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Preface

Cybersecurity is one of the important areas in the computer science domain which
also plays a major role in the life of almost every individual, enterprise, society,
and country. After the IT revolution, an unprecedented growth has been seen in
the number of cyber-attacks and their impact in terms of financial damages and
data losses. A steady growth is also visible in the newer forms of attacks with
sophistication, stealth, scale, persistence, and intelligent penetration. Cyber-attacks
also necessitate continuous and unified efforts on designing defensive mechanisms
to combat the range of evolving attacks and minimizing the damages incurred by
various attacks. Cybersecurity as a discipline is also able to attract a good number of
young minds opting to study and divulge into this area. There is a range of online and
printed resources available to study various research topics, relevant contributions,
and open problems related to cybersecurity.

A large number of advanced security books focus on either cryptography or
system security which covers both information and network security. However, there
is hardly any text available for advanced students and research scholars in security
research to systematically study how the major attacks are studied, modeled,
planned, launched, and combated by the community. The Versatile Cybersecurity
book aims to fill this gap by providing focused content related to specific attacks
or attack families. These dedicated discussions in the form of individual chapters
cover the application or area-specific aspects while discussing about the placement
of defense solutions to combat the attacks. This book has eight high-quality chapters
from established security research groups worldwide which address important
attacks from theoretical (modeling) as well as practical aspects.

We anticipate that this edited book can serve as a good resource to security
researchers and students as each chapter brings comprehensive and structured
information about an attack or an attack family. The authors in these chapters present
crisp detailing on the state of the art with quality illustration of defense mechanisms
and open research problems. This book covers various important attack families
such as insider threats, semantics social engineering attacks, distributed denial
of service attacks, botnet-based attacks, cyber physical malware-based attacks,
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vi Preface

cross-vm attacks, and IoT covert channel attacks. We hope that this book will serve
the interests of many of the cybersecurity enthusiasts including undergraduates,
postgraduate, and doctoral students.

The first chapter on “An Android-Based Covert Channel Framework on Wear-
ables Using Status Bar Notifications” focuses on covert channel attacks on Internet
of Things (IoT) devices using notifications. The authors in this chapter show cases
of novel covert channel attacks where instead of using global shared resources,
attack is performed using common status notifications to users. The chapter shows
a detailed description of threat model, types, and motivations of covert channel
attacks. Later in the chapter, authors describe a novel Android-based covert channel
attack which is based on status bar notifications. Authors also discuss various
important parameters behind the success of these attacks. Authors also describe
the performance of the covert channel attacks based on throughput analysis and
covert analysis. At the end of the chapter, the authors discuss a set of open research
directions in this area to help the researchers to ponder on newer problems.

The second chapter on “Insider Threat Detection: Machine Learning Way”
aims to cover and analyze contributions from machine learning domain to provide
solutions to various kinds of insider threats. The authors in this chapter provide
various attack launch mechanisms and details the impacts of an insider attack on
various domains. The authors also presents interesting state-of-the-art work on
insider threat detection which includes methods based on psychology, criminology,
and game theory. The chapter covers various case studies covering usages of
machine learning techniques in anomaly detection. The chapter also describes
some experimental studies on insider threat detection over large datasets with
low frequency anomalies. The authors describe methods such as linear regression
followed by Cook’s and Mahalanobis distance to identify malicious activities of the
user. The authors also show usages of neural network and support vector machines
to demonstrate detection of an anomalous behavior. The chapter concludes by
providing a glimpse of future research directions from natural language processing,
behavioral analysis, sentiment analysis, and machine learning areas for insider threat
detection.

DDoS attacks are among the top cyber threats for many years. The third chapter
of this book on “Distributed Denial of Service Attacks and Defense Mechanisms:
Current Landscape and Future Directions” aims to provide a comprehensive
description of the state-of-the-art techniques for DDoS attack detection and defense
mechanisms. In addition, the authors in this chapter provide a detailed taxonomy of
various DDoS attacks to help the reader understand the types of attack methods
used to plan the DDoS attacks. The authors provide a detailed description of
various launch methods and also give a light to various reasons for success of
notorious DDoS attacks. In the later part of the chapter, authors describe various
attack characterization, prevention, detection, and trace-back methods. Authors also
discuss the attack sophistication and newer trends in the DDoS attacks space and
also provide a list of future research directions at the end of the chapter.

Social engineering attacks lead to multiple threats which may in turn lead
to many other security attacks such as phishing, drive-by downloads, file and
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multimedia masquerading, domain typosquatting, and malvertising. The fourth
chapter on “Protection Against Semantic Social Engineering Attacks” focuses on
various kinds of semantic social engineering attacks. The authors provide a detailed
coverage of over 35 diverse types of semantic attacks. The authors in this chapter
provide an in-depth coverage to the semantic attack launch methods using a generic
attack structure. A major contribution of this chapter is in providing a detailed yet
comprehensive treatment to the solutions in the form of a three-dimensional defense
framework for the semantic social engineering attacks. We are sure that the readers
will benefit from the application of three-dimensional defenses on popular semantic
attack cases such as “Podesta Emails” and “WhatsApp QRishing.” The authors also
provide three important open research directions in the form of emerging threats in
“Internet of Everything,” Human-as-a-Security-Sensor, and Cyber Hygiene 2.0.

Program obfuscation makes it difficult for the detection methods to under-
stand the program semantics. Chapter 5 of this book aims to provide details
about cryptographic program obfuscators. The authors in this chapter introduce
the program obfuscation and its importance in general and provide a detailed
description of cryptographic program obfuscation. In this chapter, the authors show
the practical implementations of point function obfuscators, provably secure under
widely used intractability assumptions and in theory-oriented models and definitions
of cryptographic program obfuscation. The authors describe different point function
obfuscators based on cryptographic hashing, decisional DH, discrete logarithms,
decisional residuosity, the LWR problem, and the LWE problem. Later, the chapter
provides guidelines to generate application-oriented models and definitions of
cryptographic program obfuscations, addressing more practical classes of attacks.

Chapter 6 of this book focuses on “Botnet-Based Attacks and Defense Mecha-
nisms.” The authors in this chapter provide an in-depth discussion to botnet lifecycle
and give a comprehensive classification of botnets. The authors detail the launching
of botnet-based attacks in the form of compromise attacks (initial threats) and
follow-up attacks (continuous threats). The authors also provide a list of reasons
behind the success of botnet-based attacks. The major contribution of this chapter
is to provide a comprehensive solution hierarchy for botnet-driven attacks. We hope
that readers would benefit from the list of newer form of botnets such as mobile,
social network-based, IoT-based, cloud-based, and crypto-mining-based botnets. At
the end of the chapter, the authors provide a number of future research directions
related to the botnet-based attacks, newer sophistications, and related possible
solutions.

Highly sophisticated attack incidents in the form of cyber-physical malware
(CPM) such as “Industroyer” can virtually paralyze nations. Chapter 7 is dedicated
to “Catastrophic Cyber-Physical Malware” and provides an in-depth coverage to
diverse aspects of CPM based attacks from the perspective software vulnerabilities.
The authors in this chapter provide a detailed description of CPM metrics and
various phases of CPM-based attack launch. We feel that the contributions made by
the authors in this chapter would greatly benefit readers who are interested in newer
form of cyber-attacks. The authors detail the needs of security measures related
to CPM and provide connections to the national cybersecurity. The authors discuss
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various risks related to telecommunication infrastructure, industrial control systems,
vulnerable mission-critical software, and IoT and provide critical needs for software
assurance and practical tools, and cyber-force training. The authors also describe
various practical difficulties in detecting CPM malware with the examples such
as GPS malware. In addition, authors also discuss challenges related to software
assurance. At the end of the chapter, authors provide interesting discussion to
the open research directions including threat modeling and describe their DARPA
research on software analysis.

The last chapter of this book is on “Cross-VM Attacks: Attack Taxonomy,
Defense Mechanisms, and New Directions”. The authors in this chapter focus on
cloud-based cyber-attack among the virtual machines. The authors in this chapter
focus on cross-VM attacks which are mostly side-channel attacks based on shared
resources in a multi-tenant cloud environment. The authors provide a detailed
description of cross-VM attacks and provide detailed attack taxonomy based on
various shared resources in the cloud. The authors detail about five categories
(CPU-based, cache-based, memory-based, network-based, and I/O device-based)
of cross-VM attacks in their attack taxonomy. In addition, the authors provide an
attack model and threat model for cross-VM attacks and various launch methods.
The authors also enlist a number of success factors behind these attacks and provide
a detailed survey of various mitigation mechanisms. At the end of the chapter, the
authors provide a discussion on newer forms of sophisticated cross-vm attacks and
a list of open research problems.

Padua, Italy Mauro Conti
Ajmer, India Gaurav Somani
Seattle, WA, USA Radha Poovendran
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An Android-Based Covert Channel
Framework on Wearables Using Status
Bar Notifications

Kyle Denney, A. Selcuk Uluagac, Hidayet Aksu, and Kemal Akkaya

Abstract Covert channels circumvent security measures to steal sensitive data
undetectable to an onlooker. Traditionally, covert channels utilize global system
resources or settings to send hidden messages. This chapter introduces covert
channels and focuses on a novel covert channel on Android-based Internet of
Things (IoT) devices. Particularly, we were able to make a covert channel using
notifications a user gets from everyday applications. The chapter will also present
this covert channel by discussing the framework, evaluating the performance, and
demonstrating the functionality and flexibility of the proposed model.

1 Introduction

By 2020, it is estimated that there will be 50 to 100 billion devices connected to
the Internet [8, 9, 18]. All of these devices traditionally communicate overtly using
established communication protocols (i.e., TCP/IP), but it is possible to have these
devices communicate covertly without detection.

Covert communication is the art of using typical communication standards and
transforming them into a way that only two parties are aware of the message.
This is different from encryption where the message is disguised in a way where
an onlooker cannot discern the meaning. With covert channels, the onlooker is
completely unaware the message exists in the first place.

This chapter will discuss how covert channels occur in computer systems. We
start with a general overview of covert channels in Sect. 2. In Sect. 3, we discuss
the timeline of covert channels and how they developed into their current state.
Section 4 highlights a covert channel model we introduce that works on Android-
based IoT systems, written in a way to show how covert channels may be developed
in any computer system. Section 5 discusses the results of our proposed covert
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2 K. Denney et al.

channel on a live testbed. We discuss possible ways to eliminate our covert channel
in Sect. 6. Finally, Sect. 7 discusses where future development in covert channels
may be headed–discussing both future attack models and future defenses to covert
channels.

2 Background

Covert channels [2, 4, 16] are a way to steal sensitive information in manners
undetectable to a third-party onlooker. Essentially, these channels abuse freely-
available resources in a system to create novel means of communications. For
instance, a storage covert channel [16] can alter values of a system resource using
a predetermined codebook. A seperate process, knowing the codebook, can detect
these changes and interpret the encoded message. This allows processes to work
together to send messages surreptitiously within the system. The rest of this section
will describe the history and traditional methodology behind covert channels.

2.1 Traditional Threat Model

Covert channels were first described by Lampson [13] to show how processes
that were not intended for communication can be used to send hidden messages.
Over time, various forms of covert channels were introduced [1–4, 16, 20]. This
subsection introduces the concept of covert channel and describes how the different
types of channels may be used by attackers in networks.

The process introduced by Simmons is a model we still use today to describe
covert channels [19]. He describes a process similar to prisoners attempting to
escape a prison. In this model, as shown in Fig. 1, Alice and Bob are two prisoners
that plan to escape their confinement under the watch of a warden, Wendy. Alice and
Bob must come up with a way to communicate without Wendy finding out. If Wendy
discovers their communication, Alice and Bob are thrown into solitary confinement.
In order to escape prison, Alice and Bob must communicate with messages that look
innocent to Wendy, but actually contains information about escaping.

Fig. 1 Covert channel conceptual model [16]
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This analogy can be translated to how covert channels work. Two applications
must be able to send hidden information between each other without the warden,
generally a firewall or antivirus software, discovering the communication. To hide
the communication, covert channels generally use resources that are universally
given to processes to use at will. Traditionally, there are two ways to communicate
using these resources: timing-based or storage-based.

2.2 Types of Covert Channels

Timing-based covert channels communicate by using the time to send messages. A
covert mechanism commonly used in these channels is the systematic delaying of
packets being sent across the network. One covert sender will send packets across
the network and delay them intentionally. The amount of the delay corresponds to
a symbol that is part of the message. The covert receiver will detect these symbols
and interpret the message.

On the other hand, storage-based covert channels work by altering values
in system resources. Storage-based channels operate in intervals that are known
between the two processes – typically a time with the least chance of user-
interference. When the channel is operating, the covert sender process will change
the value of a resource, like the volume setting, to correspond to a symbol in
the message. The covert receiver process will read the changes in the values and
interpret the message from there.

2.3 Motivations for Using Covert Channels

As with most security concepts, covert channels can be used offensively and
defensively. For example, an attacker may establish a covert channel on a system
in order to steal data undetected to the system administrators. Imagine the attacker
implanting a covert channel on a military base: once established, he can use
this covert channel to steal military secrets from the base without high-command
knowing his presence.

On the other hand, covert channels are very important for defensive purposes.
Take a military unit lost in enemy lands, for instance. Their entire mission can be
compromised once the enemy knows of their presence. If the unit uses traditional
communication methods to relay information, the enemy would be able to uncover
their existence. Even if the unit uses encryption, the enemy could infer the intentions
of their messages and detect the unit. However, through the use of covert channels,
the unit will be able to remain undetected to the enemy while gaining crucial
information from their commanders.
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The fact that covert channels can be used for either purpose makes it especially
important for research to be done in creating new covert channels and uncovering
ways to mitigate existing covert channels.

3 Use Cases of Covert Channels

Covert channels are used throughout computer networks to send messages surrep-
titiously. Typically, if a system can connect to a network, a covert channel can
be developed. In this section, we look at the fields that can be affected by covert
channels and examples for each field. We start with the first covert channels and
work our way up the timeline to covert channels on today’s systems.

As mentioned before, covert channels were first introduced by Lampson in 1973
[13]. His work, “A Note on the Confinement Problem” focused on monolithic
systems. He noted that it was possible to obtain information on who called an indi-
vidual program by utilizing resources and system calls not designed for information
sending. At the time, Lampson’s work only defined covert channels operating on
a single system or mainframe; using the channel to uncover information that was
privileged and inaccessible to users. However, it quickly became understood that
these covert channels could be used across multiple networked devices.

Once computer systems became networked together, covert channels increased
their potential [20]. Researchers examined that it was possible to hide information in
packet headers to discretely send information. The first instance of a timing channel
was introduced by Girling [12] where he noted it was possible to systematically
delay packets to hide information. From there, it quickly became realized that it is
possible to create a covert channel on practically any networking protocol as one can
either: (1) create a timing channel by systematically delaying the protocol packets
or (2) create a storage channel by hiding information in the protocol packet headers.

Since a covert channel can be introduced on practically any networked device,
they can have a potentially massive impact on the world. With 50 to 100 billion
devices connected to the Internet in the near future [8, 9], the amount of data
transferred in covert channels will be massive. For instance, the covert channel
showcased in this chapter uses the notification class on Android used to notify
a user of an incoming message from an application. Since notifications are used
universally on all Android devices, this covert channel impacts the full spectrum of
Android devices – including IoT devices that utilize the Android Wear operating
system. As of May 2017, Google announced it has over 2 billion active Android
devices running in the world [15]. This means the covert channel we discuss has a
high potential to affect millions of users.
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4 A Novel Covert Channel over Android-Based Notifications

In this section we introduce our proposed covert channel model. We show how it is
possible to create a covert channel using the notifications that show on an Android
system when one receives an SMS message or email.

Starting with an introduction to the Android operating system, we then move on
to how the notifications themselves are created on an Android device. We showcase
how one can manipulate these notifications to create both a timing and storage
channel. Going step-by-step through the creation of both models, we also show how
a covert channel may be developed on any system or protocol.

4.1 Android OS

The Android operating system is based on Linux, with much of the security designs
and features being extensions of Linux. The main Android platform is a Java Virtual
Machine running on top of the Linux kernel. What makes Android different from
Linux is that each application running on Android is awarded the same privilege
level – meaning that every application, including Google applications, have the same
limitations and privileges.

When an application is running, it is given a unique user ID with unique
privileges it can access from the system (these are awarded by the user in the form
of permissions). For instance, applications that are given the Wi-Fi permission are
allowed to use the phone’s Internet connection – all others are barred from this
access.

Since each application is its own user on the device, applications are not allowed
to talk to each other directly. This technique is called sandboxing and is a typical
way to increase the security of a device. Essentially, sandboxing works by giving
each application a unique user ID. That user ID is then paired with its own set of
permissions and system resources and then applications are not allowed to share
information between each other. To get around this, additional permissions must
be granted based on the type of communication the two applications would like to
perform.

Covert channels can attempt to subvert these sandboxing methods [10, 11].
Applications may form either a timing-based or a storage-based covert channel
with each other in order to share their own privileged information. One application
can write information by altering a system resource while the second application
can read that information as the resource is changed. Since system resources are
universally given to applications, these attacks circumvent the security measures
Android employs.
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4.1.1 Android Notifications and Android Wear

The covert channel framework that is presented in this paper uses the notification
mechanism available on Android-based wearables. Notifications are messages that
are displayed to the user to give information about an application that is running.
Examples of notifications would be a new SMS message, notice that a file finished
downloading, or information about a new system update for the device itself. In
this sub-section, the structure of a notification is described and the functionality of
notifications across devices is introduced as it is an important concept to understand
the covert channel technique introduced in this paper.

Traditionally, the status bar holds all of the notifications that appear on an
Android smart phone. When an application needs to tell the user of something
important, it creates a notification and displays it on the status bar. The basic
structure of a notification includes a notification ID which is used by the smart
device to distinguish different notifications, a title that displays at the top of a
notification, and the text that gives more information to the user.

Starting in Android 4.3, support for Android wearables was introduced [5]. Using
the Android Wear application, a smartphone can sync with a smartwatch. The two
devices can then share information such as notifications between each other and
make a more user-friendly experience by being more integrated with the user’s life.

In order for notifications to be pushed from the phone to the wearable (or vice
versa), a notification listening service on the wearable needs to be implemented.
When the user gives the BIND_NOTIFICATION_LISTENER_SERVICE permis-
sion to an application, the application is allowed to access information about every
notification that appears on the status bar. If the user has a wearable device synced
with their smart device, the permission allows for all notifications across both
devices to be read. Since all notifications appear on both devices, it does not matter
which device the application is installed on for it to read the notifications.

Note that many applications on the Android marketplace today utilize this
permission. Applications can sync with many devices and send notifications from
a phone to other personal devices such as a computer or tablet. Moreover, with
a simple search for ‘notification reader’ application on the Google Play Store, a
myriad of applications appear that advertise a more user-friendly experience by
sharing notifications across devices. Unfortunately, when an application advertises
that devices can work together, the user is more inclined to give permissions such
as the BIND_NOTIFICATION_LISTENER_SERVICE to the application.

4.2 Threat Model

With this information in mind, we can use these notifications in Android systems to
develop a covert channel. First, we must establish the threat model we will be using
for this covert channel. Imagine a rogue employee at a company who wishes to steal
company secrets. He can sync his Android watch to his work tablet and establish
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a covert sending application on the tablet and a covert receiving application on the
watch. From there, he can make a covert channel that sends messages by hiding the
data in notifications. The tablet can create notifications and the watch will read these
notifications and infer the hidden data from within. Below we will describe methods
to create this covert channel.

4.3 Covert Channel Framework

The covert channel that is introduced in this paper uses Android Wearable notifica-
tions to send information between applications on the same device, or even across
multiple devices. We first describe the general framework, then introduce how we
use the framework to make both storage-based and timing-based covert channels.

The first application we make is the covert sending application. The covert sender
is responsible for creating notifications that will be used for the covert channel. It
creates notifications with specific notification ID values that have pre-established
meaning.

The second application, the covert receiver, is responsible for reading these
notifications and determining the hidden message. This receiving application is
assumed to have the BIND_NOTIFICATION_LISTENER_SERVICE permission
enabled, allowing it to read notifications on the Android system. The receiver can
read the notification ID values and infer the hidden message by comparing it to the
pre-established codebook.

Below we describe how this can be done using both a timing-based and a storage-
based covert channel methodology.

4.3.1 Previous Work

We have previously published works with this covert channel framework [6, 7]. In
past works, our framework was only a storage channel framework. In this chapter,
we expand on the framework to function as both a timing and storage channel.
Additionally, we improve on the storage channel model to have a higher throughput,
which we will analyze in later sections.

4.3.2 Timing-Based Framework

Here we describe how a timing-based covert channel can be achieved using
notifications.

In the timing-based framework, the sending and receiving applications first have
to establish a timing codebook. For our purposes, we established the receiver to
look for a notification at every t intervals. We also created 3 notification ID values
to be read: start , stop, and message. These ID values are arbitrary as long as both
applications know what the corresponding values are.
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To establish the covert communication, the sending application creates a notifica-
tion with the start value. When the notification is read by the receiving application,
it starts a timer that reads for notifications every t intervals.

The sender, with a timer of its own, then takes the message it wants to send and
converts it into its hexadecimal data. The sender then reads the current data value
in the stream and waits for the appropriate t intervals (e.g., if the data value is A,
the sender waits 10 t intervals; the sender also waits a full 16 t intervals if the data
value is 0). When the sender has waited the appropriate time, it creates a notification
with the message value and then moves on to the next data value in the stream and
repeats the process.

When the receiving application reads the start notification, the application starts
looking for notifications with the message value every t intervals. If the application
does not detect a notification, it increases a counter. This counter counts up until
either a notification is finally read or the counter counts up to 16. The value of the
counter whenever it is reset is added to the receiving application’s message stream.

When the message is complete, the sending application creates a notification with
the stop value. The receiving application reads this notification and stops its timer
and counter. The receiver then stores the entire message it collected and the covert
message is complete.

Figure 2 describes the covert channel model for the timing channel framework.
The sending application creates notifications with specific time intervals in between.
Then, the receiving application reads these altering timing values to interpret the
hidden message.

4.3.3 Storage-Based Framework

The framework for a storage-based covert channel is similar to the timing-based
framework. Here, we again use a start and stop notification to initialize and termi-
nate the covert message respectively. However, this time, the message notification
varies in value.

Fig. 2 Design of the timing-based covert channel
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Fig. 3 Design of the storage-based covert channel

Once the covert message has started, the covert sender reads the current value in
the message stream and inputs that value directly into the message ID value. The
receiver then reads the value of the notification and adds it to its message stream.

Figure 3 describes the covert channel model for the storage channel framework.
The sending application creates notifications with ID values corresponding to the
predetermined codebook. Then, the receiving application reads these altering ID
values to interpret the hidden message.

5 Success of the Covert Channel

In this section, we demonstrate the feasibility and functionality of the novel
wearable covert channel framework and evaluate its performance on real wearable
devices focusing on the two covert channel techniques introduced in the framework.

In our model, a rogue employee (Bob) may use this covert channel set up to steal
sensitive data from a work phone by using a paired smart watch. Bob can install
the covert sender on his company phone and the covert receiver on the watch. Bob
can use the covert sender to encode the sensitive data into either notification-based
model–creating notifications on his work phone. The Android Wear application will
then send any notifications made on Bob’s work phone to his paired smart watch.
The smart watch will then receive any notifications sent from the Android Wear
application.

By installing the covert receiver on the smart watch, it is possible for Bob to
listen to all the incoming notifications on the smart watch. The covert receiver then
picks up the message originating from the covert sender on the work phone, storing
the sensitive data on the smart watch without the company’s knowledge.

To test the functionality and the feasibility of this covert channel model, a
Samsung Galaxy S5 was used as the work phone and a Sony SmartWatch 3 was
used as a wearable device. The Galaxy phone holds a 2.5 GHz quad-core processor
with 2 GB of RAM and the watch a 1.2 GHz quad-core processor and 512 MB of
RAM. The devices used in our testbed are shown in Fig. 4.
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Fig. 4 First covert channel
technique testbed (left:
Samsung Galaxy S5; right:
Sony SmartWatch 3)

5.1 Throughput Analysis

In this subsection, we analyze the throughput of each covert channel model. By
calculating how quickly notifications can be sent, we will be able to calculate how
much data can be sent by both models. From there, we can determine which model
has a higher throughput by comparing the two results.

