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Abstract Program obfuscation is about modifying source or machine code into
functionally equivalent code that is hard to understand to a human or some
other program. Early obfuscation techniques included heuristic non-cryptographic
code transformations, many of which however, have been found to be ineffective
against sufficiently motivated adversaries. The recent area of cryptographic program
obfuscation targets the design and implementation of program obfuscators that
are provably secure under a widely accepted intractability assumption, following
the standard of modern cryptography solutions. In this chapter we provide a brief
summary of the state of the art in cryptographic program obfuscation, focusing on
two main aspects: first, there are many implementations of point function obfusca-
tors, satisfying different obfuscation notions, and many of them can be used with
practical performance guarantees; second, multiple application-driven obfuscation
models and problems can be generated, where practical attack classes can be
addressed by leveraging current implementations of point function obfuscators, as
well as potential future practical implementations of special-purpose obfuscators.
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1 Introduction

Program obfuscation is about modifying source or machine code into functionally
equivalent code that is however hard to understand to a human or some other
program. Until about 20 years ago, studies in program obfuscation were motivated
mainly by the intention to protect software intellectual property from reverse-
engineering attacks. Obfuscation techniques included heuristic code transforma-
tions performed by a human or by an obfuscator program, some of them building
on transformations similar to those applied during compilation (see, e.g., [15] for
a taxonomy of code transformation techniques). Many such techniques, however,
have been found to be ineffective against a sufficiently motivated adversary,
eventually being capable of developing automated deobfuscation techniques and
thus reverse-engineering of the program (see, e.g., [35]).

In the past 20 years or so, the problem of program obfuscation has been
attracting a significant amount of research in the modern cryptography literature,
as ‘cryptographic program obfuscation’ might remove the heuristic aspect from
obfuscation techniques. Following the success of modern cryptography, where
multi-party computation protocols can be designed and proved secure under widely
accepted computational intractability assumptions, cryptographic program obfus-
cation aspires at designing obfuscated programs whose obfuscation enjoys similar
provability guarantees. Actually early results in the area conveyed somewhat mixed
messages: on the positive side, in [25] it was showed that cryptographic program
obfuscation could solve a long-standing open problem in cryptography; while on the
negative side, results in [4] implied the very likely impossibility of constructing a
single obfuscator for all polynomial-time programs. This still left open the following
two main possibilities: (1) constructing a program obfuscator for all polynomial-
time programs (i.e., a general-purpose obfuscator) with respect to a less general
notion of obfuscation security (and thus, a less general class of attacks); and (2)
constructing a program obfuscator for each specific polynomial-time program (a
special-purpose obfuscator) with respect to a general notion of obfuscation security.

The line of research (1) has seen much excitement since several other uses of
general-purpose obfuscation with respect to this weaker notion of obfuscation were
presented (see, e.g., [3] and references therein), potentially solving several long-
standing open problems, including some rather surprising ones (e.g., transforming
any public-key encryption scheme into a private-key encryption ones). Many
candidate general-purpose obfuscator constructions have been proposed based on
heuristic constructions of an advanced mathematical objects, called multilinear
forms, or approximate versions of them; unfortunately, as of today, many of these
candidates have been broken and the future of this research direction has been
questioned.

The line of research (2) has actually shown some encouraging progresses, in
that recent results show the possibility of constructing obfuscators for restricted
families of functions, such as secret verification (aka point) functions, and a few
isolated extensions of them, under commonly used, and widely accepted, hardness
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assumptions. Point functions can be seen as functions that return 1 if the input value
is equal to a secret value stored in the program, and 0 otherwise. This line of research
has many more chances of being relevant to real-life applications. For starters,
commonly used protocols for password-based authentication have been reformu-
lated as instances of point-function obfuscation (the password playing the role of
the secret point to be matched). More specifically, the current research literature
contains a few theoretical definitions of program obfuscation for point functions
(see, e.g., [4, 5]), several constructions of program obfuscators for point functions
based on commonly used hardness assumptions, with different performance and
security features (see, e.g., [5, 11, 28, 36], as well as several other contributions cited
in these cited papers), and implementation efforts showing the practicality of some
of these results (see, e.g., [1, 18]). Some of the most relevant results are, in turn,
based on other cryptographic primitives (such as deterministic encryption, lossy
trapdoor functions, etc.), which have been previously studied in other sequences of
papers, even though following the paths of these relationships and understanding
the full applicability of these results is a non-trival task for the casual cryptography
or security reader. Further specific programs for which special-purpose obfuscators
have been proposed include hyperplane membership [13], short-distance matching
[19], proxy re-encryption [27], and wildcard-based matching [10]. For none of these
latter obfuscators, however, practical implementations have been shown yet.

This chapter can be divided into two conceptual parts, where we show:

1. practical implementations of point function obfuscators, provably secure under
widely used intractability assumptions and in theory-oriented models and defini-
tions of cryptographic program obfuscation, and

2. guidelines to generate application-oriented models and definitions of crypto-
graphic program obfuscations, addressing more practical classes of attacks.

In the first part of the chapter (Sects. 2, 3, 4, 5, 6, 7, and 8) we start by
considering theory-oriented models and definitions of program obfuscators from
the literature, and specialize it to a practice-oriented version that is more suited for
implementation, especially with respect to program obfuscators for a large class of
functions, including point functions. Then, we consider including 4 of the most used
security notions for cryptographic program obfuscators, capturing the following
theoretical classes of attacks:

1. learning some information on the obfuscated program significantly better than
by just evaluating a black box computing the same program;

2. learning the output of a predicate on input the obfuscated program significantly
better than by just evaluating a black box computing the same program;

3. distinguishing the output of a predicate on input the obfuscated program from
the output of a predicate on input an obfuscation of a random program within a
given class;

4. distinguishing the obfuscated program from an obfuscation of a random program
within a given class.
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We sort out the intricate literature on this sub-area to select some interesting point
function obfuscators from [1, 5, 11, 18, 28, 36], including: (a) at least one satisfying
each of these security notions; (b) at least one that is practically efficient and prov-
ably secure based on group-theory and no random oracles; (c) at least one based on
a lattice-theory assumption, which is resistant to quantum computation attacks. We
then report on our implementations of these obfuscators from [1, 18], showing their
practical performance, in terms of runtime and storage of the obfuscated program.
These implementations apply, wherever possible, a small amount of both design and
coding optimizations. Among the former type of optimizations, the computations of
certain values are replaced with different and more efficient computations of almost
equally distributed values. In one case, a similar distribution is maintained only
at the cost of a (much) stronger hardness assumption. Among the second type of
optimizations, in group-theory obfuscators, conventional modular exponentiation
(often, the most expensive operations in group-theoretic cryptography) is replaced
with modular exponentiation via pre-processing, combined with Montgomery
multiplication; in lattice-theory obfuscators, probabilistic testing techniques can be
used to reduce both storage and runtime.

Overall, our conclusion in this chapter’s first part is that implementations of point
function obfuscators, provably satisfying different obfuscation notions under widely
accepted intractability assumptions, can be used with practical performance (i.e.,
runtime and storage) guarantees.

