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Abstract This chapter considers the threat posed by botnets and the impact of
botnet-based attacks on both private domains and the global digital infrastructure.
Botnets are widely employed by cyber-criminals for a variety of malicious activities
and are frequently observed as a component within large-scale organised cyber-
crime campaigns. In addition to this, botnets are a varied and evolving threat,
bound to grow in parallel with our increasing dependence on digital services and
the Internet, as well as the adoption of upcoming technologies like the Internet-
of-Things. Botnets can be considered as attacks in-and-of themselves, as well as
platforms for future attacks. With this as the foundational perspective, this study
examines how a botnet is defined and classified, how it is built and used, the
characteristics of a botnet attack, and the factors contributing towards its success.
We then analyse how a botnet provides other attack capabilities for the cyber-
criminal. This is supplemented with a discussion of how the threat is adapting to
new technologies, followed by a short survey of some outstanding problems to be
considered in future research.

1 Introduction

Botnets are a growing problem in our increasingly digital world, underpinning
malicious activities such as identify theft, financial fraud, corporate espionage,
and even cyber-terrorism. They come in a variety of shapes and flavours, can be
deployed on a multitude of platforms, and can vary in functionality and scope,
making it difficult to find a single, standardised solution. To provide a general
framework for discussion, botnet activities can be considered in two distinct parts

D. Acarali (�) · M. Rajarajan
School of Mathematics, Computer Science and Engineering, City, University of London, London,
UK
e-mail: dilara.acarali@city.ac.uk; r.muttukrishnan@city.ac.uk

© Springer Nature Switzerland AG 2018
M. Conti et al. (eds.), Versatile Cybersecurity, Advances in Information
Security 72, https://doi.org/10.1007/978-3-319-97643-3_6

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97643-3_6&domain=pdf
mailto:dilara.acarali@city.ac.uk
mailto:r.muttukrishnan@city.ac.uk
https://doi.org/10.1007/978-3-319-97643-3_6


170 D. Acarali and M. Rajarajan

consisting of the initial penetration and infection of a target, followed by the
exploitation of that target. To build a foundation for the rest of the study, this
section explains how we define botnets and what kind of behaviours we can expect
to observe from them.

1.1 Definition of a Botnet and Basic Functionality

At the most basic level, a botnet is defined as a collection of bot clients connected
to each other via a control network through which they can send and receive
updates and information. The word “bot” (shortened from “robot”) refers to a piece
of software which is written to carry out some automated tasks on behalf of the
user. Legitimate services frequently use bots as part of their routine processes. For
example, consumption bots on Twitter curate content for individual users based on
their tastes [1]. The overall purpose of a bot is to free the human user from tasks
which need to be performed constantly and consistently over time. Malicious bots
function on the same principles. The cyber-criminal behind a botnet campaign is
commonly referred to as a botmaster or botherder.

Although there are variations from case to case, the key components of a
botnet can be summarised as follows: the bot client program, the infection vector,
the communication protocol, the control architecture, the control servers, and the
botmaster. The infection vector is the means by which the bot client is inserted
into a victim system (e.g. worms, viruses or Trojan software). This tends to be
defined as part of the malware design. Opposite the client, the command and
control servers (referred to as C&C or C2 servers) are distribution and collection
points for instructions and information. The communication protocol and control
architecture in combination define how messages will be sent and received. Finally,
the botmaster is the human brain and the driver behind the botnet, and their
intentions or aims determine how it will be used.

Similarly, we can abstract the activities of a botnet into a generalised lifecycle
(Fig. 1), which may begin with initial conception and design [2] or at the point of
the first successful infection [3]. For practical purposes, we will focus on the second
scenario here. Once executed, the malware performs its initial setup, and then enters
the rally stage. This is where a previously isolated bot attempts to connect to the
C&C network. Once this connection is achieved, the cycle moves into the secondary
injection stage, in which relevant binaries and tools are gathered and installed on the
host [3]. The bot is now ready for use and will be provided with commands via the
C&C network. When the relevant command comes through, the cycle moves into
the attack phase [3]. Note that when the attack ends, the botnet will probably fall
back into waiting mode, ready for the next round of activity.

A botnet’s main functionality comes from its ability to exploit the resources
(e.g. memory, RAM, bandwidth, or data) of existing domains and devices to carry
out large-scale tasks. Denial-of-Service (DoS) attacks and spam campaigns are
both examples. To achieve this, the bot malware needs to propagate to as many
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Fig. 1 Botnet lifecycle based on stages proposed by [3] with alignment to the 2-part attack

networked devices as possible, thereby increasing this pool of exploitable resources.
Additionally, a bot provides a back-door into the victim system, thereby allowing
a botmaster to gain access to potentially sensitive data and environments. It is
the flexibility and range of botnets that make them an attractive option for cyber-
criminals.

These functionalities are also what distinguish botnet attacks from others. The
attack is not a one-off situation, but rather a continuous one. As long as a piece of bot
malware remains within a network (and its C&C servers are online), that network
should be considered under attack. The difficulty in dealing with this scenario is that
there may be no visible symptoms whilst bots operate intermittently or stay dormant
until their next update. In propagation modelling, the analogy applied to malware
is that of an infectious disease. Bot malware can be thought of as a specialised
strain that weakens a body’s immune system, making it more vulnerable to future
health problems or other illnesses. The network’s functionality and integrity is
compromised by the presence of this infection.

1.2 Botnet Classifications

Botnets can be classified in terms of their command dissemination style, broadly
defined as either push- or pull-based (Fig. 2a). Commands originate from the
botmaster, who plants them into the C&C network. C&C servers may then “push”
messages out for the clients to receive. This was the typical approach of earlier
botnets [4], but has also been used in more recent theoretical mobile setups [5]. In
contrast, pull-based spread involves each client individually polling the C&C server
to receive an update. Perimeter defences like firewalls contain default rules to block
all unknown incoming web traffic. The pull-based approach is effective in getting
around this issue, thanks to the client (who is internal to the network perimeter)
initiating the connection. Examples of botnets which use pull-based methods are
Storm [6], Zeus [7], and Asprox [8]. Meanwhile, GameOver Zeus is reported to use
a hybrid push/pull approach for contingency [9].
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Fig. 2 Botnet classifications, including command dissemination style and architectures. (a) Push
vs. pull-based dissemination (b) Centralised botnet (IRC- or HTTP-based) (c) Decentralised botnet
(P2P-based) (d) Hybrid botnet (combined P2P- and HTTP-based) [10]

Botnets may also be classified by architecture, which refers to the way their
client-server relationships are organised. Early botnets used solely centralised
architectures (Fig. 2b), where many clients connect to a few central servers. This
approach is simple and straightforward, but also vulnerable thanks to the single
point-of-failure in its design [11]. Silva et al. [3] lists early examples of centralised
botnets including EggDrop (first detected in 1993), GTBot (1998), SDBot and
Agobot (2002), and Spybot (2003). The alternative is a decentralised architecture
(Fig. 2c), where many clients connect to many servers, and the same devices may
act as both clients and servers depending on the situational requirement [11].
This clearly eliminates the single point-of-failure, making the botnet more robust,
discrete and resistant to takedown attempts [11].



Botnet-Based Attacks and Defence Mechanisms 173

Hybrid architectures have emerged more recently (Fig. 2d), featuring both
centralised and decentralised elements to make the botnet easy to maintain and
sturdy against adversaries [11]. This can also be used to obfuscate C&C networks
behind layers of clients, making it harder to identify or trace them. For example,
[14] reported that Waledac uses a decentralised hierarchical topology made up of
spammer nodes, repeater nodes, and 3 layers of servers, combining centralised top-
level C&Cs with a decentralised client node layout.