5.1.1 Timing-Based Throughput

To have a high throughput, we need as low of a time interval between notifications
sent as possible. To measure this, we first need to calculate how quickly the phone
can make notifications as well as how fast the watch can read incoming notifications.
From there, we can calculate the shortest time interval notifications can be sent at
where the message is still discernible.

First, we measured how quickly the phone can make new notifications. We
found that our phone could make about 19 notifications per second. To test how
quickly the watch could read notifications, we had the phone repeatedly send
notifications as quickly as it could (19 notifications per second) for an extended
period. On the watch end, we simply made a counter that incremented every time
it processed a notification from the phone. The ratio of how many notifications the
watch processed to how many notifications were actually made gives us how many
notifications per second the watch is capable of receiving. In our case, we found
the watch was able to process just over 6 notifications per second, which we round
down to 6 to ensure every notification is read during transmission.

By inverting our ratio of 6 notifications per second, we find that the lowest time
interval between two notifications being processed is 1/6th of a second. That means
our t value for transmission is also 1/6th of a second.

To calculate our final throughput, we assume the slowest possible message sent
(a series of straight zeros) making new data being sent every 2.6 s. Dividing the
amount of data sent (16 bits) by the maximum sending rate (2.6 s) gives us our final
throughput of 6.15 bps. As Claudio et al. discuss [14], even a low bit rate covert
channel is enough to share “reasonable amounts of data on the smartphone.” Given
the timing channels they analyze are 3.70 and 4.88 bps, we can conclude that ours
at 6.15 bps is also sufficient.
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5.1.2 Storage-Based Throughput

The throughput of the storage-based model is much easier to calculate. Here, we
had to simply take how quickly notifications are being sent by how much data can
be sent per notification.

We have our speed of 6 notifications per second from analyzing the throughput
of the timing-based model before, so we only have to determine how much data
can be sent per notification. Notification ID values use the unsigned integer type,
making each notification sent worth 4 bytes of data. This gives us around 24 bytes
per second (192 bps) for the throughput of the storage-based model; exponentially
faster than the timing-based model.

5.2 Covert Analysis

In this subsection, we discuss how covert each model actually is. We do this by
analyzing how much system resources each model takes up as well as having a
brief discussion on how easily an onlooker may uncover the communication through
simple observation.

5.2.1 Pattern Recognition

To hide the communication occurring in our proposed covert channel, we use
the cancel() function provided to notification creation. This function allows an
application to remove a notification it created from the status bar of Android device.
We call this function immediately after the covert sender makes a notification for
transmission to ensure that an onlooker cannot physically see the notifications
appear on the smart device. However, if one looks at the system logs, all the
notifications still appear and communication can continue unaltered.

Since the notifications are still present on the system, it is still possible for a
warden-type application to detect the covert communication by analyzing incoming
notifications on the smart device.

To counter this warden, we can implement measures to mask the patterns one can
discern from the covert communications. For instance, instead of the storage model
sending notifications at a set pace, we can randomize the time between notifications
as that will have no impact on the transmission. For the timing model, we can
randomize the time interval after every transmission. Essentially, any measure that
can change the transmission pattern without affecting the actual transmission can be
introduced to our model to prevent a warden from recognizing the communication
occurring.
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Fig. 5 CPU readings of (a) Timing and (b) Storage covert channel models

5.2.2 CPU Usage

We set up a simple test to see if there is any noticeable CPU usage from the
covert sender. We monitored the CPU usage on our Galaxy device from the covert
sender while the sender relayed a message to the covert receiver. Figure 5 has the
CPU percentages of the covert sending application for both the timing and storage
channel models (with A referring to the timing model and B referring to the storage
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Table 1 Analysis summary
of storage and timing
channels

Timing Storage

Throughput 6.15 bps 192 bps

Data per notification 1 bit 4 bytes

CPU usage (average) 1.75% 1.85%

model, respectively). For simplicity’s sake, we set the notification rate to 1/5th of a
second and set the length of the test over 5 s to read the patterns more clearly.

As expected, the CPU usage spikes whenever a notification is created. This can
be clearly seen in the timing model, as there is a heartbeat pattern whenever a
notification is created: a large spike for the creation of the notification and a smaller
spike for when the cancel() function is called to wipe the notification from the
phone. While not as clear, this is still present in the storage model.

5.3 Analysis Summary

To conclude the analysis portion of our work, we include a table to compare and
contrast the efficacy of both the timing and storage channel frameworks. Table 1
compares the two frameworks in their throughput, amount of data encapsulated in
each notification, and average CPU usage respectively.

6 Discussion and Prevention

In this section, we discuss the pros and cons of both covert channel models. We also
discuss methods to prevent the proposed covert channels and how effective these
prevention models can be.

6.1 Prevention

In fact, there are no current solutions to prevent this proposed covert channel.
However, this chapter proposes solutions that diminish, or stop entirely, the success
of this covert channel.

A simple way to stop the proposed storage channel is to change the way the
notification class handles notification ID values. Instead of allowing an application
to create its own ID value for a notification, Android OS should randomly assign an
ID value to every created notification. The new notification would still be attributed
to the appropriate application, but it prevents this covert channel from operating
properly.
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However, this does not stop the timing channel from operating. Another solution
to prevent both models is through simple intrusion detection. An antimalware
software installed on an Android device could be programmed to detect newly
created notifications. If one application is creating an unreasonable number of
notifications, it would be flagged as a rogue application and proper authorities would
be notified.

6.2 Comparison

Overall, the proposed storage channel model is a more well-rounded model
compared to the timing channel. Below, we discuss the various criteria we used
to come to this conclusion.

In our throughput analysis, we established that the storage channel is capable of
sending more information at once. At its maximum throughput, the timing channel
was only capable of 6.15 b/s, which is minuscule compared to the storage channel
at 20 B/s. From the CPU usage section above, we established that it is simple to spot
the pattern of an application sending repeated notifications over time. The timing
channel model especially falls prey to this pattern recognition as there is no simple
way to break up a system dependent on time. For the storage channel, we can simply
send the notifications over a longer span of time, thereby making it harder for an
onlooker to discern a pattern. However, the timing channel has more potential for
longevity. It is rather simple for Google to shutdown the capability for the storage
channel to operate by forcing notifications to have randomized ID values. There
is no similar option for Google to take to stop the timing channel, as notifications
will always have to be sent at times specified by the calling application. Therefore,
the operability of the timing channel is practically ensured in all future Android
releases.

7 Trends and Future Work

Since covert channels can exist on practically any computer system, we need to
know what new technologies can be used to establish covert channels and what we
can do to prevent them from occurring. This section will look at what new research
in covert channels may look like in the near future.
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7.1 Imminent Threats

As noted, practically any new technology that can be networked can be used to
create covert channels. However, we note that current popular technology trends
will have the most focus for covert channel development.

The covert channel we showcase only works on Android devices at the moment,
but notifications exist on practically all modern devices from smart phones, to
personal computers, to IoT devices. In order to improve this covert channel, one
would need to develop a universal system that allows the covert channel to work on
notifications from all of these devices.

As the case with our covert channel model, more covert channels will be
introduced in IoT technologies. Similarly, we believe that covert channels in Cyber-
Physical Systems (CPS) will be especially popular due to the nature of a CPS
(e.g., stealing information about the energy grid undetected would be especially
valuable).

Another research area – especially with its increased popularity in recent
months – is uncovering covert channels in Bitcoin and other altcoins. Due to the
history of Bitcoin, it is likely that covert channels are currently well-established to
communicate in the criminal undergrounds. Research here would be done to prove
how these covert channels can operate in order to work on the harder problem:
detecting and diminishing the covert channel.

7.2 Future Defenses

Typically, once a covert channel is detected, it is very simple to stop it from occur-
ring. One can simply add a detection system that flags when covert communications
are likely happening and stop the process that is operating on the covert channel.
However, future research can be done to help automate the detection instead of
relying on manual eradication.

As mentioned earlier, covert channels are likely well-established in the Bitcoin
network. The real challenge would be detecting and eradicating covert channels
currently in place. Due to the nature of Bitcoin and how anonymous each transaction
is, it would be more difficult than a traditional network to detect a covert channel
in place. Research in this area would be finding ways to determine patterns in
blockchain transactions in order to detect possible storage or timing channels in
the blockchain network.

Neural networks and machine learning techniques can be used to determine
typical covert channel patterns and then implemented on computer systems to
automatically flag potential covert channels. Work on this concept was introduced
by Shrestha et al. [17] to automatically detect timing channels, but this idea may be
extended to include storage channels.
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8 Conclusion

Covert channels are an effective means to send information undetected. They have
widespread use throughout the Internet and can be used in a variety of ways. As
more and more technologies are introduced, the need to understand how covert
channels operate is important in order to prevent information from being stolen in
these new technologies.

This chapter introduced covert channels and how they are traditionally imple-
mented. We then showcased a model for a timing and storage channel in Android-
based IoT systems that work on real and current implementations. We conclude
this chapter with discussing where future trends in covert channel development and
prevention are headed.
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Insider Threat Detection: Machine
Learning Way

Mehul S. Raval, Ratnik Gandhi, and Sanjay Chaudhary

Abstract The chapter aims to cover and analyse contributions from machine
learning to detect an insider threat. It presents various launch mechanisms and
details impact of an insider attack on various sectors. Presenting state-of-the-art
for detecting insider threat based on psychology, criminology and game theory, the
chapter also covers case studies showing use of Machine Learning for anomaly
detection. In real life, malicious events are low in number. The chapter will
showcase detection of such a low occurring anomaly from a large dataset accurately.
The chapter specifically focuses on USB device insertion or removal event and
apply linear regression followed by Cook’s and Mahalanobis distance to identify
malicious activities of the user. Subsequently, it applies Neural Network and Support
Vector Machine to login activities of a user to successfully demonstrates detection
of an anomaly behaviour. It concludes discussing future directions that uses
combination of methods from natural language processing, behavioural analysis,
sentiment analysis, and machine learning for insider threat detection.

1 Introduction

Identification of an adversary is one of the fundamental questions in cybersecurity,
which is hard to solve. In today’s technological era the boundary between “friend”
and “rival” is growing fuzzier. The world is separated by borders, but the Internet
is diminishing boundaries. Attacks on individuals, organizations, Governments can
be planted anywhere on the Internet and executed to cause harm of unprecedented
scale. This demands knowledge of various types of attacks, their execution and scale
of their impact. The following subsections defines the insider attack, most common
mechanism for its launch and sectors which are impacted by this attack.
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1.1 Attack, Launch and Impact

Usually, attacks which are hidden and persisting for a long time, are most damaging.
Such attacks gradually bleed social, financial, and political infrastructure. On a
large scale, a country’s general election can be rigged [29], or a referendum can be
manipulated. On a smaller scale, an attacker can influence an outcome of a tender
process of a company [8]. Generally, databases of various systems or organisations
are one of the most important IT assets. This makes them one of the most vulnerable
points for an insider attack. The other vulnerable points are file servers, mobile
devices, endpoint devices, business applications and network. Customer identity
data is the most targeted entity followed by sensitive financial data, intellectual
property and company’s data. The type of tactics used by perpetrators to break
through are as follows [8]: (1) hacking; (2) use of malware; (3) through stolen or
weak password; (4) snooping during social events; (5) physical harm.

Most organizations and Governments build a defense against the outside actors
but worry little about an “insider threat”. The access authorization and the user being
insider/outsider is defined by the organization. Typically, behaviour of these persons
is to cause harm to people, system, data, organization, and business. The other form
of insider threat [31] including activities of non-malicious actors: there are careless
and naïve users causing an accidental security breach. It occurs when organization
for which they work has not clearly communicated IT policies. The second category
includes users who deliberately ignore the IT policy. The last category of users, will
deliberately breach and cause willful harm. The chapter will focus on a malicious
and willful insider. Formally, insider and insider threat are defined as follows [7,
31]:

Insider Personnel with an authorized access to resources and data of an organiza-
tion.

Insider threat It’s an action by an insider to harm and place organization or its
resources at risk.

Insiders collude and organize crimes with multiple insiders in different sections
of organization(s). They bypass the security processes and remain undetected. Such
users/persons are categorized as active [37] insiders. An insider may masquerade
and cause physical damage [5]. There could be a passive insider [37] who would
provide only information. However, insiders tend to remain hidden and use deceit
for activities. In most cases insider targeted the following [2]:

• stealing information for identity theft;
• modifying credit-worthiness to give higher credit score;
• creating fake credentials.

Insiders primarily copies or modifies customer data during working hours. They
use authorized access to bypass integrity checks for copying, modifying or deleting
data. The methods used by insiders to cause a breach are as follows:
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1. Use social engineering to obtain credentials or password, e.g., after leaving
organization to convince ex-colleague(s) to run a search on the database(s) to
collect information. This can be used to perform insider trading for some other
company.

2. Authorized use of systems e.g., an insider working for a bank steals record and
sells it to conspirators.

3. Bypass security procedures laid out by organization e.g., in accounts section of a
company two persons collude to issue a pay-cheque.

4. Compromise accounts e.g., an insider working for a bank modifies customer
account in exchange for money.

5. The endpoint devices used in IT infrastructure is reported to be the most favoured
tool to launch an insider attack [30]. This choice is followed by use of mobile
devices and network to launch insider attacks.

According to a report [1], 1.4 billion data records have been compromised in
2016. It is an increase of 86% compared to 2015. In the same year, Yahoo! reported
breach of 1.5 billion users account. The leading data breach is through identity theft
followed by account access-based breach [1]. The trend is to attack large datasets
with personally identifiable information (PII) and 25% of such data breach is due to
inside actors [8]. In a study [2], 24 instances of breach due to insiders were covered.
It reported two types of insider criminal activity with losses running into several
million dollars:

• Insider colluding with external agency or groups.
• Multiple insiders in an organization form group and participate in unlawful

activities.

In a damaging case, an insider stole $48 million from city tax office over a
period of two decades [2]. In another case, a manager at motor vehicles department
caused a loss of a quarter million dollars [2]. A software engineer was arrested
with thousands of technical documents and was convicted of stealing trade secrets
[32]. There are reports of insider selling social security number (SSN) records at
$15–$20 per record [2]. Another paper [3] showed that insider can potentially steal
million data records from a credit card, insurance, or healthcare company. Quoting
US Justice Department survey, authors in [4] reported that high percentage of cyber-
incidents are due to insiders. The CERT division at Carnegie Mellon University [5]
maintains a summary of various reports and [6] covers more than 1000 insider cases
and describes a practice that organization may undertake to prevent and detect an
insider threat.

Top industries impacted by insider threat are public healthcare, finance, retail
and accommodation [8]. Malicious insider attack includes IT sabotage [7], i.e., use
of organization’s information systems to cause harm; theft of intellectual properties
(IP); fraud by using IT infrastructure for illegal modification of data for personal
gain or cause identity threat. It has been reported in [2] that most insiders committed
a crime for financial gains. In fact, the crime involving insider holding a managerial
position went off for the longer duration and scale of losses were larger. One
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can study an interesting case of insider attack in bank Société Générale causing
a trading loss of $7 billion [33, 34]. Among other charges, the trader was convicted
for illegal access to bank computers. The trader joined the bank in the year 2000
and was promoted in the year 2005. According to bank reports, fictitious trading
began in late 2006 and early 2007 with small transactions. The reports indicated
that trader managed to remain undetected for 2 years using the trading knowledge
gained earlier. The trader was a technologist [33] and managed to stay below bank
surveillance radar.

The insider attack industry survey [30] has following important findings and it
reaffirms some of the above discussion:

1. Personnel with access to sensitive data e.g., IT admin, poses the biggest threat
followed by threats from contractors or consultants and regular employees.

2. It was observed that insider attacks have increased in last year i.e., 2017.
3. The remediation cost from insider attack is also increasing and it is also difficult

to quantify such cost.

Some of the broad findings on illicit insider activities in US financial sectors
covering 80 cases are as follows [9]:

1. “Low and slow” mode cause the most damage and took a long time to detect.
On an average, the start of the fraud took place after 5 years of employment
and it took 32 months for the organization to detect it. The early detection has
minimized actual impact.

2. The means employed for attack are not very sophisticated. Very few subjects had
a high technical role or conducted fraud using specialized means. In many cases,
insider used authorized to access and used non-technical means to bypass set
process.

3. Fraud caused by managers ($200,105 on average) is more damaging and longer
as compared to non-managers ($112,188 on average). The attacks by higher
echelon organization lasted twice as long compared to non-managers. The
accountants were most damaging and were caught after many months.

4. Most cases came into limelight due to audit, complaint by customer or suspicion
from the team member.

5. Very few cases used software and logs to detect insider activity.
6. Personally-identifiable information was the prime target for insider attacks.

The above discussions showcased the gravity of the situation when an attack is
launched by an insider. It would be interesting to study motivation for an insider to
launch an attack against their own organisation.

1.2 Motivations for Attacks

Motivation represents gains made by insider through an attack and it could be
internally or externally induced. Some of the primary and secondary factors driving
motivations are [38]: money, divided loyalties, revenge, disgruntlement, coercion,
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thrill and recognition. A report [30], listed broad motivations for an insider to
subvert an organization are: (1) monetization of sensitive data; (2) fraud and
sabotage; (3) IP theft and espionage [39]. The subversion happens when individuals
and organization goals are misaligned. Certain strata of people in the organization
will then follow their own interest.

In recent years, there is a significant change in the relationship between an
organization and individuals. A couple of decades back one would enter an
organization and serve for many years. That mindset, in today’s era, is gone and both
the organization and individuals focus on high short-term gains. The motivation for
subversive activities has been classified into three categories [35, 36], namely; (1)
political; (2) greed; (3) anger. The political reasons are often overlooked but they are
a major cause of concern [36]. Some of the political reasons are [35]: (1) user feels a
threat to their jobs; (2) there is a change of management and working conditions; (3)
dislike towards the control and leadership; (4) fear of losing importance in a group
and the organization. An interesting article discussed political reasons for a software
project to fail [34]. It has been argued that software projects are fragile and heavily
influenced by a subversive behaviour.

The second motivation is greed; it can range from taking printer pages, stationary
to pilfering the data. The third motivation is anger towards the organization. The
previous two could be driven by the latter. Anger can also lead to an act of vandalism
and causing physical harm to resources. This can also happen after termination
of the employee. An organization must utilize not only technological means but
also use intangible factors like behaviour, psychology, language, culture, history to
thwart insider.

1.3 Dimensions of Understand Insider Risk

The four dimensions to understand risk due to insider threat are [31]: (1) The
organization; (2) The IT system; (3) The individual; (4) The environment. The
organization is at the centre as it sets the procedure and grants access rights to
employees. This governs boundaries to decide which actors should be treated as
insiders and types of access to them. The organization also lays security policies
which can be used to trigger ambiguous behaviours. This helps to define subversive
actions. Most importantly organization defines a culture which impacts a great deal
of insider’s behaviour. In case of the IT system, centralized computing structure
benefits as it is less risky. Its restricted scope limits number of people accessing
the IT system. However, such a structure is extremely restrictive in ubiquitous
computing era. Every employee in the organization should have multiple endpoint
devices that are hooked to the IT system. This has enlarged scope of IT system and
it now serves a large set of people with different privileges. As discussed in [31], the
risk of insider threat varies depending on the role of the IT system.

An insider with a malicious intention has received significant attention from the
research community. A personality style of an employee can also be a behavioural
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indicator of a malicious user [40]. These styles do not mean absolute malevolent
attitude, but they may provide a potential pointer. Some personality style discussed
in [40] are self-centered, arrogant, manipulative, cold, grandiose, self-deception,
and defensive. It has been shown by researchers that non-malicious actors can also
cause harm to the organization. However, the intent plays the most important role
in deciding response to an insider action. A malicious actor should be severely
reprimanded and non-malicious one should be dealt in an appropriate manner. This
means that the organization policy must be flexible to deal with different flavours of
insiders.

The environment is very intangible, and it is governed by society, culture, ethics,
rules, and law of the land. The conservative environment increases the chance of
insider action. A value system in an organization and individuals is shaped by
the environment in which they live; e.g., views towards anti-piracy varies across
countries. The alienation of organization policy from the norms observed by the law
or prevailing in societal practice may increase the risk of insider threat.

1.4 Contribution of the Chapter

The chapter proposes to use Machine Learning (ML) for an insider threat detection.
It highlights that an insider threat detection needs inputs from technical as well as
social sciences. It covers existing protective mechanism in place to defend against
insider threats. Various insider threat models i.e., agent-based, game theoretic,
system dynamics, Bayesian network and network analysis are discussed through
state-of-the-art review.

In real life, malicious events are rarely reported and to top it up they are low
in number. Therefore, the chapter uses CERT dataset and presents a case study
for detection of the malicious insider. The goal is to accurately detect USB device
insertion or removal anomaly from a large dataset. One can identify insider threat
by learning normal or baseline behaviour to segregate anomaly. The chapter covers
three different approaches for the anomaly detection:

1. Use of linear regression and distance measures (Cook’s and Mahalanobis).
2. Four-layer Artificial Neural Network (ANN).
3. Support Vector Machine (SVM) with different kernels.

It culminates with future directions that suggest combination of methods from
natural language processing, behavioural analysis, sentiment analysis and machine
learning for insider threat detection.
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1.5 Chapter Organization

The chapter is organized as follows: Sect. 2.2: existing defence mechanism in place
by the organization, Sect. 2.3: approaches for insider threat detection with the focus
on approaches using machine learning for anomaly detection. Sect. 2.4, covers the
case study on CERT dataset and use of Linear Regression, ANN, and SVM for
insider detection. Discussions and conclusions are finally drawn in Sect. 2.5.

2 The Defence Against Insider Threat

It is necessary to address threat, vulnerabilities, and consequences of security risks
as they are important to understanding insider threat. The goal for any insider threat
research should be, to have effective detection, prevention, mitigation, punishment
and remediation. The commonly used defensive means against Insider threat is
covered in this section. Many protective mechanisms are placed by an organization
to defend against insider threat. Some of the commonly employed means are as
follows [37]:

• employee screening by Human Resource (HR) department;
• activity monitoring and auditing;
• security processes like physical security, material and device control, counterin-

telligence;
• hard and soft access controls;
• create an organizational policy for dealing with insider threat;
• provide training to users.

The devices and infrastructure used for information consumption have dra-
matically changed over years. However, the defence mechanisms have not kept
pace with these changes, e.g., it is believed that securing the network periphery
or by controlling devices will protect the network. The structure and policy of
an organization are treated as static entities while their surroundings are rapidly
changing. A single click by a user or plugging a bad USB stick can trigger malware
attack. The technology is becoming personal and this means that attacks can be
more personalized. Current security mechanisms are static, and they must evolve
and deliver at the level of personal security as well [36]. The bottom line is that
human in the loop is the key. The growing number of insider attacks is an indicator
that the current protection techniques are expensive, interfering, and they are not
working. It is important to consider a systemic approach which is more holistic [37].
It is important that along with technical angle, the system must influence insider’s
individualities.
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2.1 Policies and Procedures for Negative Work-Related Events

After an attack(s) it is also important to find the perpetrator(s), what damage has
been done, what was the motive. These are difficult questions to answer. The
organizations can store and process data during impact. Based on learning, one can
design strategies and policy to minimize the impact of attacks. The studies [7, 9]
indicate that management must evolve a policy to deal with ‘negative work-related
event’. They further recommend laying down procedures for account management,
password policy, checking system admins, tracking system integrity, providing
remote access, reviewing system logs and disaster recovery plans. The modern-day
recovery should be a good mix of technical and psychological component [37]. In
another interesting study [38] on insider threat made the following observations
about behavioural traits of an insider or a saboteur:

1. They act in a peculiar way during stress.
2. Their behaviour changes during the subversive event.
3. They may violate rules before the onset of an attack.
4. Most often organization fails to observe the signs of acting out.