In the second part of our chapter (Sect. 10), we present application-driven models
for cryptographic program obfuscation identifying research problems in this area
as a tuple of points, each point in the tuple being taken from a different 3-
dimensional space. We consider a first 3-dimensional space on problem models
(with dimensions on program representation models, input models and participant
models), a second 3-dimensional space on security requirements (with dimensions
on adversary resources, adversary attacks and adversary goals), and a third space on
performance requirements (with dimensions on runtime, memory use and storage
of the obfuscated program). Definitions of security requirements are driven by (a)
adversary goals and security notions based on distinguishing and computing over
obfuscated programs; (b) adversary resources such as chosen program inputs and
associated outputs, inspection of the program’s code, and eavesdropping program
inputs and associated outputs; and, most importantly, (c) practical attack classes
such as:

1. the adversary making remote calls to the obfuscated program;
2. the adversary stealing or being leaked the obfuscated program and being able to

run it in a different computing environment;
3. the adversary intruding in the same computing environment where the obfuscated

program resides, observing while it is being run in that environment as well as
being able to inspect and run the program.

Variants of these attacks are discussed in various models, where the adversary may
target general or secret-based programs, taking low-entropy or high-entropy inputs,
in a 2-party or 3-party model. The resulting application-driven research problems
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enhance the applicability of program obfuscation solutions. As an example for that,
we show an obfuscation in the 3-party model for simple function families with
low-entropy secrets that does protect the secret (instead, any obfuscation in the 2-
party model would not adequately protect the secret against learning or black-box
attacks).

Overall, our conclusion in this chapter’s second part is that current implemen-
tations of point function obfuscators (as well as potential future implementations
of special-purpose obfuscators) may soon be leveraged to address practical attack
classes with practical performance guarantees.

2 Theory-Oriented Modeling of Cryptographic Program
Obfuscation

This section introduces and refines a number of definitions and facts related to the
literature’s theory-oriented modeling of cryptographic program obfuscation. First,
it starts with some basic notations and definitions (in Sect. 2.1); then, it provides
functionality, efficiency and security requirements of program obfuscators for point
functions (in Sect. 2.2); finally, it quickly recalls known constructions of program
obfuscators for point functions (in Sect. 2.3).

2.1 Basic Notations and Definitions

Let a|b denote the concatenation of a and b, and let symbol Zq denotes the set of
integers {0, . . . , q − 1}.

If S is a set, an element of Sn is an n-component vector with components in S,
and an element of Sm,n is an m-row, n-column matrix with entries in S.

The expression y ← T denotes the probabilistic process of uniformly and
independently choosing y from set T . The expression y ← A(x1, x2, . . .) denotes
the (possibly probabilistic) process of running algorithm A on input x1, x2, . . . and
any necessary random coins, and obtaining y as output. A probability distribution
D is also written as D = {p1;p2; . . . ;pn : v} to denote the distribution of v after
the ordered execution of probabilistic processes p1, . . . , pn.

2.2 Modeling Cryptographic Program Obfuscation

The original definition from [4] of cryptographic program obfuscators contained
3 main requirements that can be briefly stated as follows: (program functionality)
the obfuscated program behaves like the original program; (polynomial slowdown)
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the obfuscated program is only polynomially slower than the original program;
(virtual black-box obfuscation) the obfuscated program does not leak more to
an adversary than access to a black box computing the original program. After
recalling a formal version of this definition, the rest of this subsection gives a refined
definition of cryptographic program obfuscators, obtained by syntax changes to the
original definition and by allowing for some very small error probability of incorrect
program output, even when the program input is adversarially chosen after seeing
the obfuscated program. The resulting definition is simpler to deal with, from both
theory and implementation purposes, and is semantically equivalent for a large class
of function families, including point functions. Finally, various security notions are
reviewed, including and beyond the original virtual black-box obfuscation (here
renamed ‘adversary output black-box simulation’).
The original definition. We say that the family of functions F admits an obfuscator
Obf if Obf is an efficient (possibly probabilistic) algorithm that, on input a
description of function f ∈ F and/or a circuit Cf computing f ∈ F , returns an
(obfuscated) circuit oCf , such that the following two properties are satisfied:

1. (Almost exact functionality): For all f in F , and inputs x, it holds that oCf (x) =
f (x), except possibly with very small probability.

2. (Polynomial slowdown): There exists a polynomial p such that for all f in F ,
the running time of oCf is ≤ p(|Cf |), where |Cf | denotes the size of circuit Cf .

A refined definition. In practice, it can be unnecessarily complex to implement an
obfuscator taking as input a circuit that computes function f , and returns as output
another (obfuscated) circuit. Therefore, we perform syntax changes to obtain a
definition involving simpler algorithms, from the point of view of implementation,
and semantically-equivalent for a large class of function families, including point
functions. We then generalize this definition to allow for some small error prob-
ability of incorrect program output, even when the program input is adversarially
chosen after seeing the obfuscated program. Specifically, we view an obfuscator as
a pair of efficient algorithms: an obfuscation generator oGen and an obfuscation
evaluator oEval, with the following syntax. On input function parameters fpar ,
including a description of function f ∈ F , oGen returns generator output gpar . On
input a description of function f ∈ F , generator output gpar , and evaluator input
x, oEval returns evaluator output y. The pair of algorithms (oGen, oEval) satisfies
the following two properties:

1. (Almost exact functionality): For any f in F , with function parameters fpar ,
and any algorithm A, the equality y = f (x) holds with probability 1 − δ, for
some very small value δ, where y is generated by the following probabilistic
steps:

1. gpar ← oGen(fpar),
2. x ← A(gpar)

3. y ← oEval(gpar, x).
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2. (Polynomial slowdown): There exists a polynomial p such that for all f in F , the
running time of oEval is ≤ p(|f |), where |f | denotes the size of the (smallest)
boolean circuit computing f .

Security notions. Obfuscators (in both the original and refined definition) can satisfy
any one of the following different obfuscation security notions (which have to be
valid for all functions input to the obfuscation generator chosen according to their
specified distribution, for all efficient adversary algorithms, and except possibly with
very small probability):

1. adversary view black-box simulation [4]: The adversary can read, and thus
execute, the evaluator program oEval(gpar, ·). Informally speaking, this notion
says that no efficient adversary with these capabilities learns any more informa-
tion than what it can learn by evaluating a black box program that computes
function f . A bit more formally, for any efficient adversary with these capa-
bilities, there exists an efficient algorithm, called the simulator, with black-box
access to function f , that produces an output indistinguishable from the evaluator
program oEval(gpar, ·).

2. adversary output black-box simulation [4]: The adversary can read, and thus
execute, the evaluator program oEval(gpar, ·) and is constrained to return a bit
at the end of its computation. Informally speaking, this notion says that for any
efficient adversary with these capabilities, the adversary’s output bit (indicating,
for instance, whether the obfuscated program satisfies a certain property or not)
could have been produced after evaluating a black box program that computes
function f . A bit more formally, the adversary’s output bit can be guessed by an
efficient algorithm, called the simulator, with black-box access to function f .

3. real-vs-random indistinguishability [5]: The adversary can read, and thus exe-
cute, an evaluator program oEval(rr, ·) which is randomly chosen between
the evaluator program obtained after an obfuscation of the program computing
function f and the evaluator program obtained after an obfuscation of the
program computing a function randomly chosen from F . The adversary is
returning a bit at the end of its computation. Informally speaking, this notion
says that at the end of its computation, the adversary cannot distinguish the two
cases: an obfuscation of the program computing function f from an obfuscation
of the program computing a random function from family F .