The C&C categories described so far tend to align with the use of particular
protocols, providing another angle for classification. Centralised architectures use
IRC or HTTP. For instance, EggDrop, AgoBot, and the Chuck Norris botnet are
all IRC-based [3, 17]. However, this protocol has fallen out of favour after being
targeted by network defenders and was replaced with HTTP, widely used in modern
botnets including Rustock [12], Clickbot.A [13], Waledac [14], Koobface [16],
Asprox [8], and Dirt Jumper [18]. HTTP-based C&C communication is effective
in enabling bot flows to blend in with benign web traffic, and is often combined
with pull-based dissemination to overcome defences. Meanwhile, P2P protocols
are obvious choices for decentralised architectures, allowing bots to act as peers
to exchange data symmetrically within overlay networks. Examples of P2P-based
botnets are Storm and Nugache [6], Sinit, Phatbot, SpamThru, and Peacomm [22].
Custom protocols may also be used, like Mariposa’s UDP-based Iserdo Transport
Protocol [15].

The final classification method is based on malware family, which can be defined
in two ways. In the first, botnets belonging to the same family are built using
separate instances of the same malware [23]. For example, two botmasters may have
access to the same binaries, and launch their own separate campaigns [23]. This
is relevant where malware code is known to be highly accessible via underground
forums or the black market [7]. The second definition is a group of separate malware
codes, which appear to have a single progenitor. Zeus is a famous example of this.
After first appearing in 2007, the malware was made public in 2011 [24] leading
to the appearance of many derivatives, including GameOver Zeus, Citadel, and
Shylock [24]. This is significant to our understanding of botnet evolution.

To summarise, Table 1 lists some botnets along with their classifications.

1.3 The Two-Part Attack

The botnet lifecycle establishes separate stages for spreading, rallying, awaiting
commands, and performing attacks [3]. In this study, we further abstract these stages
into two parts; the initial compromise and the continuous threat (Fig. 1). The first
refers to the process of infiltration and infection, whilst the second refers to the
cycle of attacks and waiting periods. From a defensive perspective, our intention
is to frame the botnet with two opportunities for mitigation, where missing the
opportunity to stop the infection opens the pathway to many future attacks.
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Table 1 Summary of classification methods for a selection of botnets

Classification method

Botnet Push/Push Architecture Protocol

Storm [6] Pull Decentralised P2P

Nugache [6] Pull/Push Mixed P2P/IRC

Rustock [12] Pull Centralised HTTP

Clickbot.A [13] Pull Centralised HTTP

Waledac [14] Pull Decentralised P2P

Mariposa [15] Pull Centralised UDP

Koobface [16] Pull Centralised HTTP

Chuck Norris [17] Push Centralised IRC

Asprox [8] Pull Centralised HTTP

Zeus [7] Pull Centralised HTTP

Dirt Jumper [18] Pull Centralised HTTP

GameOver Zeus [9] Pull/Push Decentralised P2P

Kelihos [19] Pull Decentralised P2P

Citadel [20] Pull Centralised HTTP

ZeroAcess [21] Pull Decentralised P2P

The initial compromise attack is designed to discreetly implant malware into a
node of the target network. Bots take great care to stay hidden at this stage, as
the ultimate success of the botnet depends on it. Examples of obfuscation methods
used are packing (Storm [6], Citadel [20]), encryption (Citadel [20], Mariposa [15]),
rootkits (Nugache [6]), and registry amendments (Nugache [6], Dirt Jumper [18],
Citadel [20]). These may also double as methods to weaken the host, making it more
malleable. Successful detection and mitigation of this propagation process reduces
the later impact of a botnet presence in the network.

A person with an infectious disease can become more vulnerable to further
health issues, becoming a health-hazard to others in the process. The concept of the
continuous threat is similar to this, as a compromised network (with even a single
bot) is now in a weakened state with an increased chance of receiving new infections
from unrelated malware and of propagating binaries on to others. The continuous
threat also encompasses the possibility of the compromised network being used as
a weapon in attacks against third-parties.

There are several benefits to considering botnet threats in this manner. Firstly, the
distinction allows us to approach the two attacks separately and in a way befitting
of their characteristics. We cannot approach single-host infections the same way we
approach a DDoS attack, for example. However, both are botnet-related issues that
need to be addressed as such. Secondly, it provides two opportunities for dealing
with the problem. If the original infection can be resolved, no further action is
needed. If not, there is still an opportunity for damage limitation, provided that the
correct understanding and defensive strategies are in place.
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2 Domain Impact

Despite the level of compromise, if the malware is well-designed, network users and
analysts may be none the wiser. Bot presence may only become apparent once the
botnet is offensively engaged. This section explores some of the ways in which an
infected network may be directly impacted by the its unwelcome guests.

Maintaining stealth is crucial to a successful bot infection. Hence, the executed
bot binary makes various changes to the host system. For example, Nugache installs
a rootkit driver to System32 of Windows operating systems, which is then loaded
into the kernel [6]. Both Nugache and Dirt Jumper make modifications to the
system registry [6, 18]. These changes have an overall weakening effect on the host
(and consequently, the wider network), perhaps re-opening previously dealt-with
vulnerabilities, causing other malicious processes to go unnoticed, or introducing
new exploits.

During the rally stage, bots register with the C&C and authenticate themselves,
usually providing information on the host. This allows the botmaster to gain
an overview of the variation of nodes recruited. These messages may contain
details of hardware, operating system version, and patch levels – all potentially
valuable in planning further attacks [8]. Additionally, many bots including Shylock,
SpyEye, and Tinba contain keylogging and screen-capture modules used to steal
user information [25]. Botmasters may sell this and network details on to other
adversaries for future exploitation. Furthermore, captured user credentials enable a
botmaster to personally manoeuvre into secure environments in the network.

Another impact of bot infection is the draining of a victim’s resources, including
physical memory, RAM, processing power, and bandwidth. Botnets are designed to
use the collective power of many machines to reach some end goal. An example is
the launch of DDoS attacks. Whilst the target may be a third-party, the continuous
stream of messages sent out by bots can negatively affect the source network too,
especially if multiple infections are present. In mobile botnets, C&C traffic may
cause devices to hit data usage limits resulting in additional fees [26]. Alternatively,
users of infected nodes may notice their devices running more slowly as bot
processes operate in the background.

Discussion so far has focused on instances of a single botnet malware, but the
presence of multiple unique malware infections is also possible. This could result
in competitive behaviour for the finite resources available, and to the doubling of
traffic generated. If analysts then become suspicious, this is a hinderance to both
botnets. An example of possible competitive behaviour is the disabling or removal
of one malware by another when the two exist on the same host [27]. Alternatively,
botnets may collaborate with each other, providing access to core sets of nodes, as
reported by [23], who observed separate botnets belonging to the same families with
large areas of population overlap.

Case studies reveal that bots often spread laterally through the network resulting
in localised clusters of infected hosts. This propagation may be driven by automated
worms which scan the local network or via viruses and Trojans delivered through
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Table 2 Methods used by botnets as part of initial and continuous attacks

Techniques Used by

Initial compromise stage

Binary obfuscation Chuck Norris [17], Citadel [20], SpyEye [25]

Client testing Citadel [20], Mariposa [15], Miner [28]

File system manipulation Zeus [7], DirtJumper [18], Citadel [20]

Registry manipulation Nugache [6], Rustock [12], Waledac [14]

Hardcoded C&Cs Asprox [8], DirtJumper [18], Miner [28]

Fast-fluxing Mirai [29], Waledac [14], Asprox [8]

DGA/domain-fluxing Carberp [25], GameOver Zeus [25], Kraken [30]

Continuous threat stage

Trojans Storm [6], Nugache [6], Koobface [16]

Social engineering Asprox [8], Chuck Norris [17], Miner [28]

Drive-by-downloads JiFake [31], Plankton [31], Asprox [8]

DDoS DirtJumper [18], Mirai [29], Kelihos [19]

Data theft Zeus [25], SpyEye [25], Citadel [25]

Web-injects/fake pages Tinba [25], Bugat [25], Asprox [8]

Click-fraud Clickbot.A [32], ZeroAccess [21]

messaging channels (e.g. internal email) as spam. Mariposa reportedly checks for
P2P applications and if found, copies itself to the shared folder to propagate [15].
When a bot infection is detected, it should always be assumed that there are others
in the vicinity Table 2 summarises behaviours observed in various botnets.