2.2 Multimodal Approach for Insider Detection

The studies [7, 9, 38] recommends that early detection of an insider attack or its
occurrence can be negated with the comprehensive participation of every stake-
holder i.e., management, employees, IT team, HR team, and security personnel.
Resorting to the only technical solution has limitations. Detection, response, IT
and organization’s de jure and de facto policies and procedures play a very
important role in preventing insider attack. Many organizations also provide security
awareness training to their employees. It had been observed that many threats are
detected by employees of the organization [9, 30]. The training creates a community
which is aware of events; both within and outside an organization. It can prevent
insider attacks and protect employees. In case of very high stakes, an outsider would
need cooperation from employees. Some aware employees can maximize deterrence
against a malicious insider.

There are several organizations involved in understanding insider threat
such as Pacific Northwest National Laboratory (PNNL), Carnegie Mellon
University/Software engineering institute (CERT) program, US air force research
laboratory [42]. The researchers are working on to develop cognitive workshops
and game-based training for carrying out relevant experiments. There are projects
dedicated to cyber and behavioural modeling to predict malicious insider activities.
The CERT program does a comprehensive study on cybercrime in US infrastructure
and communicates results to Government, Industry, and public at large.
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3 Approaches in Insider Detection

The section covers various approaches for insider detection. It covers modelling-
based approaches and discuss insider threat as anomaly detection through log
analysis. An example is provided for understanding of the reader. The section then
weaves through different approaches for insider detection and the organization is
shown in Fig. 6.

The modelling-based approaches [68, 70, 75] for insider threat detection can be
classified as follows and shown in Fig. 1.

Early methods took a sequential approach to deal with insider threat [41]. The
protection begins by excluding the potential adversaries, limiting their access and
their need to know things. In case an adversary penetrates, the approach is focused
on detecting, delaying and then responding to malicious attempts. In case adversary
launches a successful attack, the strategy is to minimize the loss. The block diagram
in Fig. 2 shows a sequential approach in [41].

3.1 Systemic View for Insider Threat Detection

In sequential approach, each phase operates independently, i.e., in a piecewise mode
and it has a varying degree of effectiveness. The systemic view in insider defence
is missing and the approach [41] does not throw light on the interactions between
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each block. It is important to understand interaction and interdependencies between
all the stakeholders for effective insider threat mitigation. The employee life cycle
model based on system dynamics is also developed for minimizing insider threat
[37]. It models the evolution of insider within an organization. Based on the need
to know bases the information access model is developed to legitimize access to
the employees. It also models how a malicious insider may attempt to get an
access to information. The employee life cycle model enacts different scenarios
based on system parameters and compares it with baseline scenarios. It investigates
interactions between employee population and protection measures in the system.
This helps to understand existing lacunae and therefore, modulates system to
strengthen it. The results generated by model [37] are based on hypothetical data
and does not reflect the real-world situation.

One must note that the authentic data indicating scope and impact of the insider
threat is difficult to obtain. Usually, correct information is never revealed by the
organization due to fear of losing reputation. On the other hand, large data volume
is utmost important to build strong models with accurate predictions.

3.2 Insider Threat Detection as an Anomaly Detection

This chapter is focused on machine learning to thwart insider threat using anomaly
detection. One can identify insider threat by learning normal or baseline behaviour
to segregate anomaly. One can study how users access the data and identify
suspicious behaviour by machine learning. The identification mechanism at data
access point provides a good chance of insider threat detection. It is important to
look at both, the users and the way they access information. The common abuse
which should be flagged may include; account abuse e.g., using superuser account;
direct access to sensitive data; excessive database access in comparison to normal
behaviour or excessive use of network resources for file transfers; repeated failed
logins to many database or systems; user login through another corporate account.

3.2.1 Log Analysis

Log analysis is used for automatic monitoring of big-data generated in the cloud
or servers. It is an integral part of forensics which is done with different goals;
i.e., establishing evidence for crime; data recovery from server crash; detecting
network vulnerability; finding and tracking activities of an insider [71]. It can
be used for forensic analysis or as preventive measure [72]. It is important to
use appropriate logs based on the event under investigation and a strong analysis
improves the chances of detecting an insider threat [73]. Usually a log management
is achieved through: (1) Log analysis; (2) Event correlation. Latter requires former
to filter unwanted data and execute the actions. It is important to discover cause
of an event and find evidence to prove them. The event correlation analyses
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individual information chunk and filter events. It compresses large batch of data
into manageable alarms for system or security analyst. Figure 3 shows a typical
system architecture for log management.

An event is usually the action identified a system program. Complexity of event
varies depending on number of clients in the network. The log collection unit
collects data from clients and it paints a complete picture of the system state to an
administrator(s). Usually, a basic unit is log file with security and system logs. The
log analysis may use a rule or pattern based for recognizing input event type. It may
also define scope for event correlation unit which is used to extract knowledge from
the information. It decides correlation amongst different events to choose malicious
events like insertion of Universal Serial Bus (USB) stick at odd working hours,
rebooting of server, network tunnelling request.

Figure 4 reflects popular Machine Learning approaches used for an insider threat
detection. The basic algorithms are divided into supervised and unsupervised form
of learning. The early example and case-study covered in this chapter focuses on
supervised learning with Artificial Neural Network (ANN) and Support Vector
Machine (SVM).

The chapter present an early example of anomaly detection to understand some of
the assertions about insider threat detection. The later sections deal with exhaustive
state-of-the-art reviews and detailed case studies on anomaly detection.

3.3 Early Example

There have been several studies that characterize server log data as time series
data and present various algorithms for anomaly detection [23–27]. For example,
if the model is applied to network traffic to identify attacks like Denial of Services
(DoS), these techniques must then observe potential attacks through logs. The traffic
profile can be characterized by parameters such as IP packages, new connections
etc. Below, is an example of outlier or anomaly detection on time series data on
Yahoo’s benchmark dataset [28]. First, linear regression on the data is applied and
then statistical methods such as Cook’s distance [73] and Mahalanobis distance [74]
are used to identify anomalies. Note that points with large Cook’s distance have a
larger effect on the trend of the data thus can be termed as an outlier if the value
is above the threshold (usually chosen 4/n, where n is the number of points in the
dataset).
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Cook’s distance of data i is given by

∑n
j=1

(
yj − yj (i)

)2

p· MSE
(1)

where, yj is the jth response, yj(i) is the jth response without considering i, MSE is
mean squared error, p is number of coefficients in regression model.

Mahalonobis distance of data Zi in the matrix Z = [XY] is given by

√

(Zi − μ) S−1 (Zi − μ) (2)

where, X and Y are vectors of observed dataset, μ is mean of data points and S is
the covariance matrix.

S =
[

cov (X,X) con (X, Y )

cov (Y,X) cov (Y, Y )

]

(3)

It is clear from Fig. 5b, c that there are less black coloured data points in 5b
compared to 5c. This means the Cook’s distance can detect most outliers (in fact
more than Mahalanobis distance) given in benchmark information. In other words,
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Fig. 5 (a) Yahoo time series benchmark dataset with marked data and anomaly points; (b)
Cook’s distance and Mahalanobis distance of Data; (c) Outliers – True and False positive (green),
Benchmark positive (Black) and both positive (Red)
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Cook’s distance is essentially not missing any malicious activities. On the other
hand, there are more green points in 5b compared to 5c and thus there are many
more false alarms of malicious activities in Cook’s distance approach.

The machine learning for an insider threat detection is covered exhaustively in
next few subsections. The organization of literature review is shown in Fig. 6.
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3.4 Anomaly Detection Using Supervised Learning

Current systems are unable to detect intrusions hidden in an encrypted payload
with non-intrusive means. The paper [44] considers the problem of intrusion and
extrusion detection at the network layer in the encrypted environment over the
Internet. The motivation comes from the fact that knowledge-based systems are
unable to detect attacks on encrypted payloads and behavioural systems suffer from
high false alarm rates. Thus, both fail to detect such intrusions. The authors proposed
a new architecture of intrusion/extrusion detection system that uses similarity
between data in the form of correlations and identifies malicious activities. As the
system uses only correlations to identify variations from standard behaviour it does
not require a prior learning.

The authors [45] addresses the problem of insider threat using various monitoring
and auditing techniques. The work proposes an architecture for handling insider
threat, which had three components: decoy document-generation, network, and
host-based sensor. The decoy component increases uncertainty during authentica-
tion of documents. The network component in conjunction with the decoy is used to
trap malicious user and isolate their activities. Finally, the host-based sensor senses
malicious activities by auditing user activities. The user of anomaly detection is
carried out primarily at host-based level.

The paper [46] proposes a scheme called RADISH (Real-time Anomaly Detec-
tion in Streaming Heterogeneity). They use real-time streaming data analytics and
machine-learning techniques for identifying normal vs. malicious activities of users.
Method primarily uses correlations among multi-stream of data for identifying
baseline vs. malicious behaviour. The architecture is multitier, open and offers
incremental development of models to perform predictive analytics. The authors
show experimental results using K-Nearest neighbour (KNN) for detecting an
anomaly in user behaviour. They perform experiments on the r2 dataset of CERT.

The paper [47] focuses on human bio signals and studies balance in access
control intent vs. identity for finding malicious activities of users. As knowledge
about intent does not translate to exact risk, it is difficult to identify nature of risk
in systems. The authors use intent likelihood of the malicious activity execution
using brain signal amplitude and categorize activities at various risk levels. For this,
they use visual stimulus and perform involuntary electroencephalogram. Intent and
intent motivation levels then give information about anomalies against the baseline
brain amplitude signals. As one of the significant departure from others, the work
capitalizes on the non-identity based measures for detecting malicious activities.
The authors also show experiments of their proposed system for 30 real users.

In another approach based on supervised outlier detection, the authors [16] adapt
external threat models for insider attacks. They track user activity at all levels of
the operating system (OS). The authors adapt method for external threat and tightly
integrated them with OS kernel. One must note that the work identifies anomalous
records and not the users. The authors [16] identify 7 types of system exploits like;
privilege_escalation, removable_media, export_via_email, change_file_extension,
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encipher-decipher operation, unusual search and malware_installation. They use
n-grams, histograms and parameter-based approaches to detect insider threat by
supervised outlier detection. The Hamming distance is used on the validation set
to find records at a kth greatest distance. The presented results show that n-gram
approach does perform well compared to histogram-based approach.

3.4.1 Anomaly Detection Using Deep Neural Networks

An organization’s network activity monitoring is also useful for insider threat
mitigation. However, volume, velocity, and veracity of data can overwhelm a human
observer. The deep learning models scale the analytical capabilities of humans.
The authors [18, 19] propose an online deep learning based unsupervised approach
to detect an anomaly in network activity from the system logs. It was developed
with an aim to help analyst quickly filter through large data volume. The approach
decomposes scores into a contribution from individual behaviour features for better
analytics. The approaches do not model insider threat behaviour explicitly as it can
vary widely. The user activity may vary widely from few seconds to an hour and
therefore, quantification of normal behaviour is very difficult. Also, an attacker aims
to mimic the normal behaviour.

The authors [18, 19] train Deep Neural Network (DNN) and Recurrent Neural
Network (RNN) for malicious activity detection. The authors claimed that time
and space complexity of the method are constant functions of stream duration
and cache is not infinitely long. The model was trained continuously and adapted
to changing pattern. The stream of system log was modelled as interleaved user
sequences with metadata. This provides the exact context for an activity on the
network. The decisions are made as soon as new data enter the system. In one of
the earliest attempts authors [20] trained a single layer neural network to detect
intrusion detection. The work [21] is based on RNN to train on Unix command line
arguments and predict intrusion. Recently authors in [22] used auto-encoders for
online learning setting. An ensemble of anomaly detection methods is fed with logs
from web, firewall, and the authors also incorporated analyst feedback.

3.5 Unsupervised Approach for Anomaly Detection

The work [48] focused on the collaborative information system and detection
of insider threat. The authors proposed Community Anomaly Detection System
(CADS) for detecting the malicious behaviour of users. The method is unsupervised
learning approach and uses access logs for identifying threats. The core idea is
to design two components (1) relation pattern extractions: for identifying formed
communities in the given user pool and (2) anomaly prediction: use statistical
methods for identifying a deviation in user behaviour against a pool. The work
also performs experiments on 3 months access logs from real electronic healthcare
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records and show improvement in accuracy with the proposed system. The work
[49] was focused on the use of human behaviour parameters (e.g., system logins)
as indicators for identifying malicious or non-malicious users. They use regression
and correlation for predicting time windows for malicious activities and confirm
their observations with experiments on CERT dataset.

3.6 Anomaly Detection Using Game Theoretic Approaches

Game theoretic approaches are becoming popular to model insider threat detection.
Game theory is “the study of mathematical models of conflict and cooperation
between intelligent rational decisions makers” [69]. It can be used to model
behavioural relations and logical decision making in humans and computers. The
decision maker must anticipate the response of those affected.

3.6.1 Behavioural Relations and Game Theory

Authors in [10] developed Behavioural Analysis of Insider Threat (BAIT) frame-
work to identify insider threat using behavioural cues. It used bootstrapped algo-
rithms to separate honest and normal users from anomalous users. Their model
considers the following conditions; training dataset is imbalanced, the size of
training data is very small, the attacks are carried out by humans’ independent of
past attacks, and attacks are happening along the normal behaviour. The authors
used 35 round game and recruited users on Amazon Mechanical Turk. They
proposed a suite of seven algorithms based on Support Vector Machine (SVM) and
Multinomial Naive Bayes. The authors used linear kernels, polynomial kernels, and
Radial Basis Function (RBF) kernels and used cross-validation during testing. Series
of features were developed for training and validation. Some of their interesting
observations are: malicious users are likely to be more active, they fetch significantly
more sensitive information and send more data out of the organization, they fetch
significantly less unclassified data. However, some of the hypothesis could not be
validated statistically.

The work [57] presented a case study of an insider cyber-threat about a long-
term fraud. It also presented a simulation model to support the case study. They
examined the motives and trade-offs that organizations make in considering their
internal security systems. Their perspective places a counterbalance on the literature
that studies organizations and insider play a zero-sum game and thus motivating
investment in security.

The works [58–59] considered human behaviour and discuss game-theoretic
models. Authors [58] presented a game-theoretic agent model that can be used for
bargaining or negotiations, while the latter result [59] discusses uses of game theory
to model bounded rationality and various risk attitudes. The authors used cognitive
theories (coordination games) and machine learning model for predicting human
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behaviour and presented their results. The work in [59] also discusses that in real-life
behaviour, most people do not follow strict rationality and thus only game-theoretic
models are insufficient for modelling human behaviour – they suggested the use of
hybrid models.

The paper [60] talked about human adversaries with bounded rationality. They
used game theory to model adversarial decision making and apply optimization
techniques for avoiding adversarial actions. The paper defined a subjective utility
function and through experiments with 547 human subjects showed that human
behaviour can be modelled accurately with Stackelberg security games. They further
showed their experiments with security intelligence expert and observed that their
algorithm for modelling human behaviour outperforms existing other approaches.

3.6.2 Zero Sum Stochastic Game

The set of works [52–55] present models for analysing the security problem
from the perspective of Game Theory. Most of these works considered bounded
rationality of the players and computed Quantal Response Equilibrium. The work
[56] models the insider threat scenario as an “insider game” – a two players zero-
sum stochastic game between the insider malicious user and system administrator.
The models allowed inferring the strategy by an insider and decided the best
counter move strategy for defence. The paper described a simplistic two players
zero-sum stochastic game and compute Nash equilibrium strategy using non-linear
programming. As a Nash equilibrium defines an optimal strategy of the players –
an equilibrium outcome of the game means the insider will play the best strategy
against a defender while the defending administrator will also opt for a best defence
strategy given insiders optimal strategy. The authors suggested that the game will be
in equilibrium and an insider will not be able to take any further malicious action.

3.6.3 Utility Functions and Equilibrium

Interesting results [61, 62] modelled interaction between an insider and Intru-
sion Detection System (IDS) as an extensive form game which uses Neumann-
Morgenstern utility function. The paper focused on Quantal Response Equilibrium
(QRE) as the players in these games displayed bounded rationality. With the use of
QRE, authors predicted behaviour of players in the game and suggested actions by
IDS to protect the system. The paper proposed a detailed model for the proposed
system. An important difference between [61, 62] being latter focused more on
algorithm design for efficient computation of equilibrium solution using cutting-
plane algorithms. The paper considers modelling of malicious user with game
theory and information fusion-based algorithms. The paper [63] builds dynamic
Bayesian network model for considering multiple information of user behaviour
and avoids the use of IDS. Their model fused multiple information using junction
tree algorithm. The game is modelled based on this information and a QRE
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equilibrium is considered as a solution. The authors further perform experiments
and showed improved equilibrium convergence with high precision (at an added
cost of computation time).

3.7 Anomaly Detection Using Behaviour, Psychology,
Criminology and User Profiling

Detecting a malicious insider using machine learning is very challenging due to
following reasons [10]. The number of detected malicious insider is very small
as compared to honest users. Hence this produces imbalanced data set which
may generate biased results in favour of majority i.e., non-malicious users. The
public domain also does not have exhaustive testing and training dataset. Malicious
users are synthetically generated based on the past attacks for improving datasets.
There is no comprehensive study which targets behaviour of the potential insider.
The user activity is also very unpredictable in terms of time variation. Several
interesting theories from social science, behavioural analysis, and criminology are
presented to map behaviour of an insider in [50]. Some of the specific interesting
theories are general deterrence theory; social bond theory, social learning theory;
theory of planned behaviour; situational crime prevention. They are relevant to an
organization planning to build threat prevention mechanism.

3.7.1 Anomaly Detection Using Behavioural Analysis

Authors [11] presented a monitoring tool for file and directory location, file content
analysis and file integrity check. The file and directory location would point to
misuse of the server by looking at the placement of file in specific type of directory.
The content analysis points to the specific signature of a worm or a virus and
integrity check helps to detect the compromised target. The authors also developed
an Evaluated Potential Threat (EPT) metric to characterize user behaviour. In [12]
insider threat security architecture (ITSA) had been presented. The paper carried a
hypothetical example of a database admin of an insurance company who went rogue.
The threat agent is aiming at stealing money from the company. A bogus claim
of $100 K was inserted in the database but security policy auditing prevented the
payment. The administrator reduces a claim by $1–$ 99,999 and deletes all traces
of manipulation for logs. The ITSA framework has a security alarm to capture such
malicious behaviour and it alerts authority about administrator’s action.

The authors [13] defined insider threats and presented approaches for threat
mitigation using technology, sociology or their combination. They concluded that
single strategy to mitigate threat will not work and the combination of techniques is
required. Authors in [14] used access control strategies to prevent insider attack. The
implementation of access control poses a significant challenge for the organization
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in service sector like finance, healthcare. The access control interferes with routine
activities of users. The authors concluded that prevention can minimize risk as the
size of attack’s space is reduced.

3.7.2 Deterrence and Social Bond Theory

The general deterrence theory of criminology [64] suggests that people make choice
based on the perceived benefit weighted against the associated cost. The choice is
independent of work to be done for achieving objectives. The focus on deterrence
can be brought in by education and outreach activities within the organization to all
the stakeholders. Specifically, the penalties and cost associated with misuse could
be highlighted. This step is subsequently followed by prevention, detection, and
remedial steps. The social bond theory [65] suggests that the probability of insider
misusing the system depends on social bonds with associates. A person is more
likely to cause harm if associates have criminal outlook and antisocial behaviour.
This can be captured by observing person’s interest and interaction with the social
environment. For example, working with colleagues, types of projects in which
person is associated, commitment to excellence, spending time with family and so
on.

3.7.3 Social and Crime Prevention Theories

The social learning theory is also like social bond theory and suggests that person
is more likely to commit a crime if he or she remains associated with a criminal.
The theory of planned behaviour [66] differentiates intentions for insider crime and
its execution. The intentions represent formulation phase which is shaped by the
perception of others on the action. The prevailing social norms may inhibit certain
actions, or they may also support the action. There are also control factors which
checks whether a person has a belief to control behaviour and goal realization.
During the execution phase, the insider will wait for the opportunity to strike based
on intentions. Situational crime prevention theory [67] suggests that insider crime
can occur when a person has a strong motive and opportunity. The crime prevention
can be achieved by either denying opportunity to a malicious user or killing the
motive for a crime. The state-of-the-art discussed in this section is based on learning
from the above theories.

Authors in [15] combined psychology and computational approach using
Bayesian nets to conquer insider threat. They used 12 signals; disgruntlement,
accepting criticism, anger management, disengagement, disregard for authority,
performance, stress, confrontational behaviour, personal issues, self-centeredness,
lack of dependability, and absenteeism to detect trace of insider. One may note
that each of these 12 indicators are not a good measure individually, but their
combination can be a good indicator of future events. The authors used artificial
neural network with above indicators to develop the models and the results are
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validated by two human experts. The work used synthetic data for 100 employees
and injected ‘threat agents’. The experiments gave a fairly good performance
with ability to work with missing values. However, several questions remained
unanswered; like, value of 12 indicators for each user; source of data for such
indicators was not revealed; the experiments were done using synthetic dataset
which may not scale to real world.

3.7.4 Job and Role-Based User Profiling

The work [43] addresses the problem of insider threat to organizations by proposing
an automated system. One of the important contributions of this work is the
proposal of a job and role-based profiling of users. The authors proposed tree
structured profile for jobs, roles of users and compared with their activities during
the period. The paper proposed feature extraction technique (Principle Component
Analysis) for identifying important information from user activities. These activities
are compared for deviations which are further assessed on variance over multiple
attributes; e.g., against peers to identify malicious activities. The paper also details
the architecture of insider threat detection system and presents their experiments
over synthetic data. As the system identifies anomalous behaviour based on
comparison with peers’ activities it cannot identify malicious behaviour due to
collusion.

In [17] system focused on insider detection based on a violation of access
privilege (“need to know”) by a user. Usually, user at each level has associated
rights and privileges. It may also have clearance to view some other level e.g.,
secret or top_secret. The authors [17] also discussed an interesting case of an FBI
analyst who was arrested for downloading and printing information about a country
for which he had “no need to know”. The Wikileaks episode is also an example
of such privilege misuse. The approach is based on the principle that user should
look at information which they need to know without going out and snooping for
data. The ELICIT system was tested on an intranet with four thousand users for a
year. The ethical hacker team generated synthetic insiders on basis of attacks by
real-world spies and achieved good results. The system used three important steps:
data collection using information units; anomaly detection; Bayesian ranking which
amalgamates 76 different type of activity for each user. The 76 detectors used rules,
parametric and nonparametric density estimation for sensing anomaly. The alerts
are fused to generate a single score using 3 layers Bayesian ranking network. The
authors focused on browsing, searching, downloading, and printing activities of a
user.

The ELICIT system [17] suffered from few problems; (1) training and validation
data set are identical; the past behaviour can be captured very well but it is unable
to detect unknown new behaviour; hardcoding of past behaviour is requiredinto the
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detectors. The ELICIT team conducted additional experiments with management,
administrative and technical staff [51]. The participants were randomly assigned
role as a benign user or malicious user. The role described a person in financial
turmoil and must deliver the most valuable information for personal gains. The
benign user is given an opportunity to participate with high profile team and it was
suggested that excellent performance yields promotion and pay hike. The malicious
user was given an opportunity for a new job on a precondition that user will
fetch important information from the previous employer. The team monitored the
participant activities and it revealed significant patterns in malicious behaviour.

4 Case Studies on Insider Threat Defence Mechanism Based
on Machine Learning

This section is dedicated to cover the case studies for an insider threat detection. It is
well known that occurrence rate for anomaly is very low and therefore the challenge
is to detect it accurately in a large dataset. The examples in this section focus on
USB device insertion or removal event. The first use-case apply linear regression
and then apply Cook’s and Mahalanobis distance measures to identify malicious
activities of the user. Next, the section covers application of ANN and SVM to login
for anomaly detection.

