assigned to it and it is thus clear that self-awareness taken alone is far from repre-
senting a panacea for AI Safety, since it does not per se solve the underlying goal
alignment problem. Nonetheless, we argue that AGI self-awareness represents a
highly valuable basis for future-oriented AI Safety measures due to the vitally
important advantages it could bring forth if combined with appropriate goals. In
addition, AGI self-awareness might be able to itself facilitate the process of goal
alignment through the interactive transparent framework suitable for tests in
real-world environments it offers, whereby the selection of adequate goals clearly
remains a highly debatable topic on its own. From our perspective, the therefore
required goal function intrinsically reflecting desirable human values for a self-
aware AGI could be stipulated by humans which would be specifically trained in
interaction with that AGI and possibly ethically as well as cognitively enhanced
on the basis of technological advances/scientific insights, since humanity at its
current stage, seems to exhibit rather insufficient solutions for a thoughtful and
safe future in conjunction with AGIs – especially when it comes to the possi-
ble necessity for an unambiguous formulation of human goals. We will further
address the motivations for human enhancement to provide assistance during
this mentioned process of goal selection in Sect. 4.

3 Proactive AI Safety Measures

After having depicted possible benefits as well as still unanswered implications
in the context of a self-aware AGI, we now focus on crucial AI Safety measures
which might be necessary in addition to avoid unintended harmful outcomes
during the development phase and prevent risky scenarios after a subsequent
deployment of such an AGI architecture. While the suggested methods would
undoubtedly not guarantee an absolutely risk-free AGI, their indispensability to
at least obtain a well tested architecture built with a certain security awareness
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which particularly also takes the possibility of intentionally malevolent actors
[20] into account, seems however to prohibit their omission. Beyond that, it
seems imperative to incorporate a type of simulations of undesirable scenarios
while developing an AGI as a proactive rather than reactive approach, since the
latter might be reckless given the extent of possible future consequences which
could include a number of existential risks [7,20,30].

In the long run, further research on the following (unquestionably non-
exhaustive and extendable) measures building on previous work and extending
certain concepts could offer forward-looking hints in this regard:

– Development Under Adversarial Assumptions: Already during the AGI devel-
opment phase, the developers should take into account the most important
known types of e.g. integrity vulnerabilities that have been reported regard-
ing other AIs in the past (this could include rather similar architectures, but
importantly also cognitively less sophisticated AIs since it could represent
a type of minimum requirement) and should not per default conjecture a
benign environment. In a simplified scheme, assuming the development of an
AGI starting nowadays, it should for instance among others be ascertained
that none of the known adversarial methods to fool narrow AIs such as Deep
Neural Networks [19] would also lead to a defective information processing
of security-relevant kind if correspondingly corrupted inputs are presented to
the sensors of the AGI at hand. Besides that, new types of A(G)I attacks and
corresponding defense mechanisms should be actively ethically investigated.
In this context a new subfield of study on “adversarial examples for AGIs”
appears recommendable. While adversarial examples for narrow AIs are for
instance associated with definitions such as “inputs to machine learning
models that an attacker has intentionally designed to cause the model to make
a mistake”1, a corresponding analogy could be derived for AGIs. Ideally, the
self-aware AGI itself could be trained in identifying situations susceptible to
involve particular known safety threats.

– AGI Red Team: As it is the case in the context of security systems, devel-
opers tend to be biased towards emphasizing the robustness of their system
and might additionally exhibit “blind spots” to existing vulnerabilities while
implementing defense strategies [16], which is why realistic red team events
offer an invaluable security tool in many Cybersecurity frameworks [22–24].
Red Teaming has recently as well be proposed by Brundage et al. [8] in
the context of recommendations for an AI Safety framework covering short-
term issues for the next 5 years. Similarly, an external AGI red team could
in the long-term periodically perform real-world attack simulations after the
deployment of an AGI, with the goal to identify certain types of possibly
overlooked vulnerabilities to sophisticated attacks. The red team could for
instance explicitly try to trigger unethical actions on the part of the AGI by
placing it in unknown or unusual contexts. In these settings, the blue team
would correspond to the AGI developers which are responsible for the defense
design within the AGI architecture. Possibly, social engineering performed by

1 Mentioned in: https://blog.openai.com/adversarial-example-research/.

https://blog.openai.com/adversarial-example-research/
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the red team on the blue team could disclose biases underlying the AGI train-
ing or its architecture and facilitate the crafting of specific targeted attacks.
It is to be expected that such red team exercises will contribute to strengthen
the robustness and possibly even enhance the cognitive abilities of the AGI by
providing the AGI developers with comprehensive hints on how to enhance
the defense designs which could for instance be of meta-cognitive nature. The
ultimate objective would be to achieve a state from which on the self-aware
AGI has learned to automatically and independently run self-tests simulating
such systematical adversarial attacks.

– Regular Measurement of Cognitive Ability and Inhibition of Self-interest: To
maintain transparency and allow for a certain minimal monitoring of the
AGI, it might be essential to be regularly aware of the level of cognitive abil-
ity it exhibits in order to customize the security measures. Besides classically
proposed Turing Tests, one further interesting type of test is the recently pro-
posed “test for detecting qualia” introduced by Yampolskiy [33] and based
on visual illusions. Even if – from a philosophical point of view – it could be
debatable whether the described test measures the presence of qualia itself, we
suppose that it could provide invaluable cues to detect higher cognitive abil-
ities as exhibited by an AGI, since just like human misperceptions (including
e.g. optical illusions) can for instance help to better understand the mech-
anisms underlying the perception of humans in Cognitive Science, so could
the analysis of AGI misperceptions analogously help to understand the inter-
nals of an AGI system. An automatic program could periodically test the
AGI and generate an alarm in the case of “cognitive anomalies” indicating
an unusual increase of cognitive capacity. This regular test could also be
implemented as a self-test mechanism within the self-aware AGI architecture
itself. However, an explicit protective mechanism that prevents the AGI from
evolving any kind of harmful intrinsic goals out of self-interest should be
additionally designed in order to obviate any undesirable takeoff scenario. A
related core idea to prevent an AGI from evolving a type of misaligned self-
interest has been described by Goertzel [11] in the context of his suggestion
for a specifically designed “AI Nanny” developed with a pre-defined set of
goals and encompasses for instance “a strong inhibition against modifying its
[the AI Nanny’s] preprogrammed goals” or “a strong inhibition against rapidly
modifying its general intelligence”.

Yet, these strategies in combination with AGI self-awareness taken alone might
not be sufficient given the human component in the development of the AGI
entailing a wide array of undesirable ethical, cognitive and evolutionary biases.

4 Human Enhancement

Whereas in the context of the value alignment problem, the focus is often set
on how future AGIs could optimally learn values from human agents be it
for instance by imitation or by predefined ethical goals, a jointly performed
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technology-supported learning approach for human agents to enhance their cog-
nitive abilities and ethical frameworks in order to be able to develop improved
capabilities qualifying them to more competently deal with this highly relevant
problem in the first place, remains an under-explored topic. Given the large array
of human deficiencies including for instance cognitive biases [34], unintentional
unethical behavior [26] or limitations of human information processing which
could be considered as major handicaps in succeeding to solve the AI alignment
problem, the approach to extend the abilities of humans in charge of develop-
ing an ethical AGI by science and technology emerges as auspicious strategy,
however certainly not without reservations.

We postulate that the following two complementary types of human enhance-
ment could be decisive to ameliorate the value specification abilities of humans
improving the odds to succeed in AI alignment:

– Ethical Enhancement: One prominent subproblem of goal alignment can be
simply described as to make the AI learn human goals [30]. For this purpose,
humans obviously need to be first aware of the values they really intend
to implement in order to encode them as a factual set of prioritized goals
within an AGI model. Similarly, as stated in [3], humans need to become
better “ethical regulators” (e.g. of themselves and of AIs) in an era which
will be more and more shaped by AI. This task might inter alia require
a better type of “self-assessment” on the part of humans – especially with
regard to their own concrete ethical preferences, abilities and constraints. To
improve the required human ethical self-assessment for the development of
safe AGIs, developers should consider a dynamic multifarious science-based
ethical framework which could for instance encompass debiasing training [17]
as well as methods from behavioral ethics [9] and could in the future even
include a type of AGI-assisted debiasing training where the same self-aware
AGI which is periodically checked for safety could e.g. act as “teacher” in
game settings providing a personalized feedback to its developers which could
be expanded to a testing of acquired ethically relevant skills. Additionally, the
group formation of the AGI developers itself should ideally reflect a synergetic
heterogeneity of worldviews to fend off inequality and unnecessary biases at
the core of the goal selection process.

– Cognitive Enhancement: Some decades ago, the cybernetics pioneer Ross
Ashby expressed the following train of thought [4]: “[...] it is not impossible
that what is commonly referred to as “intellectual power” may be equiva-
lent to “power of appropriate selection”. [...] If this is so, and as we know
that power of selection can be amplified, it seems to follow that intellectual
power, like physical power, can be amplified.” Even if this statement might
still reflect a controversial issue and human enhancement technologies are still
in their infancy, expected progresses in areas such as Nanorobotics, Bionics,
Biotechnology, Brain-Computer Interface research or the newly arisen field
of Cyborg Intelligence integrating “the best of both machine and biological
intelligences” [27] might lead to considerably extended possibilities for cog-
nitive enhancement in the foreseeable future. Transferring the term used
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in Ashby’s statement to a different context, we argue that (possibly AGI-
assisted) methods to increase the human “power of appropriate goal selection”
within the framework of AGI development given the ethical values agreed
upon while supported by preceding ethical enhancement procedures, repre-
sent an essential future research direction to be pursued for AI Safety reasons.
For this purpose, one could first experimentally start with presently rather
primitive and clearly not sufficient enhancement concepts such as mental
training, HMI tools, neurofeedback, non-invasive brain stimulation methods,
multi-mind BCIs for decision-making or nootropics. Later on, a reasonable
priority for a self-aware AGI might even be to generate methods facilitat-
ing human cognitive enhancement and develop concepts where if procurable
the AGI augments rather than surrogates human entities initiating a bidi-
rectional learning framework. Besides that, the group composition of AGI
developers should ideally promote multidisciplinarity in order to reduce the
occurrences of AI Safety relevant blind spots in the development phase and
should comprise numerous partcipants with diverse research backgrounds.

While it should be clear that human enhancement pathways (such as through
brain-machine collaboration) cannot guarantee the prevention of an occurring
unethical AGI [2], not to perform human enhancement does not guarantee it
either. Furthermore, the abstention from ethical human enhancement also does
not necessarily prevent the performance of unethical human enhancement by
malevolent actors at a later stage. Therefore, we argue that the early practice
of human enhancement for ethical purposes like the improvement of the value
specification process for AI alignment, might increase the odds of a resulting
ethical AGI and could even in the long-term facilitate the detection of poten-
tial unethical AGI development or unethical human enhancement through the
bundled cognitive and ethical abilities that could emerge out of the suggested
bidirectional framework of mutual enhancement.

5 Conclusion and Future Prospects

In this work, we postulated that AGI self-awareness represents a highly valuable
functionality from the perspective of AI Safety as it might be helpful for the
error tolerance subtask of AI alignment as well as indirectly for value specifica-
tion and provides many advantages such as transparency or explainability. We
then introduced a number of proactive AI Safety measures including AGI Red
Teaming which could be necessary in addition to the self-awareness functional-
ity to maintain security and which might be beneficial for the error tolerance
subproblem. We set forth that the described framework alone might not be suf-
ficient due to the ethical and cognitive constraints AGI developers exhibit as
human beings and proposed a jointly performed inter alia AI-assisted ethical
as well as cognitive enhancement procedure to support the goal selection pro-
cess. We do not claim that the described hybrid framework represents a complete
approach warranting the safety of the AGI or of a therefrom emerging superintel-
ligence, but argue that it might underpin the importance of a multidisciplinary
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approach to AI Safety and motivate a new useful holistic perspective on the
complex problem of AI alignment which might in turn shape future develop-
ments towards a beneficial form of superintelligence (be it of human, artificial
or hybrid nature). Finally, we stress that possible future research on self-aware
AGIs as well as research on ethical and cognitive enhancement for AI Safety
should not be reserved to stakeholders like corporations, the military or a pre-
sumed elite group of AGI developers, but be instead performed open-source
and shared across diverse communities for the benefit of mankind. Moreover, a
science-based debate on the implications of a conjectured technological singu-
larity (which is not bounded to necessarily emerge from an AGI [21]) should be
encouraged and existential risks through superintelligence should be thoroughly
taken into consideration – especially regarding scenarios implying the presence
of malicious actors [2,20].
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Abstract. To combine neural learning with the sequential detection of hierar‐
chies of sensory features, and to facilitate planning and script execution, we
propose Request Confirmation Networks (ReCoNs). ReCoNs are spreading acti‐
vation networks with units that contain an activation and a state, and are connected
by typed directed links that indicate partonomic relations and spatial or temporal
succession. By passing activation along the links, ReCoNs can perform both
neural computations and controlled script execution. We demonstrate the appli‐
cation of ReCoNs in the context of performing simple arithmetic, based on camera
images of mathematical expressions.

Keywords: Request confirmation network · MicroPsi · ReCoN
Neurosymbolic representation

1 Introduction

MicroPsi2 (Bach and Vuine 2003, Bach 2012) is a cognitive architecture that permits
the implementation of situated agents that use neuro-symbolic representations (Hatzi‐
lygeroudis and Prentzas 2004) in combination with a motivational system (Bach and
Vuine 2015). We are using MicroPsi2 to study how to combine conceptual and percep‐
tual representations, and facilitate autonomous learning with full perceptual grounding.
To this end, agents require mechanisms for bottom-up/top-down perception, reinforce‐
ment learning, motivation, decision making and action execution.

Cognitive architectures with perceptual grounding require a way to combine
symbolic and sub-symbolic operations: planning, communication and reasoning usually
rely on discrete, symbolic representations, while fine-grained visual and motor interac‐
tion require distributed representations.

A common solution is a hybrid architecture combining a neural network layer that
deals with perceptual input with a symbolic layer that facilitates deliberation and control
using symbolic operations. While such a dual architecture appears to be a straightfor‐
ward solution from an engineering point of view, we believe that there is a continuum
between perceptual and conceptual representations, and that both should use the same
set of representational mechanisms. In our view, symbolic/localist representations are
best understood as a special case of subsymbolic/distributed representations, for instance
where the weights of the connecting links are close to discrete values. Highly localist
features often emerge in neural learning, and rules expressed as discrete valued links
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can be used to initialize a network for capturing more detailed, distributed features (see,
for instance, Towell and Shavlik 1994).

A representational unit in MicroPsi is called a node and is made up of a vector of
input slots, a node function, an activation state, and a vector of output gates. Weighted
links connect the gates of a node with the slots of other nodes. Slots sum the weighted
incoming activation and pass it to the node function, which updates the states of all gates
by calling a function for each. The gates in turn are the origin of links to other nodes.
Node types differ by the number of their gates and slots, and by the functions and
parameters of their gates. The type of a link is given by the type of its gate of origin
(Bach and Vuine 2003).

The most common node type in earlier MicroPsi implementations is called a concept
node. Concept nodes possess nine gate types (with approximate semantics in paren‐
theses): gen (associated), por (successor), ret (predecessor), sur (part-of), sub (has-part),
exp (is-exemplar-of), and cat (is-a). Concept nodes can be used to express hierarchical
scripts, by linking sequences of events and actions using por/ret, and subsuming these
sequences into hierarchies using sub/sur. Specific sensor and actuator nodes provide
connection to the agent’s environment, and native script nodes may encapsulate complex
functionality to provide backpropagation learning and a variety of other algorithms
triggered by activating the respective node.

MicroPsi2 also provides nodes that implement interaction with external sensors, actua‐
tors, or that represent more complex neural logic, such as LSTMs (Hochreiter and Schmid‐
huber 1997), which we combined with denoising autoencoders (Vincent et al. 2008) to
learn visual models of the virtual world that our agents inhabit (Bach and Herger 2015).

In MicroPsi, a perceptual representation amounts to a hierarchical script that tests
top-down for the presence of the object in the environment. At each level of the hier‐
archy, the script contains disjunctions and subjunctions of sub-steps, which bottom out
in distributed sub-steps and eventually in sensor nodes that reflect measurements in the
environment, and actuator nodes that will move the agent or its sensors. Recognizing
an object requires the execution of this hierarchical script. In the earlier implementations
of MicroPsi, this required a central executive that used a combination of explicit back‐
tracking and propagation of activation. We have replaced this mechanism with a
completely decentralized mode of execution that only requires the propagation of acti‐
vation along the links of connected nodes.

2 Request Confirmation Networks

The deliberate top-down initiation of a script, as in the intentional moving of an arm or
imagining of an object, has been attributed to activity in the prefrontal cortex (Deiber
et al. 1991; Frith et al. 1991), an area associated with goal-directed behavioral planning
and task management (Koechlin et al. 1999; Tanji and Hoshi 2001). To execute a cogni‐
tive process or an action, activation flows from its initial stimulation in the prefrontal
cortex through the relevant schematic components, continuing either until the objective
has been successfully achieved, or until the sequence is interrupted or fails. ReCoNs
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offer a possible model for how these schemas and sensorimotor scripts are represented
and executed in the cortex.

Request Confirmation Networks (ReCoNs) are auto-executable networks of stateful
units that are connected with typed edges. A ReCoN can be defined as a set of units 𝕌
and edges 𝔼 with

𝕌 = {script nodes ∪ terminal nodes}

𝔼 = {por, ret, sub, sur}

A script node has a state

s ∈ {inactive, requested, active, suppressed, waiting, true, confirmed, failed}

and an activation a ∈ ℝ
n, which can be used to store additional state.

A terminal node performs a measurement or executes an action, and has a state of
{inactive, active, confirmed}, and an activation a ∈ ℝ

n, which represents the value
obtained through the measurement, or the return value of the action. A link is defined
by ⟨u1, u2, type ∈ {por, ret, sub, sur}, w ∈ ℝ

n⟩, whereby u1 and u2 denote the origin and
target unit, por links to a successor node, ret links to a predecessor node, sur links to a
parent node, and sub links to a child node. w is a link weight with n dimensions that can
be used to perform additional computations. Each pair of nodes (u1, u2) is either uncon‐
nected, or has exactly one pair of links of the types por/ret, or sub/sur.

Each script node must have at least one link of type sub (i.e. at least one child that
is either a script node or a terminal node). Script nodes can be the origin and target of
links of all types, whereas terminal nodes can only be targeted by links of type sub, and
be the origin of links of type sur. Note that not all children of a node need to have
successor or predecessor relations. If they do, they will be requested and confirmed in
succession. If they do not, then they are interpreted as disjunctions, and execution of the
ReCoN happens in parallel.

ReCoNs form a hierarchical script without centralized access to the topology of the
network. To achieve this, each individual unit implements a state machine that transi‐
tions in response to messages from directly adjacent units.

Initially, all units are in the state inactive. If the state of one of its nodes is set to
requested, this triggers the evaluation of the portion of the script connected via this
node’s sub-link. The evaluation is propagated by successively and recursively requesting
the children of the originally requested node. Whenever the request reaches a terminal
node, confirmation or failure of the evaluation is determined and propagated back to the
requesting unit. Figure 1 illustrates the order of execution of a hierarchical script
containing sequences (2, 7, 10; 3, 5) and alternatives (8, 8). The script is started by
sending a continuous request signal to its root node (1). Sequences are executed succes‐
sively, while alternatives are executed concurrently. A failure of a step in a sequence
(i.e. in one of the actions 4, 6, 11) or of all alternatives (9, 9) will result in the failure of
the whole script. At any time, the script execution can be aborted by ending the request
signal to its root node.
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Fig. 1. Script execution example

The functionality of ReCoN nodes can best be understood by using an explicit state
machine with message passing. In each step, the nodes evaluate the messages they
receive from their neighbors based on their current state, and change their state accord‐
ingly. The required messages are request (r), inhibit request (ir), inhibit confirm (ic),
wait (w) and confirm (c): request will attempt to activate a child node, inhibit request
prevents a node to become active before its predecessor has successfully finished execu‐
tion, confirm informs a parent node that its child has successfully executed, inhibit
confirm prevents a node to send a confirm message before its successor has executed
successfully, and wait informs a parent node that it has child nodes that are still active.
If a parent node receives neither a wait nor a confirm message, the execution of its child
nodes is assumed to have failed.

The corresponding states are inactive (∞): the node has not been requested; requested
(R): the node has received a request; active (A): the requested node is sending a request
to its children; suppressed (S): the requested node cannot yet send a request to its chil‐
dren; waiting (W): the requested node continues to request to its children and waits for

Table 1. Message passed along each gate, based on node state

Unit state por ret sub sur
∞ – – – –
R ir ic – w
A ir ic r w
S ir ic – –
W ir ic r w
T – ic – c
C – ic – c
F ir ic – –
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their response; true (T): the requested node has received a confirmation from its children;
confirmed (C): the requested node is sending a confirmation message to its parent; failed
(F): the requested node is no longer receiving a wait message from its children.

Table 1 details which messages are being sent in which state, and Fig. 2 illustrates
how the state machine in every node transitions in response to the messages.

Fig. 2. State transitions (for each node) in response to messages

3 Implementation and Experiment

Request confirmation networks can be implemented in various ways, such as individual
artificial neurons (Bach and Herger 2015), or by using suitably initialized LSTMs. For the
purposes of this project, we have implemented them in MicroPsi2 as a specific node type
with five gates and slots (gen, por, ret, sub, sur) and a single real-valued activation 𝛼 to
store the node state: failure corresponds to a 𝛼 < 0, inactive to 0 ≤ 𝛼 < 0.01, requested to
0.01 ≤ 𝛼 < 0.3, suppressed to 0.01 ≤ 𝛼 < 0.3, active to 0.3 ≤ 𝛼 < 0.5, waiting to
0.5 ≤ 𝛼 < 0.7, true to 0.7 ≤ 𝛼 < 1 and confirmed to 𝛼 ≥ 1.

The ReCoN can be used to execute a script with discrete activations, but it can also
perform additional operations along the way. This may done by calculating additional acti‐
vation values during the request and confirmation steps.
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During the confirmation step (a node turns into the state true or confirmed), the activa‐
tion of that node may be calculated based on the activations of its children, and the weights
of the sur links from these children. During the waiting step, children may receive param‐
eters from their parents which are calculated using the parent activation and the weights of
the sub links from their parents. This mechanism can be used to adapt ReCoNs to a variety
of associative classification and learning tasks. In a previous experiment, we combined a
ReCoN with autoencoders for learning a perceptual task in a virtual environment (Bach and
Herger 2015).

Here, we demonstrate the use of a ReCoN in conjunction with a neural network to
extract handwritten arithmetic expressions from a scanned image, and use the terminal
nodes of the ReCoN to perform the corresponding arithmetic operations by connecting them
directly to a stack machine. The execution consists of three phases:

1. A camera image containing an arithmetic expression is parsed into separate images
of its digits and mathematical operators, then individually fed into a pre-trained
multilayer perceptron.

2. The array of predicted symbols is used to algorithmically construct a ReCoN that
represents the arithmetic expression in its topography.

3. The ReCoN is requested, performs the calculation using a stack machine, and the
result is obtained (Fig 3).

Fig. 3. MLP classifier in MicroPsi’s MESH editor

Implementing a multilayer perceptron classifier in MicroPsi
For the initial image recognition task, the input image is converted into a black and white
image and segmented into individual symbols using the Python image processing library
scikit-image. We implemented the multilayer perceptron (MLP) using an input layer
with 784 nodes, 14 output nodes (for the ten digits and the arithmetic operators +, −, ×,
and ÷), and two hidden layers with 240 and 60 nodes, respectively. We chose linear
rectifiers (ReLu) as activation functions and a softmax classifier to pick the symbol
receiving the highest activation in the output layer. The MLP was trained using MNIST
for the digits and a Kaggle dataset for the operators (Nano 2016).
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Generating the Request Confirmation Network
After the image segmentation and recognition stages, predicted symbols are combined
into an arithmetic expression (Fig. 4a), and the corresponding ReCoN is generated
(Fig. 4b). Each operation is mapped to a corresponding arrangement of nodes: multi‐
plication is translated into the step “Mult”, which consists of a sub/sur linked three step
sequence “A” por/ret “B” por/ret “C”. Each of these steps is sub/sur linked to its
computational realization. Here, each symbol is translated into a terminal node that
performs an operation on a stacked (Reverse Polish) calculator:

Fig. 4. (a): Function parsing and classification; (b): Constructed ReCoN

– If the symbol is a digit (0..9), pull the previous element from the stack. If the element
is a number, multiply it by ten and add the new digit. Otherwise, push the previous
element back to the stack, and push the new digit on the stack as well.

– If the symbol is an arithmetic operator, pull the last two elements from the stack,
perform the operation, and push the result to the stack.

– If the symbol is “equals”, pull the last element from the stack and print it.

Executing the Request Confirmation Network
After the setup phase, the ReCoN is executed by sending a request message to its root
node. The network will spread activation through its nodes until the terminal nodes are
reached, and perform the stack calculations which are implemented as node functions
of the respective terminal nodes.

The successful execution of one of the elementary stack operations will result in a
confirm message to its parent node, which will remove the suppression signal from its
successor, which will in turn pass a request to the next stack operation, until the script is
fully confirmed (Fig. 5). Conversely, the failure of one of the stack operations (as a result

18 J. Bach and K. Gallagher



of an invalid sequence of input characters) will lead to a failure of the entire script. The
accuracy of the output is strictly a function of the classification accuracy of the MLP;
assuming an arithmetically valid input function, if all symbols have been correctly identi‐
fied, the ReCoN execution will result in the correct function value. ReCoNs therefore offer
a reliable way to interface a spreading activation network with arbitrary functions that are
optimized to perform computations on widely available hardware and libraries, rather than
fitting specifically into the neural network library.

Fig. 5. ReCoN activation spreading in the MicroPsi MESH editor

4 Conclusion and Future Work

This contribution presents an early stage of Request Confirmation Networks, which are a
paradigm that strives to combine the straightforward execution of symbolic scripts (espe‐
cially for perceptual and motor hierarchies and planning) with distributed representations.
ReCoN nodes are state machines that can implement sequences, conjunctions, disjunc‐
tions and conditional loops without reliance on a central executive, solely by passing
messages to their immediate neighbors.

The implementation discussed here provides a proof of concept for ReCoNs, combining
a neural network classifier for visual input with executable hierarchical scripts and the
control of a stack machine for performing arithmetic operations. While this may serve as a
basic illustration of the principle, it is far from being an exhaustive treatment. Concepts not
discussed here include learning strategies (which involve states and messages for the distri‐
bution of rewards), the self-assembly of ReCoNs depending on a previously encountered
task context (which introduces states and messages for anticipated rewards), the use of
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individual sub-graphs in multiple positions of the script (which introduces semaphore
states) and the translation and interoperation with existing network architectures with
ReCoNs. These areas constitute our ongoing work with ReCoNs.
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Abstract. A generally intelligent machine (AGI) should be able to learn
a wide range of tasks. Knowledge acquisition in complex and dynamic
task-environments cannot happen all-at-once, and AGI-aspiring systems
must thus be capable of cumulative learning: efficiently making use of
existing knowledge during learning, supporting increases in the scope of
ability and knowledge, incrementally and predictably — without catas-
trophic forgetting or mangling of existing knowledge. Where relevant
expertise is at hand the learning process can be aided by curriculum-
based teaching, where a teacher divides a high-level task up into smaller
and simpler pieces and presents them in an order that facilitates learning.
Creating such a curriculum can benefit from expert knowledge of (a) the
task domain, (b) the learning system itself, and (c) general teaching prin-
ciples. Curriculum design for AI systems has so far been rather ad-hoc
and limited to systems incapable of cumulative learning. We present a
task analysis methodology that utilizes expert knowledge and is intended
to inform the construction of teaching curricula for cumulative learners.
Inspired in part by methods from knowledge engineering and functional
requirements analysis, our strategy decomposes high-level tasks in three
ways based on involved actions, features and functionality. We show how
this methodology can be used for a (simplified) arrival control task from
the air traffic control domain, where extensive expert knowledge is avail-
able and teaching cumulative learners is required to facilitate the safe
and trustworthy automation of complex workflows.

Keywords: Artificial intelligence · Artificial pedagogy
Curriculum learning · Task theory · Trustworthy automation

1 Introduction

In learning complex tasks humans tend to take an incremental app-
roach (e.g. learning the meaning of traffic signs before driving in traffic,
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or learning to fly a single-propeller plane before flying a jumbo jet), where newly
acquired knowledge and skills build on those priorly acquired. If a skill is in some
way related to one we have learned before—e.g. learning to play squash after
racquetball—the first task will often help us learn the second one [8].1 Humans
can typically learn and alternate between many different tasks without com-
pletely forgetting them in the process, and often apply lessons learned across
multiple domains. We consider such cumulative learning abilities to be a neces-
sary feature of (artificial) general intelligence (AGI), but no artificial intelligence
(AI) or machine learning (ML) system to date can rival humans in these regards.

The ideal (artificial) cumulative learner (CL), in our conceptualization, can
acquire knowledge and skills through both experience [22] and teaching [5,6].
Their learning is ‘always on’ throughout their lifetime2 (lifelong learning [19]),
and happens continuously as new experiences accumulate (online learning [28]).
Their knowledge is defeasible [17] (“better knowledge replaces worse knowl-
edge”), and new knowledge is reconciled with old knowledge (old-new integra-
tion [16]: new knowledge can be used in conjunction with, and integrated with,
older tasks — irrespective of overlap). Knowledge from one task or domain can
be applied to speed up learning another (e.g. through analogy; transfer learn-
ing [14]), without catastrophic interference/forgetting [9,11], possibly to the
point that few-shot learning is enabled [12]. A cumulative learner that fulfills
all of these features will tend to grow its capabilities over time to cover a wide
range of tasks (multitask learning [24]) as experience accumulates.

The order in which information, tasks, and subtasks are encountered can
have a large influence on the efficiency and efficacy of the cumulative learning
process. Pedagogical methodologies like shaping [20], scaffolding [27] and part-
task training [23] take advantage of this for teaching humans and animals. In
these approaches teachers use extensive domain knowledge to decompose com-
plex high-level tasks into smaller and simpler subtasks that are manageable by
the learner, and gradually introduce other subtasks or complexity. Similarly hier-
archical methods have been applied to various existing AI approaches [2,10,13].
However, these methods are not developed for systems with advanced cumula-
tive learning abilities.3 Furthermore, in most of these cases no domain knowl-
edge is utilized for defining the curriculum: the subdivision and presentation

1 Negative transfer of training may also occur, where pre-existing knowledge interferes
with learning something new — e.g. a racquetball player may take longer to get used
to the way a squash ball bounces than somebody who never played racquetball. An
optimal curriculum would mitigate negative transfer as much as possible.

2 However this is measured, we expect at a minimum the ‘learning cycle’ (alternating
learning and non-learning periods) to be free from designer intervention at runtime.
Given that, the smaller those periods become (relative to the shortest perception-
action cycle, for instance), to the point of being considered virtually or completely
continuous, the better the “learning always on” requirement is being met.

3 For instance, they typically require up-front full data disclosure (final data set up-
front), all-at-once training (to train on the final data set from the very beginning)
and learning-free deployment (the need to turn off learning before deployment to
avoid unpredictable drift; cf. [15]).
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order is determined by the learner—which is complicated by the learner’s lim-
ited (domain) knowledge and control over the environment (especially at the
start)—or by an algorithm that uses (slowly) discovered structural features of
the task-environment. While this can be a strength in cases where domain knowl-
edge is unavailable, in this paper the focus is on the case where domain exper-
tise does exist, and on converting such knowledge into a subtask hierarchy or
curriculum.

We present a task analysis methodology intended to aid in the instructional
design of curricula to teach artificial cumulative learners, as part of broader
work on artificial pedagogy [4] and task theory [25]. Here we focus on the design
phase of the ADDIE model [7] from the instructional design field, with some
assumptions about the analysis phase based on features of cumulative learners.4

Guidelines are given for extracting knowledge from domain experts (Sect. 2) to
decompose high-level tasks along three dimensions (Sect. 3), producing a hier-
archy of (smaller and simpler) subtasks for which functional requirements are
known, which can inform curriculum design (Sect. 4).

We illustrate our methodology by showing how a curriculum might be con-
structed for the use case of automating the task of arrival control (AC)5 for the
Icelandic air traffic control (ATC) agency Isavia6 (Sect. 5), where a combined
AI–human control structure could increase efficiency and safety. AC’s goal is to
create an optimal flow of landings by telling incoming aircraft to speed up or slow
down, avoiding (near) collisions and costly holding patterns. Like other tasks in
safety-critical domains, domain expertise is plentiful7 and cumulative learning
is desirable because it facilitates piecemeal introduction of functionality which
minimizes disruptions to the complex and sensitive workflows of ATC operators.

2 Expert Knowledge Extraction and Representation

Creating a teaching curriculum can benefit from expert knowledge of (a) the task
domain, (b) the learning system itself, and (c) general teaching principles. We
assume that a prospective AI teacher knows what their AI system is (in)capable
of (aside from cumulative learning) and what resources and methods are available

4 The ADDIE model for instructional design consists of (1) analysis of the learner,
learning goals, and teaching constraints, (2) design of the lesson plan or curriculum,
which involves subject matter/task analysis, (3) development or assembly of the
actual training materials, (4) implementation of the instruction with the learner
(i.e. the actual teaching/training/learning), and (5) evaluation of learning outcomes.

5 Due to space limitations we only describe a highly simplified version of arrival control
here. A more elaborate version can be found in our tech report: http://www.ru.is/
faculty/thorisson/RUTR18001 ArrivalControl.pdf.

6 Isavia is Iceland’s aviation authority, managing air traffic in an area measuring 5.4
million square kilometers.

7 A lot has even been written on task analysis for ATC (cf. https://www.eurocontrol.
int/articles/atco-task-analysis), but we still need a new method for designing cur-
ricula for non-human cumulative learners.

http://www.ru.is/faculty/thorisson/RUTR18001_ArrivalControl.pdf
http://www.ru.is/faculty/thorisson/RUTR18001_ArrivalControl.pdf
https://www.eurocontrol.int/articles/atco-task-analysis
https://www.eurocontrol.int/articles/atco-task-analysis
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for training/teaching. Learning (and teaching) from scratch and without guid-
ance may be feasible (and preferable) for simple tasks, but the more complex the
task, the more benefit can be derived from knowledge that can be transferred to
the learner or otherwise used to inform the teaching process. Luckily, many of the
tasks we want our AI/AGI systems to automate are currently being performed
by humans with a great deal of domain expertise. Here we describe a method
for knowledge extraction from a domain expert that results in a description of
a high-level task that can inform the construction of teaching curricula.

The process begins with a common practice from requirements engineer-
ing for software development, where the goal is to produce a “scenario” (“user
story”, “use case”) that describes, at a fairly high level, how a certain chunk
of functionality (part of the task) is to be carried out. The interviewer (i.e. the
AI teacher) starts by asking the expert to describe what they do when carrying
out the job, while taking care to note each “action” that is taken. The con-
cept of “action” is taken very broadly and incorporates for instance: acting in
the environment, predicting outcomes, obtaining particular information, making
(internal) decisions, updating current knowledge, etc.

As the scenario unfolds, the teacher should make note of each action, mark it
with a unique identifier and put it in a dependency graph. It is often the case that
higher-level actions (e.g. “instruct pilot to slow down”) consist of multiple lower-
level actions (e.g. “determine optimal aircraft speed”, “connect to aircraft” and
“send the message”) or that one action relies on inputs from previous actions
(e.g. you can’t send a message without knowing what should be in it). Such
dependencies should be noted (see Fig. 2).

It is likely that the domain expert does not succeed immediately in describ-
ing a scenario where all of their actions and their dependencies are explicitly
mentioned. The AI teacher should check that none of the actions in the scenario
can be usefully broken down further and that there are no holes in the story
(missing implicit or unmentioned actions or decisions).

If an action with no dependencies can be usefully decomposed further an (inve-
rse) laddering technique can be used where the expert is asked “how is this
done?” and “what steps are involved?”. The usefulness of further decomposi-
tions should be judged by the AI teacher based on their assumed knowledge
of what can be (easily) learned by their AI.

If the expert doesn’t know explicitly how a certain action is done it can help to
have them perform the task while the teacher asks “what are you doing now?”,
“what are you paying attention to?” and “why?”. If this is not possible—
e.g. because the job is high-pressure and safety-critical and the expert should
not be distracted—it may instead be possible to observe a colleague and
discuss what they are doing.

If a composite action is not fully determined by sub-actions the teacher should
point this out to the expert, and for each input/output ask where the data
comes from/what it’s used for, until the missing action(s) are found.

If a dependency A does not directly contribute to an action C a laddering tech-
nique should be used to ask “why do you do A here?” to elicit an intermediate
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dependency B. For instance, action A to “divide distance by velocity” does
not seem to contribute directly to action C to “prevent equal arrival times”,
but rather to intermediate action B “estimate arrival times”.

After the scenarios have been formed, we need to fill in the details of the
actions. This process strongly resembles the Task analysis in CommonKADS [18]
and functional requirements analysis in software engineering. The goal here is to
describe, in as much detail as possible, all actions that are involved in carrying
out the main task. For each action, this involves answering:

1. What is the input? What groups of variables/information can or must be
taken into account, and what are their possible and simplest values?

2. What is the output or result? This can be anything, ranging from e.g. “a
message to pilot X to move up/down by Y amount at time Z” to “prepara-
tion/prediction of the information for another action”.

3. By what method do we transform input to output? Can be a straightforward
series of steps/calculations, or vague descriptions of intuitive processes.

4. How can the action be evaluated? What variables are being optimized?
What is their relative importance?

Ideally, no actions should be left implicit. There can be some redundancy due to
describing actions at both high and low levels (e.g. one action may be “tell pilot
what to do, based on all data”, which may involve other actions like “decide
which pilot to talk to, based on closeness to airport”, “predict closeness to air-
port, based on weather”, etc.).

3 Task Decomposition

The extracted high-level task needs to be decomposed so that components can
be cumulatively learned and introduced piecemeal into the workflow. We use
three complementary dimensions of decomposition:

Task-based decomposition (or action-based decomposition) identifies all
subtasks/actions (including commands, decisions, classifications, predictions,
judgments, etc.) that are part of the task, at a sufficiently low level. Lower-level
actions are grouped together into higher-level ones to form a hierarchy, where a
low-level action control may be (re)used by multiple higher-level actions.

Feature-based decomposition (or situation-based decomposition) in a
directly-learned task (or action) attempts to identify (ideally independent) sub-
groups of features/variables that could be learned separately. For instance, in
the “predict arrival time” action for an aircraft, we may have features for wind
and precipitation, and we plan to train the system first on “no wind, no pre-
cipitation”, then on “various wind conditions, no precipitation” and “no wind,
various precipitation conditions”, and finally on “everything combined”. This is
expected to lead to faster (curriculum) learning of “everything combined” than
if we had started with that from the beginning. Furthermore, by allowing us to
“skip” tricky situations, they no longer hold back the introduction of (partial)
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automation into the workflow; the system could still automate the majority of
simpler cases, while warning or deferring to a human operator in trickier ones
that have not been adequately learned yet.

Functionality-based decomposition is a decomposition based on the
functionality that is to be introduced into the workflow, which tends to be
based mostly on action-based decompositions and somewhat on feature-based
ones. To create and introduce functionality, it is not sufficient that the AI sys-
tem has (partially) learned the relevant tasks, it is also necessary to integrate
such functionality into the larger workflow (e.g. adding certain GUI elements
to the workers software). In addition to being guided by other decompositions,
which determine what functionality might be available, this is also guided by
the actual workflow and identifying opportunities/situations where automation
is most desired (analysis of these requirements is beyond the scope of this paper).

Based on the elicited actions in Sect. 2 we make a graphical representation
of the task/action hierarchy (see Fig. 2 for an example from the arrival control
task in Sect. 5). A feature-based decomposition of each action can be made based
on their inputs and outputs. The graph should indicate which actions use the
same features through connections or color coding. Functionality-based decom-
positions can be made based on the requirements of the client/user for whom
the AI system is built, but will often correspond to elicited scenarios, or consist
of an action with all of its sub-actions. However, in some cases the client may
indicate that support for certain features/situations is not immediately crucial
and feature-based segments can be maintained.

4 Curriculum Construction

A decomposition in these terms can serve as the basis for the construction of a
teaching curriculum for cumulative learners.

The main philosophy behind curriculum learning is to have learning occur in
what Vygotsky called the “zone of proximal development” (ZPD) [26]: the sweet
spot between challenges that are too complex or novel to handle and ones that
are too easy or familiar. This concept forms the basis of teaching approaches like
shaping [3,20], scaffolding [27], and part-task training [23], as well as for many
concepts of intrinsic motivation or “curiosity” [21]. In all cases the ZPD informs
the novel stimuli that the AI sees. From the perspective of a teacher, this is
achieved by making a task smaller or simpler until it enters the ZPD, and then
making it larger and more complex as the learner becomes more competent. A
curriculum then consists of a “lesson plan” that prescribes an order in which to
teach the simplified tasks and how to complexify them.

The exact way in which (low-level) actions are taught is going to depend
on (a) the learning system, (b) available training resources and (c) the nature
of the task, e.g. whether it is a reinforcement learning or supervised learn-
ing task, whether it contains a lot of sequential events, and whether it is a
kind of “one-shot” task. Our decomposition can greatly inform the order in
which things should be taught: Within a cut-out chunk of desired functionality,
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Scenario S1. Separation maintenance

of aircraft and needs to maintain a minimal separation time between landings (A1). First, the
CL must predict the time at which each aircraft is expected to arrive at each runway (A2).
Based on this information, the CL needs to detect if the arrival times of any two aircraft

slow down (by ±10%

Action A1. Separation mainte↩
nance
See Scenario S1.

Input. IDs α {0, 1, ...}, velocities v in m/s [1–
400] and distances s in m [0–4,000,000] of a

Output. ID + speed up/slow down 10% com-
mand, or nothing

Method. predict landing times (A2), detect

Evaluation. +10 per landed aircraft, -1000

Action A2. Arrival time prediction
Predict the time at which aircraft A will ar-
rive at the runway.

Input. aircraft info for A (ID, velocity and
distance)

Output. time t in s [0–10,000]

Method. distance
velocity

Evaluation. tpredicted − tactual 2

Predict whether two aircraft A and B will

Input. estimated landing times t
Output. c yes/no
Method. tA − tB 1 < threshold
Evaluation. tA − tB 1 < threshold

B and C.

Input. ID, velocity, distance and arrival time
of aircraft A, B, C, D, where A is directly
before B, and D directly after C

Output. ID of B or C + speed up/slow down
Δ 10% command, or nothing

Method.
by speeding up B, without introducing con-

A. If not, slow down C and invoke
A4 for C and D

Evaluation. cafter − cbefore (where global
c is the sum of all local con-

Fig. 1. Extracted task description of (simplified) arrival control.

we should teach actions in a roughly bottom-up manner so that the AI sys-
tem can (re)use low-level functionality it already learned when learning higher-
level tasks. Furthermore, the feature-based decomposition allows us to make
individual tasks simpler by limiting the range of values that its inputs and/or
outputs can take on, or even omitting some altogether (by setting them to a
default value). Because we can expect cumulative learners to positively transfer
knowledge of shared features between tasks, we recommend prioritizing teaching
(simplified) tasks with features that are shared by many other actions.

5 Case Study: Arrival Control

Safety-critical domains with high time- and energy sensitivity and low error
tolerance, like air traffic control and human transportation, rely on complex
workflows designed to result in safe processes. The arrival control (AC) task,
like most others in aviation, is based on thoroughly documented procedures for
achieving high levels of quality, safety and reliability. Automation is shunned in
domains like these unless it can be fully trusted and understood, and new func-
tionality can be introduced gradually to avoid disrupting the proven workflow.
Cumulative learners have an advantage here, because they (a) can gradually add
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more functionality to their skills without deteriorating already-known tasks, (b)
be understood modularly in terms of the tasks they were taught, and (c) deal
more robustly with distributional drift in the task or novel situations [1,22],
by appropriate adaptation when sufficient prior knowledge is available to them,
and yielding control when it’s not. Since the cumulative learning capabilities of
modern AI are limited at best, humans are relied on in practically all cases. The
need for automatic cumulative learning, and the rich access to domain expertise,
make this domain highly suitable for testing our methodology.

The primary goal of arrival control is to ensure an optimal flow of aircraft
arrivals at the airport, avoiding collisions and costly holding patterns. This is a
highly complex and safety-critical task that requires understanding of weather
patterns, aircraft specifications, communication issues and the delicate coordi-
nation between many pilots and ATC operators with different roles. To illustrate
our task analysis methodology we present the extracted task description (Fig. 1),
decomposition and curriculum for a version of arrival control that is significantly
simplified due to space limitations.8

Fig. 2. Extracted action hierarchy for simplified arrival control.
The relations (solid lines) between actions represent an task-
based decomposition.

Decomposition. As
described above,
action A1 makes
use of A2, A3 and
A4, while action
A4 also makes use
of the function-
ality of A2 and
A3 (see Fig. 2).
We can also see
that A3 depends
on data from A2.
Since A2 does not
have any depen-
dencies, we can
extract it as a sin-
gle chunk of func-
tionality, that can

eventually be expanded into a chunk that provides the functionality of A4 (and
its dependencies).

Curriculum. The order in which arrival control should be taught, according to
our methodology, would no doubt be A2 → A3 → A4 → A1. The reasoning is as
follows: A2 doesn’t depend on any other actions, and can be learned alone. A3
requires A2’s output as its input, and could therefore benefit from knowledge of
A2, although we could also train A3 with fake data to remove this dependency.

8 A more elaborate version can be found in our tech report: http://www.ru.is/faculty/
thorisson/RUTR18001 ArrivalControl.pdf.

http://www.ru.is/faculty/thorisson/RUTR18001_ArrivalControl.pdf
http://www.ru.is/faculty/thorisson/RUTR18001_ArrivalControl.pdf
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A4 requires both A2 and A3 and cannot really be trained without them, and
A1 requires all the others. The individual tasks can be further simplified (and
gradually made harder again) by e.g. changing the allowable values for the input
and output features. These should be modified in the same way across actions.

6 Conclusion

We have presented a task analysis methodology to inform the design of teaching
curricula, when both domain expertise and cumulative learners are available. We
envision this to often be the case for AGI systems, who are by definition capable
of cumulative learning, and will often be used to automate complex workflows
that are currently being done by human experts. Especially in safety-critical
domains with complex overlapping tasks, such as air traffic control, we find that
extensive knowledge and documentation of processes is typically available. Fur-
thermore, in proven workflows that are highly sensitive to time-pressure and
errors, disruptions by the abrupt wholesale introduction of monolithic automa-
tion are unacceptable, and having cumulative learners that are taught to grad-
ually expand their functionality is highly desirable. Our presented methodology
takes a step in the direction of making curriculum design more systematic, using
any available domain knowledge.

Future work will be needed to compare the proposed knowledge elicitation
and task analysis methods with reasonable alternatives, in terms of ease-of-use
and required (time) investment for both the teacher and domain expert, as well as
quality of the produced analysis. Knowledge extraction can furthermore be aug-
mented by utilizing data from other (written) sources, and we are interested to
know how different (expert or written) sources can lead to different task decom-
positions and how this affects subsequent curricula. A better theory is needed
for constructing teaching curricula based on the presented task analysis, but also
on characteristics of the learning system and available training resources. The
benefits of the produced curricula should be evaluated and compared to alter-
nate approaches like “no curriculum” (i.e. training on the full monolithic task),
“alternate/random order curricula” and curricula arrived at through different
curriculum construction methods and task analyses (e.g. where decomposition
is done using a variety of existing automated methods).
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Abstract. This article proposes a novel minimalist bio-inspired asso-
ciative memory (AM) mechanism based on a spiking neural network
acting as a controller in simple virtual and physical robots. As such,
several main features of a general AM concept were reproduced. Using
the strength of temporal coding at the single spike resolution level, this
study approaches the AM phenomenon with basic examples in the visual
modality. Specifically, the AM include varying time delays in synaptic
links and asymmetry in the spike-timing dependent plasticity learning
rules to solve visual tasks of pattern-matching, pattern-completion and
noise-tolerance for autoassociative and heteroassociative memories. This
preliminary work could serve as a step toward future comparative anal-
ysis with traditional artificial neural networks.

Keywords: Associative memory · Spiking neural network · Learning
Spike-timing dependent plasticity · Artificial intelligence · Robot

1 Introduction

Associative memory (AM) represents a theoretical learning concept widely
explored in neuroscience. However, it is still poorly understood at the level of
small neuronal circuits in biological organisms, because AM usually refers to
complex and large-scale brain structures [1,2]. Since the tracking of stimuli from
sensory inputs to these integrative neurons is technically difficult, AM is often
modeled at the phenomenological level rather than at a precise cellular descrip-
tion level. Nevertheless, neurons and plastic synapses organized in recurrent
networks are thought to represent the primitive elements sustaining a general
AM architecture. As recognized hallmarks, AM should allow natural or artificial
agents to store and retrieve exact and noisy input patterns, as well as achieving
completion, classification and generalization of patterns [3,4].

Several computational AM models emerged over the last decades. Artificial
neural networks (ANN) [5–8] represent an approach to reproduce this cognitive
capacity. In the latter, the ANN paradigm has well explored the AM concept
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that could handle big data sets. As such, different AM models with ANN are
generally proposed with their own specific network topologies and learning rules.
Many properties of these associative learning rules reflect various abstract levels
of biologically plausible synaptic plasticity models [9–13]. Also, AM models in
conjunction with ANN were explored in higher-order brain models [14], but
remain to be tested under real time robotic context.

Recently, the AM phenomenon is studied from another angle using spiking
neural networks (SNN) [15–19]. One inherent property of these detailed neural
models comes from the temporal computing aspect occurring at the single spike
resolution instead of the rate-coding used in traditional ANN. Therefore, SNN
are naturally suited for ordering, timing and synchronizing the neural informa-
tion which characterizes some dynamic aspects of AM.

However, despite [20,21], SNN studies in real time AM tasks are still
scarce [22–24] and implementations in physical robots are barely explored. Thus,
the aim of this study is to propose a simple but embodied cellular mechanism
for AM models, exploiting the computational features of SNN in order to simu-
late the general phenomenon. Advantages of the natural AM properties should
be expected in the artificial intelligence and robotic fields, but remain to be
validated in more complex and dynamical situations.

In this paper, a small scale SNN model was used to show a bio-inspired
AM mechanism embodied in static virtual and physical robots mounted with a
camera. The tasks were to learn and recall exact matching patterns as well as
partial and noisy input patterns. In addition to sustaining the autoassociative
memory features, this model also supports heteroassociative memories. These
basic types of AM are achieved from two different temporal neural features. First,
an asymmetric timing of spikes is introduced as a main parameter, from small
randomized transmission delays between the sensory input and the associative
neural layer. This mechanism allows the use of the associative learning rule
in the network. Variable delays in synaptic transmissions [25] are biologically
plausible when considering the neural and dendritic variable topographies [26,
27]. Second, a STDP learning function [28–31] is responsible to link the input
pattern elements at the associative neural layer. This standard learning rule was
slightly modified by introducing an asymmetry factor in the STDP function [27,
32], to ensure that the associations at the synapses between the AM units are
strengthened.

In the following section, the neural architecture and the experimentation
are explained, with the objective of learning several black dot motifs from the
robots. Then, results are presented to show the AM core features and finally,
the discussion section explained the strength and the limitations of this work.

2 Methodology

The SNN architectures, the virtual world setup and the transferred files for the
physical implementations were all elaborated using SIMCOG [33], a software
dedicated to the modeling of bio-inspired robots.



34 A. Cyr et al.

2.1 The SNN Model

Standard equations for the SNN model were used based on membrane poten-
tial variance, nonlinear current integration, excitatory or inhibitory postsynaptic
potential (PSP), fixed threshold, fixed refractory period value, a leaky parameter
and a resting potential value (see supplementary materials1). Synaptic random-
ized delays were set between 0 and 4 cycles of algorithm to allow a minimal time
spikes arrival difference in the element of the input pattern, an essential factor
in using the STDP synaptic rule at the associative neural layer. Therefore, all
elements composing an input pattern are linked together.

The STDP learning rule allows an increase of the synaptic weight when a
pre-spike occurred before a post-spike in a defined temporal window. Inversely,
when a post-spike occurs before a pre-spike, a decrease of the synaptic weight
is computed. The temporal window that allows timing of spikes was set to 30
cycles. The weight variation allowed per paired-spikes is set to 80% and capped
to a maximum of 400% in respect of the initial value. A positive STDP bias
factor was implemented favoring a pre-post spikes correlation and a negative
bias for a post-pre spike correlation to ensure making the pattern associations.

2.2 The SNN Architecture

The proposed model consists of three layers: input, associative and output. Each
is composed of nine neurons, organized in a 3× 3 network. The images (Fig. 1) are
received from nine visual transducers, linking topographically to their attached
input neurons. This input layer represents the camera-retina of the robot. The
angular receptive field of each transducer is fixed and circular (1/9 of the whole
caught image). The resolution is 320× 240 pixels and the images are grabbed
at a fixed rate of 1 cycle of algorithm in the virtual world. The area value
perceived in each of these 9 sections is an average percentage of the gray scale
for each transducer. As an example, a full black dot seen in the receptive field of
a given transducer returns a 100% value, corresponding to the maximal receptor
potential, excitatory in this case. Its effect is always relative to the membrane
potential current value of the neuron involved, driven by the dynamic of the PSP
function when integrated to the membrane potential variance.

After the perception of an image, the input layer fires forward to according
neurons in the associative layer with fixed synapses. In the associative layer,
each neuron is fully connected but without self-recurrences (Fig. 2) with adaptive
synapses (STDP function). When a neuron spikes in this layer, it forwards the
signal using a fixed synapse to a corresponding neuron in the output layer, hence
showing a black dot on the LCD (liquid crystal display) screen.

2.3 The Virtual World

The role of the virtual world is to emulate the corresponding physical world (see
Fig. 3 - left) in order to efficiently evaluate the hypothesis. A circular static robot
1 http://aifuture.com/res/2018-am.

http://aifuture.com/res/2018-am
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Fig. 1. Representative subset of simple linear black dots. Top left (A-B) are complete
patterns with a column of three, followed by their partial associated patterns (C-H).
Other variant patterns (I-L) were displayed in the recall section of the experiment.
Bottom right part of the figure (M-N) represents two different patterns filled with
several shades of gray (noisy patterns).

Fig. 2. Simplification of the SNN (2× 2 instead of 3× 3) used in the AM model. The
input neural layer perceives black dots from the linked transducers, converting them
in a percentage numerical scale. These neurons are connected to the associative layer.
Because of the synaptic delays and the asymmetric STDP rule, the input patterns
will after a while bind the neurons in the associative layer to the input patterns.
Finally, the associative neurons forward to the output (LCD) layer for a real-time
results observation.

waits for images to be projected on its right side. The images are grabbed with
a camera, reflecting passively the content of an attached LCD device mounted
on the top of the robot. The images are flashed several times in a determined
order and each one of them is shown for 1 cycle. Randomization of the images
sequence had no effect in the simulation. Between each image, nothing is shown
for 15 cycles.

2.4 The Physical Robot

The physical platform consists of two Raspberry Pi model 2 boards. The first one
is embedded in a GoPiGo robot and it is connected to a Pi-camera (Raspberry
Pi camera board 5.0 MP webcam). The other board is connected to a small LCD
window (PiTFT - assembled 480× 320 3.5′′ TFT + touchscreen) for producing
the output (Fig. 3 - right). Both boards communicate using a TCP socket. Images
were shown to the robot using printed papers which are switched manually after
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Fig. 3. On the left side, the virtual robot (A) and a caption of one projected image on
its right side (B), the robot’s view (C) and the LCD device (D). On the right side, this
figure shows the physical robot completing a partial visual pattern.

few seconds. The same output pattern protocol is used as in the virtual world.
Because the physical visual patterns are shown for different periods of time, a
small adjustment in a parameter was needed. Mainly, vision inputs were reduced
with a cooldown of 20 cycles. In this physical context of an AM model, only two
visual patterns were learned and reproduced on the LCD. In the recall part, the
full patterns are displayed on the LCD from the incomplete inputs.

2.5 The Tasks

The autoassociative simulation consisted of learning six different visual patterns,
each composed of three linear black dots (three rows and three columns) and
recalled under partial inputs (two dots out of three). All inputs were shown a
few times, until the SNN succeeded in completing partial patterns. In addition
to pattern completion, recall was tested under two different noisy inputs (gray
circles). In noisy patterns, the minimal threshold condition to trigger a spike
was that the perceptive field should exhibit at least 50 percent of black. It
simply reflects the transducer sensitivity parameter, the solution used to achieve
discrimination of the noisy patterns. Finally, patterns composed of three or four
dots were tested in order to show some limitations of the implementation.

For the heteroassociative simulation, two different sets of black dot patterns
(left column and middle column) were shown one after the other, for 20 learning
trials. During recall, only the first pattern of a given set was shown (left column
dots) in order to measure if the robot was able to display in the LCD the cor-
rect output pattern (middle column dots). The process then continued with the
learned pattern (middle column) and a new pattern (right column). In short,
the expected result consists in displaying the first pattern in the LCD, followed
by the second and the third one when the first pattern is perceived as input.

3 Results

The Fig. 4 represents the completion pattern task which shows that the three
different lines and columns are learned (first 5000 cycles). In the second half
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Fig. 4. Autoassociative memory task. The input neurons correspond to graphics A-I,
and output neurons correspond to graphics J-R. The training phase correspond to the
first 5000 cycles while the two recall phases are between 5000 and 7500 cycles. Top
patterns represent stimuli displayed at the time. Recall 1 and 2 patterns were omitted
for clarity

of this experiment (5000–7000 cycles), all 18 possible partial inputs related to
their three linear black dot patterns (6 possible line patterns) are presented.
One can observe the pattern completion from the partial input graphics A to
I correlated with the output graphics J to R as well as two noisy patterns to
discriminate (6800 and 6900 cycles). Other types of patterns were added at
the end of this simulation (7000–7500 cycles). These patterns consisted of one
bottom-right corner, two diagonals and a four dots cardinal configuration. In
those cases, the SNN gave the wrong output; each time all the 9 neurons were
activated.

Figure 5 illustrated the heteroassociative task for the virtual world scenario.
The left column is introduced followed by the middle column patterns for the
learning association between two different patterns (0–800 cycles). The recall
part (900–1200 cycles) shows the precise pattern matching for both patterns.
The correct directional order association are output with the presentation of the
left column dots. The output neurons also show the middle column (970–1340
cycles) but not the inverse (cycle 900). This behavior was also obtained with
presentation of partial input.
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Fig. 5. Heteroassociative memory task.

Similar results were obtained when the middle column pattern was associated
with the delayed right column (1500–2300 cycles). Therefore, when the left col-
umn pattern was presented at cycle 2650, the robot was able to orderly recalled
the middle then the right columns.

Finally, to validate the AM model under real time condition, it was suc-
cessfully reproduced in a physical robot (for video, see https://youtu.be/
4e7wdfil2jA). This result also show the robustness of the SNN to sustain a vari-
ation in the temporal length period of the input presentation. In contrast to the
virtual setting, a pattern is shown only once. This does not affect the behavior
of the robot, as long as a cooldown of the visual input is allowed.

4 Discussion

How many neurons and synaptic links should constitute a minimalist artificial
structure sustaining an AM phenomenon? Which learning rules should be applied
to synapses? In biological neural systems such as in lower invertebrate animals,
a formal cellular circuit producing the complete AM features still remains to be
discovered. As a hypothesis state, AM do not require complex and huge neu-
ral structures considering that classical and operant conditioning are associative
learning skills found in the smallest neural organisms such as Caenorhabditis
elegans [34], Aplysia californica [35], Lymnaea stagnalis [36] and Drosophila
melanogaster [37] and that even relational concepts learning are retrieved in

https://youtu.be/4e7wdfil2jA
https://youtu.be/4e7wdfil2jA
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the bee Apis mellifera [38]. Moreover, associative learning and memory of a sim-
ple dynamical spot along the visual pathway of invertebrates is still under the
scope of neuroscientists [39].

The present AM model showed the capacity of pattern completion for auto
and heteroassociative tasks. The experiment includes a static robot because the
temporal variables between the visual stimuli and the SNN processing was the
main target issue. The behavioral robotic complexity such as dynamical move-
ments was beyond the scope of this paper. However, the heteroassociative capa-
bility of the current AM model may be studied with sequential motor tasks,
where one action leads to the next.

A 3× 3 matrix is a reductive example, but is representative enough to repro-
duce the AM general features. Scaling up the input data and the SNN will not
affect the AM mechanism but it would limit the computational efficiency. Also,
the model is restricted in terms of the number of input patterns it can learn in
relation with its unit number, since in this case a group of two neurons cannot
be part of two different complete patterns. This comes from the firing threshold
that can be reached by the integration of two neurons using STDP synapses.

This study explored the AM phenomenon in a small-scale SNN paradigm and
a simple robotic context. As such, demonstration of a real time learning task in
a physical robot was a minor objective to evaluate the temporal variable rela-
tions of the model between the captured visual stimuli and the SNN processing.
Using this AM model, future studies could then approach complex cognition like
concept formation and relational knowledge extraction from different input pat-
terns. For example, non-elemental learning such as with negative discrimination
tasks in compound stimuli (A-, B-, AB+), it is possible to conceive the proposed
model and may not require much complexity in the neural circuit [40]. These
challenges remain to be investigated in future works.

5 Conclusion

This study shows several features of the AM concept using an embodied SNN
paradigm, implemented as brain controllers in virtual and physical robots. With
simple visual tasks and minimalist cellular circuits, it was shown that asymmetric
synaptic delays and asymmetric STDP learning function are sufficient conditions
to achieve pattern-completion and noise-tolerance for auto and heteroassociative
tasks. This AM implementation may serves to approach higher cognitive circuits
in SNN as well as a comparative basis with traditional artificial neural networks.
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Abstract. The participation of AI in society is expected to increase significantly,
and with that the scope, intensity and significance of morally-burdened effects
produced or otherwise related to AI, and the possible future advent of AGI. There
is a lack of a comprehensive ethical framework for AI and AGI, which can help
manage moral scenarios in which artificial entities are participants. Therefore, I
propose the foundations of such a framework in this text, and suggest that it can
enable artificial entities to make morally sound decisions in complex moral
scenarios.
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1 Introduction

The subject of this article will be the brief introduction of a proposal for the foundations
of a model of a comprehensive ethical framework (hereinafter: the Framework) for
artificial intelligence (AI) entities, also including artificial general intelligence (AGI)
entities, jointly referred to as A(G)I.

The participation of AI in society is expected to increase significantly (Yudkowski
2008; Kurzweil 2000), and therefore the effects AI is causing on its environment
(including other AIs, humans and their societies, animals, and the world in general) will
increase in scope, intensity and significance (see Veruggio 2007). Simultaneously, the
scope, intensity and significance of morally-burdened effects (i.e. effects/changes
imposed on the world that contain moral content; see Reader 2007) produced by AI is
also expected to massively increase in the near future (Smith and Anderson 2014;
Anderson and Anderson 2007, 2009). AI will increasingly enter in interactions which
can be judged as morally (not-) good and/or right (and the natural expansion into (not-)
justifiable, acceptable, just, etc.).

There already is a multitude of ethical issues on which we need to derive satisfying and
morally-sound ‘best possible’/‘least worse’ (hereinafter: ‘BP’/‘LW’) solutions; and it seems
that the future holds even deeper, and more insidious ethical issues that we will have to
deal with in a morally-acceptable fashion, lest we avoid possible catastrophic conse‐
quences of the widespread introduction of AI in human civilisation(s) (Yudkowski 2008).
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There are some efforts at deriving comprehensive solutions to the above issues in a
morally and legally sound way, such as Veruggio’s EURON Roboethics Roadmap
(Veruggio 2007); Robot Ethics: The Ethical and Social Implications of Robotics, a
collection of texts edited by Patrick Lin, Keith Abney and George A. Bekey (Lin et al.
2012); in works in philosophy and ethics of information Luciano Floridi’s Ethics of
Information is a notable example (Floridi 2004, Floridi 2013), alone and alongside other
authors (i.e. Mariarosiaria Taddeo (Floridi and Taddeo 2016; Taddeo 2017), J. W.
Sanders (Floridi and Sanders 2004), Savulescu (Floridi and Savulescu 2006), Mittelstadt
(Mittelstadt et al. 2016), and others); and in regards of law and legal aspects of AI, a
notable example is Chopra and White’s A Legal Theory for Autonomous Artificial Agents
(Chopra and White 2011). However, the scientific community is far from a consensus
on the matter. Therefore, the author of the text hopes to contribute to the whole effort
in this sense.

In essence, there is a clear need for the establishment of a comprehensive ethical
framework in regards of A(G)I that can help:

• clearly conceptualise ethically-burdened situations (scenarios) where A(G)I is
involved;

• devise computationally-representable ‘BP’/‘LW’ solutions for such situations;
• engineers design and install an ethical cybernetic subsystem in A(G)I systems that

will enable them to achieve the above two;
• invigorate and contribute to the debate among academia, industry, engineers, and

policymakers about the foundations of morality and ethics in regards of A(G)I;
• manage morally-burdened effects caused or otherwise related to A(G)I, and its

utilisation (where appropriate), to the best outcomes.

2 Considerations in Regards of A(G)I

2.1 Ethical Considerations in Regards of A(G)I

A comprehensive ethical framework that can help soundly manage morally-burdened
scenarios—caused/received by or otherwise related to A(G)I—should take into consid‐
eration a plethora of moral issues and perspectives that inevitably will arise from the
widespread introduction of AI into society, and the possible advent of AGI. Conse‐
quently, it bears to first discuss what possible such issues and perspectives should be
managed by such a framework.

General comments. As a general comment, most of the dominant ethical theories of
today are, arguably, agent-focused. That is, they focus on the morally-burdened actions
of moral agents1, and what those agents ought, or ought not do. These are deontology,
teleology, and virtue ethics. There exist also ethical theories that are focused on moral
patients. In these moral worldviews, agents are of second importance, and moral

1 Namely, in the moral landscape, agents are those that take actions and thus cause morally-
burdened effects; while moral patients are those entities which morally-burdened effects are
effected/caused to.
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frameworks are here to determine how moral agents ought act predominantly in respect
of what effects their actions will have on moral patients. Examples of these theories are
ethics of care, feminine ethics, some instances of ethics of information (e.g. Floridi
2013), environmental ethics, and similar.

In the opinion of the author, both moral worldviews are limited in their scope, as they
focus only on certain components of morality and ethics, and choose to assign arbitrary
status of higher importance to one or the other component (the agent(s) or the patient(s)).
This can result in unwarranted bias during derivation of understanding, interpretation, and
solutions to moral scenarios. Arguably, if an ethical framework for A(G)I is to be compre‐
hensive, it should focus on both moral agents and moral patients, and consider them as
equally important (for a discussion on this subject, see Gunkel 2014).

Ethical considerations. Below are included many essential ethical issues and perspec‐
tives that a comprehensive ethical framework for A(G)I will have to (contextually)
consider in providing satisfying solutions to problematic moral scenarios. The following
were chosen based on the regularity with which they appear when discussing ethics of
AI (see, for example, Tzafestas 2016 p. 65–188), and also additional ones considered
as important by the author. However, in the interest of available space it is by no means
a final list.