In summary, a botnet infection can weaken a domain’s defence against other
threats, expose the network structure, and diminish productivity by causing slow
connections and interrupted services. As even minor infections can quickly grow,
botnet mitigation should be a top priority for all organisations, large and small.

3 Launching the Attack

The way in which an attack is initiated provides details as to its design, function,
and purpose. Here we discuss the launch stages of both the initial compromise
and continuous threat, demonstrating both the short-term and long-term effect of
a botnet on the target domain.

3.1 The Initial Threat: Compromise Attack

During the infection stage, botnets expand through the propagation activities of
individual bots. The characteristics of this process are largely defined by the
chosen propagation vector, defined as the bot binary delivery method. Choice of
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vector depends on the connectivity capabilities of targets – the more channels, the
more possibilities. Malware may be delivered through LANs, the Internet, WiFi,
Bluetooth, and even USB devices. Bot binaries piggyback on infectious malware,
the choice of which has an impact on the rate and speed of spread. For example,
botnets using worm-based propagation may expand faster than those using Trojans.
This is because worms are self-activated and self-replicating (e.g. Chuck Norris
botnet [17]), whereas Trojans require user interaction to execute and share them
(e.g. GameOver Zeus [9]).

Once the bot binary is executed, it goes through a setup process. If the binary is
highly obfuscated, it first needs to be unpacked and decrypted (e.g. Mariposa [15]).
Next, it will create new directories in system folders and make copies of itself or
important files. This allows the binary to launch from within the system folders,
giving it the illusion of being part of the OS [6, 7]. The Zeus bot also copies the
MAC details of nearby system files to further blend in [7]. The registry is edited to
manipulate system processes (e.g. Dirt Jumper [18] and Citadel [20]), and some bots
like Nugache install rootkits in the operating system kernel to help them stay hidden
[6]. The Citadel bot also goes to the additional step of removing its binary files
after installation [20]. These details can vary between families and implementations,
making detection difficult without a priori knowledge.

After installation, the bot must rally to the C&C network to register and
authenticate itself. This often includes the use of a unique ID (e.g. iKee.B [32] and
Clickbot.A [13]) as well as details on the host system. For instance, Mirai bots
send the IP, port, and login credentials of the victims [29], whilst Miner bots report
on connectivity and speed testing results [28]. These details give the botmaster an
overview of node capabilities and statuses, which may then be used to devise attacks
or adapt propagation strategies. Bot binaries may be hardcoded with lists of C&C
domain names or IPs [18] that are queried sequentially until one can be resolved.
However, these C&Cs are easily detected by defenders through binary analysis.
Botnets may employ expendable proxies (allowing bots to register and pull-down
instructions to access the main C&Cs) to get around this. The rally process typically
generates a large amount of erroneous DNS traffic, especially if servers have been
migrated or taken offline. This characteristic can be used for detection [30].

Fluxing may be used to minimise detection risk or to protect the C&C network
from exposure. Fast-fluxing is where DNS records are periodically updated to
rapidly change the IP that a domain name resolves to, thereby obfuscating the true
location of C&C servers. Waledac uses this approach, employing its upper tier nodes
to act as DNS servers [14]. Double-fluxing adds the cycling of authoritative name
server IPs, as observed in Asprox, which uses layered double-fluxing to create a
“hydra-flux” setup [8]. Alternatively, botmasters may replace hardcoded lists with
a domain name generation algorithm (DGA). Bots use DGAs to generate sets of
possible domains, and test each one until a resolving IP is found. This is known
as domain-fluxing. DGAs are pseudo-random, taking a seed value shared by the
botmaster to ensure that matching domains can be achieved [30]. This behaviour
was observed in Zeus, Conficker, and Kraken [9, 30].



178 D. Acarali and M. Rajarajan

The botmaster now has access to system resources, visibility of some users, and
the ability to move stealthily through the network. The stage is set for follow-up
attacks.

3.2 The Continuous Threat: Follow-Up Attacks

The continuous threat can be considered as either (a). the activities of a previously-
initialised botnet (at macro scale), or (b). the activities of a single activated bot (at
micro scale). Whichever is chosen, a variety of attack options are available to the
botmaster at this stage.

One option is a Denial-of-Service (DoS) attack, where a large number of
connection requests are sent to a target server with the intention of overwhelming its
capacity. Distributed-DoS (DDoS) consists of requests generated by many devices,
thereby increasing the total force of the attack [33]. Dirt Jumper reportedly has
4 different types of DDoS capability, including HTTP flood made up of standard
HTTP requests, synchronous flood consisting of batches of 150 requests, downloads
flood designed to consume bandwidth, and POST flood aimed at overloading the
processing capacity of servers [18]. Large-scale DDoS attacks were also reported
for Mirai in 2016 [33]. Alternatively, botnets may deliver ransomware, which once
installed ‘locks’ the device, blocking user access. The authors then demand a ransom
to unlock the system [34]. These types of attacks are designed to cause disruption
to services.

User data is a precious commodity, and can be farmed via client bots. A
keylogger records the keystrokes of a user, whilst screen capture tools record an
image of the desktop. Harvested data is then sent back to the C&C. Examples of this
behaviour have been observed in Carberp, Tinba, and Bugat [25]. Another method
of data theft is a man-in-the-browser attack, where a web browser is hijacked with
script injections allowing form details submitted by the user to be intercepted by
the malware [25]. Bots may also manipulate browsers to redirect users to malicious
replicas of legitimate web pages for social engineering.

Click-fraud is the manipulation of the online ad system to generate revenue for
botmasters. Search engines maintain ad networks, agreeing with advertisers to host
their content and serving it to users when certain keywords are triggered in search
queries. Clicking an ad takes users to a landing page for which search engines
receive payments-per-click. Third-parties (known as syndicates) are also allowed to
display ads, receiving a cut of the earnings for the traffic they generate. Syndicates
may then employ sub-syndicates, and so on, to extend ad visibility. Click-fraud
exploits this system by generating fake traffic to the landing page. Clickbot.A sets
up its own search engines (called doorways) which are registered as syndicates [13].
Bots are provided with a list of keywords to query, receiving ad URLs to be clicked
[13]. ZeroAccess has a built-in auto-clicking module which runs in the web browser,
opening hidden windows to access C&C-provided URLs (which are periodically
updated) [21]. An additional module also redirects users themselves to ad landing
pages when they perform searches [21].
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4 Reasons for Attack Success

Botnets operate in phases with attacks formed of sequential steps. This means that
many factors may have impact on attack success along the way. In this section, we
identify and discuss some of these factors.

4.1 Pre-Existing Vulnerabilities

Exploitation of software is one of the most common approaches used by malware to
infect or attack systems. ZeroAccess uses the BlackHole exploit kit for propagation
[21], whilst [31] reports that some Android bots use root exploits for privilege
escalation. In the underground community, exploitable areas of code are actively
sought out and shared. Therefore, continuous use of old software leaves devices, and
subsequently networks, vulnerable as flaws and loopholes become known amongst
cyber-criminals. Delaying or disabling of scheduled updates can increase the
chances of contracting a botnet infection. However, even with defensive measures in
place, all software inevitably contains vulnerabilities that, despite extensive testing
and review, can go unnoticed. Therefore, networks should contain layers of defence
including scheduled backups, perimeter defences (where applicable), and failover
systems.