4.1 The Dataset

The r2 dataset is a synthetic dataset created by the CERT Insider Threat Center at
CMU’s SEI. They are numbered r1–r6 according to the generator version that was
used to create them. This chapter uses the r2 dataset having 1000 employees’ activity
records over 494 days, resulting in more than 430 million events (see Tables 1 and
2 for a snapshot of logon/logoff and device insert/remove activities respectively).
Out of 375 thousand events/activities, six sessions (of user ONS0995) are known to
be malicious. In real life, malicious event/activity are low in number. The machine
learning systems’ aim is to accurately find such low occurring anomalies from a
large dataset. The chapter is focused on USB device insertion or removal event. It
also captures couple of instances when a user logs in/off on an odd day of the week
and it is labelled as malicious activity. A device insert/remove event is labelled as
malicious if the user is not known to do it regularly and does it once or twice in the
entire lifespan of the recorded activity data.
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Table 1 Snapshot of user’s logon/logoff activity record on a time of day on a specific device in
r2 dataset

Unique log ID Date and time User ID Device ID Activity

{X0W9-Q2DW16EI1074QDVQ} 01-02-2010 05:02 WCR0044 PC-9174 Logon
{C2O4-Z2RH12FQ-9176MUEL} 01-02-2010 05:19 WCR0044 PC-9174 Logoff
{U1J8-P4HX02EV-5327GONH} 01-02-2010 06:22 WCR0044 PC-5494 Logon
{F1N9-G4ZL24LA-8747VGHG} 01-02-2010 06:33 LRG0155 PC-0450 Logon
{Y1Q0-U9BN24NB-1906LMVT} 01-02-2010 06:42 RHM0148 PC-8152 Logon
{G0X9-D1CU68SO-7422ISZT} 01-02-2010 06:42 WCR0044 PC-5494 Logoff
{D5U9-A2FE85KK-5132LDYI} 01-02-2010 06:45 BHV0556 PC-6254 Logon
{P5F3-Y0IL09UW-7775RLVD} 01-02-2010 06:51 ACM0931 PC-5571 Logon
{A1G5-M6FR43QP-0895LMPK} 01-02-2010 06:51 BNB0746 PC-2503 Logon

Table 2 Snapshot of device insert/remove activity record on a time of day on a specific device
in r2 dataset

Unique log ID Date and time User ID Device ID Activity

{B2N6-M3YR26LS-3736SJVC} 02-01-2010 07:09 BKM0103 PC-8475 Insert
{Z5G2-G3US81EZ-9888TTVS} 02-01-2010 07:10 BAC0081 PC-6369 Insert
{H7I7-K5NG29TQ-9568YUER} 02-01-2010 07:10 CBA0214 PC-6187 Remove
{K4Y0-K3LN28EH-3959UZOV} 02-01-2010 07:11 XDB0054 PC-5634 Insert
{M6P5-D6PL11OV-2511DOFF} 02-01-2010 07:16 PCH0681 PC-0726 Remove
{A0D5-Z8LM89JG-3484PYUS} 02-01-2010 07:16 GSH0070 PC-5143 Insert
{Z2T8-I7RE18DN-1683HFUU} 02-01-2010 07:17 DCW0021 PC-3621 Remove
{E0R2-J8NJ98LS-4629HVDB} 02-01-2010 07:18 CBA0214 PC-6187 Insert
{G6H6-U5TI86UX-8376RFTC} 02-01-2010 07:20 DKR0925 PC-5885 Insert

4.2 Environment

The environment (Table 3) shows the dataset, malicious and non-malicious users,
parameters for their activities in the network, hardware, and software specifications
used for the insider threat detection.

4.3 Regression and Distance Measurement on Login Activities

As the activities and other details in the dataset are non-numeric, the given dataset
is modified as follows: if a user logs in over a weekday the value of that event is 1.
If a user login over a weekend, then the value is 2. Similarly, the ‘device inserted’
parameter is modified such that if a USB device is inserted during a session then
the value of the parameter corresponding to that session is 2 otherwise it is 1. The
number of these activities are added and plotted against time (see Fig. 7 for more
details). A linear regression is applied on this time-series data and Cook’s distance
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Table 3 The environment for insider threat detection

Data Set r2.1

Users HBN0033, FEA0006, ABT0551, ONS0995

Malicious username ONS0995

Number of anomalies 6

Parameters login time (with respect to the start
time)
login day (whether user logins on
weekday of weekend)
device inserted (when a USB device is
inserted)

Software OS: Microsoft Windows 8.1 Pro
Matlab R2016b

Hardware Processor: Intel(R) Core(TM) i7-4770
CPU @ 3.40GHz, 3401 MHz, 4 Cores, 8
Logical Processor(s)
RAM: 8.00 GB

Fig. 7 Login and device inserted activity on a particular day by user ONS0995

is used for computing anomalous activities of a user. Figure 7 shows login and
device inserted activity of user ONS0995 and Table 4 shows corresponding Cook’s
distance against linear regression. Points P1–P6 are outliers and Table 4 also shows
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Table 4 Login and device inserted activity of user ONS0995 and its Cook’s distance against
linear regression

Activity P1 P2 P3 P4 P5 P6 Other points
Cook’s distance 0.314 0.0782 0.0869 0.100 0.111 0.114 10−3 to 10−5

Fig. 8 Login and device inserted activity on a day by user ABT0551

Cook’s distance of other points as well. The detection confirms with the synthetic
data benchmark published by CERT which identifies these data points as malicious.

The plot in Fig. 8 shows login and device inserted activities of another user
ABT0551who regularly logs in/off and use USB drive.

Figure 9 shows device insert/remove activity of four users; one anomalous and
three non-anomalous. On each user activity linear regression followed by Cook’s
distance is applied to identify malicious activities.

4.3.1 Result Analysis with Cook’s Distance

The Cook’s distance (as given by Eq. (1)) measures the impact of a data point on the
least-squares regression solution. It is used for finding an outlier, as point with larger
Cook’s distance is worthy of closer scrutiny during analysis. It can be observed from
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Fig. 9 Anomaly detected based on device insert/remove activity of users (a) FEA0006 and (b)
HBN0033. It must be noted that (a) and (b) shows false positive anomalies

Fig. 7 (activity for a day) and Table 3 that malicious activities of user ONS0995 is
captured by computing Cook’s distance with respect to Linear Regression. It can
be seen that outliers (P1–P6) in Fig. 7 has significantly larger Cook’s distance as
compared to normal data points (10−3–10−5). In case of a non-malicious user and
there is very little impact of removing points on regression solution i.e., Cook’s
distance with respect to the regression will be very small. One such case is shown
for user ABT0551 in Fig. 8. The Cook’s distance for all points for this user is close
to zero (10−3–10−5). This does not flag any warning for the user ABT0551 but the
system analyst will be notified for the activities of the user ONS0995.
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The analysis has been able to detect 100% anomalies for the user ONS0995. The
accuracy is computed by comparing correct detection with the available ground truth
in the CERT r2 dataset. The detection also falters and generates false positives as
seen in Fig. 9a, b. Two false positives anomalies are seen for the user FEA0006. This
happens because the user is not using a USB device on those days. The accuracy dips
down to 99.71% due to 2 false positive outliers for a given 707 activities. Similarly,
plot for the user HBN0033 shows one false positive for 194 activities, resulting
into 99.48% accuracy. The average accuracy of Cook’s distance-based anomaly
detection for four users is 99.79%. It can also be observed that very small number
of anomalies are captured from large number of activities.

4.3.2 Result Analysis with Mahalanobis Distance

It is known that the Mahalanobis distance (as given by Eqs. (2) and (3)) transforms
and projects the data in a space where the distance between malicious and non-
malicious activities are maximized. It is unit-less, scale-invariant and considers
the correlations of the data set. Unlike the Cook’s distance which considers data
in Euclidean space, the data in transformed space in the Mahalanobis approach
is expected to reduce errors. Further, the Mahalanobis distance approach has
higher accuracy when expected number of anomalies are less. This, typically,
happens in case of insider threat situations. Figure 10 similar experiments using
the Mahalanobis distance and it obtained similar results as the Cook’s distance. It
can be observed that (outliers or malicious activities) has significant distance even
in the transformed space. All six outliers are correctly captured by this distance
measure as well. It resulted into 100% accuracy for user ONS0995. As noted earlier
due to non-usage of USB drive by the user FEA0006 on two days resulted into false
positives.

4.4 Neural Network on Login Activities

Like the regression experiments on the r2 dataset, in this subsection, ANN is
applied for identifying anomalies of malicious activities of a user based on
device insert/remove activities. The results are generated using 2 hidden layers
neural network (excluding the input and output layer) with 4 and 16 neurons
respectively. The malicious user is observed looking for binary results using the
MLPClassifier defined in Scikit-learn, with parameters solver = ‘lbfgs’, alpha = 1e-
5, max_iter = 1000, hidden_layer_sizes = (4,16), random_state = 0, shuffle = True
in python v2.7.14.
Parameters: user id (a unique number to different user)
login time (With respect to the start time)
login day (whether user logins on weekday of weekend)
device inserted (if and when a USB device is inserted)
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Fig. 10 Mahalanobis distance-based anomaly detection of device insert/remove activity of users
(a) ONS0995 (b) FEA0006. Note that (a) identifies all anomalies correctly while (b) has two false
positives

Size of training data of all the users = 1324 (including
4 anomalous activities of user ONS0995)
Size of testing data of all the user = 331
Neural Network Classification of activities (0 being

non-malicious and 1 is malicious activity):
It can be observed by comparing Fig. 11a, b that this method gave an accuracy of

100% where it could detect the two anomalies in test dataset when trained with
4 anomalous cases. In Fig. 11a, b ‘0’ indicates non-malicious activities and ‘1’
represents malicious activities.

4.5 SVM on Login Activities

The SVM classifier was applied on the activity data of user ONS0995 with the
following configuration and it obtained interesting results with different kernels
(−see Fig. 12 for further details). This work is on the similar lines as the algorithms
developed in [10] where the authors used linear, rbf and poly kernels with SVM for
anomaly detection. The malicious user is observed using the SVM library defined
in Scikit-learn. Three different kernels ‘linear’, ‘rbf’ and ‘poly’ were implemented
with ‘poly’ (degree 2) and ‘linear’ kernel giving the best classification. The SVM is
clearly able to differentiate the 6 malicious events performed by this user.

Figure 12a, c shows that the second order Polynomial kernel and Linear-SVC
kernel could correctly classify all six anomaly of user ONS0995 data. As evident
from Fig. 12b, d, the Linear kernel and surprisingly RBF kernel fail to correctly
separate malicious and non-malicious classes.

It can be seen from case studies presented in the chapter, i.e., (1) Linear
regression and distance measurement; (2) application of ANN and SVM can
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Fig. 11 (a) Ground truth
labels for ANN. (b) Actual
classification decisions by
ANN

successfully detect malicious activities from the available user logs. This shows
that a log file monitoring is one of the powerful technique to thwart an insider
threat. Many cases of fraud by an insider, e.g., in city tax office [2], IT organization
[32], and bank [33, 34] could have been avoided if the log monitoring and analysis
mechanism would have been followed actively. As recorded in survey [30] IT team
may have a lax approach towards the log analysis, but its active usage can mitigate
the risk of an insider threat.
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Fig. 12 Applying various SVM Kernel on user ONS0995’s activity data: (a) Polynomial kernel of
degree 2 (b) Linear kernel (c) Singular Value Classification (SVC) based Linear kernel (d) Radial
Basis Function(RBF) kernel

5 Discussion and Future Research Directions

Insider threat seems to be on a growing spree across organizations. The impact and
its effectiveness are posing a greater threat to organizations. Initially, the chapter
presented insider threat launch and its impact. It was found that there are many
definitions of insider threat and there is little standardization in defining these terms.
The impact of a non-malicious insider can also harm the interest of organization,
but the chapter is focused on willful insider. The top industries impacted by insider
threat are public, healthcare and finance, retail and accommodation. Some of the
important findings were that person with access to sensitive information poses
the greatest threat. Low and slow mode causes the gradual but greatest damage.
An insider attempts to mimic the normal behaviour and tries to remain below the
radar. Many detected episodes of insider threat remain unreported due to perceived
damage to organization’s reputation. The common methods employed by insiders
are social engineering, misuse authority during access, bypass security processes in
place and compromise account through hacking. Major motivations for insiders are
monetization, sabotage, fraud, IP theft and espionage.

The risk mitigation under insider threat revolves around four important entities;
the organization; the IT system; the individual(s); the environment. Some of the
entities are tangible and some are intangible e.g., an environment which is governed
by many factors like society, culture, ethics, rules, and law of the land. The goal
for any insider threat detection is detection, prevention, mitigation, punishment,
and remediation. The threat management is complicated by the fact that devices,
infrastructure, data’s volume, veracity, and velocity have dramatically changed over
the years. Insider threat defence is unable to keep pace with such changes. But
defence mechanism converges on the understanding that human in the loop is the
key to solve an insider threat. The early detection of the insider attack requires
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participation by every stakeholder i.e., management, employees, IT team, HR team
and security personnel. The chapter covers insider threat detection as anomaly
detection. The base behaviour of the user is coded and any behaviour in violation
of it will flag an alarm. The chapter covers state-of-the-art review in modelling-
based approaches with the use of machine learning to detect insider threat as an
anomaly. It was observed that only technical approach towards solving the problem
is ineffective. Thus, the chapter looks at approaches which combine behaviour,
psychology, criminology with machine learning. Specifically, modelling human
behaviour based on the application of general deterrence theory; social bond theory,
social learning theory; theory of planned behaviour; situational crime prevention
seems to be the key.

Solving the problem of insider threat using machine learning way has its own set
of challenges. In total population numbers of malicious users are very small. The
definition of what constitutes baseline behaviour is highly variable. This directly
impacts the performance of insider threat defence mechanism. Many instances went
unreported or they are reported incorrectly. Both scenarios generate faulty results by
data-driven approaches to machine learning. There is a lack of training and testing
public domain dataset generated from the real world. The work depends heavily on
simulated datasets which may not generate good models. The algorithms generate
good results for the past learning but fail badly on encountering a new situation.
The past work based on psychology seems to be promising for intrusion detection,
but they have not been rigorously tested. The emergence of deep learning may use a
fusion of natural language processing, behavioural analysis, and sentiment analysis
[18]. The deep learning architecture also holds promise for a variety of streaming
task. The comparison of Long Short-Term Memory (LSTM) network with DNN is
also required to map large-scale temporal patterns. The online scenario can also be
quantified in term of adapting sampling rate as per the data stream. This can reduce
number of potential anomaly miss. It seems feedback in LSTM can be explored to
generalize the insider detection model. The greatest advantage seems to be end-
to-end learning for DNN and LSTM which eliminates the need for handcrafted
features. This can significantly narrow down the search space for analysts.

The supervised form of learning requires training data, and in several scenarios,
one may have to respond in real time. This leads to idea of active log monitoring.
The case study presented in the chapter can help to actively monitor and detect
malicious behaviour. However, monitoring simple and specific patterns cannot
be effective. For example, use of camouflage can fool the log monitoring. This
warrants advance design models to estimate user behaviour. This needs a very strong
behaviour analytic framework dedicated for log analysis.

6 Conclusion

The chapter showcased three important machine learning algorithms (regression,
neural network, and SVM) and applied them to CERT r2 dataset. These algorithms
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are broadly classified as supervised and unsupervised learning. These algorithms
can effectively be deployed in the defence mechanisms to stand against insider
attack. Despite biased dataset, the machine learning algorithms performed very well.
Further, it must be noted that the number of false negatives i.e., a user is malicious
but not reported by the presented algorithms are very low, essentially nil. This means
that at times due to false positives i.e., a non-malicious user is reported as malicious;
the algorithms may question a good user for its activities, but a malicious user is
never missed. For example, in the case of r2 dataset, the report mentions that the
user ONS0995 was terminated after observing its malicious activities.

There is a significant bias in the data presented for the algorithms. Considering
significantly less activity by a malicious user there are very small data samples.
Moreover, after termination of a user, its activities cease to exist, resulting in an
even lesser number of data samples of malicious activities. This produces a bias in
data towards non-malicious samples. Considering the results of various experiments
presented, it must also be clear that the machine learning algorithms are sensitive
to data bias. Thus, the choice of algorithm or model must be done with sufficient
care. On a positive note, the algorithms presented allowed automation for the insider
threat detection and they can be scaled for larger data. Also, once the choice of data
feature is made these algorithms are independent of data being processed and thus
can be considered for any type of data for identifying malicious activities.

Some of the important lessons for use of log analysis are as follows. One
must note that log analysis is a very complex process and depends on several
sub processes. Like in case of anomaly detection it is necessary to understand
pattern in the data. Mere naïve understanding can generate false positives, e.g.,
false positive for the user FEA0006 in r2 dataset. It is also essential to have a
robust data normalization process to smooth the log analysis e.g., converting dates
to uniform format. It is useful during correlation analysis when connections are not
apparent from the single log but correlating multiple records may help discovering
underlying patterns. For example, one can collate logs from servers, firewalls,
network devices, and client software for preventive as well as forensic analysis.
Collective log analysis can also help to form alerts for the system administrator.
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prediction and anomaly detection based on ARFIMA model” In International Joint Conference
SOCO’14-CISIS’14-ICEUTE’14, pp. 545–554. Springer, Cham, 2014.

27. Model, ARIMA-GARCH. “Detection of Network Attacks Using Hybrid.” In Dependability
Problems and Complex Systems: Proceedings of the Twelfth International Conference on
Dependability and Complex Systems DepCoS-RELCOMEX. July 2–6, 2017, Brunów, Poland,
vol. 582, p. 1. Springer, 2017.

28. https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
29. https://www.dni.gov/files/documents/ICA_2017_01.pdf
30. https://haystax.com/blog/ebook/insider-attacks-industry-survey/
31. Predd, Joel, Shari Lawrence Pfleeger, Jeffrey Hunker, and Carla Bulford. “Insiders behaving

badly.” IEEE Security & Privacy 6, no. 4, pp.66–70, 2008.
32. https://www.huffingtonpost.com/2012/08/29/hanjuan-jin-motorola_n_1840833.html
33. https://en.wikipedia.org/wiki/J%C3%A9r%C3%B4me_Kerviel
34. Epstein, Jeremy. “Security lessons learned from Société Générale” IEEE Security & Privacy 6,

no. 3, pp. 80–82, 2008.
35. Rost, Johann. “Political reasons for failed software projects” IEEE Software 21, no. 6, pp.

103–104, 2004.
36. Thompson, Hugh. “The human element of information security” IEEE Security & Privacy 11,

no. 1 pp. 32–35, 2013.
37. Duran, Felicia, Stephen H. Conrad, Gregory N. Conrad, David P. Duggan, and Edward Bruce

Held. “Building a system for insider security.” IEEE Security & Privacy 7, no. 6, pp. 30–38,
2009.

38. Band, S.R., Cappelli, D.M., Fischer, L.F., Moore, A.P., Shaw, E.D. and Trzeciak, R.F., 2006.
Comparing insider IT sabotage and espionage: A model-based analysis (No. CMU/SEI-2006-
TR-026). CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING
INST.

39. Herbig, K. “Changes in espionage by Americans 1947–2007,” Monterey, CA, Defense
Personnel Security Research Center. 2008.

40. Turner, James T., and Michael Gelles. Threat assessment: A risk management approach.
Routledge, 2012.

41. “Insider Analysis”, Module 23, The 19th International training course, SAND2006-1987C,
Sandia National laboratories, 2006, pp. 214–287.

42. Greitzer, Frank L., Andrew P. Moore, Dawn M. Cappelli, Dee H. Andrews, Lynn A. Carroll,
and Thomas D. Hull. “Combating the insider cyber threat.” IEEE Security & Privacy 6, no. 1,
pp. 61–64, 2008.

43. Legg, Philip A., Oliver Buckley, Michael Goldsmith, and Sadie Creese. “Automated insider
threat detection system using user and role-based profile assessment.” IEEE Systems Journal
11, no. 2 (2017): 503–512.

44. Koch, Robert, Mario Golling, and Gabi Dreo Rodosek. “Behavior-based intrusion detection in
encrypted environments.” IEEE Communications Magazine 52, no. 7 (2014): 124–131.

45. Bowen, Brian, Malek Ben Salem, Shlomo Hershkop, Angelos Keromytis, and Salvatore Stolfo.
“Designing host and network sensors to mitigate the insider threat.” IEEE Security & Privacy
7, no. 6 (2009): 22–29.

46. Böse, Brock, Bhargav Avasarala, Srikanta Tirthapura, Yung-Yu Chung, and Donald Steiner.
“Detecting Insider Threats Using RADISH: A System for Real-Time Anomaly Detection in
Heterogeneous Data Streams.” IEEE Systems Journal (2017).

https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
https://www.dni.gov/files/documents/ICA_2017_01.pdf
https://haystax.com/blog/ebook/insider-attacks-industry-survey/
https://www.huffingtonpost.com/2012/08/29/hanjuan-jin-motorola_n_1840833.html
https://en.wikipedia.org/wiki/J%25C3%25A9r%25C3%25B4me_Kerviel


52 M. S. Raval et al.

47. Almehmadi, Abdulaziz, and Khalil El-Khatib. “On the possibility of insider threat prevention
using intent-based access control (IBAC).” IEEE Systems Journal 11, no. 2 (2017): 373–384.

48. Chen, You, Steve Nyemba, and Bradley Malin. “Detecting anomalous insiders in collaborative
information systems.” IEEE transactions on dependable and secure computing 9, no. 3 (2012):
332–344.

49. Mills, Jennifer U., Steven MF Stuban, and Jason Dever. “Predict insider threats using human
behaviors.” IEEE Engineering Management Review 45, no. 1 (2017): 39–48.

50. Theoharidou, Marianthi, Spyros Kokolakis, Maria Karyda, and Evangelos Kiountouzis. “The
insider threat to information systems and the effectiveness of ISO17799.” Computers &
Security 24, no. 6 (2005): 472–484.

51. Caputo, Deanna, Marcus Maloof, and Gregory Stephens. “Detecting insider theft of trade
secrets.” IEEE Security & Privacy 7, no. 6 (2009): 14–21.

52. Jajodia, Sushil, Anup K. Ghosh, V. S. Subrahmanian, Vipin Swarup, Cliff Wang, and X. Sean
Wang, eds. Moving Target Defense II: Application of Game Theory and Adversarial Modeling.
Vol. 100. Springer Science & Business Media, 2012.

53. Pita, James, Manish Jain, Milind Tambe, Fernando Ordóñez, and Sarit Kraus. “Robust
solutions to Stackelberg games: Addressing bounded rationality and limited observations in
human cognition.” Artificial Intelligence 174, no. 15 (2010): 1142–1171.

54. Roy, Sankardas, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek Shandilya, and Qishi
Wu. “A survey of game theory as applied to network security.” In System Sciences (HICSS),
2010 43rd Hawaii International Conference on, pp. 1–10. IEEE, 2010.

55. Alpcan, Tansu, and Tamer Basar. “A game theoretic approach to decision and analysis
in network intrusion detection.” In Decision and Control, 2003. Proceedings. 42nd IEEE
Conference on, vol. 3, pp. 2595–2600. IEEE, 2003.

56. Liu, Debin, XiaoFeng Wang, and Jean Camp. “Game-theoretic modeling and analysis of
insider threats.” International Journal of Critical Infrastructure Protection 1 (2008): 75–80.

57. Rich, Eliot, Ignacio J. Martinez-Moyano, Stephen Conrad, Dawn M. Cappelli, Andrew P.
Moore, Timothy J. Shimeall, David F. Andersen et al. “Simulating insider cyber-threat risks:
a model-based case and a case-based model.” In Proceedings of the 23rd International
Conference of the System dynamics Society, pp. 17–21. The System Dynamics Society, 2005.

58. Kraus, Sarit, Penina Hoz-Weiss, Jonathan Wilkenfeld, David R. Andersen, and Amy Pate.
“Resolving crises through automated bilateral negotiations.” Artificial Intelligence 172, no.
1 (2008): 1–18.

59. Rosenfeld, Avi, Inon Zuckerman, Amos Azaria, and Sarit Kraus. “Combining psychological
models with machine learning to better predict people’s decisions.” Synthese 189, no. 1 (2012):
81–93.