4. strong indistinguishability [5]: As in the real-vs-random indistinguishability, the
adversary can read, and thus execute, an evaluator program oEval(rr, ·) which
is randomly chosen between the evaluator program obtained after an obfuscation
of the program computing function f and the evaluator program obtained after
an obfuscation of the program computing a function randomly chosen from
F . Informally speaking, this notion says that at the end of its computation, no
efficient distinguisher algorithm can distinguish the adversary’s output in the two
cases: an obfuscation of the program computing function f from an obfuscation
of the program computing a random function from family F .
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All these notions intuitively capture important properties that a program obfuscator
should have, and for any two of these notions, their equivalence is either false or
unknown. It is not hard to see that an obfuscator satisfying notion 1 also satisfies
notions 2, 3, and 4. Moreover, in [5], it was proved that, for the family of point
functions, an obfuscator satisfying notion 4 also satisfies notion 3, and that the
converse may not hold.

2.3 Cryptographic Point Function Obfuscation

We consider families of functions as families of maps from a domain to a range,
where maps may be parameterized by some values chosen according to some
distribution on a parameter set. Let pF be a family of functions fpar : Dom →
Ran, where Dom = {0, 1}n, Ran = {0, 1}, and each function is parameterized by
value par from a parameter set Par = {0, 1}n, for some length parameter n. We
say that pF is the family of point functions if on input x ∈ Dom, and secret value
s ∈ Par , the point function fpar returns 1 if x = s and 0 otherwise.

In an obfuscator for the family of point functions, the following holds: the
obfuscation generator algorithm oGen takes as input the secret value s; the almost
exact functionality property implies that, except with very small probability, the
evaluator’s output is equal to 1 if x = s and 0 otherwise; and each of the security
notions implies a different type of obfuscation of secret value s.

We now summarize a sample of known constructions of point function obfus-
cators. A first obfuscator, satisfying adversary view black-box simulation, was
given in [28], under the random oracle assumption. Previous results, although
formulated as different cryptographic primitives, might be restated as point func-
tion obfuscators satisfying strong indistinguishability under the Decisional Diffie
Hellman assumption [11] or under the existence of claw-free permutations [12].
The obfuscator in [36] satisfies (a weakened version of) adversary output black-
box simulation under the existence of a strong type of one-way permutations.
Finally, more obfuscators were given in [5], and one of these, based on any
deterministic encryption scheme, satisfies real-vs-random indistinguishability, and
happens to have several instantiations. This is due to the fact that deterministic
encryption schemes can be built using hard problems on lattices [37] or lossy
trapdoor functions [7], and the latter have been built using any one of many group-
theoretic assumptions (see, e.g., [21]).

In Sects. 3, 4, 5, 6, 7, and 8, we review somewhat improved designs of these
obfuscators from [1, 18] and in Sect. 9 we compare their security and performance
properties.
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3 A Point Function Obfuscator from Cryptographic Hashing

The first obfuscator (from [18, 28]), denoted as (oGen1, oEval1), for the family
of point functions, is based on collision-resistant hashing, modeled in the security
analysis as random oracles.
Informal description: This well-known construction is based on a technique often
used to store passwords in certain operating systems, which has recently been re-
interpreted as an obfuscation of the password verification algorithm. Informally, it
goes as follows. The obfuscation generator first concatenates the secret value with
a sufficiently-long random string, then applies a cryptographic hash function on
this concatenated value, and finally returns the computed hash tag. The obfuscation
evaluator does essentially the same computations on the input point (instead of the
secret value), and returns 1 if the computed hash tag is equal to the hash tag returned
by the obfuscation generator or 0 otherwise. A more formal description follows.
Formal description: Let H denote a collision-resistant hash function (i.e., a function
mapping an arbitrary-length input string to a fixed-length output string, such that it is
hard for any efficient adversary to find two preimages of the same function output).
Scheme (oGen1, oEval1) goes as follows.
Input to oGen1: security parameters 1n, 1�0 , length parameter 1�, secret value z ∈
{0, 1}�,
Instructions for oGen1:

1. Uniformly and independently choose r ∈ {0, 1}�0

2. Compute v = H(r|z), where v ∈ {0, 1}n
3. Set gpar = (r, v) and return: gpar .

Input to oEval1: security parameter 1n, length parameter 1�, r ∈ {0, 1}�0 and v ∈
{0, 1}n, input value x ∈ {0, 1}�
Instructions for oEval1:

1. compute v′ = H(r|x), where v′ ∈ {0, 1}n
2. if v′ = v return 1 else return 0

Theoretical result. Assuming H behaves like a random oracle, (oGen1, oEval1) is
an obfuscator of the family of point functions, satisfying the adversary view black-
box simulation notion. In [28], it was first stated that if H behaves like a random
oracle, the value H(z) is a (not composable) obfuscation of secret value z. The
known technique of concatenating z with a sufficiently long random string r before
hashing makes the scheme composable (i.e., secure even if executed many times, on
input related secret strings).
Parameter and primitive settings. Parameter � can be set as needed in the specific
application. Parameter n can be set as ≥256, to guarantee security against generic
“birthday-type” collision attacks; our implementation sets it =512. Parameter �0 is
also set as =512. H can be any cryptographic hash function that is believed to
be secure enough in light of a significant amount of cryptanalysis efforts; thus,
including SHA2 and SHA3. Our implementation uses SHA512, which is SHA2
when set it to return n = 512 bits as output.
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4 A Point Function Obfuscator Based on Decisional DH

The second point function obfuscator (from [11, 18]) we describe, denoted as
(oGen2, oEval2), is based on the Decisional Diffie-Hellman (DH) assumption.
We first briefly recall this assumption and the notions of faster computation of
modular exponentiation via preprocessing, and then describe the obfuscator and its
properties.
Decisional DH assumption: Let p and q be primes such that p = 2q + 1 and
|q| = n + 1. The pair (Z∗

p, ·), where Z∗
p = {1, . . . , p − 1} and · denotes product

modulo p, is a group and has a q-order subgroup, denoted as Gq . Let g denote a
generator of Gq . Efficient algorithms are known to randomly choose primes p, q

of this form, and a generator for Gq . The Decisional DH problem over Gq asks to
efficiently distinguish, given p, q, g, the following two tuples:

1. (p, q, g, ga mod p, gb mod p, gab mod p), and
2. (p, q, g, ga mod p, gb mod p, gc mod p),