Probability of attack success is greatly impacted by the behaviour of users. Some
botnets rely on user negligence to spread. For example, iKee.B and Mirai both used
default login credentials to gain access to target devices [29, 32]. Others count on
users lacking the vigilance or skills needed to differentiate between legitimate and
malicious applications and services. For instance, Clickbot.A uses Trojans disguised
as games [13], Asprox uses a fake Flash Player and anti-virus package [8], and
Koobface sends malicious URLs from fake Twitter/Facebook accounts [16]. Each
of these approaches require user interaction to reach their goal. From an enterprise
perspective, employees may circumvent security policies and guidelines by using
company devices for personal tasks (expanding the attack surface), connecting
unsecured devices to the network via USB (used by Mariposa for propagation [15]),
or not using encryption for sensitive data.

4.2 Malware Variability

Malware increases its chances of success when it manages to deviate enough from
known attacks. This is because defences tend to be heavily based on previous
experiences. At the initial infection stage, propagation vectors vary wildly. Some
vectors observed in the past include drive-by-downloads (Asprox [8]), spam mail
(Waledac and Storm [14], Dirt Jumper [18]), instant messaging (SpyEye and
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Citadel [25], Mariposa [15]), social networks (Kelihos [19], Koobface [16]), and
social engineering (Asprox [8]). This level of variation makes it difficult to have a
‘one-size-fits-all’ defensive approach, which is further exasperated by the constant
emergence of day-0 threats. As a result, (at least) some attacks inevitably slip
through the net.

Variation is also born out of customisation and adaptations of existing malware.
For example, the original Zeus source code was used as a foundation for the
development of new threats, including Citadel and ICE IX [9]. Despite being
derivatives of Zeus, these botnets developed into distinct threats in their own right.
The same malware was later developed further to become GameOver Zeus, which
incorporates the use of P2P, making it more resilient than earlier iterations [9]. Bot
malware also evolves in response to defensive measures. An example of this is the
use of IRC in early botnets. When defenders started to block the IRC protocol,
botmasters began using decentralised networks like P2P, and more inconspicuous,
harder-to-block protocols like HTTP.

4.3 Discrete Operation

We have already discussed the measures taken by bot binaries to obfuscate their
presence. In addition to this, active bots may avoid engaging in superfluous activities
in order to draw less attention to themselves. By remaining dormant, the botnet may
improve its longevity, allowing more bots to be cultivated in preparation for a larger
attack [35]. Alternatively, propagation may be selective rather than randomised so
that only specific domains are targeted and the botnet size is deliberately kept small
to avoid detection. Similarly, it may be beneficial to the botmaster to avoid creating
active nodes beyond a given time threshold to reduce the botnet’s footprint [36].
These characteristics help the malware to stay under the radar.

In a typical enterprise network, traffic is generated by hundreds or thousands
of systems, resulting in millions of daily flows. Botmasters may exploit this by
blending C&C traffic in with normal user behaviours. For example, the imple-
mentation of HTTP as a C&C protocol allows polling bots to circumvent firewalls
whilst mimicking benign web traffic. Furthermore, traffic-based detection tends to
focus on anomalies or patterns suggestive of unauthorised automated processes.
Botnets may therefore evolve to include functions designed to distort these patterns.
For example, periodicity is a popular flow-based detection metric, measured as
frequency, duration, or intervals lengths [37]. Randomised delays can be added
between events to break up periodic patterns in propagation or polling traffic, as
demonstrated by [38].
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4.4 The Black Market

The current state of the black market is major driver behind the success of
today’s botnets. In the early days, simple malware threats were thought to be
written by amateur individuals, largely for their own entertainment. By contrast,
malware development and distribution is now a growing underground business
[39]. A modern cyber-criminal does not require prior experience or technical
expertise. Sophisticated bot malware and related exploit tools are readily available
for purchase, including bot binaries, SQL injection kits and browser exploits [40],
to name just a few.

Malware authors themselves stand to make massive profits from this. For
example, in 2015 the complete Zeus toolkit reportedly cost between $1,500 and
$20,000 depending on the version [24]. Complex business models have also
emerged, including pay-per-install, pay-per-use [41], and hacking-as-a-service [40],
allowing customers to outsource malware distribution or rent existing botnets for a
period of time to suit their needs. With such a high degree of availability and a range
of options, it is fair to suggest that any malicious group or individual could feasibly
launch their own botnet-based cyber-crime campaign.

5 Existing Solutions and Classifications

Botnet solutions can be broadly classified into two groups; proactive and pre-
emptive (Fig. 3). Proactive approaches encompass detection-related tasks, including
bot identification, mitigation, removal, and takedowns (which may also be con-
sidered pre-emptive in stopping future attacks). Generally, these strategies deal
with existing threats. Meanwhile, pre-emptive approaches include modelling and
simulation aimed at exploring botnet characteristics for a better understanding of
behaviours for predictive purposes. In this section, we provide an overview of both.

Fig. 3 Classification hierarchy for botnet solutions
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5.1 Proactive Approaches

At the highest-level, detection systems can be classified as either signature- or
anomaly-based. Signature-based refers to the use of markers which are known
a priori to be indicators of malicious activities in the host or network. These
‘signatures’ are stored within a database, and the detection mechanism is triggered
if matching activity is observed. Due to its reliance on heuristics, signature-based
detection is highly effective against familiar threats but not for day-0 cases. Rishi
[42], a signature-based tool, checks TCP packets containing certain IRC commands
for strings that match its collection of known bot keywords.

In contrast, anomaly-based detection generates a baseline of normal activity for
the system, triggering when it detects significant deviations from this norm. This is
advantageous because unfamiliar threats can also be defended against. However,
baselines must be sufficiently representative of actual behaviour, which can be
difficult if it is highly random. Unrepresentative baselines can lead to both false
positives and false negatives, potentially exasperated by the presence of benign and
malicious activities with similar characteristics. An example is BotSniffer [4]. It
monitors IRC/HTTP traffic at the network perimeter, which is then checked for
group bot-to-C&C communication patterns. Similar tools include BotMiner [43]
and BotProbe [44].

Anomaly- and signature-based approaches may be combined so that known
threats are handled quickly, or so newly-discovered anomalies are recorded as
signatures for future use. Examples of such hybrid schemes are BotHunter [45] and
BotCop [46].

Detection systems can be further classified by the scope of their observational
areas, as either host- or network-based. Host-based approaches monitor the system-
level activities of a single device, including API calls, use of the registry, and
generation of outbound traffic [47]. This is advantageous in observing specific
infection processes or dormant bots who communicate infrequently. However, this
approach alone may be insufficient when there are many connected hosts to secure.
An example of host-based detection schemes is BotTracer, which targets automated
bot installation and rally processes by isolating them via a virtual machine it runs
and monitors on the host [47].

A network-based system observes the traffic generated between multiple hosts,
and is placed strategically at ingress/egress points to capture the most relevant or
risky traffic. Suspicious behaviours that may be flagged include failed connection
attempts [48], failed DNS requests [30], web connections to blacklisted sites [49],
encrypted payloads in outgoing messages [50], and use of randomised domain
names [49]. Network-wide monitoring provides an overview of all activity in the
observation space, and is beneficial in detecting behavioural patterns, fluctuations
and group actions [43]. The main disadvantage is the sheer volume of data generated
daily, requiring a greater amount of resources to collect and process.