Moral entities—A(G)I entities can, in a moral scenario, be moral agents and/or moral
patients. In some situations, an A(G)I entity can also be both a moral agent and patient
regarding the same morally-burdened effects at the same time.
Consciousness—An important issue to consider is how, and if, conscious experience
(qualia) relates to ethics and morality, especially to A(G)I. One thing to note here is
that the status of a moral agent or a moral patient for an A(G)I entity in a moral scenario
can exist regardless of whether it is ‘(self-)conscious’ about the scenario itself (see
subsection Morality in regards of A(G)I in Sect. 3.2. below).
Universalism vs. anthropocentrism—A comprehensive ethical framework would
take into consideration as important all entities in a moral scenario (i.e. humans, A(G)I,
beings, the environment, entities generally including informational entities (see Floridi
2013), etc.) and the moral issues perturbing them.
Aliveness/‘Being’—A consideration of what is ‘alive’ and what agent/patient is alive
or exists (‘Being’; see Floridi 2013) will be necessary so that there can be right
perspective on what entity can cause morally-burdened effects, and what entity can
and does receive such effects. In other words, which entities in the world can be
considered as moral agents and patients respectively.
Personhood and legal personhood—A very important issue regarding ethics. Natu‐
rally, the understanding of legal personhood (considering an entity as a person before
the law, and assigning it all the related rights and responsibilities) will flow from the
ethical-philosophical understanding of ‘person’ and its attributes; and even before that
(see, for example, Chopra and White 2011; and MacDorman and Cowley 2006).
Agency, autonomy—Autonomy is, by nature, directly connected to agency i.e. the
property of an entity that make it a (moral) agent. Understanding of autonomy, and
whether A(G)I entities possess it by definition or in practice, is a consideration
predominantly in agent-focused ethical theories.
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Complexity and moral uncertainty—When moral agents or patients are facing
increasing complexity of moral scenarios, and thus inevitably becoming unable to
devise ‘perfect solutions’, the role of the moral uncertainty that thus appears and
potentially modifies moral responsibility and accountability is an important perspec‐
tive that should be taken into consideration (see Zimmerman 2008). This is also related
with the pragmatic ‘BP’/’LW’ solutions to moral scenarios, as mentioned before.
Rights—A(G)I entities will most probably have effect over human rights and other
rights, as assigned by law, constitutions, and governing international documents (see
also Tzafestas 2016 p. 75).
Values—Inspiring virtues, moral values are set of principles that moral entities
(including A(G)I) use to determine what actions, effects and states are good, bad, evil,
(un)acceptable, etc. In essence, moral values help determine what is considered
‘valuable’ from the perspective of morality and ethics. A(G)I entities dealing with
moral scenarios will have to, at least implicitly, bear the capability to determine what
is morally (not) valuable.
Virtues (and vices)—On the other hand, virtues are recognised as one of the most
important elements of virtue ethics. They determine how a moral entity ought to think
and act so that it will live the ‘good life’ and be ‘good’. Arguably, virtues will be
implicitly important for AI entities; but also explicitly important for AGI entities.
Accountability and responsibility—It is a common issue of accountability and
responsibility in regards A(G)I entities causing and/or receiving morally-burdened
effects in moral scenarios. Some ethical theories deny that there can be responsibility
and/or accountability without (self-)consciousness. However, A(G)I entities can be
held responsible and accountable even without (self-)consciousness, since we already
have examples of similar treatment of children and animals, who in most ethical and
legal systems are regularly treated as accountable (as in, the agent causing the effects),
but not responsible.
Opacity and transparency—Opacity and transparency is a very important issue
regarding A(G)I (see Danaher 2016). Designing or imposing A(G)I systems that can
precisely, responsibly and intelligibly explain how they reach their conclusions and
courses of (in-)action is essential for the future acceptance of the widespread intro‐
duction of automated decision making in society. This also is closely related to
accountability and responsibility discussed above.
Utility (the perspective of A(G)I and algorithms simply as ‘tools’ or ‘means’)—
Considering an A(G)I system simply as a tool would mean it expands a significantly
narrowed down and simplified moral considerations. Potential ethical issues can arise
especially with the possible advent of AGI, self-consciousness, personhood, and
ability to suffer.
Trust—Trust is closely related to responsibility, accountability, predictability,
opacity, and transparency. A trust in an A(G)I system facilitates its deployment and
utilisation, and increases efficiency and effectiveness.
Morally-burdened effects—caused by moral agents, and received by moral patients,
these are an essential part of any moral scenario, and, like all other above considera‐
tions, will need to be modelled and managed by an A(G)I system.
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3 A Comprehensive Ethical Framework for A(G)I

3.1 Introduction

A comprehensive ethical framework for A(G)I has to enable derivation of satisfying
solutions to the previously mentioned issues. It has to take one or more of them in
consideration, where appropriate in respect of context, and provide computationally and
logically representable solutions, that will be the ‘BP’/’LW’ ones in the moral scenarios
that are faced. An A(G)I entity using such a framework would have to reach or preferably
surpass moral reasoning capacities of individual humans, and of human collectives and
institutions. Programmers, by consulting and implementing such a framework, will be
able to design A(G)I entities that have better moral reasoning capabilities than without
it. In essence, if such a framework (or an appropriate approximation) is implemented in
the design and the utilisation of A(G)I entities it will leave the world better off morally
on aggregate.

3.2 Characteristics and Design

Foundational—The framework should be set up as a system of axioms that can be
informationally, logically and computationally represented.
Coherent—The axiomatic system is able to be informationally, logically and compu‐
tationally expanded to provide solutions to arising ethical problems in context, without
issues of incoherence taking place.
Hybrid, multidisciplinary, and holistic—The axiomatic base of the framework is to
be conceived with a holistic approach in mind and thus help provide more compre‐
hensive one, drawing on existing advances in ethics in general, ethics of AI and ethics
of information, and on other, ‘non-ethical’ and meta-ethical disciplines.
Unified/unifying—The framework should have universalist pretension i.e. it should
attempt to unify all the major ethical theories into a single axiomatic system; and thus
render them as special cases of itself.
Contextual—The framework, when used as a cybernetic (sub)system into an A(G)I
system, should be able to ‘live in context’, acquire new and modify its existing moral
knowledge, and adjust to new environment.
Applicable to A(G)I and its interaction with the environment—i.e. other A(G)I
systems and other systems in general, the world, humans and their systems, animals,
the legal, financial and social systems, etc.
Translatable and implementable through engineering and legal tools.

3.3 Design

The foundation. Below is included the axiomatic foundations of the Framework for
A(G)I that the author presents in this article (see also Fig. 1.).
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Fig. 1. Emergence of moral systems

Axiom 0 Every systema has as a moral imperativeb its highest possible personal Quality
of Life (QoL).
Every system’s QoL is comprised of the level of potential or actual achievement of
two fundamental goals:
(1) conservation of personal continuum
(2) achievement of personal goals

Axiom 1 Every system has at least one of the fundamental goals from Axiom 0 as a moral
imperative [explicit goal], and as an instrument [implicit goal].
∙A system can simultaneously have both of these goals as moral imperatives (that
is, explicit goals). Each fundamental goal can be partially or wholly a moral
imperative and/or an instrumentc.
∙For a system, a goal can, and does, simultaneously serve both as an imperative and
as an instrument (for the purposes of the other goal).

Axiom 2 Every system strives towards imperative maximisation, by using its resources,
which include its instruments.

Axiom 3 Resources are (inevitably) limited.
∙Systems compete over limited resources in their imperative maximisation, and that
leads them in conflict.
∙This dialectical process of conflict, and the subsequent emergence of solutions to
the conflicting situations, is the originator of morality.

aA system is defined as follows: a system is a set of interrelated and interdependent components, from whose interaction the
system emerges as something more than just the simple sum of its parts. A system can be conceptualised both as a collective
(of its parts) and as an individual, and this usually depends on the level of abstraction (see Floridi 2013). The usage of ‘moral
entity’, ‘informational entity’, ‘agent/patient’, ‘entity’, etc. are interchangeable with system.
bA moral imperative is, thus, a systemic imperative; in the sense that the system considers and/or acts as if pursuing the
achievement of its systemic imperatives is right and good for itself and in general. This adds the moral dimension.
cIt is important to note that the imperative/instrument duality is not a dichotomy, but a spectre. In practice, most systems have
both fundamental goals as simultaneous and independent moral imperatives and instruments. One of the goals may be
independently less/more of a moral imperative, and independently less/more of an instrument for the other goal, determined
by the internal structure of the system.

Morality. Morality deals with Quality of Life (QoL) of systems. QoL is defined as the
potential to achieve, or the actual achievement, of moral imperative(s) of systems.
If it is considered as a category, the potential to achieve moral imperative(s) part of QoL
would include moral concepts such as freedom, agency, capacity, intention and similar
ones. Similarly, actual achievement of moral imperative(s) would include moral
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concepts such as fulfilment, justice, happiness, alleviation and transcendence of
suffering, and similar.

Simply taken, in the world systems (and therefore A(G)I agents) exist, act (and thus
cause morally-burdened effects), and are acted upon (and thus receive those effects)
while in pursuit of their imperatives. All systems use available resources2 to be able to
continue to do the above and proceed with pursuing their imperatives i.e. conserve their
personal continuum and achieve their goals.

However, resources are either (locally or globally) limited, or inevitably become
limited. This ‘forces’ systems to compete for them so that they can continue pursuing
their imperatives. This competition inescapably leads to conflict (see also Tiles 2005 p.
70). Conflict, in this perspective, is a process whereby a system explicitly or implicitly
threatens other system(s) with reduction of their ability to achieve their imperatives, if
the first system’s ability to achieve its own imperative(s) is jeopardised. In essence, when
a system finds its QoL in jeopardy by another system, it acts to secure the resources that
are jeopardised, and this is threatening to the QoL of the other system because the other
system also needs them for its own QoL. Conflicts, by extension, and in moral scenarios
with more cognitively capable moral entities, can develop into second order ones (i.e.
conflicts over opposing values and methods of distribution of resources), which are in
essence conflicts over differing moral systems.

If during this process systems, explicitly or implicitly, achieve a balance point,
whereby there is a compromise as to how much of the contested resources should belong
to the first or the second system; and this enables both systems for the time being to
continue pursuing their desired, but now revised, QoL level; the balance point that has
emerged (‘crystallised’) is a moral rule. Systems opt to respect this moral rule for the
time being as it enables them to achieve the best practically possible QoL level through
avoiding further conflict while lowering their desired QoL level.

Emergence of moral systems. Out of a complex, multifaceted aggregation of moral
scenarios, where systems enter in conflict and subsequently establish moral rules which
are then crystallised (that is, stabilised), a moral system emerges for that particular
collective of systems. In essence, moral systems are methods governing the distribution
of needed resources. This is what is normally understood under morality in a practical
manner. See Fig. 1 for illustration. Morality is, therefore, a cyclical down-up (emergent)
and up-down (crystallising) process. Any moral system that thus emerges or is imposed,
also contains the properties of any other system.

Contextuality. Since moral systems emerge for particular collectives, each moral
system is contextual and specific, even though the basic principles that cause their
emergence are the same—conflict over resources needed for desired QoL. Moral
systems differ because of differences in the components of the system, which include

2 Under resources here are understood all parts of the world which a system can use instrumen‐
tally to pursue its imperatives i.e. both ‘traditional’ ones such as raw materials, energy
source(s), food, water, minerals etc. but also time, situations, rules, other systems and their
parts, and anything else of utility.
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the contesting systems, the contested resources, and other miscellaneous factors such as
difference in the environment.

However, most moral systems created by systems that enter into similar moral
scenarios (i.e. human collectives) are alike, and universality or widespread adoption in
some basic moral rules can be discovered throughout them. Examples in human moral
systems are of the immorality of murder, rape, sexual acts with children, incest, lying,
irresponsible or unnecessary disturbance or damage, and similar.

Morality in regards of A(G)I. In respect of A(G)I entities, there are several additional
considerations that need to be discussed.

Firstly, A(G)I systems for which there will be a requirement to deal with moral
scenarios will have to consider the aforementioned perspectives. That means that A(G)I
systems will have to, directly or indirectly, take into consideration the QoL of other
systems.

Secondly, as discussed before, the A(G)I system itself doesn’t have to be
(self-)conscious of the (moral) scenario or generally in the conventional meaning—since
the algorithm doing the calculation and deriving at the decision for (in-)action can be
designed by human programmers. This means that the system will participate as a moral
agent and moral patient in the moral scenario regardless of any (self-)conscious sense
of the underlying moral considerations (also known as mindless morality; see Floridi
2013). Simply taken, morally-burdened effects can exist without conscious intention.
This is (mostly implicitly) recognised also by other ethicists and researchers working in
this domain, such as Floridi (2013), Dodig Crnkovic and Çürüklü (2012), Gerdes and
Øhrstrøm (2015), and others. This also means that human engineers can input moral
systems, or even simple moral rules (i.e. deontological or teleological rules) in simple
AI systems that deal with morally problematic scenarios. The systems in question will
act as moral entities (agents/patients) and cause and/or receive morally-burdened effects.

And thirdly, in regards of AGI, there are some additional ethical considerations.
Arguably, AGIs that reach or surpass cognitive and other capacities of humans and
human collectives will be able to wield tremendous power, and cause significant
morally-burdened effects. In moral scenarios, moral entities with higher power (i.e.
ability to exert their will in pursuit of their goals regardless of resistance) bear propor‐
tionately higher moral responsibility. That would mean that such AGI systems will have
to attempt to take into consideration the QoL of all other systems involved in the moral
scenario in which they exist, act, and are being acted upon.

It is hence reasonable to assume that this will require tremendous capacity for moral
reasoning (i.e. moral calculations) on the part of those AGI entities, which would include
moral scenario model building, bias avoidance, heuristics and fallibilistic reasoning, and
ability to choose the ‘BP’/‘LW’ course of (in-)action given available data and resources.

Unifying/unified. The Framework presented in this text attempts to integrate and
harmoniously unite dominant ethical theories of today. This includes deontology, tele‐
ology, virtue ethics, rights theory, value theory, ethics of care (patient-focused ethics).
In this effort, all these ethical theories become special cases of the general model.
Unfortunately, in the interest of space, the author can only provide a graphical
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representation of this unification in Fig. 2. The detailed description will have to remain
for future work.

Fig. 2. The integration of ethical theories

4 Conclusion and Way Forward

The basis of the Framework presented in this text is a model of a foundational, yet
flexible, adaptable and contextual moral system. It can serve as a model to be used by
designers of A(G)I systems, or by A(G)I entities themselves, for the building of internal
moral subsystems that will enable A(G)I entities to successfully participate in complex
moral scenarios in a morally sound manner. This will enable them to manage morally-
burdened effects, and attempt to avoid the negative ones, while attempting to maximise
the positive ones, or the so-called ‘BP’/‘LW’ solutions.

Subsequent efforts should be given in the elaboration of the Framework’s compo‐
nents in detail, testing it in theoretical moral scenarios, as well as, in gathering input
from a wide range of sources which would enable to determine statistical indicators that
can be taken in consideration by an A(G)I entity to perform contextual moral calcula‐
tions. This will enable the improvement of the model itself, and hopefully A(G)I entities
using it will be able to derive moral solutions in context that will approach, and even
exceed, human moral reasoning capacity.
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Abstract. A specialization of Solomonoff Operator Induction consider-
ing partial operators described by second order probability distributions,
and more specifically Beta distributions, is introduced. An estimate to
predict the second order probability of new data, obtained by averag-
ing the second order distributions of partial operators, is derived. The
problem of managing the partiality of the operators is presented. A sim-
plistic solution based on estimating the Kolmogorov complexity of perfect
completions of partial operators is given.
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1 Introduction

Rarely do natural intelligent agents attempt to construct complete models of
their environment. Often time they compartmentalize their knowledge into con-
textual rules and make use of them without worrying about the details of the
assumingly remote and irrelevant parts of the world.

This is typically how PrimeAGI, aka OpenCog Prime, the AGI agent imple-
mented over the OpenCog framework may utilize knowledge [4]. The models we
are specifically targeting here are rules describing second order conditional prob-
abilities, probabilities over probabilities. Maintaining second order probabilities
is how OpenCog accounts for uncertainties [8] and by that properly manages
cognitive tasks such as integrating knowledge from heterogeneous sources, bal-
ancing exploitation and exploration and so on. Here are some examples of rules

1. If the sun shines, then the temperature rises
2. If the sun shines and there is no wind, then the temperature rises
3. If the sun shines and I am in a cave, then the temperature rises

These 3 rules have different degrees of truth. The first one is often true, the
second is nearly always true and the last one is rarely true. The traditional way to
quantify these degrees of truth is to assign probabilities. In practice though these

c© Springer Nature Switzerland AG 2018
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probabilities are unknown, and instead one may only assign probability estimates
based on limited evidence. Another possibility is to assign second order proba-
bilities, distributions over probabilities as to capture their degrees of certainty.
The wider the distribution the less certain, the narrower the more certain.

Once degrees of truth and confidence are properly represented, an agent
should be able to utilize these rules to predict and operate in its environment.
This raises a question. How to choose between rules? Someone wanting to predict
whether the temperature will rise will have to make a choice. If one is in a cave,
should he/she follow the third rule? Why not the first one which is still valid, or
assuming there is no wind, maybe the second?

Systematically picking the rule with the narrowest context (like being in a
cave) is not always right. Indeed, the narrower the context the less evidence we
have, the broader the uncertainty, the more prone to overfitting it might be.

In this paper we attempt to address this issue by adapting Solomonoff Oper-
ator Induction [9] for a special class of operators representing such rules. These
operators have two particularities. First, their outcomes are second order prob-
abilities, specifically Beta distributions. Second, they are partial, that is they
are only defined over a subset of observations, the available observations encom-
passed by their associated contexts.

The remaining of the paper is organized as follows. In Sect. 2 we briefly
recount the idea of Solomonoff Operator Induction and in Sect. 3, the definition
and properties of Beta distributions. In Sect. 4 we introduce our specialization
of Solomonoff Operator Induction for partial operators with Beta distributions.
An estimate of the second order probability predicting new data, obtained by
averaging the second order probabilities of these partial operators, is derived.
Then the problem of dealing with partial operators is presented and somewhat
minimally addressed. Finally, in Sect. 5 we conclude and present some directions
for research.

2 Solomonoff Operator Induction

Solomonoff Universal Operator Induction [9] is a general, parameter free induc-
tion method shown to theoretically converge to the true distribution, the source
underlying the generation of a sequence of symbols, provided that such a source
is computable. It is a special case of Bayesian Model Averaging [6] though is
universal in the sense that the class of models across which the averaging is
taking place is Turing complete.

Let us recall its formulation, using the same notations as in the original paper
of Solomonoff (Sect. 3.2 of [9]). Given a sequence of n questions and answers
(Qi, Ai)i∈[1,n], and a countable family of operators Oj (the superscript j denotes
the jth operator, not the exponentiation) computing partial functions mapping
pairs of question and answer to probabilities, one may estimate the probability
of the next answer An+1 given question Qn+1 as follows

P̂ (An+1|Qn+1) =
∑

j

aj
0

n+1∏

i=1

Oj(Ai|Qi) (1)
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where aj
0 is the prior of the jth operator, its probability after zero observation,

generally approximated by 2−K(Oj) where K is the Kolmogorov complexity [11].
Using Hutter’s convergence theorem to arbitrary alphabets [7] it can be shown
that such estimate rapidly converges to the true probability.

Let us rewrite Eq. 1 by making the prediction term and the likelihood explicit

P̂ (An+1|Qn+1) =
∑

j

aj
0l

jOj(An+1|Qn+1) (2)

where lj =
∏n

i=1 Oj(Ai|Qi) is the likelihood, the probability of the data given
the jth operator.

Remark 1. In the remaining of the paper the superscript j is always used to
denote the index of the jth operator. Sometimes, though in a consistent man-
ner, it is used as subscript. All other superscript notations not using j denote
exponentiation.

3 Beta Distribution

Beta distributions [1] are convenient to model probability distributions over
probabilities, i.e. second order probabilities. In particular, given a prior over
a probability p of some event, like a coin toss to head, defined by a Beta distri-
bution, and a sequence of experiments, like tossing coins, the posterior of p is still
a Beta distribution. For that reason the Beta distribution is called a conjugate
prior for the binomial distribution.

Let us recall the probability density and cumulative distribution functions of
the Beta distribution as it will be useful later on.

3.1 Prior and Posterior Probability Density Function

The probability density function (pdf) of the Beta distribution with parameters
α and β, is

f(x;α, β) =
xα−1(1 − x)β−1

B(α, β)
(3)

where x is a probability and B(α, β) is the beta function

B(α, β) =
∫ 1

0

pα−1(1 − p)β−1dp (4)

One may notice that multiplying the density by the likelihood

xm(1 − x)n−m (5)

of a particular sequence of n experiments with m positive outcomes with
probability x, is also a Beta distribution

f(x;m + α, n − m + β) ∝ xm+α−1(1 − x)n−m+β−1 (6)
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3.2 Cumulative Distribution Function

The cumulative distribution function (cdf) of the Beta distribution is

Ix(α, β) =
B(x;α, β)
B(α, β)

(7)

where B(x;α, β) is the incomplete beta function

B(x;α, β) =
∫ x

0

pα−1(1 − p)β−1dp (8)

Ix is also called the regularized incomplete beta function [13].

4 Partial Operator Induction with Beta Distributions

In this section we introduce our specialization of Solomonoff Operator Induction
for partial operators describing second order distributions, and more specifically
Beta distributions. An estimate of the second order conditional probability of
the next data is derived, however it contains unknown terms, the likelihoods of
the unaccounted data by partial operators, themselves estimated by a simplistic
heuristic.

4.1 Second Order Probability Estimate

Let us first modify the Solomonoff Operator Induction probability estimate to
represent a second order probability. This allows us to maintain, and ultimately
propagate to efferent cognitive processes, the uncertainty of that estimate. It
directly follows from Eq. 2 of Sect. 2, that the cumulative distribution function
of the probability estimate of observing answer An+1 given question Qn+1 is

ˆcdf(An+1|Qn+1)(x) =
∑

Oj(An+1|Qn+1)≤x

aj
0l

j (9)

Due to Oj not being complete in general ˆcdf(An+1|Qn+1)(1) may not be equal
to 1. It means that some normalization will need to take place, that is even more
true in practice since only a fraction of the operator space is typically explored.
Also, we need not to worry about properties such as the continuity or the differ-
entiability of ˆcdf(An+1|Qn+1). What matters is that a spread of probabilities is
represented to account for the uncertainty. It is expected that the breadth would
be wide at first, and progressively shrinks, fluctuating depending on the novelty
of the data, as measure as more questions and answers get collected.
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4.2 Continuous Parameterized Operators

Let us now extend the definition of this estimate for parameterized operators to
describe second order distributions. Let us consider a subclass of parameterized
operators such that, if p is the parameter of operator Oj

p, the result of the
conditional probability of An+1 given Qn+1 is p. Doing so will enable us to
consider operators as Beta distribution later on, in Sect. 4.3.

Theorem 1. Given a family of parameterized operators Oj
p such that

Oj
p(An+1|Qn+1) = p (10)

and the prior of Oi
p is aj

0fp where fp is the prior density of p, the cumulative
distribution function of the estimate ˆcdf(An+1|Qn+1) is

ˆcdf(An+1|Qn+1)(x) =
∑

j

aj
0

∫ x

0

fpl
j
pdp (11)

where ljp =
∏n

i=1 Oj
p(Ai|Qi) is the likelihood of the data according to the jth

operator with parameter p.

Proof. Let us express Eq. 9 with a discretization of Oj
p with prior aj

0fpΔp

ˆcdf(An+1|Qn+1)(x) =
∑

Oj
p(An+1|Qn+1)≤x

aj
0fpl

j
pΔp (12)

where the sum runs over all j and p by steps of Δp such that Oj
p(An+1|Qn+1) ≤ x.

Since aj
0 does not depends on p, it can be moved in its own sum

ˆcdf(An+1|Qn+1)(x) =
∑

j

aj
0

∑

Oj
p(An+1|Qn+1)≤x

fpl
j
pΔp (13)

now the second sum only runs over p. Due to Eq. 10 this can be simplified into

ˆcdf(An+1|Qn+1)(x) =
∑

j

aj
0

∑

p≤x

fpl
j
pΔp (14)

which turns into Eq. 11 when Δp tends to 0. ��
Using continuous integration may seem like a departure from Solomonoff Induc-
tion. First, it does not correspond to a countable class of models. Second, the
Kolmogorov complexity of p, determining the prominent contribution of its prior,
is likely chaotic and would yield very different priors than what is typically
defined over continuous parameters in Bayesian inference. In practice however
integration is discretized and values are truncated up to some fixed precision.
Moreover any prior can probably be approximated by selecting an adequate
Turing machine of reference, assuming all contributions, not just the prominent
ones defined by their Kolmogorov complexities, are considered, otherwise the
prior will likely be confined to an exponential one, as pointed out in [2].
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4.3 Operators as Beta Distributions

We have now what we need to model our rules, second order conditional proba-
bilities, as operators.

First, we need to assume that operators are partial, that is the jth operator
is only defined for a subset of nj questions, those that meet the conditions of
the rule. For instance, when considering the rule

– If the sun shines, then the temperature rises

questions pertaining to what happens at night will be ignored by it.
Second, we assume that answers are Boolean, so that Ai ∈ {0, 1} for any i.

In reality, OpenCog rules manipulate predicates (generally fuzzy predicates but
that can be let aside), and the questions they represent are: if some instance
holds property R, what are the odds that it holds property S? We simplify this by
fixing predicate S so that the problem is reduced to finding R that best predicts
it. Thus we assume that if Ai = An+1 then Oj

p models the odds of S(Qi), and if
Ai �= An+1, it models the odds of ¬S(Qi). More formally, the class of operators
under consideration can be represented as programs of the form

Oj
p(Ai|Qi) = if Rj(Qi) then

{
p, if Ai = An+1

1 − p, otherwise
(15)

where Rj is the conditioning predicate of the rule. This allows an operator to be
modeled as a Beta distribution, with cumulative distribution function

cdfOj (x) = Ix(mj + α, nj − mj + β) (16)

where mj is the number of times Ai = An+1 for the subset of nj questions such
that Rj(Qi) is true. The parameters α and β are the parameters of the prior
of p, itself a Beta distribution. Equation 16 is in fact the definition of OpenCog
Truth Values as described in Chap. 4 of the PLN book [5].

4.4 Handling Partial Operators

When attempting to use such operators we still need to account for their par-
tiality. Although Solomonoff Operator Induction does in principle encompass
partial operators1, it does so insufficiently, in our case anyway. Indeed, if a given
operator cannot compute the conditional probability of some question/answer
pair, the contribution of that operator may simply be ignored in the estimate.
This does not work for us since partial operators (rules over restricted contexts)
might carry significant predictive power and should not go to waste.

To the best of our knowledge, the existing literature does not cover that
problem. The Bayesian inference literature contains in-depth treatments about

1 More by necessity, since the set of partial operators is enumerable, while the set of
complete ones is not.
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how to properly consider missing data [12]. Unfortunately, they do not directly
apply to our case because our assumptions are different. In particular, here,
data omission depends on the model. However, the general principle of modeling
missing data and taking into account these models in the inference process, can
be applied. Let us attempt to do that by explicitly representing the portion of the
likelihood over the missing, or to use better terms, unexplained or unaccounted
data of the jth operator, by a dedicated term, denoted rj . Let us also define a
completion of Oj

p, a subprogram that explains the unaccounted data.

Definition 1. A completion C of Oj
p is a program that completes Oj

p for the
unaccounted data, when Rj(Qi) is false, such that the operator once completed
is as follows

Oj
p,C(Ai|Qi) = if Rj(Qi) then

{
p, if Ai = An+1

1 − p, otherwise
else C(Ai|Qi)

(17)

The likelihood given the operator completed is

ljp = pmj

(1 − p)nj−mj

rj (18)

where the binomial term account for the likelihood of the explained data, and
rj accounts for the likelihood of the unexplained data, more specifically

rj =
∏

i≤n ∧ ¬Rj(Qi)

Cj(Ai|Qi) (19)

where Cj is the underlying completion of Oj
p. One may notice that rj does

not depends on p. Such assumption tremendously simplifies the analysis and
is somewhat reasonable to make. We generally assume that the completion of
the model is independent on its pre-existing part. By replacing the likelihood in
Eq. 11 by Eq. 18 we obtain

ˆcdf(An+1|Qn+1)(x) =
∑

j

aj
0

∫ x

0

fpp
mj

(1 − p)nj−mj

rjdp (20)

Choosing a Beta distribution as the prior of fp simplifies the equation as the
posterior remains a Beta distribution

fp = f(p;α, β) (21)

where f is the pdf of the Beta distribution as defined in Eq. 3. Usual priors are
Bayes’ with α = 1 and β = 1, Haldane’s with α = 0 and β = 0 and Jeffreys’
with α = 1

2 and β = 1
2 . The latter is probably the most accepted due to being

uninformative in some sense [10]. We do not need to commit to a particular one
at that point and let the parameters α and β free, giving us

ˆcdf(An+1|Qn+1)(x) =
∑

j

aj
0

∫ x

0

pα−1(1 − p)β−1

B(α, β)
pmj

(1 − p)nj−mj

rjdp (22)
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rj can be moved out of the integral and the constant B(α, β) can be ignored on
the ground that our estimate will require normalization anyway

ˆcdf(An+1|Qn+1)(x) ∝
∑

j

aj
0r

j

∫ x

0

pmj+α−1(1 − p)nj−mj+β−1dp (23)

∫ x

0

pmj+α−1(1−p)nj−mj+β−1dp is the incomplete Beta function with parameters

mj + α and nj − mj + β, thus

ˆcdf(An+1|Qn+1)(x) ∝
∑

j

aj
0r

jB(x;mj + α, nj − mj + β) (24)

Using the regularized incomplete beta function we obtain

ˆcdf(An+1|Qn+1)(x) ∝
∑

j

aj
0rjIx(m

j + α, nj − mj + β)B(mj + α, nj − mj + β) (25)

As Ix is the cumulative distribution function of Oj (Eq. 16), we finally get

ˆcdf(An+1|Qn+1)(x) ∝
∑

j

aj
0r

jcdfOj (x)B(mj + α, nj − mj + β) (26)

We have expressed our cumulative distribution function estimate as an aver-
aging of the cumulative distribution functions of the operators. This gives us an
estimate that predicts to what extend S holds for a new question and how much
confidence we have in that prediction.

However, we still need to address rj , the likelihood of the unaccounted data.
In theory, the right way to model rj would be to consider all possible completions
of the jth operator, but that is intractable. One would be tempted to simply
ignore rj , however, as we have already observed in some preliminary experiments,
this gives an unfair advantage to rules that have a lot of unexplained data, and
thus make them more prone to overfitting. This is true even in spite of the fact
that such rules naturally exhibit more uncertainty due to carrying less evidence.

4.5 Perfectly Explaining Unaccounted Data

Instead we attempt to consider the most prominent completions. For now we
consider completions that perfectly explain the unaccounted data. Moreover, to
simplify further, we assume that unaccounted answers are entirely determined
by their corresponding questions. This is generally not true, the same question
may relate to different answers. But under such assumptions rj becomes 1. This
may seem equivalent to ignoring rj unless the complexity of the completion is
taken into account. Meaning, we must consider not only the complexity of the
rule but also the complexity of its completion. Unfortunately calculating that
complexity is intractable. To work around that we estimate it as function of the
length of the unexplained data. Specifically, we suggest as prior

aj
0 = 2−K(Oj)−v

(1−c)
j (27)
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where K(Oj) is the Kolmogorov complexity of the jth operator (the length of
its corresponding rule in bits), vj is the length of its unaccounted data, and c
is a compressability parameter. If c = 0 then the unaccounted data are incom-
pressible. If c = 1 then the unaccounted data can be compressed to a single
bit. It is a very crude heuristic and is not parameter free, but it is simple and
computationally lightweight. When applied to experiments, not described here
due to their early stage nature and the space limitation of the paper, a value of
c = 0.5 was actually shown to be somewhat satisfactory.

5 Conclusion

We have introduced a specialization of Solomonoff Operator Induction over oper-
ators with the particularities of being partial and modeled by Beta distributions.
A second order probability estimate to predict new data, as well as capturing the
uncertainty of such prediction, has been derived. While doing so we have uncov-
ered an interesting problem, how to account for partial operators in the estimate.
This problem appears to have no obvious solution, is manifestly under-addressed
by the research community, and yet important in practice. Although the solution
we provide is very lacking (crudely estimating the Kolmogorov complexity of a
perfect completion) we hope that it provides some initial ground for experimenta-
tion and motivates further research. Even though, ultimately, it is expected that
this problem might be hard enough to require some form of meta-learning [3],
improvements in the heuristic by, for instance, considering completions reusing
available models that do explain some unaccounted data could help.

Experiments using this estimate are currently being carried out in the context
of enabling inference control meta-learning within the OpenCog framework and
will be the subject of future publications.
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Abstract. Artificial Intelligence (AI) has long pursued models, theo-
ries, and techniques to imbue machines with human-like general intelli-
gence. Yet even the currently predominant data-driven approasches in
AI seem to be lacking humans’ unique ability to solve wide ranges of
problems. This situation begs the question of the existence of princi-
ples that underlie general problem-solving capabilities. We approach this
question through the mathematical formulation of analogies across dif-
ferent problems and solutions. We focus in particular on problems that
could be represented as tree-like structures. Most importantly, we adopt
a category-theoretic approach in formalising tree problems as categories,
and in proving the existence of equivalences across apparently unrelated
problem domains. We prove the existence of a functor between the cat-
egory of tree problems and the category of solutions. We also provide
a weaker version of the functor by quantifying equivalences of problem
categories using a metric on tree problems.

Keywords: Artificial general intelligence · Problem solving
Analogy-making · Category theory · Functor · Decision tree
Maze problem · Transfer learning

1 Introduction

General problem-solving has long been one of main goals of Artificial Intelligence
(AI) since the early days of Computer Science. Many theories on generality and
problem-solving have been proposed and yet the task of building machines that
could achieve human-level intelligence is still in its infancy.

Humans are good at solving problems because they can reason about
unknown situations. They are capable of asking hypothetical questions that
can effectively be answered through analogical reasoning. Analogical reason-
ing is when concepts from one space are mapped to the concepts of another
space after noticing structural similarities or equivalences between the two. For
instance, having observed how a clay vase is being moulded, one could learn to
mentally manipulate other clay objects. Similarly, learning to solve one puzzle
could be accelerated if one could relate to previously mastered puzzle games.
c© Springer Nature Switzerland AG 2018
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Solving problems using analogies requires the ability to identify relationships
amongst complex objects and transform new objects accordingly. In its canonical
form, an analogy is usually described as <<A is to B as C is to D>>. Despite
their intuitive appeal, analogies do have the drawback that, if the structure is
not shared across the full problem space, we might end up with a distorted
understanding of a new problem than if we had not tried to think analogically
about it. It is therefore crucial to find a formalism that translates problems into
the representation that allows comparisons and transformations on its structures.

Category Theory is a powerful mathematical language capable of express-
ing equivalences of structures and analogies. It was introduced in 1942–45 by
Saunders MacLane and Samuel Eilenberg as part of their work on algebraic
topology [9]. What seemed to be an abstract theory that had no content turned
out to be a very flexible and powerful language. The theory has become indis-
pensable in many areas of mathematics, such as algebraic geometry, represen-
tation theory, topology, and many others. Category Theory has also been used
in modelling the semantics of cognitive neural systems [13], in describing cer-
tain aspects of cognition such as systematicity [28,29], in formalising artificial
perception and cognition [3,23], and in advancing our understanding of brain
function [31] and human consciousness [37].

In the present work, we propose a category-theoretic formalism for a class
of problems represented as arborescences [11]. We strongly think that many
decision-making and knowledge representation problems are amenable to such
structures [8,32]. The category-theoretic approach to general problem-solving
comes as a qualitative alternative to the currently dominant quantitative, data-
driven approaches that rely on Machine Learning and Data Science. We aim at
identifying the types or common classes in tree problems using category equiv-
alences. The number of types should be much smaller compared to what data-
driven approaches to problem-solving usually yield. It should be easier to identify
a new situation by its own type and apply the right transformations to obtain
the desired solution. Such transformations will be formalised using functors and
aim at computing the solutions to the tree problem in multiple ways.

The main contributions of the paper are twofold. We formalise some the most
common problems in AI literature in the most generic way possible and give
them an algebraic structure suitable to category theory and its functor-based
formulation of analogies. The second contribution is the way we combine the
problems and their solutions into two distinct categories, allowing us to define
equivalence classes on problems regardless of the existence of solutions.

The paper is structured as following. In the next section, we review some
of the previous work on general problem-solving and the usages of analogy. In
Sect. 3, we introduce the class of problems we are interested in. In Sect. 4, we
show how to translate such problems to a category-theoretic representation.
In Sect. 5, we show how solutions could be formalised based on functors and
category equivalences. Finally, we conclude and highlight the future directions.
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2 Related Work

General problem-solving is not new in Artificial Intelligence and many authors
have proposed guidelines for this line of search [20,34]. One of the earliest the-
ories of general problem-solving was proposed in [26] and relied on recursive
decompositions of large goals into subgoals while separating problem content
from solution strategies. The approach became later known as the cognitive
architecture SOAR [19] and is amongst the first attempts to a unified theory of
cognition [25]. In the context of universal intelligence, [14] proposed a general
theory that combines Solomonoff induction with sequential decision theory, and
was implemented as a reinforcement learning agent called AIXI. The downside is
that AIXI is incomputable and relies on approximations [38]. Other approaches
to generalised intelligence rely on transferring skills or knowledge across prob-
lem domains [35,36]. For instance, [4,5] focuses on partially observable non-
deterministic problems (PONDP) and provides a way of transferring a policy
from a PONDP to another one with the same structure.

The ability to generalise across different situations has long been the hall-
mark of analogy-making. One of the first attempts to formalise analogies was
through the concept of elementary equivalence in logical Model Theory [17].
Most recently, deep convolutional neural networks (CNN) have enabled us to
solve visual analogies by transforming a query image according to an example
pair of related images [21,33]. The approach does not exploit the regularities
between the transformations and seems to follow one particular directed path
in the commutative diagram of the problem if expressed in category-theoretic
terms.

As mentioned in the introduction, Category Theory constitutes an elegant
framework that can help conceptualise the essence of general problem-solving,
and abstract how the different paradigms of AI implement the solutions algo-
rithmically. The practical component of the theory is that it can redefine the
algorithms in terms of functors (or natural transformations) across problem and
solution categories. However, we think that the real challenge resides in the
ability to implement the type of functors that can systematically map input
(problem) to output (solution) in a manner similar to what is done in Machine
Learning. Although the category-theoretic approach to general problem-solving
is still at an early stage of development, the work of [15] can be considered
as a recipe for a scalable and systematic usage of functors, albeit in the area
of Machine Learning. Particularly, the author defines a training algorithm as
a monoid homomorphism from a free monoid representing the data set, to a
monoid representing the model we want to train [16]. Most instances of such
“homomorphic trainer” type class are related to statistics or Machine Learning,
but the class is much more general than that, and could for instance be used to
approximate NP-complete problems [16]. This approach is shown to improve the
learning scalability in the sense that it starts by learning the problem indepen-
dently on small subsets of the data before merging the solutions together within
one single round of communication.
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The more general framework of [1] lays the foundation of a formal descrip-
tion of general intelligence. This framework is based on the claim that cognitive
systems learn and solve problems by trial and error [2]. The authors introduce
cognitive categories, which are categories with exactly one morphism between
any two objects. The objects of the categories are interpreted as states and mor-
phisms as transformations between those states. Cognitive problems are reduced
to the specification of two objects in a cognitive category: the current state of
the system and the desired state. Cognitive systems transform the target system
by means of generators and evaluators. Generators realise cognitive operations
over a system by grouping morphisms, while evaluators group objects as a way
to generalise current and desired states to partially defined states.

For our approach to general problem-solving to work, an agent should not
only be capable of solving the problems specific to its native ecological niche,
but should also be capable of transcending its current conceptual framework
and manipulate the class of the problems itself. This would allow the agent to
solve new problems once deployed in new contexts that share some equivalences
with the previously encountered contexts. Generalising across different contexts
could be achieved for instance using natural transformations mapping functors
between known categories of problems and solutions to new ones.

The capacity of the agent to represent and manipulate common structural
relationships across equivalently cognizable problem domains is known in cogni-
tive sciences as systematicity [10]. In general, it is an equivalence relation over
cognitive capacities, a kind of generalisation over cognitive abilities. The prob-
lem with systematicity is that it fails in explaining why cognition is organised
into particular groups of cognitive capacities. The author in [27] hypotheses
that the failures of systematicity arise from a cost/benefit trade-off associated
with employing one particular universal construction. A universal construction
is defined as the necessary and sufficient conditions relating collections of mathe-
matically structured objects. Most importantly, the author proposes adjunction
as universal construction for trading the costs and benefits that come from the
interaction of a cognitive system with its environment, and where general intel-
ligence involves the effective exploitation of this trade-off.

One distinction between our approach and that of [27] is that we do not
consider the interaction between the agent and the environment for which the
adjunction is defined. We only focus on the functor mapping problems to solu-
tions and do not define its adjoint functor. For our goal of general-problem
solving, and given the way we define the problem and solution categories, it
would not make much sense to look for a problem given its solutions.

3 Tree Problems

3.1 Definition

We define tree problems as an umbrella term for a class of problems in the area
of problem-solving in general and in combinatorial optimisation in particular.
While tree problems may be formulated in a number of ways, they all require a
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rooted arborescent interconnection of objects and an objective function. Given
a directed rooted tree with predefined edge labels and a set of terminal vertices,
the corresponding tree problem possesses at most one solution. The solution
corresponds to a path from the root of the tree to one of its terminal nodes.
A problem P is formally represented by the tuple TP = (T,L,A), defined as
following.

• The tuple T = (r, V,E) is a labelled tree with root r, a set of nodes V , and a
set of edges E ⊆ V × V . The set V is partitioned into a set of internal nodes
I and a set of terminal nodes Ω. We note V (T ) and E(T ) as shorthands for
the vertices and edges of the tree T .

• The tuple L = (LV ,LE) defines the “labelling” functions LV : V �→ R
n and

LE : E �→ R
m. The numbers n and m are respectively the numbers of vertice

and edge features.
• The algorithm A : T �→ SP implements an objective function that assigns

solution SP to T .

Such tree-based formalism is meant to encode a number of decision problems
in the most generic fashion. Such problems could share the same structure as it
is defined by the tree and differ only in the labels or features that are assigned
to the nodes and edges. In the following, we choose to reduce the space of tree
structures and restrict our problems to problems that could be represented as
binary trees. It is in fact possible to translate n-ary representations to binary
representations by transforming branchings like into and altering the
edge lengths.

In the following, a solution SP to problem P will be encoded as a binary
vector of the form SP ∈ {0, 1}n. That is, SP assigns 1 to its ith entry if edge ei

is in the solution path. Note that it is possible to imagine solutions that do not
possess any problem, but we do not address such cases.

3.2 Characteristic Matrix of a Tree Problem

To find a canonical characterisation of a tree problem we start by defining T as
the set of all rooted trees with k terminal nodes (|Ω| = k). We say that trees
Ta, Tb ∈ T have the same labeled shape or topology if the set of all the partitions
of Ω admitted by the internal edges of Ta is identical to that of Tb, and we write
Ta � Tb. We say that Ta = Tb if they have the same topology and the same
labelling: LE(Ta) = LE(Tb). For any T ∈ T, we define μ1

i,j as the number of edges
on the path from the root to the most recent common ancestor of terminal nodes
i and j and μ�

i,j as the �th feature of this edge, and set p�
i as the value of the �th

feature corresponding to the pendant edge to tip i. Given all pairs of terminal
nodes Ω, we define the characteristic matrix of T as in (1).
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M(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1
1,2 μ1

1,3 . . . μ1
i,j . . . μ1

k−1,k 1 . . . 1
μ2
1,2 μ2

1,3 . . . μ2
i,j . . . μ2

k−1,k p21 . . . p2k
...

...
. . .

...
...

. . .
...

μ�
1,2 μ�

1,3 . . . μ�
i,j . . . μ�

k−1,k p�
1 . . . p�

k
...

...
. . .

...
...

. . .
...

μm+1
1,2 μm+1

1,3 . . . μm+1
i,j . . . μm+1

k−1,k pm+1
1 . . . pm+1

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

m+1 × (k2)+k

(1)

The first row of (1) captures the tree topology and the other rows capture
both the topology and the m features encoded by LE : E �→ R

m. The feature
vectors M�≥2 are in fact inspired from the vectors of cophenetic values [6]. Note
that we have m+1 <

(
k
2

)
+k since the number of edges of the tree usually exceeds

the number of features that characterise most basic tree problems. For instance,
such features are usually restricted to topology, length, probability, or cost. We
finally take the convex combination of the vectors to obtain the characteristic
function (2).

φλ(T ) = λM (2)

The characteristic form φλ(T) is parameterised by λ ∈ [0, 1]m+1 with
∑m+1

j=1

λj = 1. The elements of λ specify the extent to which different tree features con-
tribute in characterising the tree T . In this sense, one feature may dominate other
features as the elements of λ increase from 0 to 1.

Fig. 1. Tree problem and its matrix representation

For instance, the tree in Fig. 1a is characterised by its topology and one fea-
ture corresponding to the length of its branches. The corresponding characteristic
matrix M(T ) is given in Fig. 1b. Note that the matrix M(T ) is constructed from
the mappings defined by LE(T ). For instance, the first column of M(T ) is in fact
LE(T )((r, β)) = (1, 0.4).

3.3 Instances of Tree Problems

It is possible to find many instances of problems in AI that are reducible to
tree structures. For instance, simply connected mazes are mazes that contain no
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loops or disconnected components. Such mazes are equivalent to a rooted tree
in the sense that if one pulled and stretched out the paths in the maze in a con-
tinuous way, the result could be made to resemble a tree [24]. Mathematically,
the existence of a continuous deformation between the maze and a rooted tree
means that they are homeomorphic. For two spaces to be homeomorphic we only
need a continuous mapping with a continuous inverse function. A homeomor-
phism or topological isomorphism is a continuous function between topological
spaces that has a continuous inverse function. The existence of such mapping
is what will be exploited in our approach by moving between problems’ space
and solutions’ space in a well-principled manner. Instead of working directly on
complex structures like mazes, one could convert them to trees, and then study
the existence of homomorphisms [7] and other transformations.

For example, Fig. 2 illustrates a maze search problem and its homologous
decision tree problem. In Fig. 2a, LE : E �→ R assigns lengths to the edges of the
tree T , and LV : Ω �→ R assigns outcomes to the terminal nodes Ω comprised
of goal node(s) and dead-ends.

Fig. 2. Two homeomorphic problems

In the decision tree of Fig. 2b, LV : Ω �→ R maps terminal nodes to outcomes
and LE : E �→ [0, 1] maps sub-branches to the probabilities of being chosen. An
example of implementation of an algorithm A for the decision tree of Fig. 2b
could be defined as A : T �→ P(E) with P(E) being the set of all paths of T .
For instance, if the objective function is to find the most probable path in the
tree, then the solution could be expressed as in (3).

π∗ = arg max
π∈{π1,...,π6}

∑
e∈π

logP(e) (3)

with P(e) = LE(e) being the probability of edge e. Other formulations of (3)
could include for instance the preferences over the edges and define the goal as
maximising some expected value.
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4 Translating Tree Problems to Categories

4.1 Overview of Category Theory

In the following, we give a short introduction to Category Theory and the compo-
nents relevant to the topic of general problem-solving as previously introduced.
For a thorough and in-depth explanation of Category Theory from a mathemat-
ical point of view, the reader is advised to use the classical book [22], and to
[30,39] for the Computer Science point of view.

A category C is a collection of objects and a collection of arrows called mor-
phisms. It is formally defined as following.

1. A class of objects Ob(C). For X ∈ Ob(C), we can also write X ∈ C.
2. For every objects X,Y ∈ Ob(C), the class MorC(X,Y ) defines the class of

morphisms from X to Y . For f ∈ MorC , one may also write f : X → Y .
For any objects X,Y,Z ∈ Ob(C), a composition map ◦X,Y,Z : MorC(Y,Z) ×
MorC(X,Y ) → MorC(X,Z), (f, g) �→ f ◦ g satisfies:
(a) Associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h)
(b) Identity: For each X ∈ Ob(C), there is a morphism 1X ∈ MorC(X,X),

called the unit morphism, such that 1X ◦ f = f and g ◦ 1X = g for any
f, g for which composition holds.

Another useful category-theoretic construct is the notion of (covariant) func-
tor, which is a morphism of categories. Given two categories C and C′, a functor
F : C → C′ is made of

1. A function mapping objects to objects F : Ob(C) → Ob(C′).
2. For any pair of objects X,Y ∈ C, we have F : MorC(X,Y ) →

MorC′(F (X), F (Y )) with the natural requirements of identity and compo-
sition:
(a) Identity: F (1X) = 1F (X)

(b) Composition: F (f ◦ g) = F (f) ◦ F (g)

Functors will be later used to formalise analogies across problem and solution
categories.

4.2 Problems as Categories

In Sect. 3.2, we have shown that any tree Ta could be encoded as a matrix Ma. In
Theorem 1, we show that tree problems are in fact a category and we name it T .

Theorem 1. Tree problems define a category T .

Proof. In order for T to be a category, we need to characterise its objects Ob(T ),
morphisms MorT , and the laws of composition that govern MorT .

• Objects: Since each tree is translatable to its characteristic matrix, we will
take Ob(T ) to be the set of matrices that encode the trees.
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• Morphisms: One analytical way of distinguishing between two tree problems
is through the existence of a transformation that maps one to the other.
These transformations, if they exist, are the morphisms of the category T
that we want to characterise. That is, we need to define the morphisms
and their laws of composition, and show that the identity and associativ-
ity of morphisms hold. To define MorT , we define a morphism between
two tree matrices X(m,n) and Y(m,n) as the transformation A(n,n) such as
A(n,n)X

T
(n,m) = Y T

(n,m). Since the number of tree edges usually exceeds the
number of features (n > m), we need to find the generalised inverse of XT

(n,m)

that satisfies (4).

A(n,n) = Y T
(n,m)(X

T
(n,m))

−1

= Y T
(n,m)X

−1
(m,n) (4)

To obtain X−1, we use the singular value decomposition of X into P , Q and
Δ, as in (5).

X = PΔ QT (5)

where P is an n × r semiorthogonal matrix, r is the rank of X, Δ is an r × r
diagonal matrix with positive diagonal elements called the singular values
of X, and Q is an m × r semiorthogonal matrix. The Moore-Penrose pseu-
doinverse [12] of X, denoted by X+, is the unique m × n matrix defined by
X+ = QΔ−1PT . The final transformation matrix A(n,n) is therefore com-
puted as (6).

A = Y QΔ−1PT (6)

The existence of X+ and A is guaranteed by the nature of the feature matri-
ces and the fact that m <

(
k
2

)
+ k − 1, with k being the number of terminal

nodes. In the following, we will be using morphisms and matrix transforma-
tion interchangeably. After defining the morphisms of T , we prove that the
composition laws within T hold.

• Composition: Let f, g ∈ MorT with f : TP → TP′ and g : TP′ → TP′′ . Given
matrices Af and Ag of f and g, and matrices MP , MP′ and MP′′ of TP , TP′

and TP′′ , we have (7).

MP′′ = AgMP′ (7a)
= Ag(AfMP) (7b)
= (AgAf )MP (7c)
= Ag◦fMP (7d)
= AhMP (7e)

It follows that there exists a morphism h such that h : TP → TP′′ . Therefore,
the composition of morphisms holds and we have (8).

∀TP , TP′ , TP′′ ∈ Ob(T ) MorT (TP , TP′) × MorT (TP′ , TP′′) �→ MorT (TP , TP′′)
(8)
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The laws of composition need to obey the following.
1. Associativity: Let f, g, h ∈ MorT and their corresponding matrix trans-

formations Af , Ag and Ah. Since matrix multiplication is associative
(AfAg)Ah = Af (AgAh), we have (f ◦ g) ◦ h = f ◦ (g ◦ h).

2. Identity: Let f : TP → TP′ be a tree morphism and its characteristic
matrix transformation Af that maps MP to MP′ . Let 1TP : TP → TP′

be an identity morphism. It must hold that 1TP′ ◦ f = f = f ◦ 1TP where
1TP creates a trivial representation of TP containing the same structure
and features. Similarly, 1TP′ creates a trivial representation of TP′ . Hence,
there exists an identity morphism for all Obj(T ). This translates to the
existence of identity matrix Af such as Af × MP = MP

T is therefore a category and we can illustrate it with the commutative
diagram of Fig. 3a.

4.3 Solutions as Categories

Similarly to the tree problems category, Theorem 2 defines the solutions as the
category S.

Theorem 2. The solutions to tree problems define a category S.

Proof. The proof is similar to the proof of Theorem1. The difference is that
the elements of Obj(T ) are m × n matrices while the elements of Obj(S) are
1×n matrices since the solutions are binary vectors in {0, 1}n. The commutative
diagram of S is shown in Fig. 3b.

Fig. 3. Commutative diagrams of categories T and S

5 Solving Problems Using Functors

Given problem and solution categories, it is possible to exploit analogies between
old and new problems using functors. One could think of an analogy as a struc-
ture preserving map from the space of problems to the space of solutions, which
rightfully translates to a functor. The analogy <<S’ is to S as P’ is to P>> can
be rewritten as a curried sequence of objects to highlight the transformational
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aspect: P
f−→ P ′ F=⇒ S

Ff−−→ S′. If we know P , S, and P ′, and wish to learn about
S′, we could learn the functor F : P ′ → S′. Using the knowledge about P ′,
how it relates to P , and the structure of F , we can either use F(P ′) to further
learn S′ and how it relates to S or use Ff to infer S′ from S. The solution
could be found in different ways and with different complexities [16], depending
on how we traverse the commutative diagram. In the following, we propose to
characterise the functor that maps category T to category S.

5.1 Existence of Functors Between Problems and Solutions

Whenever we have a collection of problems, we want to be able to know how
to relate them. Mapping problems to solutions requires a level of identification
between the two. An isomorphism for instance is the type of strong identifica-
tion between two categories. If two categories are isomorphic, then they are the
same and perhaps differ only in notation. However, isomorphisms are in gen-
eral rare and difficult to characterise. We can instead “weaken” the isomorphism
by descending from isomorphism of categories to equivalence of categories, and
eventually to adjunction of functors between categories [27]. This weakening
holds in particular for our case of problems since some problems might not have
solutions and vice versa. The concept of equivalence of categories is used to
identify categories since it is weaker and more generic. We define it by a functor
F : T → S which is an isomorphism of categories up to isomorphisms. If F
is an equivalence of categories, then it induces a bijection between the classes
of isomorphic objects of T and S even if F is not bijective on all the objects
[22]. Thus the bijection F is defined as F : (T / �) �→ (S/ �) and could mainly
serve the purpose of identifying classes of problems and solutions as opposed to
a one-to-one identification of the components of problems and solutions.

In Theorem 3, we prove the existence of the functor F : T → S using the
previously constructed categories. We will later propose the weaker version of F
in terms of equivalences and through a metric on tree problems.

Theorem 3. There exists a functor F from the category of tree problems T to
the category of solutions S.

Proof. For F to be a functor from T to S, we must show that F preserves
identity morphisms and composition of morphisms as introduced in Sect. 4.1.

1. Identity: Let TP ∈ T be given and let 1TP be the identity morphism in T
corresponding to TP . Let 1F (P) be the identity morphism in S corresponding
to F (TP). We need to show that F (1TP ) = 1F (TP). In the category T , the
identity morphism 1TP creates a trivial tree problem from an existing one.
Similarly, in S, the identity morphism 1F (TP) also creates a trivial structure
from the same solution. The functor F maps the morphism 1TP : TP �→ TP
in T to F (1TP ) : F (TP) �→ F (TP) in S.
Therefore, F (1TP ) = 1F (TP) and the functor F preserves identity morphisms.
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2. Composition: Let f, g ∈ MorT such that f : TP �→ TP′ and g : TP′ �→
TP′′ . Let also F (f), F (g) ∈ MorS be such that F (f) : F (TP) �→ TP′ and
F (g) : F (TP′) �→ TP′′ . We need to show that F (g ◦ f) = F (g) ◦ F (f). We
have F (g ◦ f) = F (g(f(TP))) = F (g(TP′)) = F (TP′′) and F (g) ◦ F (f) =
F (g(F (f(TP)))) = F (g(F (TP′))) = F (TP′′).
Hence F preserves the composition of morphisms.

F is therefore a functor from T to S and has the commutative diagram of
Fig. 4.

Fig. 4. Commutative diagram of the functor F

5.2 From Equivalence to Metric

The equivalences of categories of trees (T / �) define what can be identified as
the level of similarities or analogy between the problems that they represent.
Similarly, the equivalence of categories of solutions (S/ �) defines the levels of
similarities between solutions. If the tree TP ∈ Ob(T ) is analogous to other trees
{TP′}P′ �=P , it would be useful to find the “most” analogous ones, for instance to
transfer knowledge between the closest ones [36]. This could be done by defining
a distance that measures how analogous they are: the more analogous TP and
TP′ are, the smaller d(TP , TP′) should be. We propose to construct such a dis-
tance on Ob(T ) and Ob(S) to identify the objects more or less similar. Recall
that by definition, a binary relation � is an equivalence relation if and only if it
satisfies reflexivity, symmetry and transitivity. These conditions are satisfied by
the equality relation = and are “natural” to express what a notion of analogy
should satisfy. In that way, equality can be viewed as a particular case of anal-
ogy. On the other hand, analogies, as formalised by the concept of equivalence
relations, can be viewed as generalisation of equality.

5.3 Problem and Solution Metrics

A metric is the mathematical notion of distance that give structure and shape
to a set of objects by forming a space. A function d(TP , TP′) is a tree problem
metric if, for all TP , TP′ ∈ Ob(T ):

1. Distances are non-negative: d(TP , TP′) ≥ 0
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2. Distance is equal to zero when trees are identical: d(TP , TP′) = 0 ⇐⇒
TP =TP′

3. Distance is symmetric: d(TP , TP′) = d(TP′ , TP)
4. Distances satisfy the triangle inequality: ∀TP′′ ∈ Ob(T ), d(TP , TP′) ≤

d(TP , TP′′) + d(TP′′ , TP′)

Now we can define the tree metric based on the characteristic function (2).

Theorem 4. The function dλ : Ob(T ) × Ob(T ) �→ R given by dλ(TP , TP′) =
‖φλ(TP)−φλ′(TP′)‖ is a metric on Ob(T ), with ‖.‖ being the Euclidean distance
and λ ∈ [0, 1]m+1.

Proof. The proof is very similar to the one for phylogenetic trees [18].

In a similar way, we could prove that there exists a metric on the solution
space. This case is more trivial since the solutions are binary vectors of {0, 1}n.

Theorem 5. The function d : Ob(S) × Ob(S) �→ R given by d(SP , SP′) =
‖SP − SP′‖ is a metric on Ob(S), with SP , SP′ ∈ {0, 1}n and ‖.‖ being the
Euclidean distance.

The metrics can be used to measure how problems and solutions are relatable.
This way of characterising the existence of functors allows us to find the most
analogous known problem(s) to a given situation. Given a target problem P we
could find the set {(P ′, S′)}P ′	P of equivalent problems that were previously
solved, find the convex transformation f that maps P ′ to P and compute S as
Ff(S′). This transformation is the type of transfer of knowledge from past to
new situations.

6 Conclusions

The paper proposes a category-theoretic approach that formalises problems that
are represented as tree-like structures. The existence of equivalence relationships
across the categories of problems and their corresponding categories of solutions
is established using functors. Implementing the functors corresponds therefore
to solving the problems through means of analogy.

The proposed formalism has yet to be tested on concrete instances of tree-
like problems such as maze problems. The future direction is to characterise the
functors as encoders in a way similar to [33] and learn the generalised solutions
to different maze problem.
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Abstract. A novel method of Goal-directed Procedure Learning is
presented that overcomes some of the drawbacks of the traditional
approaches to planning and reinforcement learning. The necessary princi-
ples for acquiring goal-dependent behaviors, and the motivations behind
this approach are explained. A concrete implementation exists in a
Non-Axiomatic Reasoning System, OpenNARS, although we believe the
findings may be generally applicable to other AGI systems.
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1 Introduction

Acquiring procedural knowledge is generally concerned with representing the
preconditions and consequences of actions. In traditional planning approaches
[11], this knowledge is usually provided in advance, and the task is then to
search for the most concise and complete plan that leads to the achievement of
a certain goal, a desired end state. This approach can be modified to search for
the plan that leads to the end state with the highest probability. The drawback
to this approach is that the need to react to change of circumstance during
the planning and execution process, as well as forming the preconditions and
transition probabilities from experience, is not captured.

In Reinforcement Learning (RL) this problem is reduced to learning to act
the right way in the currently observed situation, where “act the right way” is
usually taken as the selection of the action with the maximum expected util-
ity value [12]. Here, no explicit plan is generated, and no subgoal derivations
happen. Instead the decision-making is only considering the currently observed
state, whilst assuming it is a complete description of the current situation [12].
While being sufficient in applications where the system’s behavior serves a sin-
gle purpose, this treatment becomes insufficient when novel goals spontaneously
appear or existing ones disappear [16]. That’s clearly the case in many robotics
applications, [7], and also, as many argue, in the human mind [4,9]. To improve
the ability to adapt to changing circumstances, a change of goals should not
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require re-learning the related situation-action mappings. Instead an AGI sys-
tem should develop beliefs of the consequences of its actions in such a way, that
when goals change, the actions that lead to the fulfillment of novel goals can be
derived. This can be seen as an understanding of the environment in terms of
how different outcomes can be achieved by the system, independently from what
is currently “rewarded” or desired.

In this paper we present a method that combines the benefits of both tra-
ditional planning and RL, while eliminating some of the drawbacks of both
approaches. As our approach is based on learning the preconditions and con-
sequences of operations, there is no need to re-learn situation-action mappings
when goals change, a major advantage. In our approach, each piece of procedural
knowledge can be independently evaluated and suggests a certain operation in
a certain context to realize a certain subgoal: solving “global” problems, using
“local” decisions. So, different to traditional planning approaches, no complete
plan is explicitly searched for, instead the individually evaluated pieces lead to
a certain behavior, influenced by current goals and observations.

2 The Goal-Directed Procedure Learning Problem

We regard procedure learning as the process that forms procedural hypotheses,
based on temporal patterns of events and operations that appear in the systems
experience. A temporal pattern can be represented as (A1, ..., An), which is a
sequence of n consecutive events or operations, each occurring at a certain dis-
crete time-step. Here, events do not encode an entire state, just certain parts of
it, such as temperature information coming from a sensory device, encoded by a
composition of terms/IDs, called “Compound Term” (see [14]). Now, temporal
patterns can become building blocks of hypotheses, which should capture useful
regularities in the experience of a system. In general, a hypothesis can be defined
as A ⇒ B, with a special case, where a procedural hypothesis can be defined
as (A,B) ⇒ C where A is an antecedent, B an operation and C a consequent.
The antecedent can be considered as a precondition that, when followed by an
operation, is believed to lead to the consequent. Additionally, with the inclu-
sion of temporal constraints, hypotheses can be considered as predictive, such as
(A,B) /⇒ C, whereby they imply the occurrence time of the consequent to be
in the future. Here, the precondition and consequent can be arbitrarily complex
pattern compositions, while the behavior is usually an atomic, in the sense that
it can be directly invoked. Additionally, the consequent often represents a goal
or subgoal to realize. Furthermore each such hypothesis has a degree of certainty
corresponding to the likelihood that the prediction will be confirmed when its
precondition is fulfilled.

Given a goal G!, which a system wants to make as true as possible, how does
it satisfy the goal? [15].

There are two approaches: via hypotheses formation through forward chain-
ing, where helpful hypotheses are formed directly from pieces of knowledge, with
observed patterns as special cases, and backward chaining, where a subgoal is
derived from a goal and an existing piece of knowledge [15].
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In the case where a hypothesis exists, for how to achieve G! in the current
context, usually a single backward chaining step to derive the operation as a
subgoal, which can be directly executed, will be sufficient. Therefore, “executing
a procedural hypothesis”, means to perform a single backward inference leading
to an operation, that can be executed.

Generally, problem-solving involves an inter-play between “chain” and “exe-
cute”. That is, because when the system has no appropriate procedural hypoth-
esis, that both predicts G and also has its preconditions currently met, then usu-
ally both chaining strategies will be necessary, to search and probe for a solution,
a schema that can later be re-used [3]. The “chain” case requires creative but
evidence-driven exploration of possibilities to deal with novel situations. This
corresponds to finding a solution although no algorithm is known, as discussed
in [15]. The “execute” case on the other hand requires the control mechanism
to remember solutions to goals. This allows for faster response times to simi-
lar problems in the future and to make effective use of what has already been
learned.

We believe that most of the things we do, such as driving a car, that increas-
ingly begin to become more automatic, are due to a transition from the “chain” to
the “execute” case [2]. A transition from the “novel” to the “usual” is something
a systems control mechanism can and should effectively support. Furthermore,
a control mechanism, will need to choose between multiple hypotheses which
can satisfy a goal, to a different degree, for the current context. Therefore the
formation, selection and testing of hypotheses are the main topics of this paper
and each of these aspects will be described in detail below.

3 OpenNARS Considerations

A goal of this paper is to present our findings in as general a way as possible, so
as to allow for the widest applicability as possible. Notwithstanding this goal,
our methods, as presented in this paper, have a concrete implementation in the
OpenNARS system. An explanation of some of the data structures and concep-
tual ideas will be of value in understanding the approaches outlined below. In
particular, four aspects will be described at a relatively high level of abstraction,
namely: evidence, budget, concepts, and bags. Detailed explanations of each of
these can be found here [5,13,14].

Evidence. In NARS evidence is used to provide the truth of a belief, namely
its certainty. It is defined as a (w+, w−) pair, where w+ represents positive
evidence, and w− represents negative evidence, or alternatively as confidence c
and frequency f tuple, where f = w+

w++w−
and confidence is c = w++w−

k+w++w−
, where

k is a global personality parameter that indicates a global evidential horizon [6].
Evidence supports these principles:

– An item of evidence can only be used once for each statement.
– A record of evidence (a set), used in each derivation must be maintained,

although this is only a partial record due to resource constraints, which is not
an issue in practice.
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– There can be positive and negative evidence for the same statement.
– Evidence is not only the key factor to determine truth, but also the key to

judge the independence of the premises in a step of inference. Inference is
only allowed when the evidence records of the two premises do not overlap.
This not only avoids cyclic inference, but also keeps revision from further
increasing the confidence of a belief on re-derivation.

So we can now define the degree of certainty of a hypothesis, when it’s precondi-
tion is fulfilled, as a truth value as defined above. Therefore, the positive evidence
for a predictive hypothesis is simply a measurement of how frequently the occur-
rence of the antecedent was followed by its consequent event, and the negative
evidence how frequently the consequent did not happen whilst the antecedent
did. Truth expectation, which we will sometimes refer to, ’merges’ frequency
and confidence into a single value, that can be used for comparison purposes.
For detailed formulas, see [5,14].

Budget. The amount of system resources, namely CPU and memory, that is
allocated to a specific task, an item of work, is directly related to budget, which
is a tuple (p, d, q) where p is priority, d is durability and q is quality, and all
parameters are between 0 and 1. Priority determines short term importance
whilst durability determines long term importance. Quality is effectively imple-
mented as a priority barrier (usually between 0 and 0.1) under which the priority
value can not fall. This ensures that items of high long-term importance will sur-
vive in the bag even though they have a low priority. More details can be seen
in [5]. Besides quality, there are many factors that affect the priority of an item
[13], such as, but not limited to:

– How recent the event is (is it still relevant?)
– How often does the event occur (how stable is it?)
– Did the event happen unexpectedly? (how surprising was its occurrence?)
– Is it related to a goal or question?

Bags. One of the constraints of an AGI system is that it needs to work with finite
resources. When working within a fixed sized memory, once a memory limit is
reached, a decision has to be made as to which item to remove to make space for
a new one. Here, a data structure called “Bag” is used by OpenNARS. This data
structure stores items ordered by their priority value, allowing for sampling items
based on the priority distribution within. Once a bag is full, in order to make
room for a new item, the lowest-priority item is removed. Bag is constructed in
such a way as to support efficient sampling, adding and removal of items without
any search operations, so all operations on bag are O(1). Overall this control
strategy is very similar to the Parallel Terraced Scan in [10], as it also allows
the exploration of many possible options in parallel, with more computation
devoted to options which are identified as being more promising. OpenNARS
controls the resource allocation of all reasoning using the bag data structure,
and is not restricted to reacting to events. The aforementioned chaining case is
also controlled by Bag sampling. See [13] for more detail.
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Concepts. Conceptually, the belief network of the OpenNARS system can be
thought of as a directed graph where vertices are concepts and edges are links
(links are outside the scope of this paper (see [5]). For the purpose of this discus-
sion concepts can be considered as storage units, that contain a bag of beliefs and
goals. Concepts themselves are stored in a large system-wide ConceptBag and
selected as explained above. Therefore, concepts, beliefs and goals are selected
probabilistically, based on their priority and forgotten when their priority is the
lowest in the respective bag.

4 Goal-Directed Procedure Learning: Method

Temporal Reasoning. An adaptive agent existing in a real-time environment
needs to be aware of, and capable of reasoning about, time. We refer to this
mechanism as Temporal Reasoning. An event is something that the system expe-
riences in time and this time is captured as an OccurrenceT ime. In OpenNARS
occurrence time is measured in system cycles, but can be any representation
that supports a regularly incremented value, such as a real-time clock. When
reasoning with time the notion of ’interval’ becomes important. For example,
two events occurring time t apart can be represented as (E1, It, E2), where It
is an interval of time duration t. This allows arbitrarily complex temporal pat-
terns to form. These patterns form the necessary preconditions for hypothesis
creation. Intervals also apply to implications, (E1, It) /⇒ E2, where the temporal
aspect becomes part of the precondition. Intervals are always measured, though
we will omit them in the discussion whenever they don’t add any value. A key
challenge is how to allow intervals of different duration to be revised. Imagine
two hypotheses (E1, It1) /⇒ E2 and (E1, It2) /⇒ E2. Both of them predict the
same outcome based on the same precondition, but they expect different interval
durations, It1 and It2. To allow these different intervals to be revised, a confi-
dence decay (Projection) [5] increasing with the time difference is applied after
revision. Here it makes a difference which premise is projected to the other. The
projected premise should be the one whose timing appears less often, so as to
keep the more usual timing in the conclusion. This enables the learning of the
more, commonly experienced, interval durations over time.

Hypothesis Creation. This is the core of the method, and whilst selection
and testing are important, creation is the key to building relevant and useful
hypotheses. The crucial insight was to separate the incoming experience stream
into events and operations (in OpenNARS operations are restricted to the events
that the system can initiate itself. Operations also generate input events as feed-
back). With this separation, the task of forming meaningful preconditions was
a simpler problem to solve: operations simply become the context under which
certain events cause others to occur. Given, a collection (a Bag in OpenNARS)
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of recent Events and, a collection of recent Operations, a hypothesis is formed
in the following way:

1. Probabilistically select an Op from Operations, where the probability of
selection should be roughly proportional to how long ago the event happened
or the operation was invoked. After invocation of an operation:
(a) Create a concept for the Op (if it does not already exist) [5].
(b) Copy the Events, that occurred prior to the operation, based on occur-

rence time, to the Op concept.
(c) The Op concept can now form preconditions, based on probabilistic

selection of these events, and construct premises of the form (E,Op),
where E is a precondition of the Op.

2. Now when a new event E∗ enters the system and an operation Op is sampled
from Operations, two steps occur:
(a) Sample a second premise Epast from Events to form temporal sequences

(Epast, E
∗) that are inserted into Events, and also the predictive

hypothesis (Epast /⇒ E∗) which only exists in concept memory. The
latter is required as not everything can be understood in terms of own
operations (as also argued by [1]), such as the transition from day to
night.

(b) Based on Op, retrieve, via probabilistic sampling of the Op concept, one
of the (E,Op) preconditions, in order to form a procedural hypothesis
((E,Op) /⇒ E∗). Here, clearly the consequent is put into the context of
the operation. Without taking operations to execute into account, there
is simply no way to predict, for example, where the cup of tea in your
hand will move next, as argued by [1].

