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Abstract Phishing, drive-by downloads, file and multimedia masquerading,
domain typosquatting, malvertising and other semantic social engineering attacks
aim to deceive the user rather than exploit a technical flaw to breach a system’s
security. We start with a chronological overview to illustrate the growing prevalence
of such attacks from their early inception 30 years ago, and identify key milestones
and indicative trends which have established them as primary weapons of choice
for hackers, cyber-criminals and state actors today. To demonstrate the scale and
widespread nature of the threat space, we identify over 35 individually recognised
types of semantic attack, existing within and cross-contaminating between a vast
range of different computer platforms and user interfaces. Their extreme diversity
and the little to no technical traces they leave make them particularly difficult to
protect against. Technical protection systems typically focus on a single attack
type on a single platform type rather than the wider landscape of deception-based
attacks. To address this issue, we discuss three high-level defense approaches
for preemptive and proactive protection, including adopting the semantic attack
killchain concept which simplifies targeted defense; principles for preemptive
and proactive protection for passive threats; and platform based defense-in-depth
lifecycle designed to harness technical and non-technical defense capabilities
of platform providers and their user base. Here, the human-as-a-security-sensor
paradigm can prove particularly useful by leveraging the collective natural ability
of users themselves in detecting deception attempts against them.

1 Introduction

It is often posited that the user can be the “weakest link” [1] in information security,
because even the strongest technical protection can be bypassed or undermined
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if an attacker successfully manipulates a user into divulging a password, opening
a malicious file or visiting a compromised website. We begin by introducing the
concept of “semantic social engineering attacks” formalised as Semantic Attack
[31], which refers to a cyber threat targeting the user-computer interface as an
attack vector, circumventing traditional technical security controls through user
deception rather than by exploiting technical vulnerabilities. Common examples
include phishing emails and websites, drive-by downloads, file and multimedia
masquerading, domain typosquatting, malvertising and Trojan horse software to
name a few.

Semantic attacks target human nature as a unique and distinct vulnerability in a
computer system’s security by triggering key emotional, behavioural and cognitive
processes designed to elicit specific user response which allows an attacker to defeat
a system’s information security. Semantic attacks can be highly successful because
without the requisite training and conditioning for threat detection (consider an
operating system without the defense of antivirus scrutinising each and every system
call it is being asked to make), human nature tends towards trust rather than mistrust.
As a result, the threat is ubiquitous and the variation between attack vectors (such
as their degree of complexity and target platform) is extreme, ranging from state-
backed Advanced Persistent Threats employing multi-stage/platform attack vectors
to that of script kiddies and pay-as-you-go bots generating automated phishing
emails campaigns. Due to the vast problem space, attacks can be technically basic
[34, 39, 40], highly complex [41, 60] or a combination of the two [36, 61].

Over the years, numerous defenses have been proposed at scientific research level
to target exploitations such as website and phishing attacks [42–45, 62], as well as
at commercial level [5, 6, 18–20]. However, they almost always fail to consider the
wider problem space in which semantic attacks pose a threat, the result of which is
the design of technical mitigations to address very specific attack vectors, lacking
the flexibility to detect conceptually similar attacks across different platforms.
Furthermore, over the years traditional deception-based attacks, such as phishing
emails, spoofed websites and drive-by downloads, have shifted to new platforms in
social media [35], cloud applications [36] and near field communications [37], and
the advent of the Internet of Things (IoT) [38] will extend considerably the impact
of semantic attacks through threats to physical space. The more effective semantic
“cyber-physical” attacks prove [2], the larger the threat space becomes.

1.1 A Brief History of Semantic Attacks in Computer Systems

Semantic social engineering attacks first emerged in computer systems as early as
1989 when the “AIDS Information Introductory Diskette” Trojan [63] was sent
to a mailing group in which Dr Joseph Popp, the Trojan’s author, subscribed. To
gain access to a computer system, a diskette pertaining to contain information
about the AIDS virus deceived the recipients into inserting it into their system.
The diskette contained a Cryptovirus [64] which ransomed users for money by
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encrypting their systems files. Another noteworthy semantic attack appeared a
year later, introducing what we call today “Scareware”. The malware, aptly named
Nightmare [7], was distributed via diskettes called “Fish Disks” designed to share
applications between Amiga computer systems. On execution, every five minutes
Nightmare would hijack the computer screen for 0.8 s to display a full-screen image
of a skull with bullet wound and blood leaking out, whilst playing a loud shriek on
the speakers. The malware posed no obvious risk to user data, but the concept of
scaring/panicking a user would later be employed by many cyber criminals to force
users into opening malware or paying for fraudulent services [46]. In 1995, new
attacks were specifically designed to exploit users accessing resources over a new
open network, called the Internet. Domain investor John Zuccarini introduced the
concept of Typosquatting or Cybersquatting, where cyber criminals would purchase
domain names that were similar to those of legitimate websites. Users who mistyped
the domain name URL of a legitimate website would be redirected to a malicious or
fraudulent website. During the same year, service provider America Online (AOL)
experienced growing success with a popular instant messaging tool, which hackers
soon realised that it could be exploited, and developed an attack tool that lead to the
first use of the term “phishing”. AOHell [47] contained a “fisher” tool that enabled
hackers to steal passwords and financial information by generating instant messages
to random AOL users with content such as: “Hi, this is AOL Customer Service.
We are running a security check and need to verify your account. Please enter your
username and password to continue”.

Over the next decade, phishing attacks became widespread. In 2000, the infa-
mous ILOVEYOU “worm”1 contained a malicious visual basic script titled “LOVE-
LETTER-FOR-YOU.txt.vbs” [9], initially spreading through corporate Philippine
mailing lists and eventually affecting over 45 million computers systems worldwide.
This attack was copied a year later in 2001 by the Anna Kournikova worm, using
the same worm generating script [48]. The same year, the first known phishing
attack against a financial institution was discovered, where E-Gold users were
targeted with emails tricking them into entering their passwords into phishing
websites [10]. Leading up to today, the rapid growth of the Internet, multimedia
services and mobile platforms, have enabled semantic attacks to spread further into
Android devices [49], peripheral hardware accelerated by direct memory access [11]
(e.g., Thunderbolt and Firewire devices), file sharing networks [50], search engine
optimisation engines [65] and drive-by malware on websites [51], and the landscape
continues to expand. For example, the advent of online social networks and increase
in online social media has introduced a paradigm shift in Internet communication
where platform functionality promotes openness and information sharing amongst
users. This online social paradigm has enabled cyber criminals to take advantage
of “friend” recommendations, user “posts” and sharing of media or apps that are
replicated and automated with the network [12, 35, 52]. Also concerning is the
potential for semantic attacks to result in physical impact, through cyber-physical
and IoT systems.

1Note that here we use the term “worm” to refer to a malware with a semantic attack vector that
exhibits automated, self-replicating behaviour, as in [8].
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Fig. 1 Timeline of notable semantic attacks

In Fig. 1, we provide a timeline of high-profile semantic attacks identifying the
chronological emergence and persistence of different types.

1.2 Characterising the Extreme Diversity in Semantic Attacks

There exist over 35 individually types or variations of semantic attack, existing
within and cross-contaminating between different platforms and systems (Table 1).