This approach can be divided into the flow and deep-packet analysis sub-
categories. Traffic data is often collected as NetFlow logs. A flow is the aggregation
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of packets exchanged between two endpoints in a specific conversation, and consists
of a vector of features (including timestamps, transport protocol, ports, IP addresses,
and a range of statistics) which provide a summary of that exchange. Flow
analysis is therefore a shallow but fast examination of traffic, using features like
duration, length, size, and frequency for statistical analysis. Bots generate traffic
automatically in response to commands, resulting in more systematic flows than
that of normal users. Therefore, detection using flow analysis involves searching for
automated processes which manifest as repetitive anomalous patterns, or searching
for instances of anomalous group behaviour. A drawback of this approach is the
number of false positives caused by benign automated traffic picked up erroneously.
BotMiner [43] is a flow-based detection scheme. It collects communication (C-
plane) and activity (A-plane) traffic and clusters the flows. Then cross-plane
correlation is performed to identify suspicious behaviour [43]. BotCop [46] is
another example.

The alternative to this traffic aggregation is to use packet captures (PCAPs)
which record the full details of every packet exchanged. This is used in deep-
packet analysis to examine protocol implementations and payloads, providing richer
detail, and is particularly useful when researching new malware or observing custom
protocols. However, it is costly in terms of time and processing power, and payload
examination is typically unsuccessful when dealing with encrypted traffic. However,
[51] developed BlindBox to perform deep-packet analysis on HTTPS traffic by
adapting signature-based methods to encrypted payloads.

Flow and deep-packet analysis can be combined, as demonstrated by [52]. They
first use statistical analysis to extract sets of suspicious flows. Then, false positives
are minimised by performing fine-grained deep analysis on only the packets of those
flows.

A takedown is the process of infiltrating and hijacking a botnet’s C&C infrastruc-
ture to disable communication between servers and nodes [53]. Sinkholing is the
most common method for achieving this, where botnet domains are identified and
pre-emptively purchased by researchers, who then setup their own servers to receive
incoming bot communication [54]. The ethics of sinkholing (including what to do
with harvested user data) is an open debate [54]. The first successful takedown was
against the Conficker botnet in a collaborative effort between Conficker Working
Group (consisting of researchers and industry professionals) and ICANN, who
helped to take control of Conficker’s domains [53, 55]. These were shared with
registrars who blocked them, cutting off the botnet’s C&C channels [55]. This was
followed by other successful takedowns of Mariposa in 2009 [53], Waldeac in 2010,
Rustock and Kelihos in 2011, Zeus and Nitol in 2012, and Batimal and Citadel in
2013 [55].

Figure 4 illustrates how proactive approaches are implemented and which part
of the botnet they address. Step 1 highlights a bot-infected client aiming to
communicate with a C&C using a hardcoded domain name. The blue dashed line
represents the end-to-end communication between the bot and the server. Client
devices are equipped with host-based monitors, which observe unusual system calls
triggered by the malware. At 2, the request is picked up by the network-based
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Fig. 4 Example of a bot-infected network illustrating the application of proactive defences

monitor of the local network. This observes all local clients, recording patterns if
they exist. Similarly, at 3, the same request hits the network monitor of the wider
domain network. The observational scope is expanded and, where multiple bots
exist, group behaviours can be identified. Step 4 highlights another bot making a
separate connection request. However, this time, the DNS registry has been modified
so that the domain resolves to a sinkhole run by defenders. The dashed purple line
represents hijacked bot communications in a botnet takedown effort.

5.2 Pre-emptive Approaches

We categorise pre-emptive works as propagation models and concept models.
Propagation modelling aims to identify factors contributing to bot spread and
the relationships between them, allowing researchers to explore both offensive
and defensive possibilities. Meanwhile, concept models are explorations of new
architectures or attack paradigms. The aim is to predict how botnets may adapt to
current defences or utilise new technologies as a means of prevention. The following
sections highlight some examples of pre-emptive research.

5.2.1 Propagation Models

Most botnet propagation studies are based upon state-based, compartmental tran-
sition models from the field of epidemiology. These models divide individu-
als from the total population into states representative of their condition at a
given time [56]. Some examples are S-I-R (susceptible, infected, recovered),
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S-I-S (susceptible-infected-susceptible), and S-E-I-R (susceptible-exposed-infected-
recovered), though many more variations exist. The transition of individuals
between groups is captured by a set of differential equations, where the rate of
change for each state is given by a time derivative [56]. In this way, the progress
of an infectious disease is tracked through a susceptible population. The results
can then be used to identify the best vaccine provision methods. When applied
to botnets, the susceptible population is represented by the nodes of the observed
domain, the infected population aligns with bot-infected nodes, and the recovered
population tends to denote patched or cleaned nodes.

Understanding the propagation characteristics of a bot malware can help predict
the speed and reach of spread, potential botnet strength, mitigating factors, and
may even provide clues as to the botmaster’s intentions. In [57], the authors
used sinkholes with known C&C IPs to capture bot traffic. They counted active
bot populations (using 3-way TCP handshakes and preventing disconnections to
minimise DHCP churn) and found that bot activity appears to be diurnal in nature,
probably due to targeted devices being powered down each evening [57]. Based
on this they adapted the S-I-R model for worm-based propagation to capture this
behaviour across time zones. They then used this to make predictions about optimal
worm release and patching periods [57].

In another work [27], researchers combined a S-I-R-S variation with fast evo-
lutionary game theory to model competitive and cooperative behaviours between
botnets. The two interacting botnets are given unique characteristics, where the first
can enable/disable local defences, whilst the second can kill-off the first botnet’s
nodes. A cooperative strategy is where defences are disabled and/or no nodes
are terminated. A competitive strategy is the opposite scenario [27]. Based on
their tests, the authors derived thresholds for the defensive presence needed to
minimise chances of cooperative behaviour. They also reported that cooperation
significantly decreased the extinction probabilities of both botnets even at low
infection rates, whilst a competitive strategy lead to the first botnet being killed
off by the second [27].

Standard epidemic models as described previously are deterministic. In [58],
the authors develop the probabilistic S-I-C model (susceptible-infected-connected).
I nodes carry the minimal amount of malware code for compromise, but don’t
communicate with the C&C until they transition into C nodes. Continuous-time
Markov Chain modelling is used to determine stochastic transition rates [58]. Their
aim was to measure the overall growth of P2P botnets, and to test the effectiveness
of various mitigation strategies. Using the model, they studied the impact of sybil
attacks (where clean nodes join the botnet to corrupt the C&C infrastructure by
sharing false information), and identified a relationship between the number of sybil
inserts required to reach a desired mitigation in growth [58].

Meanwhile, [59] abstracted epidemic concepts to build a stochastic model
of botnet propagation in mobile networks. Specifically, they aimed to observe
the impact of moving nodes and node proximity on the speed of spread. The
network consists of user and infrastructure nodes, with transmission range and
total bandwidth as parameters [59]. S is defined as a population of infected nodes,
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representing the mobile botnet. Based on population density and node mobility
range, they identified a threshold which when exceeded causes the botnet to grow
at a quadratic rate. If not exceeded, the botnet size is predicted to have a finite
limit [59].

These examples – which are just a few – demonstrate how propagation models
can be used to explore factors which contribute to the growth of botnets in different
environments and under different constraints. Simulations allow researchers to
experiment with scenarios which may not be practical or safe in real networks,
whilst empirical data collected from botnets in the wild can be used to validate
models or serve as input data. The main drawback of this approach is that
whilst using epidemic models, generalised assumptions are frequently made about
homogenous populations and mixing that can make the results somewhat unrealistic.
In [60], the authors outline some of the challenges that need to be addressed when
applying epidemic modelling to network-based environments.