for uniformly and independently chosen elements a, b, c from Zq . The Decisional
DH assumption over Gq says that no efficient algorithm can distinguish these two
distributions, except with very small probability. The Discrete Logarithm problem
over Gq asks to efficiently compute, given p, q, g, and an element h ∈ Gq , the
exponent x ∈ Zq such that gx = h mod p. The Discrete Logarithm assumption
over Gq says that no efficient algorithm can solve the Discrete Logarithm problem,
except with very small probability. The Decisional DH assumption implies the
Discrete Logarithm assumption. Even if the converse is known not to hold in some
other groups, no polynomial-time algorithm is known to solve the Decisional DH
problem in subgroup Gq . A survey of the Decisional DH problem can be found in
[8].
Modular exponentiation with preprocessing: The pair of algorithms (ModExpPreproc,
ModExpCompute) denotes a scheme for faster computation of modular
exponentiation, using preprocessing, and defined as follows. On input a base
u and a modulus p, the algorithm ModExpPreproc computes some auxiliary
information auxu,p. On input a base u, a modulus p, an exponent d, and auxiliary
information auxu,p, the algorithm ModExpCompute computes a value v, such that
v = ud mod p. Here, the goal is to use auxiliary information auxu,p to compute
v faster than using a standard modular exponentiation algorithm, such as the
textbook square-and-multiply algorithm. A survey of such faster methods was given
in [24]. Some of these methods reduce exponentiation to an arbitrary exponent
to a sequence of multiplications of simpler and pre-computed exponentiations to
specific exponents. In the implementation described here, one of these methods is
further optimized by efficient variants of modular multiplications (i.e., performing
Montgomery modular multiplications [9]).
Informal description: First, the obfuscation generator computes a first value as a
random power of generator g, a second value as an exponentiation of the first
value to the secret value, and returns both values; then, the obfuscation evaluator
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exponentiates the first value to the input point (instead of the secret value), and
returns 1 if the computed group element is equal to the second value or 0 otherwise.
This basic idea is extended by replacing one modular exponentiation with a random
subgroup value computable using only one modular multiplication in the chosen
group, and by computing all other exponentiations by carefully distributing the
technique of exponentiation with preprocessing between the obfuscation generator
and evaluator. A formal description of (oGen2, oEval2) follows.
Input to oGen2: length parameter 1n, secret value z ∈ {0, 1}n
Instructions for oGen2:

1. Randomly choose primes p, q such that p = 2q + 1, |q| = n + 1
2. Randomly choose generator g of q-order subgroup Gq of Z∗

p

3. Randomly choose u ∈ Gq

4. Compute (auxu,p) = ModExpPreproc(u, p)

5. Consider z as an element of Gq

6. Compute v = ModExpCompute(u, p, z, auxu,p)

7. Return: (auxu,p, (u, v)).

Input to oEval2: security parameter 1n, input value x ∈ {0, 1}n and the output
from oGen, containing auxiliary information auxu,p for faster computation of
exponentiation modulo p in base u, and pair (u, v).
Instructions for oEval2:

1. Consider x as an element of Gq

2. Compute v′ = ModExpCompute(u, p, x, auxu,p)

3. If v′ = v then return: 1 else return: 0.

Theoretical result. Under the Decisional DH assumption, (oGen2, oEval2) is an
obfuscator of the family of point functions with (almost) uniformly distributed secret
values, according to strong indistinguishability obfuscation notion of [5] (which
generalizes the oracle hashing secrecy from [11]). This follows by a generalization
of the proof from [11] that the basic version of this construction is an oracle hashing
scheme for random secret inputs under the Decisional DH assumption.
Parameter and primitive setting. Parameter n can be set as =2048, to guarantee
security against known discrete logarithm finding algorithms. In algorithm initO2,
to perform the generation of prime p, along with prime q, and of generator g for
the q-order subgroup Gq of Zp, we used procedures from the OpenSSL library. The
scheme (ModExpPreproc, ModExpCompute) can be any pair of algorithms from
[24]. In one such schemes, algorithm ModExpPreproc precomputes exponentiations
modulo p in the same base u and for specific exponents (e.g., powers of 2 and
combinations of them). Later, based on these pre-computed values, algorithm
ModExpCompute computes exponentiations modulo p in the same base u and for
an arbitrary exponent, as a suitable sequence of multiplications modulo p.
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5 A Point Function Obfuscator Based on Discrete
Logarithms

The third obfuscator (from [18, 36]), denoted as (oGen3, oEval3), for the family of
point functions, is based on the Discrete Logarithm assumption. First, we briefly
recall this assumption, and then describe the obfuscator and its properties.
Discrete Logarithm assumption over Z∗

p: Let p be an (n + 2)-bit prime, and let g

be a generator of the group Z∗
p. The Discrete Logarithm problem over Z∗

p asks to
compute x, given p, g, y such that y = gx mod p, for a random x ∈ {0, . . . , p − 1}.
The Discrete Logarithm assumption over Z∗

p says that no efficient algorithm can
compute x with more than negligible, in n, probability. For any x ∈ {0, . . . , p − 1},
the function MostSigBit(x) returns 0 if 1 ≤ x ≤ (p − 1)/2 and 1 if (p − 1)/2 <

x ≤ p − 1. As for the obfuscator from Sect. 4, we use scheme (ModExpPreproc,
ModExpCompute) for faster computation of modular exponentiation.
Informal and formal description: The starting idea of this scheme is as in [36], using
two main tools: a one-way permutation (i.e., a permutation that can be efficiently
computed but is conjectured to be hard to invert when computed on a random input);
and a hard-core predicate for this one-way permutation (i.e., a predicate function that
returns a single hard-core bit, is efficiently computable from the input to the one-way
permutation and is hard to guess given only the output of the one-way permutation).
The obfuscation generator works in 3n iterations, and computes at each iteration the
output of a one-way permutation on input the output from the previous iteration,
and a hard-core bit associated with the current evaluation. The input in the first
iteration is the secret value z. At the end of all iterations, it returns the 3n hard-
core bits. The obfuscation evaluator performs the same computation of 3n hard-core
bits, using as input in the first iteration the input value x. At the end, it returns
1 if the computed hard-core bits are equal to those returned by the obfuscation
generator or 0 otherwise. This basic idea is instantiated by setting the one-way
permutation as exponentiation modulo a prime p (which is often conjectured to
be a one-way permutation over Z∗

p), and by setting the hard-core bit as the most
significant bit of the discrete logarithm exponent (which has been proved to be a
hard-core bit for exponentiation modulo p, under the same conjecture). Then, all
modular exponentiations are computed by carefully distributing the technique of
modular exponentiation with preprocessing between the obfuscation generator and
evaluator, similarly as done for our obfuscator in Sect. 4.

A formal description of (oGen3, oEval3) follows.
Input to oGen3: length parameter 1n, secret value z ∈ {0, 1}n.
Instructions for oGen3:

1. Randomly choose prime p ∈ {0, 1}n+1

2. Randomly choose a generator g of Z∗
p

3. Compute auxg,p = ModExpPreproc(g, p)

4. Consider z as an element of Z∗
p and set w1 = z

5. For i = 1, . . . , 3n,
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compute wi+1 = ModExpCompute(g, p,wi, auxg,p)

compute vi = MostSigBit(wi+1)

6. Set v = (v1| · · · |v3n)

7. Return: (auxg,p, v).

Input to oEval3: security parameter 1n, input value x ∈ {0, 1}� and the output
from oGen, containing auxiliary information auxg,p for faster computation of
exponentiation modulo p in base g, and 3n-bit vector v.
Instructions for oEval3:

1. Consider x as an element of Z∗
p and set w′

1 = x

2. For i = 1, . . . , 3n,
compute w′

i+1 = ModExpCompute(g, p,w′
i , auxg,p)

compute v′
i = MostSigBit(w′

i+1)

3. Set v′ = (v′
1| · · · |v′

3n)

4. If v′ = v then return 1 else return: 0.

Theoretical results. Under the Discrete Logarithm assumption, (oGen3, oEval3) is
an obfuscator of the family of point functions, according to (a weak version of) the
adversary output black-box simulation notion [4]. This follows by combining the
following: (1) the proof in [36] that the generalized construction is an obfuscator
under a strong one-way permutation assumption; (2) an instantiation of the strong
one-way permutation using exponentiation modulo a large prime, based on the
Discrete Logarithm assumption; (3) an instantiation of the hard-core predicate
for the one-way permutation using the most significant bit, based on the Discrete
Logarithm assumption and a result from [6].
Parameter and primitive setting. To guarantee security against known discrete
logarithm finding algorithms, we set n = 2048. In algorithm initO3, to perform
the generation of prime p and generator g for Z∗

p, we used procedures from the
OpenSSL library. The scheme (ModExpPreproc, ModExpCompute) can be any
scheme from [24].