60. Nguyen, Thanh Hong, Rong Yang, Amos Azaria, Sarit Kraus, and Milind Tambe. “Analyzing
the Effectiveness of Adversary Modeling in Security Games.” In AAAI. 2013.

61. Kantzavelou, Ioanna, and Sokratis Katsikas. “A game-based intrusion detection mechanism to
confront internal attackers.” Computers & Security 29, no. 8 (2010): 859–874.

62. Yang, Rong, Albert Xin Jiang, Milind Tambe, and Fernando Ordonez. “Scaling-up Security
Games with Boundedly Rational Adversaries: A Cutting-plane Approach.” In IJCAI, pp. 404–
410. 2013.

63. Tang, Ke, Mingyuan Zhao, and Mingtian Zhou. “Cyber insider threats situation awareness
using game theory and information fusion-based user behavior predicting algorithm.” Journal
of Information & Computational Science 8, no. 3 (2011): 529–545.

64. Pratt, Travis C., and Francis T. Cullen. “The empirical status of Gottfredson and Hirschi’s
general theory of crime: A meta-analysis.” Criminology 38, no. 3 (2000): 931–964.

65. Hirschi, Travis. “Social bond theory.” Criminological theory: Past to present. Los Angeles:
Roxbury (1998).

66. Ajzen, Icek. “From intentions to actions: A theory of planned behavior.” In Action control, pp.
11–39. Springer Berlin Heidelberg, 1985.

67. Clarke, Ronald VG. “Situational” “Crime Prevention: Theory and Practice.” The British
Journal of Criminology 20, no. 2 (1980): 136–147.



Insider Threat Detection: Machine Learning Way 53

68. https://insights.sei.cmu.edu/sei_blog/2016/09/modeling-and-simulation-in-insider-threat.html
69. Myerson, Roger B. Game theory. Harvard university press, 2013.
70. Krawczyk, Bartosz. “Learning from imbalanced data: open challenges and future directions.”

Progress in Artificial Intelligence 5, no. 4 (2016): 221–232.
71. Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning

from class-imbalanced data: Review of methods and applications. Expert Systems with
Applications, 73, 220–239.

72. Azaria, Amos, Ariella Richardson, Sarit Kraus, and V. S. Subrahmanian. “Behavioral analysis
of insider threat: A survey and bootstrapped prediction in imbalanced data.” IEEE Transactions
on Computational Social Systems 1, no. 2 (2014): 135–155.

73. Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics,
19(1), 15–18.

74. Mahalanobis, Prasanta Chandra (1936). “On the generalised distance in statistics”. Proceedings
of the National Institute of Sciences of India. 2 (1): 49–55.

75. Ratnik Gandhi, Mehul S Raval, and Sanjay Chaudhary, “Pattern Discovery for Insider Threat”,
CSI Communications 42, No. 2 (2018): 31–33.

https://insights.sei.cmu.edu/sei_blog/2016/09/modeling-and-simulation-in-insider-threat.html


Distributed Denial of Service Attacks and
Defense Mechanisms: Current
Landscape and Future Directions
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Abstract Societal dependence on Information and Communication Technology
(ICT) over the past two decades has brought with it an increased vulnerability to
a large variety of cyber-attacks. One such attack is a Distributed Denial-of-Service
(DDoS) attack which harnesses the power of a larger number of compromised
and geographically distributed computers and other networked machines to attack
information-providing services, often resulting in significant downtime and thereby
causing a denial-of-service to legitimate clients. The size, frequency, and sophis-
tication of such attacks have exponentially risen over the past decade. In order to
develop a better understanding of these attacks and defense system against this
ever-growing threat, it is essential to understand their modus operandi, latest trends
and other most widely-used tactics. Consequently, the study of DDoS attacks and
techniques to accurately and reliably detect and mitigate their impact is an important
area of research. This chapter largely focuses on the current landscape of DDoS
attack detection and defense mechanisms and provides detailed information about
the latest modus operandi of various network and application layer DDoS attacks,
and presents an extended taxonomy to accommodate the novel attack types. In
addition, it provides directions for future research in DDoS attack detection and
mitigation.
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1 Introduction

Advances in Information and Communication Technology (ICT) over the past two
decades has significantly transformed the manner in which data is stored, accessed
and communicated, mainly over the network. The variety of services supported by
ICT are exponentially expanding and in recent years have even included the control
and monitoring of critical infrastructure system such as water, gas, and power. This
constant evolution of ICT paired with its ubiquitous nature has brought with it an
ever-increasing dependence for storing, processing and transferring information. As
a result, any disruption in these systems, even for a relatively short period, directly
and adversely affects nearly all key functionalities of a modern society.

A situation, often resulting from a deliberate and malicious attempt by an
adversary to intentionally disrupt the normal operations of a service provider (or
a server) and render the resources unavailable to its intended clients is known as
a Denial-of-Service (DoS) attack. The National Information Assurance Glossary
provided by the Committee on National Security Systems (CNSS) gives a more
general definition and identifies DoS as [1]:

Any (series of) actions that prevent any part of an [information system] from functioning.

A DoS attack against an online service provider can target its computing resource
such as CPU, memory, or a networking resource such as bandwidth or both. The
effects of such an attack can range from a minor delay in service response time to
complete inaccessibility. These attacks at times can also have financial implications
on organizations heavily dependent on the availability of their services. A report by
Amazon suggests that a 100 ms delay in response time can potentially drop their
overall sales by approximately 1% [2]. A Distributed Denial-of-Service (DDoS)
attack is a distributed variant of the DoS attack where an array of geographically
dispersed compromised machines (a.k.a. zombies, bots, slaves) are controlled by
an attacker (aka bot-master) and used against a specific target to cause a denial
of service. A network of such compromised machines (or bots) is called a botnet.
In a DDoS attack, individual capability of each compromised machines is utilized
and aggregated for use against a common victim, thereby magnifying the effect.
Figure 1 demonstrates the working model of a typical DDoS attack. The bot-master
compromises an array of bots, commonly by infecting them with a Trojan or a
backdoor program, and takes control of them. These compromised bots are then
controlled by the bot-master, often via Command and Control (C&C) channels, and
simultaneously used to attack a target server using the public network infrastructure.
The sophistication, size, volume, and frequency of DDoS attacks have risen
exponentially over the years. To develop a better defense system against this ever-
growing threat, it is essential to understand their modus operandi, their latest trends,
and most widely-used tactics. The motives behind DDoS attacks ranges from fun
to financial gain to pushing forward a political agenda, as in the case of the attacks
on Estonia and Georgia [3]. A report Arbor Networks on Worldwide Infrastructure
Security indicates ideologically-motivated ‘hacktivism’ and ‘vandalism’ as the most
readily-identified motivations behind DDoS attacks [4].
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Fig. 1 A typical set-up of a DDoS attack

Moore et al. used their ‘backscatter analysis’ technique to expose the worldwide
prevalence of DDoS activity [5]. Their proposed techniques was based on the
hypothesis that the attacker often forges or spoofs the source IP address of the
packets prior to sending them to the victim. Spoofing of source IP is performed to
conceal identity of location. Upon receiving a request from spoofed IP, a response
is sent from the victims machine to what is believed to be a genuine host. As
the IP address is randomly selected during the spoofing process, the entire IP
address space becomes equally likely to receive a response, a phenomenon they
referred to as backscatter. Using this backscatter analysis and monitoring the
number of replies sent to non-existent IPs over a three-week period 12,805 attacks
against an approximately 5,000 distinct Internet hosts from more than 2,000 unique
organizations were observed. This widespread nature of DDoS attacks, mainly
originating from China, is conformed by a report from Prolexic [6]. A more recent
study by Imperva Incapsula shows an increased number of short-lived repeat DDoS
attacks such as hit-and-run pulse-wave attacks, Bitcoin as one of the most targeted
industries, high-rate and persistent network layer attacks on the rise, and continuous
growth of Botnet activity from India and Turkey [7].

The continuous evolving nature, complexity, frequency and magnitude of DDoS
attacks implies that the study of such attacks including their detection, characteri-
zation, defense and mitigation remain an active area of research and investigation.
This chapter focuses on the pertinent DDoS attack detection techniques, defense
methods, and launching mechanisms. It also presents an extended taxonomy of
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DDoS attacks to include recent attacks, and provides future research directions.
Section 2 presents an extended taxonomy of DDoS attacks and describes different
methods and mechanisms used to launch DDoS attacks. Section 3 outlines the
various reasons for success of these attacks. Section 4 describes in detail some of
the pertinent work done in DDoS attack defense methods. The section focuses on
attack prevention, detection, traceback, and characterization and mitigation. Finally,
Sect. 5 discusses the impact, sophistication and future trends in DDoS attacks and
provide directions for research in this important and constantly evolving area.

2 DDoS Attack Taxonomy and Launch Methods

DDoS attack detection research has, not surprisingly, been viewed as a two-
dimensional problem – the ‘type of attack’ and the ‘target of attack’, as shown
in Fig. 2. The classification of DDoS attacks based on the ‘target of attack’ not
only foreshadows the possibility of an attack on any networked system, but also
highlights the fact that the magnitude of its impact invariably depends on the
resources (computational and communicational) available to the attackers.

In order to exhaust the available resources, an adversary can initiate an attack
by overwhelming the target by sending large number of spurious requests. This
category of attack is known as the high-rate flooding attack or brute force attack
or volumetric attack. These attacks often require attackers to gather sufficient
resources both bandwidth and computing to overwhelm the target. Accumulating
these computational and networking resources might have been difficult in the past,
but with the recent advancements in attacking softwares, availability of high-speed
networks, and accessibility of compromised bots that can be ‘hired’ for as low as
$150 per day, it is not particularly difficult [8]. TCP, ICMP, UDP, and HTTP flooding
are some of the common types of high-rate flooding attacks.

Contrary to these high-rate flooding attacks, semantic attack exploit the design
or implementation flaws of an application or a protocol to cause a denial of service.
This can make a semantic attack more challenging to execute as compared to a
high-rate flooding attack as it requires the adversary to have comprehensive under-
standing of the application or protocol being targeted. Semantic attacks are more
stealthy in nature and can be launched successfully even with a disproportionate
distribution of resources (network bandwidth and processing capacity) between an
attacker and the victim. The ‘Ping of Death’ is a classic example of a semantic
attack, executed by sending malformed ICMP packets to the target [9]. Suriadi
et al. [10] proposed an application layer semantic attack by exploiting the SOAP
format and thereby allowing deeply nested XML to be successfully embedded into
the transmitted message, and forcing the XML parser within the service to process
the document often causing memory exhaustion and leading to a DoS attack.

It is to be noted that both high-rate flooding and semantic attacks can occur either
at the network or application layer of the TCP/IP stack. A TCP SYN flooding attack
is an example of a network layer attack exhausting the available network bandwidth
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Fig. 2 Two-dimensional view of DDoS attacks

of the victim, while an HTTP flood attack is an example of an application layer
flooding attack targeting the application running on the target. Similarly, a deeply
nested XML attack and a teardrop attack are examples of application and network
layer semantic attack respectively.

2.1 DDoS Attack Taxonomy

Many authors have tried to classify DDoS attacks based on attack launching
mechanisms. Jelena et al. [11] classified DDoS attacks (a) by degree of automation
wherein they can be categorized into manual, semi-automatic and automatic DDoS
attacks, (b) by exploited vulnerability wherein they can be categorized according to
type of protocol or type of vulnerability used, (c) by attack rate dynamics wherein
they can be categorized into continues or variable rate attacks, (d) by level of impact
wherein they can be categorized into disruptive or degrading in nature. Further,
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Lee et al. [12] classified DDoS attacks into bandwidth or resource depletion attacks
according to the type of network resource overwhelmed. Bhuyan et al. [13] extended
the taxonomy of DDoS attacks originally proposed by [11] and [12]. They classified
DDoS attacks based on the type of architectural model used by the attackers into
agent-handler, IRC based, and peer to peer (P2P) based DDoS attacks. According
to the authors, there are mainly two types of DDoS attacks in existence (a) network
(Layer 3/4) DDoS attacks that target the network and transport layers. These attacks
overwhelm and consume whole of the network level resources of a target network
or a webserver, (b) application (Layer 7) DDoS attacks exploit a vulnerability in a
web-based application. These attacks overwhelm and consumes the resources of
a webserver or a database powering a web-based application and shut down its
services. Attackers often mimic legitimate user behavior and use authentic ways to
launch application layer attacks which make them harder to detect. Xiang et al. [14]
characterized DDoS attacks into (a) high-rate DDoS (HR-DDoS) attacks, when the
traffic rate of attack flows is more than the legitimate traffic flows, and (b) low-rate
DDoS (LR-DDoS) attack when traffic rate of attack flows is similar or less than the
legitimate traffic flows [15].

Though the existing set of taxonomies of DDoS attacks are complete in
themselves but they did not fit into the ever changing modus operandi of DDoS
attackers. The percentage of IoT and mobile devices have increased manifolds over
the years [16]. It has changed the trend and type of DDoS attacks being launched
nowadays. So, the existing taxonomies of DDoS attacks need to be extended to
incorporate these new diversified types of DDoS attack methods as shown in Fig. 3
and described below:

Fig. 3 DDoS attack methods
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• Volumetric attacks: Such type of DDoS attacks overwhelms the available
network bandwidth of a target network with a flood of data packets. These
attacks overload the targeted network or server with very high volumes of traffic
congestion and cause a denial of service to legitimate users. Such attacks can
crash down any business or web service within a few minutes. Examples of
volumetric attacks include TCP SYN attack, ICMP attack, Smurf attack, etc.
Such network-layer attacks are designed to overwhelm bandwidth, networking
resources, and applications that are unable to absorb the increased traffic
volumes.

• Combo SYN Flood Attacks: In a traditional TCP SYN attack, the requester
sends multiple SYN messages to the targeted server without receiving or
transmitting ACK messages. As the resources of a web server are limited, it
begins dropping out of new connection requests and ultimately, resulting in a
denial of service. A combo SYN flood is composed of two types of TCP SYN
attacks – one with regular SYN packet size, and the other with larger SYN
packet size above 250 bytes. The conventional SYN attack exhausts the server
resources (e.g., CPU), whereas the larger packet size in SYN attack causes
network saturation. Such attacks can quickly consume the resources of a target
server, or of intermediate network devices such as firewalls and load balancers.
As per the latest DDoS attacks report from Imperva [16], out of all network layer
DDoS attacks occurred nowadays, 75% are Combo SYN flood attacks.

• NTP Amplification Attacks: Such DDoS attacks have been used extensively
in recent times. The attackers exploit MONLIST feature of Network Time
Protocol (NTP) which is used by computers to synchronize their clocks over the
internet. Attackers then send redundant MONLIST requests to NTP servers using
destination IP of the victim. In this way, a huge volume of useless traffic is sent by
the NTP server towards the novice target and overwhelmed it with multiple data
packets. There are around 400,000 NTP servers deployed across the Globe that
can potentially be exploited using an NTP amplification attack. As per the latest
DDoS attacks report from Imperva [16], it is one of the leading attack vectors
nowadays and has surpassed frequently accessed SYN flood attacks.

• Hit and Run Attacks: In such type of DDoS attacks, attackers randomly
generate short packet bursts over an extended period; for days or even weeks.
These sophisticated attacks are specifically designed to elude slow-reacting
DDoS defense solutions. Such attacks are prevalent among attacker community
because of their ease of deployment and low cost. They typically last for 20–
60 min in duration. After causing some collateral damage to a target server,
such attacks usually occur again after another 12–48 h. They force the anti-
DDoS defense solution to be active all the time and can easily elude the existing
preventions mechanism such as DNS rerouting and tunneling.

• Browser-based bot attacks: Browser-based bots typically become active during
a legitimate web browsing session and are sneakily installed on credulous user
systems upon visiting a malicious website. Such bots are called Bad bots, and
can easily emulate the normal user browsing behavior to elude current DDoS
defense solutions. These bots primarily target the application layer and can easily
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crash down a web server with mere 50–100 requests per second. Such attacks are
difficult to prevent and detect.

• Spoofed User Agents: There are Good bots in existence as well, such as Google-
bots or Facebook-bots that cannot be stopped to install and, that are critical to
ensuring the proper functioning of websites. Bad bots mimic and spoof Good
bots to dodge detection. Attackers use this method to pass through low-level
filters and proceed to inflict chaos on target webserver. Some of the common
spoofed user-agents are Mozilla/5.0 Baiduspider/2.0, MSIE 6.0, Googlebot/2.1,
and Linux i686.

• Shared Botnets: Nowadays, even a novice and non-technical user can use publi-
cally available Botnets either on rent or on sharing basis to launch diversified
DDoS attacks. The same machine is sometimes compromised by more than
one Botnet. It leads to the generation of sophisticated volumetric attacks with
dissimilar traffic patterns which not difficult to identify but also elude the existing
DDoS defense system which works on the principle of flow similarity. The trend
of latest DDoS attacks is to use more and more shared botnets as they can be
accessed cheaply and easily without any technical knowledge.

• Multi-Vector Attacks: Traditionally, DDoS attack traffic is composed of a single
attack type or a vector. However, the modus operandi of DDoS attacks has
been changed drastically using multiple vectors to disrupt the services of a
web server. A multi-vector DDoS attack is a blend of (a) volumetric attacks;
(b) state exhaustion attacks; and (c) application layer attacks. As per the recent
report of Imperva [16], over 81% of DDoS attacks occurred nowadays are multi-
vector attacks. Being a combination of different suave techniques, such attacks
are difficult to detect and mitigate; and have more success rate as compared to
traditional single vector DDoS attacks.

• Mobile Device Attacks: The number of mobile users has increased dramatically
over the last few years. The cheaper internet bandwidth and faster connectivity
leads to more chances for mobile devices to be compromised and inadvertently
used to launch mobile DDoS attacks. Mobile phones and tablets are not
unaffected by the ever-growing malware as they have weaker security protection
as compared to PCs. Lack of awareness of installing anti-virus application,
freely available vulnerable mobile applications further adds up the chances of
being compromised. So, there is a need to customize existing DDoS defense
solutions with the additional layer of complexity in mitigating mobile device
attacks. Further, freely available new tools, such as Low Orbit Ion Cannon
(LOIC) and High Orbit Ion Cannon (HOIC) intentionally use the mobile devices
to participate in ongoing attacks.

• Geolocations DDoS Attacks: The presence of insecure IT infrastructure, vul-
nerable hosting environments, and internet-connected devices have given rise
to a series of geolocations DDoS attacks. A DDoS attack may originate in one
country but may use the unprotected infrastructure of another country, and later
amplified by other environments. The extensive use and deployment of less
secure IoT devices have further increased the chances of geolocations DDoS
attacks. However, the implementation of sturdier guidelines and security policies
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could suggestively lessen the frequency of such kind of DDoS attacks. As per the
latest DDoS attacks report from Imperva [16], 52% of the DDoS attacks originate
from only ten countries including India, China, Iran, Indonesia, US, Thailand,
Turkey, Russian, Vietnam, and Peru.

2.2 DDoS Attack Launch Methods and Mechanisms

DDoS attacks are primarily launched either manually with human coordination or
automated using botnets. Manually coordinated attacks require a significant human
intervention to be successful and are generally ‘ideologically-motivated’. These
attacks involve a large army of volunteers, with a common purpose, using their
individual machines and a pre-shared tool. Depending on the number of volunteers
orchestrated by an attacker, the computing capacity of their individual machines,
and the complexity of the attacking tool being used, the aggregated traffic volume
targeted to the victim machine can exhaust the available resources and render it
unavailable to its intended clients. A recent example of a manually coordinated
attack was Operation Payback, a name given to attacks launched by a group called
Anonymous against commercial websites (Mastercard, PayPal,and Amazon) and
anti-piracy organizations after they withdrew their ties with WikiLeaks [17–19].
These attacks were launched using a modified version of LOIC (Low Orbit Ion
Cannon) tool, an open-source stress testing utility. LOIC was modified and extended
to add a new feature called ‘Hivemind’ which was used to connect volunteers’
LOIC tool to ‘AnonOps’ (a communication platform used by Anonymous) to receive
attack instructions [20]. The modified tool had to be later installed on volunteers’
machine to enable them to participate in the attack. The Anonymous group also
created a web-page requiring volunteers to visit and click on the attack button [20].

Contrary to manually coordinated attacks, automated or Semi-automated DDoS
Attacks, usually rely on exploiting network protocol and misusing them to amplify
and/or obfuscate network traffic directed towards a victim. These attacks can be
fully or semi automated and are generally launched using Botnets. Using browser-
based bots is a common launch method in this category of DDoS attacks. Browser-
based bots typically become active during a legitimate web browsing session and
are sneakily installed on credulous user systems upon visiting a malicious website.
Such bots are called Bad bots, and can easily emulate the normal user browsing
behavior to elude current DDoS defense solutions. These bots primarily target the
application layer and can easily crash down a web server with mere 50–100 requests
per second.

Amplification and reflections are two most commonly used attack mechanisms
to launch DDoS attacks. An ‘Amplification-based DDoS attack’ consists of an
attacker, an amplification network, and a target victim. An amplification network
is a network of host machines which allows broadcast messages to be sent. Any
amplification network, when used for communication via a reply-based protocol
like ICMP, is potentially prone to amplification-based DDoS attacks. When a packet
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from a spoofed IP is sent to the broadcast address of such networks, a response from
every host is triggered and directed towards the intended victim. Smurf attack is a
classic example of a DDoS attack launched using amplification.

Similar to an amplification-based attack, an adversary can also exploit a reply-
based protocol such as DNS to launch a ‘reflection-based DDoS attack’ comprising
of an attacker, a set of reflectors (reflective network) and a target host. A reflector
can be any machine responding to an incoming request with a response sent to
the source IP of that request [21]. Common examples of reflectors are web servers,
DNS servers and mail servers because they send reply packets to incoming requests.
Reflection-based attacks make use of a set of reflectors rather than a single host
(broadcast address) in amplification-based attacks to initiate a response and cause
the desired effect. A DNS Reflector Attack is a classic example of a reflection-based
attack. This attack mechanism was used against Spamhaus, a provider of anti-spam
DNS-based Blocklists and Whitelists [22]. Both these attack launch techniques
when coupled with the distributed nature of botnets, renders such fully or semi
automated DDoS attacks extremely difficult to detect and mitigate.

3 Reasons for Success

The use of latest technology, high level of sophistication, freely available user-
friendly attack tools, cheaper Botnets-for-hire services, and advanced tactics have
led to the multidimensional growth of DDoS attacks over the years. The traditional
cyber security methods like Firewalls, Intrusion Prevention Systems (IPS), Intrusion
Detection Systems (IDS), and Router Access Control Lists (ACL’s) are unable
to provide an ideal solution against DDoS attacks. Some of the reasons can be
summarized as follows:

1. Firewalls perform state-level monitoring of each incoming connection. When
a DDoS attack occurs, a high volume of network packets travels towards a
specific destination. For each malicious network packet, a new connection
or network flow is established at a Firewall resulting in exhaustion of more
legitimate connections in the connection table which is limited in size. It, in
turn, causes exhaustion of Firewall resources and leading to degradation of its
performance. The Firewalls can shut down specific flows associated with attacks,
but cannot perform anti-spoofing tasks similar to a Router. Firewalls are unable to
discriminate between legitimate and DDoS attacks due to a similarity of network
traffic and legitimate connection setups in application layer DDoS attacks.

2. The IDS/IPS solutions have some anomaly-detection capabilities. They can
recognize malicious network packets with valid protocols. They are widely used
along with traditional firewalls to block the attack traffic automatically. But they
often generate a high number of false positives and false negatives and requires
manual configurations specific to a network.
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3. Both IDS/IPS and Firewalls are deployed close to the protected web server.
They are not the first line of defense where DDoS attacks can be filtered before
reaching to the target web server. However, DDoS mitigation techniques can be
deployed on the edge routers for early detection.

4. IDS/IPS techniques can be used to detect some known types of DDoS attacks
because the majority of them followed signature-based detection approach.
However, the signature-based techniques cannot detect zero-day attacks. Even
mitigation function is not provided by any of the available IDS/IPS.