5.2.2 Concept Models

In [38], the authors propose the delay-tolerant botnet, designed to add random delays
to its C&C traffic to disrupt any observable patterns in its communication. It is
assumed that the botnet can handle delays because functionality can be maintained
even if member bots don’t all receive commands at the same time [38]. For randomly
selected delay durations, they develop schemes for centralised and decentralised
architectures where delays are inserted between bot-initiated connections and data
forwarding events, respectively. They also experiment with hybrid architectures
using a combined approach. They suggest that the overall delay (i.e. time-taken
for all bots to receive a command) must have a logarithmic correlation with botnet
size to maintain scalability [38].

In [61], the authors introduced the concept of alias-fluxing, which is the use
of URL shortening services to obfuscate C&Cs. This is based on existing fast-
or domain-fluxing mechanisms. The C&C network is made up of proxies and the
main C&C that the botmaster controls. Using an algorithm, similar to a DGA, the
botmaster generates a number of shortened URL strings every period, and registers
these with the relevant services for each of the proxy servers. The bots use the
same algorithm, or retrieve short URL lists, which they then use when rallying
[61]. The authors suggest that this approach circumvents DNS-based detection, and
obfuscates traffic where HTTPS is used [61].

Xu et al. [62] explored the use of DNS as a pull-based C&C protocol. Assuming
the botmaster has access to a DNS server (setup with short TTL), they defined 2
scenarios; code-word and tunnelled, for unidirectional and bidirectional communi-
cation, respectively. In the first, the botnet uses a set of codewords which denote
certain functions and requests [62]. Bots make DNS queries for domains containing
a specific code-word, to which the DNS server replies with the appropriate data.
Meanwhile in tunnelled mode, requests from the bot consist of CNAME queries
to which the server responds with encoded CNAME records [62]. They also
demonstrate that Markov Chains can be used to generate code-word-containing
domain names in such a way as to avoid detection [62].
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The authors of [5] built a prototype of a botnet which uses Cloud-to-Device
Messaging (C2DM) as a push-based C&C network. This Google service is designed
to efficiently incorporate push notifications into apps for Android devices. The
botmaster registers an account for the malware package with the C2DM. This
account is identified by a unique username which is then distributed with copies
of the package to target devices [5]. Clients joining the botnet connect with C2DM
servers using the same username, and receive a registration ID which they then share
with the C&C server. Then, the C&C server can send its messages to the C2DM
service with its authentication details, and the service will forward them on to the
bots [5]. Noting the restrictions on the number of push messages per period, the
authors suggest that larger botnets may be built from a series of smaller sub-botnets.
They also suggest that communication can be further obfuscated by using 2 separate
C2DM accounts (one for the C&C and one for the bots) [5].

The research outlined here shows how new perspectives and approaches may
be explored. By adopting the position of the botmaster, the authors imagine how
they may adapt to the changing digital landscape, what avenues might be most
profitable, and how to avoid detection. The ideas proposed therefore give researchers
the chance to design better, forward-thinking defensive solutions. Combined with
the lessons learnt from propagation modelling (as well as historic botnet attacks),
defenders aim to pre-empt threats and mitigate risk.

6 New Flavours

In this study so far, we have generally assumed that the targets of botnets are average
LAN or WAN networks. However, modern technology has brought about many new
scenarios, some of them pertaining to specific or specialised types of network. In this
section, we highlight some of these and the issues surrounding them.

6.1 Mobile Botnets

Mobile devices are now ubiquitous. They are always with us, always in use, and
always connected. This flexibility, sustained connectivity (on multiple channels),
and lack of diurnal behaviour [26] makes mobile a viable botnet platform. Mobile
devices use Internet, WiFi (both infrastructure and ad-hoc), SMS/MMS, and
Bluetooth to connect with other devices, providing several channels for both attack
and propagation. The battery life and processing power of mobile devices have
improved, allowing bots to carry out complex tasks. Furthermore, apps like those
provided by the Google Android and Apple iOS marketplaces serve a large range of
functionality – users interact with many services (e.g. finance, commerce) sharing
lots of valuable data. Apps are also an ideal infection vector, as botmasters can
circumvent marketplace regulations to use their own Trojans or hijack existing
offerings.
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The iPhone-based iKee.B is a classic example of mobile botnets [32]. It uses
Internet-connectivity to spread, scanning for phones running SSH services. Porras
et al. [32] reports 3 distinct methods; scanning of specific IP ranges belonging to
Australian and European mobile operators, scanning of a randomly chosen subnet
on the Internet (using a time-seeded algorithm), and scanning of the client’s current
local network. Hence, propagation is a blend of Internet- and mobile-based methods,
with device mobility exploited to attack each new local network it joins. The bot
then uses default passwords to get shell access and once installed, shares host data
(including archives of SMS messages) with C&Cs via HTTP [32]. Unique IDs are
used for bots, allowing them to be tracked despite changing IPs across zones [32].

Zhou and Jiang [31] characterise features of Android-based botnets. They iden-
tify drive-by-downloads (with multiple redirections), repacking (malware embedded
within legitimate apps), and update attacks (malware injected into apps via fake
updates) as the main infection vectors. Some examples include Anserver and
Plankton who use partial updates for added discretion, and the Jifake bot which
triggers redirections via fake QR codes [31]. Meanwhile, data theft is identified
as a key attack type, with targets including SMS messages, phone numbers, email
addresses, and user accounts for third-party services. Another popular attack is
where bots covertly sign-up to corrupt “services” which they poll via SMS, incurring
premium-rate charges for the victim. As with iKee.B, HTTP-based C&C is most
commonly observed [31].

Current botnets rely on the Internet for their C&C backends, but we can expect
this to expand into other available channels. For example, [5] demonstrated the use
of push notifications, whilst [63] showed the Bluetooth is also a viable option. As
a larger number of service providers offer app-based interfaces, the pool of data to
be harvested by bots will also expand. Furthermore, hacked accounts may act as
vectors to target those services themselves. As mobile devices are used to interface
with social media, the IoT, and the cloud, we could see cross-platform botnets using
a mix of attack and propagation vectors. Finally, device mobility makes it difficult
to locate propagation sources or to apply defences where there are no set perimeters.
Ad-hoc networks may be used to obfuscate bot nodes, making DDoS attack sources
difficult to trace [26] and botnets harder to enumerate.

6.2 Social Network Botnets

Social networking is a staple of modern communication and, as a result, has become
a target for botnets. Social networks are free with simple registration processes,
accessible from anywhere via mobile or desktop devices. This makes them easy to
infiltrate. The platforms sustain massive user bases, who frequently submit personal
details (which can be stolen) and exchange multimedia messages, giving botmasters
ample possibilities for spam and malware delivery. These platforms provide both
attack and propagation vectors, as the spreading of information throughout the
network is inherent to their design. Additionally, user-to-user relationships are often
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ambiguous, with individuals lacking in awareness of potential risks. Bots may
therefore easily infiltrate communities. Finally, resiliency and upkeep is handled
by the platform/service providers, easing the maintenance of the botnet for the
botmaster.

Koobface is a social network botnet, and was studied by [16]. They report that
it exploits Twitter and Facebook as gateways to compromise user devices. It targets
existing accounts, whilst simultaneously creating new accounts using fake personal
details provided by the C&C. CAPTCHAs served during this process are forwarded
to bots for real users to solve [16]. Fake accounts spread malicious links as short
URLs, which redirect users to web pages encouraging them to download Trojan
software. Once infected, bots connect to master C&Cs (who serve spam commands)
and upload statistics on their activities. Meanwhile, existing accounts are given
keywords to determine the communities they must join or establish friendships in
[16]. This demonstrates how propagation can be targeted at particular groups.

The “Bursty Botnet”, documented by [64], is similar. It exploits Twitter by cre-
ating new accounts which then disseminate spam, even using mentions (messages
containing a specific user’s Twitter handle) to entice users to click on malicious
links. During their study, [64] identified 500,000 members of this botnet, with a total
of 2.8 million spam tweets generated. Like Koobface, Bursty uses URL shortening
to obfuscate targets. Bursty bots are designed to only tweet several times in a short
period after their creation (hence the name), before falling permanently silent [64].
This one-time-use policy is probably a resiliency measure; the botnet should still
function even if many nodes were taken offline. Silent bots may also avoid detection,
but can be reactivated later [64].