6 A Point Function Obfuscator from Decisional Residuosity

This section presents an obfuscator from [5, 7, 17, 18, 21, 31], denoted as (oGen4,
oEval4), for the family of point functions, based on the Decisional Residuosity (DR)
assumption. We first briefly recall this assumption, and then describe the obfuscator
and its properties.
DR assumption: Let p, q be �-bit primes and let N = pq. The DR (modulo N2)
problem asks to efficiently distinguish, given N , a random value in Z∗

n2 from a

random n-th residue in Z∗
n2 (i.e., a value y = xN mod N2, for some random x ∈

Z∗
n2 ). The DR assumption says that no efficient algorithm can distinguish the two

distributions, except with negligible probability.
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Informal description: The starting idea of this scheme combines results in [5, 7],
where a point function obfuscator is constructed from any deterministic encryption
[5], and the latter is constructed from any pairwise-independent hash function and
lossy trapdoor function [7]. Finally, the construction of a lossy trapdoor function
from [21] is used, in turn based on the public-key cryptosystem from [17] (a variant
of the one in [31]). The resulting obfuscation evaluator only performs two modular
exponentiations, and one of them can be computed using preprocessing, similarly
as done in Sect. 4.
Formal description: For any x, let t = minH(x) denote the min entropy of string x;
that is, x is sampled from a distribution that returns no value with probability >2−t .
We now give a formal description of (oGen4, oEval4).
Input to oGen4: security parameter 1n, length parameter 1�, accuracy parameter ε,
secret value z ∈ {0, 1}�, and min-entropy parameter t , such that minH(z) ≥ t ≥
n + 2ε, and � = (n − 2)s + n/2 − 1, for some integer s ≥ 1.
Instructions for oGen4:

1. Randomly choose primes p, q such that |p| = |q| = n/2
2. Set N = pq

3. Randomly choose r ∈ Z∗
N

4. Set c = (1 + N)rNs
mod Ns+1

5. Write z as (u0, u1), where u0 ∈ ZNs and u1 ∈ Z∗
N

6. Randomly choose pairwise independent hash function piH : Zns × Z∗
n →

Zns × Z∗
n

7. Set (v0, v1) = piH(u0, u1), where v0 ∈ ZNs , v1 ∈ Z∗
N

8. Set auxc,Ns+1 = ModExpPreproc(c,Ns+1)

9. Set w0 = ModExpCompute(c,Ns, v0, auxc,Ns+1)

10. Set w = w0(v1)
Ns

mod Ns+1

11. Return: (t, piH, ε, c,N, s,w)

Input to oEval4: security parameter 1n, length parameter 1�, input value x ∈ {0, 1}�
and oGen4’s output, containing min-entropy parameter t , pairwise independent hash
function piH , accuracy parameter ε, auxiliary information auxc,Ns+1 for faster
computation of exponentiation modulo Ns+1 in base c, value c ∈ ZNs+1 , integer
N , integer s, and value w ∈ ZNs+1 .
Instructions for oEval4:

1. Write z as (u′
0, u

′
1), where u0 ∈ ZNs and u1 ∈ Z∗

N

2. Set (v′
0, v

′
1) = piH(u′

0, u
′
1), where v′

0 ∈ ZNs , v′
1 ∈ Z∗

N

3. Set w′
0 = ModExpCompute(c,Ns+1, v′

0, auxc,Ns+1)

4. Set w′ = w′
0(v

′
1)

Ns
mod Ns+1

5. If w′ = w then return 1 else return 0.

Theoretical properties. Under the Decisional Residuosity (modulo Ns+1) assump-
tion, the pair (oGen4, oEval4) is an obfuscator for the family of point functions,
according to the real-vs-random obfuscation indistinguishability definition of [5],
and where the point has min entropy at least n + 2ε. This is obtained by combining
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the following: (1) the proof in [5] that an obfuscator based on any deterministic
encryption scheme satisfies the real-vs-random indistinguishability obfuscation
notion; (2) the result in [7] saying that a deterministic encryption scheme can
be obtained by applying a pairwise-independent hash function to the input, and
then a lossy trapdoor function to its output; (3) the construction in [21] of a
lossy trapdoor function based on Damgaard-Jurik’s cryptosystem [17] (a variant
of Paillier’s cryptosystem [31]). The pairwise-independent hash function is used to
apply the Leftover Hash Lemma from [26].
Parameter and primitive setting. Parameter s can be set depending on what �

is needed in the specific application, and our implementation only requires an
essentially unrestricted � < 231. Parameter ε can be set as 128, to guarantee that
the statistical distance between the distribution of piH ’s output and a uniformly
distributed string of the same length, is ≤2−128. Parameter t can be set as t = n+2ε.
For the generation of n/2-bit primes p, q, we used procedures from the OpenSSL
library. Function piH can be any pairwise-independent hash function, including the
1-degree polynomial over GF(2�) [14], which we implemented using [34].

7 A Point Function Obfuscators Based on the LWR Problem

In this section we describe an obfuscator, denoted as (oGen5, oEval5), for the family
of point functions (with almost uniformly distributed secrets), using an assumption
related to the LWR problem. The obfuscator is obtained in [1] by first combining
results in [5, 30, 37] and then performing various design optimizations. We first
briefly recall the definition of the LWR problem and its related assumptions, and
then present the obfuscator and its properties.
Learning With Rounding assumption. Let AT denote the transpose of matrix or
vector A. Let p, q be primes, and, for any vector v = (v1, . . . , vm), let 	v
p denote
the vector whose i-th element is the closest integer to (q/p)vi , for i = 1, . . . , m. Let
Z

n,m
q denote the set of n × m-matrix with elements in {0, . . . , q − 1}, and let Zn

q =
Z

n,1
q , for any positive integers n,m. Consider the following two distributions:

1. D0 = {A ← Z
n,m
q ; s ← Zn

q ; b = 	AT s
p : (A, b)}
2. D1 = {A ← Z

n,m
q ; b ← Zm

p : (A, b)}
The LWR problem asks to efficiently distinguish, whether a sample (A, b) came
from D0 or D1. The LWR assumption says that the distributions D0 and D1 are
indistinguishable to any efficient algorithm, except with negligible probability. The
LWR assumption has been introduced in [2], as a variant of the LWE assumption,
previously introduced in [33], and has been used in some cases to potentially
improve the design of cryptographic primitives and protocols based on the LWE
assumption. In [2] it is also conjectured that in light of known algorithmic attacks,
the LWR assumption seems to hold if q/p ≥ √