5. DDoS attack traffic cannot be filtered by router access control lists (ACLs) alone
as they use valid network protocols. Routers can be configured to stop trivial
DDoS attacks (e.g., a ping attack) by filtering the nonessential protocols and can
also prevent invalid IP addresses through ingress/egress filtering. However, they
are typically ineffective against more sophisticated spoofed and application-level
DDoS attacks using valid IP addresses.

Apart from the reasons above, there are various other reasons as mentioned below
that lead to the successful launching of DDoS attacks and makes these attacks
extremely challenging to defend.

• Automated, user-friendly attack tools: Availability of user-friendly and freely
available attack tools and cheaper Botnets-for-hire services give flexibility to the
attackers to launch a variety of diversified DDoS attacks without any technical
knowledge. These tools automatically recruit and launch attack traffic with just
one click without having any technical knowledge about them.

• No common characteristics of DDoS streams: Attackers are becoming more
intelligent nowadays. To elude the current DDoS defense deployments, they
mimic the characteristics of legitimate traffic and regularly alter the attack
patterns. Such a similarity of both types of traffic makes the characterization
and filtering very difficult.

• Hidden identity of participants: Another important characteristic of DDoS
attacks is that they use the technique of IP spoofing to hide, where the attackers
make use of fake but legitimate IPs to send the packets to the target. In this way,
the attackers try to defeat existing resource-sharing mechanisms which works
with valid IP address and also it makes the process of traceback the actual identity
of attackers very difficult. In the absence of IP spoofing, malicious IPs could
potentially be differentiated from the legitimate ones, and their traffic could be
filtered accordingly.

• Huge volume of traffic: Under a DDoS attack, a vast number of redundant pack-
ets are sent towards the victim to overwhelm its network and server resources
which makes the process of traffic profiling tough. Under this considerable
network traffic volumes, the defense solutions can merely perform per-packet
processing and start dropping the legitimate packets and lead to denial of service
to legitimate users.

• Large number of unwitting and geographically distributed participants: A
DDoS attack involves recruiting of a large number of geographically dispersed
attack nodes to generate a massive volume of aggregated attack traffic towards
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a victim. It is possible because of the availability of a large pool of unsecured
hosts sitting in homes, school, business and governments around the world. The
impact of DDoS attack could be controlled if somehow attackers are not able to
recruit many agents. But with the ever-increasing number of internet and mobile
users over the years, this pool of novice agents being distributed over the globe
has also increased manifolds. So, even if we found some ways to secure these
novice systems, it requires a long time to deploy such practices in reality to limit
the impact of DDoS attacks.

• Persistent security holes on the Internet: All the Internet traffic passes
through a set of well-connected routers called autonomous systems (ASs) before
reaching out to the target. These specialized high-speed ASs are provisioned
to forward huge Internet traffic from one hop to another. If some of these ASs
become heavily congested or crash down by attackers, the whole of the Internet
would slog to cessation and would have a distressing consequence on global
connectivity.

• No administrative domain cooperation: Since there is no centralized control
of the Internet infrastructure and low administrative cooperation between ISPs,
deploying a DDoS defense on different parts of the Internet is practically a
difficult problem to address. Moreover, to tackle huge volume of DDoS traffic,
large amount of resources is also required which cannot be managed by a single
victim alone, so a pragmatic DDoS defense solution requires a complete defense
infrastructure with autonomous control.

4 DDoS Attack Defense Methods

Many DDoS defense schemes have been proposed in the literature for defending
against DDoS attacks but an effective solution is not available till date. Even the
attackers also consistently upgrade their skills to circumvent existing countermea-
sures. The architecture of a typical DDoS defense system is shown in Fig. 4.

As shown, a complete DDoS defense solution is composed of a number of
modules namely: Traffic monitoring and analysis, Prevention, Detection, Traceback,
Characterization and Mitigation modules. All these modules work in collaboration
with each other to defend from a DDoS attack. Accordingly, Peng et al. [23] has
classified the DDoS defense methods into following four categories:

• Prevention
• Detection
• Traceback
• Characterization and Mitigation

Traffic monitoring and analysis module sample the network traffic as per the
relevant network traffic features. This sampled network traffic is then given as input
to the proposed detection algorithm. Attack prevention methods stop the attack
traffic before reaching out the specified target. Attack detection method refers to
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the detection of attack traffic when it occurs. Traceback of the attack source or its
identification is the process of identifying the actual sources of the attack packets.
Attack mitigation or response is the last step of a DDoS defense in which techniques
are applied to minimize the impact of ongoing attack.

It is worth mentioning that the successful DDoS defense deployments depends on
its placement along with the underlying logic of various defense modules [24]. As
per [15, 25], a DDoS defense can be deployed at source-end, intermediate network,
and victim-end. However, each of these possible deployment location has its own
merits and demerits. Traditional security approaches such as Router ACLs, firewalls,
IDS/IPSs are not able to protect from against DDoS attacks effectively that has lead
to the absence of a perfect solution to combat against DDoS attacks till date; some
of the reasons may be the decentralized nature of Internet, collateral damage, lack of
collaboration among ISPs, the absence of latest real datasets, infrastructure changes,
and obsolete methods used for validation purpose, and deployment issues, etc. [25–
30]. The prominent approaches proposed by the fellow researchers for the efficient
working of these modules are summarized in subsequent sections.
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4.1 Prevention Methods

A prevention is always better than a cure. Attack prevention is the first step to stop
an attack before it cause damage to the critical infrastructures and services of a
network. Prevention methods aim to fix the security vulnerabilities that are exploited
by DDoS attackers to launch attacks. Prevention methods are implemented with a
packet filtering technique that is used to drop the malicious incoming packets.

Ingress means the packets that are coming towards the local area network and
egress means the packets that are leaving from a local area network as shown
in Fig. 5. In the year 1998, Senie et al. [31] proposed an ingress/egress filtering
method to prevent DDoS attacks at the edge level routers of the protected network
with the aim to allow only those network packets with a pre-specified IP address
range. But such methods can be easily eluded by the sophisticated attackers by
making use of IP spoofing technique. In this technique, attackers alter the source
IP address space in the IP packet headers so that victims are unable to discriminate
the attack packets from normal ones. Further, Park et al. [32] extended the concept
of ingress filtering originally proposed by [31] to be deployed beyond a LAN. They
implemented their proposed Router based packet filtering (RPF) method at the core
of the Internet. Their proposed scheme works on the principle that only a limited
number of source networks called autonomous systems (ASs) would send traffic
on a specific link. Based on this information, traffic with spoofed IP address range
can be discarded easily. This technique was then complemented by Li et al. [33]
by using a source address validity protocol (SAVE) to store information regarding
legitimate source IPs on each interface of the routers and block all other IPs. This
scheme continuously propagates updated messages of valid source IPs from source
to destination locations. But this scheme requires changes in the well-established
routing protocols and universal deployment for better prevention which was very
difficult to achieve.

In 2003, Peng et al. [34] proposed a novel scheme to filter attack traffic based on
the history of IP addresses. In their scheme, every victim maintained its own list of
IP addresses under normal working of a network i.e. under no attack. During a DDoS
attack, only those IPs are allowed to send traffic which are available in the previously
maintained IP address database. However, such scheme was vulnerable to any
sophisticated DDoS attack that mimics legitimate traffic behavior. To overcome
this problem, Kim et al. [35] proposed a statistical filtering mechanism called
PacketScore, in which every network packet is given a score based on the selected
traffic features. Their proposed scheme declared a packet as legitimate packet if the
computed score is less than a dynamically computed threshold otherwise declare as
attack packet without any human intervention. Their proposed scheme works well
for non-spoofed DDoS attacks but the approach itself was vulnerable to performance
degradation when the number of attributes used to compute packet score increased.

Further, Liu et al. [36] proposed a hybrid filter-based prevention method called a
StopIt to overcome the limitation of IP spoofing. They proposed a passport method
by making use of a secure source authentication system. It enable each destination
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Fig. 5 Prevention of DDoS attacks using Ingree/Egress Filtering

target to install a network filter that blocks the undesirable attack traffic as it
receives. However, their proposed method is vulnerable to flooding DDoS attacks.
To prevent from such situations, the proposed framework can be configured in such
a way that only the requests from nodes within a local AS or from other StopIt
servers need to reach to a StopIt server but such manual configurations for an AS
with large number of nodes is a very challenging.

Some authors like Saifullah et al. [37] proposed a weight-fair throttling mecha-
nism at the upstream routers to prevent a high profile web server from DDoS attacks.
They used a leaky bucket congestion control algorithm to control the network traffic
volume destined for a target server based on the connection count. In their proposed
scheme, the survival capacity is kept at low initially to protect the target server
from any sudden burst of attack traffic. The capacity is increased in each subsequent
rounds of the algorithm based on the feedback from the server. The updated capacity
is then forwarded to its child routers which then propagated it further to all the
routers.

Apart from preventing network layer DDoS attacks, some authors like Saleh
et al. [38] proposed a Flexible, Collaborative, Multi-layer DDoS framework for
preventing application layer DDoS attacks. Their framework blocks the source IPs
based on pre-built black lists. However, their framework suffer produced low FNR.
In some recent works, Muharish et al. [39] used neural network learning algorithms
and statistical analysis to design a novel packet filtering system. They applied a
self-organized-map neural network clustering technique to characterize and classify
the different types of traffic. Further, Kalkan et al. [40] proposed a distributed,
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Table 1 Comparison of prevention methods

Authors/ Deployment Working Prevention
year type mode Parameters mechanism

Senie et al. 1998 Source-end Distributed src/dst IPs Ingress/egress filtering

Park et al. 2001 Intermediate Distributed No. of
autonomous
systems
src/dst IPs

Extension of ingress filtering
implement Router based
filtering (RBF) BGP routing
information

Li et al. 2002 Intermediate Distributed src IPs Proposed a source address
validity protocol (SAVE) to
overcome the limitations of
RBF empower routers to store
IPs at local level

Peng et al. 2003 Victim-end Centralized src/dst IPs Filtering based on history of
src/dst IPs

Kim et al. 2006 Victim-end Distributed src/dst IPs,
ports TCP
flags, TTL
packet size,
protocol

Packets are scored based on
traffic features

Liu et al. 2008 Intermediate Distributed src/dst IPs Automated characterization
Selective packet discarding
Overload control

Saiffulah et al. 2009 Intermediate Distributed Network
traffic
volume at
upstream
routers

Weighted-fair throttling

Saleh et al. 2015 Victim-end Distributed Entropy Multi-layer defense framework

Muharish et al. 2016 Victim-end Centralized src/dst IPs,
ports
Packet
transfer rate
packet
length, count

Applied a self-organized-map
neural network clustering
technique to characterize and
classify the different types of
traffic

Kalkan et al. 2016 Victim-end Distributed src/dst IPs
protocol,
packet size
No. of
packets

Compute score of each
connection based on traffic
features a realtime filtering
mechanism

proactive and collaborative realtime filtering mechanism called ScoreForCore
against application layer DDoS attacks. Their proposed scheme compute score of
each connection based on the extracted relevant packet header features under normal
network conditions. i.e. under no attack. When the network is under attack, the score
of each incoming connection is compared with baseline score of connections. Their
proposed scheme detect known attacks with 100% accuracy whereas it detect novel
unknown attacks with 80% detection accuracy (Table 1).
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It is clear from the above discussion of various network level and application
level prevention mechanisms that all of the prevention schemes require wider
geographical deployment to be more efficient but due to the openness and decen-
tralization of Internet, it is very difficult to implement them.

4.2 Detection Methods

Mainly, DDoS attack detection methods can be categorized based on two
approaches: (a) signature-based detection and (b) anomaly-based detection.
Signature based approach match a known pattern with the pattern of incoming
packets whereas anomaly based approach match the pre-built network traffic model
with the incoming network traffic behavior in real-time. As mentioned in [23],
anomaly-based detection approach has some inherent limitations as mentioned
below:

• Sophisticated attackers can monitor the network traffic to train their
detection systems There is a possibility that sophisticated attackers can monitor
the network traffic to predict the traffic volume, number of source/destination
IPs, and source/destination port numbers. This information can then be used by
the attackers to launch variety of DDoS attacks in such a way so that there is a
minimal deviation in the network traffic features which could effect the working
of an anomaly based detection system.

• Inappropriate selection of threshold values can lead to high false positive
rates Since network traffic is highly dynamic in nature, it is very difficult to
set the baseline network traffic parameters. These parameters are used to set the
crucial optimal threshold values for the efficient working of an anomaly based
detection system. Further, the absence of benchmarked datasets for representing
normal traffic also make this selection very difficult.

• Difficult to extract both qualitatively and precisely appropriate features
of legitimate and anomalous network behavior Existing research have used
diversified set of packet header features for the detection of attack traffic but to
reduce the overall complexity of computing all of these packet header features, it
is necessary to use only those packet header features that are sufficient to detect
DDoS attacks.

Fellow researchers have proposed many isolated but effective solutions to detect
different types of DDoS attacks. We have summarized these prominent DDoS
attack detection methods in Table 2. These methods have been compared on
an identified set of attributes such as type of attack detected (LR-DDoS/HR-
DDoS), type of deployment (source-end/intermediate/victim-end), detection mode
(centralized/distributed), type of network header parameters used, detection metric
used, validation mechanism (simulation/emulation/realtime/datasets), datasets used
and detection layer (network/application).
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In 2001, Gil et al. [41] proposed a heuristic data-structure called MULTOPS
to detect HR-DDoS attacks by analyzing the packet rate in both the directions.
MULTOPS is basically a tree of nodes that contains packet rate statistics for subnet
prefixes at different aggregation levels. Their idea works on the assumption that the
packet rates between two nodes in both the directions are comparative during the
normal network conditions i.e. without attack. A significant deviation in the packet
rates indicate a bandwidth level DDoS attack. However, their proposed method may
fail to detect an attack in the cases where

• malicious packets uses randomized spoofed source IP addresses, and
• a large number of disproportional flows destined towards a specific target.

For example, there is a huge disproportion among the incoming and outgoing packet
rates in case of real audio/video streams, on-line movies and news. Such situations
would results in increase in false positive rates. Their proposed scheme also require
router reconfigurations and new memory management schemes which is again a
challenging issue.

Further, Feinstein et al. [42] presented a statistical detection approach based
on computing entropy and frequency sorted distributions (chi-square). It had been
observed that there were anomalies in the packet header attributes of DDoS attack
traffic. After the detection phase, they also proposed some filtering rules for
mitigating the impact of DDoS attacks. The drawback of this approach is that there
is a minimum interaction between the detection and response module which lead to
high false positive and false negative rate.

Akella et al. [43] proposed an ISP level detection mechanism where each router
detects traffic anomalies using normal traffic profiles of baseline network behavior.
Their proposed method works on the principle that routers usually exchange
messages with other neighboring routers to take detection decisions. A router
analyze the messages received from other routers and declare the traffic as an attack
or legitimate traffic. The main advantage of their scheme is that it produce low FPR
and FNR.

Some authors like Jin et al. [44] used the concept of two-variable correlation
covariance model to detect different types of DDoS attacks. They compute a
covariance matrix distance function to detect traffic anomaly. The attacker nearest
router focused on detection of LR-DDoS attacks whereas victim nearest router
focused on detecting HR-DDoS attacks. They performed multivariate analysis be
considering the six control flags of TCP header to detect SYN flooding DDoS
attacks.

To remove the limitations of this work, Jelena et al. [45] proposed an anomaly
based distributed model called a D-WARD which continuously monitor the bi-
directional traffic flows between the target network and Internet to identify HR-
DDoS attacks. Whenever there is a noticeable periodic deviation from the normal
flow patterns, attack is declared. They deployed their proposed system at the edge
routers of a network and monitor the incoming and outgoing traffic of the network.
If there is a significant deviation in the incoming and outgoing packet rates, their
proposed system decrease the packet rate. They validated their proposed system in
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Emulab, legitimate traffic was taken from UCLA dataset. They generate different
types of network layer DDoS attacks using cleo attack tool. False negatives can also
occur because of the distributed nature of DDoS traffic and use of a vast number of
zombies to launch attacks. Furthermore, some legitimate flows like real time UDP
flows do exhibit asymmetry.

Further, Chen et al. [46] extended their idea to propose a distributed change
point (DCP) detection architecture to detect HR-DDoS attacks. They used change
aggregation trees (CAT) to work in collaboration with edge routers to detect
deviations in the network traffic. The computational server construct CATs using
the traffic pattern changes at attack-transit routers which represent the attack flow
patterns. They observed that in the case a DDoS attack, traffic feature deviation is
more. The main feature of change point monitoring method is that it is stateless and
requires less computational overhead. The principal objective of this scheme was
to determine a point of time when a change happens. It uses CUMSUM approach
to detect SYN flooding attack. This approach works effectively if all the networks
packets route through the same edge router. However, traffic in autonomous system
routed through different edge routers.

Few authors [25, 47, 48] have proposed an ISP level distributed approaches
to defend from DDoS attacks. For example, Kumar et al. [25] distribute the
computational overhead of computing detection metric at the edge POPs of an
ISP level topology. Lu et al. [47] deployed a local analyzer at edge router(s) of an
ISP which communicates with a global analyzer. used machine learning algorithm,
CUSUM algorithm and spatial correlation of DDoS attack traffic to detect DDoS
attacks at ISP level. They also used simulation based experiments to validate their
approach. Their proposed approach predicts the next network state using maximum
a posteriori (MAP) criteria. They also used a variant of expectation-maximization
(EM) algorithm for optimizing searching over large no. of candidate structures.
Their framework detect both LR-DDoS and HR-DDoS attacks. Franccois et al. [48]
presented an approach named FireCol to detect HR-DDoS attacks. Their proposed
system comprised of an intrusion prevention system located at edge routers of an
ISP. They form a virtual protection ring around the hosts to defend and collaborate
by exchanging selected traffic information.

In 2016, Sachdeva et al. [26] extended the work of [25] to differentiate the attack
traffic from behaviorally similar FE traffic. They used an ensemble of cluster entropy
and source IP entropy to discriminate the two. They observed that in the case of flash
events traffic cluster entropy is small whereas it is more in the case of attack traffic.

Some authors [49, 50] have also used correlation coefficient between different
packet header features (source/destination IPs/ports, and the number of distinct
destination/source IP pairs) to detect different types of DDoS attacks.

Many authors [14, 15, 51–56] have used information theory based metrics to
detect different types of DDoS attacks. Xiang et al. [14] proposed a collaborative
detection algorithm using generalized entropy metric to differentiate an LR-DDoS
attack from legitimate traffic. Bhuyan et al. [15] extended the idea of [14] to compute
extended entropy metric based on packet header features of source IP and incoming
packet rate to detect HR-DDoS attacks.
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Wang et al. [51] proposed a multistage anomaly detection framework to detect
LR-DDoS attacks at an early stage. They deployed their framework at the monitors
close to the attack sources i.e. on edge routers and quantitatively analyze the
deviations in traffic features. They define a network traffic state (NTS) to represent
the state of the network traffic at each monitoring point. Then they compute a joint
deviation rate (JDR) which is a combination of the variations of multiple traffic
features. Their proposed detection efficiently detects both LR-DDoS and HR-DDoS
attacks. The authors claimed that their proposed approach needs only three-time
windows to extract malicious IP addresses from the start time of a DDoS attack.
They launch a variety of network layer and application layer flooding DDoS attacks
using the botnet executables to generate attack datasets in an experimental testbed
synthetically. However, their proposed framework did not detect attacks when the
attack traffic rate is similar to legitimate traffic.

Bhatia et al. [52, 57] proposed a novel ensemble based detection model which
combine the results of network traffic analysis with the server load analysis for
detecting HR-DDoS attacks. They compute various packet header features like the
number of new source IPs, the total number of source IPs, number of packets per
IP from the network traffic in each sampling interval, and a set of server specific
parameters of CPU utilization, CPU load and real memory usage for each type
of network traffic. They differentiate the different kinds of HR-DDoS attacks on
network and application layer using a feature correlation matrix. They found that
there is a strong correlation between the different types of network flows. For
validating their proposed scheme, the authors performed a set of real experiments to
launch the ICMP, HTTP, and SSL attacks by simulating the traffic traces of CAIDA,
FIFA and MIT datasets.

Ma et al. [53] analyzed the variation of Lyapunov exponent in combination
with Tsallis entropy to detect anomalies in the network traffic. They proposed an
exponent separation detection algorithm to verify the feasibility of combining the
source and destination entropy variations to detect HR-DDoS attacks. They used the
detection system evaluation parameters of true positive rate, false positive rate, and
ROC curve to check the efficiency of their proposed detection scheme. They validate
their proposed approach by simulating the HR-DDoS attack scenario from MIT
Lincoln dataset. Jun et al. [54] proposed a flow entropy and packet sampling based
detection scheme to detect HR-DDoS attacks. Their proposed detection system
measures the entropy of each flow, the entropy of source port and the number of
packets/sec. Spognardi et al. [55] proposed a flexible DDoS defense framework
called a fast network analyzer (FAN), which analyze the aggregated network traffic
to identify HR-DDoS attacks. They compute a number of information theory metrics
such as Shannon entropy, Renyi entropy and KL divergence metrics using traffic
features of timestamp, duration, number of packets and transmitted bytes. They
found that KL divergence is best for analyzing huge amount of network traffic.
Basicevic et al. [56] compute Tsallis detection metric to detect HR-DDoS attacks.
They found that Tsallis entropy produce low FPR and high detection accuracy as
compared to Shannon entropy in detecting DDoS attacks.
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Some authors like Sangkatsanee et al. [58] identified 12 essential features of a
network traffic such as source(destination) IPs and port numbers, protocol, packet
rate, TCP flags for detecting HR-DDoS attacks. In some recent works, Joldzic
et al. [59] proposed a novel software defined networking (SDN) based scalable
solution called TIDS (transparent intrusion detection system) for detecting network
layer flooding based DDoS attacks. They used Shannon entropy metric for the
detection of malicious traffic.

Further, many authors [60–62] have proposed schemes to detect application
layer DDoS attacks. Beitollahi et al. [60, 61] proposed a novel ConnectionScore
technique to detect and mitigate application layer DDoS attacks. They compared
the connection score of malicious connections during the attack with the threshold
scores computed during the non-attack period. The connection score is calculated
by using various statistical attributes like request/download rate, uptime/downtime,
browsing behavior (page classification, page access rate and page popularity),
hyperlink fraction click, hyperlink depth, source IP address distribution, arrival
distribution rate of users. The connections with low scores are identified as
malicious connections; thereby the server retakes bottleneck resources from them.
They validate their proposed detection scheme by simulating the real traffic traces of
clarknet www server and some benchmark attack tools in Emulab environment. Ni
et al. [62] compute entropy of HTTP GET requests per source IP (HRPI) to detect
application layer HR-DDoS attacks. They approximate an AAR auto regressive
model and a SVM support vector machine classifier to identify DDoS attacks. They
observed that HRPI is highest in FEs and least in attack traffic even lesser than the
legitimate traffic.

Besides above discussed detection methods, many authors have also proposed
efficient DDoS attack detection methods using novel techniques such as:

• Machine learning and neural networks
• Chaos theory
• Fuzzy logic
• and wavelet analysis

Lee et al. [63] performed machine learning based cluster analysis based method
for the proactive detection of DDoS attacks. They separate the DDoS attack into
different phases and identified various precursors required for the proactive detec-
tion of attacks. They proposed a hierarchical type of clustering detection scheme
which is often used to classify plants and animals. They proposed detection system
compute the Euclidian distance between the entropy values of various precursors
and apply WARD’s minimum variance method to find the linkage between them. To
optimize the number of precursors, they use principal component analysis (PCA)
method. They validate their detection scheme by simulating the 2000 DARPA IDS
dataset.