Whilst Twitter and Facebook are currently the main targets, social botnets
could expand to other platforms. For example, LinkedIn may be used to identify
employer-employee relationships for targeted spam and even corporate espionage.
Bot programs are developing to better mimic user behaviour, but may not even
be needed. In their design of Stegobot, [65] demonstrated a C&C channel made
only of existing social links, without the need for fake accounts or relationships.
Furthermore, social networks make revenue from advertising – botnets may expand
their functionality to include click-fraud. Lastly, from a socio-political perspective,
social networks can be exploited to quickly spread misinformation or target groups
for manipulation, as demonstrated by Koobface [16].

6.3 IoT-Based Botnets

Internet-of-Things (IoT) is the concept of adding network connectivity and automa-
tion to sensors, specialised devices, and every-day appliances to provide better
services. The IoT is an attractive target for botmasters because its deployment
vastly increases the population of vulnerable nodes which can be converted into
bots. Devices which have traditionally always been offline now come packaged
with Internet access (and often lacking sufficient security provisions), expanding
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the reach of botnets into sectors/domains which previously wouldn’t have been
exploitable, e.g. vehicle networks. Some IoT devices like sensors are low-energy
consuming by design and hence do not have the processing power for complex
security mechanisms. User awareness also plays a role – many may not be aware of
built-in IoT functionality when purchasing new electronics.

In 2016, the IoT botnet Mirai was used to launch several high-profile DDoS
attacks, most notably targeting a French web hosting service with a massive force
of between 1.1 and 1.5 Tbps [33]. At this time, this botnet reportedly consisted
of home routers and digital cameras [33], demonstrating how simple devices may
be recruited into large botnets with highly potent attacks. Mirai propagates by
scanning address spaces for Linux-based platforms [29], and then uses a simple
database of 62 default login credentials to gain access [29, 33]. During scanning,
[29] reports that the malware is hardcoded to avoid certain domains such as the
US Postal Service, the US Department of Defence, and IANA. This is probably
a precautionary measure. Bots collect and forward device details to the C&C,
which the botmaster accesses over Tor for additional anonymity [29]. Analysis
of Mirai’s binaries reveal both network layer (SYN floods) and application layer
(HTTP floods) DDoS functionality [29].

Mirai could become the IoT version of Zeus [24]; its source code has been made
public and since then, variations with new features (e.g. enhanced encryption) have
been reported [29]. This shows the level of criminal interest in IoT systems, and
reinforces the potential risks involved in rapid deployment. IoT devices could be
used to infiltrate particular sectors of industry for surveillance and espionage, as
well as theft of sensor data. The range of use cases means there are no standard
configurations, protocols, or known patterns on which to base generalised defensive
approaches [33]. Furthermore, manual interaction with every IoT device is not
scalable [33]. Combined with the limited processing capability of some devices,
this means that security could be neglected. IoT is still a young technology which
means we currently have limited experience of possible flaws and their implications.
Therefore, to prevent significant risks, protocols and devices must be secure-by-
design.

6.3.1 A Note on IPv6

Whilst IPv4 is the current dominant addressing protocol, organisations will increas-
ingly have to shift to IPv6 in order to accommodate the massive influx of devices
caused by the IoT. IPv6 uses 128-bit addresses (as opposed to the current 32-bit),
providing a much larger address space of unique IPs. The robustness of IPv6 security
is still largely unknown [66], and by removing the need for NAT and DHCP, it makes
current control mechanisms obsolete. This has serious implications for existing
botnet defences. This is further exasperated by IPv6’s dynamic addressing function,
as perimeter defences and blacklists become ineffective [66]. These issues apply to
both IoT and non-IoT networks, and must be addressed before wide-scale adoption
of the protocol.
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6.4 Cloud-Based Botnets

Cloud computing is built on the business paradigm of computational resources as-
a-service, always online and accessible via the web. It provides systems of servers
and clients with built in redundancy, easy accessibility and remote storage. These
characteristics make them ideal platforms to exploit as C&C networks. For instance,
Plankton uses C&Cs in the Amazon cloud where its payloads are processed [31].
The centralised architecture means many potential bot clients are accessible (perfect
for spam or malware delivery), whilst resource-rich servers can provide high-levels
of processing power and storage for the botnet back-end. Web-based interfaces
for services may be used to reach new targets, e.g. by redirecting users to fake
versions or by intercepting login credentials. Cloud services are also used by large
corporations and organisations – the cloud may be attacked by botnets to ultimately
cause harm to those organisations.

Chen et al. [67] proposes a botnet with a cloud-based C&C network using push
notifications on mobile devices. This approach is similar to [5], but unlike that
model, [67]’s design uses a range of cloud services (e.g. Airbop, JPush, and Google
Cloud) for a network of multiple push servers. First, new bots register with a local
server. Using a transmission delay metric, bots with similar delays are clustered
together (assuming this means they currently sit in the same region). C&Cs then
use a round-robin schedule to cycle through push servers to disseminate commands,
where servers with the least delay appear more frequently on schedules for that
region [67]. This distributes command traffic, making it harder to detect, whilst
delivering messages efficiently. Chen et al. [67] suggest that botnet functionality
can be maintained even if some push servers go offline.

Meanwhile, [68] proposes cloud-based bots that can be used to launch slow-read
DDoS attacks. This type of DDoS uses TCP or UDP to setup connections with
small windows, forcing servers to keep connections open for extended periods. As
a result, fewer back-to-back connections are required, and consequently, fewer bots.
As requests are processed slowly, these attacks are also more difficult to detect [68].
Bot malware is not propagated in this setup. Instead, the botmaster uses image files
containing all the required malicious functionality, registers with a cloud service
and loads the image onto multiple cloud-based virtual machines (a sustainable
approach for smaller botnets) [68]. Bot images also speed up the setup process,
giving defenders less time to detect the initial compromise before further attacks are
launched.

Malware with standard propagation capabilities could spread within the cloud
infrastructure to create computationally powerful botnets with unique attack capa-
bilities (dependent on the available cloud services). Pay-as-you-go provision models
may be exploited via fraudulent resource consumption, leading to financial loss
for users or reduced performance for the provider [69]. The cloud itself could be
targeted in DDoS attacks, causing disruption to millions of users, or as a mechanism
to infect the domains of cloud customers by piggybacking on services.



192 D. Acarali and M. Rajarajan

6.5 Crypto-Mining Botnets

Cryptocurrency is designed to be anonymous, decentralised, and unregulated;
characteristics that directly align with the requirements of botmasters. Botnets can
be built using the Bitcoin infrastructure, exploiting its use of P2P to maintain the
blockchain as a C&C channel [70]. The built-in anonymity of users makes it harder
to identify the botmaster or to enumerate bots across the network, even if individual
bots are discovered [70]. This is a vast improvement in resiliency over typical
Internet botnets as previously discussed. Anonymisation is supported by the fact
that all transactions look identical to the observer, allowing malicious activities to
stay hidden. Such activities are also not easily disrupted as direct action against
suspected users would result in large-scale disruption to the blockchain as a whole
[70]. Lastly, bots can be arranged into crypto-mining pools to generate their own
Bitcoins for income.