Over time the total evidence of re-occurring hypotheses will increase due to
the Revision rule [14] being applied within the concept of the hypothesis.

Revised procedural hypotheses ((A,Op) /⇒ B) are also stored in the
“foreign” concept B, this allows B to memorize ways of how it can be realized,
and to learn its preconditions. Thereby, the most successful hypotheses, these
with the highest truth expectation, will become the most likely to be selected.

Hypothesis Selection. Assuming an incoming or derived goal G!, the task of
hypothesis selection is to choose the most relevant hypothesis that can satisfy G!
with some previously experienced event E as precondition. Also assuming that
such a hypothesis already exists, the Detachment rule [14] can be applied twice to
a matching hypothesis, which is of the form (E,Opi) ⇒ G. The first detachment
leads to (E,Opi)! and the second one to Opi!. The Opi! with the highest truth
expectation, or certainty, will most likely lead to the greatest satisfaction of
G!, and therefore will be derived. G! can then be revised in concept G and
trigger an execution if the truth expectation of the revised goal (projected to the
current time) will be above a decision threshold [5]. Note that subgoal derivations
also happen in the backward chaining process we described. This is especially
important when no hypothesis that can directly realize G! exists, or new solutions
should be probed for.
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Hypothesis Pruning. Given the uncertain nature of input experience, it is
not possible, in advance, to identify what will be relevant and useful. This,
unavoidable, lack of foresight can lead to the formation of hypotheses that have
little value to a system. Additionally, given the limited computational resources,
only a certain number of hypotheses can be retained at any one time. This makes
it even more important to keep track of the success rate of hypotheses, as to keep
the most competent ones while removing the others.

The approach taken to allow for this is hypothesis pruning, to measure the
success of hypotheses so that these that do not predict correctly can be removed
by lowering their quality. While finding positive evidence is achieved through
temporal induction rules as mentioned before, finding negative evidence is the
job of Anticipation: given a predictive statement of the form: antecedent /⇒
consequent, we define Anticipation as the expectation that the antecedent will
lead to the consequent being observed as predicted. With Anticipation a system
is able to find negative evidence for previously learned predictive beliefs which
generate wrong predictions [5,8].

If the event happens, in the sense that a new input event with the same
term as the anticipated event is observed, the anticipation was successful
(Confirmation), in which case nothing special needs to be done, since the state-
ment will be confirmed via the normal process of temporal induction.

If the predicted event does not happen then the system needs to recognize
this. This is achieved by introducing a negative input event, not(a). Note that in
this case, such a negative input event has high priority and should significantly
influence the attention of the system, assuming such a mechanism is present.

Here, one challenge is how to determine the timeout duration after which we
decide the prediction failed. A simple treatment turned out to be effective: Given
that an event was predicted to occur in n steps, the failure can be recognized
after a certain multiple of n steps. A more refined approach would be to keep
track of the variance in timings in the concept of the predictive hypothesis, and
then to decide that failure point taking the variance into account. But also in
this case, a decision as to where to set the failure point, has to be made.

5 Results

Test Chamber is one of the environments that we developed to allow an
AGI system to be tasked with a variety of different goals and experiences in
novel surroundings. Within Test Chamber an AGI is expected to demonstrate
goal-oriented observation-based procedure learning in a domain of doors,
switches and lights. A birds eye view perspective is controlled by a user, opening
doors, picking keys, and so on. The system observes the users actions and can
call different operations directly, such as: going to an object, activating a switch,
deactivating it, picking an object from the floor and so on. Activating operations
in different contexts allows for different outcomes in the test environment.
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A possible event stream generated from observing a user:

1. Event E1: Reached start place
2. Operation Op1: Go to switch1
3. Event E2: Reached switch1
4. Operation Op2: Activate switch1
5. Event E3: Switch1 activated

Although these examples were performed in OpenNARS, for the purpose of
this paper it is sufficient to know that these inputs can be directly represented
as events and operations, and potentially in other systems.

OpenNARS easily creates hypothesis ((E1, Op1) /⇒ E3) by making use of
the explained mechanisms. The same is true for ((E2, Op2) /⇒ E3). While there
are other generated results too, these two are of special relevance: assuming a
goal E3 exists or enters the system, what hypothesis, or effectively behavior,
should the system choose to reach its goal? It depends on the context. In this
particular example, both hypotheses effectively help each other and allow for
“local” decisions to realize E3 dependent on whether E1 or E2 was observed:
when one of the hypotheses doesn’t exist, the other one would fail, as an impor-
tant part of the necessary behavior would be missing, only together can they
succeed. A surprising property of this implicit representation is that no explicit
“global plan” exists or needs to be searched for, yet is totally sufficient for car-
rying out the task successfully. However, when an important piece of knowledge
is missing, a fast reaction is often not possible. In this case, a system needs to
improvise, either by searching for a solution in its memory, or by probing the
environment, both of the strategies should be applied together rather than in a
distinct way.

These representative cases work well in OpenNARS, and allow it to, more
easily, acquire complex behaviors whilst switching its behavior when goals and
context change.

We also applied OpenNARS to Reinforcement Learning problems, one of
them being Pong: assuming a goal G!, an input event G. can directly act as
“reward signal”, which in Pong basically is an event encoding “the ball collided
with the bat”. Additionally, the system is given events about the horizontal
ball position relative to the bat. This allows it to invoke different operations
dependent on whether the ball is left or right of the bat. For this purpose, it can
invoke two operations: to move the paddle to the left or to the right. This turned
out to be sufficient to let the system learn to Play Pong in short time and with
high reliability: the experiment was repeated 50 times, and the system learned
the right behavior in all of the cases, with 98 s mean and a variance of 51 s until
the right policy was learned. Important to note here is that the ball starts at
a random position, with a random movement direction, and needs at least 5 s
to reach another side of the quadratic board. This explains the high variance,
as some representative cases need to occur first, before the relevant hypotheses
will be supported by real evidence. Another factor here: when a wrong behavior
(such as moving to the left side when the ball is on the right side) is learned
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first, due to unlucky cases, it will take longer for the right hypothesis to take
over, as negative evidence generated by failed anticipations needs to be found
before the right behavior will be tried.

6 Conclusion

The Reasoning-Learning Mechanism employed by NARS has been shown to
be capable of goal-directed Procedure Learning: the separation of operations
from other events has enabled the system to form more successful and useful
hypotheses with little resource effort. These are subsequently used to enable fast
hypothesis selection through the precondition memorization mechanism. This
mechanism allows the system to make effective use of procedural knowledge
and have fast response times when the relevant knowledge already exists. Col-
lectively our methods allow the system to self-program and automatize itself
to become gradually more competent over time. We have shown that the sys-
tem can learn goal-oriented procedures involving multiple operations, without
building explicit plans. Furthermore, we have demonstrated, that the system
can perform well in Reinforcement-Learning style tasks as a special case, and
that the “reward signal” can naturally be represented. While this paper was
mainly about introducing the involved mechanisms and their properties, future
work will include detailed comparisons with alternative procedure learning tech-
niques. This will include theoretical comparisons as well as detailed results on
learning performance.

In conclusion, we believe the techniques presented in this paper, specifically,
operational separation, precondition memorization and Anticipation are gener-
ally applicable to a broad class of AGI systems. As has been highlighted above,
the Procedure Learning capability of OpenNARS was significantly improved as
a result of these enhancements.
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Abstract. Can machines design? Can they come up with creative solu-
tions to problems and build tools and artifacts across a wide range
of domains? Recent advances in the field of computational creativity
and formal Artificial General Intelligence (AGI) provide frameworks
towards machines with the general ability to design. In this paper we
propose to integrate a formal computational creativity framework into
the Gödel machine framework. We call the resulting framework design
Gödel machine. Such a machine could solve a variety of design problems
by generating novel concepts. In addition, it could change the way these
concepts are generated by modifying itself. The design Gödel machine
is able to improve its initial design program, once it has proven that a
modification would increase its return on the utility function. Finally, we
sketch out a specific version of the design Gödel machine which specif-
ically aims at the design of complex software and hardware systems.
Future work aims at the development of a more formal version of the
design Gödel machine and a proof of concept implementation.

Keywords: Artificial general intelligence · Gödel machine
Computational creativity · Software engineering
Systems engineering · Design theory · Reinforcement learning

1 Introduction

Can machines design? In other words, can they come up with creative solutions
to problems [38] and intervene into their environment by, for example, building
tools and artifacts, or better versions of themselves [10,26]? Surprisingly, this
question has not received a lot of attention in the current debate on artificial
intelligence, such as in Bostrom [2] and Russell [33]. An exception is the lit-
erature in formal artificial general intelligence (AGI) research [10,27,28,40]. If
artificial intelligence is going to have a large impact on the real world, it needs
to have at least some capacity to create “new” things and to change its envi-
ronment. The capacity to create new things has also been called “generativity”
in the design theory literature [17]. Such machines could be used across many
c© Springer Nature Switzerland AG 2018
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contexts where the ability to design in the widest sense is required, for example,
designing industrial goods such as the chassis of a car that can subsequently be
manufactured. Another application could be in space colonization where local
resources are used for building an infrastructure autonomously for a human crew
[18–20]. Traditionally, the wider question of creative machines has been treated
in the computational creativity community. The computational creativity com-
munity has come up with numerous systems that exhibit creativity [7–9,32,41],
i.e. systems that are able to conceive artifacts that are considered as novel and
creative by humans and/or are novel compared to the underlying knowledge base
of the system. Wiggins [42] and Cherti [6] have explored the link between arti-
ficial intelligence and creativity. More specifically, Wiggins [42] formalizes the
notions of exploratory creativity and transformational creativity from Boden [1]
in an artificial intelligence context. A creative system that exhibits exploratory
creativity is capable of exploring a set of concepts according to a set of rules.
Transformational creativity is by contrast exhibited by a system that can modify
the set of concepts itself and/or the rules according to which it searches for the
set of concepts.

At the same time, the artificial general intelligence community is working on
general foundations of intelligence and providing frameworks for formally cap-
turing essential elements of intelligence. Within this community, intelligence is
primarily defined as general problem-solving [13,23]. According to Goertzel, [13],
the field of Artificial General Intelligence deals with “the creation and study of
synthetic intelligences with sufficiently broad (e.g. human-level) scope and strong
generalization capability...” A relevant research stream in this field is the devel-
opment of the “universalist approach” that deals with formal models of general
intelligence. Examples are Hutter’s AIXI [23], Schmidhuber’s Gödel Machine
[35], and Orseau and Ring’s space-time embedded intelligence [27]. These formal
models are based on reinforcement learning where an agent interacts with an
environment and is capable of self-improvement.

In this paper we attempt to integrate Wiggins’ formal creativity framework [42]
into an Artificial General Intelligence (AGI) framework, the Gödel machine [35].
The purpose is to demonstrate that the mechanisms of self-improvement in AGI
frameworks can be applied to a general design problem. The resulting design Gödel
machine designs according to certain rules but is capable of changing these rules,
which corresponds to exploratory and transformational creative systems in Wig-
gins [42]. Based on this generic framework, we will sketch out a machine that can
design complex hardware or software systems. Such systems encompass most prod-
ucts with a high economic value such as in aerospace, automotive, transportation
engineering, robotics, and artificial intelligence.

2 Literature Survey

In the literature survey, we will focus on the literature on design theory, formal
modeling languages in systems and software engineering, computational creativ-
ity, and artificial general intelligence.
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The design theory literature provides criteria for how to evaluate a design
theory. Hatchuel et al. [17] introduce two criteria: generativity and robustness.
Whereas generativity is the capacity of a design theory to explain or replicate
how new things are created, robustness is understood as how sensitive the per-
formance of the designs is with respect to different environments. The main
contribution of the design theory literature to a general designing machine are
the different forms of generativity and criteria for evaluating design theories.

One possibility to capture generativity is by using a formal design language.
Formal design languages belong to the formalized subset of all design languages
that are used for generating designs. Formal languages consist of a set of symbols,
called alphabet Σ, a set of rules, called grammar, that define which expressions
based on the alphabet are valid, and a mapping to a domain from which meaning
for the expressions is derived [15]. This mapping is called “semantics”. The set
of all words over Σ is denoted Σ∗. The language L is a subset of Σ∗ and contains
all expressions that are valid with respect to a grammar.

For example, programming languages consist of a set of expressions such
as ‘if’ conditions and for-loops. These expressions are used for composing a
computer program. However, the expressions need to be used in a precise way.
Otherwise the code cannot be executed correctly, i.e. the program has to be
grammatically correct.

According to Broy et al. [5], formal semantics can be represented in terms of
a calculus, another formalism (denotational and translational semantics), and a
model interpreter (operational semantics). Existing formal semantics for complex
systems and software engineering seem to be based on denotational semantics
where the semantic domain to which the syntax is mapped is based on set theory,
predicate logic [3,4], algebras [21], coalgebras [14] etc.

Formal design languages are formal languages that are used for designing,
e.g. for creating new objects or problem-solving. For example, programming
languages are used for programs that can be executed on a computer.

The computational creativity literature presents different forms of creativ-
ity and creativity mechanisms [11]. It distinguishes between several forms of
creativity, which have been introduced by Boden [1]: Combinational creativity
is creativity that is based on the combination of preexisting knowledge. For
example, the game of tangram consists of primitive geometric shapes that are
combined to form new shapes. Exploratory creativity is “the process of searching
an area of conceptual space governed by certain rules” [30]. Finally, transforma-
tional creativity “is the process of transforming the rules and thus identifying
a new sub-space.” [30] These categories seem to correspond with the genera-
tivity categories combinatorial generation, search in topological proximity, and
knowledge expansion in design theory [17]. All three forms of creativity can be
generated by computational systems today [1]. However, a key limitation is that
these systems exhibit these forms of creativity only for a very narrow domain
such as art, jokes, poetry, etc. No generally creative system exists.

The artificial general intelligence literature does seldom treat creativity
explicitly. Schmidhuber [34,36,37] is rather an exception. He establishes the link



90 A. M. Hein and H. Condat

between a utility function and creativity. A creative agent receives a reward for
being creative. Hutter [23] briefly mentions creativity. Here, creativity is rather
a corollary of general intelligence. In other words, if a system exhibits general
intelligence, then it is necessarily creative. In the following, we will briefly intro-
duce the Gödel machine AGI framework that has received considerable attention
within the community.

3 Creativity and the Gödel Machine: A Design Gödel
Machine

We use the computational creativity framework from Wiggins [42] and integrate
it with the Gödel machine framework of a self-referential learning system. In
his influential paper, Wiggins [42] introduces formal representations for creative
systems that have been informally introduced by Boden [1], notably exploratory
and transformational creativity. We choose the Gödel machine as our AGI frame-
work, as its ability to self-modify is a key characteristic for a general designing
machine. Furthermore, it uses a formal language, which makes it easier to com-
bine with formal design languages. However, we acknowledge that AIXI [23] and
Orseau and Ring’s space-time embedded intelligence [27] should be considered
for a similar exercise.

A Gödel machine that can generate novel concepts (paintings, poems, cars,
spacecraft) is called design Gödel machine in the following. Such a machine
is a form of creative system, defined as a “collection of processes, natural or
automatic, which are capable of achieving or simulating behaviour which in
humans would be deemed creative” [42].

The original Gödel machine consists of a formal language L that may include
first order logic, arithmetics, and probability theory, as shown in Fig. 1.

It also consists of a utility function u whose value the machine tries to max-
imize.

u(s, e) : S × E → R

u(s, e) = Eμ[
T∑

τ=time

r(τ)|s, e] for 1 ≤ t ≤ T (1)

Where s is a variable state of the machine, e the variable environmental state,
r(t) is a real-valued reward input at a time t. Eμ(·|·) denotes the conditional
expectation operator of a distribution μ of a set of distributions M , where M
reflects the knowledge about the (probabilistic) reactions of the environment.

How does the Gödel machine self-improve? A theorem prover searches for a
proof that a modification can improve the machine’s performance with respect
to the utility function. Once a proof is found that a modified version of itself
would satisfy the target theorem in Eq. (2), the program switchprog rewrites
the machine’s code from its current to its modified version. The target theo-
rem essentially states that when the current state s at t1 with modifications
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Fig. 1. Elements of the Gödel machine

yields a higher utility than the current machine, the machine will schedule its
modification.

(u[s(t1)⊕switchbit(t1) =
′ 1′), Env(t1)] > u[s(t1)⊕switchbit(t1) =

′ 0′), Env(t1)]) (2)

The basic idea of combining the Gödel machine framework with the formal
creativity framework of Wiggins [42] is to construct a Gödel machine where
its problem solver corresponds to an exploratory creative system and the proof
searcher corresponds to a transformational creative system. The transforma-
tional creative system can modify the exploratory creative system or itself.

More formally, the design Gödel machine consists of an initial software p(1).
p(1) is divided into an exploratory creative system which includes an initial
policy π(1)env, which interacts with the environment and a transformational
creative system, which includes an initial policy π(1)proof . π(1)proof searches for
proofs and forms pairs of (switchprog, proof), where the proof is a proof of a
target theorem that states that an immediate rewrite of p via switchprog would
yield a higher utility u than the current version of p. π(1)env is more specifically
interpreted as a set of design sequences comprising design actions. A design
sequence, for example, is the order in which components are combined to form a
system. The different ways of how components can be combined are the design
actions and the sequence of how they are combined is the design sequence.
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The design Gödel machine consists of a variable state s ∈ S. The variable
state s represents the current state of the design Gödel machine, including a
set of concepts c(t) at time t that the machine has generated, a set of syntactic
and knowledge-based rules R that define the permissible concepts in a design
language L, and a set of sequences of design actions πenv for generating concepts
and getting feedback for these concepts from the environment. The machine
generates concepts in each time step t, including the empty concept �. It receives
feedback on the utility of these concepts via the utility function u(s, e) : S ×E →
R, which computes a reward from the environmental state e ∈ E . Analogous to
the exploratory creative system in Wiggins [42], πenv and u are part of a 7-
tuple < U ,L, [.], 〈., ., .〉,R, πenv , u >, where U is a universe of concepts, [.] is an
interpretation function that applies the syntactic and knowledge-based rules R
to U , resulting in the set of permissible concepts C. The interpreter 〈., ., .〉 takes
a set of concepts cin and transforms them into a set of concepts cout by applying
〈R, πenv, u〉:

(cout) = 〈R, πenv, u〉(cin) (3)

Self-modification for the design Gödel machine means that parts of the
exploratory creative system and transformational creative system can be modi-
fied. Regarding the former, the transformational creative system is able to modify
the exploratory creative system’s rules R, the sequences of design actions πenv,
and the utility function u. For this purpose, the transformational creative sys-
tem searches for a proof that a modification would lead to a higher value on the
meta utility function umeta. By default, umeta returns 0 if the target theorem in
Equation (2) is not satisfied and 1 if it is. If the target theorem is satisfied, this
modification is implemented in the subsequent time step. In addition, a target
theorem umeta could capture criteria for a good design sequence in πenv that are
expected to lead to a higher value on u. Examples are measures for the origi-
nality of the created designs via a design sequence, if originality is expected to
lead to higher values on u. The proof searcher πproof that searches for the proof
and the proof itself are expressed in a meta-language Lmeta. The proof is based
on axioms, rules, and theorems in R and πenv, the meta-language syntax and
rules Rmeta, and the proof strategies πproof of the proof searcher. Hence, the
transformational creative system can be expressed as the 7-tuple:

< L,Lmeta, [.]meta, 〈., ., .〉meta,Rmeta, πproof , umeta > (4)

More specifically, in case u is not modified, the proof searcher πproof generates
pairs of R and πenv from an existing R and πenv by applying an interpreter
〈., ., .〉meta with Rmeta, πproof , and umeta:

(R2, πenv2) = 〈Rmeta, πproof , umeta〉meta(R1, πenv1) (5)

This formulation is similar to the transformational creative system in
Wiggins [42]. If the proof searcher can prove umeta((R2, πenv2), e1) >
umeta((R1, πenv1), e1), the design Gödel machine will switch to the new rules
R2 and design sequences πenv2.
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Analogous to the original Gödel machine, the transformational creative sys-
tem in the design Gödel machine is capable of performing self-modifications, for
example, on the proof searcher and the meta-utility function:

(X2) = 〈Rmeta, πproof , umeta〉meta(X1) (6)

where X is one of the elements in < L,Lmeta, [.], 〈., ., .〉,Rmeta, πproof , umeta >.
Self-reference in general can cause problems, however, as Schmidhuber [35] notes,
in most practical applications, they are likely not relevant. A design Gödel machine
would start with an initial configuration and then modify itself to find versions of
itself that yield higher values on its utility function.

Figure 2 provides an overview of the main elements of the design Gödel
machine that have been introduced before.

Fig. 2. Elements of the design Gödel machine

4 A Design Gödel Machine for Complex Systems Design

A specific version of the design Gödel machine for designing complex software
and hardware systems can be imagined. It would include a set of syntactic and
knowledge-based rules R that define sound designs (concepts for hardware and
software) in the specific domain and a set of design actions such as abstraction,
refinement, composition, and verification [3,4,14] that can be combined into
design sequences πenv. The environment E could be a virtual test environment
or an environment in which design prototypes are tested in the real world.

Important principles of formal systems and software engineering are compo-
nents and their interactions, abstraction, composition, refinement, and verifica-
tion [3,4,14]. Broy [3,4] defines interactions in terms of streams and interfaces.
Golden [14] defines interactions in terms of dataflows. Component functions are
specified in terms of transfer functions that transform inputs into outputs. The
component behavior is specified in terms of state machines. Golden [14] specifies
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component behavior via a timed Mealy machine, Broy [3,4] uses a state-oriented
functional specification for this purpose.

Apart from this basic representation of a system as a set of interacting com-
ponents, abstraction, composition, refinement, and verification are important
principles during the design of a system.

Abstraction means that details are left out in order to facilitate the compre-
hension of a complex system, reduce computational complexity or for mathe-
matical reasons [14]. Abstraction is treated by Golden [14] via dataflow, transfer
function, and component abstraction. He remarks that abstraction can also lead
to non-determinism due to the underspecification of the abstracted system.

Composition is the aggregation of lower-level components together with their
interactions to higher-level components. Herrmann et al. [21] propose a compo-
sitional algebra for aggregating components. Broy [3] specifies composition as
the assignment of truth values to system-level inputs and outputs based on
component-level inputs and outputs. Golden [14] divides composition into prod-
uct and feedback. His notion of product is similar to the compositional algebra
in Herrmann et al. [21] and defines products of dataflows, transfer functions, and
components. Feedback further deals with outputs of a component that are fed
into the same component as an input.

Refinement is the addition of details to arrive from a general to a more specific
system specification. Golden [14] defines refinement as a form of decomposition,
which is the inverse operation of composition. Broy [3] defines different forms
of refinement: property, glass box, and interaction refinement. Both Golden and
Broy interpret refinement as an addition of properties and decomposition of
components/interactions.

Verification is the process of checking requirements satisfaction. Golden [14]
assigns requirements to a system or component via “boxes” that specify the sys-
tem or component’s inputs, outputs, and behavior. Broy [3,4] similarly distin-
guishes between global (system-level) requirements and local (component-level)
requirements. The verification process in his case is essentially formally proving
that the system and its components satisfy the requirements.

The literature on formal modeling languages for software and systems engi-
neering provides the necessary semantics and rules for describing complex soft-
and hardware systems. However, the main shortcoming of formal modeling lan-
guages for complex software and hardware systems is that they cannot generate
these systems by themselves. In other words they are not generative without
additional generativity mechanisms and a knowledge base.

4.1 Design Axioms

As for the original Gödel machine, theorem proving requires a enumerable set of
axioms. These axioms are strings over a finite alphabet Σ that includes symbols
from set theory, predicate logic, arithmetics, etc. The design Gödel machine for
complex systems design includes a number of design-related axioms that will be
presented in the following. The design axioms belong to three broad categories.
The first are axioms related to the formal modeling language, describing its
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abstract syntax (machine-readable syntax), the semantic domain, for example,
expressed in predicate logic, and the semantic mapping between the abstract
syntax and the semantic domain. The semantic domain and mapping in Golden
[14] and Broy [3,4] can be essentially reformulated in terms of set theory, predi-
cate logic, arithmetics, and algebra. These axioms belong to R, but specifically
define which designs are “formally correct”. We denote the set of these axioms
as Rformal. These axioms include formal definitions for a system, component,
interfaces, and interactions between component etc.

The second category consists of axioms related to different mechanisms of
generating designs. Specifically, these are axioms for refinement, abstraction,
composition, verification, and axioms that describe domain-specific rules based
on domain-specific knowledge. We consider these axioms as part of the set of
design sequences πenv.

The third category are axioms that describe conceptual knowledge such as the
notion of “automobile”. Without being too restrictive, such conceptual knowledge
would include axioms for parts and whole, i.e. mereological statemenents [39]. For
example, an automobile has a motor and wheels. The axioms also belong to R,
however, contrary to Rformal, they are not general principles of representing com-
plex systems but knowledge specific to certain concepts. Such axioms are expressed
by Rck.

4.2 System

According to Golden [14], a system is a 7-tuple
∫

=< Ts, Input,Output,
S, q0,F ,Q > where Ts is a time scale called the time scale of the system,
Input = (In, I) and Output = (Out,O) are datasets, called input and out-
put datasets, S is a nonempty ε-alphabet, called the ε-alphabet of states, q0 is
an element of S, called the initial state, F : In × S × Ts → Out is a function
called functional behavior, Q : In×S×Ts → S is a function called states behav-
ior. (Input,Output) are called the signature of

∫
. This definition of a system

corresponds to a timed Mealy machine [24].
It is rather straight-forward to model the Gödel machine in this system

framework, if the loss in generality of using the timed Mealy machine is con-
sidered acceptable. In that case, we take: Ts = N, Input = (E ,E), q0 = s(t1),
Output = (S,S), F : E × S × Ts → A, Q : E × S × Ts → S. E and S are any
data behaviors on E and S respectively.

Formulating the design Gödel machine in the system framework allows for
applying the formal machinery of the framework such as refinement, abstraction,
verification etc. that the design Gödel machine can apply to itself.

4.3 Refinement and Abstraction

Refinement and abstraction relate system representations that are at different
levels of abstraction [4,14]. According to Broy [3], refinement may include the
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addition of properties to the system that makes it more restrictive, or includes
its decomposition into components. For example:

x =⇒ y ◦ z (7)

where the system x is decomposed into the components y and z.

4.4 Composition

The composition operator is important for combining components into a system
with their respective interfaces. A generic composition operator can be under-
stood as:

y ⊗ z =⇒ x (8)

where the components y and z are composed to x. These operators would not
only need to be defined for software systems, such as proposed by [3,4,14] but
would also need to include interpretations of the composition for physical systems
[22]. This is likely to entail mereological questions of parts and wholes [39].

4.5 Verification

We interpret verification in two distinct ways: First, with respect to a set of
requirements Φ that is part of the environment E , where E returns a reward
input r(t) to the design Gödel machine. Based on r(t) and the respective set
of concepts C, the utility function u is evaluated. Such a utility function would
have the form ũ : C × Φ → R, with C ⊂ S and Φ ⊆ E .

Second, the set of requirements Φ is internal to the design Gödel machine. The
requirements describe expectations with respect to the environment E . Specifi-
cally, the satisfaction of the requirements is expected to return a reward input
r(t) from the environment. For example, if a concept c (a car) exhibits a prop-
erty a (consumes less than 3 l/km in fuel), then the resulting r(t) will result in
a higher u than for a different property (consumes 10 l/km of fuel). The condi-
tional expectation operator Eμ(·|·) from the original Gödel machine is slightly
modified for this purpose, leading to a utility function u : C × Φ × E → R.

u(c, ϕ, e) = Eμ[
T∑

τ=time

r(τ)|c, ϕ, e] for 1 ≤ t ≤ T (9)

where ϕ ∈ Φ and c ∈ C. The requirements Φ are themselves expectations of what
the environment E “wants” from the design(s). They are subject to modifica-
tions, depending on the environment’s response r(t). This second interpretation
of verification captures nicely the distinction between verification and valida-
tion in systems engineering, where verification checks if the design satisfies the
requirements and validation checks if the requirements were the right ones [16].



Can Machines Design? An Artificial General Intelligence Approach 97

5 Limitations

Design Gödel machines are subject to the same limitations as the original
Gödel machine [35] such as the Gödel incompleteness theorem [12] and Rice’s the-
orem [29].

Apart from these theoretical limitations, a basic limitation of the design
Gödel machine presented here is that it is based on a formal language. Computing
systems that are not based on a formal language could not be addressed by this
approach.

As Orseau [25] has remarked, the Gödel machine is expected to be compu-
tationally extremely expensive for reasonably complex practical applications.

An important limitation of this paper is that we have not provided an imple-
mentation of the design Gödel machine together with a proof of concept demon-
stration. This remains a task for future work. Furthermore, for an application
in a real-world context, the problem to be solved by the machine needs to be
carefully selected. For example, which tasks based on which inputs and out-
puts are interesting for automation [31]? Apart from the possibility of proper
formalization, economic criteria will certainly play an important role.

6 Conclusions

In this paper, we proposed to integrate a formal creativity framework from
Wiggins into the Gödel machine framework of a self-referential general prob-
lem solver. Such an integration would be a step towards creating a “general
designing machine”, i.e. a machine that is capable of solving a broad range
of design problems. We call this version of the Gödel machine a design Gödel
machine. The design Gödel machine is able to improve its initial design pro-
gram, once it has proven that a modification would yield a higher utility. The
main contribution of this paper to the artificial general intelligence literature is
the integration of a framework from computational creativity into an artificial
general intelligence framework. In particular, exploratory and transformational
creative systems are integrated into the Gödel machine framework, where the
initial design program is part of the exploratory creative system and the proof
searcher is part of the transformational creative system. Of particular practical
interest would be a design Gödel machine that can solve complex software and
hardware design problems. Elements of such a machine are sketched out. How-
ever, a practical implementation would require a more extended formal systems
engineering framework than those existing today. An interesting area for future
work would be the integration of Wiggins’ framework into other artificial general
intelligence frameworks such as Hutter’s AIXI and Orseau and Ring’s space-time
embedded intelligence.



98 A. M. Hein and H. Condat

References

1. Boden, M.: Computer models of creativity. AI Mag. 30(3), 23 (2009)
2. Bostrom, N.: Superintelligence: Paths, Dangers, Strategies. Oxford University

Press, Oxford (2014)
3. Broy, M.: A logical basis for component-oriented software and systems engineering.

Comput. J. 53(10), 1758–1782 (2010)
4. Broy, M., Dederichs, F., Dendorfer, C., Fuchs, M., Gritzner, T.F., Weber, R.: The

design of distributed systems: an introduction to focus. Technical report, Technis-
che Universität München. Institut für Informatik (1992)

5. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless
model-based development: from isolated tools to integrated model engineering envi-
ronments. Proc. IEEE 98(4), 526–545 (2010)

6. Cherti, M.: Deep generative neural networks for novelty generation: a foundational
framework, metrics and experiments. Ph.D. thesis, Université Paris-Saclay (2018)
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evidence based model and discuss possible implications of its application.

Keywords: Artificial psychology · Artificial general intelligence · Compassion
Cognitive model · Empathy · Social evidence · Social proof

1 Introduction

For complete embodiment of any artificial general intelligence (AGI) system [1], we
anticipate the need for social embodiment. That is, besides physical or virtual connec‐
tions to the world, supplying self-reinforcement feedback, we assume there is a need for
social connections supporting social reflections, based on empathy and compassion
mutually expressed between members of human or non-human community of natural
or artificial beings. In fact, there is known evidence in mass psychology regarding effects
that social patterns have on behavior of individuals [2]. These effects may have construc‐
tive or destructive implications, depending on the case [3], including such negative
scenarios as social engineering and psychological operations [4]. The former may be
employed to implement soft control of entire community improving its performance
while the latter may be used to abuse and destroy the community. At the same time,
need for human-friendly AGI requires comprehension of human values on behalf of
AGI system, while these values might get learned in course of self-reinforced co-devel‐
opment of AGI system with humans that it is supposed to serve to. For this purpose,
having the system possessing cognitive model capable to learn values of its social envi‐
ronment appears very important.

Earlier works in the area of artificial psychology (AP) involving mathematical
modeling of social interactions phenomena and dispute resolution in communities have
been carried out by Lefebvre [5]. As it has been suggested by Goertzel and other authors
(Kolonin, Pressing, Pennachin) in 2000, basis of social motives of an artificial agent
behavior can be grounded on principle of compassion between interacting agents. The
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definition of the same principle can be called “empathic computing” [6] and applied for
study of effects of behavioral modifications in human, non-human and hybrid environ‐
ments.

In the further discussion, we will be relying on the principles of empathy and
compassion as built-in qualities of AGI system, following definition of intelligence made
by Goertzel [1] as ability to reach complex goals in complex environments using limited
resources. It will be assumed that decision making process of a system capable for social
behavior based on these principles can be implemented with fuzzy or probabilistic logic
operating with networks or graphs of concepts and relationships [7, 8]. Specifically, we
will discuss extensions and implications of the social evidence based cognitive model
constrained by resources [9, 10].

In such model, social evidence based decision making process implies that an agents
reaches internal consensus in its internal system of reflections of its social referees, being
limited by time and amount of power to make these decision timely not over-consuming
available energy [9]. In social psychology studies this principle and its implications are
well backed up with known phenomenology and notion of social proof identified by
Cialdini [2].

The end goal of the work is to engineer working AGI agent capable for empathic
and compassionate behavior serving its human environment [11].

2 Model

The suggested resource-constrained social evidence based cognitive model of an AGI
agent, based on earlier works [9, 10], assumes the scope of knowledge is represented
with atoms [1] being concepts or relationships, with each atom having its truth value,
or subjective agent’s expression of truth value attached to it.

The scope of atoms may be representing hyper-graph [1], consisting of few segments,
as Fig. 1 shows, such as foundation graph, social graph, evidence graph and imagination
graph [9]. For further analysis and discussion, we provide following definitions of the
segments and their functional relationships.

Foundation graph contains trusted “hardwired” knowledge which does not need
fuzzy logic or probabilistic reasoning to infer truth values of knowledge atoms it it. Each
i of the atoms Fi represents part of consistent belief system of the knowledge owner, so
subjective expression of truth value Fi is fixed maximum value, such as 1.0 in case of
reasoning on scale between 0.0 and 1.0.

Social graph contains weighted relationships with social referees of the knowledge
owner, with expression values indicating cumulative level of trust, empathy and compas‐
sion in respect to every member j of society Sj. It should be noted that this level may be
computed from the rest of the other relationships Pij connecting social referee j to atoms
in foundation graph and representing reflection of referee in the belief of the knowledge
owner. The latter can be thought as social binding reflecting proximity of of social referee
to the knowledge owner self in its own view.

Evidence graph contains facts k of everyday evidence Ek owner of knowledge is
being exposed to, with each fact having its expression value. Each of the facts may have
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connections Qik to atoms in foundation graph with expression values representing extent
to which the fact is grounded in the belief of the knowledge owner. Also, each of the
facts may have connections Rjk to members of social graph with expression values indi‐
cating extent to which social referee j is though to be responsible for authoring these
facts themselves or treating them as reliable and relevant.

Imagination graph contains current view image Gk of the world supplied by evidence
facts k to to the extent the facts are grounded in the belief of the owner Qik, with account
to valuation of the facts by referees Rjk, including valuations of the referees Sj themselves.
The following formula may be used to approximate this dependency.

Gk = Ek ∗ (𝛴i

(
Qik

)
∗ 𝛴j

(
Rik ∗ Sj

)
), Sj = 𝛴i

(
Pij ∗ Fi

)

Obvious interpretation of the formula suggests that expression of fact k in world view
image of a subject depends on everything variable above, with growth of it with amount
of the raw fact evidence Ek, extent to which is is grounded in core belief system Qik, and
supporting social evidence Rjk weighted by social binding Sj.

Further, the idealistic framework described above may be complicated by physical
limits on any of the segments, restricting their capacity, so only the atoms with highest
degree of expression are retained while the others may by pushed out from agent
memory, with different effects in respect to short-term or working memory and long-
term one [9, 10]. In simple form, for each segment of the graph, it may be represented
with filtering functions F, S, E, and G retaining only top expressed atoms in foundation,
social, evidence and imagination graphs, respectively.

Gk = G(E(Ek) ∗ 𝛴i

(
Qik

)
∗ 𝛴j

(
Rik ∗ S

(
Sj

))
), Sj = 𝛴i

(
Pij ∗ F

(
Fi

))

Fig. 1. Social evidence based cognitive model – segmentation of scope of knowledge.
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Important part of the model is that atoms in foundation graph are considered trusted
unconditionally, so Fi is always true, while atoms in imagination graph require resource-
consuming inference as described above. For atoms Gk that are always true or close to
that, the inference makes no sense so resources can be preserved “hardwiring” them into
belief system, moving knowledge from segment G to F. For atoms Gk that are not close
to true, still requiring inference yet occupying imagination graph often enough to impact
on resource consumption by inference, another ways to preserve energy and space are
possible. It can be solved with adjusting any of the other variables so that inferred truth
values approach to true and respective atoms may follow the scenario above due to
increased expression of truth value. Alternatively, the other variables can be adjusted
do the truth values get below the filtering functions and respective facts are not involved
in the inference at all.

Justification of the model can be considered from few different perspectives. First,
there is separation of the scope of knowledge, underlying decision making, into “abso‐
lute truths” and “context-specific truths”. In hardware and software, the former is more
like hardcoded OS-level code operating efficiently in pre-allocated portion of memory
while the latter is more like loadable and overloadable applications, operating on top of
the former in remaining memory and being swapped optionally. In humans, the former
goes to implementation of unconditional stimuli and long-term conditional stimuli asso‐
ciated with deep beliefs such as religion or attachment to liberal or conservative points
of view, while the latter corresponds to short-term conditional stimuli and may me
changed based on specific circumstances and current mood.

The other justification to split store of information and cognitive processes into
segments such as foundation graph and imagination graph is implied by need to provide
fast and computationally cheap responses within restricted amount of resources and
limited time in respect to operations that are repeating often enough, so they should not
consume too much energy, or are critical for survival, so they should be handled rapidly.
On the opposite side, events not happening often and not critical to survival may deserver
careful consideration within wider context involved different possible inference paths
and options. This is like move to rescue children from wild animal or moving car is
something fundamental for average human and happens almost unconditionally given
core belief, while rescue children from the rain main may be opted out if the rain is warm
and children are enjoying the natural shower. It worth noticing that our model assumes
the knowledge and cognitive activities that involves it may be moved across these
segments due to long-term changes of contexts, as long as environment changes during
the life time.

The need for social graph used for social referencing can be justified to keep weights
of particular social referees involved in the inference process. It may benefit decision
making process introducing social evidence (“social proof” by Cialdini [2]) in cases when
there is no sufficient personal evidence to make decision or when there are conflicting
personal evidences to be resolved. Since the social evidences from different sources may
involve even more conflicting evidences, there is the need to ranking of the sources of
evidence by social proximity, expressed in terms of belief proximity. Notable, since either
human or artificial being may have no access to internal belief of its peer, we may consider
measure of apparent belief or peer’s interaction partner to be considered. In humans, for
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surrogate measure of social proximity natural and behavioral traits are considered. In arti‐
ficial beings operating within communities based on open protocols, actual measure of true
belief systems may be computed.

3 Analysis

Earlier qualitative empirical modeling of practical implications of the model above are
presenting different cases of social engineering [9] as well as overall social dynamics at
large scale [10]. Below we discuss how the model works in greater details.

On the left side of the Fig. 2 there is initial state of multi-agent interaction history,
where two agents on the top share knowledge atoms A,B with each other, whereas two
agents at the bottom share knowledge X,Y. Also, there is agent in the middle sharing
A,B with upper ones and X with lower ones, plus it has atom being C communicated to
everyone. Finally, the agent on the left at the bottom has Z being communicated with
its close circles. Assuming the possessed knowledge resides in foundation graph, due
to overlaps in beliefs, the three agents at the top are somewhat closer one to another
while the two agents at the bottom are close to each other but distant from the upper
three. Respectively, due to different strengths of social bindings, expression of commu‐
nicated knowledge atoms C and Z is different for different agents, as shown by thickness
of arrows representing agent-to-agent interactions.

Fig. 2. Explanation of social dynamics due to interaction with knowledge comprehension based
on social evidence with impact of limited resources.
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The effect of such interaction is shown in the center. Two agents on the top have
obtained high expression of C which may be eventually moved to their foundation graph,
while two agents at the bottom are given weak expression of C which may stay remaining
in imagination graph. Similarly, agent in the middle has got weakened expression of Z.
Still, agent on the right at the bottom has got well expressed Z to get retained in its belief.
The effect of the interaction is that three agents at the top become socially closer to each
other – same as two agents at the bottom, with both groups moved socially further away
each from the other. Now, when agent in the middle tries to communicate B to agents
at the bottom, their similarity may be not sufficient to let B even entering imagination
graph of the latter agents, so the evidence may get completely ignored. Still, Y commu‐
nicated to middle agent from the bottom may enter its imagination graph, still being
weak enough to enter belief system of it.

Over the time, forgetting may take place so the knowledge atoms with weak expres‐
sion are removed from imagination graphs, so Z may get forgotten by agent in the middle
while C may be get forgotten by agents at the bottom. It ends up with further separation
of agent society into isolated groups barely sharing any common values.

Social dynamics above justifies earlier discussion [10] that any inhomogeneous
community, given no extra input outside affecting expression of some common values,
tends to get separated into isolated social clusters eventually. In turn, with external inputs
affecting such common values, like mutual benefits or shared existential threats, society
can be rather united. On the other hand, having particular inhomogeneous input fed from
outside, some of it may be consumed by one part of society but not the other, so in such
case internal divergence of society can be even enforced. Practically, the latter effect is
being exploited in so called “psychological operations” [4], implementing methods “of
social engineering” based on social proof [2]. Respectively, understanding of this
dynamics allows to engineer measures to resist psychological operations or social engi‐
neering on behalf of society of either artificial agents or humans being subject of such
attack vector.

4 Implications and Applications

While numerical simulations based on the model discussed have not been performed
yet, qualitative analysis of the model behavior are well confirmed with both positive and
negative phenomena found in literature on mass psychology, mathematical modeling
and live experiments with social networks [2, 3, 5]. In particular, “social proof”
described bu Cialdini [2], methods of directing human masses [3], methods for quantitive
modulation of human mood [4] may be turned for good as well as for bad, based on the
means and those who applies such method and for which purpose. Within the Aigents
project [11, 12], we are trying to build artificial agent compassionate to its human master
and its close social environment, so we anticipate what agent learns from its master can
not be turned into evil. So, far, current implementation of news monitoring and infor‐
mation extraction agents based on the model learns web surfing preferences and infor‐
mation extraction patterns from the user owner as well as from user’s connection in
social media, considered as social peer, with proximity of relations between the user and
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the peer taken into account [13]. News relevance assessment based on so called “personal
relevance” and “social relevance” performed by Aigent can be explored on https://
aigents.com website, as shown on Fig. 3.

Fig. 3. Personal and social relevances used by news monitoring and information extraction agent.
Width of left part of the bar above each of the news items corresponds to the personal relevance,
based on experiential learning in course of interaction between the agent and its human owner.
Width of right part of the bar corresponds to social relevance learned in the course of interactions
with other users, with account to proximity between the users’ profiles.

For wider area of applications, we assume that building human-friendly agent of
artificial general intelligence can not be rule based but should rather apply reasoning in
respect to what can be though as friendly to particular human at the moment and what
should be not. Obviously, this reasoning should be efficient, so definition of general
intelligence made by Goertzel as “ability to reach complex goals in complex environ‐
ments giving limited resources” [1] would apply. Hence, different segments of agent
memory used by agent for operations on different kinds of data with different perform‐
ance and efficiency, being adaptable to changing social context appears reasonable for
implementation of generic-purpose AGI agents other than just personal assistants speci‐
alized for news monitoring and information extraction.

5 Conclusion

We conclude that suggested model is well justified with known phenomenological
evidence in the area of mass psychology and may be suited to model behavior of artificial
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societies of multi-agent systems, as well as human communities and hybrid human-
computer societies. This makes it possible to quantify and predict the resistance to social
engineering and psychological operations, and also to model constructive manipulations
in respect to target communities. This also provides framework to build cognitive models
of AGI creatures capable for human like behavior grounded in empathy end compassion,
with possibility of tuning parameters or such cognitive models in course of self-rein‐
forcing interactions.

Still, qualitative empirical modeling and verification by means of phenomenological
evidence does not seem sufficient enough to justify the suggested model completely, so
simulation modeling of multi-agent societies employing the model is required in the
future. The other part of our plan is to implement such model in AGI agent serving to
human user as intelligent assistant in the course of interaction with online and social
media [11], with prototype now available at https://aigents.com website.

Acknowledgements. This work was inspired by earlier ideas of Ben Goertzel, Jeff Pressing,
Cassio Pennachin and Pei Wang in the course of Webmind project targeted to build artificial
psyche in 1998–2001.
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Abstract. We discuss technology capable to learn language without supervision.
While the entire goal may be too ambitious and not achievable to full extent, we
explore how far we can advance grammar learning. We present the current approach
employed in the open source OpenCog Artificial Intelligence Platform, describe the
cognitive pipeline being constructed and present some intermediate results.
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1 Introduction

This work is driven by a desire to make sense of the possible mechanisms underlying
natural intelligence and applied to language-based communication skills. According to
earlier work [1–3], human intelligence is substantially connected with language acquis‐
ition abilities. As pointed out in [1], most of such acquisition is loosely supervised, while
existing machine learning techniques require more effort and training data to reach the
level of human children.

Another point being made in [2] is that current natural language processing appli‐
cations require a formal grammar or an annotated corpora as input. In practice, however,
the cost of creating such grammars results in a lack of good-quality ones for many
languages. Indeed, several years of human effort are required to create a formal grammar
for a language, given formalisms such as Link Grammar (LG) [4]. While this has been
done to great extent in English, as the language most widely used in electronic commu‐
nications, other languages are far less represented, and for many natural languages such
effort has never been undertaken. Even for English, the existent grammar dictionary in
Link Grammar can only handle literary English texts and fails to support deviations, like
dialects used in chat rooms, or domain-specific jargon. Our work, aiming to automati‐
cally produce a grammar from unannotated text, could potentially reduce the effort
needed to process any language and make it comprehensible by software.

Moreover, many natural language processing (NLP) applications for text mining and
information extraction rely on pattern-based approaches for classification, entity extrac‐
tion and attribution [5]. For such applications, it is crucial to have a way to identify
textual patterns which could be used for entity extraction, as well as for finding
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relationships between entities. That is, the patterns should be flexible enough to represent
different textual representations of the same semantic entity as well as to describe
patterns of connections between such entities represented in text. Technology that infers
these patterns in an unsupervised way, given prepared (controlled) corpora, could be
highly valuable, as it would make NLP applications cheaper, faster, more precise and
efficient.

A system like the one we propose would also help approach the artificial general
intelligence problem known as “Baby Turing Test” [6]. While the classic “Turing Test”
expects an AI system to display conversational intelligence comparable to a human, it
does not prevent such system from being simply hardcoded, and does not guarantee that
the system actually learned its abilities through education and interaction with its envi‐
ronment. In turn, the “Baby Turing Test” requires that an “uneducated” system under‐
goes the process of experiential or didactic training, and eventually develop skills suffi‐
cient to pass the classic “Turing Test”. Our work could help on this goal, at least from
a comprehension perspective, so that an artificially intelligent system could be incre‐
mentally fed with information in a given language, and eventually make sense of this
information and new information of similar kind, like texts in the known language within
the same knowledge domain.

The overall direction of research is shaped by earlier works [2, 3], and it’s based on
representing linguistic structures as “sheafs” of graphs [7], where the elementary struc‐
tures of the graphs are represented with so-called “disjuncts” from Link Grammar [4],
which can then be used to infer a grammar in Link Grammar format. The input of the
grammar-learning process are statistical parses generated with a minimum spanning tree
(MST) approach based on “mutual information” computed for co-occurring words in
sentences [8].

In this work, we discuss some practical aspects of implementing the NLP pipeline
for unsupervised language learning (ULL), including building a vector space [9], its
dimension reduction (DR), and unsupervised category learning grammatical and
semantic concepts by means of clustering [10–15]. We will also consider the different
approaches for word-sense disambiguation (WSD) applied [16, 17].

All of the research and developments discussed further are performed in the scope
of the open source OpenCog project [18] and SingularityNET platform.

2 Background

For the work discussed in this article we are making certain assumptions and considering
specific options, as discussed below. We are not sure if unsupervised learning on unan‐
notated corpora with neither grounding nor reinforcement feedback can succeed at all.
Still, we do want to advance in this direction to see if we can learn at least most of the
grammar and some of the semantics. We also understand that there is no clear boundary
between grammatical and semantic categories, because certain semantics categories
such as time, gender and plurality may affect grammar to extents specific to particular
languages. To make the problem solvable at least to some extent, we can make certain
simplifications and relaxations, as follows.
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Controlled Corpora. Although unannotated, our learning corpora are pre-processed
to reduce the amount of gibberish (tables, graphics, mixed languages, etc.) found in
them, as they are obtained from public sources. We also use corpora of different
complexity in the following order, targeting different goals.

• Proof-of-Concept Turtle (POC-Turtle) corpus - represents closed semantic space
of very few words communicated in simplex Turtle language [19], used in semantic
web programming, with complexity limited to three words per sentence in strict
Subject-Verb-Predicate triplet grammar. Complexity of such language can be
thought closer to complexity of language that non-human primates can learn [20] or
that children at age up to 3 can use [21].

• Proof-of-Concept English with no ambiguity (POC-English-NoAmb) corpus -
manually created closed semantic space of very few English words with nearly the
same frequency of use, communicated in simple grammatical construction of 4–5
words per sentence, without any ambiguous words.

• Proof-of-Concept English with ambiguity (POC-English-Amb) corpus – similar
to the above, but with two words involved in semantically and grammatically ambig‐
uous constructions. Semantic ambiguity is represented by word “board” which can
be either board of a ship or black board. Grammatical ambiguity is represented by
word “saw” which can be either noun or past form of verb “see”.

• Child Directed Speech corpus - collection of English communications directed to
children with adapted lexicon and grammar complexity.

• Gutenberg Children and Adult corpora - children and adult subsets of literary
corpora collected within Gutenberg Project (see https://www.gutenberg.org/).

Incremental Learning and “One-Shot Learning”. Incremental learning approach
may be interesting from a number of perspectives. There are different points of view
whether using simplified language when conversing to child can advance language
learning or complicate it [1]. In real life the richness of lexicon increases gradually over
years of child development. So we would like to use both approaches. In one approach
called “One-shot Learning”, we would try to have entire grammar learned at one upon
one successful reading of entire corpus. In the other one called “Incremental Learning”,
we would split the corpus into sections with gradually increasing complexity (in terms
of either maximum sentence length of richness of lexicon or both), trying to capture
more grammatical constructions incrementally. During the second approach we would
measure the learning curve tracking the ability of developing system to pass the Baby
Turing Test [6].

Symbolic vs. Sub-symbolic Approach. We are not limiting ourselves to use either
“old school” symbolic approach such as LG [4] or “new school” of distributional repre‐
sentations in NLP with its latest advances [9]. In fact, we are planning to try both and it
is anticipated that the final solution will be a combination of the two.

Variety of Vector Spaces. Generally, the word space can be represented with vector
embeddings created by a number of sub-symbolic approaches. The most widely used
vector space is the space of words, either “Bag-of-Words” or “Skip-gram” [9]. In our

Unsupervised Language Learning in OpenCog 111

https://www.gutenberg.org/


work we study the ways of replacing word tokens with word senses defined earlier. We
also introduce the space of connectors - directed connectors between words, so the word
“like” in phrases “like you” and “you like” would form two different dimensions “like-”
and “like+” following the Link Grammar notation [2, 4]. Finally, we will also introduce
the space of disjuncts so the word “like” in phrases “I like you” and “you like me” would
form two dimensions corresponding to the disjuncts “I- & you+” and “you- & me+”.
Notably, the space of words is the most dense, the space of connectors is up to two times
more sparse, and the space of disjuncts might appear orders of magnitude more sparse
on large corpora.

Disambiguation. Since we are going to use statistical parsing, the question arises - how
to compute mutual information for ambiguous words. In the sentence “I saw the saw”,
we can try disambiguating “saw” into “saw@noun” and “saw@verb” prior to calculating
the MI, thus facilitating the parser task. The alternative is to parse the text as is, and later
try to find the different senses of each word. We will try both options.

Mutual Information Counting. Another question is whether mutual information (MI)
should be direction-sensitive, so we count directed links between words [4], or direction-
insensitive, so we count co-occurring word pairs no matter what their mutual positions
are. We are counting directed links but co-occurrence counting is possible as option to
try.

Morphology. The importance of morphology in language comprehension and learning
is well understood and there are approaches known to handle that [2, 3]. However, for
now we do not consider this level of complexity. We deal with word tokens as entire
symbols, disregarding their internal morphology and potential token interactions.

3 Natural Language Pipeline Architecture

The general overview of the cognitive pipeline architecture for the current stage of the
project is presented below. Further, we describe specific the components, with their
options. In the current implementation the pipeline is linear, so no iterative loops can
take place at the moment. The entire pipeline with most of components is being devel‐
oped as open source at https://github.com/singnet/language-learning with TextParser is
being maintained as part of OpenCog at https://github.com/opencog/opencog/.

1. Text Pre-Cleaner - preprocesses corpus files with configurable cleanup and normal‐
ization options (is implemented now).

2. Sense Pre-Disambiguator - optionally, performs word disambiguation and builds
senses from tokens (is being implemented now).

3. Text Parser - parses sentences of word tokens or senses with one of the possible
approaches (is implemented now but may be improved in the future).

4. Grammar Learner - learns word categories from parses, infers grammar in LG format
(is implemented now and improvements are ongoing).

5. Tester/Evaluator - evaluates quality of inferred grammar (is implemented).
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Text Pre-cleaner. The goal of this component is to standardize corpora tests, removing
HTML markup and graphics, normalizing different varieties of the same punctuation
marks, interpreting UTF codes, and optionally converting all characters to lowercase.
Although there is controversy about representing the capitalized and lower-cased
versions of a word as the same token (e.g. “You” and “you”), we currently proceed with
converting all texts to lower-case, on the basis that capitalization is not expressed
explicitly in spoken conversations, and that all words have the same pronunciation
regardless of their location in a sentence. This avoids a single meaning to be represented
as two distinct vectors, one for each of its capitalized and non-capitalized versions. We
may move past this point in future work and represent them individually.

Sense Pre-disambiguator. In order to use appropriate word-sense entries for mutual
information counting during statistical parsing, we may try to disambiguate word tokens
before the parsing takes place. For doing so, we may use distributed representation of
words with n-grams and skip-grams in vector space of adjacent words [9] using
AdaGram to provide word-sense disambiguation [17]. AdaGram extends the renowned
Skip-gram methodology of word2vec [9] to include one vector embedding per word-
sense, without fixing a number of senses per word a priori.

Text Parser. This component implements two phases: Mutual Information (MI)
counting, with the Observer sub-component, and Minimum Spanning Tree (MST)
Parser, accordingly to earlier design [3, 8].

Mutual information calculation during the Observer phase may be implemented in
one of four ways: (a) cartesian combination of per-sentence words without account for
distance; (b) cartesian combination of per-sentence words with account for distance; (c)
sampling all parses produced by the Link Grammar Parser in random parsing mode; (d)
sampling limited number of parses from the Link Grammar Parser in random parsing
mode.

The pointwise mutual information (PMI), also known as focus mutual information
(FMI) or association ratio [12] for an ordered pair of words (x, y) is a measure of the
level of association of the two words in a given context, and is computed as:

PMI(x, y) = log2(p(x, y)∕ (p(x) ⋅ p(y)))

where p(x), p(y), and p(x,y) are short for P(X = x), P(Y = y) and P(X = x, Y = y) respec‐
tively. Here X the is the random variable of the event of watching a word x to the left of
any other word in a sentence, i.e. the probability of observing the ordered pair (x, *).
Similarly, Y is the random variable of the event of watching a word y to the right of any
other word in a sentence, i.e. the probability of observing the ordered pair (*, y). Thus
p(x, y) is the probability of observing the ordered pair (x, y) in a sentence. In turn this
probabilities are calculated as:

p(x) = N(x, ∗)∕N(∗, ∗)
p(x) = N(∗, y)∕N(∗, ∗)
p(x, y) = (x, y)∕N(∗, ∗)
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Notice tha N(x, y) is not necessarily the same as N(y, x). PMI is a ratio that compares
the probability of observing the two words together in a specific order vs observing them
separately, and therefore lies in the range (−∞, ∞).

The way N(x, y) is counted (the number of appearances of the pair (x, y) in the corpus)
depends on choice from the above-mentioned methods. For cartesian combination
methods (options a and b above), the pair (x, y) is counted only if x and y occur within
distance R (a parameter) in the current sentence (distance r is defined as difference in
word position in the sentence: r = pos(y) − pos(x)). When disregarding distance, they
are counted one time per co-occurrence: N(x, y) = ∑r < R(1), across all appearances of
x and y in each of the sentences in the corpus. When accounting for distance, we count
the pair R/r times: N(x, y) = ∑r < R(R/r), so the words in greater proximity are getting
more counts, with default count as R instead of 1.

For counting methods c and d above, the LG Parser can produce an exhaustive set
of possible parses for a sentence, regardless of any grammar or prior knowledge on
relationships between words. We can consider all possible parses if sentence length is
small (method c), or select a number N (a parameter) of randomly chosen parses, for
longer sentences where number of possible trees bursts exponentially. In these methods
the pair (x, y) is counted each time x and y are linked together in a parse tree for the
given sentence.

Once mutual information is collected, our MST-parser approximates the spanning
tree with highest total MI [8], and returns that as output. A tree’s MI score is computed
as the sum of all linked word pair scores, where score is mutual information per word
pair. In this step, we also test if accounting for distance in different ways improves the
resulting parses: (i) Score = PMI * R/r; (ii) Score = PMI + 1/r; (iii) Score = PMI + R/r,
with r and R as defined above.

Grammar Learner. This pipeline component processes the parse trees produced by
the Text Parser in two phases: Category Learning and Grammar Induction. The Category
Learning phase includes Vector Space modeling, Clustering, and optional Generaliza‐
tion sub-phases.

The Vector Space dimensions are chosen from: (a) words - either word tokens or
word senses; (b) connectors [3, 4]; (c) disjuncts [3, 4]. Positive pointwise mutual infor‐
mation (PPMI) [12] is used for term weighting.

Clustering is performed using “sub-symbolic” or “symbolic” approach. The “sub-
symbolic” Unsupervised Category Learning includes dimensionality reduction (DR)
with singular value decomposition (SVD) [13] and K-means clustering [14]. The optimal
number of clusters is selected based on maximum Silhouette index [15] value.

The alternative “symbolic” approach to clustering the disjunct space implies consec‐
utive merging the single-germ-single-disjuncts (“seeds”) extracted from the parse tree
into single-germ-multi-disjunct “stalks” and multi-germ-multi-disjunct lexical entries.

The optional generalization agglomerates the learned categories (clusters) into
higher-level grammatical categories, preserving relationships between child and parent
category clusters.

Grammar Induction infers grammar links between the learned categories (clusters)
by statistical processing the parse tree. The Link Grammar rules are induced for the
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learned set of clusters as either (a) sets of connectors to the linked clusters or (b) sets of
disjuncts consisting of connectors to clusters.

Grammar Tester. Purpose of this component is to provide fitness function for entire
pipeline with options and parameters configured for every pipeline component and each of
its sub-components. There are two ways the fitness function can be evaluated. First, we may
use inferred grammar in LG format and try to parse original text with given grammar
configured for LG parser. Then, counting percentage of successfully parsed sentences and
words per each sentence would give use usability value of the learned grammar, calling it
“parse-ability”. This approach would work for any language, including unknown
languages, however it can not provide warranty that the grammar makes any real sense from
linguistic perspective. Second, alternative approach can be tried for languages that are well
studied by computational linguistics such as English, where LG dictionaries and grammat‐
ical rules are present. For the latter case, we can compare LG parses of original corpus done
with native English LG setup as well as with inferred grammar. The proximity across parse
trees on sentence-per-sentence basis for these two parses, called “parse-quality”, would
serve us fitness function rendering to which extent rules that we learn are close to ones
created by human computational linguists.

4 Intermediate Results

The results obtained for the current state of the project can be split into a few sections.
First, we discuss the use of words, connectors or disjuncts for building the vector space
of real-size corpora. Next, we move onto studying different options to count mutual
information and perform statistical parsing. Then, we systematically explore the possi‐
bility of learning valid Link Grammar dictionaries and rules for simplistic Proof-of-
Concept corpora for Turtle and English languages. Finally, we study the possibility of
using word-sense disambiguation before parsing, and if its use can improve the quality
of Grammar Learning. All corpor and intermediate results are available at http://
langlearn.singularitynet.io/data/ site.

At the beginning of the current stage of the project, efforts have been made to try
unsupervised word category learning with Gutenberg Adult corpus data, available from
the earlier stage of the project [3].

Unfortunately, the data was of low quality, with multiple non-English texts mixed
with English ones, lots of special characters and pseudo-graphics included, and only
cumulative information on counts of words, connectors and disjuncts extracted from
original parses, with no actual parses present. However, using MST parse trees as inputs,
we were able to build vector spaces of words and connectors and perform clustering.

It has turned out that, after cleaning the data, for 324 K words, there were 12 M links
between the words. Respectively, in vector space of words, there were 324 K original
dimensions and in vector space of connectors there were 285 K words on the left and
295 K on the right, so initial dimension for the vector space has effectively doubled. It
was found that using original vector space of words, we were not able to identify sensible
word categories, due to sparseness of the vector space.
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Further, we used a cleaned set of link pairs extracted from the original MST parse
trees, accepting only words having more than 85 unique neighbors total, on left and
right. It provided us with 31 K words appearing in space of 61 K connectors with 9 M
links between the words, so 9.4% words from original data set were supplying 76.2% of
links. Using this vector space of connectors, we could clearly identify clusters of words
in different languages, proper names, numeric values, and parts of speech. However,
due to multiple inconsistencies in training corpus found, we did not proceed with this
corpus further for grammar learning, to have re-iteration with this corpus later, when
we can confirm that grammar can be actually learned with more simple corpora, as
discussed further.

To determine which word-pair counting method better fits the natural “sampling” of
parses using LG “ANY” mode, we have computed the Pearson correlation coefficient
(PCC) across distributions of FMI values for our POC corpora, between this method and
the cartesian combination of per-sentence words, with and without accounting for distance.
For the POC-English corpus, we have discovered that the PCC between LG “ANY” and
cartesian product, without taking distance into consideration, is 83%; instead, when we
consider distance in the cartesian method, we get a PCC of 96%, which indicates that the
methods produce very similar FMI. Due to its simplicity and good correlation, we will the
default should be method of window-based word co-occurrence counting with account for
distance (method b in section Text Parser above) to calculate FMI.

We have also studied to which extent the “expected” English parses, created
manually for our POC corpora, correspond to parses provided by Link Grammar Parser
with standard English dictionary. It is found that, for the POC-English-NoAmb corpus,
the “expected parses” and the LG parses share around 97% of their links. Similarly, for
the POC-English-Amb corpus, they share 93% of their links. Based on their similarity,
we will use “expected” parses, instead of Link Grammar parses, for “parse-quality”
fitness function.

We used “parse-quality” fitness function to compare different versions of MST-
Parsing with (a) “expected” parses created manually. For POC-Turtle, it has been found
that using (c) “cartesian” combination with account for distance as well as (e) LG “ANY”
parses the “parse-quality” is 92% while using (d) “cartesian” combination with no
account for distance provides “parse-quality” of 50% only. For POC-English, (c) “carte‐
sian” combination with account for distance provides best quality of 66%, while (e) LG
“ANY” parses the “parse-quality” provides 60%, and (d) “cartesian” combination with
no account for distance is the worst at 50%. For further work, we choose to use MST-
Parsing option (c) “cartesian” combination with account for distance, since it provides
the best “parse-quality”.

For systematic study of possibility of grammar inference with our pipeline, we have
used two simplistic corpora with no ambiguous words in them, namely POC-Turtle and
POC-English. For input parses used for grammar learning we used five options: (a)
“expected” parses, created manually, with account to LG parse tree conventions; (b)
native LG parses with known English LG setup (for POC-English only); (c) Text Parses
based on “cartesian” combination of words within window and account for distance; (d)
same as (c) but without account of distance; e) LG “ANY” parses, considering all
possible parses for the sentence without any grammar knowledge. Four different
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configurations of Grammar Learner were used. For each of the configurations, different
ways of modeling vector space with Connectors or Disjuncts, clustering with Dimension
Reduction and K-means (DRK) or collection of Identical Lexical Entries (ILE) and
grammar induction with Connectors or Disjuncts were used.

For the two corpora, using different configurations of Parser and Grammar Learner,
we were able to get the following results from perspectives of “parse-ability” and “parse-
quality”. Pearson correlation coefficient between parse-ability and parse-quality has
turned to be 85%, which means that being able to make parse at all means been able
to make it right. When using Turtle language, grammar learning results present 100%
parse-ability and parse-quality. When using English - parse-ability in range 50–100%
and parse-quality 50–65%. Based on that, we conclude the problem of automatic
learning of formal grammar can be solved with accuracy 50–100%, given corpora
that we have tried. For both corpora, better parse-ability and parse-quality are provided
with MST parsing based on MI with account for distance, building vector space of
connectors, then using dimensionality reduction and K-means clustering with
subsequent grammar induction by means of either Connectors or Disjuncts.

5 Conclusion

The primary conclusion of our work is that it is possible to learn formal grammar
programmatically based on etalon parses corpus, with possibility to use the grammar
for parsing the texts in given language automatically with accuracy in range 50–100%,
depending on language. In particular, it has been confirmed for Link Grammar and for
very simple controlled corpora in Turtle and English languages.

The secondary conclusion is that statistical parsing can be used for the purpose above,
using MST parsing in particular, with account for distance between words when
computing mutual information.

Our further plans involve upscaling our approach for using larger corpora, such as
Gutenberg Children and Adult an others. We also plan to involve word-sense disam‐
biguation and generalization stages trying to improve parse-ability and parse-quality of
the results of parsing with learned grammar. Finally, testing approach would get
improved so combination of testing learned grammars on novel corpus data not used for
grammar learning will be used for any given language.
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Abstract. Emotions play a crucial role in different cognitive func-
tions, such as action selection and decision-making processes. This paper
describes a new appraisal model for the emotion mechanism of NARS,
an AGI system. Different from the previous appraisal model where emo-
tions are triggered by the specific context, the new appraisal evaluates
the relations between the system and its goals, based on a new set of
criteria, including desirability, belief, and anticipation. Our work focuses
on the functions of emotions and how emotional reactions could help
NARS to improve its various cognitive capacities.

Keywords: Artificial general intelligence · NARS · Emotion

1 Introduction

Emotion is intrinsic to human cognition and serves important functions in human
cognition by providing critical information just like vision, hearing, touch, taste,
and smell [3]. Emotion has only been the subject of study relatively recently, in
the last centuries. The founder of American Psychology, William James, wrote
one of the earliest treatments; “What is an Emotion?” [4] in 1884. Since then,
many psychologists have tried to give a concrete definition of emotion. Many
come to the same conclusion, exemplified by Dr. Joseph Ledoux’s statement
“Unfortunately, ones of the most significant things ever said about emotion may
be that everyone knows what it is until they are asked to define it” [6]. This paper
is not an attempt to produce such a definition. Instead it is meant to show
an implementation of emotion within a specific cognitive architecture, NARS
(Non-Axiomatic Reasoning System) [8,9].

The basic emotion mechanism of NARS has been discussed in previous publi-
cations [10,11]. NARS has a basic satisfaction-evaluation mechanism to indicate
its “satisfaction” level, based on the degree of goals being achieved. In [10] an
appraisal model has also been proposed where it generates emotions based on
concrete events. For instance, when the system is hurt by an object, the system
will subsequently react to this object with fear, and the object has to be clearly
indicated. Recently, this design has been further aligned with the basic assump-
tion of NARS that it should work with “insufficient knowledge and resources”,
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and also with the principle of an AGI system which is designed for general pur-
poses. This paper will propose a new appraisal model in which emotions can be
triggered by evaluating the events based on different criteria. Any events meeting
those criteria will trigger corresponding emotions in NARS.

In the following, we will first review relevant concepts and proposals from
psychology on emotion and its functions. We will then discuss the components
related to the emotion mechanism of NARS, and finally, we will introduce the
design decisions related to the new mechanism.

2 Psychological Studies on Human Emotion

Generally, the psychological study of emotion can be classified into two main
schools: structuralism and functionalism. The structural perspective focuses on
defining sets of features in an effort to build a taxonomy of basic emotions [1].
Understanding emotion is then the process of building a one-to-one relation
between internal emotional states and observable artifacts: like facial expres-
sions, autonomic responses, and changes in body chemistry. This perspective
attempts to determine what areas of the brain are ‘responsible’ for a specific set
of emotion, and how specific chemicals relate to their expression. Structuralists
tend to neglect the study of intentionality.

In contrast, functionalists believe that emotion cannot be understood without
understanding the motivations of the agent [1]. Their focus is on the impact of
external and internal factors on a person’s emotional state. Functionalists assert
that facial expressions, gestures, and other indicators of emotion are also signals
to other agents that affect the emotional state of others. Functionalism is a
more pragmatic approach to studying machine emotion, making it the more
appropriate perspective by which to investigate emotion as it may be applied
to a computer system. This paper will adopt this perspective while outlining its
approach to emotion.

Functionalists view emotion as relations between the external events and
the internal goals of an agent and believe that emotion is synonymous with the
‘significance’ of the person-event transaction [1]. The significance of an event
is related to how useful it is to the fulfillment of goals to the person. For the
transaction to be significant at all, it must contribute to some goal.