n is an integer and p is polynomial
in n. We also consider a modified LWR assumption, also called public-seed
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LWR assumption, which assumes the hardness of the LWR problem when matrix
A is pseudo-randomly generated with publicly known seed. The variant of this
assumption based on LWE has been discussed in detail in [22], and similar
conclusions can be reached in the LWR case. Specifically, the public-seed LWR
assumption does not appear to be significantly stronger than the LWR assumption.
Informal Description. We start with the obfuscator from any deterministic encryp-
tion scheme, as described in [5]. Then, we instantiate the deterministic encryption
scheme with the one from [37], based on the LWR assumption. Next, we use
two design optimizations from [18]: first, the key generation for the deterministic
encryption algorithm only generates the public key, and not the secret key, since the
latter is never used by the obfuscator; second, we generate a uniformly distributed
public key, instead of the one returned by the scheme in [37], in turn based on lattice
key generation approaches from [30]. The latter simplification is possible since the
distribution of the public key was proved in [30] to be statistically indistinguishable
from uniform. Finally, we use three design optimizations from [1]: (1) both the
obfuscation generator and the obfuscation evaluator use a pseudo-random (instead
of random) matrix M with published seed as the public key, and (2) the obfuscation
generator stores H(b) instead of a target vector b, and the obfuscation evaluator
uses H(b′) instead of a generated vector b′ in its test checking equality between a
generated and a target vector, where H denotes a collision-resistant hash function;
(3) inspired by probabilistic testing techniques, we expect that it suffices to run
the evaluator’s equality test only on a randomly chosen subset of the matrix A’s
rows, of size much smaller than the original number of rows; then, since matrix
A is pseudo-randomly generated, one might as well modify the obfuscator so that
it only returns a much reduced number of rows. Optimizations (1) and (2) reduce
storage, but slightly increase running time, while optimization (3) further reduces
both storage and running time.
Formal description: Let H be a collision-resistant hash function. We now give a
formal description of (oGen5, oEval5).
Input to oGen5: dimension parameters 1n, 1m, domain parameter 1q , factor param-
eter δ, rounding parameter p, statistical security parameter 1λ, and secret vector
z ∈ {0, 1}n.
Instructions for oGen5:

1. Set v = (n + λ)/ log q

2. Pseudo-randomly choose M from Z
v,n
q starting from a random seed s

3. Compute vector u = M · z

4. Compute rounded vector b = 	u
p

5. Compute tag w = H(b)

6. Return: (s, w)

Input to oEval5: dimension parameters 1n, 1m, domain parameters t, 1q , factor
parameter δ, rounding parameter p, statistical security parameter 1λ, input vector
x ∈ {0, 1}n, and the output from oGen5, containing seed s and w ∈ {0, 1}�.
Instructions for oEval5:
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1. Set v = (n + λ)/ log q

2. Pseudo-randomly generate M ′ ∈ Z
v,n
q using seed s

3. Compute vector u′ = M ′ · x

4. Compute rounded vector b′ = 	u′
p

5. Compute tag w′ = H(b′)
6. If w′ = w then return 1 else return: 0.

Theoretical result. Under the public-seed LWR assumption, and using results from
[5, 37], in [1] it is proved that (oGen5, oEval5) is an obfuscator for the family of point
functions (with almost uniformly distributed secrets), according to the adversary
view black-box simulation definition.
Parameter setting. Parameters for scheme (oGen5, oEval5) are set in [1] by
slightly improving some constants in those recommended by [37]. Specifically, all
parameters are set as a function of the dimension n and a parameter δ, and settings
for n, δ are determined so to approximately minimize other parameters, including
performance metrics, while subject to the following two constraints:

1. n >= log(q/σ ) ∗ 33.1, for σ = 5, and
2. q/p is an integer ≥ √

n.

Constraint 1 is based on analysis in [23], which provides a lower bound on n,
guaranteeing that the strongest known attacks to the LWE problem, and also
applicable to LWR, are as successful as breaking a 128-bit cryptographic primitive.
Constraint 2 is based on a conjecture in [2], saying that, in light of the strongest
known attacks to LWE, and also applicable to LWR, the LWR problem seems to
remain hard as long as q/p ≥ √

n is an integer and p is polynomial in n. This set of
parameters is then generated starting from n = 1336. The resulting settings are:

1. n = 1336,
2. δ = 0.521,
3. m = 285707 (the dimension of the ciphertext),
4. p = 170396512836
5. q = 6304670974932, where q/p = 37, and
6. v = �(n + λ)/ log p
 = 40, where λ = 128.

An alternative set of parameter settings can be generated starting with the larger
value n = 2048, in case the above conjecture appears too optimist in the future,
using analogue formulae to derive all other parameters from n, δ.

8 A Point Function Obfuscator Based on the LWE Problem

In this section we present an obfuscator from [1], denoted as (oGen6, oEval6), for
the family of point functions (with almost uniformly distributed secrets), using an
assumption related to the LWE problem. We first briefly recall the definition of the
LWE problem and its related assumptions, and then present the obfuscator and its
properties.
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Learning With Error assumption. Let AT denote the transpose of matrix or vector A,
let q be a prime, let · denote matrix-vector product mod q, and let + denote vector
sum mod q. Let Gμ,σ denote the probability density of the Gaussian distribution
with mean μ and standard deviation σ . For any set S ⊆ Z, let dGS,μ,σ denote the
probability density of the discrete Gaussian distribution with mean μ and standard
deviation σ , with assigns to any x ∈ S the probability Gμ,σ (x)/

∑
z∈S Gμ,σ (z). We

note that dGZq,μ,σ can be efficiently sampled [20].
Now, consider the following two distributions:

1. D0 = {A ← Z
n,m
q ; s ← Zn

q ; e ← dGZq,0,2
√

n; b = AT · s + e : (A, b)}
2. D1 = {A ← Z

n,m
q ; b ← Zm

q : (A, b)}
The LWE problem asks to efficiently distinguish, whether a sample (A, b) came
from D0 or D1. The LWE assumption states that the distributions D0 and D1 are
indistinguishable to any efficient algorithm, except with negligible probability. The
LWE assumption has been introduced in [33] and has been used to design various
cryptographic primitives and protocols since then. The literature includes both
research on attack efforts, and on its relationship to other well studied assumptions
on lattices, such as bounded-distance decoding and shortest-vector finding. (See
[29, 30, 32] for detailed bibliographies and problem overviews). We also consider
a modified LWE assumption, also called public-seed LWE assumption, which
assumes the hardness of the LWE problem when matrix A is pseudo-randomly
generated with publicly known seed. This assumption has been discussed in detail
in [22], where it is suggested that it might not be significantly stronger than the LWE
assumption.
Informal Description. Although similar to the obfuscator in Sect. 7, the approach
used by obfuscator (oGen6, oEval6) is not based on a deterministic encryption
scheme and in fact is inherently probabilistic. On input an n-bit secret string z, the
generator algorithm uses the LWE assumption to embed the secret into a random
matrix A and a vector b computed as A · z + e, for some short Gaussian error e.
Note that by the LWE assumption, vector b is computationally indistinguishable
from a random vector of the same structure. On input an n-bit string x, the evaluator
algorithm computes vector b′ as A · x, and returns 1 if the vector b′ − b is short with
respect to some norm (e.g., the L1 norm), and 0 otherwise. As for the obfuscator in
Sect. 7: (1) matrix A is pseudo-randomly generated by both generator and evaluator,
using the same short random seed, which is returned as output by the generator and
then taken as input by the evaluator; and (2) the generator only returns a much
reduced number of rows for matrix A. We refer the reader to [1] for a formal
description.
Theoretical results. Under the public-seed LWE assumption, in [1] it is proved that
(oGen6, oEval6) is an obfuscator for the family of point functions (with almost
uniformly distributed secrets), according to the adversary view black-box simulation
definition.
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9 Security and Performance Comparisons

Security comparisons. Table 1 contains the security notions satisfied by the pre-
sented obfuscators and the hardness assumptions under which the obfuscators
satisfy these security notions.
Performance comparisons. Table 2 contains the generator runtime, evaluator run-
time and storage complexity of the presented obfuscators. The implementation
of the first 4 obfuscators was performed on a Dell 2950 processor (Intel(R)
Xeon(R) 8 cores: CPU E5405 @ 2.00GHz, 16GB RAM), without parallelism.
The implementation of the last 2 obfuscators was performed on an 8-core x8664
machine, with 2 CPU GHz and 3990.05 BogoMIPS. In all cases, both the secret and
the input length were chosen as = 2048.