2 The Scale of the Threat Today: Characterising the Impact
of Semantic Attacks

Semantic attack statistics have been dominated by phishing incidents due to their
widespread use by cyber criminals and consistent success in breaching computer
systems. A 2012 report by Trend Micro identified that over 90% of targeted malware
attacks discovered were initiated through spear-phishing [13]. In 2014, Social
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Table 1 Different types of semantic attack observed in today’s computer systems

Attack Pseudonym Description

Spam Irrelevant/unsolicited messages sent over the Internet to a large
number of users, often containing advertising scams

Phishing Attempt to obtain access to sensitive information by disguising as a
trustworthy entity in an electronic communication

Spear phishing Phishing attack designed to target a specific person and or
organisation

Pharming Installing malicious code on a personal computer or server,
misdirecting users to fake web sites without knowledge or consent

Whaling Type of phishing attack that targets high-profile end users such as
corporate executives, politicians and celebrities

QRishing Phishing style attack using quick response (QR) codes to distribute
malicious file/links

Blue snarfing Phishing attack enticing users to install malware which grants access
to target device via the Bluetooth protocol

Smishing Phishing style attack sent via mobile short message service (SMS)

URL spoofing Impersonating a websites URL address such as copying domain name
by exploiting bugs in web browsers

DriveyBy download Implanting a malicious file through programmatic manipulation of
scripts on a vulnerable web platform

Waterhole Targeted version of a DriveBy download attack, typically targeting
platforms a victim accesses

File masquerading Disguising a malicious file to appear as a legitimate file type

Multimedia masquerading Disguising a malicious application appear as multimedia (e.g., video)

GUI confusion A mobile application confusing users by impersonating as another
app (e.g., banking app) to obtain sensitive information

Adware Software that automatically displays or downloads advertising
material such as banners or pop-ups when a user is online

SSL spoofing MitM attack that intercepts HTTPS web requests, redirecting the
users to malicious and fake HTTPS website

Visual SSL spoofing Process of using fake SSL verification logos or browser GUI
components to visually masquerade as a secure website

Scareware Malicious program tricking a user into buying/downloading
unnecessary often malicious software (e.g., antivirus protection)

Rogueware Standalone malware program pretending to be a well-known program
or a non-malicious one in order to steal sensitive data

Malvertisement An online advertisement that incorporates or installs malware

WiFi evil twin A fraudulent WiFi access point that often spoofs other nearby access
points that appears to be legitimate

Rogue AP Wi-Fi access point installed on a network but is not authorized for
operation on that network and appears to be legitimate

Trojan horse Type of malware that is often disguised as legitimate software, such
as a game that is actually a key-logger

Self XSS Operates by tricking users into copying and pasting malicious content
into their browsers’ web developer console

Typosquatting Registering similar domain names which rely on typographical errors
when inputting a website address into a browser

(continued)
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Table 1 (continued)

Attack Pseudonym Description

Combosquating Form of typosquatting registering domain names that combine
popular trademarks with a string of words or phrases

RansomWare Type of malicious software designed to block access to a computer
system until a sum of money is paid, often using fear tactics

Tabnabbing A type of phishing where a website changes to impersonate popular
websites

Sharebaiting Enticing web content persuading users to share on their profile, often
used to spread fake apps and phishing URLs

Click jacking Concealing hyperlinks beneath legitimate click-able content, causing
the user to perform actions of which they are unaware

Like jacking Variation on clickjacking in which malicious coding is associated
with a Facebook Like button

Touch jacking Variation of clickjacking which applies to mobile devices where users
touch the interface instead of using a mouse or keypad

Cursor jacking Variation of clickjacking where users are deceived by means of a
custom cursor image and the pointer is displayed with an offset

Spamdexing Manipulation of search engine indexes where a website repeats
unrelated phrases to manipulate relevance or prominence

Torrent poisoning Intentionally sharing corrupt data and malware with misleading file
names using the BitTorrent protocol

DNS cache poisoning Process by which DNS server records are illegitimately modified to
replace a website address with a different address

Fake App Variation of trojan horse, rogueware, scareware on mobile devices
where a malicious app masquerades as a legitimate one

Fake plugin Malicious media plugin typically spread by through a fake video post
on social media posting

Madware Aggressive advertising placement in mobile devices photo albums,
calendar entries and notification bar

Browser extension malware Malicious browser-add similar to Trojan app that steals personal
information and/or add browser to attacker botnet

Engineer reported that 90% of the 129 billion emails sent daily are malicious.
Clicking on email links accounted for 80% of reported phishing attacks, and
phishing itself represented 77% of all socially-based attacks [14]. In 2015, Statista
reported that phishing and deception-based attacks accounted for 62% of all cyber
attacks experienced by companies world-wide [15], with 59% reported by US
companies alone [16]. Furthermore, the average time to resolve this type of attack
for a US-based company was 20 days [17], with damages of 12% for medium and
16% for large enterprises’ total operating costs. The Anti-Phishing Working Group
(APWG) produce yearly statistics related to the current trends across a multitude of
different phishing attacks that are reported from around the world to their online
phishing repository. We have compiled data from the APWG phishing activity
trends report archive [3] for years 2008 to 2016, illustrating in Fig. 2 that the number
of phishing reports received by APWG is dramatically increasing.
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Fig. 2 APWG phishing report statistics for years 2008–2016 [3]

The Internet Security Threat Report, a yearly security study produced by
Symantec, expands beyond traditional phishing statistics and organises semantic
attacks amongst four categories: mobile and IoT, social media and spam, web threats
and targeted attacks. Figures 2, 3 and 4 summarise a number of semantic attacks
and threats utilising deception techniques from years 2012 to 2016 [4]. For mobile
platforms, from 2012 to 2016 approximately 14.8 million apps were categorised
as malware; with a further 22.4 million apps categoried as grayware. Malware
and grayware require users to agree to install applications, granting aggressive
permissions to the applications on the device, irrespective of whether any further
deception techniques are used (e.g., during app usage); which indicates low user
awareness of mobile app vulnerabilities where users are likely to be deceived by
a lack of perceived threat. Social media attacks were consistently shown to be
propagated largely by users manually sharing posts and apps amongst friends and
groups, instead of automated “free offerings” (e.g., surveys and malvertisements)
that were dominant in 2013; further highlighting the vulnerability of users behaviour
in online social network platforms. Spear phishing campaigns were also observed
to have consistently increased over the period of 2013 to 2015, whilst the number
of recipients per campaign have decreased by an average of 25% each year, which
may indicate that attackers are developing methods for spear phishing which require
fewer targets for successful exploitation and are more difficult to detect. Whilst
spear phishing attacks continue to target the financial sector, attackers are now often
targeting the energy and health-care sectors too (Fig. 4).
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Fig. 3 Classification of mobile apps analysed by Symantec during 2012–2016 (left), Distribution
method of social networks and social media scams/attacks by percent from 2013–2015 (right) [4]

Fig. 4 Number of spear phishing campaigns and average number of attack recipients per campaign
from 2013–2015 (left), top industries targeted by spear phishing attacks in 2015, ordered by
majority percentage (right) [4]

3 Attacking the Weakest Link: Designing, Developing and
Launching Semantic Attacks

Towards a core and collective understanding of semantic attack composition,
beyond individual attacks on specific platforms, we start by exploring the spe-
cific characteristics which formulate the design, development and distribution of
semantic attacks. To illustrate the functional components of a semantic attack, we
employ taxonomy in [31], describing the generic schematic structures of semantic
attacks, which apply irrespective of specific attack vectors that may be used (e.g.,
specific platform user interface). Next, we apply this approach on notable real world
semantic attacks.

3.1 Generic Attack Structure

Semantic attacks, irrespective of attack vector, follow a generic functional structure
in terms of design and delivery [31]. The high-level structure can be seen as
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Fig. 5 High-level attack model showing the interactions between each behavioural function within
semantic social engineering attacks

comparable to any kind of cyber threat in that it consists orchestration, exploitation
and execution. Orchestration consists of user targeting (including information
gathering), distribution and automation parameters, exploitation is the application
of deception vectors (to elicit compromising user actions) and their technical
construction through the user interface, and execution is the functional interaction
required by the user during attack runtime and the persistence of the deception
vector(s) after the attack is complete. Below, we summarise each of these individual
elements as to their functional behaviour in semantic attack design and illustrate the
process in Fig. 5.

• Target description. The targeting parameters of the semantic attack. Typically,
this is a target user (an individual or organisation) or target platform. The former
constitutes “explicit” targeting, which requires tailored attack delivery and may
predetermine the method of distribution, automation and deception vectors to
employ after a information gathering phase. By comparison, a specific user
interface platform is a form of “promiscuous” targeting, as the attack vector
does not control who is exposed, the functionality of the target platform and
the behaviours of the users do (e.g., social media sharing).