The so-called Miner botnet was studied by [28], and is made up of 4 tiers with
the top 2 forming the C&C infrastructure and bottom 2 containing the infected
clients. P2P bots with Internet connectivity at tier 3 run a special Bitcoin mining
module in the binary. Tier 4 bots (who lack Internet connectivity) then use the P2P
bots as relays to download Bitcoin client software and to join mining pools from a
hardcoded list. Coins and wallets are backed-up to tier 3 bots, which in turn upload
this data to the C&C in 20 min intervals [28]. When first infecting a victim, Miner
reportedly checks video and graphic card drivers, updating them if necessary and
running speed tests to determine the host’s capabilities [28].

ZombieCoin is a conceptual botnet with a Bitcoin-based C&C architecture,
where commands are encoded into transactions between the botmaster and bot
clients [70]. A pair of keys are generated by the botmaster, with the public key
hidden in the bot binary. When bots join the Bitcoin network, this key and the
botmaster’s digital signature are used to identify and interpret commands. Ali et al.
[70] identify a selection of methods. The first is to use OP_RETURN, a function
allowing 80 bytes of ID data to be added to a transaction. Second is the use of un-
spendable outputs, which allow the addition of 20 bytes of custom data. The third
is to use key leakage; a random factor is used twice, enabling the derivation of
the signer’s private key. Last is the use of subliminal channels where commands
are hidden within signature strings [70]. These options show how resourceful
botmasters can build complex C&C structures which would be very difficult to
detect and dissolve in real life.

Extending their work on ZombieCoin, [70] suggest the use of rendezvous
points, disseminated in near real-time to all bots telling them when/where to
upload data, as well as transaction chaining where long commands are encoded
as the inputs/outputs to an ordered sequence of transactions. Attacks may include
selfish mining (where blocks are used to build private chains for mining without
competition) and BGP hijacking (where traffic to and from the blockchain is
interrupted, partitioning the network) [71]. Another possibility is an eclipse attack
where currency is stolen directly from compromised devices by capturing their
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communications [71]. Cryptocurrency is increasingly utilised for black market
transactions, making it hard to track the exchange of botnet tools and services.
Furthermore, blockchain technology has so far been used primarily for cryptocur-
rencies, but its functionality is expanding into other applications [71], extending the
botnet attack plane.

7 Future Developments and Possible Research Directions

Botnets are constantly adapting to changes in the digital landscape. We must match
this with our detection and mitigation strategies to respond to the threat effectively.
Here, we summarise some outstanding issues and suggest areas for further research.

Propagation is a difficult activity to detect and observe due to the sheer variability
of infection types, vectors and mechanisms, all of which are designed to be discreet.
Historic traces of past propagation events are not made publicly available due to
privacy concerns, and data of this kind is difficult to accurately simulate in lab
environments. Therefore, there is a need for improved propagation research, with
high-quality, rich datasets and shared testing environments made widely available
to researchers so that better predictive models (with better applicability to real-life)
may be built.

In addition to this, most existing work in this area is directly based on com-
partmental epidemiology. Epidemic models are well-established and useful as a
foundation for understanding spread dynamics, but several outstanding challenges
remain in their application to network environments, including considerations of
complexity, heterogeneity, and prediction accuracy [60]. Furthermore, there is a
need to expand past epidemiology, and to explore other characteristics of spread that
are domain-specific, including different business settings, different types of devices,
and other influences on potential infection reach and rate.

Around the world, many institutions and individuals have studied botnets over the
years, and categories of distinct detection and mitigation approaches have emerged
as a result. As a community, we have also established classifications for botnet types
and behaviours. However, there is still no generalised standard for the measurement
of botnet characteristics, like size, infectiousness, force of propagation, or various
traffic metrics. The same can be said of the measurement and characterisation of
vulnerable networks. A widely-accepted standard for determining the degree of
vulnerability and variability would help in building better approaches and for more
accurate comparisons between detection schemes.

Recently, we have seen a general push in all areas of cyber-security towards the
use of artificial intelligence and machine learning. Whilst this comes with its own
set of challenges, this approach can be particularly effective when large, accurate
and relevant datasets are available to train predictive models. However, the role of
the human analyst is still significant in adaptively and flexibly interpreting new,
unfamiliar and evolving threats. Therefore, future approaches shouldn’t rely solely
on machine learning or AI to perfectly protect against botnets, and should instead
be a balance between machine and human interpretation. Future systems should be
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efficient and flexible, with intuitive visualisation for defenders to interface with data
for improved analysis and response.

The research community needs to maintain awareness of the botnet threat when
developing and deploying new protocols and technologies. Security must be built-
in at the design phase and shouldn’t consist primarily of reactionary patches. We
previously discussed risks related to mobile technologies, the IoT, and the IPv6
protocol. Other topics for consideration include new protocol versions like HTTP/2
[72] and DNSsec [73], anonymization services like Tor [74], and biometric security
[75]. Researchers needs to develop concept models to creatively explore these
technologies, imagining new attack scenarios, new targets of interest for adversaries,
and potential vulnerabilities to bolster industry standards against future botnets.

In order to achieve the highest possible level of defence, there must be a greater
level of global collaboration between researchers, vendors, network infrastructure
providers, and law enforcement agencies. This is vital in dealing with threats effec-
tively and efficiently, as demonstrated in numerous successful botnet takedowns
[53–55]. Collaboration may be also happen through the sharing of resources and
research platforms (e.g. the DETER TestBed [76]). Security needs to extend beyond
business and government networks. For example, the Stratosphere Project aims to
empower NGOs by providing free botnet defence tools [77]. Users should also
be personally empowered to actively maintain their privacy. A possible path to
achieving this is open-source software, though there is some debate as to whether
this is more or less secure than proprietary solutions [78].

Another area for development is in legislation and policy. As technology has
developed in past decades, legislation around the world has struggled to keep up
[55]. The rapid dissemination and adoption of new technology results in legal grey
areas which can be exploited by criminals, but also by legitimate businesses and
states for profit, power, or surveillance. Such areas in need of clear and robust
laws include user privacy, collection of user data, and remote admin of private
systems. The reactive nature of cyber-crime legislation risks harsh laws that address
symptoms rather than causes, and ultimately threaten the future of a free Internet.
Botnets are a unique and complex threat, their impact dependent on context and
environment. For the future Internet to be secure whilst remaining democratic and
free, new legislation (and the underpinning technology) must balance the rights of
individuals with the safe and secure provision of services.

Finally, botnet malware has the potential to cause significant damage to national
infrastructure. Combined with the possibility of state-sponsored attacks, this has
large implications about the future of warfare and conflict. Hence, nations need to
invest in securing critical infrastructure. This requires significant research into the
defence of highly specialised systems against sustained, sophisticated attacks. With
botnet tools highly available to anyone on the Internet, the potential for large-scale
cyber-terrorism must be a major consideration.
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8 Conclusions

In this chapter, we have outlined the basics of what a botnet is, how it works, possible
variations, and how they are categorised. We defined botnet attacks in 2 distinct
parts; the initial compromise and the continuous threat. The former encompasses the
infection of a domain, including installation, system manipulation, and propagation
activities. Identification of the malware at this stage mitigates the development of
the botnet. The latter denotes the state of the domain after a successful compromise,
where the botnet is ready to be utilised for a variety of attacks. At this stage,
detection is a damage limitation exercise. Building on this, we discussed the impact
of infections on the host domain, the attack process, and factors contributing to
successful deployment.

We then outlined current defensive strategies, categorising them as proactive
(practical solutions for securing real networks) and pre-emptive (theoretical explo-
rations for better understanding and prediction). We demonstrated the adaptability
of botnets by discussing new types of bot malware on platforms like mobile, social
networks, IoT, the cloud, and blockchain. Finally, we considered some unresolved
issues, and made suggestions for future research. Botnets are highly versatile,
powerful multi-function tools. They are relatively easy to setup and difficult to take
down, and can impact any area of digital infrastructure. Therefore, we need to have
equally powerful defensive strategies, with a concentrated focus on early detection
and a culture of security awareness.
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