Chonka et al. [64] proposed a chaos theory based model to distinguish a HR-
DDoS attack based on flow similarity. They developed a neural network based
system to detect anomalous traffic. Xia et al. [65] proposed a fuzzy logic based
method to identify LR-DDoS and HR-DDoS attacks in real time. Their proposed
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approach works in two phases. In the first phase, a time series based statistical
analysis of network traffic is performed using discrete wavelet transform. A schwarz
information criterion (SIC) is used to find the deviations in Hurst parameter. In the
second phase, the identification of attack packets and evaluation of the approach
is performed by counting the number of dropped packets. The authors validate
their proposed method using NS2 simulations, testbed experiments and publically
available Internet traffic traces. Karimazad et al. [66] proposed a Radial Basis
Function (RBF) neural networks based DDoS detection method. They deployed the
proposed scheme to edge routers of the victim network. They defined a network
flow consisting of seven traffic features to activate a RBF neural network in each
time window. In the case of a DDoS attack, the malicious IPs are forwarded to the
filtering module and generate alarm signal for further actions. Otherwise, traffic is
forwarded to the downstream routers.

Das et al. [67] proposed a clustering based detection scheme for unsupervised
anomaly detection using feature-based analysis of HTTP GET requests traffic.
They used three different HTTP flooding attack scenarios of random flooding,
shrew flooding, and blast flooding to compute legitimate access pattern and pattern
disagreement between request arrivals. Based on these values, they compute a
DSB index which then clusters the incoming requests as normal or malicious.
They monitor the university campus traffic for making baseline behavior and then,
validate their detection scheme using the KDD cup99, and synthetically generated
datasets.

Shiaeles et al. [68] proposed a realtime detection and traceback approach for
defending against DDoS attacks by constructing a fuzzy estimator using mean
packet inter arrival times. They validate their proposed scheme using publically
available DARPA dataset and synthetically generated dataset using a real exper-
imentation setup. They used automated botnet attack tools namely Hping and
Black Energy for generating encrypted application layer malicious traffic. The
authors claimed that their proposed method can detect DDoS attacks and traceback
malicious IPs at an early stage before the impact reached at the target server. The
reporting results show over 80% success rate of the proposed approach. However, it
is vulnerable to more false positives in the case IP spoofing. However, they did not
discriminate the legitimate looking FEs from HR-DDoS attacks. Dorbala et al. [69]
proposed a scalable implementation of a clustering and classification algorithm for
detecting the HR-DDoS attacks. They calculate interval summary based on per
second traffic analysis of existing real datasets. An interval summary constitutes
the number of packets, average packet length, the number of TCP, UDP and ICMP
packets, distinct source and destination IPs and port numbers. They classify different
types of network packets using a K- nearest neighbor classification algorithm. They
compute information theory based Manhattan distance metric between the various
elements of a cluster. They validate their proposed approach using real datasets of
DARPA and CAIDA. Firstly, they train the proposed detection system using half of
the dataset records and then, apply the detection algorithm on the remaining half of
the dataset records. Their proposed detection system detect HR-DDoS attacks with
99.5 precision, and 100% detection accuracy when computed with a tolerance factor
k = 5.
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Fig. 6 A typical Traceback mechanism of a DDoS defense

4.3 Traceback Methods

Most of the DDoS attacks are characterized by a high incoming rate of network
packets with random and valid source IPs. However, these source IPs are often
spoofed. To identify the source of such fake network packets requires tracing the
packets back to the source hop by hop. The current traceback approaches necessitate
the dreary unrelenting responsiveness and support of each intermediate ISP which
is not a trivial task.

Once an attack is detected, the next step is to identify the attack sources and
to block the attack traffic. As per [70], traceback is defined as a mechanism of
identifying actual sources of a packet sent over the Internet (Fig. 6). Mathematically,
let C = h1+h2+hn−1 . . . ..hn be a connection chain between the hosts hn (i = 1 to n).
Given a hosts hn (i.e. IP Address), the traceback problem is to identity recursively
the identities of hn−1, hn−2 . . . h1 in an automated way. This section summarizes
the prominent work done in this area as shown in Table 3.

Burch et al. [71] proposed a generalized traceback scheme without having
dependence on the cooperation of intervening ISPs. Their proposed scheme flood
the network links with traffic bursts to identify the attack path. However, this
scheme is less effective because in the case of a typical DDoS attack, only a
small proportion of attack traffic converge from a single link, so there would not
be any significant changes in the total attack traffic by flooding a single link. To
improve this limitation, Savage et al. [72] proposed a IP traceback scheme based
on probabilistic packet marking (PPM). In this scheme, each router is required to
embed its IP address in the incoming packets while they travel through that router.
Based on this embedded information, the victim can predict the attack transmission
path. However, it is very difficult reconfigure the existing well established IPv4
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Table 3 Comparison of traceback techniques for a DDoS defense

Authors/year Parameters Traceback mechanism

Burch et al. 2000 Packet rate Flooding of network links to identify attack
paths

Savage et al.
2001

src IPs IP traceback using Probable Packet Marking
(PPM)

Need to re-configure IPv4 scheme on each
router

Dean et al. 2002 src IPs, TOS Used an algebraic approach to insert partial
path information

ID low computational comlexity

Al et al. 2006 Path coverage ratio Combines packet marking and packet
logging techniques

Attack source localization
distance ratio

Detection % age

Yu et al. 2011 Entropy variations Use entropy variations in legitimate and
attack traffic

Wu et al. 2011 Misidentified normal edge
ratio

Proposed an approach based on protection
agent and sentinels

Misidentified attack edge ratio they apply a C4.5 algorithm to construct a
decision tree using

Entropy, Flow similarity TCP SYN and ACK flag rate

Xiang et al. 2011 Information distance Compute information distance based on
variation in entropy values of

local and forwarded traffic to its immediate
upstream routers

Rajam et al.
2011

Ant density Deterministic packet marking based on Ant
colony optimization

Compute ant density of all possible paths

Low computational and memory overhead

Saleh et al. 2015 Entropy Traceback based multi-layer defense
framework

Bhuyan et al.
2016

Entropy Traceback and filtering based on EEM metric

compute entropy difference based on
in-traffic and out-traffic from a router

protocol as there are no field reserved for the tracking purposes. Their scheme is
also independent of any cooperation from intervene ISPs.

Dean et al. [73] proposed an alternative coding scheme to remove the limitations
of PPM approach. They applied an algebraic approach to insert the partial path
information so as to reduce the number of packets required to reconstruct the
attack path. Authors in [74] proposed a hybrid scheme which combines the packet
marking and packet logging schemes called a distributed link list traceback (DLLT)
and probabilistic pipelined packet marking (PPPM). The first scheme preserves the
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marking information at the intermediate routers so that it can be collected using a
linked list approach when required. The second scheme target to disseminate the
source IPs of routers that were involved in marking packets by embedding them
into the packets going to the victim. In this way, the scheme avoid the need for long
term storage at the intermediate routers.

Yu et al. [75] used the entropy variations of legitimate and attack traffic to
propose a new traceback scheme. In comparison to the existing IP traceback
methods, their proposed strategy is more efficient in terms of less memory intensive,
scalable and independent of any specific attack traffic patterns. Wu et al. [76]
designed a system that can detect and traceback the origins of network layer HR-
DDoS attacks sources quickly. Their proposed scheme consists of two subsystems
namely protection agent and sentinels. The protection agent is located in the Victim
(for detection purpose) and sentinels are located in routers (for traceback purpose).
Then they apply a decision tree technique using the attributes TCP SYN and ACK
flag rate, as the tests to detect abnormal traffic. They adopt the C4.5 algorithm to
construct the decision tree which is based on the concept of entropy. Then they use
a flow similarity algorithm to isolate the attack flows for trace back purpose. They
also used an AI based classifier for detecting DDoS attacks. The authors evaluate
their proposed scheme by measuring detection metrics such as false negative rate,
false positive rate, false classification ratio, and detection latency.

Further, Rajam et al. [77] proposed an IP traceback mechanism for large scale
distributed systems based on deterministic packet marking. Unlike other marking
schemes, it reduces the computational and memory overheads. They applied their
proposed scheme to secure online voting system, which in turn improves the security
processed involved in the distributed systems. Saleh et al. [38] proposed service
traceback oriented architecture (STBOA) to trace back the actual attacking IP
source. They validate their proposed framework using simulation based experi-
ments. Singh et al. [78] systematically reviewed a number of IP traceback schemes.
They concluded that IP traceback does not play a significant role in defending
against DDoS attacks. Rather, it only allows to identify the path that the attack
flows follows. However, it can be integrated with other defense modules to provide
the enhanced mitigation mechanisms.

4.4 Characterization and Mitigation Methods

Mitigation techniques primarily deal with flooding based DDoS attacks. Tolerating
DDoS attacks concentrates on controlling the intentional and malicious traffic.
Whereas mitigation is defined as the process of minimizing the impact of a DDoS
attack. It can be achieved by deploying different filtering and rate limiting methods
on the incoming network traffic. The main aim is to dropping out the attack traffic
as much as possible whereas keeping the legitimate traffic intact. A mitigation
framework requires the communication among different modules of a defense
system including detection, characterization and traceback. A considerable amount
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of research effort has been carried in literature for tolerating and mitigating DDoS
attacks as summarized in Table 4.

Floyd et al. [79] stated that flooding DDoS does not observe end to end
congestion control. Due to this role of router scheduling and queuing algorithm
is very important in tolerating against DDoS attacks. Their proposed mechanism
identify and restrict the bandwidth allocation to high-bandwidth flows in the
situation of congestion. The proposed scheme utilize the history of dropped packets
from queues with RED (Random Early Detection) queue management.

Mahajan et al. [80] propose a mitigation framework called Aggregate Congestion
Control (ACC) agent for routers to identify aggregates responsible for the network
congestion. ACC agent identify the congestion signature using the history of
dropped packets in a time window of k seconds and then filter the useless traffic
accordingly. Further, routers cooperate with upstream routers using a pushback
scheme to share the filtering information. Peng et al. [34] proposed an integrated
framework for mitigation and traceback. They improve the pushback mechanism
by introducing selective pushback a router based system to defend against DDoS
attacks. DDoS attacks are treated as a congestion control problem. The main issue
is to identify the congestions and then pushback a packet filter to the router closed
to the source that causes the congestion. Source information is obtained using
the probabilistic packet marking (PPM). By filtering the packets using the source
information filtering of malicious traffic is achieved while protecting the legitimate
traffic.

Zhang et al. [81] proposed a distributed collaborative approach to defend against
HR-DDoS attacks. Their proposed system is deployed at an intermediate network.
The proposed scheme uses a gossip based communication mechanism to exchange
traffic information between independent Internet devices to collect, analyze and
predict the network attacks. This compiled information is then shared among these
devices so as to use it for detecting and stopping DDoS attacks more effectively
and accurately at the local level. The proposed scheme uses an overlay network
for the dissemination of attack information. Lu et al. [47] described a perimeter-
based anti-DDoS system. Their proposed system is deployed at the edge routers of
an ISP level network. Anti-DDoS extracts the relevant traffic features in first phase
and then apply a spatial correlation method for the detection. The proposed scheme
detect and characterize the attack packets with accuracy and without rendering the
embedded logic of routers.

Wang et al. [82] proposed a distributed mitigation and filtering mechanism based
on a pushback and resource regulation methods to mitigate the effect of DDoS
attacks. They assume that all the routers cooperate with victim to share critical
information used in implementing the defense strategy. A Pushback mechanism
based on the improved aggregate-based congestion control (IACC) algorithm is
applied to routers for defending bandwidth HR-DDoS attacks, whereas resource
regulation is applied to victim for defending resource consumption HR-DDoS
attacks. Devi et al. [83] used a set of host-network based metrics to detect HR-DDoS
attack. They compute various server level statistics like the CPU and memory usage,
packet loss, latency, link utilization and throughput in an experimental testbed.
They also proposed a DDoS mitigation algorithm based on the interface based rate
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limiting (IBRL). Based on the deviations in the observed parameters, their proposed
mitigation scheme is activated so as to mitigate the impact of ongoing DDoS attacks.

Gupta et al. [84] proposed dynamic and auto responsive approach for defending
against DDoS attack. Various design principles and evaluation results of the
proposed framework that autonomously detects and accurately characterizes a
wide range of flooding DDoS attacks have been highlighted. Detection of attacks
is performed using the low volume based approach that observe abrupt change
in the network traffic in the ISP domain. Characterization of attack traffic and
normal traffic is performed using total number of the bytes arrival for each
flow during monitoring period. The flows that crosses predefined thresholds are
classified as either suspicious or attack traffic flows depending on detection from
threshold values. Wei et al. [85] proposed a rank correlation-based detection (RCD)
approach for detecting LR-DDoS attacks. The simulation results show that RCD
can characterize the attack flows from legitimate flows with efficacy.

Zhou et al. [86] observed that the ratio of source IP entropy and click rate entropy
of a web page is high in the case of DDoS attacks. Bedi et al. [87] observed that none
of the schemes provide an effective solution against the congestion occurred due to
flooding DDoS attacks. Under HR-DDoS attack situation, the network resources
including routers, links, web server etc. gets overwhelmed and the mitigation
systems gets crashed before taking any action to mitigate the situation.

Such kind of problems occur because majority of the DDoS defense methods
are deployed primarily at the victim-end. The mammoth network traffic volume
generated during DDoS attacks and deficient computational resources at the victim-
end, makes defense solution vulnerable to these attacks. Such limitations have lead
to the development of many distributed solutions and have shift the trend to more
economical Software Defined Technique (SDN) and cloud based DDoS defense
solutions [24, 59, 88–90]. All of these novel distributed systems tend to distribute the
computational complexity among multiple computational devices with the objective
of early detection of malicious traffic.

5 Impact, Sophistication and Future Trends

Usually, the prominent websites are the prime victims of DDoS attacks and
suffer interruptions in their services. Such interruptions in the services often have
substantial financial implications. The revenue loss has amplified to $209 million in
the first quarter of 2016, as compared to $24 million for all of 2015 [91]. According
to a recent report by the security firm Imperva Incapsula [16], a single hour of a
DDoS attack can cost up to $20,000. A study by the Ponemon Institute [92] also
witnessed that the average company’s cost for every minute of downtime during a
DDoS attack is around $22,000. As majority of DDoS attacks lasts for more than
six hours, the incurred losses can reach a high dollar value in a relatively short time.
Besides revenue losses, these attacks can also result in financial losses including the



90 S. Bhatia et al.

cost of investigation and responding to attacks, expenses related to loss in customer
support and public relations, and potential financial penalties and lawsuits.

Increased Sophistication, Persistence and Magnitude Global DDoS threat
landscape Q4 report [16], indicates that the trend of sophisticated DDoS attacks
has shifted from spoofing based network layer DDoS attacks to legitimate TCP
connections based application layer DDoS attacks. These attacks sends redundant
HTTP GET requests to consume web server’s resources such as bandwidth,
memory, CPU cycles, file descriptors, and buffers. 2017 also saw an increase in
attack duration with an average DDoS attack lasting for 1.2 h with the largest
reported attack lasting 5.5 days. The third quarter also showed the number of
attacks lasting more than 6 h increased to 7.5% compared to 0.8% in the preceding
quarter [16]. Over the years, the conventional DDoS attacks have not only grown
in sophistication but have dramatically expanded in their magnitude. As per WISR
report [93], the traffic volume of DDoS attacks has touched to 650 Gbps in 2016 as
compared to 500 Gbps in 2015 and 350 Gbps in 2014.

DDoS and IoT Devices: The Perfect Match? Apart from using the traditional
compromised desktop and workstation systems, the attackers have started making
use of less secured Internet of Things (IoT) devices as the launching pad, mainly
owing to their astonishing rate of proliferation and their inherent insecurity [94].
Recently Twitter, Spotify, and Amazon suffer interruptions in their services for
almost two hours on Oct 21, 2016, because of the large number of unsecured
internet-connected digital devices, such as home routers and surveillance cameras.
The attackers employed thousands of such devices that had been infected with mali-
cious code to launch a series of DDoS attacks. The Mirai botnet, which harnessed
the high CPU capability and high-bandwidth uplinks of hundreds of thousands of
IoT devices such as DVRs and CCTV cameras has set new records for DDoS attack
size, reaching towards 1 Tbps. With more and more IoT devices coming online every
day (Gartner forecasts that there will be 20.4 billion connected devices worldwide
by 20201), the threat of DDoS attacks from increasingly sophisticated IoT botnets
will only grow.

DDoS and Software Defined Networking – In recent times, dynamic environ-
ments such as SDNs (Software Defined Networking) have been used frequently
to implement and validate various DDoS defense mechanisms. SDN seems to
be promising approach to remove the limitations of existing traditional DDoS
defense solutions but still they are susceptible to diversity of attacks that occur
in traditional networks, such as the attacks that target control and data plane [95–
97]. By exploiting the vulnerabilities in the controller or the communication links
between the switch and controller can lead to several attacks such DDoS [88] and
Host Location Hijacking Attacks [98]. So, there are possible attack scenarios that
make the current architecture of SDN non-secure, which requires more attention to
various security aspects of SDNs.

1http://www.gartner.com/newsroom/id/3598917

http://www.gartner.com/newsroom/id/3598917
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Fig. 7 Overview of an industrial control system environment

DDoS and Blackchain Technology – In some latest works, a company named
Gladius has come up with a solution to the DDoS problem by making use of a novel
blockchain technology [99]. Gladius provides a decentralized solution to DDoS
attacks by allowing participants to rent out their under used network bandwidth
in exchange for Gladius tokens. Network participants form “Pools” that monitor
requests and traffic to a website, therefore making it harder for any DDoS attacks
to occur. Website owners can even switch to larger pools as they grow in return for
increased protection. However, currently this technology is in its token sale stage.
It would take time before we can have the full-blockchain solution to the crippling
effects a DDoS attack.

Industrial Control Systems – a New Target Domain. Industrial control systems
(ICS) are classified as a cyber-physical system and are mainly used to control and
monitor physical industrial and infrastructure processes such as oil and gas pipeline,
power grid, and nuclear plants [100]. Figure 7 provides an overview of a typical ICS
environment. It consists of control center and field sites.

The physical processes are located at field sites and are monitored and controlled
via sensors, actuators, and programmable logic controllers (PLCs), equipped to
communicate with the control center remotely via different proprietary and open
ICS protocols such as Modbus, EtherNet/IP, and PROFINET. The control center
comprises of several ICS services including human-machine-interface (HMI),
Historian and Engineering Workstation. When the data arrives at the control center,
the HMI interprets and presents the data in a graphical user interface to a human
operator to facilitate in operational decisions. Control engineers use engineering
workstation to configure and program PLCs to define how the PLCs should control
a physical process.

Industrial control systems run 24/7 for continuous monitoring and controlling of
physical processes. These systems run 24/7 and their availability is the main concern
in CIA triad. In recent years these systems have been upgraded from the standard
serial bus systems to modern TCP/IP based systems, thereby getting connected with
larger networks such as corporate network and the Internet, and thus exposing them
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to cyber-attacks. Attackers target these systems to compromise their availability
and sabotage physical processes [101–104]. In particular, they can launch Denial
of Service attacks against ICS services, network, and embedded devices such as
PLCs at field sites. In particular, they can launch Denial of Service attacks against
ICS services, network, and embedded devices such as PLCs at field sites.

• ICS Services – Attacker exploit bugs and vulnerabilities in ICS services to
cause denial of service. For instance, ICS-CERT reported that Elipse SCADA
application fails when it receives data packets of DNP3 protocol with formatting
errors. The vulnerability is found in the DNP Master Driver [105]. Senthivel et al.
identify two attack scenarios that crash RSLogix 500 Engineering software when
the software attempts to retrieve the control logic from a target PLC [106, 107].
The first scenario involves man-in-the-middle attack between RSLogix and the
PLC. It intercepts the control logic traffic and replace a control instruction with
noise data such as 0xFFFF. Apparently, RSLogix cannot handle it and crash.
In the second scenario, attacker creates a well-crafted control logic program at
the binary level. It involves tempering the metadata related to the size of the
program. Attacker installs the program to a target PLC. Apparently, the program
runs successfully on the PLC but when RSLogix attempts to retrieve it from the
PLC, it crashes the software.

• Programmable Logic Controller – A DoS attack on a PLC device exploits
a vulnerability in a PLC component, such as firmware. Recently, ICS-CERT
reported a similar vulnerability on Siemens SICAM products. Attacker sends
crafted packets to port 2404/TCP to cause a target device to go into defect
mode [108]. Similarly, attacker sends crafted packets to Siemens SIPROTEC
Compact devices at port 50000/UDP to cause a denial of service [109]. To
recover the device, a manual reboot is required.

• Network Connectivity – Control operator monitors the physical processes
through HMI that receives data from PLCs periodically. A DoS attack targets
the communication link between the PLC and the control center using packet
flooding to exhaust the bandwidth of the link [110].

In summary, ICS security is a big concern and timely detection and prevention
of DDoS attacks in an ICS environment requires the attention of cybersecurity
research community. DDoS attacks are not only increasing in size but are becoming
more sophisticated in their makeup. This is largely due to a rapid expansion of
the contemporary digital world consisting of ever-increasing number of inherently
unsecured and connected devices presenting an ideal platform for the attackers to
overwhelm disrupt.
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Protection Against Semantic Social
Engineering Attacks

Ryan Heartfield and George Loukas

Abstract Phishing, drive-by downloads, file and multimedia masquerading,
domain typosquatting, malvertising and other semantic social engineering attacks
aim to deceive the user rather than exploit a technical flaw to breach a system’s
security. We start with a chronological overview to illustrate the growing prevalence
of such attacks from their early inception 30 years ago, and identify key milestones
and indicative trends which have established them as primary weapons of choice
for hackers, cyber-criminals and state actors today. To demonstrate the scale and
widespread nature of the threat space, we identify over 35 individually recognised
types of semantic attack, existing within and cross-contaminating between a vast
range of different computer platforms and user interfaces. Their extreme diversity
and the little to no technical traces they leave make them particularly difficult to
protect against. Technical protection systems typically focus on a single attack
type on a single platform type rather than the wider landscape of deception-based
attacks. To address this issue, we discuss three high-level defense approaches
for preemptive and proactive protection, including adopting the semantic attack
killchain concept which simplifies targeted defense; principles for preemptive
and proactive protection for passive threats; and platform based defense-in-depth
lifecycle designed to harness technical and non-technical defense capabilities
of platform providers and their user base. Here, the human-as-a-security-sensor
paradigm can prove particularly useful by leveraging the collective natural ability
of users themselves in detecting deception attempts against them.

1 Introduction

It is often posited that the user can be the “weakest link” [1] in information security,
because even the strongest technical protection can be bypassed or undermined
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if an attacker successfully manipulates a user into divulging a password, opening
a malicious file or visiting a compromised website. We begin by introducing the
concept of “semantic social engineering attacks” formalised as Semantic Attack
[31], which refers to a cyber threat targeting the user-computer interface as an
attack vector, circumventing traditional technical security controls through user
deception rather than by exploiting technical vulnerabilities. Common examples
include phishing emails and websites, drive-by downloads, file and multimedia
masquerading, domain typosquatting, malvertising and Trojan horse software to
name a few.

Semantic attacks target human nature as a unique and distinct vulnerability in a
computer system’s security by triggering key emotional, behavioural and cognitive
processes designed to elicit specific user response which allows an attacker to defeat
a system’s information security. Semantic attacks can be highly successful because
without the requisite training and conditioning for threat detection (consider an
operating system without the defense of antivirus scrutinising each and every system
call it is being asked to make), human nature tends towards trust rather than mistrust.
As a result, the threat is ubiquitous and the variation between attack vectors (such
as their degree of complexity and target platform) is extreme, ranging from state-
backed Advanced Persistent Threats employing multi-stage/platform attack vectors
to that of script kiddies and pay-as-you-go bots generating automated phishing
emails campaigns. Due to the vast problem space, attacks can be technically basic
[34, 39, 40], highly complex [41, 60] or a combination of the two [36, 61].

Over the years, numerous defenses have been proposed at scientific research level
to target exploitations such as website and phishing attacks [42–45, 62], as well as
at commercial level [5, 6, 18–20]. However, they almost always fail to consider the
wider problem space in which semantic attacks pose a threat, the result of which is
the design of technical mitigations to address very specific attack vectors, lacking
the flexibility to detect conceptually similar attacks across different platforms.
Furthermore, over the years traditional deception-based attacks, such as phishing
emails, spoofed websites and drive-by downloads, have shifted to new platforms in
social media [35], cloud applications [36] and near field communications [37], and
the advent of the Internet of Things (IoT) [38] will extend considerably the impact
of semantic attacks through threats to physical space. The more effective semantic
“cyber-physical” attacks prove [2], the larger the threat space becomes.