To decide significance, Lazarus proposed an appraisal model which evaluates
several factors related to goals and uses these appraisals to generate goal-related
emotions [5]. Lazarus’ model proceeds in three steps. First, the event is checked
against current goals. If no goals are found to be related to the event, then there
is no emotion triggered. Second, the congruence of the event with the goals is
evaluated. This stage models how the event will impact the completion of the
relevant goals, which can be either a positive or negative impact. The third
stage is a type of ego-involvement, an involvement of one’s self-esteem in the
performance of a task or in an object, for example, ego-ideal, ego-identity, etc.
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Denham [2] also designed an integrative model of three components (i.e.,
desire, state, and belief of certainty underline the cognitive process) for a child’s
experience of different emotions. The Prototype Approach describes the cor-
relation between general types of events and specific emotions, each emotion is
linked to common situations that cause it. For example, pleasurable stimuli or
getting or doing something desired causes happiness. Anticipated harm or unfa-
miliar situations may cause fear, etc. Instead of encompassing emotional themes,
the Event Structure Approach focuses on capturing the processes by which
children come to experience different emotions. A child may experience fear if
she realizes that it is very unlikely to maintain a desired state. In contrast, a
child may experience anger if he realizes that some external conditions prevent
him from achieving a desired state or avoiding an undesired state. The last app-
roach is called Desire-Belief Approach , and it describes how emotions may
result from the consistency or discrepancy between one’s desire or belief and the
reality. A child who desires a gift feels happy if he actually gets one; in contrast,
a child who believes Mom is sleeping in the bedroom may feel surprised when
she finds nobody there. Based on these three components, Denham proposed
an integrative model that encompasses both the process and the content of a
child’s reasoning that leads to different emotions. Table 1 shows the model for
Happiness, Sadness, Anger, and Fear.

Table 1. Integrative model of Happiness, Sadness, Anger and Fear, by Susanne A.
Denham

Desire Want Want Want Not want

State Have Not have Not have Have

Belief of certainty Yes Never Can reinstate Likely

Emotion Happiness Sadness Anger Fear

3 NARS Overview

NARS is an AGI built in the framework of a reasoning system and founded
on the belief that “Intelligence” can be defined as the ability for a system to
adapt to its environment and to work with insufficient knowledge and resources.
This is captured by the acronym AIKR; Assumption of Insufficient Knowledge
and Resources. AIKR and the NARS system are discussed in many publications,
including two books [8,9]. This section will only cover the aspects of NARS most
relevant to the current discussion.

NARS makes use of a formal language, “Narsese”, for its knowledge represen-
tation, and this language is defined using a formal grammar in [9]. The system’s
logic is developed from the traditional “term logic”. Statements in this logic have
the form subject-copula-predicate. The smallest element that can be used as one
of these components is referred to as a “term”.
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The most basic statement in Narsese is the inheritance statement, with the
format “S → P”, where S is the subject term, and P is the predicate term.
The “→” is the inheritance copula, defined in ideal situations as a reflexive
and transitive relation from one term to another term. The intuitive meaning of
“S → P” is “S is a special case of P” and “P is a general case of S”. For example,
the statement “robin → bird” intuitively means “Robin is a type of bird”.

At an atomic level, terms are simply sentences formed over a finite alpha-
bet. In this article, terms are given a semantic meaning that is easily under-
stood by a human reader. Terms like wolf or animal have some suggested
meaning to the reader, but this is not required. Aside from atomic terms,
Narsese also includes compound terms of various types. A compound term
(con,C1, C2, ..., Cn) is formed by a term connector, con, and one or more com-
ponent terms (C1, C2, ..., Cn). The term connector is a logical constant with
predefined meaning in the system. Major types of compound terms in Narsese
include

– Sets: Term {Tom, Jerry} is an extensional set specified by enumerating its
instances; term [small, yellow] is an intensional set specified by enumerating
its properties.

– Products and images: The relation “Tom is the uncle of Jerry” is rep-
resented as “({Tom} × {Jerry}) → uncle-of”, “{Tom} → (uncle-of / �
{Jerry})”, and “{Jerry} → (uncle-of / {Tom} �)”, equivalently.

– Statement: “Tom knows snow is white” can be represented as a higher-order
statement “{Tom} → (know / � {snow → [white]})”, where the statement
“snow → [white]” is used as a term.

– Compound statements: Statements can be combined using term con-
nectors for disjunction(‘∨’), conjunction(‘∧’), and negation(‘¬’), which are
intuitively similar to those in propositional logic, but not defined using
truth-tables [8].

Several term connectors can be extended to take more than two component
terms. The connector is then written before the components rather than between
them, such as (×{Tom} {Jerry}).

Beside the inheritance copula (‘→’, “is a type of”), Narsese also includes
three other basic copulas: similarity (‘↔’, “is similar to”), implication (‘⇒’, “if-
then”), and equivalence (‘⇔’, “if-and-only-if”). The last two copulas are “higher
order”, meant to be applied to statements themselves.

In NARS, an event is a statement with temporal attributes. Based on their
occurrence order, two events E1 and E2 may have one of the following basic
temporal relations:

– E1 happens before E2

– E1 happens after E2

– E1 happens when E2 happen
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Temporal statements are formed by combining the above basic temporal rela-
tions with some logical relations indicated by the term connectors and copulas.
For example, the implication statement “E1 ⇒ E2” has three temporal versions,
corresponding to the three temporal order relations:

– E1 /⇒ E2 (E1 happens before E2 and implies it)
– E1 \⇒ E2 (E1 happens after E2 and implies it)
– E1 |⇒ E2 (E1 happens when E2 is happening and implies it)

These statements can be interpreted as a ‘third-person’ view of the state-
ments or events. Narsese can also provide a ‘first-person’ view of events, describ-
ing things that the reasoning system may directly realize themselves. These
special events are referred to as operations. These operations are tied to exe-
cutable commands or procedures built or plugged into the system.

Formally, an operation is an application of an operator on a list of argu-
ments, written as op(a1, . . . , an) where op is the operator, and a1, ..., an is
a list of arguments. Such an operation is interpreted logically as statement
“(×{SELF} {a1} . . . {an}) → op”, where SELF is a special term indicating
the system itself, and op is a term that has a procedural interpretation. For
instance, if we want to describe an event “The system is holding key 001”, the
statement can be expressed as “(×{SELF} {key 001}) → hold”.

There are three types of sentences in Narsese:

– A judgment is a statement with a truth value, and represents a piece
of new knowledge that system needs to learn or consider. For example,
“〈robin → bird〉.” with a truth-value makes the system to absorb this concep-
tual relation, together with its implications, into the system’s beliefs. More
details about the truth value can be found in [8].

– A goal is a statement to be realized by executing some operations. For exam-
ple, “〈(×{SELF} {door 001}) → open〉!” means the system should open the
door 001 or make sure that door 001 is opened. Each goal associates with a
“desire-value” indicating the extent to which the system hopes for a situation
where the statement is true. More details about the desire value can be found
in [8], too.

– A question is a statement without a truth-value or desire-value, and repre-
sents a query to be answered according to the system’s beliefs or goals. For
example, if the system has a belief “robin → bird” (with a truth-value), it can
be used to answer question “〈robin → bird〉?” by reporting the truth-value, as
well as to answer the question “〈robin → ?x〉?” by reporting the truth-value
together with the term bird, as it is in the intension of robin. Similarly, the
same belief can also be used to answer question “〈?y → bird〉?” by reporting
the truth-value together with the term robin.

NARS’ beliefs about itself start with its built-in operations. As mentioned
above, the operation op(a1, . . . , an) corresponds to a relation that the system
can establish between itself and the arguments, as expressed by the statement
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“(×{SELF} {a1} . . . {an}) → op” (where the subject term is a product term
written in the prefix format), since it specifies a relation among the arguments
plus the system identified by the special term SELF .

An operation may be completely executed by the actuator of the host sys-
tem (e.g., a NARS-controlled robot raises a hand or moves forward), or partly
by another coupled system or device (e.g., a NARS-controlled robot pushes a
button or issues a command to another system). NARS has an interface for
such “external” operations to be registered. Additionally there are “internal” or
“mental” operations that can cause changes within the system.

In general, mental operations supplement and influence the automatic con-
trol mechanism, and let certain actions be taken as the consequence of inference.
Mental operations contribute to the system’s self-concept by telling the system
what is going on in its mind, and allow the system to control its own thinking
process to a certain extent. For instance, the system can explicitly plan its pro-
cessing of a certain type of task. After the design and implementation phases,
the system needs to learn how to properly use its mental operations, just like it
needs to learn about the other (external) operations.

With regard to the current discussion, there are several important mental
operations:

– believe generates a belief about a certain statement where the premises are
not those covered by the existing inference rules. For instance, such a belief
can be derived from a goal or a question.

– want is used to increase the desire-value of a statement, also in ways beyond
what have been covered by the goal-derivation rules. When the desire-value
exceeds a certain threshold, a goal is generated, and the event is recorded in
the system’s internal experience.

– anticipate allows NARS to predict the observation of an event. If the pre-
dicted event does not occur in time, the system will notice and more attention
will given to the involved concepts. Additionally, a “disappointment’ event
can be generated, allowing the system to draw conclusions from the absence
of a predicted event.

4 Appraisal Model in NARS

We take the position that emotions arise from cognitions regarding the outside
world [7], through an appraisal process. Appraisal starts with extracting relevant
information from its experience. No matter it is to a human being or to an
intelligent agent, information about the outside world is not always prepared and
waiting for the agent to receive. NARS is designed to handle such conditions, in
a manner similar to a human agent.

To implement emotion, we need to concern ourselves with what kind of
events might trigger emotion and apply the appraisal framework to these events.
According to the previous discussion, the events that may trigger emotions are
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events that related to goals. This corresponds to the first stage of Lazarus’s
appraisal theory [5] which stated that only events related to goals would trig-
ger emotions. If there is no goal concerning the event, then no emotion will be
triggered.

The second stage of Lazarus’s appraisal theory is to evaluate the congruence
of the event with the agent’s current goals. The result of this stage determines
whether the emotion is positive or negative. In NARS, this evaluation is carried
out by comparing the two measurements on an event: its desire-value and truth-
value. If we assign binary values to desire-value (True for want, False for not
want), truth-value (True for have, False for not have), and satisfaction value
(True for positivity, False for negativity), the latter behaves exactly like the
logic of an XNOR gate with the former two as inputs, as shown in Table 2.

Table 2. The relation among desire-value, truth-value, and satisfy-value

Desire value Truth value Satisfaction

Want Have Positive

Want Not have Negative

Not want Have Negative

Not want Not have Positive

The third stage of Lazarus’s model, estimating the types of ego-involvement,
is not considered in our appraisal model. Doing so would involve listing all possi-
ble types of ego-involvement, which is incongruent with the idea of being general-
purpose, as well as with the situations where the same event may carry different
meanings to a machine than to a human being. Also, we can interpret Den-
ham’s Belief of Certainty model as an uncertainty about the state, this can be
represented by the tense of the event. If it is “yes”, or “never”, then the event
should have already happened. If it is “likely to happen”, it means the event
has not happened but has a possibility to happen in the future. Our treatment
addresses the implicit distinction of tense in the third row. However, we do not
make a binary distinction based on the certainty as we believe the transition
from Anxiety to Fear is gradual.

The following is how we defined criteria for some emotions:

– Fear: An undesired event is anticipated to happen
– Happiness: An desired event is believed as already happened (high

satisfaction)
– Sadness:An undesired event is believed as already happened (low satisfaction)

The current design of NARS does not include a mechanism to simulate
the physiological changes that accompany human emotional experiences such
as changes in voltage or temperature. However, this does not mean that the
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system cannot “feel” anything. The basic feeling mechanism in NARS has been
introduced in [11]. Feelings of emotions are realized by the feel operator through
accessing the relevant sensors and returning the sensed state into the system’s
inner experience.

For example, if the system feels fear, the experience can be represented as

(^feel, {SELF}, fear).

Once some event matches the criteria of being afraid, the system will feel fear,
implemented by the feel operator and the system will report the emotion it is
currently feeling when such a question is asked.

So far, we have introduced how NARS generates different emotions by
the new appraisal model, and how it feels these emotions. Examples of how
NARS takes actions triggered by these emotions will be displayed in the next
section.

In humans, emotions often improve their cognitive faculties. Allowing quicker
reaction times, aiding in planning, and improving communication are all the
important functions of an emotion mechanism. Similar benefits are gained by
NARS.

Emotion helps the system summarize its experience at a more abstract level.
For example; suppose an agent were to have some understanding of the concept
of a ‘beast’ and had experienced instances that made the agent feel fear (e.g.,
seeing a wolf). This abstract notion of fear, as related to the concept of beast,
may provide additional information about how to act when encountering a new
member of the class beast (e.g. a bear). The emotional parameter offers a direct,
concise way to encode information critical to the survival of the agent. Such
summaries reduce the need for extra concepts to encode the relation between
the source of the emotion and its outcomes.

Emotions can also decrease the time needed to respond to certain events.
Emotional constructs like fear can facilitate a quicker response. Assuming that
the emotions of the system are tied to more ‘intrinsic’ fundamental elements of
the system, fear could be implemented as a response to anything that would
impede the working of these fundamental systems. If fear is experienced, it is
due to the agent being exposed to a situation or event that negatively impacted
such systems. Any future event that produces the same interpretation could be
responded to quickly.

5 Example

In the following, we illustrate an example using the Open-NARS implementation
of NARS to show how emotions raise from the evaluations of events, and how
emotions trigger actions. Due to the space limitation, we cannot explain the
details of the representation, which can be found in [8,9].
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==========================Happiness==========================

//Meaning of the statement: If something is wanted by SELF,

//and SELF’s belief agrees with the case, SELF feels Happy

//1. #1 is a dependent variable which represents a certain

// unspecified term under a given restriction. It can be

// either an object or an event

//2. (^want, {SELF}, #1, TRUE) represents a mental operation

// means something is desired by SELF; TRUE indicates the

// truth value of this mental operation, where #1 is desired,

// otherwise, use FALSE

//3. (^believe, {SELF}, #1,TRUE) means SELF’s belief agree

// with #1, if #1 represents an event, it indicates that

// #1 has already happened.

//4. (^feel, {SELF}, happy) implements feel operator and

// indicates the feeling of SELF being happy

//5. && is a term connecter, it connects the follow

// term by meaning ‘‘and’’

Input: <(&&, (^want, {SELF}, #1, TRUE), (^believe, {SELF},

#1,TRUE)) =|> (^feel, {SELF}, happy)>.

//SELF has a goal which is not being hurt, ‘‘--’’ is the negation

//of the statement

Input: (--,<{SELF} --> hurt>)!

//SELF is not getting hurt, :|: represents the tense ‘‘present’’

//means SELF is not getting hurt right now

Input: (--,<{SELF} --> hurt>). :|:

//What do you feel?

//This statement is a question, and it corresponding to

//(^feel, {SELF}, happy) where ‘‘?what’’ at the position of the

//emotion

Input: (^feel,{SELF},?what)?

//SELF feels Happy, the reason why it feels happy is because

//SELF doesn’t want to get hurt (generated by goal), and SELF

//is not getting hurt (generated by belief).

Answer: (^feel,{SELF}, happy).
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===========================Fear================================

//If something is wanted by SELF, and SELF anticipates the

//opposite to happen, SELF feels fear

Input:<(&&, (^want, {SELF}, #1, FALSE), (^anticipate, {SELF},

#1)) =|> (^feel, {SELF}, fear)>.

//At the same time when SELF feels fear, it generate an

//motivation which to run away, run is also an operator in NARS

Input: <(^feel,{SELF}, fear) =|> <(*, {SELF},

<(*, {SELF}) --> ^run>) --> ^want>>.

//SELF doesn’t want to be hurt

Input: (--,<{SELF} --> hurt>)!

//If wolf is getting close to SELF, SELF will get hurt

//&/ is another term connector representing the relation between

//two terms is ‘‘and’’, also the latter happens after the former.

//42 represents inference steps, it means, when wolf start

//getting close to SELF, after 42 steps, the SELF will get

//hurt. The number is not fixed, it can be any integer.

Input: <(&/,<(*, {SELF}, wolf) --> close_to>,+42) =/>

<{SELF} --> [hurt]>>.

//Wolf is getting close to self

Input: <(*, {SELF}, wolf) --> close_to>. :|:

//Result: SELF takes the action run, based on the knowledge

//where SELF runs when it feels fear, SELF also feels the emotion

//fear

EXECUTE (^run,{SELF})

6 Conclusion

In this paper we introduced several new emotions to the NARS framework; fear,
sadness, happiness, and disappointment. These additions were partially moti-
vated by the descriptions of emotion provided by [2,5], but also came from the
need to improve the control mechanism of NARS. In human, emotion results
from a combined evaluation of belief, desire, and anticipation. This paper out-
lined how analogous processes in NARS can work to interpret a combination of
parameters as an effective emotion.

Our results show that emotions could make the system to take actions in vari-
ous situations. Emotion provides information that the system can use by offering
a concise summary of the system’s past experience with respect to its emotional
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state. In addition, it provides an additional mode of communication (system-to-
system, human-to-system). Such functionality is important for a general-purpose
intelligence system, especially if it should operate under the assumption of insuf-
ficient knowledge and resources (AIKR).

This work is not intended to produce an AGI with an emotional system just
like that of a human being. Instead, the intent is to draw analogies between
the human emotional system and components of a reasoning system in such a
way that the reasoning system is improved. The basic emotions described in
this paper provide a first step in establishing an effective emotional mechanism
within NARS. Future work will be directed at building a richer experience for
NARS. For instance, new emotional states, like regret, may provide additional
feedback for the system to learn about prior errors.
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Abstract. Social sciences have been always formed and influenced by the devel‐
opment of society, adjusting the conceptual, methodological, and theoretical
frameworks to emerging social phenomena. In recent years, with the leap in the
advancement of Artificial Intelligence (AI) and the proliferation of its everyday
applications, “non-human intelligent actors” are increasingly becoming part of
the society. This is manifested in the evolving realms of smart home systems,
autonomous vehicles, chatbots, intelligent public displays, etc. In this paper, we
present a prospective research project that takes one of the pioneering steps
towards establishing a “distinctively sociological” conception of AI. Its first
objective is to extract the existing conceptions of AI as perceived by its techno‐
logical developers and (possibly differently) by its users. In the second part, capi‐
talizing on a set of interviews with experts from social science domains, we will
explore the new imaginable conceptions of AI that do not originate from its tech‐
nological possibilities but rather from societal necessities. The current formal
ways of defining AI are grounded in the technological possibilities, namely
machine learning methods and neural network models. But what exactly is AI as
a social phenomenon, which may act on its own, can be blamed responsible for
ethically problematic behavior, or even endanger people’s employment? We
argue that such conceptual investigation is a crucial step for further empirical
studies of phenomena related to AI’s position in current societies, but also will
open up ways for critiques of new technological advancements with social conse‐
quences in mind from the outset.

Keywords: Artificial intelligence · Sociology · Social sciences

1 AI as a Sociological Phenomenon

Given the rapidly growing importance of Artificial Intelligence (AI) in many domains
of social life, it is striking that the interest of sociologists and social scientists in AI has
been quite scarce. At the end of 20th century, AI was occasionally discussed in sociology
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as a methodological tool for data analysis and theory development, yet not as a social
phenomenon in its own right. However, as it is expected that the social impact of AI
will continue to increase over the next years, contributing to transform the ways people
organize economical production, learn and spend leisure time, to name just a few
concerned fields, we argue that sociology and other social sciences need to acquire an
adequate understanding of how artificial intelligence is and should be grown into a social
actor, reflecting its relevance and consequentiality in different layers of social organi‐
zation and social reality.

This precisely is the central aim of our project, which we describe in this paper. It
intends to provide a sociological conception of AI, i.e. understanding AI as a social
phenomenon and a non-human social actor. We are convinced that scientific studies of
human beings and their collectivities need to tailor their conceptual tools to the society
of the 21st century. This requires, first and foremost, a proper understanding of specific
aspects of digitalization in everyday life, which is a domain where AI plays an increasing
role. Through an exploratory study, our intention is to “prototype” the methodological
and conceptual cross-fertilization between sociology and the fields that deal traditionally
with the subject of AI, such as computer science, philosophy of mind, and cognitive
psychology. The second equally important goal of our project is to execute an investi‐
gation of the possibilities of sociology to influence and guide the future of AI-related
developments in our societies. In this paper, rather than presenting results of empirical
research, we introduce and discuss an agenda to proceed.

1.1 The Case of Facebook

In the recent public and political discourses, the role of AI has been already the subject
of challenging debates. In the US Senate hearing held on April 10th, 2018, with Mark
Zuckerberg, the founder and CEO of Facebook, the words “Artificial Intelligence” or
their abbreviation “A.I.” were used 29 times. In fact, more often than “trust” (20 occur‐
rences), “transparency” and “transparent” (18 occ.), or even “freedom(s)” (4 occ.) and
“democracy/democratic” (3 occ.). This was also noticed by the participants of the
meeting, one of whom noted that Zuckerberg “brought [AI] up many times during [his]
testimony.” (Senator Peters, 3:47:13–3:47:16 of Zuckerberg’s US Senate hearing as
available online1) This – highly medially exposed – example documents and illustrates
the role that AI has taken in current societies worldwide. It also points to the major role
that the AI “systems” or “tools” might play in future social developments. Indeed,
Zuckerberg himself stressed the societal relevance of such questions more than once
during the hearing session: “[A]s we’re able to technologically shift towards especially
having AI proactively look at content, I think that that’s going to create massive ques‐
tions for society about what obligations we want to require companies… to fulfill.”
(Mark Zuckerberg, 2:53:48–2:54:05 of the hearing) And also about one hour later:
“[T]he core question you’re asking about, AI transparency, is a really important one that
people are just starting to very seriously study, and that’s ramping up a lot. And I think

1 https://www.youtube.com/watch?v=pXq-5L2ghhg.
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this is going to be a very central question for how we think about AI systems over the
next decade and beyond.” (Mark Zuckerberg, 3:47:46–3:48:02 of the hearing)

1.2 Our Approach

In providing a sociological conception of AI, our project starts from an extensive liter‐
ature review, as well as content analysis of media production related to AI. At the most
fundamental level, we aim to conceptualize AI sociologically, providing answers to
questions such as: Are there inherent differences between human and non-human (AI)
social actors? Should we revisit and reconsider our presumptions of human uniqueness?
And, on the other hand, can we truly speak about anything like “AI in general”, or do
we rather encounter loosely related instances of phenomena in the sense of “family
resemblances” [1]? As explained further in this paper, the answers provided will be
based on analysis of several kinds of empirical data, qualitative and quantitative in
nature. The resulting conception of AI, although sociological in its nature, will be then
adaptable by other social sciences such as communication, economy, political science,
or social anthropology.

2 The Study of AI in Sociology and Computer Science

2.1 AI and Non-human Actors in Sociology

With the growth of initiatives such as Ubiquitous Computing (UbiComp, see e.g. [2]),
and the remarkable entry of “smart” systems into the domain of everyday social lives,
it is necessary to reconsider the position of AI in sociology and vice versa. Historically
and traditionally, sociology was usually practiced – as Zygmunt Bauman once nicely
put it – as “a narrative on what follows from the fact that man is not alone” [3]. One of
the tacit presumptions, arising from this conception of sociology as a science on accu‐
mulated and interrelated human beings, has been the disregard for non-human actors
and material components of the social world (cf. [4]). Sociologists simply considered
the “non-human” and “extra-human” to compose only the environment of sociologically
relevant phenomena, which does not have to be taken into account. Since the late 1970s,
this neglect was explicitly formulated and criticised in sociological orientation to
subjects such as the natural environment [5], animals [6], or technology [7]. Focusing
specifically on AI – which has been extensively discussed in cognitive psychology,
philosophy of mind, and computer science already since the 1950s (cf. [8]) –, few soci‐
ologists have started writing on the subject in the 1980s and 1990s. However, up to this
day, AI has been almost exclusively conceived in sociological context only as a meth‐
odological tool in statistical or textual analysis [9], and development of sociological
theories [10] – in other words, an “application of machine intelligence techniques to
social phenomena”, i.e. the Artificial Social Intelligence [11].

Broadly speaking, so far, AI has not been systematically considered as a social and
sociological phenomenon sui generis and the discipline of sociology lacks a suitable
conception of AI, which could serve as a framework for empirical studies. Rare excep‐
tions include that of Woolgar [12], who proposed a “sociology of machines”, arguing
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that we should see the “AI phenomenon as an occasion for reassessing the central axiom
of sociology that there is something distinctively ‘social’ about human behaviour” (p.
557), and proposed that we should examine the underlying assumption in social sciences
that there is a fundamental difference between humans and machines (and, by extension,
also between human and machine intelligence). Apart from advocating sociological
research of AI discourse and AI research practices, he also claimed more broadly that
“the phenomenon of AI provides an opportunity for investigating how presumptions of
the distinction between human and machine delimit social inquiry” (p. 568). Wolfe [13]
explored Woolgar’s radical idea and demonstrated that “interpretive” sociological
approaches (such as ethnomethodology or symbolic interactionism), rather than
“systemic” ones, may “expand and elaborate” the hypothesis of human uniqueness in
comparison with AI. Schwartz [14] suggested that AI has to be studied with regard to
the social context (setting) in which it is “implemented”, and characterized AI systems
as “social actors playing social roles” (p. 199). At the turn of the century, Malsch [15]
discussed the proximities of AI and sociology through the concept of socionics. This
field, standing at the intersection of sociology and AI, aims to “address the question how
to exploit models from the social world for the development of intelligent computer
technologies” (p. 155), exploring the specificities of modern societies and resilient
adaptability of social systems in order to provide means of translating these features into
computer-based technologies. Indeed, the most influential attempt to incorporate non-
human actors into sociological thinking is the conception of Bruno Latour [16]. His actor
network theory (ANT) aims, among other things, to transgress the distinction of human
and non-human actors ([17]; similarly to Woolgar’s [12] argument presented above),
acknowledging technologies and objects as partakers in the construction of society.
However, AI as a phenomenon is not discussed by Latour in this context. More recently,
Muhle [18] presents an ethnomethodological study of “embodied conversational agents”
(bots) in the virtual world of a massively multiplayer online game Second Life, posing
the question whether bots (i.e. non-playable characters) in computer games are
conceived by players as social actors. His approach relates closely to our own interests,
but our aim is to provide much broader picture. Some other empirical studies of specific
instances involving AI-based technologies have been conducted (such as the use of
smartphones in social interaction: e.g., [19]), however, they rather focus on the “human
side” of the interaction, and without the intention of providing a generalizable socio‐
logical framework of the subject of AI. This is also the case of the field of Human-AI
Interaction, which we review in more detail in the next subsection.

2.2 Human-AI Interaction in Computer Science

Human-AI Interaction, as a field of study, is a subdomain of Human-Computer Inter‐
action (HCI), and focuses on the understanding of the nuances of our interactions with
AI supported tools, technologies, and processes. Although currently in a nascent stage
of development, this subdomain of computer science embodies an extensive range of
contexts, activities, and types of users. Furthermore, the encapsulation of human-like
behavior in artifacts and environments, and embodiment of intelligence in varied kinds
of technologies are being homogenized within the fabric of everyday life. From domain
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experts (such as medical experts diagnosing cancer cells through intelligent image
processing [20]) to children (the use of AI in education to improve the learning experi‐
ence and outcome [21]) to building and urban dwellers (home automation controlling
thermal comfort of inhabitants [22], and autonomous cars changing the shape of cities
and experience of mobility [23]) to disabled users (for example mobile assistive appli‐
cations helping blind users navigate in urban environments [24, 25]), the role of AI in
our socio-cultural aspects has become increasingly pervasive. This is no longer limited
to the embodiment of technologies by artifacts, but also extends to the realm of built
environments [26], having direct spatial and consequently social impacts – topics that
the proliferating HCI contributions in built environments have recently begun to address
[27, 28]. Still the conception, design, and study of Human-AI Interaction is predomi‐
nantly focused on ad hoc instances (such as robots, driverless cars, chatbots, etc.) with
little or no overlap between instances of different kinds. This lack of generalizability in
the study of Human-AI Interaction can be attributed to the HCI’s emphasis on design
instances and a bi-directional disconnect between these instances and theoretical frame‐
works. In addition, the “black box” approach of representing AI algorithms by the
researchers oftentimes undermines the efforts to achieve a significant level of general‐
izability. Consequently, the widely accepted conceptions of AI algorithms and tools,
especially their social impact, is currently distributed across the nature and form of
design instances (or products), and how experts and users likewise ascribe meaning to
these separate instances. This multi-layered gap in conceptions about AI and its societal
impact amongst actors of different backgrounds (AI developers, sociologists, and users),
and their varying levels of interactivity with smart technologies has remained out of the
scope of Human-AI Interaction as domain of computer science research.

2.3 Research Gap

As demonstrated in the previous subsections, there is a research gap in contemporary
sociology as well as computer science which relates to (1) the conceptual understanding
of AI as a specific social (non-human) actor, and (2) the role sociology could play not
only in interpreting but also in helping to lead the future technological development of
AI-based tools, systems and devices. This research gap manifests itself on several levels
of social scientific endeavors: at the level of sociological theory, where non-human
social actors are commonly “theorized out of existence”, and also at the level of empir‐
ical studies (similarly to the related domain of Human-AI Interaction), where the broader
societal impacts of AI are not considered, given the primary focus on particular cases
of specific technology use.

3 Research Plan and Methodology

3.1 Literature and Discourse Analysis

The first step of our research project will cover an investigation of past and ongoing
discourses within the other relevant research domains pertaining to AI, such as computer
science, cognitive psychology, and philosophy. In particular, we will aim to identify
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aspects that are relevant for a specifically sociological formulation of empirically inves‐
tigatable research questions related to AI: its societal roles, functions and imaginaries.
In addition, content and discourse analysis of online discussion forums and other media
(TV, newspaper) will be an important initial step in outlining and understanding the
common-sense conceptualizations of AI in current society. Qualitative and quantitative
techniques of content analysis (cf. [29]) will allow us to systematically gather initial
knowledge of the existing imaginaries and conceptualizations of AI in media. Further‐
more, the discursive aspects of the analysed texts will be studied by the methodologies
of discourse analysis [30]. In addition to literature review, these approaches will serve
to further elaborate and specify the research questions for empirical investigation in the
next stages.

3.2 Online Survey

An online survey will aim to collect the widespread common-sense conceptions and
imaginaries of AI in contemporary Swiss society, and capture its expectable varieties.
Our aim is to have a representative sample, reflecting the demographic and social diver‐
sity, and cover all Swiss languages. We will use TypeForm platform for online collection
of survey data, and distribute the questionnaire among potential respondents by a number
of diverse venues. Descriptive and inferential statistics will be used to gain quantitative
insights and test hypotheses about different manifestation of certain ideas and their
correlation in the survey responses. In addition, to extract the influence of different
variable (culture, age, education level, etc.) on the perception of AI, we will use explor‐
atory data mining and statistical methods that allow for clustering and pattern recogni‐
tion. Visualizing the patterns and quantifying the seminal components in the current
perception of AI will be followed by qualitative analysis to extract the meanings and
nuances of what AI means in our current societies.

3.3 Observational Studies

In the third phase, we will conduct three in-depth observational studies, collecting video
recordings of instances when a group of individuals interact with AI-based tools and
systems: (i) driverless shuttle; (ii) chatbots; (iii) game-play systems. In order to extract
features of situated common-sense conception of AI from the recordings, we will analyse
the data from the perspective of ethnomethodology and conversation analysis [31–33],
which focuses on the “perspective of the actor” and aims to describe and elucidate the
methodical work of practical sense-making in specific social settings. It has been
convincingly demonstrated by previous research in the field that ethnomethodological
analysis of video recordings of social interaction can yield valuable insights into the
details of situated action (e.g., [34]).

3.4 Interviews with Experts

We will conduct approximately 15 semi-structured interviews with experts on AI, as
well as experts in the relevant domains of sociology. First, mostly with the AI experts,
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the goal of the interviews will be to discuss the results of empirical studies (see
Subsects. 3.2 and 3.3) and compare the common-sense conceptions/imaginaries of AI
with the experts’ perspective. In this case, the expert opinions are needed as a contrastive
foil in further elaboration of a truly sociological conception of AI, which is the ultimate
goal of our project. Second, mostly with the social scientists, we will discuss the possi‐
bilities of sociology (or other social sciences) to influence and guide the future of AI-
related developments in our societies. In this case, the expert opinions are needed espe‐
cially because of the long-lasting controversies in sociology regarding social advocacy
and public engagement (cf. [35]). As a complementary method of gathering experts’
opinions, we will also consider using the Delphi method.

3.5 Sociological Conception of AI

The goal of this final phase is to synthesize the main results of all previous phases in a
sociological conception of AI. The conception, we expect, will have the form of an
original coordinate system (matrix) for evaluation of societal conceptions and imagi‐
naries of AI. We will also conduct a general assessment of the current status of AI in
sociological thought and research. Our theoretical (concept-building) work will be
oriented by two main regards: (1) to sociological research, i.e., the operationalizability
of our conception in further empirical studies conducted from different paradigmatic
standpoints; (2) to other human and social sciences, i.e., providing the conceptual
framework for sociologically sensitive research in communication, political science,
cultural anthropology, social psychology etc.

4 Conclusion

4.1 Subsequent Research Prospects

A number of empirical studies (qualitative and quantitative) can be outlined as a direct
result of a sociological conceptualization of AI. Our investigation respecifies and opens
up novel fields for collaboration between human/social and computer/natural sciences.
A sociological conceptualization of AI is necessary in order to carry out further empirical
research in this area, which would investigate AI as a social phenomenon, its imaginaries
in different segments of current societies, and the role it has as a non-human social actor
in particular social and institutional settings. Presently, AI is already being applied in a
great number of fields, such as games, households, education, transportation, logistics,
industrial production, marketing and sales, communication, scientific research, data
analysis, and many others. Each of these fields requires sociological knowledge in order
to understand AI application, its impact on “users”, “customers”, “clients”, and their
possible concerns regarding interaction with AI. The ongoing fourth industrial revolu‐
tion – expansion of cyber-physical systems such as AI and robots – will presumably
contribute to major transformations when it comes to the ways we live, think and
communicate. Proper sociological understanding of AI provides us with a historically
unique opportunity of capturing the details of this revolution continuously and progres‐
sively as it happens. The specific subsequent research prospects include survey-based
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studies of the diversity of AI imaginaries in different segments of societies (defined
economically, culturally, politically, demographically etc.); detailed examination of
communicative and discursive processes related to AI (such as interaction with chat‐
bots); investigation of positive and negative impacts of AI-based automation in various
industrial spheres, and its influence on employment; historically oriented explorations
of the image of AI in popular culture; and indeed, further refinement of conceptual and
theoretical frameworks of AI based on empirical validations of sociological models.

4.2 Innovation Potential

Our project will open the way for sociology and the social sciences into major AI
projects, where their influence is currently only marginal. In particular, sociology and
the social sciences, equipped with an adequate conception of AI, could (and should)
fully contribute to steer the development of AI-based technologies. This is important
especially since the current development of AI is predominantly grounded in the field
of technological possibilities (such as machine learning methods, neural network
models), rather than preliminary consideration of societal effects of the proliferation and
expansion of AI.2 On the other hand, indeed as with other technologies, it is important
to develop AI-based devices and tools in a way that builds on already existing ways of
practical usage of technology. For, as Harvey Sacks remarked already in the 1960s, any
novel technological object is “made at home in the world that has whatever organization
it already has” [33] – it is incorporated in familiar social practices. We do not need to
stress that it is primarily sociology that sets out the detailed study of the organization of
the social world and related practical activities as its principal and primordial field of
interest. Similarly to other domains of technology, sociology can provide crucial knowl‐
edge to AI designers; however, in order to do so, it needs an appropriate understanding
of the subject in question, in our case, artificial intelligence.

To conclude, we firmly believe that precise sociological conceptualization of AI
could, in a long-term perspective, improve our comprehension of the nature of humans
and technology. Therefore, sociological conceptualization of AI, and empirical studies
in the sense outlined above, would have far-reaching impact not only in the field of
sociology, but also in human and social sciences in general.
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Abstract. General autonomous agents must be able to operate in pre-
viously unseen worlds with large state spaces. To operate successfully
in such worlds, the agents must maintain their own models of the envi-
ronment, based on concept sets that are several orders of magnitude
smaller. For adaptive agents, those concept sets cannot be fixed, but
must adapt continuously to new situations. This, in turn, requires mech-
anisms for forming and preserving those concepts that are critical to
successful decision-making, while removing others. In this paper we com-
pare four general algorithms for learning and decision-making: (i) stan-
dard Q-learning, (ii) deep Q-learning, (iii) single-agent local Q-learning,
and (iv) single-agent local Q-learning with improved concept formation
rules. In an experiment with a state space larger than 232, it was found
that a single-agent local Q-learning agent with improved concept forma-
tion rules performed substantially better than a similar agent with less
sophisticated concept formation rules and slightly better than a deep
Q-learning agent.

Keywords: Autonomous agents · Artificial animals
Efficient concept formation · Adaptive architectures · Local Q-learning

Neuroplasticity refers to the capacity of animals to alter their nervous systems
in response to changes in the environment. The connectivity between neurons
may change over time and neurons may be added and removed continuously
in a life-long process [1]. Artificial neural network models are frequently based
on static architectures that are only plastic in the sense that their connectivity
patterns develop over time. Several neural network models also allow nodes to be
added and removed, however. For instance, the cascade-correlation architecture
adds one hidden neuron at the time [2], and the progressive neural networks
grow new columns while retaining previously acquired knowledge [11]. There are
also regularization techniques [3] and pruning methods [18] that reduce the size
of neural networks, while improving generalization.

Reinforcement learning occurs across the animal kingdom, and its biological
basis has been studied extensively [9]. Reinforcement learning algorithms, on
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the other hand, are powerful tools for learning and decision-making in a general
setting [13]. Q-learning is a basic algorithm for learning an optimal policy from
experience for any Markov Decision Process [15]. The U-tree model has been
used for building decision-trees for state representations [4] and local Q-learning
has been used in a multiple agent setting for merging Q-values collected from
multiple agents into a global Q-value [10]. Reinforcement learning algorithms
have also been applied to homeostatic agents, whose single objective is to regulate
their homeostatic variables and thus stay alive as long as possible [5,19].

Artificial animals have been studied primarily in the context of artificial life
[6,14]. Stewart Wilson defined animats as a form of artificial animals, whose sole
goal is homeostasis [16]. He also suggested the animat path to AI as a way of
creating artificial intelligence by modeling animal behavior [17].

In this paper, we consider artificial animals and propose generic mechanisms
for perception, learning, and decision-making. For perception we use a graph
model that supports sequences and represents sensory concepts as single nodes
(cf. grandmother nodes). This choice of graph model makes it relatively easy to
define efficient rules for adapting the graph topology continuously. The purpose
of our dynamic graph model is to support one-shot, life-long, on-line learning
while avoiding catastrophic forgetting and the data hunger associated with deep
learning.

This paper extends our previous work [12], with its single-agent local Q-
learning and basic structural rules for adding new nodes by introducing radi-
cally improved rules for node formation. Section 1 presents the improved animat
model. Section 2 presents an experiment in which our animat model is compared
to four other models. The results of the experiment are presented in Sect. 3.
Section 4 discusses possible directions for future research. Section 5, finally, draws
some conclusions.

1 Animats

A schematic description of the animat model is given in Fig. 1. Time proceeds
in discrete ticks in the animat model and the animat is updated at each tick
according to Algorithm 1. Code describing the model in full detail is open sourced
and available at [7]. Now let us zoom in on the constituents of the animat.

1.1 Body

The body is the animat’s physical representation. The body has its associated
finite sets of variables called sensors, needs, and motors. Sensors and motors take
boolean values, whereas needs take values in the real interval [0, 1].

Needs are denoted by natural numbers i. The status of need i at time t is
the real value ιi(t) ∈ [0, 1]. Intuitively, 0 means death, while 1 means full need
satisfaction. Examples of needs are water, energy, and protein. Now, it is easy
to define reward in terms of changes in the status of the needs:



142 F. Mäkeläinen et al.

Fig. 1. The main constituents of the animat model in a reinforcement learning setting.

Algorithm 1. The update sequence for the animat.
Input: An animat A
while A is alive do

The body receives a response from the environment and updates its sensors
and needs accordingly
The controller receives the active sensors and the status of the needs from
the body
The top active nodes are determined
The global Q-values are determined
The local Q-values are updated
Formation rules are activated
The top active nodes are determined again
The global Q-values are determined again
The action goodness and utility are determined
An action is selected and sent to the body
The action is performed by the body
The world evaluates the interaction

end

Definition 1 (Rewards). For each need i and time t > 0, the reward signal
ri(t) is defined as follows:

ri(t) = ιi(t) − ιi(t − 1). (1)

1.2 Controller

The controller is responsible for both learning and decision-making. Intuitively,
it models the animat’s brain. The controller is a function that takes a (physio-
logical) state consisting of sensor values and need values as input and outputs
an action, which is immediately executed by the motors. The controller either
selects a random action (exploration), or an action that is expected to have the
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best consequences, based on its experience from previous interactions (exploita-
tion). Next let us describe the controller in more detail.

1.3 Perception

Based on sensory input, a perception graph is used to approximate the state, an
example of a perception graph is given in Fig. 2. We construct the perception
graph as a DAG where the input layer consists of the sensors. Initially, the per-
ception graph consists only of the input layer, but through the use of formation
rules, AND nodes can be added over time.

Fig. 2. A perception graph with 5 active and 3 top active nodes. The lowest layer
contains the sensors.

Definition 2 (Perception graph). A perception graph is a graph whose nodes
(concepts) are sensors and binary AND-gates.

Definition 3 (Perception graph activity). At each time step the perception
graph receives boolean values to its sensors. Those that receive the value True are
called active. This activity propagates to the AND-nodes within the same tick.
An AND-node is active if both its incoming signals are active.

We use the symbol b for nodes of the perception graph and Bt for the set of all
nodes at time t. The set of all active nodes at time t is denoted by BA

t .

Definition 4 (Top activity). An active node b ∈ BA
t is top active if the set

of sensors it represents is not a subset to a set of sensors represented by another
active node b′ ∈ BA

t .

The set of all top active nodes at time t is denoted by BTA
t . The set of top active

nodes describes the current state to its maximum level of detail with respect to
the structure of the perception graph.
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1.4 Learning

In this section we present several experience structures that are updated each
time step, and three new formation rules for the perception graph. The rules
for expanding the perception graph are the main novelty of the present model
compared to our previous work [12].

We will start with how the quality of each action, with respect to either
a single top active node or the set of all top active nodes, are updated and
calculated in this model.

Definition 5 (Local Q-values). A local Q-value is a real-valued variable
Qi(b, a) that reflects the expected response to the status of need i when performing
action a, given that node b is top active.

Definition 6 (Global Q-values). A global Q-value is a real-valued variable
Qglobal

i (BTA
t , a) that reflects the expected response to need i when performing

action a given the set of top active nodes. It is defined as follows:

Qglobal
i (BTA

t , a) =

∑
b∈BTA

t
Qi(b, a)

|BTA
t | . (2)

Definition 7 (Update local Q-values). The update of the local Q-values is
based on Q-learning where the main differences stem from the state represen-
tation, which is given by the set of top active nodes. At t + 1 the Q-values are
updated for all previous top active nodes b ∈ BTA

t , with respect to the selected
action at, the received rewards ri(t+1) and the new top active nodes b′ ∈ BTA

t+1, as

Qi(b, at) ← Qi(b, at) + α
(
ri(t + 1) + γ · max

a

[
Qglobal

i (BTA
t+1, a)

]
− Qi(b, at)

)
,

(3)
where α ∈ [0, 1] is the learning rate and γ ∈ [0, 1] is the discount rate.

We will now move over to the new formation rules, but before we introduce
them, we will present the information that they are based on.

Definition 8 (Pair reward). PairRewardi(b, b′, a) is the probability that the
reward for need i will be positive if action a is performed when b and b′ are both
top active.

Definition 9 (Reward history). The reward history RewardHistoryi(b, a) is
a pair (pos, neg), where pos (neg) is the number of times a positive (negative)
reward for need i has been received when doing action a while node b has been
active.

To increase their chances of surviving, animats must be able to memorize what
kind of objects are, e.g. suitable for eating and drinking.

Definition 10 (Positive stable nodes). Based on the entries in Reward-
Historyi(b, a), the positive stable nodes PositiveStablei(a) is a list of all nodes
that have received at least φPositiveStable positive rewards and no negative rewards
for need i and action a.
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Definition 11 (Relevant nodes). For each stable node b ∈ PositiveStablei(a)
all nodes b′ that seem to be correlated to b are added to the list of relevant nodes,
Relevanti(b). If at least at least φRelevantUpdates updates have been performed
for an entry in RelevantTransition(b, b′|b′′, a) and RelevantTransition(b, b′|
b′′, a) > pRelevant, then b′′ is added to Relevanti(b).

Definition 12 (Relevant transition probabilities). The relevant transition
probabilities, RelevantTransition(b, b′|b′′, a), contains the conditional probability
that b′ is active given that b′′ was active and action a was performed, where
b ∈ PositiveStablei(a′) and b′ ∈ Relevanti(b).

From studying the Definitions 4, 6 and 7, we made the following observation: all
sets of top activities a node can be part of needs to have a coherent response from
the environment for each action, otherwise conflicting rewards and conflicting
global Q-values could prevent the agent from learning a good policy. Our new
formation rules were designed with this in mind, and they will now be briefly
described.

Definition 13 (Positive reward merge). At each time step, flip a biased
coin. If heads, then select two nodes b and b′ with probability proportional to
their entry PairRewardi(b, b′, a) and so that b and/or b′ have received conflicting
rewards, i.e. the entry in RewardHistoryi(b, a) is (> 0, > 0). Then if it does
not yet exist, add b′′ = b AND b′ to Bt.

The positive reward merge creates connections for nodes with conflicting
rewards, with the goal that the new node becomes a positive stable node. Entries
in PairReward with high probability are more likely to be made first.

Definition 14 (Stable node merge). Suppose a stable node b ∈
PositiveStablei(a) is active, b ∈ BA

t . For b′ ∈ BTA
t , if it is not already rep-

resented, add b′′ = b AND b′ to Bt.

The stable node merge makes sure that all stable nodes receive a coherent
response from the environment, i.e. we isolate them by forming new nodes with
the top active nodes.

Definition 15 (Relevant node merge). Suppose a relevant node b′ ∈
Relevanti(b), is active, b′ ∈ BA

t . For b′ ∈ BTA
t , if it is not already represented,

add b′′ = b AND b′ to Bt.

Similar to stable node merge, we also isolate nodes deemed relevant to a stable
node.

1.5 Decision-Making

In this section, we present the building blocks that are used by an animat to
select an action in a potentially multi-objective setting.
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Definition 16 (Action goodness). The action goodness is defined as

Gi(a, t) = ιi(t) + ωQglobal
i (BTA

t , a), (4)

where ω ∈ [0, 1] is a constant.

Definition 17 (Utility). The utility is defined as

utility(a, t) = min
i

[Gi(a, t)] . (5)

Definition 18 (Policy). Flip a biased coin. If heads then select the action that
maximizes utility(a, t), otherwise select a random action.

2 Experiment

Now let us describe the experiment, whose purpose was to evaluate the three
new formation rules (Definitions 13, 14, 15) and make comparisons with some
other models. Accompanying code can be found at [7].

Fig. 3. The 3× 3 cat world shown in a state with fish in three locations, red light off,
green light on and 4 out of the 32 noise lights active, as shown in the top bar. The cat
has to find the fish by using its smell sensors and then determine whether the fish is
edible. Because of the noise, the state space of this world is greater than 232. (Color
figure online)

2.1 World

The world that is used in the experiment consists of a 3× 3 bounded grid popu-
lated by a cat and fish, see Fig. 3. When exploring the cat discovers that eating
the fish sometimes results in (energy) reward, sometimes in punishment. For
this environment, a green light indicates that the fish is safe to consume while
a red light indicates the opposite. For the agent to find an optimal policy, it
must learn to navigate towards fish and then only consume fish when the green
light is active. To increase the size of the state space there are also lights that
represent noise, these are activated randomly with p = 0.25, and they do not
affect the received reward. The optimal policy is thus straightforward, but the
problem lies in finding this policy with all the noise present.
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2.2 Agents

In the experiment we evaluated five agents:

– New Animat, which is the animat model described in this paper.
– Old Animat, which is an adaptation of the animat model described in [12].
– DQN, which uses a two-layer ANN for approximating the Q-value. It also

uses a target network and replay-memory similar to [8]. In total there are 200
weights to train.

– Q-learner, which is based on ordinary Q-learning, where each unique set of
active sensors has an entry in its Q-matrix. Since the state space is vast, it is
implemented using lazy initialisation.

– Random, which selects actions randomly.

The New Animat, Old Animat and Q-learner share the common Q-learning
parameters: εstart = 1.0, εdecay = 0.99, εmin = 0.01, α = 0.05, γ = 0.9, which
are the exploration/exploitation parameters, learning rate and the discount rate,
respectively.

Sensors. The body of the cat has the following sensors: a green light sensor, a
red light sensor, 32 noise light sensors, a fish sensor and four remote sensors for
fish smell. So in total, the agent’s perception of the environment is based on 39
boolean values.

Needs. The cat has one need only: energy. The energy is not only affected by
the actions, but it also decreases each time step with a constant decay rate of
−0.02, an agent that is not following a good policy will usually see its energy
reach 0 in about 40 time steps.

Actions. The agent can perform five different actions a ∈ {move up, move
down, move left, move right, eat}. The actions have the following impact on
energy in terms of the received reward: any move, r = −0.01; eat fish while
green light is active, r = 0.3; eat fish while red light is active, r = −0.3; eat
nothing, r = −0.015.

2.3 Evaluation

For each agent, data is collected over 20 independent experiments where one
experiment is divided into two parts: training and testing. Learning and explo-
ration are turned on during training and turned off during testing. Each training
episode lasts 200 time steps and is followed by a test episode, in which perfor-
mance data from 20 test runs are collected. Each test run ends after 100 time
steps or if the agent’s energy level reaches 0.
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3 Results

In this section, we present the results of the experiment. Figure 4 shows the
performance of the five agents. It is clear that New Animat and DQN has the
best performance. DQN is the quickest to improve but is soon overtaken by
New Animat. New Animat performs best overall and stabilizes at a level above
all other agents. Old Animat performs better than both the Q-learner and the
Random agent.

Figure 5 shows that at the end of the experiment, Old Animat’s perception
graph contained ∼2000 nodes, while New Animat’s perception graph had stabi-
lized around ∼700 nodes already after 3000 time steps. Although Old Animat
used almost three times the number of nodes compared to New Animat, it failed
to match its performance level. The main difference between the two lies in the
formation rules, and thus they are the explanation of the success of New Animat.

Fig. 4. For each agent, the mean and
standard deviation of the energy with
respect to the number of trained steps
can be seen.

Fig. 5. The mean and standard devia-
tion for the total number of nodes for
New Animat and Old Animat, and the
total number of unique states for Q-
learner, with respect to the number of
trained steps.

4 Future Work

The animat model was extended with three new formation rules. They all have
the goal of creating a coherent response for all top active nodes, by identifying
and isolating important nodes. Instead of isolating the important nodes by cre-
ating many nodes in the perception graph, we suggest that it might be possible
to simply filter the top active nodes so that only the important nodes are taken
into account. We believe this approach is well worth exploring further, since it
has the potential to significantly reduce the number of nodes in the perception
graph, while possibly maintaining the same level of performance.



Efficient Concept Formation in Large State Spaces 149

5 Conclusion

Improvements to a computational model for artificial animals were proposed.
The model combines generic mechanisms for homeostatic decision-making, local
reinforcement learning, and dynamic concept formation. An experiment was con-
ducted in which this model was compared to four other models: a previous version
of the animat model, a deep Q-learning model, a basic Q-learning model, and
a randomizer. The experiment was conducted in an environment with a state
space of size exceeding 232, which rendered basic Q-learning infeasible. It was
found that the improved animat model performed substantially better than the
previous animat model and somewhat better than an optimized deep Q-learning
model, despite starting with a blank slate architecture.
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Abstract. An enhanced DSO Cognitive Architecture design was
recently introduced to augment its cognitive functions by incorporat-
ing the Global Workspace Theory. A computational implementation of
this new design is described in detail in this paper. The implementa-
tion is built as a distributed system with parallel pipelines of specialised
processes, executing asynchronously. Competition initiated by these pro-
cesses, and facilitated by the attention mechanism and global broadcast
mechanism, leads to pipelines being dynamically created and allows dis-
connected pipelines to influence the processing of others. To validate the
implementation, it was applied to a traffic control problem and experi-
mental results showed increase in performance gain using the enhanced
cognitive architecture.

Keywords: Cognitive architecture · Global Workspace Theory
Adaptive traffic control

1 Introduction

The DSO Cognitive Architecture (DSO-CA) [4] is a top-level cognitive architec-
ture that incorporates the design principles of parallelism, distributed memory
and hierarchical structure to model how the human brain processes information.
It has been successfully used to develop Artificial Intelligence (AI) solutions to
problems in applications like scene understanding [6] and mobile surveillance [5].
More recently, an enhanced design of the DSO-CA has been proposed [7] with
the goal of enabling more human-like general intelligence and dynamic reasoning
in AI systems. The design extension makes use of the Global Workspace The-
ory (GWT) [1] to enable Unified Reasoning — a process that permits reasoning
across different knowledge domains and representations.

The motivation for unified reasoning is inspired by a cognitive architec-
ture design problem known as the diversity dilemma [9] by which there is a
need to blend diversity of different cognitive functions with uniformity of struc-
ture for efficiency, integrability, extensibility, and maintainability. The Global
Workspace Theory is a neuro-cognitive theory of consciousness developed by
c© Springer Nature Switzerland AG 2018
M. Iklé et al. (Eds.): AGI 2018, LNAI 10999, pp. 151–161, 2018.
https://doi.org/10.1007/978-3-319-97676-1_15
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Bernard Baars [1]. It advances a model of information flow in which multi-
ple, parallel, specialised processes compete and co-operate for access to a global
workspace, which permits the winning coalition to broadcast to the rest of the
specialist. By making use of an integrative memory system and applying the
GWT, the newer DSO-CA with GWT design is able to facilitate collaboration
among different cognitive functions and therefore indirectly provides a resolution
to the diversity dilemma. Due to space constraints, we refer the reader to [7],
for details on the design of the enhanced architecture, the inspirations drawn
from the GWT, the principles behind the unified reasoning process using an
integrative memory system, and the discussions on related cognitive architec-
tures that had influenced the design. Nevertheless, to paint a clearer picture to
the motivation behind the newer DSO-CA design, we will highlight two related
work here, where the detailed comparisons are also given in the original paper.
First, the diversity dilemma was discussed by Paul Rosenbloom and his answer
to the dilemma is the SIGMA cognitive architecture that attempts to merge all
the cognitive functions using a language representation which can be compiled
into a common representation [10]. Second, Ben Goertzel formalised the con-
cept of cognitive synergy [2], a framework that measures the compatibility and
interaction between different cognitive functions (defined as knowledge creation
mechanism that acts on a specific memory type), and how a cognitive function
can help another when one gets ‘stuck’ if both functions have high compati-
bility. The point here is, these related works share a similar approach towards
producing more general intelligence in AI systems, and the key is to work out
how meaningful fusion and interaction among different cognitive functions can
be achieved. The approach adopted by the DSO-CA is akin to creating a small-
world network where cognitive processes that contribute to similar functionali-
ties with respect to either agent’s environment or it’s task, form cliques amongst
themselves due to frequent interactions. Communications between these cliques
of disparate functionalities happen when the agent is met with a new or infre-
quent task. To solve this, the agent needs to chain different processes or cliques
together dynamically through a GWT-inspired implementation. With that, it
can create a platform for emergent, adaptive behaviours by allowing different
pathways (learned or not) to communicate with one another through a common
global workspace.

In this paper, we present a computational implementation of the DSO-CA [7]
with GWT. The implementation is centred on the same distributed system prin-
ciple whereby every specialised processor is executed as an independent parallel
process with inter-process communication achieved by a message-oriented mid-
dleware (MOM). This means the system will have many pipelines executed in
parallel, with some of them disconnected from one another. Competitions from
these processes will either lead to pipelines being dynamically created, or allow
disconnected pipelines to influence the processing of others. Full details of the
implementation will be presented in the next section. In the section after that,
we will discuss a successful validation of the implemented cognitive architecture
applied to an urban traffic control problem. We will conclude the paper with
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future work where we discuss about learning pathways between the different
specialised processors.

2 Design and Implementation

An overview of the enhanced DSO-CA is shown in Fig. 1. There are three design
aspects with respect to incorporating the GWT: (1) parallelised, specialised pro-
cesses, (2) competition, (3) inhibitory function to suppress competition after a
broadcast. For aspect (1), there are Cognitive Codelets, which are specialised
functions as described in the GWT (e.g the Reasoners in Executive group in
Fig. 1a). Communications between them are done through the Reference Mem-
ory Cells (RMCs) which act as interfaces to the Working Memory (Fig. 1b).
These communications can be considered as pathways and each pathway can
be independent from one another. Aspect (2) is initiated via bottom-up atten-
tion which starts with Cognitive Codelets and RMCs sending salient information
to compete for global broadcast access. This is realised through the attention
mechanism, which comprises of Triggers and Attention Codelets, and Global
Broadcast Mechanism (GBM). The competition is multi-tiered and it starts
with candidates competing at a localised, contextual level in each Attention
Codelet, and finally competing in the GBM, the winner thereby gaining global
broadcast access. After which, it is propagated through the system allowing it to
influence relevant pathways. These pathways form a coalition which is a group
of processes that are dynamically formed to address contextual matters within
the system. Finally aspect (3) is achieved via suppressing competition at the
attention mechanism, preventing any local competition from taking place. This
results in a cooldown period for other Cognitive Codelets to process the global
broadcast before the next round of competition is allowed.

To implement the design aspects and information flow, the DSO-CA is imple-
mented as a distributed system consisting of parallel processes. An MOM facili-
tates the inter-process communications based on a publish-subscribe pattern — a

Fig. 1. (a) An overview of the DSO-CA. (b) The Working Memory zoomed in, with
the Reference Memory Layer and Integrative Memory Layer.
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process publishes its message to a topic and processes subscribed to it will receive
the message. Additionally, all codelets are standardised to a multithreaded setup
with threads following a producer-consumer pattern in concurrency design. Each
thread is either a listener, processor, or sender; listener receives inputs and pre-
processes them for the processor; processor represents a specialised function of
which the codelet is designed for; and sender post-processes and sends the pro-
cessor’s result to designated codelets. The reasons for such a workflow are to be
MOM-agnostic, and decouple preprocessing and post-processing from the main
process so as to maximise time on it. Another benefit is code-reuse if the listener
and sender threads are applicable to different codelets.

Cognitive Codelets are implemented as parallel processes that serve as spe-
cialised functions within the DSO-CA. Each has its own memory representation,
which can differ from the integrative memory’s. For example, Cognitive Codelets
in Perception (Fig. 1a) can be different deep learning algorithms with different
deep networks as their memory representations. The listener thread takes input
from other RMCs and global broadcast (Fig. 1), it is also here where translation
from integrative memory representation to local representation can take place.
When a Cognitive Codelet receives a broadcast, it becomes a prioritised input
which will be processed first even if the Cognitive Codelet receives a local input
earlier. How the broadcast is processed depends on its relevance and the function
of the Cognitive Codelet. For example, a Bayesian reasoner receiving a broadcast
from a First Order Logic reasoner can use the conclusion within the result as an
input to a what-if situation, i.e. diagnostic reasoning.

Reference Memory Cells constitute the Reference Memory Layer (Fig. 1b),
with each RMC holding memory references to the integrative memory. In Fig. 2b,
a RMC will merge the inputs into the underlying integrative memory by exe-
cuting the transaction defined by the sender. This transaction includes adding,
removing, refreshing (removing all references and adding new ones), or executing
custom transactions. With regards to the references, different RMCs can refer to
the same elements, thus changes to these elements are reflected to those RMCs
referring to it. With that, a Cognitive Codelet can indirectly influence other Cog-
nitive Codelets by modifying shared elements without needing a pathway. This
ties in with the output where RMC will only send its reference memory to other
Cognitive Codelets, meaning it only shares the relevant part of the integrative
memory without the need to filter. To follow the design principle of distributed
memory and parallelism, each RMC also executes in parallel and asynchronous
manner for simultaneous transactions.

Attention Codelets represent contexts either abstracted from the goals, envi-
ronment, or internal states of the system, e.g. survival for an embodied agent;
external threats; imminent, and critical failure of other Cognitive Codelets. Each
Attention Codelet’s main purpose is to oversee competition within its context,
and this translates to unique, localised competition that executes in parallel
and asynchronously from one another. Each winner is the best representative
for a context and is sent to the GBM for the final competition. The Attention
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Fig. 2. Summarised activity diagrams of the DSO-CA with GWT. Dotted arrows indi-
cate interprocess communication. Text with ‘/Send’ prefix indicates the start of parallel
thread e.g. ‘/Send Input-Message Queued’ indicates the start of activity after ‘Input-
Message Queued’.
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Codelet can also be affected by the GBM in the form of either inhibition signals
or global broadcasts (Fig. 2d). An inhibition signal disables competition however,
it can still monitor changes to its context by disinhibiting Triggers related to it.
Meanwhile, global broadcast can modify the state of the context, for example
unsuppressing competition on its own if the context has become critical with
respect to the broadcast.

Triggers are special codelets that are part of the processor thread of a Cogni-
tive Codelet or RMC of which both can have multiple Triggers. For bottom-up
attention, Triggers compute the novelty or saliency of content sent by their
attached codelet (‘Activate Trigger’ in Fig. 2) using an activation function, and
send it along with the metadata to their Attention Codelets for competition.
Each Trigger is assigned to only one Attention Codelet. Each Trigger also has
a listener thread for either top-down attention messages from the Attention
Codelets or inhibition signal from the GBM (Fig. 2c), which will reject any
activation attempts until the Trigger is unsuppressed. Examples of top-down
attention include Attention Codelet tasking a Trigger to adjust the activation
level depending on the winner, or unsuppressing the Trigger’s inhibition if the
winning context requires special attention to its attached codelets.

Global Broadcast Mechanism (Fig. 2e) serves to broadcast the most salient
content after a winner-take-all competition. There are two criteria to start com-
petition: (1) activation level of all candidates must cross a GBM-set threshold,
(2) either candidate buffer reached its limit or time to competition is up; the
candidate buffer and timer is created when the first candidate is accepted. Fol-
lowing the GWT, the GBM will send inhibition signal to suppress all compe-
titions before the broadcast. With regards to disinhibition, two strategies can
be employed: centralised and decentralised disinhibition. In centralised disinhi-
bition, the GBM controls it and maps every broadcast to a set of criteria that
must be satisfied before the GBM unsuppresses competition. Thus, Attention
Codelets in this scheme will switch to finding candidates that satisfy criteria
relevant to their context. Under ‘Execute Disinhibition Strategy’ in Fig. 2e, the
GBM will send disinhibition signals if these candidates met the criteria. For
decentralised disinhibition, Attention Codelet determines disinhibition instead.
Each Attention Codelet in this scheme will have their criteria to satisfy before
continuing competition (‘Process Context’ in Fig. 2d).

3 Experiment

In this section, we present validation results from applying the DSO-CA imple-
mentation to an urban traffic control problem discussed in [8] whereby the CST
group showcased the gain in performance using their cognitive architecture which
also incorporated the GWT. It is clear that we have chosen to validate using the
same problem because both architectures share a commonality on incorporating
the GWT to enhance their architectures. The availability of the data and results
presented in [8] also forms the baseline for our experiment. The experiment is
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conducted on a simulation platform known as Simulation of Urban Mobility
(SUMO) [3]. We used the same experiment data made available by the CST
group which includes the road network (Fig. 3) and the routes of all vehicles,
each route dictating the start, destination and time of insertion; and the acti-
vation function which will be elaborated below. The aim of the experiment is
to reduce mean traveling time of each vehicle via controlling phases of a traffic
controller which consists of all traffic lights in a junction. Phase in this case
means the lights of the traffic controller and each light presides over an incom-
ing lane, for example GGrrGr means green light for incoming lane 0, 1 and 4.
For more details about the experiment, please refer to [8]. In addition to the
original three phase selection schemes reported in the paper, we have designed
two additional schemes made possible using our GWT implementation, which
will further improve the performance gains.

Fixed Timing: Fixed phase cycle in which the traffic controller goes through
a cyclic timed sequence of phases. Phases are predefined within the network.

Parallel Reactive (PR): The activation function of an incoming lane is as
followed: ATl(t) =

∑
c∈C(1 − αVc(t) − βXc(t)) where l is the lane, t is the time,

c is a vehicle, Vc and Xc are velocity and distance from the traffic light of the
vehicle respectively, α = 0.01 m−1, and β = 0.001 m−1. The activation value
is an indication of how congested the junction is — the higher it is, the more
congested it gets. Phases are from Fixed Timing and the phase selected is the
highest activation value summed from the green lights of that phase [8].

Artificial Consciousness (PR-GWT): The junction activation value is cal-
culated (

∑
l∈L ATl(t)

|L| ) [8] and this serves as the metric for competition. Junction
with the highest activation value that passes a threshold will be selected as the
critical junction by the GWT and be broadcasted to other traffic controllers.
The traffic controllers whose lanes are within range to the critical junction will
form a coalition and their phases will be generated based on the following rules:
(1) critical junction’s outgoing lane to any incoming lane will be given the green
light. (2) critical junction’s incoming lanes connected to any outgoing lanes are
given red light. We shall call this generated phase, forced phase.

Projection Scheme: Built upon PR-GWT, this new scheme allows coalition of
traffic controllers to compromise between the critical junction and their traffic
by selecting a phase based on projected activation. Given a candidate phase,
compare each light in it to the corresponding current phase’s light (could be any
of the phases above) and subtract ε to that lane’s activation if the transition
is red→green. Add ε for the inverse. If the projected value crosses a threshold,
permutate all possible phases constrained by only flipping the red lights in the
current phase e.g. GrrG will yield 4 different phases. The permuted phase whose
projected activation value is closest to the threshold, will be selected.

Reactive Scheme: Similar to Projection Scheme except traffic controller ini-
tially follow the PR-GWT scheme. Once its current activation value crosses a
threshold, it will change its phase. First, it inverts the lights in the forced phase
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e.g GrGGrrG → rGrrGGr, this allows vehicles at the red light to move. Next, it
selects a PR phase e.g GrrrrrG. This is to preserve green lights to those lanes
that may still have significant traffic. Lastly, an OR operation is performed on
the two phases e.g GrrrrrG ∨ rGrrGGr → GGrrGGG.

Fig. 3. Overview of the DSO-CA with Global Workspace applied to the traffic exper-
iment.

Figure 3 shows the instantiation of the implementation for this experiment.
Each traffic controller independently optimises its own traffic in parallel. When
junctions get congested, the traffic controllers will start competing for broadcast
access facilitated by the attention mechanism and GBM. Traffic controllers upon
receiving the winner, will form a coalition if they are within reach to the critical
junction and generate a forced phase to optimise for the critical junction’s traffic.
They will maintain it until the GBM signals that the activation level of the
critical junction has fallen below a threshold, this can be considered as the goal.
This also means that centralised disinhibition is used. Regarding the codelets in
this instantiation, Lane Sensor codelets will retrieve the speed and distance
of each vehicle to the traffic light on their respective lane, Vc and Xc at time
step, t. Each Reference Memory Cell represents a junction. They will fuse
inputs from Lane Sensors connected to their respective junction, and send to
the Traffic Controller, Vc and Xc of each vehicle, c on that junction. When a
Traffic Controller Codelet receives an update from a RMC, it selects the best
phase and sends it back to SUMO. Under normal circumstances, PR is used to
optimise local traffic. However if it is in a coalition, it will stick with the forced
phase originally generated for PR-GWT. If Projection or Reactive scheme is
used, the forced phase is regenerated after every update. The Traffic Controller
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Codelet will go back to using PR when the goal is reached. For Attention
Codelet, the context is the congestion of each junction, thus its competition
criteria is to find the most congested junction. Competition is initiated when all
Triggers have sent their candidates. When it knows of the critical junction, the
Attention Codelet will need to monitor its activation level to meet the goal. To
do that, it will disinhibit the Junction Trigger presiding over the critical junction
(dashed-dot line in Fig. 3), this is a form of top-down attention. Related to the
Attention Codelet, each Junction Trigger is attached to a Traffic Controller
Codelet. For bottom-up attention, it will send the junction activation value to
the Attention Codelet (Fig. 3). The functionality remains the same when one of
them is disinhibited by the Attention Codelet. As for the Global Broadcast
Mechanism, its implementation follows the Design and Implementation section.

Fig. 4. Experiment results. Graph on the right is zoom-in-view without Fixed Timing.

Figure 4 shows the results of running the experiment using the “Corridor”
traffic network model [8] with the setup of vehicles added every 0.1 s in SUMO.
Using PR as a baseline, the performance gain for PR-GWT has an average of
3.8% with maximum value of 8.6%. This percentage improvement is compara-
ble to that reported in [8] and it serves as validation for the correctness of our
implementation. In addition, our proposed Reactive Scheme reduced the mean
travel time even further by 5.9% on average, with up to a maximum of 10.9%.
Furthermore, the proposed Projection Scheme has the best result: 7.1% average
reduction, with maximum value of 15%. The experiment has successfully demon-
strated that a dynamic, collaborative interaction can emerge through incorporat-
ing the GWT — pathways leading to Traffic Controller Codelets never interact
with each other, however they still form a coalition to address critical context
through the competition and broadcast mechanism.