• Method of Distribution. The means by which a semantic attack reaches a target
platform or user. There are two means of distribution: software or hardware,
the latter of which can also result in subsequent software executed distribution.
Hardware is always a local distribution vector (e.g., within physical proximity
of the user), while software is local (i.e., through a hardware interface) or
remote (over a distributed application and network i.e., the Internet). For local
hardware interaction, examples include direct memory access peripherals (e.g.,
Firewire), local hardware with software executed distribution is a system that is
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locally interfaced with a target system (as initiated by the user), with physical
communication and software execution (e.g., USB flash drives).

• Method of Automation. The degree of attacker supervision of the semantic
attack activation and administration. An attack can be fully automated by
predefining all its functional procedures in a format similar to worms, whereby
the attack contains all of the procedural code necessary to operate without spe-
cific attacker execution, interaction or administration. The degree of automation
depends on the functionality of the target platform and the behaviour of its
user base. For highly targeted attacks that require tailored deception vectors
which are meaningful to specific user(s) or organisational attributes, manual
attacker operation may be required. This includes activities such as specifying
when the attack is executed, or responding in real-time to user interaction (e.g.,
instant messaging). The degree of attack automation is dependent on the target
description.

• Deception Vector. The deception techniques designed to persuade the tar-
get user(s) into performing a compromising action. The deception techniques
developed for a semantic attack effectively represent the human exploitation
parameters which persuade the user into performing a compromising action (e.g.,
clicking on a URL, or opening a executable file). At a high level, deception
within a semantic attack has three modes. Firstly, the use of cosmetic, visually
convincing deception by masquerading as a legitimate entity (through a specific
user computer interface design), secondly behavioural deception by conforming
to system convention in respect to expectations of user interface functionality
and response to user interaction and thirdly a hybrid combination of cosmetic
and behavioural deception.

• Interface Manipulation. The technical implementation of an semantic attacks
deception vector(s). Interface manipulation is the technical means used to
establish a semantic attacks deception vector on a target platform’s user interface.
There are two ways in which this achieved, either through (ab)using legitimate
platform functionality or programmatically modifying and or spoofing it in order
to change appearance of behaviour.

• Executions steps. The number of functional steps an attack requires the user to
carry out in order to execute the exploitation payload. The primary interaction
with a semantic attack is the corresponding user action in response to exposure to
its deception vector(s). Depending on the attacks required users actions, this can
be a single step (e.g., a single user click) or multiple steps (e.g., multiple users
clicks) in order for the attacks exploitation to complete; or as the means direct
the user to another semantic attack in the attack chain.

• Attack persistence. The persistent level of deception after user exploitation.
After successful exploitation, it is rare for a deception vector to continuing
executing, as typically exploitation is a one-off procedure to forward the user
to another semantic attack in a attack chain or as the user action has enabled
execution of the intended attack payload. However, in some cases a semantic
attack will continually execute deception vectors, as is common with Scareware.
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Fig. 6 High-level structure of a semantic social engineering attack illustrated as series of linear
steps which together formulate the design, development and execution behaviour of a semantic
attack [31]

Fig. 7 Attack models for a single phase (top) and multi-phase (bottom) semantic attack. Here
each individual attack (e.g. semantic 1 . . . n), is formulated by and therefore contains the linear
structured criteria and corresponding parameters defined in Fig. 6

Semantic attacks follow the same functional structure, regardless of whether they
are executed as individual semantic attacks or chained together within a multi-phase
attack. Each individual semantic attack is distinguished by its functional elements
(as per Fig. 6), even if in practice certain parameters, such as the target description
and method of distribution, are shared as a consequence of attack chaining. To
illustrate this, Fig. 7 provides an abstract example of a single semantic attack against
a chain semantic attack model, and Fig. 8 provides examples of how multiple
individual semantic attacks form a multi-phase semantic attack through chaining.
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Fig. 8 Examples of single (top) and multi-phase semantic attacks (middle and bottom). Here the
waterhole vulnerability is a one step attack requiring that a target simply visit the infected website
for the attack to complete. For the typosquating attack, after a user visits the website, they are
then prompted with a scareware download, which formulates a second phase semantic attack in
the attack chain. For the spear phishing email, the user must download a masqueraded file, which
consitutes the second phase semantic attack through user execution of the file to complete the
attack

3.2 Semantic Attacks in the Press

In the following attacks, we employ these generic attack structure principles to
provide a low-level breakdown of three notable semantic attacks: Spear phishing,
QR code phishing and multimedia masquerading on social network platforms.

3.2.1 The Podesta Spear-Phishing E-mails

During the 2016 United States presidential election race, John Podesta, former
chief of staff to Bill Clinton (and at the time chairman of the 2016 Hillary Clinton
presidential campaign), received an email purportedly from Google with a warning
that his Gmail account had received a sign-in attempt from an IP address in Ukraine.
It advised Podesta “you should change your password immediately”, including a
blue “CHANGE PASSWORD” box to be clicked. This attack was part of a chained
semantic attack process, whereas once this button was clicked, Podesta’s Gmail
account was redirected to a Google login phishing page, where his credentials were
entered and ultimately stolen, giving the attackers access to over fifty thousand
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Table 2 Podesta spear-phishing e-mail attack

Spear phishing e-mail (Fig. 9)

Target This specific e-mail had been crafted for John Podesta, using the salutation “Hi
John” and using a provocative warning associated to a falsified connection attempt
from a politically sensitive country

Distribution The e-mail was distributed to the user’s Gmail inbox through the SMTP protocol
from the attacker’s own mailservers

Automation Unlike typical spear phishing attacks which carried out manually, the particular
attack parameters seemed to have been programmed automatically as the same
attack vector was exposed to multiple political candidates during the US
presidential election race

Deception The attack mimicked both visual and behavioural functionality, by (1) spoofing a
legitimate looking Gmail address, (2) copying exactly the Gmail email template,
(3) creating what appears to be a genuine Google URL from Bitly shortening
service where the attack then leads to a second semantic attack which spoofed the
Google webpage used to reset an account passwords. These deception vectors were
implemented by (1) pragmatically modifying the SMTP (or registering the
corresponding domain if available), (2) copying the source code from the Gmail
email template, (3) abusing Bitly’s inbuilt functionality to create a custom URL
string

Execution The attack required the target user to perform a single action by clicking on the
“CHANGE PASSWORD NOW” button, at which point the exploitation of the
email is complete and the user is redirected to a phishing page designed to harvest
their account login credentials

Persistence After the email attack as successful (by clicking on the link in the email body), this
attack is completed and exhibits no further persistence as the user is redirected to a
phishing website semantic attack as the next stage in the attack chain

emails with highly sensitive exchanges and data related to the Hilary Clinton
presidential campaign. In Table 2 we take a closer look at the low-level configuration
of this spear phishing email, illustrating the attacks visual deception in Fig. 9.

3.2.2 WhatsApp “Jack” (QRLjacking)

In 2016, ethical hacker Mohamed Abd Elbaset demonstrated how to hack the
WhatsApp web connectivity service (which is associated to a WhatsApp account)
by employing a variation of QR code phishing (Qrishing). Unlike previous QRishing
attacks which opted to generate QR code with malicious URLs, this attack employs
the concept of QR link jacking where the attacker creates a legitimate client side
browser session to WhatsApp web service to generate a QR code and forwards
this legitimate QR code through a phishing webpage to the victim. Here, QR
link phishing would normally be logically ordered after a phishing email in a
chained set of semantic attacks. If the attacker has access to the victim’s network,
a phishing email can be replaced by using ARP cache poisoning to forward
the victim to the phishing website. On scanning the legitimate QR code, the
victim’s WhatsApp account on their mobile device registers with the WhatsApp
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Fig. 9 Gmail spear phish attack against US former chairman of the 2016 Hillary Clinton
presidential campaign. The top email body illustrates the spoofed gmail login alert with a change
password button, with the bottom image showing the malicious link obfuscated by the button

service, which subsequently allows the attackers to register their connection to the
WhatsApp web application with the victim’s accounts. This results in the attacker
having full access to any data transmitted from the victim’s WhatsApp application
on their device (Table 3).