Remarks The 6 point function obfuscators can be mapped to uncomparable points
in a multi-dimensional space based on the following attributes: evaluator runtime,
storage, security notion, hardness assumption, as well as quantum-resistant security.
While (oGen1, oEval1) has the slowest evaluator runtime, it also assumes that
the hash function behaves like a random oracle (a very strong assumption that
turned out to be false for some older hash functions). Obfuscators (oGeni , oEvali),
for i = 2, 3, 4, are the only ones satisfying strong indistinguishability, adversary
output black-box simulation, and real-vs-random indistinguishability, respectively.
Obfuscators (oGenj , oEvalj ), for j = 5, 6, are the only ones satisfying a security
notion under a quantum-resistant hardness assumption.

Table 1 Security notions and hardness assumptions

Obfuscator Security notion Hardness assumption

(oGen1, oEval1) Adv view bb simulation Random Oracle

(oGen2, oEval2) Strong indistinguishability Decisional DH

(oGen3, oEval3) Adv output bb simulation Discrete Log

(oGen4, oEval4) Real-vs-random indistinguishability Decisional Residuosity

(oGen5, oEval5) Adv view bb simulation Learning with Rounding

(oGen6, oEval6) Adv view bb simulation Learning with Errors

Table 2 Performance of the 6 point function obfuscators (oGeni , oEvali ), for i = 1, . . . , 6

Obfuscator Generator runtime Evaluator runtime Storage

(oGen1, oEval1) 0.0004 s 0.0002 s 1 KB

(oGen2, oEval2) 0.0734 s 0.0139 s 1 MB

(oGen3, oEval3) 76.46 s 12.09 s 0.22 GB

(oGen4, oEval4) 0.1317 s 0.1005 s 2.4 MB

(oGen5, oEval5) 0.0178 s 0.144 s <100 B

(oGen6, oEval6) 0.5580 s 0.3271 s <250 B
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10 Application-Driven Modeling of Cryptographic Program
Obfuscation

Our treatment of application-driven modeling for cryptographic program obfus-
cation identifies research problems in this area as a tuple of points, each point
in the tuple being taken from a different 3-dimensional spaces. In particular, we
focus our dicussion on two 3-dimensional spaces that contain the seemingly most
interesting problem variables. In a first 3-dimensional space, based on problem
models, we consider dimensions on program representation model, input entropy
model and participant model. In a second 3-dimensional space, based on security
requirements, we consider dimensions on adversary resources, attacks and goals.
Here, identified practical attack classes include remote calls, program theft, and
system intrusion. One could consider yet another 3-dimensional space, based on
performance requirements, with most interesting dimensions being running time,
storage complexity, and memory usage of the evaluator program.

Most tuples generated using points in these 3-dimensional spaces have not been
investigated in the literature or even posed as open problems. In the rest of this
section, we describe all the mentioned dimensions and 3-dimensional spaces, and
discuss which problems in these spaces have been studied in the literature or are
currently open problems.
Program Representation. The formalism used to represent programs can be impor-
tant to determine what features of a program need to be obfuscated or not.
Certain program parameters, such as input length, might often be leaked to an
adversary without compromising the secrecy desired in the application at hand (as
is most typically the case with encryption). Most interestingly, programs can be
parameterized by additional secret values or have sensitive logic or both.

In some applications, it might be of greater interest to obfuscate these secret
values while it might be not a problem to reveal the program’s logic. For instance,
consider the family of point functions, defined as pF = {fs | s ∈ {0, 1}n}, where s is
a secret string, and fs : {0, 1}n → {0, 1}n maps an input x ∈ {0, 1}n to 1 if x = s or
to 0 otherwise. For such family, it is of interest to obfuscate secret s while allowing
the capability of evaluating fs , and it may be not important or of less interest to hide
the logic (i.e., conditional, equality, etc.) used by function fs . Applications captured
by this program representation include password/passphrase verification, password
managers, and, more generally, secret-based entity authentication.

In other applications, it might be of greater interest to obfuscate the sensitive
logic than parameter values. For instance, consider the family of all polynomial-time
functions over n-bit inputs, defined as aF = {f | Dom(f ) = {0, 1}n}, where f can
be any polynomial-time computable function. For such family, it might be of interest
to obfuscate the function’s logic (i.e., the structure and gates of the circuit computing
f ), while allowing the capability of evaluating f , and it may be not important or of
less interest to hide parameters (i.e., the input length or any auxiliary input values)
used by function f . Several applications related to protection of program logic and
any related intellectual property are captured by this program representation.
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Input Model. The amount of entropy in the program’s input can be important to
determine if the program can be securely obfuscated or not against adversaries with
certain resources or interaction models. In particular, consider a program with a low-
entropy input and an adversary capable of unlimited evaluations of this program on
inputs of its choice. By evaluating the program on all candidate inputs, the adversary
can efficiently determine the entire program’s input/output behavior, regardless of
whether the program is obfuscated or not. If the program’s input has low entropy,
this adversary can efficiently learn the program and thus bypass any obfuscation.
Note that in the literature the definition of low-entropy input is often left unspecified
or limited to an asymptotic statement (i.e., an input’s entropy is low if it is at most
logarithmic in the security parameter). On the other hand, the definition of high-
entropy input is usually identified with the value of the security parameter (i.e.,
the entropy amount for which exhaustive search attacks are actually impractical).
While it is true that there are many applications, especially when it comes to
cryptography programs, where inputs have high entropy, it is also true that in many
non-cryptographic applications, inputs might have low entropy. In the latter case, to
allow any obfuscation approach to maintain desired security properties, one needs
to resort to a weaker model for the adversary’s resources and/or interaction with
the program. (See, for instance, participant, adversary resource and adversary attack
models below.)
Participant Model. As the most basic participant model for cryptographic program
obfuscation, one can consider 2 logical entities:

1. a program deployer, in charge of generating the obfuscated program, and
2. a program evaluator, being allowed to evaluate the program (obfuscated by the

program deployer).

Figure 1 depicts the interaction between the two parties, as considered in most
literature papers in the area. In some applications, however, the obfuscated program

Fig. 1 2-party participant model for cryptographic program obfuscation



162 G. D. Crescenzo

Fig. 2 3-party participant model for cryptographic program obfuscation

is hosted with a server and the input to the program is generated from an additional
input source. Thus, one can extend the above 2-participant model into a model with
3 logical entities, defined as follows:

1. a program deployer, in charge of generating the obfuscated program,
2. an input generator, in charge of generating inputs to the obfuscated program, and
3. a program host, being allowed to store the obfuscated program. (Note that an

adversary corrupting or intruding into the program host is expected to be also
capable of evaluating the program.)