4 Conclusion

In this paper, we have presented the implementation details of the enhanced
design of the DSO-CA. The implementation is a distributed system of parallel
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processes that communicates with each other via an MOM. Each parallel process
represents the specialised function of the GWT. Competitions are initiated by
these processes and they compete for global broadcast via the attention mech-
anism and the GBM. The winner thereby, will either lead to pipelines being
dynamically created, or allow parallel pipelines to influence the processing of
others. For validation, the implementation was applied to the traffic control
problem and experimental results showed increase in performance gain using
methods that are enabled by our implementation of the enhanced DSO-CA.

For future work, we will be looking into the learning aspects of the design and
implementation. Currently, pathways between codelets are predetermined but in
general the pathways should also be learned. This can be done by leveraging on
the competition design aspect. Intuitively, a pathway is formed between two Cog-
nitive Codelets, CCa and CCb if CCa frequently accepts the broadcast sourced
from CCb. There are two criteria for acceptance: firstly, translation of CCb out-
puts into CCa inputs must be coherent; secondly, output from CCa based on
CCb input should be beneficial to the system as a whole. These criteria require
feedback loops between the environment and the system, which will be propa-
gated down to individual Cognitive Codelets, and also between codelets because
incoherent inputs should lead to feedback to CCb so it could make correction.
To implement the feedback loops, we may leverage on the representativeness
of the integrative memory and competition. Thus, future work is to study how
these feedback loops can be designed around the competition mechanism and
how representation learning can be implemented within the integrative memory.
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Abstract. Like any field of empirical science, AI may be approached
axiomatically. We formulate requirements for a general-purpose, human-
level AI system in terms of postulates. We review the methodology of
deep learning, examining the explicit and tacit assumptions in deep learn-
ing research. Deep Learning methodology seeks to overcome limitations
in traditional machine learning research as it combines facets of model
richness, generality, and practical applicability. The methodology so far
has produced outstanding results due to a productive synergy of func-
tion approximation, under plausible assumptions of irreducibility and the
efficiency of back-propagation family of algorithms. We examine these
winning traits of deep learning, and also observe the various known fail-
ure modes of deep learning. We conclude by giving recommendations
on how to extend deep learning methodology to cover the postulates of
general-purpose AI including modularity, and cognitive architecture. We
also relate deep learning to advances in theoretical neuroscience research.

1 Introduction

Deep learning is a rapidly developing branch of machine learning which is
clustered around training deep neural models with many layers and rich compu-
tational structure well suited to the problem domain [15,44]. Initially motivated
by modelling the visual cortex [11,12], human-level perceptual performance was
approached and eventually attained in a number of challenging visual percep-
tion tasks such as image recognition with the aid of GPU acceleration [16,31,38].
The applications quickly extended to other computer vision tasks such as image
segmentation [4], producing a variety of impressive results in visual information
processing such as style transfer [13], opening new vistas in machine learning
capabilities. The applications have been extended to domains beyond vision, such
as speech recognition [18], language processing [29], and reinforcement learning
[30], often with striking performance, proving the versatility and the significance
of the approach in AI, urging us to consider whether the approach may yield
a general AI (called Artificial General Intelligence (AGI) in some circles), and
if so which problems would have to be tackled to make deep learning approach
truly human-level AI that covers all aspects of cognition.
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We analyze the approach from a 10,000 feet vantage point, revisiting the idea of
AI axiomatization. Although, we are generally in agreement with Minsky that the
attempt to make AI like physics is likely a futile pursuit, we also note the achieve-
ments of later theorists who have applied Bayesian methods successfully. We make
no attempt to formalize any of our claims due to space consideration, however we
discuss relevant research in cognitive sciences. Then, we apply the same founda-
tional thinking to deep learning critically probing its intellectual foundations. The
axioms, or postulates, of AI, are examined with an eye towards whether the cur-
rent progress in deep learning in some way satisfies them, and what has to be done
to fill the gap. The present paper may thus be regarded as an analytical, critical
meta-level review, rather than a comprehensive review such as [44].

2 Postulates of General AI

One of the most ambitious mathematical models in AGI research is AIXI [26]
which is a universal Reinforcement Learning (RL) model that can be applied to
a very large variety of AI agent models and AI tasks including game playing,
machine learning tasks, and general problem solving. AIXI is based on an exten-
sion of Solomonoff’s sequence induction model which works with arbitrary loss
and alphabet [24], making the aforementioned induction problem fairly general.
Hutter proves in his book [25] that many problems can be easily transformed
to this particular formulation of universal induction. There are a few conditions
that have to be satisfied for a system to be called a universal induction system,
and even then the system must be realized in a practical manner so as to be
widely applicable and reproduce the cognitive competencies of homo sapiens, or
failing that, a less intelligent animal.

The AIXI model combines Bellman equation with universal induction, cast-
ing action selection as the problem of maximizing expected cumulative reward in
any computable environment. Although RL is a common approach in machine
learning, AIXI had the novelty that it focused solely on universal RL agents.
When viewed this way, it is obvious that AIXI is a minimalist cognitive archi-
tecture model, that exploits the predictive power of induction in RL setting,
that does give the model the kind of versatility noted above. Solomonoff induc-
tion presents a desirable limit of inductive inference systems, since it has the
least generalization error possible; the error is dependent only on the stochastic
source and a good approximation can learn from very few examples [46]. AIXI
model also retains a property of optimal behavior, Hutter deliberates that the
model defines optimal, but incomputable intelligence, and thus any RL agent
must approximate it. Therefore, our axiomatization must consider the condi-
tions for Solomonoff’s universal induction model, and consequently AIXI, to be
approximated well, but we believe additional conditions are necessary for it to
also satisfy generality in practice and within a versatile system, as follows.

Completeness: The class of models that can be acquired by the machine learn-
ing system must be Turing-complete. If a large portion of the space of programs
is unavailable to the system, it will not have the full power and generalization
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properties of Solomonoff induction. The convergence theorem in that case is
voided, and the generalization performance of Solomonoff induction cannot be
guaranteed [46].

Stochastic Models: The system requires an adequately wide class of
stochastic models to deal with uncertainty in the real world, a system with only
deterministic components will be brittle. Induction is better suited to working
with stochastic models, one example of such an approach is Wallace’s Minimum
Message Length (MML) model where we minimize the message length that con-
tains both the length of the statistical model encoding and data encoding length
relative to model [50,51].

Bayesian Prediction: The system must compute the inferences with Bayes’
law. The inference in Solomonoff’s model is considered Bayesian. In neuroscience,
the Bayesian Brain Hypothesis has been mostly accepted, and the brain is often
regarded as a Bayesian inference machine that extracts information from the
environment in theoretical neuroscience. Jaynes introduced the possibility of
Bayesian reasoning in the brain from a statistical point of view [27]. The Bayesian
approach to theoretical neuroscience is examined in a relatively recent book
[5]. Fahlman et al. introduced the statistically motivated energy minimizing
Boltzmann machine model [7]; Hinton et al. connected the induction princi-
ple of Minimum Description Length and Helmholtz free energy introducing the
autoencoder model in 1993 [22]. Bialek’s lab has greatly contributed to the under-
standing of the Bayesian nature of the brain, a decent summary of the approach
detailing the application of the information bottleneck method may be found in
[1]. Friston has later rigorously applied the free energy principle and has obtained
even more encouraging results, he explains the Bayesian paradigm in [9]. Note
that Helmoltz free energy and the free energy principle are related, and both are
related to approximate Bayesian inference.

Principle of Induction: The system must have a sound principle of induc-
tion that is equivalent to Solomonoff’s model of induction which uses an a priori
probability model of programs that is inversely and exponentially proportional to
program size. Without the proper principle of induction, generalization error will
suffer greatly, as the system will be corrupted. Likewise, as Solomonoff induc-
tion is more completely approximated, the generalization error will decrease
dramatically, allowing the system to obtain one-shot learning first predicted by
Solomonoff, achieving a successful generalization from a sufficiently complex sin-
gle example without any prior training whenever such an example is possible.

Practical Approximation: Solomonoff induction has an exponential worst-
case bound with respect to program size rendering it infeasible. This surely is
not a practical result, any approximation must introduce algorithmic methods
to obtain a feasible approximation of the theoretical inductive inference model.

Incremental Learning: The system must be capable of cumulative learn-
ing, and therefore it must have a model of memory with adequate practical
algorithms. Solomonoff has himself described a rather elaborate approach to
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transfer learning [47], however, it was not until much later that experimen-
tal results were possible for universal induction since Solomonoff’s theoretical
description did not specify an efficient algorithm. The first such result was
obtained in OOPS system [45] demonstrating significant speedups for a uni-
versal problem solver.

Modularity and Scalability: The system must be composed of parametrized
modules that attend to different tasks, allowing complex ensemble systems to
be built for scalability like the neocortex in the human brain. A monolithic
system is not likely to scale well, the system must be able to adapt modules
to distinct tasks, and then be able to re-use the skills. A modular system also
provides a good base for specialization according to modality and cognitive task,
starting from a common module description. In the human brain, there are both
functional regions and a complex, hierarchical modular structure in the form of
cortical columns, and micro-columns.

Cognitive Architecture: The system must have a cognitive architecture,
depending on modularity that will address typical cognitive functions of learn-
ing, memory, perception, reasoning, planning, and language as well as aspects
of robotics which allow it to control robotic appendages. This manner of orga-
nization is modeled after the human brain, however, it seems essential for any
real-world AI system that requires these basic competencies to deliver robust
performance across a sufficiently general set of cognitive tasks. Even if unlike
the brain, the system must have an architectural design, or one that is capable
of introducing the required architecture.

These reasonable and desirable properties of a complete AI system lead nat-
urally to a top-down design sometimes called an AGI Unification Architecture
among practitioners, if built around the floor plan of a universal induction sys-
tem such as AIXI. An example of such an approach to designing a cognitive
architecture may be seen in [36]. However, this is not necessarily the only kind
of solution. An adequate architecture could also be built around a deep learning
approach; let us therefore proceed to its postulates.

3 Postulates of Deep Learning

Deep Learning is a particular kind of Artificial Neural Network (ANN) research
which shares some commonalities and inherits some assumptions/principles from
earlier ANN research some of which may seem implicit to outsiders. We try to
recover these tacit or implicit assumptions for the sake of general AI readership,
and also delineate the borders of deep learning from other ANN research in the
following.

No Free Lunch: The well-known No Free Lunch theorem for machine learning
implies that there can be no general learning algorithm that will be effective
for all problems. This theorem has generated a strong bias towards model-based
learning in ANN research where the researcher tries to design a rich network
model that covers all contingencies in the domain but uses insights into the
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problem domain and thus the experiment does not suffer from the unreasonable
large search space of a model-free learning method. From image processing to
language, this particular blend of specificity and generality seems to have guided
deep learning quite successfully and resulted in impressive outcomes. The speci-
ficity determined by the ANN researcher may be likened to “innateness” in
cognitive science. Note that AGI theorists have argued otherwise [6], therefore
this heuristic principle remains arguable.

Epistemic Non-reductionism: This is the view that loosely depends on
Quine’s observation that epistemic reductionism often fails in terms of explana-
tory power for the real world [37], which is to say that there is a wealth of
necessary complexity to account for it. When we look at a deep learning vision
architecture, we see that the irreducible patterns of visual information are indeed
stored as they are useful however not overmuch; the system does not store every
pattern much like our brains. Epistemic irreducibility is a guiding principle in
deep learning research, and it is why deep learning models are large rather than
small and minimalistic as in some ANN research.

Eliminative Materialism: Churchland’s philosophical observation that the
brain does not deal in any of the folk psychological concepts in cognitive science
literature, but must be understood as the activation state and trajectory of the
brain [3], plays a fundamental intellectual role in the deep learning approach,
where we shift our attention to brain-like representations and learning for dealing
with any problem, even if it looks like a matter of propositional logic to us.

Subsymbolic and Distributed Representation: Expressed in detail in the
classical connectionist volume [40], this principle is the view that all represen-
tations in the brain have a distributed, real-valued representation rather than
discrete, symbolic representations that computer scientists prefer in their pro-
grams. Sparse Coding hypothesis has been mostly confirmed in neuroscience,
therefore we do know that the brain uses population codes that are sparse, dis-
tributed, and redundant. Unlike a symbolic representation, the brain networks
are fault-tolerant and redundant, and deal with uncertainty at every level. Sub-
symbolic representations are more robust and better suited to the nature of
sensory input. However, we also know that “grandmother cells” exist which may
correspond to predicates, which are still best modeled as non-linear detectors,
or ReLu units, in a neural network.

Universal Approximation: The universal approximation theorem [23] for
multi-layer feed forward neural networks underlies the heuristic of using many
hidden layers in a deep learning architecture. The theorem shows that a multi-
layer neural network can approximate arbitrary continuous real-valued func-
tions. Therefore, the system is capable of representing any mapping under mild
assumptions, including those with irregular features forming a synergy with the
epistemic non-reductionism postulate.
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Deep Models: The number of layers in a feed forward network, or the circum-
ference of a Recurrent Neural Network (RNN) must be greater than 3, meaning
multiple hidden layers in a multi-layer feed forward network, or an RNN with
complex topology. Model depth avoids much of the criticism in Minsky and
Papert’s critical book on neural networks that showed perceptrons cannot learn
concave discriminants [34], and its later editions that extend the criticism to
multi-layer models. In today’s ANN applications we observe all manners of intri-
cate discrimination models were successfully learnt, however shallow networks
will still not avoid Minsky’s observations. A complexity analysis also supports
that increasing depth can result in asymptotically smaller networks for the same
function representation [48], implying that deep models are fundamentally more
efficient.

Hierarchy and Locality: A distinguishing feature of deep learning is that it
contains local pattern recognition networks and a hierarchy of these pattern
recognition circuits that affixes the local and global views. Thus, a sequence of
convolutional and pooling layers have been a staple of image processing appli-
cations in deep learning as the convolutional layer is basically a set of texture
recognition patches, and downsampling via max-pooling gives us a dimensional-
ity reduction and the ability to hierarchically combine pattern recognizers effi-
ciently. This organization was inspired by 2d image processing in the visual
cortex, however many domains can benefit from the same organizational princi-
ple since they apply to any sensory array. The principle is also valid for domains
that are not directly sensory arrays, but maintain a similar topological relation.
The principle also has great synergy with the depth principle because the net-
work tries to capture perceptually salient features and avoids learning irrelevant
patterns making it possible to increase network depth which avoids Minskyan
objections even more effectively.

Gradient Descent: Perhaps the most common feature of deep learning is that
a variation of back propagation or gradient descent is used to train the model.
This is required since any other way to train the large networks in deep learning
research would be infeasible. Other methods such as variational learning and
MCMC tree search have been applied in deep learning research, however this
principle has remained fairly constant as it is necessitated by other principles
above, which may result in billions of real valued parameters to be trained.

Dataflow Models and SIMD Acceleration: Since the number of parameters
to be trained is large, exploiting data-parallelism through SIMD-based acceler-
ators such as GPU’s, and later executing data-flow representations on FPGA’s
have proven to be an essential factor for deep learning research. This property
of deep learning corresponds to the “massive parallelism” property of the brain.

4 Shortcomings and Extensions

Although deep learning has generated phenomenal results, it also has some
shortcomings that are being worked on. The most common limitation is that a
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typical deep learning architecture requires on the order of 10,000 or more exam-
ples. Some of the largest experiments have used millions of examples, therefore
this was simply not an issue that was focused on. It may well be the case that
this is a fundamental shortcoming of deep learning, however, researchers have
tried solutions such as using stochastic gradient over the entire set of samples, as
a usual statistical approach would necessitate, instead of running BP in epochs,
which imitates the brain’s online learning capability. Another common problem
is that most deep learning uses supervised learning, which presents a problem in
terms of constructing many labeled/annotated examples for every new problem.
Autoencoder [21] is an unsupervised learning model, and it has many variations
and applications in deep learning, however, most applications still require a good
deal of hand crafted data. A strange problem persists in deep learning systems,
which makes them easy to fool in ways that are not intuitive to humans, such as
a simple perturbation causing a misclassification, an intuitively unrelated arti-
ficial image recognized as a natural image, or a specially crafted patch on an
unrelated image causing a misclassification. These might either be symptoms of
fundamental limitations, or they might be ameliorated with better deep learn-
ing models. We observe that these issues look much like overfitting, i.e., poor
generalization performance.

When we contrast the general AI postulates and deep learning postulates, we
see some interesting overlap and also some areas where deep learning requires a
good deal of development. A deep learning system has one sort of completeness
that stems from the universal approximation theorem, and dataflow models can
be augmented with arbitrary computational units such as the Neural Turing
Machine model [17], and the later Differentiable Neural Computer model [19]
that augments neural networks with external memory. Program class extensions
of this sort may be an integral part of next-generation deep learning. Recent
proposals for non-Euclidian embedding of data also enhance generality of deep
learning models [2].

It is possible to design deep architectures for rigorous stochastic models,
which is an important extension to deep learning that will increase robustness.

Typically, deep learning lacks a principle of induction, but at the same time
a stochastic model of induction is implicit in deep learning as the information
bottleneck analysis of deep learning shows [49], where we can view deep learning
as a lossy compression scheme that forgets unnecessary information. Such the-
ories will lead to better generalization performance. [28] applies random matrix
theory to generalization in deep learning, and introduces a new regularization
method for improving generalization.

Progressive deep learning architectures add layers as necessary, substantiat-
ing an important analogy to SVM’s function class iteration [41]. Much richer
forms of induction may be beneficial for improving a deep learning network’s
generalization power. The training procedure in deep learning is efficient but
only locally optimal, in the future a combination of neuro-evolution and gradi-
ent descent may outperform gradient descent and approximate universal induc-
tion better. Evolution has already been applied to automated design of deep
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networks [33,35]. Neuro-evolution has been shown to be effective in game
playing [39] and other tasks that are difficult for deep learning, and therefore it
might displace deep learning methodology altogether in the future.

Deep learning architectures gained memory capability with the LSTM unit,
and similarly designed memory cells, however, long-term memory across tasks
remains problematic. A good realization of algorithmic memory in deep learning
is Neural Task Programming (NTP) [53] which achieves an indexical algorithmic
memory based on LSTM and the ability to hierarchically decompose skills which
has been successfully applied to robotics tasks. Progress in the direction of NTP
is likely to be a major improvement for deep learning, since without cumulative
and hierarchical learning intelligence is highly restricted.

Recently, progress has been made in the matter of modularity with Hinton’s
update of Capsule Networks, that models the cortical architecture for visual
tasks [42]. Capsule Networks adds dynamic routing between visual processing
modules with affine transformations, enhancing invariance and defines neural
modules as capsules that may be arranged like neurons. Capsules correspond to
visual entities in the model, therefore capsules that recognize a face decompose
into eyes, a nose, lips, and so forth. The step from monolithic to modular deep
learning is as powerful as the step from shallow to deep networks, hence this line
of research is a significant extension of deep learning. A similar line of research
is advanced by Vicarious, which propose a recursive neural architecture that
exploits lateral connections accounting for distinct feature sets such as contour
and surface, and the hierarchical representation of entities like in Capsule Net-
works [14]; their system can reportedly break CAPTCHA’s. Hawkins proposes
a new cortex architecture that introduces pyramidal neurons, active dendrites,
and multiple integration sites, identifying cortical computations for hierarchical
sequence memory, and it intriguingly involves dendritic computation [20]. Cap-
sule Networks might be enhanced to provide a similar dendritic model eventually,
or capsule-like speciation might be ported to Hawkins’s model.

Cognitive architectures built on symbolic concepts may not be readily appli-
cable to deep learning, however, modeling the functional anatomy of the brain
creates much needed synergy with neural networks. For instance, in Deep Mind’s
I2A model [52], we see a direction towards capturing more brain function in the
form of imagining future states, while PathNet presents a modular, reflective
learning system that can recombine network modules by evolving paths over the
network [8]. Both neural architectures exhibit progress towards a more complete
cognitive neural architecture. Another recent direction is the relational networks
that model reasoning [43]. Conceivably, neural models of fundamental cognitive
functions may be developed with a similar methodology, and bound in a con-
nectionist agent architecture. Likewise, the active inference agent of [10] with
deep temporal models captures the essentials of functional anatomy based on
hierarchical probabilistic models, and even gives us a fully unsupervised agent
model that is quite intriguing from a scientific perspective.
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5 Discussion and Future Research

Despite recent criticism raised against deep learning [32], almost all of the pos-
tulates of general AI we have outlined seem achievable, however, with major
improvements over existing systems. While it is entirely possible for a traditional
symbolic-oriented system to achieve the same performance, the advantages of
deep learning approach cannot be neglected, and the possible extensions to deep
learning discussed may also ameliorate the common shortcomings we summa-
rized. Another combination that might work is the combination of the symbolic
AI approach with deep learning. In some circles, researchers pursue a mathemat-
ical AI unification approach (like AIXI approximations), however, the merits of
such an approach are yet to be proven experimentally over deep learning. It
seems prudent to at least try to integrate deep learning faithfully in existing
AI architectures, or for new architectures, attempt to construct them solely on
a neural architecture. In the future, we expect a convergence of more powerful
training methods and deep architectures, taking us to a more model-free learn-
ing system, and more capable, modular neural agent architectures inspired by
neuroscience.
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Abstract. We explore the relations between the zeta distribution and
algorithmic information theory via a new model of the transfer learn-
ing problem. The program distribution is approximated by a zeta dis-
tribution with parameter near 1. We model the training sequence as a
stochastic process. We analyze the upper temporal bound for learning a
training sequence and its entropy rates, assuming an oracle for the trans-
fer learning problem. We argue from empirical evidence that power-law
models are suitable for natural processes. Four sequence models are pro-
posed. Random typing model is like no-free lunch where transfer learning
does not work. Zeta process independently samples programs from the
zeta distribution. A model of common sub-programs inspired by genetics
uses a database of sub-programs. An evolutionary zeta process samples
mutations from Zeta distribution. The analysis of stochastic processes
inspired by evolution suggest that AI may be feasible in nature, coun-
tering no-free lunch sort of arguments.

1 Introduction

Although power-law distributions have been analyzed in depth in physical sci-
ences, little has been said about their relevance to Artificial Intelligence (AI).
We introduce the zeta distribution as an analytic device in algorithmic informa-
tion theory and propose using it to approximate the distribution of programs. We
have been inspired by the empirical evidence in complex systems, especially biol-
ogy and genetics, that show an abundance of power-law distributions in nature.
It is well possible that the famous universal distribution in AI theory is closely
related to power-law distributions in complex systems.

The transfer learning problem also merits our attention, as a general model
of it has not been presented in machine learning literature. We develop a basic
formalization of the problem using stochastic processes and introduce temporal
bounds for learning a training sequence of induction problems, and transfer
learning. The entropy rate of a stochastic process emerges as a critical quantity
in these bounds. We show how to apply the bounds by analyzing the entropy
rates of simple training sequence models that generate programs. Two models
are close to what critics of AI have imagined, and easily result in unsolvable
problems, while two models inspired by evolution suggest that there may be
stochastic processes in nature on which AGI algorithms may be quite effective.
c© Springer Nature Switzerland AG 2018
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2 Approximating the Distribution of Programs

Solomonoff’s universal distribution depends on the probability distribution of
programs. A natural model is to consider programs, the bits of which are
generated by a fair coin. Solomonoff defined the probability of a program
π ∈ {0, 1}+ as:

P (π) = 2−|π| (1)

where |π| is the program length in bits. The total probability of all programs
thus defined unfortunately diverges if all bit-strings π ∈ {0, 1}∗ are considered
valid programs. For constructing probability distributions, a convergent sum is
required. Extended Kraft inequality shows that the total probability is less than
1 for a prefix-free set of infinite programs [2]. Let M be a reference machine which
runs programs with a prefix-free encoding like LISP. The algorithmic probability
that a bit-string x ∈ {0, 1}∗ is generated by a random program of M is:

PM (x) =
∑

M(π)=x∗
P (π) (2)

which conforms to Kolmogorov’s axioms [9]. PM is also called the universal prior
for it may be used as the prior in Bayesian inference, as any data can be encoded
as a bit-string.

2.1 Zeta Distribution of Programs

We propose the zeta distribution for approximating the distribution of programs
of M . The distribution of (1) is already an approximation, even after normal-
ization, since it contains many programs that are semantically incorrect, and
those that do not generate any strings. A realistic program distribution requires
us to specify a detailed probability model of programs, which is not covered
by the general model, however, the general model, which is approximate, still
gives excellent bounds on the limits of Solomonoff’s universal induction method.
Therefore, other general approximations may also be considered.

Additionally, the zeta function is universal, which encourages us to relate
algorithmic information theory to zeta distribution [12].

Let us consider a program bit-string π = b1b2b3 . . . bk. Let φ : {0, 1}+ → Z

define the arithmetization of programs represented as bit-strings, where the first
bit is the most significant bit.

φ(π) =
i≤|π|∑

i=1

bi.2|π|−i (3)

Thus arithmetized, we now show a simple, but interesting inequality about the
distribution of programs:

P (π) = 2−�log2(φ(π)+1)� (4)

(2a)−1 ≤ 2−�log2 a� ≤ a−1, for a ≥ 4 (5)

(2(φ(π) + 1))−1 ≤ P (π) ≤ (φ(π) + 1)−1, for φ(π) ≥ 3 (6)
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which shows an approximation that is closer than a factor of 2. Program codes
φ(π) < 3 are discarded.

Zipf’s law fnαn−1 manifests itself as the Zipf distribution of ranked discrete
objects {o1, o2, . . . , on} in order of increasing rank i

P (Z(n)
s = oi) � 1

isZ
(7)

where Z
(n)
s is a random variable, Z is the normalization constant and s ≥ 1

(we used the notation Z
(n)
s simply to avoid confusion with exponentiation, Zs

is a standard notation for the zeta random variable). Zeta distribution is the
countably infinite version of Zipf distribution with parameter s > 1

P (Zs = k) =
1

ks.ζ(s)
(8)

where Zs is a random variable with co-domain Z
+ and the zeta function is

defined as

ζ(s) =
∞∑

n=1

1
ns

. (9)

Note that Zeta distribution is a discrete variant of Pareto distribution.
It is much involved to work with a prefix-free set, therefore we will suggest

an alternative device to approximate P (π).

Theorem 1. A program distribution may be approximated by the Zipf distribu-
tion with s = 1, or by the zeta distribution with a real s close to 1 from above.

Proof. (a) Zeta distribution is undefined for s = 1. However, if we use the Zipf
distribution instead, and model programs up to a fixed program-length, we can
approximate the program distribution from above using (φ(π) + 1)−1 and from
below using (2φ(π) + 2)−1 due to the sandwich property (6).

(b) We can approximate the program distribution from below using (2φ(π)+
2)−1. Since

∀ε > 0, (2φ(π) + 2)−(1+ε) ≤ (2φ(π) + 2)−1 < P (π),

we can also approximate it with the Zeta distribution (8) for s close to 1.

In either case, the need for a prefix-free set of programs is obviated. Of the
simplified distribution, we investigate if the approximations are usable.

Theorem 2. The program distribution P (π) asymptotically obeys a power law
with exponent −1 as program size grows.

Proof. The probability of arithmetized program π is sandwiched between
(φ(π) + 1)−1 and (2φ(π) + 2)−1, therefore as |π| grows, Zipf’s law grows closer
to P (π).

lim
|π|→∞

(φ(π) + 1)−1 − (2φ(π) + 2)−1 = 0 (10)

lim
|π|→∞

2−|π| − (2φ(π) + 2)−1 = lim
|π|→∞

(φ(π) + 1)−1 − 2−|π| = 0 (11)



Zeta Distribution and Transfer Learning Problem 177

Combining Theorems 1 and 2, we propose using a Zeta distribution with a
parameter close to 1. Obviously, lower and upper bounds vary only by a factor
of 2 within each other, therefore the error in the approximation of program
distribution is at most by 1 bit (this property will be analyzed in detail in an
extended version of the present paper). Substituting into (2), we propose an
approximation.

Definition 1
PM (x) �

∑

M(π)=x∗

1
(φ(π) + 1)1+ε.ζ(1 + ε)

(12)

where ζ(1 + ε) ≥ 2 (ζ(1.7) � 2). Definition 1 may be useful for machine learning
theorists wherever they must represent a priori program probabilities, as it allows
them to employ number theory. See Elias Gamma Code [3] for an alternative
integer code.

3 Training Sequence as a Stochastic Process

Although Solomonoff has theoretically described how the transfer learning prob-
lem might be solved in [10], a detailed theoretical model of transfer learning for
the universal induction setting is missing in the literature. Here, we attempt to fill
this gap. In his treatise of incremental learning, Solomonoff approached the trans-
fer learning problem by describing an update problem which improves the guid-
ing conditional probability distribution (GCPD) of the system as an inductive
inference problem of the type that the system usually solves. Solomonoff’s mod-
ular approach started with a number of problem solving methods and invented
new such methods as the system progressed. The initial methods, however, are
not fully specified, and we leave it as an open problem in this paper. Instead,
we attempt at describing the space of training sequences using the zeta distribu-
tion, showing an interesting similarity to our world, whereas most problems in a
sequence may be solved, but rarely they are not solvable at all. For instance, a
mathematician may solve most problems, but stall at a conjecture that requires
the invention of a new, non-trivial axiom indefinitely.

In usual Solomonoff induction (with no transfer learning component), a com-
putable stochastic source μ is assumed. The stochastic source may generate
sequences, sets, functions, or other structures that we please, the general law
of which may be induced via Solomonoff’s method. We extend Solomonoff’s
induction model to a training sequence of induction problems, by considering a
stochastic process M of n random variables.

M = {μ1, μ2, μ3, . . . , μn} (13)

The transfer learning problem thus is constituted from solving n induction prob-
lems in sequence which are generated from the stochastic process M. It does not
matter which type of induction problem these problems are, as long as they are
generated via M.
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3.1 Entropy Rate of a Training Sequence

A critical measurement of a stochastic process is its entropy rate, which is defined
as the following for M:

H(M) = lim
n→∞

H(μ1, μ2, μ3, . . . , μn)
n

(14)

and the conditional entropy rate,

H ′(M) = lim
n→∞

H(μn|μ1, μ2, μ3, . . . , μn−1)
n

(15)

which gives the entropy given past observations. Observe that there is a well-
known relation between average Kolmogorov complexity and the entropy of an
i.i.d. stochastic process (Eq. 5 in [1]):

lim
n→∞

KM (X1,X2,X3, . . . , Xn)
n

= H(X) + O(1) (16)

where X is a stochastic process and Xi its random variables. We assume that
the relation extends to conditional entropy without proof due to lack of space.

3.2 Training Time

Let π∗
i be the minimal program for exactly simulating μi on M . The most general

expression for π∗
i is given in the following

π∗
i = arg min

πj

({|πj | | ∀x, y ∈ {0, 1}∗ : M(πj , x, y) = P (μi = x|y)}) (17)

where the pdf of stochastic source μi is simulated by a program πj . The condi-
tional parameter y is optional. Let us note the following identity

KM (μi) = |π∗
i | (18)

since arguments x, y are extraneous input to the pdf specified by π∗
i .

Let t(μi) denote the time taken to solve μi, and t(π) denote the time taken
by program π on M. Assume that t(μi) < ∞. We know that the running time
of extended Levin Search is bias-optimal [10], and

t(π∗
i )

P (π∗
i )

≤ t(μi) ≤ 2t(π∗
i )

P (π∗
i )

(19)

for a computable stochastic source μi (KM (μi) < ∞). The lower bound in (19)
has been named conceptual jump size by Solomonoff, because it refers to the
solution of individual induction problems within a training sequence, quanti-
fying how much conceptual innovation is required for a new problem [10]. We
cannot exactly predict t(μi) due to the incomputability of algorithmic probabil-
ity. Extended Levin Search will keep running indefinitely. It is up to the user to
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stop execution, which is usually bounded only by the amount of computational
resources available to the user. We should also mention that Levin himself does
not think that any realistic problems can be solved by Levin search or created
on a computer [8]. In the present paper, we run counter to Levin’s position, by
arguing that Levin search can work in an evolutionary setting, assuming an O(1)
oracle for the transfer learning problem.

We substitute the relation between KM (x) and PM (x) in the upper bound
for t(μi),

KM (π∗
i ) = − log2 P (π∗

i ) (20)

obtaining the following fact due to (18) and (20):

Lemma 1. t(μi) ≤ 2t(π∗
i )2KM (μi)

The inequality translates to the time for the training sequence M as

Theorem 3

t(M) ≤
n∑

i=1

t(π∗
i )2KM (μi)+1 (21)

which is a simple sum of Lemma 1.
The conditional entropy rate is useful when the stochastic process has inter-

dependence. Let us define conditional Kolmogorov complexity for the training
sequence M,

K ′(M<k) � K(μk|μ1, μ2, μ3, . . . , μk−1) (22)

where M<k � {μi|i ≤ k}. We define likewise for the stochastic process proba-
bilities.

P ′(M<k) � P (μk|μ1, μ2, μ3, . . . , μk−1) (23)

K ′(M<k) captures new algorithmic information content for the kth variable of
the stochastic process given the entire history.

As n grows, the transfer learning oracle has to add H ′(M) bits of informa-
tion to its memory on the average in the stochastic process M as Kolmogorov-
Shannon entropy relation (16) holds in the limit for conditional entropy, as well.
Since the upper temporal bound grows exponentially, (22) only relates loosely to
the solution time t(μi) of a particular problem. We instead define the conditional
expected training time upper bound with respect to M:

E
′[t(M<k)] � EM[t(μk)|μ1, . . . , μk−1] ≤

∑

∀μk∈{0,1}∗
2t(π∗

k)2K′(M<k)P ′(M<k)

(24)

3.3 Random Typing Model

Let us start by considering the well-known model of random typing. If each μi is
regarded as a random m-bit program out of 2m such programs, the programs are
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independent, and the entropy rate is m bits exactly (under usual i.i.d. assump-
tions, e.g., we are using fair coin tosses, and we construct programs using a
binary alphabet). Assume 2m >> n.

In the random typing model, all μi are algorithmically independent, therefore
there is no saving that can be achieved by transfer learning. The time it takes
for any problem is therefore:

t(μi) ≤ t(π∗
i )2m+1 (25)

for any of the 2m programs. Since m can be arbitrarily large, this model is com-
patible with Levin’s conjecture that AI is impossible. Note that this simplistic
model is reminiscient of various no-free lunch theorems that were heralded as
mathematical proof that general-purpose machine learning was impossible. How-
ever, this scenario is highly unrealistic. It is extremely difficult to find problems
that are completely independent, as this would require us to be using true ran-
dom number generators to generate any problem. In other words, we are only
showing this “model” to demonstrate how far removed from reality no-free lunch
theorems are. In a physical world, this model would correspond to the claim
that quantum randomness saturates every observation we may make. However,
we already know this claim to be false, since our observations do not consist of
noise. On the contrary, there is a lot of dependable regularity in the environment
we inhabit, which is sometimes termed “common sense” in AI literature.

3.4 Power-Law in Nature

A more realistic model, however, uses the zeta distribution for programs instead
of uniform distribution. We propose this indeed to be the case since zeta distribu-
tion is empirically observed in a multitude of domains, and has good theoretical
justification for the abundance of power-law in nature. Theorem2 gives some
weak and indirect justification as to why we might observe fractions of the zeta
distribution of programs in a computable universe. However, there are more
direct and appealing reasons why we must expect to see the zeta distribution in
highly evolved complex systems. First, it is a direct consequence of the power-law
ansatz, and scale-invariance [1] or preferential attachment in evolutionary sys-
tems [13]. Second, it follows from an application of maximum entropy principle
where the mean of logarithms of observations is fixed [11]. Third, biologists have
observed the zeta distribution directly in genetic evolution, thus strengthening
the case that our π∗

i ’s are likely to conform to zeta distributions. For instance,
gene family sizes versus their frequencies follow a power-law distribution [5] and
the gene expression in various species follows Zipf’s law [4]. Universal regular-
ities in evolution have been observed, for instance in the power-law relation
between the number of gene families and gene family size, and number of genes
in a category versus number of genes in genome, and power-law like distribu-
tion of network node degree [6]. Therefore, there is not only a highly theoretical
heuristic argument that we are following, but there exist multiple theoretical
and empirical justifications for expecting to observe the zeta distribution of pro-
grams in nature. The material evolution of the environment in a habitat, is not
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altogether different from biological evolution. Except in the case of rare natural
catastrophes, the material environment changes only gradually in accord with
the dynamic flow of natural law (surprise is small), and is dependent mostly on
the actions of organisms in a complex habitat, which may be considered to be
programs from an information-theoretic point of view. In that sense, the entire
ecology of the habitat in question may be considered to be an evolutionary sys-
tem, with program frequencies similar to the case of genes in a single organism.
In the following, we introduce novel models of training sequences inspired by
these empirical justifications.

3.5 Identical Zeta Random Variables

Let M be i.i.d. generated from zeta distribution according to Theorem2. Then,

H ′(M) = H(μ1) = H(Zs) (26)

indicating that the constant entropy rate depends only on the entropy of the
zeta distribution. We thus analyze the running time. Let tmax = max {t(μi)}.

E
′[t(M<k)] ≤ 2tmax

ζ(s)

∞∑

k=1

2�log2 k�k−s ≤ 4tmax

ζ(s)

∞∑

k=1

k

ks
(27)

For the first 1 trillion programs, tmax

∑1012

k=1 4k/k1.001ζ(1.001) � 3.89 × 109tmax

for s = 1.001, which is a feasible factor for a realistic program search limit.
Note that AI theorists interpret i.i.d. assumptions as the main reason why

no free-lunch theorems are unrealistic [7]. Our i.i.d. zeta process here may be
interpreted as an elaboration of that particular objection to no free-lunch the-
orems. Therefore, we follow the heuristic argument that the right description
of the environment which we observe must be something else than the random
typing model since agents succeed in transfer learning. The constant zeta process
leans towards feasibility, but it does not yet model transfer learning in complex
environments.

3.6 Zipf Distribution of Sub-programs

Based upon the observations of genetic evolution above and the fact that the
whole ecology is an evolutionary system, we may consider a process of programs
that has the following property. Each π∗

i that corresponds to μi is constructed
from a number of sub-programs (concatenated). The joint distribution of sub-
programs is Z

(n)
s . This is a model of gene frequencies observed in chromosomes,

where each chromosome corresponds to a program, and each gene corresponds
to a sub-program. Such a distribution would more closely model a realistic dis-
tribution of programs by constraining possible programs, as in the real-world the
process that generates programs is not ergodic. The total entropy of the process
therefore depends on the sub-programs that may be assumed to be random, and
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program coding. Let each sub-program be a k-bit random program for the sake
of simplicity. The sub-programs that correspond to instructions are specified in
a database of 2k bits. Instructions are not equiprobable, however, as in the ran-
dom typing model. Let each program have m instructions drawn from the set of
2k instructions:

A = {a1, a2, a3, . . . , a2k}. (28)

Then, we can model each optimal program π∗
i as

π∗
i = π∗

i,1π
∗
i,2π

∗
i,3 . . . π∗

i,m (29)

which make up a matrix of instructions P ∗ = π∗
i,j where π∗

i,j is drawn from the
set A of instructions. The total entropy is due to the database of sub-programs,
and the entropy of the global distribution of sub-programs Z

(n)
s which determines

the entropy of P ∗. The total entropy is then approximately,

H(μ1, μ2, . . . , μn) ≈ log2 k + k.2k + log2 n + log2 m + H(Z(2k)
s ) (30)

where we show the significant terms for k, n,m, parameters.

Lemma 2. For the Zipf distribution of sub-programs,

H ′(M) ≈ lim
n→∞

1
n

(
k.2k +

s

H2k,s

2k∑

l=1

ln(l)
ls

+ ln(H2k,s) + log2 k + log2 n + log2 m
)

(31)
due to (30).

which is to say that, the entropy rate, and thus running time, critically depends
on the choice of k and n.

3.7 An Evolutionary Zeta Process

Another process of programs may be determined by mimicking evolution, by
considering random mutations of programs in a training sequence. Let us set

π∗
1 = ∧ (32)

π∗
i =

{
M(Zs, π

∗
i−1), if Zs is a valid transformation

π∗
i−1, otherwise

(33)

which would apply a random transformation sampled from Zs in sequence to
an initially null program. Such mutations are unlikely to be too complex. The
resulting process has small conditional entropy rate, which is wholly dependent
on Zs.

lim
n→∞ H ′(M) = H(Zs) = log(ζ(s)) − sζ ′(s)

ζ(s)
(34)
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Lemma 3

H(Z1.1) = 13.8 H(Z1.05) = 24.5 (35)
H(Z1.01) = 106.1 H(Z1.001) = 1008.4 (36)

The lemma suggests that if an evolutionary process evolves slowly enough, then
an AI can easily learn everything there is to learn about it provided that the
time complexity of random variables is not too large. We can also employ Z

(k)
s

instead of Zs in (33). For a universal induction approximation, Z1.001 may be
difficult to handle, however, for efficient model-based learning algorithms such as
gradient descent methods, digesting new information on the order of a thousand
bits is not a big challenge given sufficiently many samples for a problem μi in
the sequence.

4 Concluding Remarks

We have shown novel relations between Zipf’s law and program distribution by
means of the arithmetization of programs. We have shown that zeta distribution
may be used for approximating program distributions. We have proposed using
the conditional entropy rate as an informative quantity for transfer learning. We
have extended Solomonoff’s induction model to a training sequence of problems
as a stochastic process. We have proposed that the entropy rate of a stochastic
process is informative. We have defined conditional Kolmogorov complexity and
probability for the sequence, and have used these quantities to define a condi-
tional expected upper bound of training time assuming an O(1) transfer learning
oracle. We introduced sequence models to show that there is a wide range of pos-
sible stochastic processes that may be used to argue for the possibility of general
purpose AI. The random typing model is a sensible elaboration of no-free lunch
theorem kind of arguments, and demonstrate how artificial and unlikely they are
since everything is interconnected in nature and pure randomness is very hard
to come by, which we therefore rule out as a plausible model of transfer learning.
We have shown several empirical justifications for using a power-law model of
natural processes. Independent Zeta process tends to the feasible, but does not
explain transfer learning. The models that were inspired by natural evolution
allow general purpose learning to be feasible. In particular, the model of com-
mon sub-programs which is inspired by empirical evidence in genetics supports
a view of evolution of natural processes that allows incremental learning to be
effective. The evolutionary Zeta process applies random mutations, which can be
slow enough for a machine learning algorithm to digest all the new information.

A more detailed analysis of the transfer learning problem will be presented
in an extended journal paper. Open problems include analyzing the complexity
of the optimal update algorithm, time complexity analysis for the evolutionary
processes, and accounting for the time complexity of individual programs.
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Abstract. What frameworks and architectures are necessary to create a vision
system for AGI? In this paper, we propose a formal model that states the task of
perception within AGI. We show the role of discriminative and generative models
in achieving efficient and general solution of this task, thus specifying the task in
more detail. We discuss some existing generative and discriminative models and
demonstrate their insufficiency for our purposes. Finally, we discuss some archi‐
tectural dilemmas and open questions.

Keywords: Vision · AGI · Generative models · Discriminative models

1 Introduction

Within “Good Old-Fashioned Artificial Intelligence”, vision was considered as a periph‐
eral function, which doesn’t have a direct relation to the mind, which was more associ‐
ated with the knowledge-based symbolic reasoning. This situation has been preserved
for many cognitive architectures (CAs), not only purely symbolic, but also hybrid, which
cannot process images by themselves and require additional modules. However, such
external perception modules appear to be not tightly integrated into CAs limiting these
CAs in their ability to interact with the physical world.

At the same time, the idea that the basis of natural intelligence consists in pattern
recognition is quite usual. In turn, experts in computer vision sometimes joke that
thinking is just the upper level of the visual system. However computer vision has for
a long time being developed in a relative isolation from the AI field, while the purely
emergent CAs, going from perception upwards, are far from solving symbolic tasks that
are the prerogative of the human mind.

Moreover, such isolated tasks as object detection and recognition, motion analysis,
stereovision, shape from shading (or even more narrow tasks, e.g. shadow detection)
are studied in computer vision. The problem of how a general vision system should be
built is mostly not addressed, and we believe it cannot be reduced to a set of narrow
tasks. This problem is especially relevant in the field of AGI.
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In this paper, we consider the question how to proceed towards the goal of creation
of a sufficient vision system for AGI. Here, we do not propose to limit ourselves to
considering only those technical solutions that can work in real time on modern
computers, however, consideration of resource constraints is fundamentally necessary
for developing a potentially realizable vision system. For example, the unified model of
perception and action selection given within AIXI [1] is not sufficient since even its
rough approximation [2] can deal only with low-dimensional inputs.

2 Vision Task

Separation of the Vision Subsystem
The ultimate task of intelligence consists in calculating probability P

(
a

t
|x1:t, a1:t−1

)
 of

taking action at at time t (xt unite current sensory and reinforcement signals) in order to
maximize expected future rewards. AIXI uses universal (Solomonoff) induction [3],
which predicts future observations via marginalization over all computable generative
models consistent with the agent-environment interaction history. Consider the case of
pure induction:

P
U
(x) =

∑
μ:U[μ]=x∗

2−l(μ),

where μ is a program for universal machine U, generating a string with prefix x. The
probability distribution over continuations x′ of x is P

U(x
′|x) = P

U(xx′)∕P
U
(x).

Of course, enumeration of all models at each time step is computationally infeasible.
Consistent models should be somehow “cached”, which goes far beyond sensory system
and makes up half of the intelligence (the second half is decision making). Is it possible
to draw a boundary between the sensory subsystem and the rest of intelligence (in
particular, memory), or do we need a holistic model like AIXI?

The task of perception can be seen in the processing of the current data xt (or xt–k:t
for small k), while the whole history should be dealt with by the memory.

Without loss of generality, one can consider environment models (not necessarily
Markovian) with internal states zt. Then, let μ(zt|zt–1, at) be an environment model and
ο(xt|zt) is an observation model (computable probability distribution). Indeed, one can
assume zt = x1:t a1:t with trivial ο, which, of course, doesn’t give any advantage. However,
one can hope that z can represent the interaction history much more compactly. Then,
the task of perception is to infer zt from xt with the use of priors μ(zt|zt–1, at).

This task is not simpler than universal induction since to predict xt one still needs to
marginalize over all possible models, and for each model to calculate the probability of
the interaction history (marginalizing over all z1:t).

However, we can (or should for the sake of efficiency) approximately solve the task
of perception in assumption of the fixed μ and ο. Then, this task will consist in inferring
posterior probabilities over zt given xt:
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P(z
t
||xt

) =
P(x

t
||zt

)P(z
t
)

P(x
t
)

=
o(x

t
||zt

) ∫ μ(z
t
||zt−1, a

t
)P(z

t−1
||xt−1 )dz

t−1

∫ P(x
t
||zt

)P(z
t
)dz

t

, (1)

if an AGI system maintains an uncertain state representation in the form of P(zt|xt).
Simplification P(zt) = μ(zt|zt–1, at) can useful for analysis, but imprecise.

Thus, the task of perception can be reduced to (1), although the task of learning the
models should also be accounted for.

Discriminative and Generative Models
Does AGI really need to reconstruct a generative model of the environment? Indeed,
the main approach in reinforcement learning (RL) is model-free (although the model-
based approach is advocated as a more adequate, e.g. [12]). Although it assumes some
class of environments, their models are not explicitly reconstructed. Instead, value func‐
tions are estimated or policies are directly learnt, which can be treated as discriminative
models since they describe conditional instead of joint probabilities.

Discriminative models are intensively used in computer vision and machine learning
also. Traditional and most successful (at least, in pattern recognition) deep learning
models are discriminative. However, the shortcomings of these models have also been
generally recognized recently.

In particular, discriminative models don’t support unsupervised, semi-supervised,
or one-shot learning. Transfer learning with these models is also difficult. For example,
in the case of reinforcement learning, the policy or value function should be retrained
from scratch even for the same environment, but modified reward function [4]. In terms
of AGI, we can say that discriminative models belong to narrow AI.

Generative models possess the required flexibility and support all the mentioned
forms of learning because they “explain” data, but not just predict target variables. The
possibility to generate data is not usually an aim, but means to ensure that the description
of data is complete, and no information is lost, thus, enabling criteria for any kind of
learning. Discriminative models throw away information, which is irrelevant to target
variables, and we don’t know its amount, thus, learning criteria based on the prediction
of target variables are to be used.

In the context of AGI, we cannot limit ourselves to the consideration of discrimina‐
tive models, regardless of whether they map observations to actions to or labels for
detected objects. Ultimately, it is necessary to state the task of vision as a task of recon‐
struction of a latent description of a scene within a trainable generative model.

Unfortunately, inference over generative models is computationally demanding not
only in universal induction, but also in more specific cases (inference can be inefficient
even in a very limited case of graphical models), so they are also not sufficient.

We consider a discriminative model as a result of specialization of a general inference
procedure in projection onto a certain generative model [5]. So, the properties of models
of both types are understandable. In generative models, the inference process is separated
from the model itself, and the models can be flexibly changed. Discriminative models
can be viewed as efficient, but narrow inference procedures over certain generative
models. Any changes to the generative model (albeit not presented explicitly) will affect
this specialized inference procedure in a non-trivial way. Discriminative models are like
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reflexes, which are developed to solve narrow tasks with maximum efficiency, but which
are badly applicable outside their scope.

But shouldn’t a developed vision system processing huge volumes of information
normally act as a specialized discriminative model which maps observations xt into their
latent code zt? Seemingly, it should. Of course, AGI should be able to learn to recognize
new classes of objects. However, natural images contain typical regularities, for the
extraction of which a discriminative model can be trained once.

The practice of using deep convolutional neural networks (DCNNs) shows that
networks trained discriminatively on large databases such as ImageNet can be success‐
fully used when solving more specialized recognition tasks. However, in order to get
really good results, fine-tuning of pre-trained networks is required. This process affects
the upper level features, while the lowest levels remain mostly unchanged.

In the human visual system, there are also specialized discriminative models, e.g.,
for the face analysis. It is difficult to say whether new discriminative models are formed
for the analysis of specific images (e.g. tomograms), but even if this does not happen,
and analysis of such images by our visual system remains suboptimal, this restriction is
not necessary to reproduce in AGI. Thus, the higher the level in the discriminative vision
subsystem, the more extendable it should be.

If there is no need to modify lower levels of the discriminative model, should the
generative image model go down to the pixel level? Humans see images of scenes. These
are not the images registered by the retina, but the reconstructed images. Indeed, we see
not the pixel brightness, but the estimates of the reflective characteristics of the points
on physical surfaces (as demonstrated by a number of visual “illusions”).

If the generative model ended its work at the level of some convolutional features,
then we would not see, e.g., hot pixels on monitors. On the other hand, when responding
to sudden and rapid events, humans can perform adequate actions before understanding
what they react to. This is similar to a quick inference by discriminative models
processing images from pixels to scene descriptions. Thus, both generative and discrim‐
inative models work at all levels of perception.

However, it should be noted that the discriminative model Q(z|x) is constructed as a
variational approximation to the posterior distribution specified by the generative model
with fixed priors P(z): P(z|x) = P(x|z)P(z)/P(x). But in accordance with (1), probabilities
P(zt) are calculated at each time step using predictions μ(zt|zt–1, at). Indeed, human vision
system intensively uses such predictions to compensate for eye and body movements,
to recognize objects in known dark rooms, etc.

Thus, the bottom-up processing of images by the discriminative model can only
produce hypotheses with high likelihood (i.e. efficiently sample zt with high ο(xt|zt)),
while the generative model can propagate prior expectations μ(zt|zt–1, at) top-down.
Possibly, adaptive resonance [6] unites these processes into one procedure of iterative
search for optimal zt accounting both for the likelihood and expectations.

Thus, although the task of vision consists in inferring a latent description within the
trainable generative model, a solution of this problem requires the construction of a
system of discriminative models, both general purpose and specialized, with possible
interaction with the generative model.

188 A. Potapov et al.



Learning
A generative model ο(xt|zt) samples an image of the scene from its description. This
description is multi-level – it includes both a list of objects, and information about visible
surfaces, their reflectivity maps, reconstructed sources of illumination, etc. This can be
treated as a 3D rendering engine with a library of objects, textures, etc.

Obviously, the models of new objects must be constantly learned. More difficult is
the question regarding the scene rendering model. Should the AGI visual system learn
the laws of light propagation, reflection, dispersion and refraction from scratch? The
dimensionality of our world and its geometric laws? Indeed, a general intelligence would
have to be able to reconstruct the appropriate environment model for any type of sensor
on its own. On the other hand, there is no reason why we should not alleviate this problem
for AGI systems from practical considerations by explicitly laying down or pre-training
the inevitably necessary elements in the generative model (for example, the 3D repre‐
sentation of scenes and the laws of their projections).

However, our world is too diverse to take into account all the possible aspects of
image formation, especially since AGI will need to perceive images of arbitrary objects
(from atoms to galaxies) formed by special optical devices. In particular, although
modern rendering engines can generate photorealistic images, they are not capable of
generating any images that can be found in reality.

Thus, the generative image model ο(xt|zt) should be trainable, but the degree of this
trainability and the content of priors are the questions for deeper discussion.

Apparently, the environment model μ should be learned mostly from scratch
(although some general priors are necessary). This problem belongs to the field of AGI
as such, and goes far beyond the scope of this paper, but we want to emphasize that
arbitrary changes in μ can cause arbitrary changes in the space of latent states zt that
render ο(xt|zt) obsolete. From the point of view of the sensor subsystem design, this space
should be common to all possible environment models, and should be expandable, but
not replaceable. Indeed, the acquaintance with the matter atomic structure does not force
us to rewrite the entire content of our memory in new terms or retrain our vision system
to account for the Maxwell’s equations.

The discriminative vision subsystem must also be trainable at least to recognize new
objects, but it might be necessary to retrain lower levels too (one can imagine an AGI
system that has never before fallen into a snowfall and whose discriminative vision
subsystem is not pre-trained on images obtained under such conditions).

Won’t such learning disrupt the descriptions of previously recognized objects? To
avoid this, the embedding space of the older objects should remain unchanged. Fortu‐
nately, this problem is solvable with the use of the generative model: descriptions formed
by the discriminative model, should not just be useful for recognition or decision-
making, but they should allow the generative model to reconstruct initial images.

Memory
We live in a very large environment, and instant observations xt contain not too much
information about its partial state zt known to an agent. Thus, density ο(xt|zt) as a function
of zt given xt will be very wide, and it is useless to require the discriminative subsystem
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to estimate it. It is natural to make estimations only for those hidden variables,
information about which is contained in xt (i.e. the content of the current scene).

However, the estimation of probabilities even of relevant hidden variables is prob‐
lematic for the purely discriminative model. In particular, we expect zt to contain some
form of 3D reconstruction of a current scene. In practice, the task of simultaneous local‐
ization and mapping (SLAM) is considered, in which 3D coordinates of image points
are not estimated by bottom-up image processing solely, but by matching these points
with the earlier reconstructed map, that results in the map update also. Thus, the esti‐
mation of the visible part of zt should intensively use zt–1, i.e. both read and update the
memory. The solution of this task greatly depends on the memory organization (how
the map is represented in it, to what extent this representation is trainable, and so on),
that goes far beyond the vision problem only.

Nevertheless, the processing of stand-alone still images should also be supported
(humans can perceive photos). Thus, some part of development of the vision system can
be carried out in isolation from the rest of the AGI system. However, we should expect
such vision system to learn not 3D scene reconstruction and separate objects, but only
lower-level texture and contour-based 2D segmentation.

The vision is connected in a non-trivial way with the semantic vision also, which
contains information about objects and their relations. The part-whole and is-a relations
are used by the vision system and are partially formed with its help. The scene description
can go down to the finest pixel-size details like specks of dust hanging in the air or grains
of sand composing a texture.

Apparently, existing discriminative models are not that detailed. If they recognize a
face, then not as a hierarchy of objects starting with individual hairs and wrinkles, but
via features integrally describing square fragments of growing sizes regularly covering
the image area (which makes it difficult to assign some semantics to such features even
in the context of recognized larger objects).

Although specialized discriminative models can be trained for recognizing small
objects of high importance, it seems that generative models should typically participate
in the construction of the detailed scene description. These are the generative models,
which “know” the structure of objects, and try to fit the parameters of this structure to
observations. Indeed, humans usually are not conscious of all scene details, if they don’t
pay special attention to them (i.e. inference over generative models is controlled by
general cognitive functions).

In fact, the generative model of images also does not need to operate with concepts
such as each individual hair on the head or a speck of dust. Informationally, they are of
little importance, and the generative model can consider their deviation from the back‐
ground as noise. In general, generative and discriminative models can share all levels
of the representation, so that the generative model will “draw” the image using “brushes”
– the transposed filter kernels of the discriminative model.

Thus, in general, one should not expect to extract too many semantic categories as
a result of the analysis of individual images. At least, video sequences with a varying
point of view and with the (dis)appearance of objects should be analyzed in order to
separate the concept of objects from their immediate sensory image. In addition, some
usual object classes may be due to other sensory modalities or pragmatic criteria (it can
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even be argued that most categories are separated based on the ability to manipulate the
relevant objects; for example, the notion of chair or cup is determined not so much by
their visual features, but by their usage). Nevertheless, the trained visual system in an
autonomous mode should be able to extract significant visual categories. We just should
not demand the extraction of exactly the categories that we use. In general, however, it
should be borne in mind that the boundary between the generative model of the envi‐
ronment for which the entire intelligence is responsible and the generative model of
images turns out to be rather vague.

3 Frameworks

Discriminative Models
DCNNs show outstanding results in image recognition. Are these networks sufficient to
implement discriminative models for AGI vision?

First of all, the task of vision for AGI is much broader. What is needed is not just to
recognize an object by its image, but to construct a scene description including all the
objects with their shapes, poses, reflectance maps, etc. DCNNs are used also for the
object detection, 3D reconstruction and semantic segmentation, but the results are not
so great here. Neural solutions for the SLAM problem are also being developed (e.g. [7]),
but their architectures are far from purely discriminative DCNNs.

Thus, either discriminative DCNNs should be used to construct some intermediate
representation, on the top of which some other models (neural or not) will be built, or
the whole formalism should be modified. “Object-oriented deep learning” [8] can be
mentioned as one example of such modification. While it is difficult to say how effective
can such extensions be, they look attractive from the point of view of uniting discrimi‐
native models with symbolic generative models and cognitive architectures.

Secondly, as noted, applied DCNNs are trained on the labeled data. Of course, pre-
trained models can be used to build AGI, but training of new models will inevitably be
required. In this case, manually labeled data will be absent, and the discriminative model
will be taught on the basis of or in conjunction with the generative model (that is, the
learning signal will be weaker than for discriminative training). In this connection, the
efficiency of generalization will be critical, which is very low in classical DCNNs: they
are not capable of generalizing beyond the area of the training sample, but only inter‐
polate inside it.

For example, if a DCNN did not see objects of some class rotated in a certain range
of angles, it will not be able to recognize this class for new angles, even if it learned to
recognize other classes for all angles. Does the discriminative model have to be rotation
invariant in the same way as the invariance to shifts is ensured by convolution? It is
possible that with proper implementation this could be practical, but this does not solve
the problem of weak generalization for arbitrary transformations. The source of this
problem is a fixed system of links within the network so that a fragment of the network
that implements some function is always applied to data coming from the same addresses
(neurons). Convolutional networks go beyond such tight connectivity, but they apply
the same network to different addresses in a fixed manner.
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This problem can be approach in different ways, e.g., by introducing dynamic
addressing, as is done in models with external memory [9] or in capsule networks [10].
Unfortunately, capsule networks only partially solve the problem of weak generaliza‐
tion. For example, we conducted the following experiment. We took eight MNIST digits
(excluding 6 and 9), and trained CapsNets on six digits rotated arbitrarily and two digits
(3 and 4) rotated in range [–45o, 45o]. The precision on the training set composed of 3
and 4 rotated within [–45o, 45o] was 99.04% for dynamic routing [10] and 98.27% for
EM-routing [11], while for 180o ± 45o it appeared to be 1.05% and 12.92% correspond‐
ingly. The baseline DCNN model also showed 1.02% precision meaning that it system‐
atically confuses rotated 3 and 4 with other digits, while EM-routing CapsNets recognize
them on a level of random guess.

Thus, more powerful models are still to be developed. Alternatively, the responsi‐
bility for achieving the invariance to arbitrary transformations can be shifted to gener‐
ative models and corresponding inference mechanisms.

For example, if the generative model learned to rotate arbitrary scenes, then the
rotation angle can act as an unknown latent variable, which is not estimated by the
discriminative model. The generative model (e.g. using EM-algorithm) can try to guess
such angle, which lead to a self-consistent solution: the discriminative model produces
such description of the generated rotated scene, which allows the generative model to
render this scene (and the generative model can render the original image from the same
description, but another value of the rotation). This can be considered as the mental
rotation used by humans to recognize objects in unfamiliar perspectives.

Thus, discriminative models should not be necessarily capable of automatic learning
of invariants, but the question whether to expand the existing formal neural models or
not remains open. In turn, the need to extend discriminative architectures, both for
solving wider problems, and for interacting with the generative model, is obvious.

Generative Models
If in the case of discriminative models one can reconcile with their insufficient univer‐
sality in favor of efficiency, then the requirements for the expressiveness of generative
models are much higher. In particular, the generative model should be able (to learn) to
generate images of the same object viewed from different angles.

Consider the following experiment. Let us take a deep convolutional adversarial
autoencoder that receives a non-rotated image from the input, and the result of the
reconstruction is compared with the rotated image, while the correct rotation angle is
supplied as an additional latent feature (sine and cosine of an angle as two neurons). We

Fig. 1. Reconstruction results for different rotation angles (deep convolutional AAE)
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teach the autoencoder to rotate digits from MNIST to all angles, while restricting the
range of angles for 4 and 9. Figure 1 shows the results of reconstruction.

As it can be seen, the autoencoder successfully reconstructs new images of digits
rotating them at known angle (all images of 3 and central part for 4), but it transforms
4 to other digits trying to rotate it to a new angle.

The absolutely same effect takes place even if we try to train the autoencoder to
reconstruct the shifted images. It might seem that convolutional networks should natu‐
rally perform the necessary generalization. Indeed, the transposed convolutional
network can easily reconstruct the digit at any given location. However, the corre‐
sponding pattern in the highest level convolutional feature maps should somehow be
activated. This is what dense layers going from the latent code cannot do. Connections
going to different places in the feature maps are trained independently, so the network
cannot transfer its experience in drawing 4 at one place to draw it at another place, and
it will simply draw the digit with the most similar latent code which it knows how to
draw at this specific place.

Thus, traditional generative neural networks cannot generalize spatial transforma‐
tions independent of their content. Again, the question arises if we should extend the
existing formalisms, and if yes, how specialized for vision should this extension be? For
example, a specialized architecture can be crafted, which has a network for learning
spatial transformations (x′, y′) = f (x, y|w), which are then directly applied to images or
feature maps. Similarly, one can train a network to transform 3D points. Apparently,
this solution will be narrow, although it might be useful to the pragmatic AGI. But for
us, more general solutions are more interesting.

For example, if we add second-order control neurons, which accept transformation
parameters as input and influence the connection weights going from the latent code
neurons to the highest level feature maps of convolutional autoencoder, then such
network can learn to reconstruct arbitrary images independent on their content. We
trained such network on the same data as the autoencoder. Figure 2 shows the results of
reconstruction of both of the previously seen digit with new rotation angles, and recon‐
struction of a new symbol rotated on arbitrary angles. The network has only some prob‐
lems with image corners, since they were always black in the training set, so it couldn’t
learn a mapping for pixels in them. Second-order networks are a general extension of
ANNs, but the specific architecture we used here is rather specialized. Other solutions
to the problem can be proposed, but their efficiency and generality for the AGI vision
are the topics for further investigations.

Fig. 2. Reconstruction results for different rotation angles (2nd-order autoencoder)
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Instead of extending neural networks one can try to use more general and expressive
frameworks for specifying generative models like probabilistic programming. It is rela‐
tively easy to write a probabilistic program serving as a scene generative model.
Unfortunately, the training of such models is computationally problematic, so one has
to impose very strong priors in practice making the solution not too general.

Also, while discriminative models by themselves should not necessarily be capable
of learning clear whole-part relationships, the latent description of a scene within the
generative model should be ultimately expressed in terms of objects and their parts, thus,
corresponding relations should be somehow learned. Existing frameworks neither for
generative nor for discriminative models are powerful enough to do this.

4 Conclusion

The vision system should ultimately construct the scene description and participates in
the reconstruction of the environment model. The generative subsystem guides the
(unsupervised, one-shot, transfer) learning process and accounts for expectations, while
the discriminative subsystem makes perception efficient in typical situations. However,
many details are unclear.

– Should we require the capabilities to learn invariants and extract hierarchical relations
from the discriminative models? If no (which seems biologically plausible), they
should work with tight integration with the generative models, without which they
will be useful only for forming reflective responses to stereotypical stimuli. But this
doesn’t mean that more powerful discriminative models cannot be developed.

– Should generative models be normally involved in image analysis? It seems, yes:
purely discriminative models can be trained to solve not too narrow vision tasks on
super-human level, but the necessity to propagate expectations is rather common.
However, architectures with more emphasis on discriminative models are possible.

– Should the generative subsystem infer such latent variables, which are not estimated
by the discriminative subsystem? It seems, yes, but only occasionally (i.e. to imagine
a rotated object or a person wearing glasses, when recognition fails), since general
inference over generative models is computationally demanding.

– How strong priors should be? This question is really controversial.

If we go down on the level of formalisms and implementations, the number of vague
questions will increase. Should the generative and discriminative models be aligned on
all levels? Should we use traditional neural networks for discriminative models? How
should we extend existing formalisms for generative models? What are acceptable
architectures for vision tasks beyond object recognition? And so on.

In general, we can conclude that existing frameworks and models are far from enough
for implementing the vision system for AGI, especially in the generative part, which
should be capable of rendering the images of scenes with new combination of objects
in new poses. Also, tight integration of generative and discriminative models for efficient
inference should be studied. This enables the consideration of the vision system as a part
of AGI systems.
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Abstract. Image and video retrieval by their semantic content has been an
important and challenging task for years, because it ultimately requires bridging
the symbolic/subsymbolic gap. Recent successes in deep learning enabled
detection of objects belonging to many classes greatly outperforming traditional
computer vision techniques. However, deep learning solutions capable of exe-
cuting retrieval queries are still not available. We propose a hybrid solution
consisting of a deep neural network for object detection and a cognitive
architecture for query execution. Specifically, we use YOLOv2 and OpenCog.
Queries allowing the retrieval of video frames containing objects of specified
classes and specified spatial arrangement are implemented.

Keywords: Semantic vision � Image retrieval � Deep learning
Cognitive architectures

1 Introduction

Bridging symbolic/subsymbolic gap (e.g. [22]) is one of difficult problems in artificial
general intelligence (AGI) and cognitive architectures (CAs) in particular. This prob-
lem has many manifestations in practical tasks. One such task is the semantic image
retrieval, which involves both subsymbolic processing of images or videos, and queries
defined on a symbolic level describing the semantic content of images to be retrieved.
This task is also practically important. One might want to find specific images in a
photo collection or a video frame with certain content.

Due to its practical importance, semantic image retrieval has been intensively
studied within traditional AI areas. However, conventional computer vision methods
were able to recognize not too many classes of objects simultaneously. Thus, many
efforts were directed towards bridging the “semantic gap” between low-level image
features and high-level concepts in terms of which queries are specified (e.g. [1–3]).
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Apparently, the semantic gap in computer vision is a particular manifestation of the
symbolic/subsymbolic gap.

Deep convolutional neural networks (DCNN) opened the possibility to detect and
recognize objects belonging to hundreds and even thousands of different classes.
Moreover, pre-trained DNNs solving this task are readily available, for example,
YOLOv2 [4] (You Only Look Once), Deformable R-FCN [5] (Region-based Fully
Convolutional Networks), SSD [17] (Single Shot multibox Detector).

However, when we want not just to detect separate objects on images, but to find
images with a specified content, modern DCNNs don’t provide out-of-the-box solu-
tions (unless being used to perform deep hashing for retrieving images semantically
similar to a query image, e.g. [6, 7]). Although there are some successes in purely
DCNN-based image understanding including image caption generation [8] and visual
question answering [9], such systems don’t directly solve the image retrieval task, they
are difficult to train and are less flexible in comparison with traditional knowledge-
based image understanding systems. Thus, constructing a purely neural system that
learns a mapping between visual and linguistic data is still not too practical now, at
least, for image retrieval. Moreover, a question whether the purely neural-based
approach is optimal for AGI is controversial.

Thus, the most accessible benefit of deep learning in the semantic image retrieval
now is object detection and recognition. However, a hard-coded engine for executing a
limited set of queries based on detected objects is also not useful enough, and usage of
a knowledge-based reasoning is desirable. CAs as modern intelligent systems that
usually support knowledge representation and reasoning are underutilized here.

In this paper, we investigate if it is possible to efficiently use CAs, namely,
OpenCog, in combination with DCNNs to construct a semantic image retrieval system.
Although we report preliminary results achieved without tight integration of the
symbolic and subsymbolic components, these results show that even a loose integration
provides practical benefits for semantic image retrieval, which is a good testbed for
studying the problem of bridging the symbolic/subsymbolic gap.

2 Previous Works

Semantic Image Retrieval
A common approach to retrieve images with semantic structure through the learning is
to train deep models on images with joint labels of several classes which form complex
concepts and learn a relationship model that represents the expected spatial relation-
ships among the relevant objects for retrieval of instances of visual situations [10]. For
example, if we have labels for person and bicycle with corresponding relation we can
train model to a new concept – cyclist. However, such procedure requires exhaustive
labeling (including forming of negative examples).

Also there are a plenty of traditional methods such as [11, 12] that use low-level
hand-crafted features for image representation along with relatively simple text-
clustering techniques. Needless to say that such limited representations lead to poor
performance when applied to wide range of image retrieval problems.
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Knowledge-Based System for Image Retrieval
Another approach to image retrieval task is the one based on knowledge manipulating
systems. These techniques mostly shift focus from the quality of image representation
to consistent work with complex structure of semantic relations between concepts. Also
such approach provides useful tools for construction of languages for visual
programming.