3.2.3 The Case of the Facebook “Hungry Bear”

In 2009, there was an incident in a Berlin zoo where a lady jumped into a polar
bear enclosure, which she subsequently survived. Soon, a Facebook multimedia
masquerading scam emerged, using a doctored image, which appeared to be
clickable video. The video was an image with a superimposed play video icon
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Table 3 QRcode phishing link jacking attack

Spear phishing e-mail (Fig. 10)

Target Whilst designed for the WhatsApp platform, the recipient is explicitly defined as
they must have a WhatsApp account to exploit and the attacker is required to
distribute a phishing attack in order to expose the intended target to the QR code

Distribution The QR WhatsApp authentication code is distributed through a mirrored website
that maintains a persistent link to the attacker original client side connection

Automation The attack is fully automated once established through a looping script mirroring
the attackers client connection to WhatsApp web authentication page, requiring no
further intervention from the attacker

Deception The QR code and mirrored phishing website employ a combination of visual and
behavioural deception. The QR code is a legitimate web authentication request,
which when scanned responds correctly to the user authenticating their WhatsApp
mobile account with the web service

Execution The QR link jacking requires programmatic manipulation of the web
authentication page generating the QR code for WhatsApp. The attacker must
mirror the web page and create a script to continually update the QR code which is
refreshed every 20 s on the WhatsApp web authentication

Persistence Once the user has been duped into accessing the phishing website created by the
attacker which hosts the mirrored QR code, they simply need to scan the QR code
to generate an authorisation token which the attack requires to gain access to their
account data. After scanning the code the attack execution is complete and the
deception vector of the QR code ceases

Facebook video masquerading (Fig. 11)

Target The attack targets all Facebook users

Distribution The fake video is distributed through social media profile timelines, provided as
feeds to a profile’s subscribers or friends through the Facebook EdgeRank
algorithm; this increases the virality of the fake video post based on popularity
such as post comments and links

Automation The video masquerading post is automated once launched, whereby user sharing
behaviour enables the video to be spread through inbuilt Facebook functionality.
The process of redirection to a fake video website also requires no attacker
intervention. It is a URL that activates once the image is clicked on

Deception By superimposing the Facebook specific play video button on the image and
augmenting the post with fake comments, the video masquerading attack utilises
crude visual deception

Execution The attack is constructed by simply creating a timeline post from a Facebook
account and attaching the doctored image; using standard inbuilt Facebook
functionality to embed the image as a hyperlink to an external website

Persistence Once the fake video image is clicked by a user, the Facebook video deception
vector is complete and the victim is forwarded to the secondary semantic attack
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Fig. 10 WhatsApp QR link hijacking attack (initiated via sending a target victim a phishing
website link). Here the spoofed QR code is automatically refreshed through the Javascript that
has been copied from the legitimate WhatsApp authentication page

button, which redirected users to a secondary semantic attack in the form of a typical
scam video webpage coercing the victim into completing a pop-up survey for access
to the video and installing malware.

4 Methods for Defense Against Semantic Attacks

The extreme diversity of semantic attacks has led to many types of defenses
proposed, often with multiple techniques developed for a single type (especially,
phishing emails). Most defense mechanisms aiming to protect against the wider
semantic attack space remain experimental products of research without integration
or long-term empirical validation. So, the problem space is left with research and
commercial tools which address only a small portion of the problem space. Here,
we analyse the different defense approaches. We have already shown that individual
types of semantic attack, irrespective of attack vector, are composed of the same
functional elements. We have illustrated that individual semantic attacks can be used
in attack chaining to direct users from one semantic attack to another to deliver
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Fig. 11 The “Hungry Bear” Facebook video masquerading. The top image shows the fake
Facebook video post of a bear allegedly attacking a woman, which once clicked directs the user to
a new web page prompting the user to complete a survey that harvests sensitive user information
to watch the spoofed video (bottom image)

the desired attack payload, and that in this composite attack architecture, some
attack parameters such as targeting and automation can be shared across attacks.
By focusing on both technical and non-technical mitigation concepts, rather than
conducting an exhaustive search of the defense literature across all possible attack
vectors (of which there are many, see Table 1), here we take a view of defense
according to key concepts that would address the wider semantic attack problem
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space. This is because relying solely on the low-level functionality of any single
defense is insufficient as a means for defending against the wider threat space. Here,
we consider defense across three complementary dimensions, which may offer a
holistic defense architecture against semantic attacks: Semantic attack killchain for
targeted defense simplification; principles for preemptive and proactive protection
for passive threats; and platform based defense-in-depth lifecycle designed to
harness technical and non-technical defense capabilities of platform providers and
their user base.

4.1 Semantic Attack Killchain: Defense Simplification

A primary aim for lasting and practical defense against semantic attacks is to
address a wide range of attack vectors without introducing considerable complexity.
Intuitively, it is possible to limit the number and types of user interfaces in which to
target defense mechanisms by focusing defense on initial (i.e., entry) attack vectors,
that if mitigated, would serve to kill a wider semantic attack chain. In line with
Lockheed Martin’s killchain model [70], we refer to this as the semantic attack
killchain. For example, consider a phishing email containing a URL to an attack
website, where once clicked the user is forwarded to a drive by download resulting
in infection with a Trojan horse spyware application. Focusing on the individual
semantic attacks in the attack chain (e.g., the drive-by download), rather than its
possible permutations (phishing email → attack website → drive-by download →
spyware), simplifies the objective of defense. In the above example, the spyware
would be thwarted by blocking the phishing email or the attack website or the drive-
by download.

Figure 12 illustrates how a semantic attack killchain architecture is constructed.
Firstly, the aim is to identify the different entry vectors by which a semantic
attack may target and reach an organisation/individual (which may change based
on the environment context and platforms used). The purpose is to help establish
an indicative threat landscape by highlighting the means by which both single and
multi-phase semantic attacks pose a risk to technical security. Determining the
potential entry vectors of semantic attacks then simplifies the strategic placement
of defence mechanisms to both address semantic attacks that rely on attack chains
in order execute certain deception vectors, as well as minimising the number
of different defence systems required to be implemented to address such threats
specifically. In Fig. 13, an example of how a semantic attack killchain would
function is illustrated.

Table 4 provides an indicative list of common user interface platforms required
to distribute different semantic attacks. For the instant messaging and website
distribution categories, we include functionality observed in modern social media
and networking sites, chat forums and message boards, whereas for the Appstore
category we include the functionality provided by online webstores, appstore and
app marketplaces for mobile devices. The table shows that prevalent user interfaces
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Fig. 12 The semantic attack killchain architecture aims to simplify the object of defence by
providing a means to identify key platform entry vectors for semantic attacks. The aim is to design
and implement defences which address a wide range of attacks whilst reducing the complexity of
security mechanisms employed

are website platforms, followed by email and instant messaging platforms. However,
for an attacker to initiate a targeted user attack (Target Description = “Explicit”),
direct communication with a specific victim user is always required. Therefore,
the sole use of a website or appstore interface as the primary distribution for
user targeting becomes impractical for attackers as it limits the types of attack
vectors available – especially for targeted attacks (thus introducing the need for
an attack chain). For instance, if a website were the primary distribution means
for a targeted exploit, the attacker may need to develop a complicated waterhole
attack after finding a vulnerable platform that their target visits, ensuring that the
deception vector for the target only activates for their specific browser’s user agent
string; this approach is of course complex and time consuming and therefore of less
practicality to threat actors. In the same sense, for an appstore, or network (Net)
or hardware (H/W) interface, simplicity is reduced by the need to direct the users
through some means to these platform types. As a result, attackers often first rely on
an initial unsolicited communication vector as distribution dependency in an attack
chain, such as the use of email or instant messages containing a link to the target
platform where a secondary semantic attack is positioned. As a basic high-level
example of defense simplification against targeted semantic attacks specifically, for



118 R. Heartfield and G. Loukas

Fig. 13 Here an (1) abstract semantic attack chain from Table 7 is illustrated to show how a
semantic attack consisting of multiple phases can be effectively nullified by addressing defence
against the attack parameters of its first phase. By example, using the spear phishing threat example
from Fig. 8 (2), we can see that by simply blocking the spear phishing attack as the first phase of
the semantic attack chain, all subsequent phases and attack vectors can be averted. Equally, by
blocking a malicious URL on a website, a malicious Dropbox share hosting PDF file malware can
be also be prevented from deceiving the user into downloading and opening the file (3)

unsolicited targeted attacks (e.g., attacker directly contacts the target) the killchain
can be reduced from 28 to 9 different attacks. The corresponding attacks and
distribution platforms are shown in Table 5. The number can be further reduced if an
attacker does not have control of a website for a waterhole and Bluetooth snarfing
is mitigated by simply turning off Bluetooth. Further analysis of Table 5 shows that
by developing defense mechanisms for email or instant messaging platforms would
address 6 of the remaining different semantic attack vectors.