Figure 2 depicts the interaction between the three parties as a natural extension of
the interaction between the two parties shown in Fig. 1.
Adversary resources. We identify three main types of program resources that an
adversary may use during its attacks:

1. program inputs, chosen by the adversary, and corresponding outputs,
2. program inputs, chosen by a honest user, and corresponding outputs; and
3. a description of the (obfuscated) program’s code.

Without knowing further details on how resources of type (2) are generated and the
relative state of knowledge of honest users and adversaries with respect to program
secrets, it is unclear whether these are less or more valuable (to the adversary) than
resources of type (1). For instance, if a honest users generates inputs according
to a distribution that somehow depends on program secrets, these inputs and their
corresponding outputs might have not been obtained by an adversary with no
knowledge of the program secrets. We also note that in practical attacks resources
of different types might more or less naturally compose. For instance, access to a
resource of type (3), a description of the obfuscated program’s code, would directly
allow an adversary resources of type (1), as the adversary can use this description to
run the program on inputs of its choice and thus see the corresponding outputs.
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Table 3 Security notions and hardness assumptions

Adversary attack classes Adversary resources classes

Remote call Program inputs, chosen by adversary, and corresponding outputs

Code theft Description of (obfuscated) program’s code

Program inputs, chosen by adversary, and corresponding outputs

System intrusion Description of (obfuscated) program’s code

Program inputs, chosen by adversary, and corresponding outputs

Program inputs, chosen by honest program users, and

corresponding outputs, all eavesdropped by adversary

Adversary attacks. We identify three main types of attack that an adversary may run,
in order of increasing strength:

1. remote call to program functionality, according to which the adversary can
remotely execute the program on chosen inputs and receive corresponding
outputs;

2. program theft, where the adversary can inspect the program’s code, run the
program with chosen inputs and receive corresponding outputs; and

3. system intrusion, according to which the adversary can inspect the program’s
code, and eavesdrop program executions with inputs chosen by honest users and
their corresponding outputs.

There is a natural mapping between these three types of adversary attacks and the
three types of program resources available to the adversary, as shown in Table 3.
Adversary goal. Similarly as for other cryptographic primitives, one can define
various goals for an adversary attacking an obfuscated program. To protect against
such goals, researchers have identified various security notions in the literature.
Goals and identified notions in the literature include the following:

1. distinguishing a random obfuscation of the given program from information
computable in polynomial time given access to a virtual black-box computing
the same function (with associated security notions identified in [4, 11, 25]);

2. distinguishing a random obfuscation of the given program from a random
obfuscation of a randomly chosen program within the defined class (with
associated security notions identified in [5, 25]);

3. distinguishing a random obfuscation of any two programs computing the same
given function (with associated security notions identified in [4]);

4. computing, on input a random obfuscation of a program, an unobfuscated version
of the same program (with associated security notions identified in [16]).

Models and security requirements. Models in cryptographic program obfuscation
can be identified as points in a 3-dimensional space (pictorially depicted in Fig. 3),
consisting of the previously discussed 3 dimensions: program representationmodel
(secret-based programs, general programs, etc.), input entropy model (low-entropy,
high-entropy, etc.) and participant model (2-party, 3-party, etc.).
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Fig. 3 Problem space for cryptographic program obfuscation

Fig. 4 Security requirement space for cryptographic program obfuscation

Security requirements in cryptographic program obfuscation can be identified
as points in a 3-dimensional space (pictorially depicted in Fig. 4), consisting of the
previously discussed 3 dimensions: adversary resources (chosen program inputs and
associated outputs, program’s code, eavesdropped program inputs and associated
outputs, etc.), adversary attacks (remote access, program theft, system intrusion,
etc.) and adversary goals (on distinguishing the obfuscated program from virtual
black boxes, obfuscations of random programs in the class, or other obfuscations
for the same program, or computing unobfuscated versions of the same program,
etc.).

Performance requirements in cryptographic program obfuscation can be identi-
fied as points in a 3-dimensional space, consisting of the previously mentioned 3
dimensions: running time, storage and memory use of the evaluator program.
State of the art and open problems. By taking a model from the 3-dimensional
space in Fig. 3, a security requirement from the 3-dimensional space in Fig. 4, and
a desired level of performance with respect to the above mentioned performance
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requirements, one can generate a meaningful research problem for cryptographic
program obfuscation. Most of these research problems have not yet been considered
in the literature. More specifically, with respect to models, the literature has focused
so far on the obfuscation of general programs, as well as various secret-based
programs, including point functions, with high-entropy inputs in the 2-party model.
With respect to attack classes, the literature has only considered program theft,
for which several different security notions have been defined including those for
point functions discussed in Sect. 2.2. With respect to performance requirements,
the literature has mainly considered running time of the evaluator program, and
practical runtime has been achieved by point function obfuscators, as discussed in
Sect. 9.
Application-driven Solutions: a simple example. As a simple example of the
increased applicability of the models introduced in this section, we discuss how
to design a cryptographic program obfuscator of a program that checks equality
between an input bit and a secret bit. More formally, define the family of bit equality
functions as beF = {fb|b ∈ {0, 1}}, where b is a secret bit, and fb : {0, 1} → {0, 1}
maps an input x ∈ {0, 1} to 1 if x = b or to 0 otherwise.

Note that for any obfuscation of such program in the most common 2-party
model, the secret bit b is easily learnable from the obfuscated program by an
adversary that can run the obfuscated program on inputs of its choice. (The
adversary runs the obfuscated program on a bit x, obtains an output bit y, and returns
x if y = 1 and 1 − x if y = 0, which is a correct guess for secret bit b).

On the other hand, in the 3-party model, one can construct an obfuscator for beF ,
starting from any block cipher BC, as follows. Let k denote a random key shared
by the obfuscated program generator and the input generator. On input secret bit b,
the obfuscated program generator computes a nonce r0|R = BC(k, 0), for some bit
r0, and returns c = BC(k, b|r). On input a bit x, the input generator computes the
same nonce r0|R = BC(k, 0), with the same bit r0, and returns d = BC(k, x|r).
On input c, d, the obfuscated program evaluator returns 1 if c = d and 0 otherwise.

It is not hard to see that this program obfuscator satisfies almost exact function-
ality, polynomial slowdown and adversary view black box simulation (assuming
block cipher BC behaves like a pseudo-random permutation). The almost exact
functionality follows from BC(k, ·) being a deterministic function that returns the
same value when evaluated twice on the same input string. The adversary view black
box simulation follows from the pseudo-randomness of BC, as k and r are unknown
to the adversary (only attacking the program host).

11 Conclusions

Cryptographic program obfuscation is very promising as it might change the
heuristic nature of previous code obfuscation techniques into rigorous and provable
solutions, along the paradigm of modern cryptography research. Early negative
results on the existence of a single obfuscator for all polynomial-time programs have



166 G. D. Crescenzo

been recently mitigated by constructions of obfuscators for specific polynomial-
time programs. As of today, the literature contains many implementations of point
function obfuscators, satisfying different obfuscation notions, many of which can
be used with practical performance guarantees. Moreover, the early theory-driven
obfuscation models can be enriched with multiple application-driven obfuscation
models by which researchers can protect computer programs against practical attack
classes by leveraging current implementations of point function obfuscators, as
well as upcoming future practical implementations of obfuscators for other specific
functions.
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