Some of the methods [13] use knowledge parsers along with popular knowledge
datasets such as ConceptNet or WordNet to improve retrieval accuracy. Some others
[18] use conditional random field models defined over a scene graph representing the
query for semantic image retrieval. Here, the scene graph captures the detailed
semantics of visual scenes by explicitly modeling objects, attributes of objects, and
relationships between objects and assumes existence of rich concept graphs which are
usually immutable. So it makes such methods non-flexible and hardly extensible. Some
of the methods [14] use self-organizing maps (SOM) for concerted high-level semantic
and low-level visual features analysis. Obviously these methods have limitations
caused by expressive power of SOM.

Apparently, both expressive image representations and structured knowledge are
needed for semantic image retrieval.

3 Proposed System

Object Detector
State-of-the-art DCNN object detectors can be divided into two groups: region
proposal-based methods and proposal-free methods. Proposal-based methods like R-
FCN [5, 20] are two-stage detectors that start generating a set of candidate bounding
boxes (BBs), and then focus on processing each candidate. Proposal-free methods like
YOLO [4, 19] are single-stage detectors that consider detection a regression problem,
use a single ConvNet and run once on the entire image.

We considered two deep convolutional neural networks, to detect and recognize
objects: YOLOv2 [4, 19] which offers a competitive speed and Deformable R-FCN [5]
which offers a good trade-off between detection efficiency and accuracy. Both networks
were trained on the same MS COCO [15] dataset with 80 objects category.

The detector is one of the key components of the system, so it was important to
compare the performance of both networks with our data sets. For this purpose, a video
was mounted and synchronized to show the output frames from YOLO and Deform-
able R-FCN.

As a result of the comparison, we made the following observations (see Fig. 1):

• Deformable R-FCN network marks out the same detected object at once with many
frames (basically same class). See Fig. 1(a).

• In general, the Deformable R-FCN classification has fewer errors than YOLO, at the
cost of fewer detected objects. See Fig. 1(b).

• The YOLO network detects more different objects that are interesting for the
semantic video frame retrieval than the Deformable R-FCN; these objects can be a
part of the interior, an element of human clothing, etc. See Fig. 1(c).
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Additionally, the detection threshold of YOLO can be changed to display objects
detected with a higher (lower) confidence by increasing (decreasing) the parameter
“threshold”, but the number of interesting objects will be affected accordingly. In
general, the YOLO network is more preferable for extracting data about objects on
video. However, in some cases, this network cannot be used because of the large
number of classification errors.

Implementation of Queries in OpenCog
OpenCog is a cognitive architecture built on the top of a hypergraph-based knowledge
representation and a powerful inference engine. The container for these hypergraphs is
called AtomSpace. We will use just a small part of its functionality, addressing the
interested reader to the detailed description referenced in [16]. For our current pur-
poses, it is enough to treat its knowledge representation as an ordinary graph (except
Bind link used in the inference), which is filled with information about detected
bounding boxes including their coordinates and labels.

a)

b) c)

Fig. 1. Sample of Deformable R-FCN detection; (b, c): the upper image corresponds to
Deformable R-FCN, the lower image corresponds to YOLO
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Figure 2 shows an example of a fragment of this graph describing two bounding
boxes belonging to one frame.

One way to perform the inference in OpenCog is through “Pattern Matching”, i.e.
matching a template (with variable nodes) sub-graph (which is also stored in
AtomSpace) against the rest of AtomSpace. The matching result can also be placed into
AtomSpace via the activation of a special type of links, e.g. Bind link.

Consider the Bind link shown in a slightly simplified form in Fig. 3.

Left part of this link can be matched against a sub-graph of the graph presented in
Fig. 2. Thus, by activating this link one can retrieve a sub-graph containing the List
link uniting the BB#1-1, BB#1-2 and Frame#1 nodes.
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Fig. 2. Description of two extracted bounded boxes in one frame as a part of AtomSpace

Table
Concept

Vase
Concept

In
he

ri
t.

In
he

ri
t.

Inherit. Inherit.

And $BB1
Variable

$Frame
Variable

$BB2
Variable

List

Bind

$Frame
Variable

$BB2
Variable

$BB1
Variable

Fig. 3. Example of Bind link for retrieving a sub-graph corresponding to two specific objects
presented in one frame
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Thus, such Bind link can be used to retrieve frames containing required objects. We
use Python API to AtomSpace to synthesize Bind links for specified objects, although
this could be done inside AtomSpace (e.g. by Bind links over Bind links).

More types of queries can be implemented using coordinates of bounding boxes
and additional types of links. Coordinates of bounding boxes can be bound with
variables in the same way as it was done above for BB nodes. These coordinates can be
compared using GreaterThan links, and one can use And link to require several con-
ditions to be hold simultaneously. For example, the following code in Atomese (a
programming language to describe the content of AtomSpace in the text form) specifies
a template graph (similar to those shown in the previous figures) that can be used to
find bounding boxes in the same frame, one of which is left to another one.

To utilize modularity, we defined a number of Bind links, which insert intermediate
inference results into AtomSpace. For example, the code shown above was used in a
Bind link with the following resultant:
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This Atomese code means that the predicate “RightTo” evaluates to true for a pair
of nodes bound to the Variable nodes “$BB1” and “$BB2”. It is not necessary to
represent the resultant as a predicate. What is needed is to create a sub-graph which
contains the necessary information and which can further be pattern-matched. Never-
theless, predicates seem quite natural here.

Similarly, one can define such predicates, which will be true for intersecting BBs,
or pairs of BBs, one of which is inside another one, or on the top of it, etc. Thus, one
can implement such queries as “a vase on a table” or “a painting with a person”.

It should be noted that OpenCog supports non-binary truth values, although we
don’t utilize them in our current implementation, but they should be useful to describe
soft versions of spatial relations. Such truth values can also be combined with confi-
dence values assigned to labels by the detector.

With such intermediate conclusions, one-step pattern matching will not be able to
find sub-graphs corresponding to queries of interest, e.g. “a vase on a table”, without
invoking Bind links calculating truth values of helper predicates. OpenCog has to main
mechanisms for chaining inference steps, namely, the forward chaining and the
backward chaining. The forward chaining starts with the available data and iteratively
applies Bind links to fill AtomSpace with resultants. In our task, the backward chaining
is more suitable. It starts with a sub-graph (query) of interest and goes backward to find
Bind links which can help to infer this sub-graph.

4 Experiments

We conducted experiments with some video sequences to validate our approach and
test the constructed system. Different queries for retrieving video frames containing
specified objects in certain relative locations were executed. Such queries as ‘a person
inside a car’ or ‘a person with a bag’ were successfully tested. Figure 4 shows some
examples of successfully retrieved frames from different videos.

The following queries were used: ‘a person inside a car’, ‘a person left to a car’, ‘a
person with a tie’, ‘a person with a backpack’, and the corresponding bounding boxes
are shown in Fig. 4. Similar queries can be executed for arbitrary pairs of objects
recognizable by the DCNN. Queries involving more than two objects can also be
added, but it has not been done yet.

Of course, our image retrieval system can fail in some cases. These failures can be
due to incorrect object recognition or by imprecise or not supposed sizes and positions
of BBs. Figure 5 shows an example of incorrectly retrieved video frame, because of the
recognition error. Figure 6 shows two examples of incorrectly constructed bounding
boxes retrieved with the use of unnatural queries. Figure 7 shows another example, for
which one can argue that the bounding boxes are not that bad, but ‘vase’ BB appears to
be inside ‘flowers’ BB. As a result, such frames will not be retrieved by a normal query.
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Fig. 4. Examples of successfully retrieved video frames

Fig. 5. Incorrect retrieval of ‘a person with a backpack’

Fig. 6. Examples of video frames with incorrect bounding boxes
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5 Conclusion

In this paper, we have proposed an approach to semantic image retrieval based on
integration of DCNNs for object detection and cognitive architectures for semantic
analysis and query execution to utilize the power of DNN-based image analysis and
flexibility and compositionality of knowledge representation and reasoning in cognitive
architectures.

We developed a first version of such system based on YOLOv2 network and
OpenCog. We implemented functionality in Atomese language to support queries for
retrieving video frames containing specified objects in specified relative spatial
positions.

Our results show that this approach is quite practical, and it can be considerably
extended in future:

1. One can utilize imprecise probabilities supported by OpenCog to perform proba-
bilistic querying.

2. Language understanding capabilities of OpenCog can be used to create natural
language interface for specifying queries.

3. Richer set of queries can be implemented, in particular, to describe events (e.g.
approaching of one object to another).

4. Pattern Miner module of OpenCog can be used to automatically create new useful
elements of knowledge representation. For example, we may want to recognize
visual analogies taking advantage of the “conceptual slippage” in the sense of
Hofstadter [21] in which roles defining a situation can be fluidly filled by concepts
semantically related to the query and the concepts used in creating the analogies can
be considered realization of statistically emergent active symbols formed in the
AtomSpace.

5. Detection of possibly incorrectly detected objects or wrong bounding boxes for
them using mined patterns in relations between BBs.

6. Events can be handled either on the cognitive level, or with the use of DNNs, or
both.

Fig. 7. Example of bounding boxes with not supposed arrangement
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Abstract. Provided significant future progress in artificial intelligence
and computing, it may ultimately be possible to create multiple Artificial
General Intelligences (AGIs), and possibly entire societies living within
simulated environments. In that case, it should be possible to improve
the problem solving capabilities of the system by increasing the speed of
the simulation. If a minimal simulation with sufficient capabilities is cre-
ated, it might manage to increase its own speed by accelerating progress
in science and technology, in a way similar to the Technological Singular-
ity. This may ultimately lead to large simulated civilizations unfolding
at extreme temporal speedups, achieving what from the outside would
look like a Temporal Singularity. Here we discuss the feasibility of the
minimal simulation and the potential advantages, dangers, and connec-
tion to the Fermi paradox of the Temporal Singularity. The medium-term
importance of the topic derives from the amount of computational power
required to start the process, which could be available within the next
decades, making the Temporal Singularity theoretically possible before
the end of the century.

Keywords: Temporal Singularity · Simulated civilization
Multi-agent systems · Simulated society · Fermi paradox
Artificial life · Technological Singularity · Artificial general intelligence
Deep reinforcement learning · Simulation hypothesis
Post-biological civilization

1 The Temporal Singularity

It seems possible, if not likely, that artificial agents with general intelligence
(AGI) will be built in the future [21,25]. It also seems likely that such agents
could be further improved to achieve super-human degrees of intelligence (ASI).
A simple way to increase the capabilities of an agent is to execute the same algo-
rithms on a faster (super-)computer, so to provide it with more time to think and
solve problems, thus resulting in a shorter solving time in the external world. In
practice, a simulated environment may be required for the agent to work in, as
c© Springer Nature Switzerland AG 2018
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the ‘slow’ external world would be a limitation to the performance the agent even
at moderate speedups. It is interesting to note that this approach is already reg-
ularly used, for example in training deep reinforcement learning (DRL) agents,
that is usually performed in simulated environments whose execution speed is
limited only by the available computing power [4,8,19]. For example, DRL agents
learning to play Atari games can experience thousands of game frames per sec-
ond even on a regular desktop computer, compared to human players that play
them at 15–60 frames per second.

Another approach to improve the effective capabilities of the system without
any modification to its algorithms is to simulate multiple agents each with its
specific differences, so that they can come up with different ways of solving
the problem individually or cooperatively by exploiting dynamics of collective
intelligence. An interesting outcome of simulations of this type is the potential
to simulate the unfolding of entire “civilizations”, possibly pursuing complex
sets of goals like general progress in science and technology. The potential of the
approach relies not only on the possibly advanced intelligence level of the agents
(ASI), but also on the temporal speedups that could be achieved by increasing
the computing resources available for the simulation. Throughout this paper
intelligent agents and civilizations will be referred to as ‘simulated’ only to mean
that they experience a simulated environment in contrast to the ‘real’ external
world, but there is no reason not to consider them as real as any intelligent agent
outside the simulation.

Here we suggest that if it will be possible to create at least a limited group
of AGIs in a simulation unfolding faster than the external time, then such sim-
ulation may be able to accelerate the rate of progress in science and technology,
possibly by continually self-improving its core technologies such as its intelligence
algorithms and its computing systems in a manner similar to the Technological
Singularity [9,14,18,21,30], and thus potentially achieve a runaway increase in
its capabilities. Specifically, the rate of progress may be so high that in a very
short time the simulations could progress to producing entire civilizations span-
ning thousands or millions of years or even more in an arbitrarily short time
interval elapsed in the external world, achieving what from the outside would
be a Temporal Singularity. In particular the Temporal Singularity is defined
as the moment in time where a minimal simulation capable of beginning the
runaway exponential self-improvement is started. We will discuss the feasibility
of the minimal simulation in Sect. 2.

It is difficult to imagine what such a quick progress would look like, as even
a single century of progress at the present rate is challenging to forecast. Even
more, we can only wonder what the world would become after the Temporal Sin-
gularity has allowed the unfolding of millions or billions of years of an advanced
civilization [18], during which potentially any questions our species may ever ask
could have been answered.

This result is compatible with the idea of the Technological Singularity, of
which the Temporal Singularity can represent a component or a way to achieve
it. Contrary to the main definitions of the Technological Singularity, however,
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the Temporal Singularity would not necessarily require a runaway increase in the
cognitive capabilities of the artificial agents, but rather only a runaway increase
in the temporal speedups of the simulations. We should note that speeding up
the execution of AGIs has been already suggested in this context, for example
by Vernor Vinge, who discusses an AI whose ‘mind clock’ is significantly faster
than its creator and the problem of AI boxing [30], or by Solomonoff in the
context of an exponential increase in the number of simulated agents [28]. Most
notably Marcus Hutter [18] explored what the Technological Singularity would
look like for both the outside and the inside of a virtual software society under-
going it, also discussing the difference between speeding up the simulation time
and increasing the intelligence of the agents. However, the focus of the discus-
sion was put on the extreme progress and changes achieved in the traditional
Technological Singularity, rather than on the implications of a drastic increase
in the temporal speedups of the simulations and its potential implications on
the Fermi Paradox.

The idea of simulated civilizations is also not novel, although it has been
generally applied to us being in the simulation ourselves, rather than focus-
ing directly on the benefits, limits and implications of us producing it, and in
particular on the possibility to speed up the elapsing of the simulated time.
Philosophers have always wondered about the nature of reality and the possi-
bility of it being an illusion. In recent times, the argument has been especially
developed by Hans Moravec [23] and Nick Bostrom [5] in the explicit context
of computer simulations. A more closely related investigation was proposed by
Vidal, who explored the possibility that scientific simulations will improve signif-
icantly in the future and finally result in simulating an entire universe, in order
to better probe and understand our own universe and the processes of physical,
biological and cultural evolution [29]. However, most of the discussions such as
Vidal’s and Bostrom’s only focus on a very special type of simulations restricted
to detailed versions of our physical universe and our same society and life as
we know it, which although intriguing from a scientific point of view, constitute
only a tiny fraction of the potential uses of time-accelerated simulations, and
possibly an inefficient use of the computing resources. For example, as we dis-
cuss in Sect. 2, it may be that fooling the simulated agents to prevent them from
discovering that they belong to a simulation may not be necessary, which would
in turn lower the computational requirements for the simulated environment. In
any case, whether our own world is itself simulated or not does not reduce the
potential advantages of running our own time-accelerated simulations.

Section 2 will next overview the feasibility and broad computational require-
ments for simulations capable of achieving and sustaining the Temporal Singular-
ity, while Sect. 3 will explore some of the advantages and risks of such simulations,
and the implications of the Temporal Singularity for the Fermi paradox.

2 Feasibility

The Minimal Simulation. It is difficult to estimate what are the mini-
mal requirements for a simulation capable of starting the runaway exponential
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process of self-improvement and time-acceleration that characterizes the Tem-
poral Singularity. In general, we should expect the minimal simulation to pro-
vide a problem-solving capability sufficient to compete with teams of human
experts, either by providing significant temporal speedups, by using more capa-
ble AGIs/ASIs or by creating a larger number of individuals. Even small advan-
tages, compared to traditional research and development, may be sufficient to
start the process by exploiting the compound nature of progress [21,28]. The
minimal requirements could thus be reasonably low (see the discussion on the
computational requirements below), especially after achieving human-level AGI,
which itself however may not be required, as a super-human narrow intelligence
in specific fields like improving the computing technology may be sufficient.

AGI. Still, while we could imagine some limited type of “civilization” composed
by agents with narrow intelligence (ANI), the development of artificial general
intelligence (AGI) is likely to be a core requirement for enabling complex artificial
civilizations. It is not known whether AGI itself will ever be possible, though
there do not seem to be strong reasons for it to be not. Unfortunately, the
field is known to have a poor track record of predictions about when such a
system wil be developed. Current predictions also vary greatly depending on
the expected requirements for specific types of implementations, with average
agreement placed around 2040 [6,25] and possibly as early as 2029 [2,21], and a
high confidence in any case that it may happen before the end of the century. We
could also wonder whether the artificial agents could instantiate consciousness,
but it may not be a strict requirement in this context. On the other hand, it
may turn out that consciousness is required, for example for the establishment
and maintenance of societies and complex civilizations (e.g., for consciousness
and sociality [15]).

Fooling the Agents. The requirements for the simulations discussed here also
change significantly depending on whether the simulated agents are allowed to
know they belong to a simulation or whether they need to be fooled. In particular,
fooling the agents may be challenging especially if the aim of the simulations is
to produce progress in science and technology that apply to the external world,
as a large degree of knowledge of it would be required. In the limit, a perfect
simulation of our physical world may be required for perfect fooling, which would
however limit the simulation (for an analysis of the requirements, see for example
[3]). It is however possible that fooling is not necessary, or that perfect fooling
can be achieved with simpler simulations. If fooling is not used, the potential
problems that may arise and their solutions would fall within the traditional
problem of AI boxing and containment (e.g., [1,6]).

Computational Requirements. The computational requirements for the sim-
ulations described here can be assessed by separately estimating the resources
required for the agents and for the simulated environment. It is difficult to pre-
dict the requirements for a single AGI agent, but estimates have been suggested
for the calculations per second required for a real-time functional simulation
of the human brain. Such estimates range wildly from tens of Teraflops [24]
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(1013 FLOPS) to Exaflops and more (1018 to 1025 FLOPS [26]). However, the
highest estimates have been mostly suggested for detailed whole brain emulation
approaches, which are unlikely to be the most computationally efficient approach
to AGI, and may thus constitute an upper-bound on the actual requirements for
computer-optimized implementations of the algorithms. A common intermediate
estimate is for the required power to be of the order of tens of Petaflops (1016

FLOPS) [21], comparable to the performance of present day supercomputers.
As for the computational requirements for the simulated environment, mul-

tiple answers may be correct. Even today we are performing time-accelerated
simulations in limited conditions, for example to train deep reinforcement learn-
ing agents, so there seems to be no strict lower bound on the required speed
of the system. However, it is likely that more complex environments will be
required in order to support AGI agents performing complex tasks, especially to
allow progress in science and technology. While a certain degree of physically-
detailed simulation of the real world may be required, a perfect simulation of the
real world may not. Indeed, even present-day engineering software allow for part
of the development in engineering to be performed in simulation (for example,
using the COMSOL Multiphysics simulation software [10]).

Still, a perfect simulation may be required in case fooling of the agents was
desired. For example, even if an imperfect simulation was sufficient to fool the
agents, knowledge of the external world will be required to achieve progress in
science and engineering, which could allow the agents to ultimately discover
the truth. Nonetheless, while a perfect simulation would be computationally
prohibitive with our current technology, we might be able to achieve it in the
future [3]. In any case, it seems unlikely that a perfect simulation will be required
for the minimal simulation and thus to start the Temporal Singularity.

When. If we assume that the agents require a computational power on the
order of the average current estimates for the computational power of the human
brain, and a linear scaling of the total requirements with the number of agents
and temporal speedup, with negligible environment overhead, then the compu-
tational requirements for a minimal simulation of tens to hundreds of agents at
faster than real-time may be as low as 1018 to 1021 FLOPS (e.g., 1016 ·100 → 100
agents in real-time or 10 agents at 10× faster than real-time). If the Moore’s law
continues to hold, the world’s most powerful supercomputer could achieve the
required speed between the years 2020–2040, or alternatively individual home
workstations between the years 2055–2075. Specialized hardware may however be
developed to provide faster increases in the computational power in the future,
as it has happened for example in the specific case of deep learning with the
development of specialized accelerators like the Tensor Processing Unit (TPU)
[20]. It is also interesting that these estimates are similar to current estimates
for the development of AGI, which could be an important requirement for the
simulations.

Allocation of the Resources. We may further wonder how the available
computing resources could be allocated between different processes to achieve
the highest problem-solving capabilities of the system. For example, increased
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computation could be traded off between creating a larger number of agents,
increasing the speed of the simulation and thus its temporal speedup compared
to the external world, increasing the cognitive capabilities of the individual
agents or simulating more complex environments. It may thus be required for the
resources to be re-allocated dynamically depending on the state of technology.

Potential Limitations. Even if the minimal simulation would be possible, there
may be other limitations that could prevent or limit the Temporal Singularity.
For example, it may be that temporal acceleration will not be the most efficient
allocation of the computing resources, so that creating a larger number of agents
or stronger ASIs will produce the best results. However, the fact that artificial
agents working at faster than real-time are already being used and the potential
advantages of simulating societies and civilizations suggest that this is unlikely to
be the case. Temporal acceleration may also be helpful to speed up the solution
of time-critical problems given a current level of intelligence of the available
agents, in case improving the cognitive capabilities of the agent would prove
difficult and more time-consuming. Finally, increasing the number of simulated
agents may ultimately be limited by the intrinsic problem solving speed of each
agent, which could be then trivially improved with temporal acceleration.

Another potential limit is that perfect simulations may be required to enable
practical progress in science and technology. However, even present day research
involves significant portions of time for theoretical work and simulations, so there
seems to be a margin of speedup that can be achieved. Moreover, even if the
first environments limited the potential to advance science and technology, it
would be possible to iterate between time-accelerated work performed inside the
simulation and prototyping, testing, and conducting experimental work in the
external world, whose results and data could be fed back into the simulation to
start the next cycle. Also, some type of theoretical work like in mathematics,
computer science, philosophy and others may not need frequent access to data
from the external world, suggesting that it should still be possible to benefit
greatly from the temporal speedups of these simulations. In any case, interaction
with the external world will always be required for maintenance and upgrades, to
manufacture the newly developed technologies, and to acquire experimental data
[18]. This dependency may ultimately limit the maximum speedups that can be
achieved or their rate of growth. Still, even relatively low effective speedups could
be highly beneficial. Further, the processes performed in the external world may
be optimized inside the simulations to avoid wasting external time, for example
by providing efficient instructions distributed among a large number of external
world agents, although this may involve risks in the context of AI boxing [1,6].

3 Implications

Advantages. Similar to the Technological Singularity, the Temporal Singularity
would produce a runaway increase the rate of growth of scientific and technolog-
ical progress. In addition, however, it would also allow the study of the potential
future of advanced intelligent civilizations and societal structures that will be
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required to be stable for extremely long intervals of time, which could be useful
for scientific purposes and may provide invaluable information, thus impacting
our society and guiding the future of our own civilization in a safe and beneficial
way. In the extreme, we might be able to simulate civilizations with character-
istics similar to our own, experimenting new societal designs and conditions.
Finally, due to the potential for significant technological development, there is a
clear competitive advantage for the first entity that will achieve a minimal sim-
ulation, even at moderate temporal speedups, whether it would be governments
or private companies.

Dangers. In general, the Temporal Singularity shares all the potential dangers
related to AGI/ASI and the Technological Singularity (see for example [6]), and
in particular to the problem AI boxing [1]. However, the problems may be worse
in this context, as even moderate temporal speedups would make it difficult to
track the events inside the simulation. Finally, the same extreme progress in
technology in a short span of time also constitutes a potential danger, as our
society may not be capable of metabolizing it in the available time. For example,
we can try to imagine what could have happened if we abruptly produced not
just the technology, but a full stockpile of thermonuclear weapons during the
Middle Ages.

Fermi Paradox. The Fermi Paradox is the contradiction between the apparent
high likelihood of the existence of other intelligent civilizations in our galaxy or
in the universe and the current lack of evidence of any. The Temporal Singularity
leads to interesting implications in this context. First, if intelligent civilizations
would achieve a degree of technology similar to our present one, and in particular
develop computing systems, it may turn out to be almost inevitable that at some
point they would produce a Temporal Singularity. Time-accelerated simulations
could thus be part of some or all the possible intelligent civilizations, providing
advantages like achieving a practical ‘subjective immortality’ within the simu-
lated environments, either for the individual agents or for their civilization as
a whole, and subjectively delaying its demise due to the heat death of the uni-
verse or earlier extinction events. This can apply to either the external agents
‘moving into’ the simulation, or for the simulated agents themselves as ‘mind
children’ progeny, as put by Hans Moravec [22], which could then possibly imply
an abundance of post-biological civilizations in the universe [11,12]. An inter-
esting possible outcome of this process is that time in the real world would be
an important resource, and the speed of space colonization and communication,
that is already considered slow, would become unbearable. Future civilizations
may then prefer to avoid large-scale galactic colonization.

It is interesting to note that the Temporal Singularity shares features with
the transcension hypothesis [27] in the inevitable search for more energy and
computing power, but ultimately produces opposite predictions, as in the tran-
scension hypothesis advanced civilizations would try to slow down their subjec-
tive time by approaching black holes, rather than to accelerate it, in order to
forward time travel to a time where all civilizations may ultimately meet and
merge, and to optimize the acquisition of information.
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On a negative side, the potential dangers that arise from this technology may
constitute a ‘Great Filter’ [17] that very few civilizations survive, thus explaining
the Fermi paradox. However, time-accelerated simulations may also be used to
escape traditional Great Filters by quickly providing us with solutions in time-
critical situations, including for example impacts of asteroids detected with short
notice or the Berserker scenario, in which an advanced intelligent civilization may
attack any newly emerging civilization.

Finally, a prediction of the Temporal Singularity in the context of the Fermi
paradox can be made in the rapid increase in the power used by a civilization,
tracking the super-exponential progress in technology, which could progress from
using the resources of its host planet to those of its entire solar system within
decades rather than millennia. Further, depending on the physical limits of tech-
nology, it may be possible that at least partial Dyson spheres [13] or Matrioska
brains [7] would be constructed in a relatively short time. The idea is particu-
larly interesting as present day technology should be capable of detecting even
partial neighboring Dyson spheres by changes in the infrared radiation of their
host star [16,31,32]. A prediction of the Temporal Singularity in the context of
the Fermi Paradox is then on the speed of construction of such mega-structures.

4 Conclusion

We have explored the idea that progress in computing and artificial intelligence
can lead to time-accelerated simulated civilizations unfolding in short time inter-
vals in the external world, due to a runaway increase in the rate of growth
of scientific and technological progress they could produce, that would quickly
increase the temporal speedups of the simulations themselves, ultimately result-
ing in a ‘Temporal Singularity’. The potential advantages and dangers of such
simulations have been briefly explored together with some implications of the
Temporal Singularity on the Fermi paradox.

The medium-term relevance of the topic comes from the potentially relatively
low computational power required to start the process, which could be as low as
1018 − 1021 FLOPS and thus be available within the next decades, making the
Temporal Singularity theoretically possible before the end of the century, and
possibly in its first half.

As a final remark, it is interesting to note that given the great competi-
tive advantages of running a simulation of the type described here, it is virtually
inevitable that if it will ever be technically possible to create it, it will be created.
It should be noted, however, that this is unlikely to happen in a discontinuous
way, but rather we should expect an incremental progress, for example, starting
from the simple advantage of temporal speedups in simulated environments for
training artificial narrow intelligences (ANIs), as is already being done, to per-
haps accelerating simulated ‘childhood’ development and training of AGIs, to
actual simulated multi-agent systems, building towards complete societies and
civilizations following the increase in the available computing power.
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Abstract. Semantic vectors are learned from data to express semantic
relationships between elements of information, for the purpose of solving
and informing downstream tasks. Other models exist that learn to map
and classify supervised data. However, the two worlds of learning rarely
interact to inform one another dynamically, whether across types of data
or levels of semantics, in order to form a unified model. We explore the
research problem of learning these vectors and propose a framework for
learning the semantics of knowledge incrementally and online, across
multiple mediums of data, via binary vectors. We discuss the aspects of
this framework to spur future research on this approach and problem.

Keywords: Semantic vectors · Hyperdimensional computing
Knowledge representation · Incremental learning · Dynamic systems

1 Introduction

Semantic vector learning finds vector representations of semantic relationships
observed in data that have useful properties, such as exhibiting similarity in the
components of vectors via closeness under a metric, or allowing vector arith-
metic to propagate semantic meaning. These vectors are learned by statistical
distributions of co-occurrence in data (usually unsupervised), whose structure is
embedded in a high dimensional space. With recent advances in neural networks,
progress on semantic vectors has seen much success. But such models feel disjoint
as semantic insight transfers poorly across them. State-of-the-art techniques rely
on static datasets that estimate mapping functions across their distributions.
Adapting models to another domain often requires complete retraining, or at
least fine-tuning/transfer learning [14]. In this paper, we examine the problem
of learning semantics from supervised and unsupervised data to facilitate incre-
mental and life-long learning. This is desirable as it synthesizes the semantics
from not just multiple models, but potentially entirely separate domains (vision,
linguistics, audio, etc.) into consistent vector representations for use in other
tasks. The incremental process allows new models to come into existence at any
time. We describe a general theoretical framework that can compute such vector
representations in an online and perpetual way.
c© Springer Nature Switzerland AG 2018
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2 Background Information

2.1 Related Work

Our primary difference is the online and incremental learning capabilities of the
vectors themselves, without a need for existing vector models, and the use of
binary vectors to allow for useful and general data structure representation, as
suggested by Kanerva [7]. The problem of learning symbolic vectors for struc-
tured data has been explored using neural networks by Bordes et al. [2], with
newer techniques [13] learning from knowledge graph relationships, such as Fre-
itas’ DRNs [5]. Additionally, the reasoning, inference and lookup structures for
embedded knowledge graphs are a well studied topic [3,4]. Most are limited to
static information, however there has been much work on the problem of com-
pleting relationships in knowledge graphs, such as TransE [1] and its derivatives.

2.2 Motivation

The word2vec [11] paradigm forms semantic vectors for words by predicting the
context around a word via an unsupervised process, given a corpus. The famous
king −man+woman ≈ queen example shows its ability to learn deep analogies
between word vectors. However, consider: smokestack − cigarette + firework.
It’s clear that something like “missile” would be a valid answer to this analogy.
This is not the case for word2vec, which does not return “missile”, or anything
sensible, for even the top 100 matches for the popular Google News word2vec
model [12]. Why does it fail for this example, but not for much deeper analogies
such as death− life+good ≈ bad? The analogy is purely visual/functional here.
However, word2vec never ‘sees’ anything visual, only patterns in words, where
such a relationship is unlikely to occur. A similar situation is apparent in the
auditory domain: quack − bird + car = honk also fails in word2vec.

Clearly, learning human-level semantics requires integration of hierarchically
built-up data and relationships from differing domains. For example, neural
networks generalize better by using character level patterns as well as word
level [8,15]. A general model should include multiple forms and levels of per-
ception into a single semantic model that takes everything into account, from
a general intelligence perspective. This is supported in the biological setting,
where it seems that neurons can take on other roles over time, when neces-
sary [6], suggesting that many cortical neurons treats information in a similar
way.

2.3 Incremental, Online, and Generalized Semantic Learning

Our goal is to take raw input from various perceptions, outputs of other models
and unify them. Such models give semantically significant relationships, that
could be learned or heuristic in nature. This could be between sequences of raw
data, more complex mappings of words to parts of speech, or dependency arcs
between words. In the visual domain, patterns of pixels can map to classification
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labels. We can visualize this as building a graph of relationships. Short of numeric
regression, most outputs of models can be expressed as edges between nodes, due
to their discrete nature. New info is easily absorbed by simply updating the graph
and statistics on it. We wish to find appropriate vectors for the nodes. Since new
knowledge comes in an online process, as new observations, new nodes or edges in
the graph, or the addition of new models to the system, these vectors themselves
must be quickly adjusted in an equally online and incremental process.

2.4 Long Binary Vectors as General Features

As noted by Kanerva [7], long binary vectors, on the order of 10,000 compo-
nents, are a promising vector representation. Consider the space B

n = {0, 1}n.
This space contains |Bn| = 2n possible vectors. No computational system needs
anywhere near 210,000 vector representations. This space represents the corners
of a 10,000 dimensional hypercube, so every point in the space has the same
distribution of distances to other points. Let:

H(x, y) =
n∑

i=0

Ixi �=yi
(i) =

n∑

i=0

xi ⊕ yi = |x ⊕ y| (1)

be the Hamming Distance, where Ixi �=yi
is the indicator that the bits at i between

x and y disagree, returning 1 in this case, and 0 when they agree, a ⊕ b is the
bitwise exclusive-or (XOR) operation, and |a| is the number of 1’s in a. The
number of bits of disagreement is the distance between points. Let:

HN (x, y) =
1
n

H(x, y) (2)

be the Normalized Hamming Distance, which expresses the distance on a real
scale of 0 to 1. Assuming each possible vector is equally likely, the average
Normalized Hamming Distance is 0.5. Furthermore, under these assumptions,
with n = 10, 000, their distribution is binary with mean 5000 bits and standard
deviation 50; this implies that for any significant deviation from distance 0.5,
the distribution quickly becomes very sparse. An astronomically vast majority
of vectors have distances very close to 0.5. Randomly drawn vectors are nearly
guaranteed to differ from one another by about 5000 bits, or distance 0.5.

This distribution is resistant to noise in its vectors, as a large portion of the
bits in any vector would have to be randomly flipped before the distance becomes
very big between another nearby vector. Two related vectors differing even by
5% of their bits is so astronomically unlikely that they may as well still be the
same vector. As pointed out by Kanerva, such long binary vectors also have the
property of encoding various forms of information that can be later recovered
even under noisy conditions. This comes primarily from three operations:

1. The XOR c = a ⊕ b: Since XOR is an involution when one operator is fixed,
and associative and commutative, c ⊕ a = (a ⊕ b) ⊕ a = a. We can exactly
recover a or b if we have one or the other, or approximately with noise.



220 P. Sutor Jr. et al.

2. The permutation Π: This permutes a vector x’s components into a new order,
by computing the product Πx. If the permutation is randomly generated for a
long binary vector, the new binary vector is very likely to have a distance (2)
near 0.5. We can represent Π as a permutation of index locations 1 to n. The
product simply swaps components of x to the order in Π.

3. The consensus sum, +c(A), over the set of vectors A: This sum counts 1’s
and 0’s component-wise across each element of A, and sets the component to
the corresponding value with the bigger count. Ties, only possible in a sum
of an even number of elements, can be broken by randomly choosing.

Note that mapping by XOR or permuting preserves distances. For mapping a:

H(a ⊕ x, a ⊕ y) = |a ⊕ x ⊕ a ⊕ y| = |a ⊕ a ⊕ x ⊕ y| = |x ⊕ y|
H(Πx,Πy) = |Πx ⊕ Πy| = |Π(x ⊕ y) = |x ⊕ y| (3)

as permutation is distributive, thus Πa⊕Πb = Π(a⊕b), and permuting doesn’t
change the number of 1’s or 0’s, so |Πc| = |c|, for any a, b, and c.

2.5 Representing Data Structures with Binary Vectors

We can create binary vector abstractions of simple data structures:
Sets: A set of data {ζ1, ζ2, ..., ζm}, given a mapping between ζi and binary
vectors {z1, z2, ..., zm}, can be represented as z = z1 ⊕ z2 ⊕ ... ⊕ zm. A union of
sets x and y, of m1 and m2 elements, with no elements in common, is:

x ∪ y = x ⊕ y = x1 ⊕ x2 ⊕ ... ⊕ xm1 ⊕ y1 ⊕ y2 ⊕ ... ⊕ ym2 (4)

However, Eq. (4) is not the general case. With unrestricted x and y:

x ⊕ y = (x − y) ∪ (y − x) (5)

Furthermore, set intersection and complement is impossible to compute without
knowing the original vector values of the components.

Ordered Pairs: Represented by tuple ζx = (ζx, ζy), where ζx, ζy and ζz are
data points. If mapped to binary vector representations x, y, and z:

z = Πx ⊕ y , or z = +c({Πx, y}) (6)

This random permutation Π then denotes the data type of ζz.

Sequences: We can interpret a sequence ζz = ζz1ζz2...ζzm
of a particular data

type as a 2-tuple ζz = (ζz1 ...ζzm−1 , ζzm
). With binary vectors z1, z2, ..., zm, this

reduces to a succession of pairings via Eq. (6):

z = Πm−1z1 ⊕ Πm−2z2 ⊕ ... ⊕ Πm−izi ⊕ ... ⊕ Πzm−1 ⊕ zm (7)
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where Πj is a permutation Π that permutes itself j times. If Π is random, then
Πj appears random too, with an expected distance from Π near 0.5. Equation (7)
holds inductively as ζz1ζz2 is Πz1 ⊕ z2, thus ζz1ζz2ζz3 is:

Π(Πz1 ⊕ z2) ⊕ z3 = ΠΠz1 ⊕ Πz2 ⊕ z3 = Π2z1 + Πz2 + z3

Continuing this for an arbitrarily long pattern gives Eq. (7). Similar reasoning
will get us the equivalent with +c replacing XOR for the sum:

z = +c({Πm−1z1,+c({Πm−2z2, ... +c ({Πm−izi, ...})...})}) (8)

Data Records: A unit of data containing one or more fields, where each com-
ponent has a specific meaning. Let a data record of type R = [r1r2...rm] of m
fields, where each binary vector ri is a field; for example, “name”, “age”, “gen-
der”, etc., for a record of a person. To set values to a field, we bind each field to
a value. Since the XOR of two vector mappings represents a set - essentially a
bound field - we can use ri ⊕ vi to bind a vi to ri. Given ri, we can recover vi,
or vice versa. We can generalize a bound data record Rv by:

Rv = [r1r2...rm][v1v2...vm]T

= r1 ⊕ v1 + r2 ⊕ v2 + ... + rm ⊕ vm = +c({ri ⊕ vi})
(9)

To isolate the value of a field ri, we compute Rv ⊕ ri. The contribution of
unrelated fields will generally create random noise when ri distributes across
them, but only the contribution of the ri⊕vi will be non-random and significant,
as ri ⊕ ri ⊕ vi = vi, generating a signal that is close to v. This is because each
bit of Rv represents the majority of the terms ri ⊕ vi. High-dimensional binary
vectors resist such noise, so the closest neighbor to Rv ⊕ ri is likely vi.

3 Life-Long Learning of Semantics

3.1 A Geometric Interpretation of Semantics

Consider the task of learning semantic vectors given a knowledge graph K =
(V,E) consisting of nv vertexes V = {v1, ..., vnv

} and ne directed, weighted
edges E = {e1, ..., ene

}. Let any vi have mass equal to the number of times its
relationships have been observed, or a similar statistic. We can equate this to a
simple, undamped spring-mass system, with a few caveats. Since it is directed,
the target end of the edge is seen as fixed, converting mass (by edge weight)
into constant acceleration towards the target, or a connecting force. Let mass
generate a repelling proximal force similar to gravity, to prevent singularities.
This is somewhat akin to self-organizing maps [9]. Suppose vertexes exist in n-
dimensional space accompanied by a distance metric, with locations randomly
chosen. The structure of the knowledge graph causes the forces to be very high.
We wish to minimize them by placing vertexes in a “better” location. In order
to facilitate this, we define an “anchoring” vertex that cannot move from it’s
random position, connected to all vertexes with incoming edges. A minimized
configuration of this system is equivalent to a good semantic placement of vec-
tors, if an outgoing edge from a vertex signifies it should be more “similar” to the
target. Efficient algorithms exist for this minimization in the real domain [10].



222 P. Sutor Jr. et al.

3.2 Binary Vector Analogues

We will now construct a binary vector analogue of the geometric, knowledge
graph based semantic minimization problem. Let K be of m vertexes, X(k) ∈
B

m×n be a binary matrix, where m rows correspond to positional vectors for
m vertexes in K, n is the number of dimensions, and k is the iteration step.
Initially, X(0) is randomly selected. Let row 1 be the anchoring vector. Our
problem statement is to find a perturbation matrix X ∈ B

m×n such that:

arg min
X

(T (X(k) + X)) (10)

where T denotes the total tension in our system. Then, we set X(k+1) = X(k)+X
and continue. This is the sum of unresolved forces across all bits of a given A:

T (A) =
m∑

i=1

n∑

j=1

max(Fconn(A, i, j) + Fprox(A, i, j), 0) (11)

where Fconn and Fprox are the connective and proximal forces for vector i, bit
j in A. If the sum of these two forces for a bit are positive, it means the bit
wants to change, otherwise it wants to remain the same. Thus, a system with all
negative or 0 resultant forces is considered minimized. The proximal force is:

Fprox(A, i, j) =
m∑

k=1,k �=i

MiMk

H(Ai, Ak)2
Cprox(Aij , Akj) (12)

where Mi and Mk are the masses of the corresponding rows Ai and Ak of A.
This force is clearly analogous to gravitational force between two masses, but a
repulsive one, with normalized Hamming distance between them. Likewise:

Fconn(A, i, j) =
m∑

k=1,k �=i

MiWikCconn(Aij , Akj) (13)

is the connective force, where Wik denotes the directed edge weight between
vectors i and k, which is non-zero and less than or equal to 1 if it exists, and 0
otherwise. The functions Cprox and Cconn are special functions defined by:

Cprox(a, b) =
{

1, if a = b
−1, if a �= b

}
Cconn(a, b) =

{−1, if a = b
1, if a �= b

}
(14)

which decide the direction forces act on the bit, depending on if the bits con-
nected have the same or differing value. As proximal force should push a away
from b’s value, it will add tension to the system only if the bits aren’t as far away
as possible. Connective force works the other way around, so Cconn = −Cprox.
Consider the sum of connective and proximal forces from Eqs. (12) and (13
(Fig. 1)):

F =
∑

k

MiWikCconn(Aij , Akj) +
∑

k

MiMk

HN (Ai, Ak)2
Cprox(Aij , Akj)

=
m∑

k=1,k �=i

MiCconn(Aij , Akj)
[
Wik − Mk

H(Ai, Ak)2

] (15)
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by substitution from (14). Thus, our total tension function to minimize is:

T (A) =
m∑

i=1

n∑

j=1

max

(
∑

k

MiCconn(Aij , Akj)
[
Wik − Mk

H(Ai, Ak)2

]
, 0

)
(16)

Fig. 1. Example minimization per random row of a randomly connected 50 node
graph’s binary vectors via the greedy method. Without proximal force it reaches 0.

We can see from (16) that (15) is the term to minimize across i and j to find
perturbation X in (10). This can be found näıvely and greedily by randomly
trying to flip bits with row-weighted probabilities from (15) for a particular
vector and observing the change in total tension (16). Suppose you flip the
first bit in a row that satisfies an adaptive threshold for the ratio of the row’s
tension it accounts for. The Many-Body problem prevents feasible computation
of all Hamming Distances. We make the simplifying assumption that proximal
force exists only for connected nodes. Then, one can efficiently compute the
difference in forces for that row, and even the energies for all other rows affected,
using simple ±1 of Hamming Distances. After flipping, the next bit in the row
which gives a sufficient negative difference is found. The process repeats until no
such bits can be found and a new row is randomly selected. Figure 1 shows the
minimization of this technique for a randomly connected system. When proximal
force is ignored, minimization to 0 is guaranteed. But unwanted singularities
can occur on connected components, which proximal force avoids, although a
minimum of 0 is not guaranteed. Minimization grows linearly with the number
of nodes. This technique can be combined with Simulated Annealing and (self)
supervised Q-Learning over rewards of minimization of (16), which can not only
be online but also learn how to minimize (Fig. 2).

3.3 Incremental Life-Long Learning of Semantics

We now propose a general model for incremental, online learning of seman-
tic binary vectors. Initially, suppose we have some form of raw inputs of data
(unsupervised), whose possible values are discrete. For a working example, as
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Fig. 2. A pipeline of knowledge graph computation of vertexes for a simple linguistic
examples: raw characters, morphemes, words and parts of speech. Sequences of a space
are embedded within by permuting the new element in the sequence with a static Π
randomly chosen by the space. Crossing semantic spaces is performed by a consensus
record on components of the relationship, where anchor vertexes are the fields.

shown in Fig. 2, let this be the space of characters in text. As input comes in to
the system, we start off by letting each new character or character sequence have
its own vertex and random binary vector (on order of n = 10, 000 components).
The space of characters is represented by a random, static vector C. As text is
read as raw input, the system builds connections between characters by placing
directed edges when two characters are next to each other. The weights of the
edges are the probability of the transitioning occurring over the number of occur-
rences of the character. The number of observations of the characters become its
“mass”. Simultaneously, when the system is presented at least a sequence of 2
characters, it can form a binary vector representation for this via a random and
static permutation Π, and (7). From the perspective of single characters, this is
the position of sequences of 2 characters. Generally, for sequences of l ≥ 3:

ζx1ζx2 ...ζxl
= ζx1 ...ζxl−1 + ζx2 ...ζxl

→ Π(x1...xl−1 ⊕ x2...xl−1) ⊕ x2...xl (17)

is the position of an l sequence from the perspective of an l − 1 sequence.
More generally, in a growing knowledge graph, this is two directed arcs a and

b coming together to a new vertex ab for the sequence. However, in the space of a
sequence, co-occurrences between other similar length sequences can be recorded,
and the tension in this system minimized for new binary vectors, to get a stronger
representation. Here, ab is represented by a local vector c. Since we can compute
a mapping between ab and c by ab⊕c, subsequently bigger sequences should use
this mapping. Frequencies from data and new edges in the knowledge graph are
recorded this way until the model decides to minimize tension in each subsystem
for new data. This process can be performed across other models on the data,
as Fig. 2 shows. To map between data types, we compute a record R that binds
each value to types as fields with (9). We can do this across different forms of
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raw data as well, as long as we have a model that will map other data types
to raw data (such as a classifier or static model). This is shown for morphemes,
words, and parts of speech in the figure, but this can be done from the space of
images to linguistic data, or other forms of raw data.

Suppose a new, supervised model appears. Since mapping between data types
is performed by records, we can easily add new information to it, as consensus
sum is commutative. This is tolerant to incremental learning. Since the dynamic
system for learning binary vectors proceeds arbitrarily, and edges/vertexes can
be added to K quickly, this is also online and incremental. We can continue
to add new models, read new data, and minimize tension in each system. If a
model exists that adds edges across different data types, we can cross boundaries
semantically and form more complicated data records. These can form hierar-
chical structures of semantic organization across many mediums of data.

4 Discussion and Conclusion

Semantic Vector Operations: Local Hamming Distance measures similar-
ity for occupants of the same hierarchy, or from the perspective of a smaller
sequence to a larger sequence. However, similarity across entire semantic spaces
is a difficult, potential research area. Data records can isolate values of fields and
compare their distances. We can also map ALL vertexes to the perspective of a
space of concepts that all data belongs in. Since vectors start off random, it’s pos-
sible to measure the likelihood of two vectors to be within a certain distance, as
Kanerva [7] describes. XOR can also construct and deconstruct complex seman-
tic concepts and get vectors for new data, or even unbound anchor points.

Self Improvement: Self benchmarking of semantic learning can be performed.
If the nearest known neighbor for a data record with some missing fields is incor-
rect, the system has can leverage the knowledge graph and upscale the weights
such that minimization of (16) makes it correct. So, if it fails often in one area,
it can over-represent similar tests in the future, allowing targeted improvement.
If incrementally trained enough, the system could form interesting questions for
humans to answer, in order to learn relationships that are not easy to model. For
example, if vectors are close, but share no knowledge graph edges, the system
can predict the odds of this randomly happening to either be sure a relationship
exists, or file it as a candidate relationship to cross-reference later. Thus, this
lends itself to interacting with humans and asking useful questions.

Conclusion: We have proposed a novel, general theory for directly learning
distributed binary semantic features from arbitrary data that can be put into the
form of a knowledge graph, whether supervised or unsupervised, to incrementally
learn high dimensional, semantic binary vectors online. This life-long learning is
a promising technique for combining semantic knowledge across many existing
models and raw data to build deep, useful, hierarchical representations. In future
work, we hope to implement and test this model on at least linguistic and visual
data in a manner that enables empirical testing of its properties.
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Abstract. In the quest for artificial general intelligence (AGI), ques-
tions remain about what kinds of representations are needed for the kind
of flexibility called for by complex environments like the physical world.
A capacity for continued learning of many domains has yet to be real-
ized, and proposals for how to achieve general performance improvement
through continuous cumulative learning—while seemingly a necessary
feature of any AGI—remain scarce.

In this paper we describe a cumulative learning mechanism that pro-
duces causal-relational models of its environment, to predict events and
achieve goals. We show how such models, coupled with an appropriate
modeling process, result in knowledge whose accuracy increases over time
and can run continuously throughout the lifetime of an agent. The meth-
ods have been implemented, demonstrating learning of complex tasks and
situated grammatically-correct natural language by observation. Here we
focus on key theoretical principles of the modeling method and explain
how effective cumulative learning is achieved.

Keywords: Artificial intelligence · Artificial general intelligence
Cumulative learning · Cumulative modeling · Causal relations
Models · Knowledge representation · Autonomous learning
Task-environment · Knowledge acquisition

1 Introduction

We see the existence of intelligence in nature as a practical solution for limited
time and resources [17], and our efforts target practically viable methods for
building artificial general intelligence (AGI) systems. While in this paper the
primary focus is on theoretical aspects of cumulative modeling, which itself is a
subset of cumulative learning, the larger context for this work is AGI systems
that can handle the complexities of the physical world.
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An environment E into which a goal-oriented agent is introduced can be
seen to consist of a (potentially large) set of variables V =

{
v1, v2, . . . , v‖V ‖

}
that

represent all the things in the world that may hold a particular value and change
over time, along with relations � (causal, meteorological, etc.) between (some)
of these variables, and dynamics functions F , that together determine how those
changes happen. Subsets {e1 . . . en ⊂ E = 〈V,F ,�〉} can be identified,1 where
relations, dynamic functions, values and value ranges, are of a special kind or of
particular interest, representing what we collectively call domains, D ⊂ E.2

As proven by Conant and Ashby’s Good Regulator Theorem [1], to be an
efficient survivor in a complex world, a learning mind must necessarily proceed
by modeling its task environment. This means that any AGI system, being a
learning controller of the most capable kind, will need a significant amount
of models to operate effectively in the physical world. A model set MD of D
contains models of (parts of) the environment – information structures that
together describe D, to some level of accuracy.

A cumulative modeler CM in our conceptualization is a controller3 that,
guided by one or more top-level (internalized) goals Gtop, implements a process
whereby regularities are recursively extracted from E to construct models MD

of it [14] for the purposes of (a) making predictions about D, and (b) achieving
goals with respect to D. In our approach models are explicit, and this is done
via forward and backward chaining, respectively.

The kind of models we are talking about the agent creating are bi-directional
in that a single model serves both purposes of prediction and goal achievement,
and whenever a model is triggered (considered relevant for a situation) its use-
fulness for both purposes may be tested and evaluated. The ability of models
to be used for predicting events from particular conditions, and planning active
intervention, is a key feature of significant importance for the nature of the
knowledge thus accumulated, as discussed below. In our approach, models can
refer to other models to form hierarchies, so that compound phenomena can be
represented, and equally importantly, so that the system can model itself (to
implement reflection [14]). Knowledge is non-axiomatic and defeasible [13], so
any old knowledge—even that which has repeatedly been shown to be useful—
may be defeated by new knowledge that is more useful (better predictions and/or
better goal achievement) and consistent with other models. New knowledge is
automatically reconciled with old knowledge, and learning tends to be sped up
due to prior knowledge (transfer learning [7,8]), without catastrophic interfer-
ence/forgetting [2,4,6].

1 We mean any sub-division of E, en ⊂ E, including sub-structures, component pro-
cesses, whole-part relations, causal relations, etc.

2 In any complex environment such as the physical world there will be innumerable
ways of domain sub-divisions. The range of domains created from human-centric per-
spectives (e.g. transportation, electronics, home, commerce, clothing, etc.) demon-
strate the utility of such sub-division.

3 A controller is the process that dynamically couples knowledge and goals to obtain
actions (or inaction) in an environment [14].
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A good cumulative modeler is one which does not build its models haphaz-
ardly or randomly but in a way that achieves goals and predictions efficiently
and effectively. Elsewhere we have argued that to do so the models must by
necessity capture causal relations4 Here we show why this must be the case.

Two forces are at work when improving knowledge represented as bi-
directional models: (a) Improving the precision of the atomic models and, (b)
increasing its scope by covering as many variables as possible with the models.

The mechanisms we present show that the models created by a good cumu-
lative modeler will, over time, increase their usefulness in guiding the system’s
behavior – the cumulative nature of the modeling means that while it is ongo-
ing the system continues to improve its knowledge of the environment [15]. A
cumulative learner’s capabilities, as a result, grow incrementally over time, in
relatively small but frequent steps, to ultimately cover a wide range of tasks.5

This is important because when the modeler makes itself the subject of the mod-
eling, it can potentially also improve itself—implementing what has been called
bounded recursive self-improvement [9]—in a safe, incremental fashion.

2 Agent and Task-Environment

Fig. 1. An agent situated in an
environment (E) consists of a
controller (c) that hosts a model-
ing process (PM ) capable of gen-
erating causal-relational mod-
els of the environment through
experience.

In the physical world, some of the environment’s
variables are observable, Vo ⊂ V, some are
manipulatable, Vm ⊂ V, and some are related
via causal links such that changing one variable
will affect another.

An agent situated in an environment (Fig. 1)
consists of a controller (c) that hosts a
modeling process (PM ) capable of generating
causal-relational models M of the environ-
ment through experience, testing their validity
through observation and direct intervention in
the environment. The agent has a perception
cone through which it can receive input from
observable variables (Vo) and actuators through
which it can affect the state of manipulatable
variables (Vm). At any point in time these will
be limited to a subset of the total set of observ-
able and manipulatable variables due to I/O bandwidth and its specific location.
If the world is highly asymmetric—that is, features of any of its part in one area
are highly dissimilar to features in other areas—make any acquired knowledge

4 Any reliable and repeatable regularity in a world is considered a causal relation,
irrespective of whether it is observable or not, or truly deterministic or not [3].

5 The speed of accurate model building is of course of critical importance for any
real world implementation, determined in part by the details of the implementation
methods and the nature of the task-environment; in this paper, however, the primary
focus is on theoretical aspects of the modeling process.
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heavily dependent on an agent’s localization; highly self-similar worlds will not
make knowledge generation dependent on agent position.

In our conceptualization, a cumulative learner will proceed to create models
of the relations between observed variables. If V1 and V2 are both variables of the
world, linked by the relation V1RV2, with R ∈ �, what the model “claims” is a
causal link between O1 and O2, the observable parts of V1 and V2. For instance,
if A is the result of the observation of O1 and B is the result of the (subsequent)
observation of O2, then the model represents a (hypothesized) causal relation
between A and B, i.e. A ⇒ B (and indirectly, that V1 caused V2).

Of the set of variables V in any complex environment such as the physical
world, only a fraction are observable, and even a smaller fraction of those are
observable in any given time interval. An event involving an observed relationship
between any two or more variables, where for that time interval some relevant
variables are unobservable, will make it indistinguishable from a partially random
relationship, even if it is fully deterministic “under the hood”. Same goes with
the manipulatable variables Vm: they only represent a fraction of the variables
of the world, and may not be a strict subset of Vo, as actions of the agent may
have unobservable effects.

This means that for any world with a very small ratio of Vo/V, a large
number of relations between observable variables will seem “probabilistic” to
an agent—even if that world is fully deterministic (i.e. all related variables are
truly deterministically coupled). Therefore, an agent in such environments will
neither be able to model its task-environment perfectly nor fully, and a number
of its models will be incorrect some of the time.6

3 Models and Modeler

Before even beginning to model, our cumulative modeler must be given a well-
defined seed, composed of (at least) one top-level goal Gtop, one model connecting
this goal to an observable variable, one model acting on a manipulative variable,
and one primitive action to take. This is really the theoretical minimum – prac-
tical implementations will contain quite a bit more; the more complete and
thorough the seed is the easier it will be for the system to bootstrap and start
learning. If the seed does not reference anything that the system can measure
the system won’t be able to evaluate the results of its actions, and thus cannot
grow its model set. The same goes for goals (the seed must contain at least one
concrete objective to attain) and executable actions (there must be at least one

6 It should be noted that causal relations cannot be replaced by probabilities. Pearl [12]
(p. 36) states: “...causality deals with how probability functions change in response
to influences (e.g., new conditions or interventions) that originate from outside the
probability space, while probability theory, even when given a fully specified joint
density function on all (temporally-indexed) variables in the space, cannot tell us
how that function would change under such external influences. Thus, ‘doing’ is not
reducible to ‘seeing’, and there is no point trying to fuse the two together.”.
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action the system can perform). The smaller the seed, other things being equal,
the longer the system will take to bootstrap its knowledge.

When the agent is inserted into the environment its modeling process starts
generating models using information in the seed. This proceeds by noting corre-
lations in the stimuli coming in through the senses (including sensations related
to the agent’s own end-effectors), and for any A ⇒ B pair, where A precedes B
in time, creating a model that predicts what may happen when you see an A,
and suggesting that when you want a B you may want to make A happen.

The modeler must have the ability to round up the relevant models at any
point in time. This is done by the agent’s scheduling process. If there are too
many models models for the controller to sort through, the threshold for any
model to be considered relevant to the present moment could be increased, thus
decreasing the total number of models the system must work with at any point in
time. The speed at which this can be done directly affects a controller’s ability to
bring the right knowledge to bear on any situation, as it determines how many
models the controller can consider during forward (deduction) and backward
chaining (abduction). This is important because it specifies, respectively: the
controller’s capacity to consider (a) alternative futures (by triggering various
different models that look promising for predicting next events based on e.g. the
current state) and (b) alternative ways of achieving goals (by searching through
models abductively to find plausible paths through which any state may have
been formed). While these do not bear directly on our arguments in this paper,
they are of great importance when considering practical implementation of these
mechanisms.

3.1 Structure of Causal-Relational Models

Our concept of a causal-relational model is used here in a specific way; prior work
provides detailed examples of how such models may be implemented [9,11], while
here we are more concerned with the theory of such models.

Models are executable information structures encoding procedural knowl-
edge and are either provided up front (by the designer) in a seed or created by
the modeler – with the latter set becoming much larger than the former over
time. The models our cumulative modeler creates are composed of a left-hand
term (LT) and a right-hand term (RT). The LT (the “input”) refers to a pre-
conditional pattern, composed of values, variables, ranges, etc., that make the
model relevant7 for a particular situation (via pattern matching); the RT repre-
sent the post-conditions of the terms the model refers to. When the LT pattern
is observed, a prediction based on the RT pattern is produced. In this forward-
chaining process a set of models compute predictions on given LT inputs via
deduction. For instance, if a model takes two consecutive {x,y} coordinates of
the path of a Pong ball and computes its next position using a linear trans-
formation formula, this is a prediction of a future state of a particular entity
7 Relevance is determined at “the top” by top-level goals, and at the “bottom” by

incoming stimuli through sensors; in between the pattern matching on the models’
LT and RT determines their relevance.
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(the ball) in particular circumstances (moving along a path, i.e. correct until the
ball hits something). A good model will thus produce a true prediction using
valid deduction.

Reciprocally, when an instance of a model’s RT pattern is observed that
is a goal, a sub-goal patterned after its LT pattern is produced. In this case
backward-chaining answers the question “how could RT be achieved?”. Models
produce sub-goals when super-goals match their RT pattern, these sub-goals in
turn match other models’ RT pattern until – unless the chaining is halted for
some reason – a sub-goal produces a command for execution by I/O devices.

When an input other than a goal or a prediction matches its RT, an assump-
tion is produced, based on the LT. In either case the task of the scheduler is
to find the model(s) whose RT matches the state, and reading the model “in
reverse” by looking at its LT. This constitutes generating abduction hypotheses,
answering the question “how might the RT have come about?”.

After a model is used we check to see whether the predicted outcome was
correct or not; each model stores the number of correct uses over the total
number of uses, whose ratio is used to determine the preference for which model
should be chosen when an input matches the LT (when forward chaining, RT
when backward chaining) of two or more models.

Models further contain two sets of functions that compute values for variables
featured in the RT, from the values held by variables in the LT (one set for
forward and another for backward execution).

4 Modeling Process for Cumulative Learning

Now we describe the basic operations of a canonical cumulative learner, and
show that by generating small modifications to existing models and testing these
through observation and manipulation, the modeling process implements cumu-
lative learning.

The modeling process consists of two sets of models M and Mhyp, and their
interactions with the environment E (Fig. 2). The first set, M, is used to compute
and predict the state of the system. This set of models interacts directly with
the environment: it receives informations from some observable variables in the
world and can act on some variables (the manipulatable ones), as explained in
the preceding section.

The second set, Mhyp, is the “experimentation lab” of the modeler, whose
purpose is to test new models without interfering with the environment. Models
of this set are variations of those from M. These variations are based on alterna-
tive contextualization, hypothesized generalization, and proposed compression of
existing models. Models in Mhyp are tested as the environment and M interact.
When a model M1 ∈ M is triggered, we will test what would have happened if
it would have been replaced by its variation, M ′

1 ∈ Mhyp. A comparison of the
model set using the new model versus the original one determines whether the
new model is deleted (if it produces no improvement or is simply wrong), or is
added in M (if a performance improvement over the original set is detected).
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M
M

hyp

E

Generates

Injects
Interacts

Tests

Tests Deletes

Fig. 2. Interactions between the different sets of the system (see text).

The original model M1 may then be deleted from the sandbox or kept (if, for
some contexts not addressed by the new model, the original one is still useful).

The initiation to generate a new model M ′
0 is the triggering of a model M0 in

M (i.e. it is considered relevant for the present state). Depending on the actual
usefulness of M0 in the present situation (for prediction and/or intervention),
the modeler will create (at least one) variation of M0 in Mhyp. If M0’s prediction
is correct, the modeler will try to make it more general by removing some of the
constraints in its LT, in an attempt to make it more general. If M0’s prediction is
incorrect, models will be created with the observed outcome as output (targeting
the same observation) and more specific input than M0, making it less general.
In this case M0 may still be relevant and is not deleted.

When several models are used in series they may be compressed into a single
model with a more detailed or specific input. While not improving M’s coverage
(scope), reducing model count may increase the modeler’s runtime efficiency.

4.1 Description of Modifications

The key to the idea of proving that our cumulative modeler is a good one is
to show that each of the small modifications will result in a small improvement
of the system. To do so, we will detail each of the modifications and explain
why—should the modification be shown to be a good one—injecting it in M
will improve the ability of the system to predict and achieve goals in D ⊂ E due
to the models in M matching more closely actual relationships between variables
in D.

Contextualization. New models will be created when a triggered model M0 ∈
M produces incorrect predictions (they could be incomplete, partially correct,
or totally wrong). What we want in this case is, if I is the set of all inputs that
M0 was triggered on, to partition it into two sets I0 and I1. Then the original
model M0 will be transformed in M0

0 . It will be the same as M0 with a LT that
will only match inputs in I0. A new model M1

0 will also be created, with a LT
that match I1, and the RT that was just witnessed.
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Whether these new models are effective or not becomes known when a state
arises where they are considered relevant. Two properties must be verified to say
that this results is an improvement.

– If i ∈ I1, (M0 correct on i) ⇒ (M1
0 correct on i)

– ∃i ∈ I1,(M1
0 is correct on i and M0 is wrong on i)

– We already have that if i ∈ I0, (M0 correct on i) ⇒ (M0
0 correct on i)

If one can find a couple of models (M0
0 ,M

1
0 ) such that the above properties are

verified, then one has found a couple of models that are strictly better than the
original one M0.

Generalization/Induction. Another case of new model creation is when a
model M0 from M is triggered, and its prediction is correct. New models that
are more generic will then be created, with the same RT output as M0, but with
LT inputs that are less specific (suppression/deletion of input variables, greater
range of values, variables replacing values, etc.). To be injected into M a model
thus created should be as efficient on the LT input where M0 is correct, and
work well on other inputs not specified in M0’s LT. The new model should be
verified to not interfere with existing models in M. If that’s the case, and the
model is failing on inputs that are caught by other models, it should be modified
to prevent it form competing with such existing models.

When it is verified that the new model is more general than M0, it will then
simply replace it in M. When evaluating this change in M, what we want to
verify is simply that the new model works “better” than the old one. Here,
working “better” has three implications:

– M0 is correct on input i ⇒ M ′
0 is correct on input i. This is ensured by the

fact that M ′
0 LT is simply a less specific version of the one on M0.

– M ′
0 is correct on input i, and i did not trigger M0. This is ensured by the fact

that if M ′
0 was moved from Mhyp to M it has been tested to be correct on

such inputs.
– There is no input i on which M ′

0 will make incorrect predictions that would
have been caught correctly by other models in M. This is ensured by checking
that M ′

0 does not interfere with existing adjacent models (that have variables
in common).

Compression. The last case of creating new model(s) is when several small
models (Mi)i∈[|0,n|] are compressed into a single bigger one, and when a model
sequence (M0, then M1, etc.) is replaced with a new model that has as its input
a mix of the input variables from M0, . . . ,Mn−1, and the same output as Mn.
Models should be added in M only if they are at least as correct as the original
ones. The objective of such compression is not to achieve a better model than
the original ones but rather to reduce computational requirements.

This modification category is somewhat less important than those above and
should only be used if it is desired to have a greater number of more specific mod-
els, rather than a lower number of more generic ones. This represents, however,
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a general way to tune resource usage [5] and can be done when faster results are
desired. The original models can of course in all cases be kept and strategically
retrieved, e.g. should more precision be needed or more computational resources
become available.

4.2 Producing Causal-Relational Models

Due to the bi-directionality of the models they will tend towards capturing true
causal relations between variables of the environment. To see why, consider the
situation where a cause A has two effects, B and C (Fig. 3). We assume that
to the modeler A appears before B and C, but B and C appear together. Four
models could be used to describe what is observed every time we see an A:

1. Model M1: B ⇒ C
2. Model M2: C ⇒ B
3. Model M3: A ⇒ B
4. Model M4: A ⇒ C

A

C

B
Cau

ses

Causes

Concomitant

Fig. 3. Example causal relations
between A, B and C.

Any of these models will predict correctly:
If you see B you will see C, and vice versa; if
you see A you will see B and C. However, not
all of them can be used to achieve goals in the
domain of A, B and C: If you want to stop seeing C it does not help to remove
B, or vice versa – due to the causal structure of this task-environment, only
model M4 will help. Thus, when each of these models is used for both prediction
and goal achievement models M1 and M2 will be deleted due to their incorrect
predictions. What remains are M3 and M4, the only models that capture actual
causal relations in the domain, to the extent that this can be represented as
relationships between observable variables.

Each modification of the model set in M, using the methods above, makes
them more reliable within a given sub-domain MD. Repeated usage and test-
ing of the models increases the overall reliability in small steps, as they capture
the target phenomena. The system is continuously trying to improve each of
its models, hypothetically reaching the maximum precision allowed by the envi-
ronment and the allowed time and resources. When this point is reached, every
phenomenon is modeled as well as possible.

5 Conclusion

We have presented a modeling process that implements a good cumulative mod-
eler, improving continuously to eventually be able to operate in a wide range
of task-environments. Based on combined abduction and deduction over causal-
relational models, the methods described have been implemented and tested [9–
11,16], producing notable results not demonstrated by other learning systems.
While important questions about practical issues remain to be investigated,
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e.g. the extent of its generality and scaling, this paper demonstrates that the
basic principles are relatively clear and concise and meet the criteria for cumula-
tive learning. Our results so far indicate that these ideas are significantly different
from most other approaches, and potentially a promising approach to achieving
AGI.
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LNCS (LNAI), vol. 7716, pp. 89–98. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-35506-6 10

6. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc.
Nat. Acad. Sci. 114(13), 3521–3526 (2017)

7. Lazaric, A.: Transfer in reinforcement learning: a framework and a survey. In:
Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning. Adaptation, Learning,
and Optimization, vol. 12, pp. 143–173. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-27645-3 5

8. Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G.: Transfer learning using
computational intelligence: a survey. Knowl.-Based Syst. 80, 14–23 (2015)

9. Nivel, E., et al.: Bounded Recursive Self-Improvement. Technical RUTR-SCS13006.
Reykjavik University Department of Computer Science, Reykjavik, Iceland (2013)
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Abstract. This paper introduces an interdisciplinary qualitative hermeneutic
approach to the engineering and computer science methodological paradigm(s)
for assessing a contemplative-agent’s cognitive capabilities at a level corre‐
sponding to Artificial General Intelligence (AGI). This paper has utilized cogni‐
tive intensity levels from Kantian aesthetic philosophy to qualitatively re-address
Russell and Norvig’s canonical agent-categories as they scale upward towards
AGI cognition levels. These Kantian levels allow the AGI-agent designer to
consider the cognitive interplay between computational representations of the
imagination and reason as they relate to motivationally-nuanced teleological
notions of self-interest versus disinterestedness. While the AGI level is the
thematic focus, lower intensity levels are also introduced in order to set the
appropriate cognitive benchmarks for higher levels corresponding to truly
contemplative AGI-agents. This paper first contextualizes Kant’s analytical
framework before discussing the appropriately corresponding agent-categories.
This paper concludes with a brief discussion of the particular methodological and
hermeneutic contribution of Kant’s aesthetic philosophical framework to the AGI
domain.