For completeness, in Table 6 we expand beyond the key killchain defences
identified in Table 5 by further identifying applicable protection mechanisms that
have been proposed for the wider landscape of different semantic attacks (Table 1).
While we have no expectation to provide an exhaustive literature characterisation
for such a long list of attacks, here, a sample of defense mechanisms and literature
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Table 4 Methods of distribution required to directly exposure target users to corresponding
semantic attacks

Attack vector E-mail Instant message SMS Appstore Website
H/W
interface Net interface

Phishing ✓ ✓ ✓ ✓ ✓

Spear phishing ✓ ✓ ✓ ✓

QRishing ✓ ✓ ✓ ✓ ✓

Bluetooth
snarfing

✓

Smishing ✓

DriveyBy
download

✓

Waterhole ✓

File
masquerading

✓ ✓ ✓ ✓

Multimedia
masquerading

✓ ✓ ✓

GUI confusion ✓

URL spoofing ✓ ✓ ✓ ✓

Visual SSL
spoofing

✓ ✓

Scareware ✓ ✓

Malvertisement ✓ ✓

WiFi evil twin ✓

Trojan horse ✓ ✓

Self XSS ✓ ✓ ✓

Typosquatting ✓

Combosquatting ✓

Tabnabbing ✓

Sharebaiting ✓

Click jacking ✓

Cursor jacking ✓

Spamdexing ✓

Torrent
poisoning

✓

Fake app ✓ ✓

Fake plugin ✓ ✓

Malicious
browser add-on

✓ ✓

papers on each of these attacks provides a useful tool for evaluating the current
protection mechanisms against these threats. Here, we aim to identify existing
approaches to defence that can be employed in unison with the semantic attack
killchain to establish a practical and selective means of holistic defence against
semantic attacks.
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Table 5 Example of reduced semantic attack vectors by killchain platform defense

Attack vector
Primary
distribution Applicable defences

Phishing Email
IM
SMS
H/W

Machine learning [86, 89, 90, 99]
User awareness [77, 78, 85, 88, 95, 98]

Spearphishing Email
IM
SMS
H/W

Machine learning [84, 86]
User awareness [78, 92]

Smishing SMS Machine learning [71]

File masquerading Email
IM
Website
H/W

Integrity checking [83]

Multimedia masquerading IM
Website

Dynamic and static analysis [114]

Bluetooth snarfing Net Authentication/platform lock-down [100]

Waterhole Website Machine learning [72, 74]
Dynamic analysis [73]

URL spoofing Email
IM
Website

Machine learning [87, 97]
User awareness [77, 78, 85, 88, 95, 98]

Visual SSL spoofing Email
Website

Heuristic scanning [94]

The examples in Table 5 largely agree with recent commercial defense prod-
ucts focusing on messaging platforms. Currently, most major email (Gmail [23],
Microsoft Outlook [24], Yahoo [22]) and antivirus (Norton [25], Kaspersky [18],
Sophos [20]) providers claim to have integrated robust detection capabilities for
email threats.

In general, the utility of the semantic attack killchain can be expanded as a func-
tion of defense strategy across multiple and independent platforms, where platform
providers aim to simplify their own semantic attack security by focusing protection
mechanisms to address specific user interface functionality that would also serve
to thwart other potential deception vectors that this may lead to through attack
chaining. For instance, in the case of the social networking platform Facebook,
focusing defense measures on Facebook Messenger as a distribution mechanism
to plant malicious links to other semantic attacks within Facebook (e.g., Facebook
pages with malicious content, fake Facebook videos, file masquerading etc.) or
external phishing websites would serve as a killchain that simultaneously addressed
multiple deception-based threats distributed on or via the Facebook platform.
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Table 6 The application of defence

Attack pseudonym
Primary
distribution Defence category

Spam Email
IM
SMS, social media

Machine learning [86, 89–91]
User awareness [77, 78, 85, 88, 98]
Sandbox [96]

Pharming Email
IM
SMS

Machine learning [86, 89, 90]
User awareness [77, 85, 88, 95, 98]

Whaling Email
IM
SMS

Machine learning [86, 90]
User awareness [77, 85, 88, 95, 98]

QRishing Email
Website
SMS

Machine learning [106]

DriveyBy download Website Machine learning [72, 74]
Dynamic analysis [73]

GUI confusion Mobile app Machine learning/user awareness [93]
Static analysis [82]

Adware Website, app
marketplace

Sandbox [105]

SSL Spoofing Website Machine learning

Scareware Software app Machine learning [103, 104]

Rogueware Software app Sandbox [105]

Malvertisement Social media,
website

Machine learning [115, 116]

WiFi evil twin Net Integrity checking [80]
User awareness [79]

Trojan horse Software/App Sandbox [75, 76]

Rogue AP Net Integrity checking (RTT analysis) [107]

Self XSS Browser Integrity checking [117]

Typosquatting Browser Machine Learning [118]
Integrity checking (rule-based) [119]

Combosquating Browser Integrity checking (rule-based) [119]

RansomWare Software app Sandbox [109]
Machine learning [110]
Formal methods [111]

Tabnabbing Website Machine learning [108]

Sharebaiting Social media
Website

User awareness [81]

Click jacking Social media
Website

Integrity checking [101]

Like jacking Social media
Website

Integrity checking [123, 124]

Touch jacking Social media
(mobile)
Website (mobile)

Integrity checking [101, 123, 124]

(continued)
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Table 6 (continued)

Attack pseudonym
Primary
distribution Defence category

Cursor jacking Social media
Website

Integrity checking [123]

Spamdexing Search engine Machine learning [120, 121]
Heuristic scanning [122]

Torrent poisoning Torrent software Integrity checking (reputation scoring) [125]

DNS cache poisoning DNS server Authentication/integrity checking [102]

Fake app Mobile app
marketplace
Side-loaded
install

Machine learning/user awareness [93]

Fake plugin Browser Dynamic and static analysis [114]

Madware Mobile app
marketplace
Side-loaded
install

Machine learning/user awareness [93]
Static analysis [82]

Browser extension malware Browser Static analysis [112] Integrity checking [113]

4.2 Principles for Preemptive and Proactive Protection Against
Semantic Attacks

The use of a semantic attack killchain helps to simplify the placement and scope
of defense against semantic attacks by reducing to what kind of platforms and
where in those platforms to place defenses; with the aim to reduce the diversity of
where an attacker can initiate the exposure of a semantic attack on a given platform.
However, the killchain method alone cannot cater for the unpredictability of user
access to different computer platforms through passive activity. That is, where a
user inadvertently exposes themselves to a semantic attack through their computing
habits and behaviour. For example, the effectiveness of a semantic killchain
blocking certain semantic attacks by placing defenses within an email platform is
effectively bypassed if a user chooses them self to access a malicious website or
application directly, without being coerced to by an attacker. It is necessary therefore
to design defenses to protect against user activity and behaviour which may
expose users to passive semantic attack threats. Namely, preemptive (prevention of
semantic attack execution) and proactive (detection and treatment of semantic attack
exposure) system security. However, it remains a continued challenge to develop
best practice preemptive and proactive defense techniques when their exists such
extreme diversity between semantic attacks, even when they employ conceptually
similar deception vectors across multiple disparate platforms. To address this
complexity, it is valuable to revisit the generic semantic attack structure in Sect. 3.1
and analyse each modular component of a semantic attack to develop insights
for establishing generic principles of preemptive and proactive defense that are
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Fig. 14 Defense considerations with the generic semantic attack model. Here, the semantic attack
model is employed as a template framework to develop defence measures against key aspects of
an attack’s construction and behaviour

independent of individual attack vectors. Below, we provide instructional examples
for eliciting key parameters that aid the construction of preemptive and proactive
defense mechanisms based on each generic semantic attack component, as well
providing corresponding examples of defense systems that have been developed
in research and commercial platforms. Figure 14 summarises the key defense
considerations for each individual component of a semantic attacks structure.