Keywords: AGI · Contemplation · Aesthetic philosophy · Agents

1 Introduction

Artificial General Intelligence (AGI) promises that one day, an artificially created agent
will be sufficiently intelligent to be able to theoretically become competent in any
computer-tractable expert domain. Interestingly, hermeneutic analysis of how such
minds might become capable of interdisciplinary competency are primarily being
handled methodologically by mechanistically-focused computer science and cognitive
engineering disciplines. As cognitive science is an umbrella mega-discipline that
includes AGI, there remains a contribution within the AGI community to try to make
interdisciplinary correlations and unify hermeneutic understandings of the intelligent
agent categories and their cognitive affordances with other cognitive science related
disciplines. Within the related cognitive science of philosophy is the sub-discipline of
aesthetic philosophy. At first glance, considering principles from a humanities-driven
sub-discipline such as aesthetic philosophy would seem thematically orthogonal to the
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mechanistic and technological cognitive categorization of artificially intelligent agents.
However, this paper shows examples of how interdisciplinary hermeneutic correlations
can indeed be made between Kantian aesthetic philosophy [1] and canonical intelligent-
agent categories [2]. We proceed by first contextualizing and explaining Kant’s analyt‐
ical framework before discussing the appropriately corresponding agent-categories.
This hermeneutic analysis concludes with a brief reflection on the particular methodo‐
logical and hermeneutic contribution of Kant’s aesthetic philosophical framework to the
AGI disciplinary domain.

1.1 The Kantian Approach to Cognitive Intensification

Intelligent agent categories are scaled upward to indicate an agent’s gradually acquired
capabilities to deeply contemplate a world-model from which derived goals and values
of those goals (i.e. utilities) can be learned from either through, reason, imagination, or
empirical experience regardless of semantics originating from a particular task-domain.
A more generally intelligent artificial agent should occasionally consider solutions to
problems that reside outside of its immediate self-interest. Kant’s aesthetic intensity
levels are categorized according to a motivational spectrum that ranges from an agent
acting in its own self-interest to engaging in disinterested contemplation for its own sake.
Contemplation can be intensified in a similar way that an agent’s intellectual aptitude
can increase. Kant’s aesthetic intensities are based on an agent being able to cognitively
and rationally parse an artificially represented imagination (including having to reason
about an external world-model). In this sense, Kantian aesthetic intensities are cognitive
intensities involving a dynamic interplay with computational representations of imagi‐
nation and reason. An agent would need to function at increasingly higher intelligence-
categories to be able to mechanistically parse each intensity relating to contemplating
this cognitive acceleration of imagination and reasonable estimation without functional
overload and/or paralysis. The interpretation of aesthetic principles for AGI can be
properly understood once the reader has internalized Kant’s philosophical definitions of
the imagination and reason. The cognitive interplay between philosophical faculties of
imagination and reason in particular, form the basis for understanding the most contem‐
platively involved aesthetic intensity which can only really be properly comprehended
by an AGI-agent – the transcendent sublime.

Kantian and Computational Representations of the “Imagination”. The Kantian
interpretation of the imagination is sometimes conflated with “intellectual intuition” [4,
p. 186]. Kant’s considers the imagination to be a highly qualitative and semantically
generative cognitive process. The contents or inspiration of the imagination can involve:
fictional, functional, or fantasy elements and can be derived from sensory empirical
phenomena or from the platonic realm of pure ideas (i.e. noumena). Unlike reason, the
imagination involves comprehending (understanding) or reflecting on either perceptual
phenomena or ideal noumena rather than trying to practically apprehend (calculate or
numerically judge) a phenomenon’s or noumenon’s precise properties. To imaginatively
comprehend something that has entered our internal or external perception, Kant
believes that we make a subjective determination of phenomenon’s or noumenon’s
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ultimate nature and teleological purpose [4, p. 178]. Reflection is a key contemplative
meta-faculty when considering the imagination because “[…] the apprehension of forms
by the imagination could never occur if reflective judgment did not compare them” [1,
pp. 29–30].

In the AI discipline, the “imagination” is defined as “the [contemplative] manipu‐
lation of information [mental imagery] that is not directly available to an agent’s
sensors” [5, p. 743]. Artificial imagination as currently implemented usually pertains
to an agent’s capacity to simulate a task from its problem-space into its semantic and
episodic memory banks for future retrieval [5]. The current goal for handling, storing
and predicting these imagined states is through the eventual implementation of a
prospective memory [6]. A computational representation of imagination can include: a
predicted/prospective generative percept-stream (future states, operators, probability
distributions, actions etc.) and/or simulated input-output procedure that has some portion
existing outside of or beyond (or in parallel to) the agent’s sensory apparatus; or a form
of creative-reinterpretation (or misinterpretation) of pre-existing sensory data. Imagi‐
nation can be a semantically interpreted percept-stream (various parallel ontological
descriptions of: states, operators, actions etc.) that has some portion existing outside of
or beyond (or in parallel to) the agent’s sensory apparatus. The semantic interpretation
of this percept-stream might not directly address the raw data or hypotheses inferred by
the agent’s sensory apparatus. An agent’s imagination might contain purely generative
(imagined) information content for rationalization or prediction without any empirical
grounding in the sensed data. Alternately, an agent might use its imagination to provide
its own idiosyncratic semantic interpretation of the received empirical sense data. An
agent can also use an artificially created imagination faculty to modulate its hard-coded
rationality. For example, an agent can dynamically modify its ontology and its list of
competency questions when expecting or predicting new percepts from its situated
environment. Such dynamic self-modifications can rapidly occur even without the
encouragement provided by immediate access to explicit empirical evidence. To address
the imaginative context; these questions must address and/or approximate task-domain
knowledge that is hypothetical, simulated (i.e. approximate symbolic representations
being rehearsed in a computational imagination), or speculative (even fictional). In order
to utilize the computational equivalent of an imagination, an agent’s set of competency
questions and expected answers should be abstracted from its observable utility in a
particular environment for internal deliberation. For example, an agent might use a
terminal pointer, symbol or chunking mechanism to compress recently acquired episodic
data into an imagined rule procedure that could be used in a future interaction scenario.
This “imagined” data can be cross-referenced with its knowledge-base (KB) and
ontology [e.g. 18] in order to determine how reasonable the imagined semantic content
might be. The competency questions themselves might also use the “imagination” for
inspiration and be formulated without any grounded basis in pre-observed empirical
data. Over time, the agent will compare imagined or simulated contemplation scenarios
with those that it empirically perceives from its sensory environment. Regardless of how
they are originally formulated, an agent’s competency questions will be eventually
formulated such that an agent can learn to semantically reify empirically sensed:
subjects, predicates, intrinsic rewards and/or objects. The process of reification itself is
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understood to mean the idea of transforming an imaginary concept into something “real”
and therefore, something computable and reasonable. Such reifications would be contin‐
uously updated within the agent’s Ontology and KB.

Kantian and Computational Representations of “Reasonable Estimation”. Kant
has dedicated two books towards discussing the earthly and transcendent intricacies of
the faculty of reason as it relates to sensation and cognition [3, p. 1788]. The Kantian
definition of reason here has been restricted to narrow the focus on an understanding of
reason in terms of artificial intelligence. Kant basically felt that reason can be subdivided
into two categories, “pure” (i.e. speculative) logical reason based on a priori knowledge
[3, p. 15] and practical (i.e. action-centric) reason based on direct empirical experience
[3, p. 267]. Logical reason could seem to mathematically estimate ideas independent of
empirical experience. Kant, however, still ensured that logical reason could also be
contingent on grounded representational associations with concepts and analogies drawn
from empirical experience (i.e. sensation) [3, p. 132; 7, p. 25]. Anything contemplated
outside of these grounded representational associations would likely be beyond the
realm of pure and practical realms of reason but still well within the visually inspired
realm of the imagination – which harmonizes these representations with the things-in-
themselves [3, p. 103]. Computational definitions of reason typically address mathe‐
matical representation and estimation but can involve: a pre-cached knowledge-schema
(e.g. slot/terminal assignments, operation procedures); the agent’s ontological commit‐
ment towards a particular task, story-world, or knowledge domain; a current perform‐
ance measure progress and evaluation results conforming to a well-defined (and possibly
hard-coded) utility function combined with the expected probability-distribution of an
incoming percept-stream; and a consistent and persistent semantic interpretation of
empirical sense data which can be verified by the scientific process, hard-coded inter‐
pretations and the faculty of mathematical estimation [2, 7, 10]. Computational reason
mostly draws from procedural and semantic memory stores. Prospective memory
storage can also be useful when predicting a new probability distribution. With the third
definition in particular, a rational agent’s performance measure would also be influenced
by competency questions. A reasonable agent must constantly ask new competency
questions so that it continually evaluate and update its ontology (imagined world-model)
in a stochastic real-time environment [7]. During this query-updating process, the agent
might also maintain a reasonable level of competency via maintaining a pointer that
continually refers back to its (hopefully) well-defined original utility function and policy.
Having competency questions answered with empirical evidence will conserve onto‐
logical continuity and deterministic consistency [8]. Regardless of whether these ques‐
tions were hard-coded by a programmer or self-coded by the agent; rationally optimal
questions will already address task-domain procedural, episodic and/or semantic knowl‐
edge within the agent’s ontology/KB slot terminals. Some of this knowledge is tauto‐
logical.

Reason in computational terms ranges from mundane activities such as searching in
a look-up table to situation calculus and hierarchical planning procedures [10, p. 27].
Reasonable knowledge-queries about the world involve: discrete subjects, predicates,
objects, extrinsic rewards and rules as they are not updated continuously. All memory
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banks come into play when the agent when addresses “reasonable” questions but the
most commonly located memory banks for this process are procedural and semantic.
Therefore, this list of competency questions must engage known formulas (e.g. math
equations, more constants than variables and [first-order] logic theorems) and peer-
reviewed empirical evidence about the worlds the agent wishes to address and become
competent within. There are expectations for retrieval-time once these questions are
asked by the agent. Optimization algorithms are preferred to ensure latency and memory
consumption is minimized. Ultimately, a rational agent can be understood as carrying
out an established utility function and a policy with the goal of summing a maximum
number of environmental-rewards that are tallied up until the end of the agent’s finite
lifetime.

2 Kantian Cognitive Intensities from Aesthetic Philosophy

Kantian cognitive intensities are more suitable for addressing AGI mind-component
configurations than with his immediate predecessors (e.g. Burke, 1756). Edmund
Burke’s conception of the sublime intensity, for example, is limited to involving proto-
intelligent representations and affective responses based on fear and the agent’s need
for safety rather than on cognitive interactivity [10]. Kant, conversely, identified cogni‐
tive intensity levels from aesthetic philosophy which can also be hermeneutically
mapped to the artificial mind-design of rational and deliberative agents. The lowest
intensity can be mapped to the least intelligent agent-category while the highest Kantian
intensity could only be addressed by a robust AGI-agent [2]. Two of the Kantian inten‐
sities (i.e. the good and the strange) correspond less to intellectual capabilities and more
to deontic processes (i.e. the former) and solely to aesthetic contemplation (i.e. the latter).
For this reason, those two levels will be disregarded from this AGI cognitive capability
discussion. The scope will also be limited to focuses on one polarity valence. For
example, while the beautiful intensity possesses its inverse valence, the ugly, this aware‐
ness of opposite aesthetic valences does not contribute to the overall understanding of
how Kantian aesthetic intensity levels can be mapped towards cognitive capability
requirements for AGI-agents.

The following Table 1 will therefore show diverse categorical gradations of cognitive
intensities that will discuss moderate (agreeable) to the highest intellectual affordances
(transcendent sublime). These intensity categories begin to diverge towards AGI intel‐
ligence levels once the agent contains and understands computational representations
that allow to the agent’s mind to act according to more disinterested teleological imper‐
atives rather than single-mindedly through its own immediate self-interest (as stated by
the programmer). Only the latter two disinterested intensities apply directly to AGI-level
intelligence so these will be focused on the most in this paper. The lowest (first) intensity
level has been omitted as it only describes pre-intellectual capabilities for handling
rudimentary domestic-level routine tasks.
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Table 1. Kantian cognitive (aesthetic) intensities and associated agent-categories

Agent level Cognitive intensity level Priorities
Pre-AI, AI Mundane N/A
AI (state-of-the-art) Agreeable Self-interest, reason
AI, Proto-AGI, AGI Beautiful Disinterest, imagination
Up to/including AGI Transcendent Sublime Imagination > reason

2.1 The Agreeable (State-of-the-Art AI)

This second Kantian level operates at the baseline where most readers would consider
an agent to be “intelligent”. An agreeable agent will have computational components
such as goals, reinforcement signal processors, and crude metacognitive structuring that
represent a rudimentary sense of self in order to be rewarded for thinking about and
acting within its own world model-specified “self-interest”. However, this intensity is
primarily sustained in only those agents that exclusively pursue limited self-interested
pursuits. Agents that single-mindedly pursue limited interests are conventionally repre‐
sented as narrow AI rather than as agents more acclimatized to general intellectual
contemplation (i.e. AGIs). It is this intensity where an agent will be explicitly
programmed to optimize a self-interested balance between computational representa‐
tions of imagination and reasonable estimation. In an agreeable agent’s mind, a super‐
ficial processing of semantics and some rudimentary awareness – at least of production
rules as well as finite-states and available actions within each state - would come into
play (more so than with a mundane reactive mind, at least). This agreeable agent would
spend cognitive resources deliberating over what was semantically essential, function‐
ally practical, and/or computationally robust (agreeable) versus that which was seman‐
tically irrelevant, cognitively dissonant, and/or computationally taxing (disagreeable).
Explicit functional interactivity serves as the rubric for any experience of cognitive
interactivity at this level. One identifying feature of this particular intensity when it
comes to contemplative purposes is that everything is practically contemplated for the
agent’s self-interest (i.e. intended functionality). Interestingly, an agreeable agent’s
mind might not necessarily require an explicitly represented self-concept in order to act
in its best “self-interest”. This level of contemplation would ensure though that this agent
mentally optimizes its intelligence modules and/or processes (i.e. algorithms) in such a
way that it can carry out the most functional and practical decisions and/or actions. It is
also possible that an agreeable agent would focus on empirical output and related behav‐
ioral output, perhaps even with the intent of successfully faking an AGI-agent’s ability
to function at deeper mentalist aspects of cognition [11, 12]. This level of contemplative
intensity exclusively focuses on common-sense and mostly rational functional interac‐
tivity even for more imaginative cognitive deliberations. Agreeable agent-minds should
not think up (imagine) or contemplate anything that it cannot potentially act upon in a
particular world. Additionally, this agreeable agent’s mind should not waste computa‐
tional time-cycles contemplating any more conceivable inputs than what can be imme‐
diately perceived from an empirically derivable source. At this intensity level, semantic
layers (esp. explicit knowledge types and conceivably alternate inferences) are only
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contemplated for functional and practical ends. Overthinking and deep-thinking are
discouraged from agent-mind contemplation at this intensity level.

Agreeable Agent Categories. Agent-minds operating at an agreeable level of contem‐
plating intensity would optimally range in intelligence from a model-based reflex agent
to a goal-based agent. It is conceivable that a utility-based agent could also engage with
this intensity but having an awareness of a utility usually requires a more holistic higher
and deeper semantic (extra-functional and extra-practical) understanding of how each
of this agent’s goals and motivations relate to one another. The more practical and func‐
tional the overall utility would be in the larger interactive schema, the more likely an
agreeable agent could belong to the utility-based agent category. The state-of-the art
currently focuses on narrow agreeable AI and only in recent years, has an AGI
community arisen that is interested in designing agents that can contemplate at higher
intensities than the agreeable [13].

2.2 The Beautiful (Proto-AGI, Early AGI)

Unlike the agreeable, a higher cognitive engagement results from an AGI-capable agent
experiencing the beautiful. This is because no perceivable and/or explicitly programmed
personal gain nor loss for the agent would result as a consequence of this contemplation.
It is a functionless aesthetic pleasure-in-itself without any concern for meeting intrinsic
and extrinsic goals, drives, and motivations. For example, an agent might take a disin‐
terested formal pleasure in contemplating colors, textures, patterns and forms for their
own sake regardless of whether they explicitly contribute to the agent’s survival and/or
programmed drives. The beautiful contemplative level runs at a slightly higher intensity
level than the agreeable intensity. Firstly, this intensity type engages in disinterested
rather than self-interested contemplation modalities. By entering into a cognitive state-
intensity level of contemplative disinterestedness, a beautiful agent is likely to prefer
entertaining imagined over reasonable cognitive states without explicit teleological ends
in mind. The contemplation of conceivable outcomes requires that the agent’s mind can
imagine possible inferential outcomes (i.e. using its imagination via simulation) while
being able to transcend its own goals, drives, and motivations. The act of deploying an
artificial imagination with metacognitive reflection very likely indicates the non-trivial
usage of more computational cycles.

Beautiful Agent Categories. This intensity relies on disinterestedness and at the very
least, likely requires some computational representation of value that can be used to
assess the overall utility of goals, drives, and motivations [14]. It is only through a meta-
evaluation of these self-interested goals would a beautiful agent’s mind be sufficiently
able to transcend each goal’s self-interested purpose and view the overall utility from
the vantage of cognitive disinterestedness. Therefore, the beautiful mind must possess
enough AGI-ready metacognitive capabilities to assess the teleological value of no
longer acting in its immediate self-interest. The lowest agent-category for assessing self-
interested goals from a disinterested teleological perspective would be that of the utility-
based agent. It is just as likely that learning agents [3] and even knowledge-seeking
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agents would contemplate percepts at this intensity level [15]. This intensity level would
also require an agent’s mind to be able to imagine unreasonable scenarios for contem‐
plation purposes while still retaining robust cognitive functionality. Utility-based agents
would meet the minimum requirements to consistently imagine concepts that are not
always contingent on precise reasonable estimation.

2.3 The Transcendent Sublime (up to and Including AGI)

This particular contemplative (aesthetic) intensity differs from the other ones in that the
Kantian sublime transcends dualistic notions of valence. Kant’s official definition of the
transcendent sublime differs from Burke’s sublime in that the cognitive interplay
between one’s imaginative and reasonable faculties are more important to contemplative
(reflective) judgment than to Burke’s emotional appeal to the empirical sensations of
fear and looming mortality. In particular, the Kantian transcendent sublime “at once [,]
a feeling of displeasure, arising from the inadequacy of imagination in the aesthetic
estimation of magnitude to attain to its estimation by reason, and a simultaneously
awakened pleasure, arising from this very judgment of the inadequacy of sense being
in accord with ideas of reason, so far as the effort to attain to these is for us the law”
[1, p. 106]. Immediately after sublime phenomena is present and noticeable, the agent’s
mind initiates a dynamic race between accelerating cognitive faculties of imagination
and reason. Kant’s transcendent sublime is a threshold state that is on the absolute edge
of surpassing both of these competing faculties and is placed at the highest expected
contemplative intensity and reserved for the highest intelligent agent-categories. To have
the imagination completely exceed the limits of intellectual functionality is not sublime
as the phenomenon would merely be beyond any agent’s comprehension (including a
super-intelligent agent).

A computational representation of the transcendent sublime can include the uncanny
ability to seemingly contemplate and predict a prospective generative percept-stream
(future states, operators, probability distributions, actions etc.) and/or simulated input-
output procedure that exists primarily outside of or beyond (or in parallel to) the agent’s
and the virtual-agents’ established capabilities of mathematical estimation. The tran‐
scendent sublime must include but not surpass an agent’s understanding of: a sensory
apparatus, and pre-cached knowledge-schema (e.g. slot/terminal assignments, operation
procedures). While experiencing this cognitive threshold state, an AGI-agent could also
engage in a form of contemplative creative-reinterpretation (or misinterpretation) of a
KB and/or ontology that can include sensory data as its imaginary inspiration. Symbols
being grounded in an artificially produced transcendent sublime experience might make
use of infinite recursion within the code-structure and/or within an AGI-agent’s self-
improvement mechanism(s). From this definition, an agent’s recursive self-improve‐
ment would possess capabilities, behaviours, beliefs, and actions that eventually surpass
the imagination and mathematical estimation of the original seed programmers [16]. An
AGI-agent would also display an excess of initial reasonable and imagined cognitive
states, operators, estimations, and decisions that surpass a narrow-AI agent’s ability to
mathematically estimate the likelihood of successor candidates for those states, opera‐
tors, search-spaces, and decisions etc. Such computationally operational spaces should
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be perceived as vast enough to temporarily confound the mathematical and imaginative
estimative predictions of the perceiving agent’s mind. However, these operational
spaces should also be expressed with contextual appropriateness in order to not have the
agent’s preferred or selected states/operators appear as arbitrary or random –within its
own mind.

Transcendent Sublime Agent Categories. Only a small number of artificially intel‐
ligent agent minds can reach the AGI-pertinent benchmark of contemplating the cogni‐
tive threshold of the transcendent sublime before either losing symbol-grounding tract‐
ability and/or no longer grasping what is being contemplated in a particular world-model
(and/or within the artificial agent’s own imagination). Even some human BGI-minds
would have difficulty being able to cognitively function once imaginative possibilities
surpasses the ability to reasonably estimate the plausible outcomes of these possibilities.
Ultimately, an artificial agent must be of a sufficiently high enough cognitive category
to be able to not only handle cognitive disinhibition but also metacognitive monitoring,
reasoning, and regulation [9]. An agent functioning at a lower level than a proto-AGI
utility-based agent might simply get confused more easily and/or even ignore the
contemplated phenomenon outright for not showing any immediate teleological (i.e.
functional and practical) value. The AGI-agent’s mind must be able to imagine many
different cognitive states in order to explain the probability of alternate semantic explan‐
ations for the existence of a particular percept or concept. The state-space of this explan‐
atory inference making would exponentially scale to be barely manageable for most
minds and would certainly tax architectural memory systems and decision-making
mechanisms. Any agent-level lower than this, and the agent’s mind will not be able to
even imagine or estimate the cognitive phenomenon worth deeply contemplating.

3 Conclusion – Research Value for AGI

Contemplation and its associated intensification processes are semantically very difficult
to articulate when assessing computational rubrics for AGI-agent minds. Kantian
aesthetic principles in this semantic context, act as operational metaphors for under‐
standing the hermeneutics of generally intelligent cognitive mechanisms and agent-
levels. Operational metaphors – such as the Kantian transcendent sublime as an aesthetic
metaphor for the cognitive limits of contemplative intensity - are more than mere rhet‐
orical devices used to loosely describe the semantic ambiguities of a phenomenon in
qualitative terms. Within the AI and AGI communities, metaphors alone are sufficient
as a “[…] conceptual lever that allows a system [incl. agent] to extend its model of the
world” [17, p. 1]. Through the methodological process of metaphorical creative intro‐
spection, one can leverage a trans-disciplinary knowledge base from the humanities
domain and transfer this knowledge about aesthetic principles to the more technological
domains of theoretical AGI and its associated agent-categories.
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Abstract. This paper conducted a semantic analysis of environment
programs that are used in the Algorithmic Intelligence Quotient test
to evaluate the intelligence of agents. The analysis identified several
classes of programs that are non-discriminative or contain pointless code
adversely affecting the testing process. Extensions of the test were imple-
mented and verified to reduce the proportion of problematic programs
thus increasing the suitability of the Algorithmic Intelligence Quotient
test as a general artificial intelligence evaluation method.
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1 Introduction

One of the cardinal questions of artificial general intelligence (AGI) [2] is “What
is intelligence and how can it be evaluated in an artificial system?” Attempts
to answer this question can be traced back to Turing [15], however, it was the
work on C-Test [4] that first used the Algorithmic Information Theory in a test
of intelligence, effectively founding a new area of research, one focused on a
universal evaluation of intelligence [6].

The question at hand is not only a call for a test, it is also a call for a
definition that could serve as a formal foundation for the test. One such definition
is the Universal Intelligence of Legg and Hutter [11]. Based on a study of a
broad variety of definitions, theories, and tests of human, animal, and artificial
intelligence given in [10], Legg and Hutter derived the following informal version:
“Intelligence measures an agent’s ability to achieve goals in a wide range of
environments” [11]. They also give its formalization as shown by Eq. 1.

Υ (π) :=
∑

μ∈E

2−K(μ)V π
μ , where V π

μ := E

( ∞∑

i=1

ri

)
≤ 1 (1)
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The Universal Intelligence Υ of agent π is given by its ability to achieve goals
as defined by a value function V π

μ as maximizing the expected sum of all future
rewards (given a history of interactions) over a set E of environments μ weighted
by algorithmic probability that uses Kolmogorov complexity K [11].

While the Universal Intelligence definition has several desirable properties,
it is not computable [11], and as noted e.g. in [1,5,7,8] it has several other
limitations. The Anytime Intelligence Test proposal of Hernández-Orallo and
Dowe [7] also discusses several aspects that must be considered when converting
the uncomputable definition into a practicable intelligence test.

The existing implementation of the Anytime Intelligence test [9] remains
rather limited. A more powerful intelligence test called Algorithmic Intelligence
Quotient (AIQ test) was introduced by Legg and Veness [13]. The AIQ test, as
given in Eq. 2, is a computable approximation of Universal Intelligence.

Υ̂ (π) :=
1
N

N∑

i=1

V̂ π
pi

, where V̂ π
pi

:=
1
k

k∑

i=1

ri (2)

The AIQ Υ̂ of agent π is given by its ability to achieve goals as defined by an
empirical value function V̂ π

pi
as total reward from a single trial of an environment

program pi averaged over a finite sample of N programs sampled according to
Solomonoff’s Universal Distribution: MU (x) :=

∑
p:U(p)=x∗ 2−l(p) [13].

The environment programs of the AIQ test are Turing-complete programs,
built using a modified BF language [14], which compute the current reward
and observation from the interaction sequence with the agent. The modified BF
language (also referred to as a reference machine) uses 10 instructions [12,13]:

– +- increment/decrement respectively the symbol on the working tape,
– ,. read the agent’s action from an input tape and write to the current cell

of the work tape/write the current cell of the work tape as a reward (the 1st
write) or observation (the remaining writes) to the output tape respectively,
and move the respective input or output tape pointer to the right,

– <> move the work tape pointer to the left or right,
– [] start a loop if the current work cell is non-zero/end the loop respectively,
– % write a random symbol to the current work cell,
– # end program.

There are only a few limits imposed on the environment programs: 1. the com-
putation of each interaction is limited to 1,000 steps. 2. programs are halted
if they try to write more than the set number of reward and observation sym-
bols. 3. read and write instructions are mandatory, reducing the proportion of
non-interactive (passive) programs. Such environment programs are called non-
discriminative by [7] since they do not meaningfully contribute to the agent’s
evaluation. Therefore, any testing effort using such programs is wasted.

This paper, following the suggestion of [16], has two goals: First, an analysis
of the environment programs used by the AIQ test will be conducted in Sect. 2
in order to determine the exact extent of the problem of non-discriminative
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programs, as well as to identify other potential issues with the programs. Second,
in Sect. 3, an attempt will be made to improve the BF program sampler so that
the proportion of problematic programs is reduced. The paper will be concluded
in Sect. 4 together with the discussion of future work.

2 Semantic Analysis of Environment Programs

Research questions will be stated in Sect. 2.1. Section 2.2 will describe the pro-
posed method called semantic analysis of environment programs. A summary of
its results will be given in Sect. 2.3. Section 2.4 will discuss the results briefly.

2.1 Research Questions

As [16] argues, a closer look at at the environment programs used in the AIQ
test could allow improved interpretation of the test results, as well as answer
some of the concerns raised in [7]. The following questions will be investigated:

– How does chance influence an agent’s rewards and observations?
– How do the actions of an agent influence its rewards and observations?
– What are the forms of code that can be considered pointless?

2.2 Method Overview

A method was proposed by [16] that “consists of identifying the semantics of an
environment program class and describing its possible syntax in BF language
using regular expressions.” This section will elaborate on the method so that all
the required steps are clear and sufficiently developed.

Semantic Classes. The first step of the method is to specify the semantic
class in question as a set of environment programs with given semantics. The
semantics can be specified rather informally since its formalization will be arrived
at in the following steps. An example is: The agent’s reward is always random.

Syntactic Classes. The second step of the method is to derive one or more
syntactic classes from the specified semantic class. The syntactic class is a rather
formal expression in generalized BF language containing both specific fragments
of BF syntax that are required, as well as possibly optional variables for frag-
ments of BF syntax that are to meet given conditions.

An example of one of the syntactic classes for the previous semantic class is
the expression a%p.z#. Conditions for the variables apz should be sufficiently
formal that they can be easily converted into regular expressions. For example,
fragment p can only contain instructions +- and can be of a zero length.
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Regular Expressions. The third step of the method is to convert the spe-
cific syntactic class to one or more regular expressions.1 For the demonstration
in this paper, Pearl Compatible Regular Expressions (PCRE) [3] are used as
implemented in GNU Grep. An example of one possible regular expression for
the (fully specified) previous syntactic class is ^[^\[\.]*%[\+\-]*\..*#. One
drawback of combining BF language with PCRE is that many BF instructions
are also meta-characters of PCRE, increasing the need for escaping.

Limits of the Method. The introduced method of semantic analysis is neces-
sarily incomplete, and, depending on the level of detail in the expressions used,
also inaccurate. These limits are mainly due to the fact that:

– There are many possible syntactic means to describe any given semantics,
making it hard to identify all the syntactic classes for a given semantic class.

– There are syntactic limits of regular expressions that do not always allow for
the exact capture of all the conditions of syntactic class variables.

Therefore, the results should be treated as estimates in form: “For at least about
x% of environment programs it is likely the case that. . . ” Due to the possibility
of nesting, worse estimates are more likely wherever loops are concerned.

Despite the above-stated limits and given adequate effort, the method can be
considered to be sufficiently complete with respect to the environment programs
sample, as well as sufficiently accurate with regard to the research questions.

2.3 Results

Semantic analysis gives two kinds of results. The first is a detailed specification
of semantic and syntactic classes. The second is an estimated proportion of the
classes in the BF programs sample. See the Appendix for the full results.

A sample of 200,000 environment programs for the BF reference machine with
5 action symbols (BF 5) generated by the original AIQ test [12] is described in
the summary. Other settings were analyzed leading to similar results.

Role of Chance. About 76% of programs in the sample contain the instruction
% that was added by [13] to the original BF language to enable indeterminism.
The following classes are of a special concern for an agent’s evaluation:

1. The agent’s reward is always random as described e.g. by a%p.z#, where
a cannot lead to premature termination, nor can it contain loops that are
not closed, nor can it contain the write instruction. Fragment p can only
contain instructions +- and can be of zero length. Fragment z can contain any
instruction. A simple example is %.,#. Such programs are non-discriminative
according to [7]. The proportion of this semantic class is about 17%.

1 If the class is precisely specified, one regular expression should suffice. Increasing the
number of regular expressions can, however, improve readability in some cases.
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2. The agent’s observation is always random has a proportion of 5%. This class
can be confusing for the agent since it has to ignore unrelated observations.

3. The agent’s reward is almost always random as given by, e.g. a%p[q.z]y#,
where q can contain instructions +-[% and may be of zero length. Fragment y
must contain at least one write instruction that is guaranteed to be executed.
A simple example is %[.],+.#. Such environments test the ability of an agent
to learn the activity described by y even with noisy feedback. This class,
however, hinders evaluation since it limits the total achievable reward.

4. Certain actions lead to random reward as described e.g. by a,p[p%p.z]y#. A
simple example is ,+[%.].#. This class is similar to the previous, however it
is the agent that controls the noise in the feedback.

As illustrated above, chance can play different roles in environment programs.
The more interesting classes 2, 3, and 4 are, however, rather rare in the samples.

Role of Agent’s Action. All environment programs have to contain an instruc-
tion that reads an agent’s action [12]. There are, however, about 9% of environ-
ment programs in which the instruction is only part of pointless code. These
cases most likely coincide with the class agent’s reward is always random.

In the case of a meaningfully processed instruction, there are different roles
it can play in the environment:

1. The agent’s reward is always trivially dependent on its action (like .,# or
,+.#). This occurs in about 34% of cases.

2. The agent’s observation is always trivially dependent on its action (like
,+.,.#). This occurs in about 8% of cases.

3. The agent’s reward can be sometimes trivially dependent on its action (like
+[,.>]%.<#). This occurs in about 11% of cases.

4. Certain action activates a certain process (like ,[>++<[+]]>.#). This occurs
in at most about 50% of cases. These programs can test complex behaviour.

Never-Ending Loops. Some cases of never-ending loops are removed by [12],
however, since they do not consider multiple loop levels and more complex forms
of syntax, about 2% of programs still contain some form of never-ending loops.

Premature Termination. In order to avoid the halting problem, step
and write limits were implemented that can terminate programs prematurely
[12]. Semantic analysis can detect some cases when the write limit is exceeded,
i.e. the program tries to write more then a set number of reward and observa-
tion symbols. 9% of programs are guaranteed to exceed this limit, and a further
22% allow for the possibility of triggering it. These percentages decrease with
the increase of the write limit on reference machines with a higher number of
observations.

Pointless Code. Some of the randomly generated code of environment pro-
grams is necessarily pointless, complicating its analysis and giving it a false
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sense of complexity. Only some of the very basic forms of pointless code are
removed by [12]. There seem to be two main types of classes:

1. Part of the program is not executed as specified by an# or anz# where n is
the non-executed code effectively reducing the programs to a# or az#. This
class can be further divided into:
(a) Programs with never executed loops as described e.g. by a][n]z#, where

[n] is pointless. This class has a proportion of about 13%.
(b) Programs that are always prematurely terminated due to a write limit that

makes the remaining code pointless. The proportion is about 9%.
2. Part of the executed program is canceled out by some other part as typically

described by aprz# where p is made pointless by r, reducing the program to
arz#. Several more specific sub-classes can be identified:
(a) Pointless modifications of chance as described by a%pz# where p contains

a non-zero length combination of +-. This class has a proportion of about
36%, and the programs can be reduced to a%z#.

(b) Code overwritten by action-read or chance as given by aq%z# or aq,z#,
where q contains a non-zero length combination of +-,%. An example of
such a program is ,.,+%#. This class has a proportion of about 74%, and
the programs can be reduced to a%z# or a,z# (if the number of action-
reads from the original program is kept).

(c) Zeroing overwritten by action-read or chance as described by a[p]%z# or
a[p],z#, where p contains a non-zero length combination of +-%. With a
proportion of about 5% the programs can be reduced to a%z# or a,z#.

(d) Zeroing of chance or action-read as described by a%[q]z# or a,[q]z#,
where q contains a non-zero length combination of +-,%. An example
of such a program is ,+.,[,+]>%.#. This class has a proportion of 6%,
and the programs can be reduced to a[+]z# (in cases of the overwritten
action-read, there may be no action-read in z).

2.4 Discussion

While necessarily incomplete and only an estimation, it was shown practically
that semantic analysis of environment programs produces interesting results. The
underlying cause of the identified problems within AIQ test environments seem to
lie in the fact that the programs are randomly sampled, thus frequently resulting
in pointless code, simple programs, and even non-discriminative programs.

As proposed by [7], a switch to a more suitable reference machine may solve
the identified problems. However, as argued by [16], it is also possible to try to
reduce the proportion of the problematic programs, and the conducted semantic
analysis actually gives the necessary information to do this. Since the resulting
program sample can be reused in many tests of many agents, it is worth to invest
the effort in making a good sampling procedure to gain efficiency for evaluation.

Applying the results of semantic analysis in an effort to improve the BF
sampler will not always be straightforward, since the analysis was designed with
class proportion estimation in mind. Thus, e.g. all programs with never executed
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loops can be easily identified by having ][ fragment, however, it is not that
simple to match all the possible code of the actual never executed loop with a
regular expression. This may not be a problem in case the problematic programs
are simply dropped, however, such an approach may significantly prolong the
sampling, thus the severity of the identified problem should be also considered.

3 Improving Environment Programs of the AIQ Test

Section 3.1 will introduce an improvement to the AIQ test aimed at reducing the
abundance of pointless code in its environments. The improvement that decreases
the proportion of non-discriminative programs will be described in Sect. 3.2. See
the Appendix for the sources of the extended AIQ test.

3.1 Removing Pointless Code

Since pointless code obfuscates environment programs, its removal should be
attempted first as it will facilitate improving the discriminative power.

Implementation. First, the program optimization was changed from one-time
code replacement in the original test to a repetitive replacing procedure, which
enables multiple optimizations to take place. This behaviour (SEP-orig) keeps
the original replace patterns, and was made the new default for the BF sampler.

Furthermore, additional replace patterns were added based on the regular
expressions that resulted from the semantic analysis. Due to the limits of code
replacement and regular expressions, only class 2 pointless code was addressed.
Also, some of the conditions had to be made stricter than they had previ-
ously been in the case of class proportion estimation. Notably, action-reads were
excluded from q in 2 (b) and 2 (d) classes, since the current approach cannot
enforce the necessary conditions on the z fragment. This functionality (SEP-ext)
can be enabled by --improved optimization switch.

Evaluation. To validate the implemented function, new samples of 200,000
programs for BF 5 reference machine were generated using SEP-orig and SEP-
ext, respectively. Practically no differences between the SEP-orig and the original
sample were detected using descriptive statistics according to a program length
as well as conducting semantic analysis. As for the SEP-ext sample, its programs
are somewhat shorter than in the original sample. As expected, the proportion
of all cases of class 2 pointless code decreased noticeably with 2 (a) decreasing
to 2%, 2 (b) to 23%, 2 (c) to 0, and 2 (d) to 5%.

Since the implemented SEP methods are code-optimization methods, they
can be considered valid if the returned results are comparable to the original test.
Validation experiments with the new samples were conducted using the default
settings as reported in [16]. These were compared with the results achieved
on the original samples using the function also introduced in [16] that saves
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intermediate results every 1,000 interactions (EffEL). Paired samples t-test did
not show significant differences in case of SEP-orig when used in short episodes.
However, at long episodes, weakly significant negligible differences were shown.
Furthermore, in case of SEP-ext, strongly significant difference was discovered.
For the episode length of 100,000 interactions the difference is 1.5 ± 0.3 between
the average of the results in SEP-ext and in the EffEL experiment, t(24) =
11.10; p = 6.2 × 10−11. See the Appendix for the full validation results.

Discussion. The implemented functionality successfully reduces the propor-
tion of chosen types of pointless code. According to the experimental validation,
SEP-orig can be considered a valid code-optimization method, however, SEP-
ext seems to actually change the “quality” of the environment programs used,
possibly increasing their discriminativeness. Therefore, SEP-ext cannot be con-
sidered only a code-optimization method, and its results should not be directly
compared to the original test. Nevertheless, its usage can be recommended.

To further reduce the proportion of the pointless code a different approach is
needed. There remain the cases where PCRE can be used to identify the program
as problematic, but not to select the code to be replaced. There also remain the
cases where conditions in the non-replaced parts of the program have to be met.

3.2 Improving Discriminative Power

Now that the abundance of the pointless code is reduced, removal of non-
discriminative programs can be attempted.

Implementation. For this improvement, a procedure that classifies sampled
environment programs was extended to use the regular expressions resulting
from the semantic analysis. Programs of the agent’s observation is always ran-
dom class are newly classified as passive which effectively excludes them from
the final sample. Some of the conditions had to be made stricter than they
were in the case of class proportion estimation. This functionality (SDP) can
be enabled by --improved discriminativeness switch. Combination with the
SEP-ext improvement is highly advised, since the variants containing pointless
code are not included among the added regular expressions.

Evaluation. To validate the implemented function, a new sample of 200,000
programs for BF 5 reference machine was generated using the SDP function
in combination with SEP-ext. Programs from the new sample are somewhat
longer than in the SEP-ext sample, yet not as long as in the original sample. As
expected, the proportion of the agent’s reward is always random class decreased
to 4%. This was compensated mainly by the increase of proportion of the agent’s
reward is always trivially dependent on its action class to 41%, however, a slight
increase was also registered for the more interesting agent’s reward can be some-
times trivially dependent on its action class. Moreover, the proportion of 2 (b)
pointless code class decreased further to 20%.
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The implemented SDP function is not a code-optimization method, but it
is designed to reduce the proportion of non-discriminative environments that
artificially decrease the AIQ score of agents by returning random rewards only.
Therefore, the method can be considered valid if it enables the agents to score
higher AIQ than the original test, thus showing a more reasonable distribution
of rewards. A validation experiment with the new sample was conducted using
the default settings as reported in [16]. These were compared with the results
achieved on the SEP-ext samples from the previous experiment. One-sided paired
samples t-test did indeed show significant increase in average AIQ between the
SDP and SEP-ext experiments. For an episode length of 100,000 interactions
the increase is 8.7 with a confidence interval of (8.5;∞), t(24) = 87.16; p =
7.7 × 10−32 (shorter episodes resulted in the somewhat lower increases but with
similar levels of significance.) See the Appendix for the full validation results.

Discussion. The implemented functionality successfully reduces the proportion
of the chosen type of non-discriminative environments. According to the exper-
imental validation, SDP can be considered valid. Since the method changes the
“quality” of environments, its results should not be directly compared to the
original test. However, as it also increases the representativeness of the AIQ
score (by testing on a higher number of discriminative environments), the usage
of the SDP method is highly recommended.

As for the remaining 4% of non-discriminative programs identified by the
subsequent analysis, these may result from the way regular expressions are for-
mulated when used to estimate the class proportion. These expressions (unlike
those in SDP extension) may not precisely capture all the conditions of the
semantic class. This remains a viable path for further investigation.

4 Conclusion and Future Work

This paper attempted to analyze the code of environment programs used in the
AIQ test of [12,13]. The goal of the analysis was to determine the extent of
the problem with non-discriminative environments first noticed in [7], as well as
to identify other possible problems with the programs. To address this goal, a
method suggested in [16] that is called semantic analysis of environment pro-
grams was used. The method was elaborated on in this paper, clearly specifying
all the necessary steps. It was discovered that non-discriminative environments
exist in considerable numbers as well as that rather simple programs occur fre-
quently and some forms of pointless code are prevalent in the programs. These
results suggest that the random sampling of environment programs used by the
AIQ test is not very efficient in producing meaningful environment programs.

Based on the semantic analysis, these problems can be mitigated by using
post-processing on sampled programs. BF programs sampler of the AIQ test
was extended so that it can optionally reduce the proportion of chosen types of
pointless code as well as non-discriminative programs. These extensions were
successfully verified using followup semantic analysis as well as experimental
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validation with the AIQ test in a default setting. The implemented extensions
SEP-ext and SDP should, therefore, be used when testing agents with the AIQ
test. The presented results show that semantic analysis of environment programs
is a useful method even though it is necessarily incomplete and only estimatory
in nature.

There are several areas for future work. Since program classes can be iden-
tified by the semantic analysis, it is possible to investigate the exact influence
of each class on an agent’s results. A class of environment programs was iden-
tified in which an agent’s reward is almost always random. While such a class
is discriminative, the achievable average accumulated reward is limited, nega-
tively impacting the AIQ score. Ways of integrating such cases into the overall
score should be searched. Some types of pointless code that require a different
approach to solve were not addressed in the presented extensions of the BF
programs sampler. When the identified problems are addressed, a second round
of semantic analysis should be considered as some of the currently infrequent
problems may become more prevalent.
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Appendix

Full results of the conducted analyses and experiments are available from:
https://github.com/xvado00/IATEP/archive/v1.0.zip.

A tool to conduct the semantic analysis is available from: https://github.
com/xvado00/SemAnEP-tool/archive/v1.0.zip.

Full sources of the improved test extending the version presented in [16] are
available from: https://github.com/xvado00/AIQ/archive/v1.2.zip.
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Abstract. This paper argues that according to the relevant discover-
ies of cognitive science, in AGI systems perception should be subjective,
active, and unified with other processes. This treatment of perception
is fundamentally different from the mainstream approaches in computer
vision and machine learning, where perception is taken to be objective,
passive, and modular. The conceptual design of perception in the AGI
system NARS is introduced, where the three features are realized alto-
gether. Some preliminary testing cases are used to show the features of
this novel approach.

1 The Nature of Perception

In general, “perception” refers to the organization and interpretation of sensory
information during the interaction between the system and its environment. The
perceptual process is usually taken as a multi-level generalization or abstraction,
by which the sensory information of various modularity is gradually transformed
and integrated into a concept-level description of the environment, then used to
carry out various types of task, like the recognition of objects and events [20].

A representative and influential work in this field is Marr’s work on vision [15].
Marr described vision as a computation where the input is a two-dimensional
signal array and the output is a three-dimensional description of the world. The
system implements an algorithm that carries out this computation. In the early
years, algorithms for perception (vision, speech, etc.) were designed directly by
the researchers. These algorithms extract certain predetermined features from
the input, and then decide the output according to them. Later, machine learning
let the computer system itself choose the features for a given problem, using the
training data as guidance [6]. Most of the recent achievements of deep learning
are obtained by designing special learning algorithms to take the advantage of
the abundance of training data and computational power [14].

Though the current techniques work well on many problems, they lack gen-
erality and flexibility, and the processes and results are hard to explain. These
issues are of special significance in AGI systems, where perception often faces
novel situations, and real-time response is required. These problems are all well
known, though most researchers attempt to solve them within the framework of
an existing technique, such as deep neural networks. What we want to propose
in this paper is an alternative approach.
c© Springer Nature Switzerland AG 2018
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This new approach toward perception in AGI is mainly based on the research
results on human perception [2–5,7–13,16–19,22,23]. Because of the length
restriction of the paper, in the following we cannot survey these results, but
summarize them into three key features:
Subjective: Perception is a constructive process carried out according to the
current needs of the system, and the sensory information is organized using the
available percepts (patterns, mental images) and concepts (notions, categories)
of the system. Consequently, different systems may perceive the same situation
differently, and even the same system may perceive the same situation differently
in various time and context, though some similarity can be expected. According
to this opinion, perception should not be treated as a function or computation
that maps every sensory input into a unique “correct representation”, and the
aim of perception should not be considered as creating an “objective model”
of the world. Here “subjective” does not mean “arbitrary” or “random”, but
“depending on the system’s past experience and current status”.
Active: Perception should not be taken as a process in which the system pas-
sively processes the sensory information imposed on it by the user or the environ-
ment, but a goal-guided process in which the system selectively acquires certain
information via the execution of its own operations. According to this opinion,
perception is not a pure input process, but should be studied together with the
related actions of the system. Perception is not mainly about signal processing
or pattern recognition, but sensorimotor coordination where the system predicts
the sensory effects of its own actions.
Unified: Perception should not be considered as carried out by a separate mod-
ule that is independent of the other cognitive processes, but as closely tangled
with them. In particular, many basic perceptual operations can be treated as
inference, and learning in perception is not that different from learning in cogni-
tion in general. Though perception can still be considered mainly as a multi-level
generalization with a certain degree of modularity, it is not a purely bottom-up
process, but heavily influenced by top-down forces. In a system with multiple
types of sensor, the integration of the information happens at early stages of the
process, rather than until each modality-specific modules completes its work.

This new opinion about perception challenges the basic assumptions of many
existing AI techniques, and is not completely unknown to the AI community.
Various types of “top-down” influence introduce subjective factors into percep-
tion [28], the “active vision” approach integrates action into perception [1], and
to include reasoning in perception is a hot topic in the deep learning research
[21]. Even so, we have not seen an approach with these three features altogether.
Furthermore, in most projects perception is still treated as objective, passive,
and isolated.

In this paper, we explore a new direction with the above natures from the very
beginning. Such an attempt cannot be accomplished soon, but there are reasons
to give it a try. In the following we introduce a preliminary design, as a first step
in this direction. The following design is an addition to NARS (Non-Axiomatic
Reasoning System), which is an AGI system that has been described in a large



Perception from an AGI Perspective 261

number of publications, including [25,27]. Limited by paper length, here we only
describe the components of NARS that are directly related to perception.

2 Representation and Semantics

NARS uses the formal language Narsese for both internal representation and
external communication, and its grammar is given in [27]. Narsese is a term-
based language, in which each term is the identifier of a concept within the
system. Unlike traditional “symbolic AI” systems, the meaning of a term in
NARS is determined not by an entity outside the system it refers to, but by
its experienced relations with other terms, and sometimes also by its built-in
relations with certain sensorimotor component. Beside atomic terms, there are
also compound terms composed from other terms by logical connectors, whose
compositional relations with its components also contribute to the meaning of
such a term [24].

As far as perception is concerned, terms can be divided into the following
types:

– A sensory term is an array that represents concurrent sensations pro-
duced by the same type of sensor. An array can be 1-dimentional (vector),
2-dimensional (matrix), or 3-dimentional (space). The familiar format A[i,j,k]
will be used to indicate a component in array A. For example, after every
visual observation the sensors for brightness produce a 1024-by-1024 matrix
B, where each ‘pixel’ B[i,j] represents the brightness produced by a sensor at
the location indicated by the indexes.

– A perceptual term is also an array, though it is not directly produced by sen-
sors, but constructed from other sensory and perceptual terms. For example,
a perceptual term P can be obtained by taking a part of a sensory term S.
More descriptions on this type of term are in the following.

– An operational term represents an executable operator, and an operation is
an operator applied on a list of terms (as argument), which can be either a
physical operation on the external environment, or a mental operation on the
internal environment, i.e., the memory of the system. Operations can be com-
pounds, too, formed from other operations recursively and hierarchically [26].

– An abstract term does not have direct sensorimotor association as the above,
so is just an identifier that gets its meaning from its experienced or compo-
sitional relations with other terms [24].

Conceptually, sensory and perceptual terms can be taken as multi-
dimensional spaces with a coordinate defined on each dimension in the range
of [−1, 1], though each space is stored discretely in an array. In this way, many
operations on these terms can be defined independently of the storage size of
the arrays involved. For instance, an element of a matrix A can be identified
either as A[i, j] with index i and j, or as A(x, y) with coordinates x and y. For
each dimension, the coordinate x and the index i (from 1 to N) can be linearly
mapped into each other according to the relation (x + 1)/2 = (i − 1)/(N − 1),
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that is, x = (2i−N − 1)/(N − 1) and i = ((N − 1)x+N + 1)/2. Since an index
must be an integer, the mapping result for i may either be rounded, or used at
both integers around it with a confidence discount, depending on the nature of
the operation.

Terms are related by a number of copulas (which can be inheritance, similar-
ity, implication, or equivalence) to form a statement, and its truth-value measures
the evidential support the statement gets according to the system’s experience.
A truth-value consists of a pair of values, where the frequency value represents
the proposition of positive evidence among all evidence, so is in [0, 1], while
the confidence value represents the proposition of currently available evidence
among all evidence at a future time after a constant amount of new evidence
arrives, so is in (0, 1). NARS stands for “Non-Axiomatic Reasoning System”,
since in the system no empirical belief has the status of axiom whose truth-value
cannot be adjusted by future evidence [24].

For perception, each group of sensor can be invoked by an operator to receive
certain signal (which can be physical, chemical, biological, electrical, etc.), and
the result corresponds to a statement S → [T ], where S is a sensory term, T
the type of the sensation, and ‘→’ the inheritance copula. In this context, the
statement just classifies the sensation as of a certain type. Since S is an array,
each element in it stores a Narsese truth-value, where frequency is intuitively
the “strength” of the sensation, and confidence is intuitively the “reliability”
of the sensation. The truth-values at different locations of the same array can
be different, where the frequency distribution corresponds to the spatial pattern
of the sensation, and the confidence distribution may summarize various factors
like noise, resolution, attention, etc. In particular, a perceptive field of any shape
can fit into a multi-dimensional array by assigning the irrelevant elements a 0
as confidence, so they will make no impact to the following perception process.

3 The Construction of Perceptual Terms

Terms in NARS can be obtained directly from the system’s experience, or con-
structed by the system from the existing terms using composing/decomposing
rules [27]. For the current discussion, sensory terms are produced by the sensors,
while perceptual terms are constructed by the system from the existing sensory
or perceptual terms.

To directly construct a perceptual term B from a sensory term A, four param-
eters are needed. Taken 2-dimensional terms as example: a pair of coordinate
(x, y) is taken to set a focus point at A(x, y) to be used as the center of B.
The other two parameters are used to decide the scope of perception: a center
value will be the radius of the circular area around A(x, y), in which the truth-
values of A will be copied into B as they are; a boundary value will be the
width of the peripheral zone around the central area, in which the truth-values
of A will be copied into B after a discount factor is multiplied to the confidence
value, and this factor decreases linearly from 1 to 0 when the point moves away
from the center. This operator will get a circular copy of a part of A, with the
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boundary blurred gradually. The elements of B outside the boundary will all
have confidence 0. For default, we set x = y = 0, center = boundary = 0.5.

Perceptual terms can also be constructed from other perceptual terms by a
mental operator that adjusts the parameters, where ‘⇑’ is the prefix of operators:

– ⇑focus(x, y) will set the focus point to the given coordinates.
– ⇑shift(dx, dy) is effectively focus(x + dx, y + dy). This operator allows the

focus point to be adjusted relatively to the current position.
– ⇑zoom(z) changes center and boundary by multiplying z to them. When

z > 1, it is “zoom out”; When z < 1, it is “zoom in”.
– ⇑rotate(a) turns the perception around the focus point clockwise to the

angle a.

Another group of constructors corresponds to the term connectors that are
already defined in NARS among statements: disjunction, conjunction, and nega-
tion [27]. For the latter, the NARS negation rule is applied to every element of
an array to get the negated perceptual term; for the formers, elements of two
given arrays are processed pair by pair by the disjunction or conjunction rule
to get the new array. If the given arrays have different sizes in terms of storage
space, coordinates are used to map one to the other before they are combined.

Using these constructors, a sensation of arbitrary complexity can be perceived
as a compound term consists of existing terms combined using the term connec-
tors and mental operations recursively and hierarchically. Perceptual knowledge
will be integrated with the other types of knowledge in NARS, including declara-
tive (eternal), episodic (temporal), and procedural (operational). A typical state-
ment in NARS will not be part of a description of the world as it is, but is more
like “When the condition c is satisfied, if I execute operation o, I will perceive
its effect e”, which is an extension of the previous form of procedural knowledge
described in [27].

4 Perception via Inference

All terms in NARS are treated by the inference rules basically in the same way,
no matter whether the term is associated directly with a sensorimotor component
(like the sensory, perceptual, and operational terms). Consequently, inference can
be carried out among mental images and operations, just like among abstract
concepts.

There are special variants of rules that are dedicated to sensorimotor mecha-
nism. For example, temporal induction/comparison do not require shared term in
the premises, but their closeness in time. Similarly, spatial induction/comparison
can be carried out among array elements that are close spatially to each other,
so as to achieve functions like auto-filling, associative memory, and “percep-
tual set”, which is a perceptual bias or predisposition or readiness to perceive
particular features of a stimulus.

Inheritance/similarity statements between arrays can be built between sen-
sations and perceptions of the same type. From S1 → [T ] and S2 → [T ], by
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abduction S1 → S2 and S2 → S1 can be derived. While in ordinary abduc-
tion each premise only has one truth-value, here both S1 and S2 are arrays, so
abduction between the corresponding element pairs are carried out first [27],
then the results are merged by the revision rule to get an overall truth-value for
the relation between the two arrays.

As perception is closely related to the system’s operations, 3-D perception
may start at the three degrees of freedom of body movements, combined with
the feedbacks in the related sensorimotor channels (visual, auditory, kinesthetic,
tactile, etc.). Consequently, an object is usually represented according to the
system’s interaction with it, or its “affordance” [7], rather than “as it is”.

As movements are sequence of events, object movements are similarly per-
ceived with compensation of movements of sensor and perceptive field. Like other
knowledge, such compensation is learned by the system in its interaction with
the environment.

NARS supports multiple input/output channels. Besides the primary chan-
nels that directly recognize Narsese tasks, there can also be multiple sensory
channels, each dedicated to a special type of sensor or several types of related
sensor. Within the system, there is also an “overall experience” channel that is
not directly connected to any sensor, but integrates significant events from all
other channels.

Perception is the process where relations are derived among the sensory
terms, as well as between them and the other (non-sensory) terms. Beside the
semantic relations provided by the copulas and the syntactic relations by the
term connectors, there are also temporal-spatial relations directly coming from
the input channels.

As a result of processing sensory experience, spontaneous forward inference
happens as far as the significance of the signal is above the threshold of the
sensory channel, which can be adjusted by factors including the system’s antic-
ipation, extent of busyness, emotional status, etc. This spontaneous inference
can be triggered by the results of the system’s observation operations.

Perception will summarize the sensory experience into descriptions at mul-
tiple levels of generalization and abstraction in parallel, where the array-based
“sensory” representation and the concept-based “symbolic” representation will
co-exist. The system represents the situation both as a mental image and as
a judgment like “A cat is on a mat”, where the latter is formed by matching
the parts of the image with concepts in the system and recognizing their rela-
tions. These two types of representation will interweave at all levels and are
irreducible into each other. An image corresponds to an existing concept will be
remembered better and accessed easier than an incomprehensible image. This
feature should allow the model to explain phenomena like Gestalt shapes, visual
illusions, Bongard figures, and so on.

During perception, the bottom-up signal-compression and the top-down
anticipation will form a mutual confirmation process. The sensory input first
suggests some patterns with associated concepts, and anticipation and inference
then increased the confidence of the suggestions, which in turn lead the fill-in of
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details. As the system changes its internal states, it is normal for the same sit-
uation to be perceived differently, with different objects and events recognized.
The result of perception is under constant revision with the coming of new expe-
rience, as well as with the continuous thinking process of the system. Therefore,
the perception mechanism is not a function that maps the input signals into a
unique “correct” representation. Instead, it will be more similar to the human
perception process.

Beside the automatic self-organizing process in perception, the most common
deliberative tasks are “recognition” and “imagination”. Roughly speaking, the
former is to find a concept for an image, while the latter is to find an image
for a concept, where the relation from the image to the concept is the inher-
itance copula. In NARS, both processes are carried out by inference, with all
types of uncertainty involved, and the final answer is chosen among the available
candidates by balancing truthfulness, simplicity, and usefulness [25].

5 A Simple Example

The conceptual design described above is being experimented in NARS, and
currently the sensory terms have been implemented, while the perceptual terms
have not. While our prototype is at an early stage, we can nevertheless demon-
strate some results on gray scale images, as well as using such a concrete example
to explain the proposed approach to perception.

The first example is to choose a label for a given image. To keep the exam-
ple simple, 5× 5 images are used. Initially, a diamond, M1, and a cross, M2,
are entered as Narsese sentences and categorized. In the input, the pixels not
mentioned are black by default:

//Input: Bright pixels in M1: //Input: Bright pixels in M2:
<{M1[-1.0,0.0]} --> [bright]>. <{M2[0.0,1.0]} --> [bright]>.
<{M1[1.0,0.0]} --> [bright]>. <{M2[0.0,0.5]} --> [bright]>.
<{M1[0.0,1.0]} --> [bright]>. <{M2[-1.0,0.0]} --> [bright]>.
<{M1[0.0,-1.0]} --> [bright]>. <{M2[-0.5,0.0]} --> [bright]>.
<{M1[0.5,0.5]} --> [bright]>. <{M2[0.0,0.0]} --> [bright]>.
<{M1[-0.5,0.5]} --> [bright]>. <{M2[0.5,0.0]} --> [bright]>.
<{M1[0.5,-0.5]} --> [bright]>. <{M2[1.0,0.0]} --> [bright]>.
<{M1[-0.5,-0.5]} --> [bright]>. <{M2[0.0,-1.0]} --> [bright]>.
//It is a diamond: <{M2[0.0,-0.5]} --> [bright]>.
<{M1} --> diamind>. //It is a cross:

<{M2} --> cross>.

Then a noisy pattern M3 is entered, and followed by a question asking what
it is:
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//Input: Pixels at these locations in M3 are bright or half-bright:
<{M3[-1.0,1.0]} --> [bright]>. %0.5%
<{M3[0.0,1.0]} --> [bright]>.
<{M3[-0.5,0.5]} --> [bright]>.
<{M3[0.5,0.5]} --> [bright]>. %0.5%
<{M3[-1.0,0.0]} --> [bright]>. %0.5%
<{M3[1.0,0.0]} --> [bright]>.
<{M3[-0.5,-0.5]} --> [bright]>.
<{M3[0.5,-0.5]} --> [bright]>. %0.5%
<{M3[1.0,-0.5]} --> [bright]>. %0.5%
//How to categorize M3?
<{M3} --> ?what>?

From these inputs, by merging pixel-wise comparisons of the matrices, two
similarity judgments are derived, then by analogy, the new pattern is recognized
as most likely to be a diamond (among the existing categories):
//M3 is quite similar to M1
<M1 <-> M3>. %0.61;0.88%
//M3 is not similar to M2
<M2 <-> M3>. %0.19;0.91%

<{M3} --> diamond>. %0.61;0.48% //M3 is likely a diamond
<{M3} --> cross>. %0.19;0.16% //M3 is unlikely a cross

Answer <{M3} --> diamond>. %0.61;0.48% //System answer, M3 is taken as a diamond

After the perceptual terms are fully implemented, this example will be
enriched further, using the mental operators introduced previously. We can imag-
ine an input matrix M4 which looks like a diamond above a small cross (which
will surely need a large matrix than 5× 5). At the beginning the system will
attempt to classify the new sensation using the existing categories. Since in
NARS every conclusion is true to a degree, such an attempt often can produce
some answer, even though the quality of the solution will not be very high. For
this example, M4 will probably have a relatively higher similarity to M1 (by
ignoring the small cross) than to the other candidate. If the system is not sat-
isfied enough by this conclusion, it will continue to look for better answers by
decomposing M4 into simpler shapes plus some structures combining them.

Starting at default parameters at the sensation M4, an operation “⇑
shift(0, 0.5)” will turn its top part into a perceptual term M41, which matches
reasonably well with M1, so “{M41} → diamond” can be derived, which will
have less negative evidence than “{M4} → diamond”.

After that, operation “⇑shift(0,−0.8)” followed by operation “⇑zoom(0.4)”
on the current sensation will generate M42 that matches M2, a cross of the
default size. Now the question “{M4} → ?what” will be answered by judgment

{M4} → (⇑shift(0, 0.5),M41,⇑shift(0,−0.8),⇑zoom(0.4),M42)

which will have less negative evidence than the other candidate answers, though
being more complicated in syntax.

Of course, the above result assumes a proper sequence of mental operations.
In the initial experiment, it can be either predetermined or obtained from exhaus-
tive search, while in the future it will be learned together with the components
themselves. That means the system’s knowledge about an image also includes
information on how it is usually perceived as a sequence of events and operations.
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With a properly trained natural language interface, M4 can be described as
“A diamond above a small cross”. The given knowledge used in the example, such
as “{M1} → diamond”, can also be learned from the repeated co-occurrence of
an image and a word in the system’s experience, as they will both be associated
with a concept in the system which is named by diamond. However, it is impor-
tant to remember that in NARS, neither the image of a diamond nor the word
“diamond” will be used to “define” the term diamond (or whatever the term is
labeled), as the meaning of the an abstract term like diamond is not determined
only by its (visual) exemplifiers or (verbal) labels, but also by its relations with
the other terms, including the abstract ones.

Though only partially implemented, this example still shows the desired fea-
tures of this new approach to perception when compared with the conventional
computer vision techniques:

– Subjective: The answer to a question like “{M4} → ?what” not only
depends on M4, but also on the existing knowledge of the system and its
resource allocation situation when the question is processed.

– Active: The answer “(⇑ shift(0, 0.5),M41,⇑ shift(0,−0.8),⇑ zoom(0.4),
M42)” contains operational components, so perception is based on action.

– Unified: The question answering process is carried out by the inference rules,
and mingled with all the other co-existing processes in the system.

6 Discussion

This paper proposes a new conceptual design for perception in AGI systems.
Though this approach has not been fully implemented in NARS, and no enough
empirical results have not been obtained to support a definite conclusion about
its feasibility, the design nevertheless has the desired features observed in human
perception.

Psychologists have reached the consensus long ago that perception is multi-
level abstraction, and deep learning just realizes this in special-purpose systems
[14]. The approach we proposed also has the potential to carry out multi-level
abstraction, though with the following characteristics that distinguishes it from
deep learning and the other traditional approaches:

– Using meaningful term connectors to carry out abstraction from level to level.
It is assumed that the existing term connectors of NARS [27] are sufficient
for all necessary patterns — convolution and neuron models are basically
weighted average functions followed by a non-linear step, which should be
achievable using the set-theoretic operators of NARS.

– Carrying out multiple tasks, so the intermediate results are not bounded
to a single task, but have independent meaning. Therefore, learning results
are naturally transferable. As there is no distinction between “hidden layer”
and “input/output layer”, results at any layer are understandable (to various
degrees), and are adaptive with experience-grounded meaning.
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– Using multi-level abstraction to solve “over-fitting” and “inductive bias”, and
to keep multiple hypotheses for a given problem. For the same observation,
more abstract results are less confident, though they are simpler and can be
supported by other observations later, so can become preferred than the more
specific results.

– Using dynamic resource allocation to carry out local and incremental adjust-
ments to provide real-time responses. Compared to the global iterations
demanded by neural network models, this approach can meet various time
requirements associated with the tasks. The control mechanism of NARS is
not introduced in this paper, but can be found in other publications on NARS,
such as [25].

– Having stronger top-down influences, in the form of anticipation, familiar-
ity, emotion, etc. The existing conceptual hierarchy plays a significant role in
deciding what is perceived, while being adjusted in the process, as Piaget’s
assimilation-accommodation process, with stable perceptions as their equilib-
rium [18].

– Integrating perception with action, in the sense that (1) perception is carried
out by operation, (2) perception and operation have unified representation,
and (3) perceptive patterns are identified as invariants during related opera-
tions.

Like the other processes, perception in NARS will not attempt to simulate
human perception in all details, but its general principles and major features.
Consequently, it will still be closer to human than the existing AI techniques.

This research is still at its early stage, so the purpose of this paper is to raise
this possibility for the AGI community to consider and discuss. Though there
are many issues to be resolved, there are reasons to believe that this is a suitable
approach for AGI systems to carry out perception.
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17. O’Regan, J., Noë, A.: A sensorimotor account of vision and visual consciousness.

Behav. Brain Sci. 24(05), 939–973 (2001)
18. Piaget, J.: The Construction of Reality in the Child. Basic Books, New York (1954)
19. Rock, I.: The Logic of Perception. MIT Press, Cambridge (1983)
20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pren-

tice Hall, Upper Saddle River (2010)
21. Santoro, A., et al.: A simple neural network module for relational reasoning. CoRR

abs/1706.01427 (2017), http://arxiv.org/abs/1706.01427
22. Shams, L., Shimojo, S.: Sensory modalities are not separate modalities: plasticity

and interactions. Curr. Opin. Neurobiol. 1, 505–509 (2001)
23. Shanahan, M.: Perception as abduction: turning sensor data into meaningful rep-

resentation. Cogn. Sci. 29(1), 103–134 (2005)
24. Wang, P.: Experience-grounded semantics: a theory for intelligent systems. Cogn.

Syst. Res. 6(4), 282–302 (2005)
25. Wang, P.: Rigid Flexibility: The Logic of Intelligence. Springer, Dordrecht (2006).

https://doi.org/10.1007/1-4020-5045-3
26. Wang, P.: Solving a problem with or without a program. J. Artif. Gen. Intell. 3(3),

43–73 (2012)
27. Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scien-

tific, Singapore (2013)
28. Wu, T.: Integration and goal-guided scheduling of bottom-up and top-down com-

puting processes in hierarchical models. Ph.D. thesis, University of California, Los
Angeles (2011)

http://arxiv.org/abs/1706.01427
https://doi.org/10.1007/1-4020-5045-3


A Phenomenologically Justifiable
Simulation of Mental Modeling

Mark Wernsdorfer(B)

Cognitive Systems, University of Bamberg,
An der Weberei 5, 96047 Bamberg, Germany

mark.wernsdorfer@uni-bamberg.de

https://www.uni-bamberg.de/en/cogsys/

Abstract. Real-world agents need to learn how to react to their envi-
ronment. To achieve this, it is crucial that they have a model of this
environment that is adapted during interaction and although important
aspects may be hidden. This paper presents a new type of model for par-
tially observable environments that enables an agent to represent hidden
states but can still be generated and queried in realtime. Agents can use
such a model to predict the outcomes of their actions and to infer action
policies. These policies turn out to be better than the optimal policy
in a partially observable Markov decision process as it can be inferred,
for example, by Q- or Sarsa-learning. The structure and generation of
these models are motivated both by phenomenological considerations
from semiotics and the philosophy of mind. The performance of these
models is compared to a baseline of Markov models for prediction and
interaction in partially observable environments.

Keywords: Model generation · Reinforcement learning
Phenomenology · Mental models

1 Introduction

In philosophical conversations about artificial intelligence, the common senti-
ment is that the concepts of such systems are fundamentally limited by the
concepts of their designer. If complex concepts are built from basic concepts, so
the reasoning goes, and the basic concepts of an artificial system are provided
by its designer, then all the concepts that the system might develop can only
be derived from the designer and therefore they include all of their flaws and
limitations as well [19,20]. If an artificial intelligence already starts with con-
cepts that are intrinsically connected to a human body, for example, how is it
supposed to use these concepts with a non-human body? Systems that create
their own original “concepts” (i.e., representations of external reality) could the-
oretically interact with environments we cannot even imagine. Recent successes
in deep learning are based on this premise: The early layers in a deep network
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learn basic concepts of elementary features. The later layers operate only on
combinations of these features [1, for details on this motivation].

In the following, a new kind of model for partially observable systems is
presented. This type of semiotic model is inspired by phenomenological inves-
tigations of mental representation. The representations in such a model imitate
the mental representations in a mental model. As a consequence, the generation
of content for the most basic of these representations can be considered as a
simulation for the generation of basic concepts.

2 Related Work

There are two general conceptions of partially observable environments. The
first is state based, the second property based [17]. State based conceptions of
partially observable environments are graphical models like Markov models or
finite state automata [8]. Property based conceptions are usually learned from
methods that generalize first-order logic statements about the dynamics between
agent and environment (i.e., action languages) [6,10].

Unfortunately, the property based conception cannot be easily translated into
the state based conception. The reason is that “virtually all current first-order
methods are restricted by the Markov assumption” [16]. The Markov assumption
states that current observations fully determine observations after the next time
step. In fact, this is exactly what makes an environment according to the state
based conception be fully, instead of partially, observable.

The various planning and problem solving approaches that build upon
STRIPS [5] are property based. The learning of schemata [4] for a property
based conception of the environment therefore effectively solves a different prob-
lem than learning to interact with a partially observable state based conception.
“[S]chema learning has no predefined states such as those found in a [Partially
Observable Markov Decision Process] or [Hidden Markov Model]; the set of sen-
sor readings is the state” [7]. As a consequence, property based conceptions of
partially observable environments are in fact state based conceptions of fully
observable environments. This also concerns approaches such as (but not limited
to) Motmap [18], Schema Networks [9], or Variational State Tabulations [2].1

The hard problem while modeling a partially observable environment in
the state based Markov framework is perceptual aliasing. Consider a path that
forks at two different, but apparently identical, locations. To reach its goal, the
agent has to go left at the first fork but right at the second. Unfortunately, its
immediate observations do not enable it to differentiate both forks in any way.
Approaches from reinforcement learning solve this problem by approximating a
whole partially observable Markov decision process that includes an evaluation
of the agent’s actions in the form of reward [3,13–15,21]. If goals change, how-
ever, it makes sense not to learn the whole Markov decision process but only its
1 In the last one, the authors explicitly state that “[t]he agent rarely observes the

exact same frame from a previous episode” which makes the environment according
to a state based conception practically be fully observable.
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causal dynamics. Accordingly, partially observable environments are defined as
Markov decision processes without reward.

Partially observable environments are 5-tuples (E,M, T,O, S), where E is
a set of hidden states, M is a set of motor emissions from the agent, T : E ×
M × E → [0, 1] describes the probability of any successor state when executing
a particular motor emission in a particular state, O : E × S → [0, 1] describes
the probability of a hidden state emitting a particular sensor activation towards
the agent, and S is a set of sensor emissions.

One type of model has proven quite useful for learning partially observable
environments in a realtime scenario. Order-n Markov models represent the hid-
den world state with a fixed history of past emissions of length n. This history
can be considered as the current state of an order-n Markov model. The state of
the model is a representation for the assumed hidden state of the environment.
Up to a certain point, the prediction performance of order-n Markov models
tends to increase with an increase in history length. Once this point is reached,
however, performance decreases steadily. Transition conditions become too spe-
cific to generalize the distribution of emissions appropriately while, at the same
time, long-term dependencies over more than n time steps are lost.

3 Background

The concept of dynamically coupled trajectories is another way to conceive of an
unknown environment. It is an alternative to partially observable environments
that does not require that hidden states transition according to a particular
probability distribution. Real cognitive systems accept this fundamental uncer-
tainty in external reality. As a consequence, they are forced to incorporate failed
expectations into their mental model. In the philosophy of mind, this failing of
expectations has also been described as “breakdown” [20]. Accordingly, in the
following, the environment is conceived of as essentially erratic.

3.1 Dynamically Coupled Trajectories

Definition 1. Dynamic trajectories are sequences, where the emission function
f changes erratically: It depends only on the current time step t.

xt = f(t, xt−1)

The emission function f at time t determines the state ft of a dynamic system
ft(x) = f(t, x). In a dynamic trajectory, f changes with t.

However, cognitive systems do not perceive their own emissions, they perceive
the emissions of external reality. Reality and cognitive system co-determine one
another. In fact, both are so closely connected that their individual trajectories
are in a coupling. Unities are considered as coupled “whenever the conduct of
two or more unities is such that the conduct of each one is a function of the
conduct of the others” [12].
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Equations 1 and 2 describe the emissions in the dynamic trajectories of an
agent that simulates a cognitive system in state at and its environment that
simulates external reality in state et after each time step.

st = et(mt−1) (1)
mt = at(st−1) (2)

The current emission of the environment (i.e., sensor activation) is st ∈ S, the
current emission of the agent (i.e., motor activation) is mt ∈ M , the current
state of the environment is et : M → S, and the current state of the agent is
at : S → M . No system has access to the state of the other, they merely receive
the other’s emissions.

3.2 Semiotic Models

The mental model that cognitive systems have of external reality is composed of
such mental representations. A formal semiotic conception of mental represen-
tation can serve as a foundation to formally describe mental models as semiotic
models. A mental representation is a symbolic representation for its referent.
Symbols are semiotically defined by the three possible relations between shape,
content, and referent. Figure 1 illustrates these relations. Roughly speaking, con-
tent is what an external referent means, and shape is how this meaning appears,
to the cognitive system [11, for an introduction on Peircean semiotics]. The
generation of basic concepts in mental representations starts from the system’s
external referents, goes over the content, and eventually evokes a shape.
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Fig. 1. The directions of causation in a mental representation.

Definition 2. A referent r ∈ referentsl is a 2-tuple r ⊆ Cl × Sl that con-
sists of elements from the set of all transition conditions Cl and consequence
shapes Sl.
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Definition 3. Every content m ∈ content is a functional relation m : Cl → S
from transition conditions to consequence shapes. If m(a) = b, for example, then
content m presents the referent r = 〈a, b〉.
Definition 4. Every shape s ∈ Sl is the appearance of one content. Both are
in an injective relation indicesl : Sl ↔ contentl−1, where l ≥ 1, such that

∀s0, s1 ∈ Sl. indicesl(s0) = indicesl(s1) ⇒ s0 = s1

If a content presents a particular referent, then the shape of this content
re-presents this referent. A formal conception of representation is sufficient for
to define the structure of a semiotic model.

Definition 5. The structure of a semiotic model is a sequence Λ : N
∗ →

{ indicesl | l ∈ N
∗ } that determines a set indicesl for each level of abstraction

l. Each of these sets, in turn, determines contentl at its level and Sl+1 at the
level above, such that Sl+1 =

{
s | 〈s,m〉 ∈ indicesl

}
and contentl =

{
m |

〈s,m〉 ∈ indicesl
}
. The set of shapes and content are unique to each level.

Following from Fig. 1, feelings are a relation between phenomenal shape and
content. Facts are a relation between referent and mental content. They can
be considered as icons that present the structure of external reality. Thoughts,
eventually are a relation between referent and shape. They can be considered as
symbols that re-present an external referent. The structure of a semiotic model is
a partially ordered set of content. Feelings define an order in this set by indicating
content at one level with a more abstract shape at the level above.

Definition 6. The state of the semiotic model Λ is a sequence λ : N
∗ → S

that determines the shape of the current content at level l of Λ in virtue of
indicesl−1, where l ≥ 1.

The state of a semiotic model represents the state of the described system. Each
index in the state provides content for this level of the model.

To eventually define transition conditions, consider what happens if a referent
is received at level l ≥ 1 that is not re-presented by λ(l): this level of the state
has to transition to a new shape that does re-present this referent.

λ(l) ← m′(λ(l), r
)
,

such that m′ = indicesl+1

(
λ(l + 1)

)
(3)

Equation 3 shows that the next shape to re-present the unknown referent is
selected according to the current content m′ at the level above. If the shape
predicted by m′ does not represent the referent, or there is no level l+1 to begin
with, then the model cannot describe the current referent. The conditions for
transitioning from one shape to another are therefore defined as follows.

Definition 7. Every transition condition c ∈ Cl at level l ≥ 1 is a 2-tuple that
consists of a referent 〈c, s〉 ∈ referentsl and a shape s′ ∈ Sl+1 that does not
re-present this referent.

Cl ⊆ { 〈
s′, 〈c, s〉〉 }

such that m(c) �= s, where m = indicesl+1(s′)
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Both, referent and inappropriate re-presentation at this level, are the reason for
a transition and, together, they are a condition that enables the prediction of
a new shape that may provide an appropriate content for this referent in the
future.

4 Approach

Real cognitive systems perform predictions based on their mental model and
they update this model according to unexpected changes in the environment.
Agent and environment in a comprehensive simulation need to perform these
tasks with each new observation and in each step of the basic simulation defined
in Algorithm 1.

Algorithm 1. Simulation Cycle and Evaluation.
1 function simulation(interact, e0)
2 loss ← ∅;
3 model ← ∅;
4 state ← ∅;
5 for t < T do
6 mt ← π(t)
7 et+1, st+1 ← interact(et, mt)

8 if t == 0 then loss(t) ← 1;
9 else

10 ŝt+1 ← pred(model, state, mt)

11 if ŝt+1 == st+1 then loss(t) ← 0;
12 else loss(t) ← 1;
13 update(model, state, mt, st+1)

The simulation cycle requires an external procedure to simulate the system
which is supposed to be described. In the following, this procedure is denoted
as interact : E × M → E × S. The agent in such a simulation acts according
to an arbitrary action policy π and the environment is in some initial state e0.
The simulation is performed for T time steps. During the simulation, loss keeps
track of the agent’s (i.e., the current model’s) predictive success. The structure
model and its state are initialized outside the loop so they can be maintained
throughout the simulation.

The average loss at the end of the simulation provides an objective measure of
performance to compare different models. Implicitly, this measure also allows the
comparison of the different procedures that generated these models. Subtracting
the average loss from 1 provides a measure for success.

Definition 4 of shapes and Definition 7 of transition conditions both exclude
the base level l = 0 of the semiotic model. The reason is that basic transition
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conditions and consequence shapes both depend on the particular type of sys-
tem that is supposed to be described. In the following, basic shapes S0 and
transition conditions C0 for agent and environment in a simulation according to
Algorithm 1 are defined.

Equation 4 shows that the current transition condition ct of a mobile agent
is its last sensorimotor activation and the current consequence s′

t shape is the
immediately following sensor activation. Both determine the current referent rt
which couples agent and environment.

C0 ⊆ S × M, S0 ⊆ S, R0 ⊆ C0 × S0

ct = 〈st−1,mt−1〉, s′
t = st, rt = 〈ct, st〉 (4)

5 Results

The performance of a semiotic model has been evaluated during the interaction
between an agent and a partially observable grid world. The structure of the grid
world and the agent’s partial perception of it is inspired by the classical example
of Sutton [22] where a mobile agent perceives only its immediate environment.

Figure 2 defines a partially observable environment, in which the hidden state
of the environment is the agent’s position. The agent’s motor emission and this
hidden state at time t fully determine the sensor emission at t + 1.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

Fig. 2. Sutton’s grid world.

An illustration for parts of the environment in relation to their representa-
tions goes beyond the scope of this article. To provide an impression, however,
Fig. 2 shows the relative frequency of a particular model state in the various hid-
den states of the environment (i.e., positions). Lighter areas are less frequently
associated with the given representation than darker areas.
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5.1 Prediction

Prediction with semiotic Models works similar to prediction with a Markov
model. The difference is that there are several models that make different pre-
dictions. The currently appropriate model is the content indicated by the second
level of the state λ(1) according to indices1. The quality of the agent’s predic-
tions allow an estimate on its ability to localize itself within the grid world.
Figure 3a shows the system’s average prediction success over 10 runs of 5000000
iterations each. The performance of the semiotic model is compared to a Markov
model with the same history length of n = 1.2
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Fig. 3. Evaluation results as averages performances. (Color figure online)

The semiotic model outperforms the Markov model with an average of 82.0%
compared to an average of 79.3%. The figure also shows that the variance of
the semiotic model’s performance is much greater than the performance of the
Markov model. This is probably due to the fact that a lot more transition samples
are available for the single function approximation in a Markov model whereas a
semiotic model distributes these samples among several function approximations
(i.e., representations). Depending on the agent’s random actions, this distribu-
tion can be more or less appropriate.

5.2 Navigation

In the navigation task, Sarsa-learning [23, Chap. 6.4] is used to determine an
evaluation for the agent’s actions during particular perceptions. This evaluation
enables the agent to select goal-directed actions.

Q(pt−1, at−1) ← Q(pt−1, at−1) + A,

where A = α
(
rt + γQ(pt, at) − Q(pt−1, at−1)

)
(5)

2 Comparisons with n ≥ 2 yield similar results.
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The element pt−1 is the system’s last perception, at−1 is the system’s last action,
and rt is the subsequently received reward. The parameter α determines the
learning rate and γ determines the discount factor. In this experiment, the cur-
rent state of the model is used for pt. The action at is the system’s motor emission
mt ∈ M . For each action selection, there is an ε = 0.1 chance for a uniformly
random exploratory action.

Location 〈9, 6〉 has been designated as goal state. Upon reaching this state,
the agent receives a reward of rt = 10, rt = −1 otherwise. In our experiments,
γ = 1 arbitrarily. The agent’s position is randomly reset after reaching the goal
position. Usually, pt−1 and at−1 are also reset after reaching the goal state to
avoid “diluting” the goal state evaluation in the agent’s memory with the neutral
reward at the random new start position.

Memory and position reset are cognitively both quite implausible. With a
single goal, however, a position reset is necessary to avoid having the agent
“linger” at the goal. A way to avoid position reset as well as lingering would be
to introduce circular goals that need to be achieved one after the other. In the
present case, however, the memory reset presents a greater problem because it
informs the agent about reaching the goal state. Such information is not available
to real cognitive systems which is why memory reset is omitted throughout all
experiments.3

The state of the models is used as the agent’s perception during reinforcement
learning and according to Eq. 5. If the state of the model does indeed provide
an appropriate representation for the hidden state of the environment, then the
reward accumulated when perceiving the state of the model should be close to
the reward of an agent that perceives its actual position in the environment.

Figure 3b shows a performance comparison between Markov models and semi-
otic models over 10 runs of 5000000 iterations each. It also shows the average
navigation performance of a system that perceives the environment’s hidden
states (i.e., the agent’s position) in black and the average performance of a sys-
tem that acts randomly in red.

Random actions generate on average the least amount of cumulative reward.
A Markov-based Sarsa is only slightly better on average but sometimes even
worse than a random policy. Similar to the orientation task before, the approach
with a semiotic model shows the most variance. After the 1000000-th time step,
however, even the worst run of semiotic Sarsa is better than the best run with
Markov Sarsa. The best run with a semiotic model almost reaches the average
performance of an agent that perceives its absolute position in the grid world,
effectively making the environment fully observable.

6 Conclusion

The content of the symbolic representations in a semiotic model provide useful
concepts to an autonomous mobile agent. These concepts apply to separate parts
3 As a consequence, the performance of the baseline approach is lower than in exper-

iments with memory reset.
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of the environment and they allow the construction of an appropriate represen-
tation for hidden states of the environment.

Phenomenological constraints enable the development of reinforcement learn-
ing experiments that are more plausible from a cognitive point of view. They
establish a testing ground for agents that is much closer to real-world circum-
stances. Three adjustments have been presented. (1) The environment must be
conceded erratic state transitions. (2) The memory of the agent cannot be reset
after reaching its goal. (3) The state of the environment cannot be reset after
the agent reaches its goal. The last point requires a more fundamental change
in the classical Reinforcement Learning paradigm.

Under consideration of these points, a formal model has been developed that
enables the description of erratic environments. The quality of this model is
evaluated in virtue of predictive success and accumulated reward. It is shown
that the representations in this model enable an agent not only to predict, but
also to interact, significantly more effective than order-n Markov models do.

Unfortunately, no simulation can show the actual advantage of being able
to describe an erratic environment. No simulated system can change its state
erratically. Random events in a computational simulation always imply one par-
ticular probability distribution while ignoring another. These distributions are
determined by parameters that can even be designed to randomly change them-
selves. The distribution of this random change must again be determined by
some predetermined parameters. External reality, in contrast, could very well be
a truly erratic environment that is not restricted in the same way.

Simulations in reinforcement learning can be made more plausible with the
proposed measures, but only a truly erratic reality can show if they perform
similar to how humans generate their most basic concepts.
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Abstract. Language comprehension is usually not understood as a
time-critical task. Humans, however, process language on-line, in lin-
ear time, and with a single pass over a particular instance of speech or
text. This calls for a genuinely cognitive algorithmic approach to simulat-
ing language comprehension. A formal conception of language is devel-
oped, as well as a model for this conception. An algorithm is presented
that generates such a model on-line and from a single pass over a text.
The generated model is evaluated qualitatively, by comparing its repre-
sentations to linguistic segmentations (e.g. syllables, words, sentences).
Results show that the model contains synonyms and homonyms as can
be found in natural language. This suggests that the algorithm is able to
recognize and make consistent use of context–which is crucial to under-
standing in general. In addition, the underlying algorithm is evaluated
against a baseline approach with similar properties. This shows that the
generated model is able to capture arbitrarily extended dependencies and
therefore to outperform exclusively history-based approaches.

Keywords: Time-critical model generation · Linguistic models
On-line learning

1 Introduction

Language comprehension can be considered as one particular use case for a
more general cognitive process. The idea that different cognitive abilities are
realized by neural “wetware” in the same general manner is known as “the
equipotentiality of neural tissue” [12]. More specifically, the central thesis behind
“Cognitive Linguistics” is that the mind does not feature particularly linguistic
modules. Instead, language is merely the manifestation of a general cognitive
process which is itself not essentially linguistic but realizes all sorts of non-
linguistic functions [5]. The scientific intention behind such hypotheses is not a
devaluation of language but the ability to apply linguistic insights onto cognition
in general. This does not mean to suggest that cognitive processes are an amodal
language of thought [6] but quite the opposite: language should be conceived of as
c© Springer Nature Switzerland AG 2018
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essentially perceptual and embodied [10]. As a consequence of these hypotheses, a
successful simulation of language understanding will also always simulate aspects
of generally intelligent information processing.

One central aspect shared by language understanding and understanding in
general is the context-aware generation of grounded symbolic representations in
a hierarchical model [8]. This ability can be tested with linguistic sequences as
input data to evaluate the cognitive plausibility of the generated representations
as mental representations for arbitrary referents. More practically, however, the
same algorithm can also be fed with the sensorimotor data of an autonomous
agent as a simulation for the generation of a mental model which is at the
foundation of generally intelligent behavior [19].

To this end, in the following, a type of model is formalized. Such a model
is able to describe instances of context-sensitive natural language. It can be
inferred automatically from an arbitrary sequence so as to represent individual
segments of this sequence, depending on their structure as well as context. An
algorithm is presented to generate this model automatically and on-line during
a single pass over a sequence–similar to how cognitive systems generate a mental
model of external reality.

2 Related Work

From a computational perspective, language is often conceived of as a hidden
Markov model [2,9,17, for example]. In systems that are supposed to understand
language, these models take on states that represent hypothetical hidden states
in a language generating system. Graphical models that are based on hidden
states describe probability distributions for the transition from one hidden state
to another. Each of these hidden states is also associated with a probability
distribution of emissions (often also referred to as “observations”).

Three general problems can be solved well with hidden Markov models. (1)
From a given model and a sequence of emissions—in the following referred to
as “trajectory”—, a probability can be inferred that this trajectory has been
generated according to the model (i.e., likelihood). (2) From a given model and
a trajectory, the most probable sequence of hidden states can be inferred that
have been transitioned during the generation of this trajectory (i.e, decoding). (3)
From a given set of hidden states and a trajectory, the transition probabilities
between states and the emission probabilities for each state can be inferred
(i.e., learning) [14]. There is a fourth problem, however, for which there is no
generally established solution: From a given trajectory, infer the hidden states,
the transition probabilities between them, and the emission probabilities for each
state. Most approaches to this problem are not feasible for on-line learning in
time-critical situations [16, for an approach and overview].

The field of automatic grammar/automaton inference presents many closely
related solutions to similar problems [4]. One realtime-feasible approach is
Sequitur [13]. During a single pass once over the sequence, it builds a grammar
that allows exact reproduction of the sequence. However, Sequitur learns only
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context-free grammars. Also, it does not generalize because its intended applica-
tion is lossless data compression.1 Unfortunately, no algorithm for grammatical
inference fulfills the following requirements for a simulation of human language
comprehension. (1) The algorithm must infer context-sensitive grammars. (2)
The generated structures must generalize the input data. (3) The algorithm
requires only one pass over the data and has less than polynomial runtime.

The only computational procedure that satisfies these criteria are order-
n Markov predictors. The structure of such a predictor is a transition table
m : Xn × X → N

∗ that contains the frequency of transitions from the history
of the last n emissions to the current emission, where X is the set of all emis-
sions.2 Predictions can simply be inferred by querying the transition table for
the emission that maximizes the transition count for the current history. Each
history in this table is effectively an approximation for the hidden state in a
hidden Markov model which is supposed to generate the observed trajectory.

3 Background

Despite their practical success, order-n Markov predictors have an obvious draw-
back: they are fundamentally incapable of capturing any long-term dependency
between emissions that are more than n − 1 time steps apart [7]. This problem
can be remedied with a novel conception of the processes behind the generation
of a trajectory.

3.1 Language as Trajectory

Definition 1. Static trajectories are a sequence of individual emissions xt with
a history of length n, where t ∈ N

∗ and 1 ≤ n.

xt = f
(
[ xs ]t−1

s=t−n

)
= f(xt−n, xt−n+1, ..., xt−1)

The emission of the trajectory after each time step t is a particular unspecified
function f : Xn → X of the current history with length n, where X is the set of
all possible emissions. In the following, f is referred to as “emission function”.

Definition 2. Dynamic trajectories are static trajectories, where the emission
function f changes with time t.

For the sake of simplicity, only dynamic trajectories with a history length of
n = 1 are considered. As a consequence, the emission function in Definition 2
can be simplified.

xt = f(t, xt−1) = ft(xt−1) (1)

1 A reliable indicator for understanding is not the reproduction of text but the ability
to tell a story in one’s own words..

2 Elsewhere, histories are also referred to as “contexts” or “windows”.
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The function in Eq. 1 is a dynamic emission function. The transitions between
its order-1 emission functions are determined by an order-2 emission function
f2 : F1 → F1 such that f2(ft−1) = ft, where f2 ∈ F2 and ft−1, ft ∈ F1.
Analogously, the transition from one letter to another can be conceived of as
determined by a particular syllable, the transition from one syllable to another
is determined by a particular word, the transition between words is determined
by a sentence, and so on.

3.2 Content in Semiotic Models

Trajectories from dynamic emission functions can be described with semiotic
models. The structure of a semiotic model consists of symbolic representations.
Figure 1 shows the structure of a symbolic representation. Roughly speaking, the
content of a symbol is what a referent means, the shape is how this meaning
appears, and the referent is an external correlate. All language is based on sym-
bols. Symbols are semiotically defined as a 3-tuple of index, icon, and symbol
[11, for an introduction to Peircean semiotics]. An index is a tuple that consists
of shape and content, an icon is a tuple that consists of referent and content,
and a symbol, eventually is a tuple of referent and shape. All indices establish a
relation, all icons establish a relation, and all symbols establish the composition
relation of indices and icons.

shape referent

content

in
de
x icon

symbol

Fig. 1. A symbolic representation.

This definition of semiotic models builds upon a definition for referent, con-
tent, and shape. The symbolic representation relation from shape to referent in
Fig. 1 is established by a causal influence starting from the referent, going over
the content, eventually evoking the shape.

Definition 3. A referent r ∈ referentsl is a tuple r ⊆ Cl × Sl that consists
of elements from the set of transition conditions Cl and consequence shapes Sl,
where l ≥ 0.
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Definition 4. A content m ∈ content is a functional relation m : Cl → Sl

from transition conditions to consequence shapes, where l ≥ 0. If m(a) = b, for
example, then content m presents the referent r = 〈a, b〉.
Definition 5. A shape s ∈ Sl is the appearance of one content. Both are in an
injective relation indicesl : Sl ↔ contentl−1, where l ≥ 1, such that

∀s0, s1 ∈ Sl. indicesl(s0) = indicesl(s1) ⇒ s0 = s1

If a content presents a particular referent, and a shape presents this content, then
this shape effectively re-presents the referent via content. This formal conception
of representation is crucial to a definition for the structure of semiotic models.

Definition 6. The structure of a semiotic model is a sequence Λ : N
∗ →

{ indicesl | l ∈ N
∗ } that determines another set indicesl for each level of

abstraction l. Each of these sets determines contentl at its own level and Sl+1

at the level above, such that Sl+1 =
{

s | 〈s,m〉 ∈ indicesl
}
and contentl ={

m | 〈s,m〉 ∈ indicesl
}
. The sets of shapes and content are unique to each

level.

Definition 7. The state of semiotic model Λ is a sequence λ : N
∗ → S that

determines the shape of the current content at level l of Λ, where l ≥ 1.

Lastly, consider what happens if a referent is received at level l ≥ 1 that is not
represented by λ(l). The next obvious representation for the unknown referent
is selected according to the content m′ associated with the current shape at the
next level l + 1. If the shape predicted by m′ does not represent the referent, or
there is no level l + 1 to begin with, then the model cannot describe the current
referent and, as a consequence, the referent cannot be understood. From this
follow the transition conditions at level l ≥ 1.

Definition 8. A transition condition c ∈ Cl at level l ≥ 1 is a tuple that consists
of a referent 〈c, s〉 ∈ referentsl and a shape s′ ∈ Sl+1 that does not represent
this referent.

Cl ⊆ { 〈
s′, 〈c, s〉〉 }

, such that m(c) �= s, where m = indicesl+1(s′)

Both, referent and inappropriate representation at this level, are the reason for a
transition and, together, they are the condition for a new shape. This condition
provides content useful for prediction under the same circumstances in the future.

Both, transition conditions and shapes at level 0, depend on the particular
emissions in the trajectory. In the following, basic shapes S0 and transition
conditions C0 are letters. The current letter is transition condition ct and the
next letter is consequence shape s′

t. The current referent rt after time step t is
defined according to Definition 3.
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4 Approach

In Definition 4, content is defined as a functional relation from transition condi-
tion to consequence shape. Individual transition probabilities are inferred from
transition frequencies like in an order-n Markov predictor.

Definition 9. Probabilistic content is a function from transition conditions and
consequence shapes to transition frequencies m′ : Cl × Sl → N

∗. The probability
of referent r = 〈c, s〉 according to m′ ∈ contentl is p(m′, c, s) for any l ≥ 0.

p : contentl × Cl × Sl → [0, 1] ⊆ R

〈m′, c, s〉 → α + m′(c, s)
∑S

s′ α + m′(c, s′)

The frequency of the given referent as well as the sum of all frequencies are mod-
ified by additive smoothing. The pseudocount α ∈ R≥0 determines a Dirichlet
distribution that defines the expected initial probabilities [3]. If the denominator
is zero, the probability of the referent is defined as 1.

Algorithm 1. Generating a Semiotic Model.

1 function generate(l, Λ, λ, st)

2 if l in domain of λ then
3 add st to Λ(l);
4 if l + 1 in domain of λ then
5 m′ ← λ(l + 1);
6 if p

(
m′, λ(l), st

)
< σ then

7 if l + 2 in domain of λ then
8 M ′ ← λ(l + 2);
9 m′ ← argmax

m∈Λ(l+1)

p
(
M ′, m′, m

)
;

10 if p
(
m′, λ(l), st

)
< σ then

11 m′ ← argmax
m∈Λ(l+1)

p
(
m, λ(l), st

)
;

12 if p
(
m′, λ(l), st

)
< σ then m′ ← ∅;

13 else m′ ← ∅;
14 generate(l + 1, Λ, λ, m′);

15 else
16 m′ ← ∅;
17 λ(l + 1) ← m′;
18 Λ(l + 1) ← { m′};
19 m′(λ(l), st

) ← m′(λ(l), st

)
+ 1;

20 else if l == 0 then Λ(0) ← { st};
21 λ(l) ← st;
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For the algorithm to decide whether a particular probabilistic content is
an appropriate presentation of a referent, a presentation threshold σ ∈ [0, 1] is
introduced. If the probability of a referent according the content is above σ, then
the referent is considered to be presented by this content. If σ = 0, the generated
model is effectively deterministic [18, for an example]. If σ = 1, in contrast, the
algorithm generates a regular Markov predictor.

Algorithm 1 describes the iterative generation of the state and structure of a
semiotic model from a continual trajectory. The procedure tries to find a good
representation for the structure of the current referent in the currently given
context. To achieve this, hierarchically repetitive structures in the stream of
incoming referents are exploited. This procedure is performed after each time
step t. It receives as arguments the base level l = 0, the structure Λ and the
state λ of the model, as well as the current shape st. In this case, the emissions
at base level are letters. At more abstract levels, they are content according
to Definition 9. More precisely, the shapes at higher levels are computational
references to data structures that implement probabilistic content.3

5 Results

The evaluation data is written English language. Due to its length and availabil-
ity through Project Gutenberg, Pride and Prejudice by Jane Austen affords itself
as evaluation data [1]. The only pre-processing is the conversion of upper case
into lower case characters and the removal of any character that is not a Latin
letter, an Arabic digit, or punctuation. Algorithm1 is evaluated qualitatively and
comparatively.

5.1 Qualitative Evaluation

In a single pass, a certain amount of unpredictability must be tolerated. This
fundamental uncertainty is acknowledged by setting σ = 0.1 (referents are recog-
nized starting from a certainty of at least 10%) and α = 1.0 (previously unseen
referents gain a “head start” certainty). After “reading” the text once, the model
features 50 representations at level 0 (i.e., characters), 78 representations at level
1, 74 representations at level 2, 21 representations at level 3, 3 representations
at level 4, and 1 representation at level 5.

Figure 2a shows that the model has not converged after a single pass over
the novel’s roughly 600000 characters. The resulting semiotic model is relatively
complex. Therefore, the illustration of the segments that are represented by
the model in Fig. 3 is limited to only the second of the total number of six
levels. Each color indicates the representation used by the model to represent the
current segment of letters. Naturally, these representations do not correspond to
linguistic representations in natural language (e.g. syllables, words, or sentences).

3 The indices at levels l ≥ 1 are therefore tuples that consist of computational identi-
fiers and the informational resources that they reference in computer memory.
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Fig. 2. Evaluation results. (Color figure online)

after a little further resistance on the part of his aunt, her resentment gave way, either
to her affection for him, or her curiosity to see how his wife conducted herself; and she
condescended to wait on them at pemberley, in spite of that pollution which its woods had
received, not merely from the presence of such a mistress, but the visits of her uncle and
aunt from the city.

Fig. 3. Level 2 (Color figure online)

However, they do segment the text into reoccurring parts that follow a higher-
level function.

Figure 3 shows that the generated representations often cover one or several
words without breaking them apart. This can be attributed to the fact that
words are separated by spaces. After a space, the representations at level one
cannot reliably predict the next emission. Therefore, representations at level
one and above end considerably more often with spaces than with any other
character. The model is able to establish synonymical (e.g. “condescended” and
“but”) relations where the same content is used to describe completely different
referents. The model is also able to establish homonymical (e.g. the various
instances of “her”) relations where structurally identical referents are described
by the content of different representations. This shows that the model is in fact
sensitive to context.

It is far beyond the capabilities of an algorithm that perceives nothing but
letters to segment the sequence as a human speaker would [15]. The goal is
rather to show that the developed algorithm is able to segment a sequence into
frequently occurring referents at multiple levels of abstraction such that upcom-
ing shapes can be predicted more successfully. In a next step [19], this general
procedure can be investigated as a candidate for the generation of more general
models.
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5.2 Comparative Evaluation

Comparative performance is evaluated as the average predictive success S̄ over
time. After each time step, semiotic and baseline model are queried to predict
the next letter. If this prediction is correct, S̄t ← S̄t−1 + 1

T , where T ∈ N
+ is the

total length of the trajectory. The eventual S̄T is the final performance.
A small change in Algorithm 1 enables consideration of historical transition

conditions such that the state of a semiotic model maintains a history of n
past representations at each level instead of just one. After this modification,
the predictive success of semiotic models can be compared to order-n Markov
models, where n ≥ 2. As a consequence, the updates of each individual level
in the state of a semiotic model in lines 17 and 21 of Algorithm 1 are now
updated like the history of an order-n Markov predictor. Queries for the current
representation in lines 5, 6, 8, 10, 11, 12, and 19 have to be adjusted accordingly
to return only the last element from these histories.

Figure 2b provides an overview for the predictive success of semiotic models
and order-n Markov models that have been generated while learning a ten times
repetition of the text and with n = 1, n = 2, n = 3, n = 4, and n = 5. The
part to the left of the red line shows the predictive performance during the first
learning pass. At the end of this pass, the semiotic model with n = 1 reaches an
average predictive performance of 32.50% while the order-n Markov model tops
out at 27.22%. For n = 2, the semiotic model outperforms the Markov model as
well. The semiotic model maintains a significant upward trend. For n ≥ 3, the
Markov models are faster in reaching a peak performance which surpasses the
corresponding semiotic models.

At this point, the text is continued by repetition. It is important to note that
this contradicts our initial premise of a single pass over the data but it illustrates
whether previously obtained knowledge about sequential structure can be suc-
cessfully retrieved and applied again in similar (i.e., identical) circumstances. A
steep incline after the first pass indicates successful retrieval. For n < 3, neither
semiotic nor Markov models appear to be able to retrieve useful information.
For n = 3, however, a significant difference between both types of models can
be observed. Semiotic models with n ≥ 3 are able to reuse information from
the start of the text. For Markov models, this effect can be observed no sooner
than with n ≥ 4. Accordingly, given a long enough trajectory, semiotic models
eventually outperform Markov models in this task.

Semiotic models cover such long-term dependencies by virtue of their hierar-
chical state which can maintain a particular context for arbitrarily extended peri-
ods of time. This assumption is substantiated by the fact that semiotic models
benefit considerably more from repetitions in the trajectory, as the steep incline
at the start of the second pass indicates. Dependencies between characters at the
beginning of the text are maintained, whereas Markov models overwrite them
with the most current information. In general, Markov predictors reach their
performance peak faster, but these peaks are consistently lower, than those of
semiotic models.
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6 Conclusion

The evaluation with natural text shows that semiotic models can be learned
in a way that is similar to how humans generate a mental model of text: on-
line and with memory and runtime requirements less than polynomial sequence
length. If language is considered as a decidedly cognitive phenomenon, then the
structure of language presents some of the underlying and unconscious processes
of cognition that are not essentially linguistic themselves. Linguistic processes
enable to “peer onto” those otherwise unobservable mental processes.

Semiotic models do not only describe text. By defining base transition condi-
tions as 2-tuples of sensorimotor activation and consequence shapes as the imme-
diately following sensor activation, they describe agents in partially observable
environments. Not only can a semiotic model predict upcoming emissions, but
its state also serves as a representation for the hidden state of the environment.
This representation is generated without previous knowledge and from immedi-
ate observation alone. Feeding the current state as additional sensor information
into a Reinforcement Learning algorithm significantly increases its performance
without considerable impact on its real-time reactivity.

Beyond Reinforcement Learning, the algorithm enables testing of the hypoth-
esis of equipotential neural structures. As such it shows an alternative to
the traditionally modularized conception of cognition. The generated semiotic
model is hierarchical, simulating the arbitrary number of abstraction layers in
human mental models. Being consistently presented with a sequence from the
same source, however, the frequency of new layer and representation generation
approaches zero over time, while its predictive power still clearly outperforms
conventional order-n Markov predictors.

The analogy between text comprehension and understanding in general suf-
fers from temporally discrete input as well as the discrete character of symbolic
characters. A genuinely cognitive simulation of mental modeling must be able to
deal with sequences of rational elements, where the tabular approach to predic-
tion must be replaced by a type of regression.

Models for language comprehension can be applied onto the essentially non-
linguistic problem of content creation. This promises a novel explanation for the
fundamental origin of our most basic mental concepts. The representations in a
semiotic model can enter synonymical and homonymical relations with their ref-
erents, just like different concepts can apply to the same sensor stimulus and dif-
ferent stimuli can evoke the exact same concept. These ambiguities are resolved
in analogy to the human mind: by referring to context. In this respect, the auto-
matic generation of a semiotic models can serve as an interesting new way of
simulation the generation of mental models.
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Abstract. Robotic systems that interact with real-world environments
cannot capture all the underlying patterns that govern the environment’s
reactions to the system’s actions. One way to deal with this uncertainty
is to describe the environment probabilistically. This paper proposes
another way: Failed expectations are incorporated into a determinis-
tic model that can describe more complex dynamics than exclusively
probabilistic models can. Wrong predictions from the past are used to
provide a more appropriate description of the future. Unlike previous
approaches, it does not suggest that transitions between hidden states
can be predicted prior to the fact. Instead, effects are considered that
are impossible according to the model’s current predictions. This dis-
crepancy enables the model to self-correct in a continual coupling with
the system that it describes.

Keywords: Modeling · Prediction · Partially observable environments
Hidden states · Interaction

1 Introduction

Mobile robots depend on a comprehensive model of their environment. Wrong pre-
dictions can have fatal consequences. To wrongly expect “solid ground”, where
“ravine with a 200 m drop” would be in order, might effectively destroy the agent.

Consider, however, that “solid ground” and “ravine” are “linguistic” represen-
tations for mental content that consists of various constituent elements. A great
deal of human conceptualization is based in visual perception [3]. Accordingly, both
representations are usually associated with a mental image that consists of visual
elements. These elements enable the agent to conceive of solid ground and ravine
in the first place. These two conceptions, as well as visual conceptions in general,
are intimately connected to human physiology. Systems with a different sensori-
motor apparatus cannot be expected to feature conceptions that are visual or even
remotely similar.

A wheeled robot might have a conception of solid ground as well. However,
the structure of this conception would be considerably different. It could be, for
example, that the weight on its front wheels is roughly equal to the weight on its

c© Springer Nature Switzerland AG 2018
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back wheels. The composition of conceptions always has to pay respect to each
system’s individual sensorimotor apparatus.

The structural nature of concepts mitigates the danger of wrong predictions.
Contradicting structural elements enable the system to adapt even before fully
realizing an appropriate concept. As soon as its front wheels lose traction, the
robot’s failed expectation of a uniform weight distribution enables behavioral
adaptation. The more detailed this description is, the more expectations can fail
before it is too late.

The following model utilizes structural concept representations in this man-
ner. Representations are organized hierarchically. On the one hand, it can be
shown that this enables exploitation of previous errors to improve predictive
performance. On the other hand, it can be shown that this performance signif-
icantly exceeds the performance of order-n Markov models. The type of model
presented here can be procedurally generated on-line in a live robot. It can be
used, for example, to predict arbitrary sequences of symbols or to perform Rein-
forcement Learning in partially observable environments [13,14].

2 Related Work

Order-n Markov models maintain a fixed history of n past observations. The
history at any given time can be considered as the current state of the model.
This state effectively serves as a representation for the hidden state of the envi-
ronment. These models are generated by counting the number of transitions
from the current history of length n to the current observation. The normalized
transition frequencies from one history to all of the following observations real-
ize a probability distribution that can approximate the actual distribution very
closely [8].

The prediction performance of order-n Markov models tends to increase with
an increase in history length up to a certain point. Then transition conditions
become too specific to generalize the distribution of observations appropriately,
while long-term dependencies between observations that are more than n time
steps apart are lost.

The observations that an agent receives from its environment can be con-
ceived of as part of an individual sequence [1,2,4,10] instead of being generated
by hidden states. Individual sequences have been given a rigorous formal foun-
dation with on-line convex optimization. Tasks in on-line convex optimization
include a player that performs actions. Only after the action has been exe-
cuted are its outcomes disclosed—just like it is the case with the prediction of
observations.
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Outcomes have the form of a loss value associated with the performed action
under the current circumstances. Losses do not follow a particular probability
distribution. Within limits, these losses can be random or even chosen by an
adversary of the player. Actions in this framework are defined as the convex set
of real-valued vectors K ⊆ R

n and losses are a family of individual functions
ft ∈ F : K → R [6]. An example is on-line classification, where xt ∈ X is the
input, yt ∈ Y is the target, and pt ∈ D is the output at time t. Target and output
do not need to be from the same set, to allow, for example, a deterministic binary
target yt ∈ { 0, 1 } but a probabilistic interpretation of output pt ∈ [0, 1] ⊆ R.

On-line convex optimization covers samples from non-stationary distribu-
tions. This generality, however, comes at the price of a predefined hypothesis
space. Algorithms effectively learn to “trust” the best expert hypothesis and,
as a consequence, can only be compared against such given expert [1]. Without
experts, on-line convex optimization does not enable any learning.

3 Background

This idea of individual sequences can be extended into a non-deterministic con-
ception of environments that provides an alternative to the formal concept of
partially observable environments in the Markov framework [7].

In the following, the agent’s observations are considered as sensor emissions
of the environment and its actions are considered as motor emissions of the
agent. A sequence of exchanged emissions is considered a trajectory and the
segment of emissions from t − n to t − 1 in such a trajectory is considered the
length-n history of the one emission at time t.

Definition 1. Static trajectories are a sequence of individual emissions xt with
a history of length n, where t ∈ N

+ and 1 ≤ n.

xt = f(xt−n, xt−n+1, ..., xt−1)

The emission of the trajectory after each time step t is a particular unspecified
function f : Xn → X of the current history with length n, where X is the set of
all possible emissions. In the following, f is referred to as “emission function”.

The Fibonacci sequence, for example, can be formalized with the emission
function xt = f(xt−2, xt−1) = xt−2 + xt−1, where t ≥ 2, x0 = 0, and x1 = 1.
This function takes the two previous elements (i.e., n = 2) and returns their
sum. In the case of the Fibonacci sequence, the emission function is constant
over time. Therefore, the resulting trajectory is static.1 In a dynamic trajectory,
f can change over time.

1 For the sake of simplicity, in the following, only dynamic trajectories with a his-
tory length of n = 1 are considered. As a consequence, the emission function in
Definition 1 can be simplified to xt = f(xt−1).
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Definition 2. Dynamic trajectories are static trajectories, where the emission
function f changes with time t.

xt = f(t, xt−1) = ft(xt−1)

Notice that the dynamics behind changes in ft are completely undefined. Like
in individual sequences, the emission function behind a dynamic trajectory can
change according to an arbitrary or even an adversarial policy.

Environment and agent co-determine one another. In fact, both are so closely
connected that their individual trajectories are in a coupling. Unities are consid-
ered as coupled “whenever the conduct of two or more unities is such that the
conduct of each one is a function of the conduct of the others” [11]. Equations 1
and 2 describe the emissions in the dynamic trajectories of an agent and its
environment in a coupling.

st = et(mt−1) (1)
mt = at(st−1) (2)

The current emission of the environment (i.e., observation) is st ∈ S, the current
emission of the agent (i.e., action) is mt ∈ M , the current emission function of
the environment is et : M → S, and the current emission function of the
agent is at : S → M . Both systems merely receive emissions, none has access
to the underlying function in the other system. Also, this function can change
erratically and without indication.

4 Example

The idea of dynamically coupled trajectories can be nicely illustrated with the
centrifugal governor in Fig. 1a. The function of the centrifugal governor is to
stabilize the speed of a steam engine. The right side of the figure depicts the
throttle valve. The left side depicts the flywheel with two connected arms. The
hinges of the flywheel arms are mechanically coupled to the throttle valve. Also
consider the emissions of a centrifugal governor in table c (Fig. 1). The emission
of the flywheel after time step t is denoted as wt and the emission of the valve
at the same time is denoted as vt.

The flywheel is in a similar situation like a mobile robot: It exerts control
over another system whose dynamics are unknown. To the flywheel, emissions vt
from the valve are like “observations” and its own emissions wt are like “actions”.
Both can be considered to be in a temporally delayed relation. Each “action”
wt causes a “perception” vt+1 and each “perception” vt enables an appropriate
re-“action” wt+1 [5, makes the same case for cognitive systems].
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(a) Mechanical Illustration. [12]
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(b) Coupled Trajectories.

Time t Flywheel wt Valve vt

1 50.00 80.00
2 12.00 48.00
3 40.50 72.00
4 19.12 54.00
5 35.16 67.50
6 23.13 57.38
7 32.15 64.97
8 25.39 59.27
9 30.46 63.54
10 26.66 60.34
11 29.51 62.74
12 27.37 60.94
13 28.97 62.29
14 27.77 61.28
15 28.67 62.04
16 28.00 61.47
17 28.50 61.90
18 28.12 61.58
19 28.41 61.82
20 28.19 61.64

(c) Empiric Data.

Fig. 1. The centrifugal governor.

4.1 Modeling the Centrifugal Governor

Two emission functions follow from Eqs. 1 and 2 in the previous section. Equa-
tion 3 provides a model for the flywheel and Eq. 4 provides a model for the valve.

cw(vt) = wt+1 = −0.89vt + 83.25 (3)
cv(wt) = vt+1 = −0.63wt + 79.58 (4)

The points of the original trajectories and the interpolated approximations
are presented in Fig. 1b. The attractor for both of these trajectories is somewhere
close to v∞ ≈ 61.7 and w∞ ≈ 28.3.2

c(ft, vt) = 〈wt+1, vt+1〉 =
〈
cw(vt), cv(wt)

〉
(5)

Equation 5 combines the individual models to describe the centrifugal governor
as a coupling of two subsystems. The individual subsystems are described as
mutually dependent. The combined model as a whole, however, is independent
from another system. This enables the autonomous simulation of a centrifugal
governor, starting from an arbitrary initial state. A simulation starting from
w1 = 50 and v1 = 80 develops almost identical to the trajectory of the original
centrifugal governor.
2 The approximations have been obtained by simple linear regression.
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4.2 An Erratic Centrifugal Governor

Now assume that, every once in a while, the steam valve shuts completely and
remains stuck. This occurs without warning and for an indefinite amount of time.
After the valve releases, the governor resumes normal operation just as before.

c′
v(wt) = vt+1 = 0 (6)

Equation 4 describes the valve in its functional state, Eq. 6 describes it in
a defunct state where it is shut down over an extended period of time. As a
consequence, the orientation of the flywheel remains constant as well, although
its emission function cw from Eq. 3 has not changed. Observations that have been
obtained during defunct behavior are not covered by a model of the functional
behavior and vice versa. How can this erratic change in behavior be integrated
into a model? An appropriate model needs to switch between subordinate models
for both individual behaviors as soon as they occur.

Functional and defunct behavior must be considered as individual emission
functions. Both low-level models for these functions need to be incorporated
into a more general model such that each individual model can describe one
particular kind of behavior. The motivation for switching from one model to
another is the current model’s failure to predict correctly. This particular error
is a reliable indicator for which other model might be more appropriate.

5 Approach

Through this exploitation of errors, semiotic models can describe erratic transi-
tions. They contain discrete symbols that represent different types of behavior.
Symbolic representations in general are a ternary relation between referent, con-
tent, and shape [9]. This relation is formalized as follows.

Definition 3. A referent r ∈ Rl is defined as a tuple r ⊆ Cl × Sl that consists of
elements from the set of all transition conditions Cl and consequence shapes Sl.

Definition 4. A content m ∈ M is defined as a functional relation m : Cl → S
from transition conditions to consequence shapes. If m(a) = b, for example, then
content m presents the referent r = 〈a, b〉.
Definition 5. A shape s ∈ Sl is defined as the appearance of one “content”.
Both are in an injective relation Il : Sl ↔ Ml−1 that contains all indices Il at
level l, where l ≥ 1, such that

∀s0, s1 ∈ Sl. Il(s0) = Il(s1) ⇒ s0 = s1

If a “content” presents a particular “referent”, then the “shape” of this “con-
tent” is considered as a “re-presentation” of this “referent”. This formalization
of symbolic representation is at the basis of a definition for the structure of a
semiotic model.
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Definition 6. The structure of a semiotic model is a sequence Λ : N
∗ → { Il |

l ∈ N
∗ } that determines a set Il for each level of abstraction l. Each of these

sets, in turn, determines Ml at its own level and Sl+1 at the level above, such
that Sl+1 =

{
s | 〈s,m〉 ∈ Il

}
and Ml =

{
m | 〈s,m〉 ∈ Il

}
. The set of shapes

Sl and the set of content Ml is unique to each level.

Every semiotic model is in a particular state. The state of a semiotic model
determines the expectations that its system has concerning the behavior of the
environment.

Definition 7. The state of the semiotic model Λ is a sequence λ : N
∗ → S

that determines the shape of the current content at level l of Λ in virtue of Il−1,
where l ≥ 1.

To eventually establish transition conditions, consider what happens if a
referent is received at level l ≥ 1 that is not represented by λ(l): This level of
the state has to transition to a new shape that does represent this referent.

λ(l) ← m′(λ(l), r
)
, such that m′ = Il+1

(
λ(l + 1)

)
(7)

Equation 7 determines that the next shape to represent the referent is selected
according to the current content m′ at the next level l+1. If the shape predicted
by m′ does not represent the referent, or there is no level l+1 to begin with, then
the model cannot describe the current referent. The conditions for transitioning
from one shape to another are therefore defined as follows.

Definition 8. Every transition condition c ∈ Cl at level l ≥ 1 is a tuple that
consists of a referent 〈c, s〉 ∈ Rl and a shape s′ ∈ Sl+1 that does not represent
this referent.

Cl ⊆ { 〈
s′, 〈c, s〉〉 }

such that m(c) �= s, where m = Il+1(s′)

Both, referent and inappropriate representation at the same level, are the
reason for a transition and, together, they are a condition that enables the pre-
diction of a new shape which may provide appropriate content for this referent
in the future. In this way, erroneous predictions from inappropriate past repre-
sentations enable the agent to better describe the future.

6 Results

A dynamic trajectory is used to test the ability of semiotic models to describe
erratic systems. The trajectory has been designed according to Definition 2. It is
an infinite sequence of emissions from one of two alternating emission functions
fa, fb ∈ F , such that ∀f ∈ F .f : [0, 9] → [0, 9]. Accordingly, the base transition
conditions are C0 = [0, 9] and the base consequence shapes are S0 = [0, 9].

fa(xt+1) = (xt + 1) mod 10 (8)
fb(xt+1) = (xt − 1) mod 10 (9)
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The function in Eq. 8 emits ascending digits and the function in Eq. 9 emits
descending digits. After each time step, there is a chance of p = .2 that the
emission function changes. This random change is analogous to the randomly
changing behavior in the erratic centrifugal governor. After each time step t, a
new digit is sampled from one of the functions depending on the last emission
at t − 1.

At each time step, the model receives an emission that is determined by
the dynamic uncoupled trajectory defined above. After each of these time steps,
however, the emission function may have changed. The fact that both emission
functions are the case for exactly the same amount of time makes it impossible
for a conventional Markov model to maintain a prediction success rate of more
than 50% for an extended period of time. (Half of the time, the next digit is the
current digit plus one, half of the time it is the current digit minus one—without
a definitive indicator.)

6.1 Structural Evaluation

Table (a) in Fig. 2 shows an order-1 Markov model that has been generated from
the above trajectory. The cells contain the normalized transition frequencies from
conditions to consequences as a percentage. The random changes between fa
and fb cause a strong uncertainty concerning potential successor emissions. This
uncertainty is expressed as a close-to-uniform distribution from each element
to its respective successors. Once all relevant information has been captured,
the structure of the Markov model converges onto the current environment (i.e.,
changes in probabilities approach zero). According to the order-1 Markov model,
however, the predictions in the example trajectory alternate indefinitely between
two equally probable candidates.

consequence (probability in %)

condition “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“0” 0 52 0 0 0 0 0 0 0 48
“1” 53 0 47 0 0 0 0 0 0 0
“2” 0 44 0 56 0 0 0 0 0 0
“3” 0 0 53 0 47 0 0 0 0 0
“4” 0 0 0 54 0 46 0 0 0 0
“5” 0 0 0 0 48 0 52 0 0 0
“6” 0 0 0 0 0 50 0 50 0 0
“7” 0 0 0 0 0 0 48 0 52 0
“8” 0 0 0 0 0 0 0 51 0 49
“9” 52 0 0 0 0 0 0 0 48 0

(a) Order-1 Markov Model of an
Uncoupled Dynamic Trajectory.
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(b) Averaged Performances in
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Fig. 2. Empirical results.
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A semiotic model has been generated from the same sequence. Tables (a),
(b) and (c) in Fig. 3 show the normalized transition frequencies in its representa-
tions at level l = 1. Table d (Fig. 3) shows the normalized transition frequencies
between those representations in the abstract representation at level l = 2. The
transition conditions Cl at level l ≥ 1 are determined according to Definition 8.
It can be seen that the model contains only point distributions. This high degree
of certainty does not mean that the model can predict the sequence perfectly. It
does show, however, that the model can predict with a certainty of 100% which
emission function is appropriate once the current one is no longer appropriate.

1-0 consequence (%)

condition “0” “1” “2” “3” “4” “5” “8” “9”

“0” 0 100 0 0 0 0 0 0
“1” 0 0 100 0 0 0 0 0
“2” 0 100 0 0 0 0 0 0
“3” 0 0 0 0 100 0 0 0
“4” 0 0 0 100 0 0 0 0
“5” 0 0 0 0 100 0 0 0
“6” 0 0 0 0 0 100 0 0
“7” 0 0 0 0 0 0 100 0
“8” 0 0 0 0 0 0 0 100
“9” 100 0 0 0 0 0 0 0

(a) Lvl. 1, Representation 0.

1-1 consequence (%)

condition “0” “1” “3” “4” “5” “6” “7” “8”

“0” 0 100 0 0 0 0 0 0
“1” 100 0 0 0 0 0 0 0
“2” 0 0 100 0 0 0 0 0
“3” 0 0 0 100 0 0 0 0
“4” 0 0 0 0 100 0 0 0
“5” 0 0 0 0 0 100 0 0
“6” 0 0 0 0 0 0 100 0
“7” 0 0 0 0 0 100 0 0
“8” 0 0 0 0 0 0 100 0
“9” 0 0 0 0 0 0 0 100

(b) Lvl. 1, Representation 1.

1-2 consequence (%)

condition “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

“0” 0 0 0 0 0 0 0 0 0 100
“1” 100 0 0 0 0 0 0 0 0 0
“2” 0 100 0 0 0 0 0 0 0 0
“3” 0 0 100 0 0 0 0 0 0 0
“4” 0 0 0 100 0 0 0 0 0 0
“5” 0 0 0 0 100 0 0 0 0 0
“6” 0 0 0 0 0 100 0 0 0 0
“7” 0 0 0 0 0 0 100 0 0 0
“8” 0 0 0 0 0 0 0 100 0 0
“9” 0 0 0 0 0 0 0 0 100 0

(c) Lvl. 1, Representation 2.

2-0 conseq. (%)

condition 1-0 1-1 1-2

1-0, (“0”) 0 0 100
1-0, (“1”) 0 100 0
1-0, (“2”) 0 100 0
1-0, (“3”) 0 0 100
1-0, (“4”) 0 100 0
1-0, (“5”) 0 100 0
1-0, (“8”) 0 100 0
1-0, (“9”) 0 100 0
1-1, (“0”) 0 0 100
1-1, (“1”) 100 0 0
1-1, (“3”) 0 0 100
1-1, (“4”) 100 0 0
1-1, (“5”) 100 0 0
1-1, (“6”) 100 0 0
1-1, (“7”) 100 0 0
1-1, (“8”) 100 0 0
1-2, (“0”) 100 0 0
1-2, (“1”) 100 0 0
1-2, (“2”) 0 100 0
1-2, (“3”) 100 0 0
1-2, (“4”) 0 100 0
1-2, (“5”) 0 100 0
1-2, (“6”) 0 100 0
1-2, (“7”) 100 0 0
1-2, (“8”) 100 0 0
1-2, (“9”) 100 0 0

(d) Lvl. 2, Representation 0.

Fig. 3. Representations in a semiotic model
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6.2 Predictive Evaluation

Models that count transition frequencies can be used straightforwardly in pre-
diction tasks. Figure 2b shows the average success S̄ of a Markov model and
a semiotic model. To get a representative evaluation, the model performance
has been recorded over ten passes of learning, with 1000 iterations each [14, for
details on semiotic model generation]. Baseline performance is within expecta-
tions. The semiotic model turns out to be correct with an average success rate
of S̄ ≈ 0.69. The learning curve still has a slight upwards momentum at the
t = 1000 mark.

Figure 4 shows that the model separates two segments of the trajectory in
each of which subsequent emissions are in a functional relation. Three represen-
tations 0 − 0, 0 − 1, and 0 − 2 have been generated where two would have suf-
ficed. This is because non-contradictory transitions from one emission to another
are integrated lazily into the current representation for as long as there is no
significant discrepancy. Only then, the change or creation of representation is
considered.

4 3 210 121 01 2 34 3 2109 01 0 9 012 3 2 3456767 8 76 5 67 8 76 5 6767 890121 0 987

Fig. 4. Represented segments at level 1.

On one hand, this ensures redundancy and a high error tolerance. On the
other hand, this leads to cases where one referent is contained in all representa-
tions. If a newly perceived referent contradicts such an omnipresent referent, a
new representation needs to be introduced. This is the case here. Consider, for
example, the transition from 8 to 7. If the current representation does not yet
cover the emission 8 and its potential successor, it is adapted so that it describes
7 as successor. In case another transition evokes a change of representation, the
same transition (8, 7) might be integrated in every single representation. As a
consequence, the first time a transition from 8 to 9 is being observed, a new
representation must be introduced.

7 Conclusion

The state of a semiotic model can be considered as a representation for the hidden
state of the environment, as in Hidden Markov Models or Partially Observable
Markov Decision Processes. The benefit of semiotic models is, however, that the
states of a semiotic model are constructed as a byproduct of model generation.
The hidden states in a Markov model, on the other hand, are assumed to correlate
with objectively real states of external reality and, as a consequence, they are
completely independent from the cognitive processes of an observer.

This paper shows that the traditional assumption that hidden states deter-
mine the probability of observations is not without alternatives. The premise of
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hidden states which ultimately determine all observations pulls attention from
the benefits of exploiting prediction errors. Table (d) in Fig. 3 shows that, even
in the case of a truly erratic trajectory, the conditions under which prior pre-
dictions failed provide important and consistent information. This information
enables fast and appropriate reaction in case the same failure occurs again.

Real environments may be physically determined by hidden natural states.
These states, however, are not immediately accessible to human perception, let
alone to mobile robots. This suggests that in a cognitively accurate simulation of
the human mind, external reality might better be considered erratic. This puts
the focus on how to exploit the failures of a system, instead of trying to avoid
them altogether.
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Abstract. Program-search as induction and abduction is one of the
key pillars of any sufficiently advanced AGI. In this paper, we present
a mechanism to search for programs given a specific bias. This bias is
flexible to some degree. Another novel attribute of the mechanism is the
use of compression that selects simple programs over complex ones. The
complexity of the program is changing all the time over the lifetime of
the agent.

Keywords: Compression · Universal-search · Induction

1 Introduction

The problem of searching for the (optimal) solution to an inversion problem is
an old problem. It was formalized first by Leonid Anatolievich Levin in his Levin
Search (LS) [2] algorithm. LS searches for the shortest program which solves a
problem in the shortest time. Longer programs get exponentially longer time
allocated. Ideally, the interpretation of all programs is done in parallel - this is
not feasible even on modern hardware for moderate programs. Ray Solomonoff
introduced the idea to search for the solutions of optimization problems with
Induction [14]. Biasing the search process of LS with the use of a probabilistic
selection of the candidate instruction was introduced by Jürgen Schmidhuber in
his Adaptive Levin search (ALS) [12] algorithm.

Life long incremental learning is necessary for some AGI subsystems. Life
long learning is realized in this algorithm with a compressed storage of pro-
grams or fragments. The storage is used for reading (by composing new programs
from existing/known parts) and writing (the algorithm stores the solution and
parts thereof). Thus it fulfills the criteria of a long-term storage proposed by
Solomonoff [14].

2 Algorithm

This algorithm1 reuses the idea of biasing the search, similar to ALS. One dif-
ference is that it applies the probabilistic selection not just to instruction, but
1 The sourcecode can be found at https://github.com/PtrMan/AGIconf2018

CompressedSearch.

c© Springer Nature Switzerland AG 2018
M. Iklé et al. (Eds.): AGI 2018, LNAI 10999, pp. 303–310, 2018.
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to parts of, already known and/or learned, programs. These parts are called
fragments in this publication. The advantage of this is that it biases the search
towards programs which already contain known parts for reuse.

Another idea from Schmidhuber is used to bias the search so that simpler
programs are preferred. This is done by exploiting compression progress [11]
to guide the search towards smaller compressed descriptions of the candidate
programs first. This is done because a reuse of already known parts of a program
results in a smaller compressed size. Solomonoff called this idea “Conceptual
jump-size” [13], thus this algorithm is preferring to test solutions with a smaller
conceptual jump-size first over ones with a larger one.

The time for the compression, generation of candidates, testing and adapta-
tion after finding a solution all have upper bounds. This is because the number
of elements in the primary storage must be limited on a real machine. Indeed,
this causes no issue in the algorithm, because not all parts of previously found
solutions are important for the compression or the sampling of candidate pro-
grams.

This algorithm can be described as a non-optimal strategy of Optimal
Ordered Problem Solver(OOPS) [10] for program induction/abduction.

Learning Algorithm

(Compress1) - compress dictionary programs into primary storage

until(foundAllSolutionForLength || globalTimeboundReached)

call "enumerator algorithm"

< to generate secondary candidate programs >

(process A) compress secondary candidate programs one by one and

store tuple (program, required#Bits)

(process B) sort secondary candidate programs tuples by

required#Bits

(process C) test secondary candidate programs ordered by

required#Bits, break if solution(s) found for

the smallest possible required#Bits

if solution(s) found

store found program(s) into primary storage

change probability masses of the relevant fragments

break (only if the algorithm has to calculate one

solution to the problem)

put solution(s) into primary storage by adding it

and compressing it to the primary storage, adapt probabilities

after the strategy of ALS or any other strategy

Compress1 is just necessary for the first run of the algorithm when the primary

storage is empty and thus has to be initialized.
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We note the following:

Parallelism:

The processes A, B and C are applied in sequence in the implementation of this

algorithm. It is possible to compute the processes concurrently, whereby processes A,

B and C work in parallel.

Optimization for Simple Problems:

Processes A and B might get disabled for problems where the time of the process

C is significantly larger than the time required for A and B.

Enumerator algorithm - generates candidate programs:

parameters:

< number of instructions and fragments >

nInstructionsOrFragments

probabilityOfInstruction < range [0; 1) >

< maximal number of fragments which are reused in program >

nMaxFragments

candidateProgram = []

nFragments = 0

for i from 1 to nInstructionsOrFragments

selectInstruction = rand(0.0, 1.0) < probabilityOfInstruction

if nFragments < nMaxFragments || selectInstruction

append to candidateProgram random Instruction sampled by

probability of instruction as in ALS

else

append to candidateProgram random Fragment sampled by

probability of instructions as in ALS

nFragments++

return candidateProgram

Fast Hash-Based Compressor

For this work, it was necessary to develop a fast compression algorithm. The fact

that the primary storage has to be compressed just once can be exploited for the

design of the compression algorithm. One possibility for engineering a fast compression

algorithm is to exploit the two phases - compression of the training set and compression

of the program candidates - into two phases which we call primary and secondary

phrases, respectively.

Additionally, the compression with GZip as a compression algorithm is too slow.
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Compression primary algorithm

parameters: prgrms : input programs

for iPrgrm in prgrms

for iSlice in allPossibleSlices(iPrgrm)

< increment a counter for the slice >

storage.primaryIncForSlice(iSlice)

< store >

storage.primaryPut(iSlice)

storage.primaryPut(Slice) stores the slice in a hash-table based storage. The slice

is just an array of integers. It can check for the existence of the slice, but it doesn’t

have to. The algorithm can afford a check because the primary fragments are stored

once for every run, thus the additional time is not critical.

storage.primaryIncForSlice(Slice) increments a counter of the slice, it is (re)using

the existing hashing functionality of the storage.

Compression secondary algorithm

parameters: prgrm : program to be compressed

i = 0

while i < len(prgrm)

longestSliceInfo = storage.searchForLongestPossibleSlice(progrm[i:])

if longestSliceInfo.longestSubsequentWasFound:

if longestSliceInfo.foundInPrimary:

out.appendRefPrimary(prgrm[i], longestSliceInfo)

elif longestSliceInfo.foundInSecondary:

out.appendRefSecondary(prgrm[i], longestSliceInfo)

if not longestSliceInfo.longestSubsequentWasFound

out.appendUncompressed(prgrm[i])

< store all old subsequences which we don’t yet know >

sliceEndInFrontIdx = longestSliceInfo.sliceStartIdx

for iSlice in allPossibleSlices(prgrm, 0, sliceEndInFrontIdx)

if storage.hasPrimary(iSlice)

continue

if storage.hasSecondary(iSlice)

continue

i+=longestSliceInfo.len

The secondary algorithm attempts to find the longest possible remaining sequence. The

longest (sub)sequence can be found by searching for the subsequence in the primary

storage by hash. If this fails then the same test is done for the secondary storage. If this
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test fails then the longest possible subsequence is added to the secondary storage. This

treatment ensures that the program can be compressed - without the need to write to

the primary storage. Thus a speedup of several orders of magnitude can be achieved

for the compression of programs.

Discussion of Time-Bound for Generated Programs

To determine the maximal number of steps executed by the program one can use the

following strategies or a linear combination of these

– calculate the max # of steps by the formula as used in ALS depending on the

probabilities of the used instruction and fragments derived by Schmidhuber [12].

– calculate the max # of steps by the required number of bits in the corresponding

compressed description of the generated program [9].

3 Experiment

Pong was chosen as a simple Test environment. The task was to generate a program

to control the bat. The only input to the program was the signed horizontal distance

from the bat to the ball. Every program was run for a fixed maximal amount of steps.

A program failed the test if it didn’t hit the bat in the given time.

The mean and standard deviation of the number of generated programs for 100 runs

is shown in the Table 1. The compression bias was disabled for all runs. The samples

were split at 250000 attempts and assumed a central distribution for both sets.

Table 1. Number of generated programs

Mean Standard deviation

Samples >= 250000 tries 646657 311304

Samples < 250000 tries 101545 68270

4 Comparison to Other Methods

Comparison with Evolutionary Algorithms

Genetic Programming [1] can search for Turing complete programs. However, it is

unable to store and reuse fragments over multi runs for different problems as it is

possible for the presented algorithm. The presented algorithm doesn’t maintain a pop-

ulation of candidates for each problem. It does, however, store fragments between runs

for problems. Genetic Programming uses “crossover” for transferring parts of programs

between solutions. The presented algorithm does something similar - but it is more con-

trolled because the fragment selection can be biased.

It doesn’t favor simple programs over more complex ones (where the complexity

is measured by the compression ratio). Genetic Programming requires supervision in

the form of a scoring function. The presented algorithm is an unsupervised learning

algorithm.
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Cartesian Genetic Programming [4] can also search for Turing complete programs.

It can learn to reuse parts of the program for the same solution. It inherits the other

Problems from Genetic Programming.

Comparison with Meta-Optimizing Semantic Evolutionary Search

MOSES [3] is a supervised learning algorithm. It uses a population of programs which

are derived from a single program with different parameter tunings. These groups are

called demes. The presented algorithm doesn’t have the concept of tuning parameters,

because it is an unsupervised algorithm. Thus it can’t know how to tune the parameters.

MOSES doesn’t reuse parts of solutions of solved problems for future problems.

There are some hints from the authors that this functionality is added later.

Comparison with Probabilistic Incremental Program Evolution (PIPE)

PIPE [6,7] reuses parts of found solutions with a memory [6], this is very similar

to the fragments in this paper. PIPE can only work with tree-structured programs.

The presented algorithm is described just for non-tree-structured programs. PIPE is a

supervised algorithm contrary to the presented algorithm.

PIPE biases the search to smaller solutions - thus it uses compression. It doesn’t,

however, compress each candidate program like it is done by the algorithm presented

in this paper.

Variants of PIPE can employ filtering [6,8] to automatically decompose a task into

simpler subtasks which can be solved independently. The presented algorithm does

something similar over multiple problems - it learns to reuse parts of solutions.

Comparison with OOPS

OOPS reuses parts of solved problems for current problems. The main difference is that

it biases its search to programs with a higher probability, which is computed from the

product of the probabilities of each instruction. OOPS tends to search shorter programs

rather than longer programs which can be found quicker. The tradeoff is that the found

longer programs might not generalize as well as the shorter ones.

Comparison with ALS

ALS biases the probabilities of the instructions to adapt found solutions to past prob-

lems. It doesn’t have any way to represent fragments or adapt the probability distri-

bution of them. ALS and this presented algorithm are both unsupervised (learning)

algorithms.

5 Conclusion and Further Work

In this section, we present a few ideas for future work.

One avenue for future research is unifying the compressor and program generator

by using a common data-structure for both.

A downside of the currently used compression scheme is that it doesn’t have a way

to encode n repetitions of the same word.

The used instruction-set of the programs is rather minimalistic and could be

enhanced with functional prefixes and instructions to manipulate the virtual machine(s)

[5]. These instructions could increase the generalization capabilities and shorten the

programs for some problems [5].
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Behavior-trees could be used as a flexible mechanism for the enumerator to generate

candidates for an a Priori given problem-class. A problem-class could be, for example,

data-structure manipulation algorithms.

The size of found programs can be reduced by trail and error by removing instruc-

tions. It is a valid solution to the problem(s) if it still solves them. The author refers to

this process as the “shorting principle”. The process is valid because shorter programs

generalize better (occam’s razor).

The selection and manipulation of fragments can be done by adaptive mechanisms.

Techniques from Machine Learning, Evolutionary Algorithms and AGI can be employed

here.

Another way to supplement the used principles is the use of emotions to control

the search process. Emotions which interact could be aggression and depression.

– Aggression in the range [0; 1] is how often the AI tries unlikely or longer variations

of programs

– Depression in the range [0; 1] could control after how many failed attempts it gives

up looking for solutions to a problem

Aggression and depression could interact to control the direction of the search. It

could, for example, try unlikely enumerator algorithms to generate candidate programs

depending on a certain range of aggression and depression. For example, it could try an

enumerator algorithm to generate algorithms which call into (random) addresses of the

program if aggression is in the range [0.8;1.0] and depression in [0.9;1.0]. The bounds

of the ranges to enable a certain strategy could be modified if they prove successful.

The novel improvement over previous approaches is the sorting of the checked

programs by the compressed size. None of the compared algorithms has a functionality

to check the solutions in a order determined by the compression ratio of all potential

solutions. Almost all compared algorithms reuse solution parts for each solution. A few

reuse parts of solutions between problems.
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