• Target description. Distinguish between the different of targeting parameters
across a range of semantic attack to identify both distinct and common conditions
for exposure. For example, whether a user is at risk due to their identity (so
that these attributes can be monitored and evaluated), or whether a users passive
computer (whether personal or work related) usage inadvertently exposes them
to certain semantic attacks.
Recent advances in the detection of spear phishing email have demonstrated that
by monitoring explicit user attributes and interactions in email content, corre-
sponding meta-data can be learned proactively to generate anomalous behaviour
facilitating the detection of spear phishing. For example, in 2015 researchers
Stringhini and Thonnard developed a prototype spear phishing classification
engine which collected and profiled behavioural features associated to email
writing style, composition, communication context (e.g., time/date, email chain,
contact interaction) within a support vector machine learning system to detect
compromised email accounts. Similarly, commercial security vendor Barracuda
[21] have introduced a spear phishing detection system called Sentinel that
monitors an organisations communication history based on specific user email
interactions as a context feature-set to train an artificial intelligence system to
predict and prevent future attacks.

• Method of Distribution. Identify platforms that are involved in an attack to
provide defense developers with the insight to choose which remote (e.g.,
involving a network) or local system to monitor to determine where best place
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the defense mechanism. Establish patterns in distribution between systems, such
as shared functionality (e.g., cross-site advertising plugins) to highlight where
functionality supply chains open up a semantic attack distribution vector. Again,
guiding developers as to points of vulnerability within a platforms user interface.
Stringhini et al. have shown that by monitoring the redirection path taken to reach
a web destination effectively identifies attack platforms involved in a malicious
website, which are intentionally obfuscated from blacklists [56]. Instead of
positioning defense locally on a web browser platform which scrutinises physical
website features, the researchers demonstrated that patterns in HTTP redirection
can be used as a distributed means of detection through network-based analysis;
hence informing developers that such detection may be implemented within
network security systems monitoring DNS and HTTP requests.

• Method of Automation. The type of automation exhibited dictates to a large
degree the response mechanism or the type of data that can be collected for
its detection. For instance, an attack that is fully automated is likely to leave a
fingerprint of behaviour that can be used to develop attack signatures, whereas an
attack that is conducted manually will benefit from focusing on specific attacker
behaviour.
In 2014, an example of measuring automated attack procedures by Ruskov
et al. demonstrated how by dynamically monitoring the sequence of actions
within a semantic attack can help to model user and attacker behaviour through
simulation. This process can then be used to facilitate the development of
knowledge-based defense systems that can more efficiently detect deception-
based threats through enumeration of automatic attack procedures.

• Deception Vector. Establish the different deception vectors possible on a
platforms user interface so that developers and researchers can pinpoint the
mechanisms by which an attacker can manipulate the visual and/or system
behaviour to “trick” the user into committing a compromising action.
As susceptibility to deception vectors triggers user exploitation, it is generally
agreed that semantic attack education is a core element of defense-in-depth
against semantic attacks where technical mechanisms fail to prevent or proac-
tively detect threats. As a result, research has explored interactive training
through bitesize quizzes, test and games and attack simulations to maximise the
effectiveness of learning [57, 58, 62], some of which have empirically proven to
reduce susceptibility to deception vectors and have been converted into popular
commercial offerings, with examples including PhishGuru [26], Anti-Phishing
Phil and Phyllis [27] and PhishMe’s Simulator [28] applications. However, most
commercial solutions for security awareness training focus almost exclusively on
phishing emails and websites, which constitute only a small portion of different
semantic attacks possible deception vectors. Where research has explored further
deception vectors in other attacks, these remain largely as prototype products.
Moreover, the type of awareness training can vary just as much as the diversity of
different semantic attacks if training is based on specific attack vectors rather than
general concepts of good cyber hygiene; the prior of which can become outdated
quickly. Therefore, where possible it is important that embedded awareness
training and user interface security indicators are integrated both individually
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and across interdependent platforms based on generic semantic attack principles
rather than specific attack vectors.

• Interface Manipulation. Identify whether the deception vector occurs in code
or by abusing intended user space functionality, to shape the design of a defense
system and to narrow down its scope.
To prevent or detect deception vectors without relying on the effectiveness of user
awareness training requires platform developers to pinpoint vulnerabilities in the
user interface where it may be (ab)used to execute deception vectors, whether
through programmatic manipulation or intended user space functionality. In
both cases, preemptive functions have been explored in research [53] for
the android operating system to block malicious apps executing visual and
behavioural deception through spoofing a legitimate applications appearance.
The preemptive defense was implemented by capturing and analysing application
program interface calls to the android graphic user interface to classify malicious
behaviour. In the commercial space, the use of sandbox environments has
gained popularity to interrogate the legitimacy of user interface functionality, for
example as to whether certain functions result in potentially malicious behaviour.
For instance, most modern web browsers employ sandbox technologies to
isolate prevent website JavaScript coding from manipulating browsers’ visual
and behavioural properties, examples include the presentation of URLS in the
address bar and the format of visual user security indicators such as the level of
websites transport layer security. In the majority of cases commercial security
technologies focus on preemptive programmatic manipulation rather than the
misuse of normal user functionality.

• Executions steps. Execution steps: An attack that relies on more than one step
can potentially be detected more easily than a single-step one and before it
completes by looking for traces of its initial steps. It may also be thwarted by
preventing even one of the compromising actions that a user needs to be deceived
into committing.
Recent advances and greater uptake in the FIDO authentication protocol
[29] has demonstrated robust proactive defense against phishing attacks, by
enforcing two-factor authentication integrated between multiple architectures.
Successful deception will not always result in user account compromise as the
FIDO protocol employs temporal session keys generated by a second factor of
authentication always available to the user (typically biometric).

• Attack persistence. Contrary to one-off deception attempts, persistent ones
may have a high chance of succeeding in their target but could also help a
learning-based defense system (or platform user) to gradually identify its pattern
of behaviour and report or block it.
Whilst persistent deception for a singular semantic attack is uncommon, for
Scareware attack vectors in particular persistent deception forms part of the
exploitation payload. In 2011, Shahzad and Lavesson [54] proposed a machine
learning approach based on mining variable length instruction sequences
as a means for detection of persistent attack behaviors. In 2013, Microsoft
demonstrated high detection accuracy in a prototype system that identified
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Table 7 Summary of preemptive and proactive defenses based on generic semantic attack compo-
nents

Attack component Mechanism Preemptive Proactive Practicality Maturity

Target description Integrity checking ✓ ✓ P + O Medium

Method of
distribution

Platform
monitoring

✓ ✓ P + O Low

Method of
automation

Threat modelling ✓ O Medium

Deception vector User awareness
training

✓ ✓ O Low

Interface
manipulator

Platform sandbox ✓ P+O High

Execution steps Cross platform
AAA

✓ P+O High

Attack persistence Machine learning
classification

✓ ✓ P + O Low

persistent patterns in visual scareware deception through image detection with
Logistic Regression using stochastic gradient descent [55].

Table 7 summarises the types of preemptive and proactive defenses, according
to the generic functional elements of a semantic attack, their practicality for both
the personal (P) user and organisational (O) operating environment, including their
general maturity as defense solutions at the time of writing.

4.3 Platform-Based Defense-in-Depth Lifecycle

A defense-in-depth lifecycle for user platforms is intended to provide a multi-
faceted framework approach for effectively implementing semantic attack defense.
Its primary aim is to establish key roles and responsibilities for different components
of a system (e.g., platform provider, security, developer and users) that contribute
holistically to defense against semantic attacks. The platform defense lifecycle does
not just represent a specific software or hardware platform providers’ (e.g., social
media or app vendor, email or website host), but also includes any organisational
context providing access to user-interface platform(s) for their incumbent user base.
In both scenarios, the lifecycle applies as a framework to provide through life
defense for preemptive and proactive defense measures against semantic attack
threats by establishing the ecosystem of responsibility which can be utilised
to harness different defense capabilities through each functional element of the
lifecycle.

In Fig. 15, we illustrate three key roles: platform developer, platform security
and platform user, which form each element of a platforms defense lifecycle against
semantic attacks. Whilst each role is distinct in its own right (e.g., contribution to
defense and dependencies for its utilisation), this is not intended to indicate an
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Fig. 15 The semantic attack defence life cycle consists of three continuously interacting defence
functions: secure platform development, user threat reporting and platform security systems; which
in combination aim to provide holistic and complementary preemptive and proactive protection
against semantic attacks

implicit separation of the particular role amongst different entities, as each role
in the lifecycle can exist in the same organisation. As an example, Facebook is a
independent social network platform which implements internal functions for each
role described, but for the Facebook platform and users only. However, within an
organisational environment, each role may serve as a holistic function across all
platforms that the organisation hosts or makes available to their user base. So,
the lifecycle is intended as a high-level functional model that is applicable across
multiple contexts to describe how to combine the capabilities of each type of
platform role for defense against semantic attacks. Below, we elaborate on each
role as to their defense function:

• Platform developer. Developers are responsible for programming both the inter-
nal and user interface functionality of a platform that is both secure and resilient
to technical threats or abuse of intended user space functionality that would
result in deception vectors for semantic attacks. Platform developers can employ
the Secure Software Development Life cycle (S-SDLC) framework to design
and integrate security considerations systematically into the core requirements
and design of the platforms architecture, as well as utilise threat classification
from system and user security telemetry. The following S-SDLC life cycle
stages provide indications of activities to be carried out when introducing new
user interface functionality or applying security patches against deception based
threats.

– Requirements: Define intended user space functionality and its expected
limitations to establish any possible attack surface through misuse. This requires
documenting system-to-system and system-to-user interactions which form the
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platforms system of interest, then identifying how and if these interactions affect
other related platforms within the deployment environment.

– Design: Develop user interface threat models which consider different
elements of the platforms design. Highlight potential weak spots in the user
interface that may be targets for misuse or vulnerabilities in data representation
and transfer (within and externally from the platform) which can be used to inject
toward or extract data from target users.

– Coding: Build programmatic determinism through static code analysis to
establish confidence that the platforms programmatic features do not force the
platform to exhibit visual or behavioural deception vectors if targeted by spoofed
or injected data on the user interface (e.g., where a graphic or physical button
may be (ab)used through normal user usage).

– Testing: Utilise “fuzzing” based test within user interface scenarios where
different types of behaviour are arbitrarily executed as means to elicit anomalous
system responses or situations which can form the basis for a deception vector.

– Release/Maintain: Implements processes and procedures from the platforms
security monitoring capability as part of continual integration to support the
delivery of telemetry based patching (both system and user awareness based)
against internal as well as external platform vulnerabilities.

• Platform security. The security role within the platform defense lifecycle is
responsible for both implementing preemptive security measures (e.g., to prevent
technical vulnerability exploitation or platform misuse), as well supporting
proactive defenses through monitoring and collecting system and user telemetry
to aid in the detection of unknown or emergent threats. The latter of which feeds
into preemptive defense through activation of security rules (e.g., blocking an
activity), as well as providing crucial platform analytics and classification data
that is forwarded to platform developers to produce platform patches and or to
develop future secure user interface functionality. For semantic attacks, unlike
traditional platform security controls such as intrusion detection systems or
firewalls, the platform security requires to monitor and respond to key measurable
elements of the user interface via telemetry produced by the platform itself and
by the user base who access it.

• Platform user. Sole reliance on platform security alongside external technical
defense mechanisms provided by platform users is often insufficient as a means
of defense for detecting the vast range of semantic attacks, especially when
deception vector utilises legitimate user space functionality [33]. It is imperative
that outside of technical controls employed, that user telemetry is also harnessed.
Here, the contribution of platform users for semantic attack defense is twofold.
Firstly, platform users generate activity that can be analysed to determine if
their behaviour is consistent with malintent or victimisation. Platform-based
user activity creates meta-data that has been shown to be useful in a number
contexts where human activity can be used for establishing situational awareness
in natural disasters [59]. From a security standpoint, the same method can be
used to identify where user activity is consistent with exploitation by a semantic
attack or indeed the construction of one. The second utility of platform users
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is their ability to report security threats, where a growing trend in platform
security to address semantic attacks is to provide a means for users to report
suspected threats. Most major email and browser platforms now provide inbuilt
mechanisms for users to report phishing attacks or malicious content, with
various external security companies developing enterprise platforms, such as
PhishMe Reporter and Wombat Security PhishAlarm. In general, with access to
both types of user telemetry (passive platform usage and active threat reporting),
platform security and developers are provided with rich analytics that can be used
to classify and intercept suspected threats in online platform defense systems or
through patching of vulnerabilities in the user interface.

4.4 Defense in Hindsight

Taking in to consideration the three dimensions of defense we have discussed, here
we evaluate how these defense approaches would have provided defense against the
three real world semantic attacks illustrated in Sect. 3.2.

• Podesta Emails.

– Semantic Attack killchain: By detecting and blocking the Google phishing
email, the Google login phishing website which was used to capture user
credentials would have been thwarted. Therefore, to prevent this exploitation it
would have required only that the email was blocked or detected as malicious
to prevent compromise.

– Principles of preemptive and proactive defense: If the email account in ques-
tion had enabled mails two form factor authentication mechanisms then on
redirection to the attackers phishing login page and input of login credentials
the attackers would still have been unable to successfully access the email
account.

– Defense-in-depth lifecycle: This particular email template was spoofed
directly from Google and was not the first time it had been used or reported
as phishing. Therefore, if first phishing report had been forward by Google’s
platform security to their Gmail platform security developers the combination
of the emails content, images and domain name (i.e., not being an official
Google email address) would have served as key features to create a
detection signature. Which could have subsequently been built into Gmails
phishing detection engine. Here, the combination of user reporting, Gmail’s
security analyst (or system) forwarding the report details and classification to
developers, and security system updates by developers would have prevented
the email ever having reached John Podesta’s email account.

• WhatsApp QRishing.

– Semantic Attack killchain: As this specific attack it is dependent on either
a phishing email, instant message or SMS in order to coerce the user in to
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accessing the supposed WhatsApp URL detecting the attack through these
initial methods of distributions would prevent the user from being persuaded
into visiting the phishing webpage.

– Principles of premptive and proactive defense: A combination of standard
phishing defenses analysing the integrity of webpage content (e.g., use of
logos, scripts and redirection from site mirroring) alongside common phishing
website awareness training (e.g., domain highlighting) would provide both a
preemptive and proactive defense measure against this threat.

– Defense-in-depth lifecycle: Through a user reporting mechanism this partic-
ular threat to WhatsApp web application would have alerted the platform
security team of the QR code authentication vulnerability. As a result,
prompting developers to patch the system to enforce a secure means for
authentication through a secondary authentication mechanism only accessible
to the legitimate user, as well as instead exploring ways to protect to their web
platform by prevent third party mirroring of their website scripts generating
the QR code.

• The case of the “Hungry Bear”.

– Semantic Attack killchain: Multimedia masquerading serves as the first attack
in a chain, spreading through Facebook via user activity (“liking” and
manually sharing the video). However, the subsequent phishing website and
fake survey attack chain could have been thwarted by focusing defense on the
redirection behaviour of the post to external platforms outside Facebook.

– Principles of preemptive and proactive defense: Much like the Facebook
EdgeRank algorithm analyses features associated to social interaction to
suggested friends, posts, advertisements and material it believes certain users
are interested in, by monitoring post behaviours alongside textual information
and responses from affected users, this attack could be proactively identified
by developing machine learning models that match patterns of anomalous
redirection activity. For example, collecting data associated to the post video
nature (such as title text), user comments asking how to view the video on
Facebook, alongside the URL redirection provides features that can be fed into
a learning algorithm to classify the post’s malicious and deceptive behaviour.

– Defense-in-depth lifecycle: The combination of platform security measures
monitoring both platform functionality activity and that of its user base would
have served as crucial telemetry to Facebook security teams for classifying
this as a suspected malicious post automatically, in turn, highlighting to
platform developers the need to embed security measures in certain post
configuration (e.g., an image post with an embedded URL) before users are
redirected to external platforms automatically. Alongside technical detection,
providing user notification requesting for confirmation of external website
would highlight the nature of the post to users and indicate anomalous activity.
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5 Open Research Challenges

5.1 Emerging Threats in the Internet of Everything

Historically, semantic attack exploits in computer systems were limited to tradi-
tional Internet communications such as messaging and web application platforms.
However, in IoT, the threat landscape includes vehicles, industrial control systems,
and even smart home appliances. The result of this is that the impact is not limited
to cyberspace (such as stealing information, compromising a system, crashing a
web service etc.), but is branching into physical space too. Early examples can
be observed through physical damage dealt by malware in manufacturing plants,
rail signalling, water treatment plants and even nuclear facilities. We anticipate that
cyber-physical systems, such as industrial control systems and vehicles, will soon
become realistic targets for user deception. The potential impact in physical space
makes them attractive targets, and the limited diversity of human-system interaction,
makes it difficult for the users to detect misbehaviour. For instance, consider the
Tire Pressure Monitoring System (TPMS) on a modern automobile. It consists of a
sensor inside the tire, which monitors tire pressure and periodically transmits that
data wirelessly to an electronic control unit (ECU) on the in-vehicle network of
the automobile. If the tire pressure is below a threshold, this is displayed on the
driver’s dashboard as a tire pressure warning. Rouf et al. [68] have shown from as
early as 2010 that spoofing these messages can be relatively straightforward. So, an
attacker can wirelessly transmit fake TPMS data to the ECU and trigger a fraudulent
warning. The driver-system interface does not provide anything more than a visual
display of the warning. So, there is no way for the driver to tell that this is a deception
attempt rather than a legitimate safety issue, and as such will probably decide to pull
over as soon as possible.

While the potential of attacks on vehicles captures the public’s interest, it is
cyber-physical systems in industrial control that have been targeted several times
in high-profile incidents in the past. The exploitation was almost always highly
technical, but usually the initial point of entry was standard spear-phishing and in
some cases watering hole attacks. In 2014, a German steel mill was attacked via
spear-phishing, with the aim to capture user credentials, gain access to the back
office and from there to the control network, ultimately damaging a blast furnace.
In 2015, 80,000 homes in Ukraine lost power when phishing emails deceived
employees of the electricity provider into clicking on an attachment in an email,
purportedly from the Prime Minister of Ukraine [69].

Smart home IoT systems also constitute attractive targets as deception devices.
Most commonly, they involve access to cloud, voice-activated artificial intelligence
(such as Alexa or Siri) and workflow automation services, such as IFTTT and
Stringify. Each one of these can be compromised by deceiving a user or with the
purpose to deceive a user. A simple example would be to inject audio commands
(e.g. “Alexa, purchase item X”) in an audio or video file sent to a user via email.
In fact, a similar incident (albeit not an attack by design) occurred in 2016, when
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a 6-year old girl asked Alexa Can you play dollhouse with me and get me a
dollhouse? and Alexa actually did order a $160 dollhouse. Then, when a news
presenter repeated this on TV while covering the story, several Amazon Echos in
people’s homes attempted to order further dollhouses. At the same time, any breach
of confidentiality relating to the smart home can lead to breach of physical privacy
and thus be useful information in the hands of attackers building a picture about a
household’s pattern of life. Data sniffed from sensors or smart meters can tell when
someone is in or out during the week, and even how they look or sound like if their
Internet-connected camera is compromised. The impact can be further accentuated
if the breach of privacy extends to users’ smart wearables, especially when they
relate to health, as attackers can use information on likely medical conditions to
target them convincingly. Consider the impact that ransomware would have if it
were designed for wearable or implantable medical devices. Protecting against
semantic attacks in cyber-physical context has not been explored yet.

5.2 Human-as-a-Security-Sensor

By their very nature, semantic attacks are challenging for autonomous technical
defenses to detect and prevent. In recent years, the focus on user awareness training
has shifted to actively involving users as human sensors spotting and reporting
suspected attacks. As alluded to in Sect. 4.3, the user plays a crucial role in the
platform defense-in-depth lifecycle against semantic attacks, supplementing tech-
nical defense mechanisms with human detection efficacy. In [32], we established
the concept of Human-as-a-Security-Sensor by demonstrating how one’s ability to
detect different semantic attacks can be predicted. We then showed experimentally
how predictive modelling can be integrated into a real-world technical system to
actively engage and empower users to report detection of different semantic attacks
across a range of platforms in real-time; outperforming all technical defense systems
compared against [33]. Moreover, there are now examples of security vendors
and public organisations advocating and actively employing human security sensor
functions to augment defense against semantic attacks, such as the “human sensor”
publicised phishing detection platform PhishMe Reporter and the University of
Oxford CERT team’s phishing reporting portal [30]. However, to realise this
concept’s long term benefits, there is a need to extend to a wider range of threats
(other than phishing) and to find effective means of encouraging users to take part.
Furthermore, in IoT space, the means by which to report suspected threats may
be less intuitive or “safe” as that of a laptop or mobile device user interface. If
a deception vector is executed within the user interface of an industrial control
system or vehicle, it may be dangerous to stop any activity to report a suspected
threat and similarly dangerous to ignore a suspected deception as false. Taking the
example of spoofed tire pressure warnings again, if onboard vehicle security fails
to detect the deception, the driver has to make the decision whether to report the
suspected deception and ignore the tire pressure warnings or pull over as per the
attacker’s aim. The Human-as-a-Security-Sensor paradigm harbours great potential
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for augmenting existing technical defenses in the fight against semantic attacks, but
finding a consolidated and secure means of reporting threats against multi-platform
user interfaces is a complex challenge.

5.3 Cyber Hygiene 2.0

Perhaps the most common advice for stepping up the security of an individual
or organisation is to protect themselves against basic cyber threats by keeping
their software and operating system up to date, avoiding unsafe websites or email
attachments from people they do not know, and other basic measures collectively
referred to as “cyber hygiene”. The aim is prevention, and it is without doubt that
such measures do improve overall security posture. However, as threats gradually
become more advanced, and this is certainly the case for semantic attacks, individual
users need to be equipped with recommendations on not only how to prevent, but
also how to identify and respond to less basic attacks that have not been thwarted
through prevention. Here, researchers can make use of the early steps that have been
taken in the field of neuroscience, for instance using fMRI to show that the areas
that exhibit the most brain activity when a user successfully distinguishes between
a phishing and a legitimate website are those associated with decision-making,
attention, and problem-solving [67], or using mindfulness to improve attention when
facing a phishing attempt [66]. We anticipate that the next phase for cyber hygiene
efforts will be in the form of simple techniques and habits that can help detect threats
rather than relying on successful prevention.

6 Conclusion

Semantic attacks have been posing a significant and sustained threat to computer
information security for almost 30 years, with a cryptovirus appearing as early as
1989 and scareware existing since 1990. The basic principles in deceiving users have
remained largely the same, yet the threat has not been thwarted. On the contrary, all
statistics point to a continuous increase in the number and diversity of semantic
attacks and worsening impact. We argue that the ineffectiveness of the very large
number of technical security approaches developed is that they look at each type of
attack in isolation. For example, the deception logic and the nature of the tell-tale
signs of phishing in email and in social media are the same. Yet, the two cannot be
addressed by the same technical security mechanism. In response to this challenge,
we have discussed three high-level defense approaches, which can be attractive
areas for further exploration in addressing the wider semantic attack space. Wholly
unsurprisingly for a type of threat that is based on user deception, the key in defense
is again the human, whether as developer of user interfaces or as a user acting as
human sensor, but not making the same mistake of attempting to detect threats in
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isolation. The human users are best placed to thwart deception attempts against them
if this capability can be leveraged as part of technical defense systems.
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