1.1 A Brief History of Semantic Attacks in Computer Systems

Semantic social engineering attacks first emerged in computer systems as early as
1989 when the “AIDS Information Introductory Diskette” Trojan [63] was sent
to a mailing group in which Dr Joseph Popp, the Trojan’s author, subscribed. To
gain access to a computer system, a diskette pertaining to contain information
about the AIDS virus deceived the recipients into inserting it into their system.
The diskette contained a Cryptovirus [64] which ransomed users for money by
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encrypting their systems files. Another noteworthy semantic attack appeared a
year later, introducing what we call today “Scareware”. The malware, aptly named
Nightmare [7], was distributed via diskettes called “Fish Disks” designed to share
applications between Amiga computer systems. On execution, every five minutes
Nightmare would hijack the computer screen for 0.8 s to display a full-screen image
of a skull with bullet wound and blood leaking out, whilst playing a loud shriek on
the speakers. The malware posed no obvious risk to user data, but the concept of
scaring/panicking a user would later be employed by many cyber criminals to force
users into opening malware or paying for fraudulent services [46]. In 1995, new
attacks were specifically designed to exploit users accessing resources over a new
open network, called the Internet. Domain investor John Zuccarini introduced the
concept of Typosquatting or Cybersquatting, where cyber criminals would purchase
domain names that were similar to those of legitimate websites. Users who mistyped
the domain name URL of a legitimate website would be redirected to a malicious or
fraudulent website. During the same year, service provider America Online (AOL)
experienced growing success with a popular instant messaging tool, which hackers
soon realised that it could be exploited, and developed an attack tool that lead to the
first use of the term “phishing”. AOHell [47] contained a “fisher” tool that enabled
hackers to steal passwords and financial information by generating instant messages
to random AOL users with content such as: “Hi, this is AOL Customer Service.
We are running a security check and need to verify your account. Please enter your
username and password to continue”.

Over the next decade, phishing attacks became widespread. In 2000, the infa-
mous ILOVEYOU “worm”1 contained a malicious visual basic script titled “LOVE-
LETTER-FOR-YOU.txt.vbs” [9], initially spreading through corporate Philippine
mailing lists and eventually affecting over 45 million computers systems worldwide.
This attack was copied a year later in 2001 by the Anna Kournikova worm, using
the same worm generating script [48]. The same year, the first known phishing
attack against a financial institution was discovered, where E-Gold users were
targeted with emails tricking them into entering their passwords into phishing
websites [10]. Leading up to today, the rapid growth of the Internet, multimedia
services and mobile platforms, have enabled semantic attacks to spread further into
Android devices [49], peripheral hardware accelerated by direct memory access [11]
(e.g., Thunderbolt and Firewire devices), file sharing networks [50], search engine
optimisation engines [65] and drive-by malware on websites [51], and the landscape
continues to expand. For example, the advent of online social networks and increase
in online social media has introduced a paradigm shift in Internet communication
where platform functionality promotes openness and information sharing amongst
users. This online social paradigm has enabled cyber criminals to take advantage
of “friend” recommendations, user “posts” and sharing of media or apps that are
replicated and automated with the network [12, 35, 52]. Also concerning is the
potential for semantic attacks to result in physical impact, through cyber-physical
and IoT systems.

1Note that here we use the term “worm” to refer to a malware with a semantic attack vector that
exhibits automated, self-replicating behaviour, as in [8].
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Fig. 1 Timeline of notable semantic attacks

In Fig. 1, we provide a timeline of high-profile semantic attacks identifying the
chronological emergence and persistence of different types.

1.2 Characterising the Extreme Diversity in Semantic Attacks

There exist over 35 individually types or variations of semantic attack, existing
within and cross-contaminating between different platforms and systems (Table 1).

2 The Scale of the Threat Today: Characterising the Impact
of Semantic Attacks

Semantic attack statistics have been dominated by phishing incidents due to their
widespread use by cyber criminals and consistent success in breaching computer
systems. A 2012 report by Trend Micro identified that over 90% of targeted malware
attacks discovered were initiated through spear-phishing [13]. In 2014, Social
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Table 1 Different types of semantic attack observed in today’s computer systems

Attack Pseudonym Description

Spam Irrelevant/unsolicited messages sent over the Internet to a large
number of users, often containing advertising scams

Phishing Attempt to obtain access to sensitive information by disguising as a
trustworthy entity in an electronic communication

Spear phishing Phishing attack designed to target a specific person and or
organisation

Pharming Installing malicious code on a personal computer or server,
misdirecting users to fake web sites without knowledge or consent

Whaling Type of phishing attack that targets high-profile end users such as
corporate executives, politicians and celebrities

QRishing Phishing style attack using quick response (QR) codes to distribute
malicious file/links

Blue snarfing Phishing attack enticing users to install malware which grants access
to target device via the Bluetooth protocol

Smishing Phishing style attack sent via mobile short message service (SMS)

URL spoofing Impersonating a websites URL address such as copying domain name
by exploiting bugs in web browsers

DriveyBy download Implanting a malicious file through programmatic manipulation of
scripts on a vulnerable web platform

Waterhole Targeted version of a DriveBy download attack, typically targeting
platforms a victim accesses

File masquerading Disguising a malicious file to appear as a legitimate file type

Multimedia masquerading Disguising a malicious application appear as multimedia (e.g., video)

GUI confusion A mobile application confusing users by impersonating as another
app (e.g., banking app) to obtain sensitive information

Adware Software that automatically displays or downloads advertising
material such as banners or pop-ups when a user is online

SSL spoofing MitM attack that intercepts HTTPS web requests, redirecting the
users to malicious and fake HTTPS website

Visual SSL spoofing Process of using fake SSL verification logos or browser GUI
components to visually masquerade as a secure website

Scareware Malicious program tricking a user into buying/downloading
unnecessary often malicious software (e.g., antivirus protection)

Rogueware Standalone malware program pretending to be a well-known program
or a non-malicious one in order to steal sensitive data

Malvertisement An online advertisement that incorporates or installs malware

WiFi evil twin A fraudulent WiFi access point that often spoofs other nearby access
points that appears to be legitimate

Rogue AP Wi-Fi access point installed on a network but is not authorized for
operation on that network and appears to be legitimate

Trojan horse Type of malware that is often disguised as legitimate software, such
as a game that is actually a key-logger

Self XSS Operates by tricking users into copying and pasting malicious content
into their browsers’ web developer console

Typosquatting Registering similar domain names which rely on typographical errors
when inputting a website address into a browser

(continued)
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Table 1 (continued)

Attack Pseudonym Description

Combosquating Form of typosquatting registering domain names that combine
popular trademarks with a string of words or phrases

RansomWare Type of malicious software designed to block access to a computer
system until a sum of money is paid, often using fear tactics

Tabnabbing A type of phishing where a website changes to impersonate popular
websites

Sharebaiting Enticing web content persuading users to share on their profile, often
used to spread fake apps and phishing URLs

Click jacking Concealing hyperlinks beneath legitimate click-able content, causing
the user to perform actions of which they are unaware

Like jacking Variation on clickjacking in which malicious coding is associated
with a Facebook Like button

Touch jacking Variation of clickjacking which applies to mobile devices where users
touch the interface instead of using a mouse or keypad

Cursor jacking Variation of clickjacking where users are deceived by means of a
custom cursor image and the pointer is displayed with an offset

Spamdexing Manipulation of search engine indexes where a website repeats
unrelated phrases to manipulate relevance or prominence

Torrent poisoning Intentionally sharing corrupt data and malware with misleading file
names using the BitTorrent protocol

DNS cache poisoning Process by which DNS server records are illegitimately modified to
replace a website address with a different address

Fake App Variation of trojan horse, rogueware, scareware on mobile devices
where a malicious app masquerades as a legitimate one

Fake plugin Malicious media plugin typically spread by through a fake video post
on social media posting

Madware Aggressive advertising placement in mobile devices photo albums,
calendar entries and notification bar

Browser extension malware Malicious browser-add similar to Trojan app that steals personal
information and/or add browser to attacker botnet

Engineer reported that 90% of the 129 billion emails sent daily are malicious.
Clicking on email links accounted for 80% of reported phishing attacks, and
phishing itself represented 77% of all socially-based attacks [14]. In 2015, Statista
reported that phishing and deception-based attacks accounted for 62% of all cyber
attacks experienced by companies world-wide [15], with 59% reported by US
companies alone [16]. Furthermore, the average time to resolve this type of attack
for a US-based company was 20 days [17], with damages of 12% for medium and
16% for large enterprises’ total operating costs. The Anti-Phishing Working Group
(APWG) produce yearly statistics related to the current trends across a multitude of
different phishing attacks that are reported from around the world to their online
phishing repository. We have compiled data from the APWG phishing activity
trends report archive [3] for years 2008 to 2016, illustrating in Fig. 2 that the number
of phishing reports received by APWG is dramatically increasing.
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Fig. 2 APWG phishing report statistics for years 2008–2016 [3]

The Internet Security Threat Report, a yearly security study produced by
Symantec, expands beyond traditional phishing statistics and organises semantic
attacks amongst four categories: mobile and IoT, social media and spam, web threats
and targeted attacks. Figures 2, 3 and 4 summarise a number of semantic attacks
and threats utilising deception techniques from years 2012 to 2016 [4]. For mobile
platforms, from 2012 to 2016 approximately 14.8 million apps were categorised
as malware; with a further 22.4 million apps categoried as grayware. Malware
and grayware require users to agree to install applications, granting aggressive
permissions to the applications on the device, irrespective of whether any further
deception techniques are used (e.g., during app usage); which indicates low user
awareness of mobile app vulnerabilities where users are likely to be deceived by
a lack of perceived threat. Social media attacks were consistently shown to be
propagated largely by users manually sharing posts and apps amongst friends and
groups, instead of automated “free offerings” (e.g., surveys and malvertisements)
that were dominant in 2013; further highlighting the vulnerability of users behaviour
in online social network platforms. Spear phishing campaigns were also observed
to have consistently increased over the period of 2013 to 2015, whilst the number
of recipients per campaign have decreased by an average of 25% each year, which
may indicate that attackers are developing methods for spear phishing which require
fewer targets for successful exploitation and are more difficult to detect. Whilst
spear phishing attacks continue to target the financial sector, attackers are now often
targeting the energy and health-care sectors too (Fig. 4).
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Fig. 3 Classification of mobile apps analysed by Symantec during 2012–2016 (left), Distribution
method of social networks and social media scams/attacks by percent from 2013–2015 (right) [4]

Fig. 4 Number of spear phishing campaigns and average number of attack recipients per campaign
from 2013–2015 (left), top industries targeted by spear phishing attacks in 2015, ordered by
majority percentage (right) [4]

3 Attacking the Weakest Link: Designing, Developing and
Launching Semantic Attacks

Towards a core and collective understanding of semantic attack composition,
beyond individual attacks on specific platforms, we start by exploring the spe-
cific characteristics which formulate the design, development and distribution of
semantic attacks. To illustrate the functional components of a semantic attack, we
employ taxonomy in [31], describing the generic schematic structures of semantic
attacks, which apply irrespective of specific attack vectors that may be used (e.g.,
specific platform user interface). Next, we apply this approach on notable real world
semantic attacks.

3.1 Generic Attack Structure

Semantic attacks, irrespective of attack vector, follow a generic functional structure
in terms of design and delivery [31]. The high-level structure can be seen as
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Fig. 5 High-level attack model showing the interactions between each behavioural function within
semantic social engineering attacks

comparable to any kind of cyber threat in that it consists orchestration, exploitation
and execution. Orchestration consists of user targeting (including information
gathering), distribution and automation parameters, exploitation is the application
of deception vectors (to elicit compromising user actions) and their technical
construction through the user interface, and execution is the functional interaction
required by the user during attack runtime and the persistence of the deception
vector(s) after the attack is complete. Below, we summarise each of these individual
elements as to their functional behaviour in semantic attack design and illustrate the
process in Fig. 5.

• Target description. The targeting parameters of the semantic attack. Typically,
this is a target user (an individual or organisation) or target platform. The former
constitutes “explicit” targeting, which requires tailored attack delivery and may
predetermine the method of distribution, automation and deception vectors to
employ after a information gathering phase. By comparison, a specific user
interface platform is a form of “promiscuous” targeting, as the attack vector
does not control who is exposed, the functionality of the target platform and
the behaviours of the users do (e.g., social media sharing).

• Method of Distribution. The means by which a semantic attack reaches a target
platform or user. There are two means of distribution: software or hardware,
the latter of which can also result in subsequent software executed distribution.
Hardware is always a local distribution vector (e.g., within physical proximity
of the user), while software is local (i.e., through a hardware interface) or
remote (over a distributed application and network i.e., the Internet). For local
hardware interaction, examples include direct memory access peripherals (e.g.,
Firewire), local hardware with software executed distribution is a system that is
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locally interfaced with a target system (as initiated by the user), with physical
communication and software execution (e.g., USB flash drives).

• Method of Automation. The degree of attacker supervision of the semantic
attack activation and administration. An attack can be fully automated by
predefining all its functional procedures in a format similar to worms, whereby
the attack contains all of the procedural code necessary to operate without spe-
cific attacker execution, interaction or administration. The degree of automation
depends on the functionality of the target platform and the behaviour of its
user base. For highly targeted attacks that require tailored deception vectors
which are meaningful to specific user(s) or organisational attributes, manual
attacker operation may be required. This includes activities such as specifying
when the attack is executed, or responding in real-time to user interaction (e.g.,
instant messaging). The degree of attack automation is dependent on the target
description.

• Deception Vector. The deception techniques designed to persuade the tar-
get user(s) into performing a compromising action. The deception techniques
developed for a semantic attack effectively represent the human exploitation
parameters which persuade the user into performing a compromising action (e.g.,
clicking on a URL, or opening a executable file). At a high level, deception
within a semantic attack has three modes. Firstly, the use of cosmetic, visually
convincing deception by masquerading as a legitimate entity (through a specific
user computer interface design), secondly behavioural deception by conforming
to system convention in respect to expectations of user interface functionality
and response to user interaction and thirdly a hybrid combination of cosmetic
and behavioural deception.

• Interface Manipulation. The technical implementation of an semantic attacks
deception vector(s). Interface manipulation is the technical means used to
establish a semantic attacks deception vector on a target platform’s user interface.
There are two ways in which this achieved, either through (ab)using legitimate
platform functionality or programmatically modifying and or spoofing it in order
to change appearance of behaviour.

• Executions steps. The number of functional steps an attack requires the user to
carry out in order to execute the exploitation payload. The primary interaction
with a semantic attack is the corresponding user action in response to exposure to
its deception vector(s). Depending on the attacks required users actions, this can
be a single step (e.g., a single user click) or multiple steps (e.g., multiple users
clicks) in order for the attacks exploitation to complete; or as the means direct
the user to another semantic attack in the attack chain.

• Attack persistence. The persistent level of deception after user exploitation.
After successful exploitation, it is rare for a deception vector to continuing
executing, as typically exploitation is a one-off procedure to forward the user
to another semantic attack in a attack chain or as the user action has enabled
execution of the intended attack payload. However, in some cases a semantic
attack will continually execute deception vectors, as is common with Scareware.
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Fig. 6 High-level structure of a semantic social engineering attack illustrated as series of linear
steps which together formulate the design, development and execution behaviour of a semantic
attack [31]

Fig. 7 Attack models for a single phase (top) and multi-phase (bottom) semantic attack. Here
each individual attack (e.g. semantic 1 . . . n), is formulated by and therefore contains the linear
structured criteria and corresponding parameters defined in Fig. 6

Semantic attacks follow the same functional structure, regardless of whether they
are executed as individual semantic attacks or chained together within a multi-phase
attack. Each individual semantic attack is distinguished by its functional elements
(as per Fig. 6), even if in practice certain parameters, such as the target description
and method of distribution, are shared as a consequence of attack chaining. To
illustrate this, Fig. 7 provides an abstract example of a single semantic attack against
a chain semantic attack model, and Fig. 8 provides examples of how multiple
individual semantic attacks form a multi-phase semantic attack through chaining.
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Fig. 8 Examples of single (top) and multi-phase semantic attacks (middle and bottom). Here the
waterhole vulnerability is a one step attack requiring that a target simply visit the infected website
for the attack to complete. For the typosquating attack, after a user visits the website, they are
then prompted with a scareware download, which formulates a second phase semantic attack in
the attack chain. For the spear phishing email, the user must download a masqueraded file, which
consitutes the second phase semantic attack through user execution of the file to complete the
attack

3.2 Semantic Attacks in the Press

In the following attacks, we employ these generic attack structure principles to
provide a low-level breakdown of three notable semantic attacks: Spear phishing,
QR code phishing and multimedia masquerading on social network platforms.

3.2.1 The Podesta Spear-Phishing E-mails

During the 2016 United States presidential election race, John Podesta, former
chief of staff to Bill Clinton (and at the time chairman of the 2016 Hillary Clinton
presidential campaign), received an email purportedly from Google with a warning
that his Gmail account had received a sign-in attempt from an IP address in Ukraine.
It advised Podesta “you should change your password immediately”, including a
blue “CHANGE PASSWORD” box to be clicked. This attack was part of a chained
semantic attack process, whereas once this button was clicked, Podesta’s Gmail
account was redirected to a Google login phishing page, where his credentials were
entered and ultimately stolen, giving the attackers access to over fifty thousand
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Table 2 Podesta spear-phishing e-mail attack

Spear phishing e-mail (Fig. 9)

Target This specific e-mail had been crafted for John Podesta, using the salutation “Hi
John” and using a provocative warning associated to a falsified connection attempt
from a politically sensitive country

Distribution The e-mail was distributed to the user’s Gmail inbox through the SMTP protocol
from the attacker’s own mailservers

Automation Unlike typical spear phishing attacks which carried out manually, the particular
attack parameters seemed to have been programmed automatically as the same
attack vector was exposed to multiple political candidates during the US
presidential election race

Deception The attack mimicked both visual and behavioural functionality, by (1) spoofing a
legitimate looking Gmail address, (2) copying exactly the Gmail email template,
(3) creating what appears to be a genuine Google URL from Bitly shortening
service where the attack then leads to a second semantic attack which spoofed the
Google webpage used to reset an account passwords. These deception vectors were
implemented by (1) pragmatically modifying the SMTP (or registering the
corresponding domain if available), (2) copying the source code from the Gmail
email template, (3) abusing Bitly’s inbuilt functionality to create a custom URL
string

Execution The attack required the target user to perform a single action by clicking on the
“CHANGE PASSWORD NOW” button, at which point the exploitation of the
email is complete and the user is redirected to a phishing page designed to harvest
their account login credentials

Persistence After the email attack as successful (by clicking on the link in the email body), this
attack is completed and exhibits no further persistence as the user is redirected to a
phishing website semantic attack as the next stage in the attack chain

emails with highly sensitive exchanges and data related to the Hilary Clinton
presidential campaign. In Table 2 we take a closer look at the low-level configuration
of this spear phishing email, illustrating the attacks visual deception in Fig. 9.

3.2.2 WhatsApp “Jack” (QRLjacking)

In 2016, ethical hacker Mohamed Abd Elbaset demonstrated how to hack the
WhatsApp web connectivity service (which is associated to a WhatsApp account)
by employing a variation of QR code phishing (Qrishing). Unlike previous QRishing
attacks which opted to generate QR code with malicious URLs, this attack employs
the concept of QR link jacking where the attacker creates a legitimate client side
browser session to WhatsApp web service to generate a QR code and forwards
this legitimate QR code through a phishing webpage to the victim. Here, QR
link phishing would normally be logically ordered after a phishing email in a
chained set of semantic attacks. If the attacker has access to the victim’s network,
a phishing email can be replaced by using ARP cache poisoning to forward
the victim to the phishing website. On scanning the legitimate QR code, the
victim’s WhatsApp account on their mobile device registers with the WhatsApp
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Fig. 9 Gmail spear phish attack against US former chairman of the 2016 Hillary Clinton
presidential campaign. The top email body illustrates the spoofed gmail login alert with a change
password button, with the bottom image showing the malicious link obfuscated by the button

service, which subsequently allows the attackers to register their connection to the
WhatsApp web application with the victim’s accounts. This results in the attacker
having full access to any data transmitted from the victim’s WhatsApp application
on their device (Table 3).

3.2.3 The Case of the Facebook “Hungry Bear”

In 2009, there was an incident in a Berlin zoo where a lady jumped into a polar
bear enclosure, which she subsequently survived. Soon, a Facebook multimedia
masquerading scam emerged, using a doctored image, which appeared to be
clickable video. The video was an image with a superimposed play video icon
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Table 3 QRcode phishing link jacking attack

Spear phishing e-mail (Fig. 10)

Target Whilst designed for the WhatsApp platform, the recipient is explicitly defined as
they must have a WhatsApp account to exploit and the attacker is required to
distribute a phishing attack in order to expose the intended target to the QR code

Distribution The QR WhatsApp authentication code is distributed through a mirrored website
that maintains a persistent link to the attacker original client side connection

Automation The attack is fully automated once established through a looping script mirroring
the attackers client connection to WhatsApp web authentication page, requiring no
further intervention from the attacker

Deception The QR code and mirrored phishing website employ a combination of visual and
behavioural deception. The QR code is a legitimate web authentication request,
which when scanned responds correctly to the user authenticating their WhatsApp
mobile account with the web service

Execution The QR link jacking requires programmatic manipulation of the web
authentication page generating the QR code for WhatsApp. The attacker must
mirror the web page and create a script to continually update the QR code which is
refreshed every 20 s on the WhatsApp web authentication

Persistence Once the user has been duped into accessing the phishing website created by the
attacker which hosts the mirrored QR code, they simply need to scan the QR code
to generate an authorisation token which the attack requires to gain access to their
account data. After scanning the code the attack execution is complete and the
deception vector of the QR code ceases

Facebook video masquerading (Fig. 11)

Target The attack targets all Facebook users

Distribution The fake video is distributed through social media profile timelines, provided as
feeds to a profile’s subscribers or friends through the Facebook EdgeRank
algorithm; this increases the virality of the fake video post based on popularity
such as post comments and links

Automation The video masquerading post is automated once launched, whereby user sharing
behaviour enables the video to be spread through inbuilt Facebook functionality.
The process of redirection to a fake video website also requires no attacker
intervention. It is a URL that activates once the image is clicked on

Deception By superimposing the Facebook specific play video button on the image and
augmenting the post with fake comments, the video masquerading attack utilises
crude visual deception

Execution The attack is constructed by simply creating a timeline post from a Facebook
account and attaching the doctored image; using standard inbuilt Facebook
functionality to embed the image as a hyperlink to an external website

Persistence Once the fake video image is clicked by a user, the Facebook video deception
vector is complete and the victim is forwarded to the secondary semantic attack
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Fig. 10 WhatsApp QR link hijacking attack (initiated via sending a target victim a phishing
website link). Here the spoofed QR code is automatically refreshed through the Javascript that
has been copied from the legitimate WhatsApp authentication page

button, which redirected users to a secondary semantic attack in the form of a typical
scam video webpage coercing the victim into completing a pop-up survey for access
to the video and installing malware.

4 Methods for Defense Against Semantic Attacks

The extreme diversity of semantic attacks has led to many types of defenses
proposed, often with multiple techniques developed for a single type (especially,
phishing emails). Most defense mechanisms aiming to protect against the wider
semantic attack space remain experimental products of research without integration
or long-term empirical validation. So, the problem space is left with research and
commercial tools which address only a small portion of the problem space. Here,
we analyse the different defense approaches. We have already shown that individual
types of semantic attack, irrespective of attack vector, are composed of the same
functional elements. We have illustrated that individual semantic attacks can be used
in attack chaining to direct users from one semantic attack to another to deliver



Protection Against Semantic Social Engineering Attacks 115

Fig. 11 The “Hungry Bear” Facebook video masquerading. The top image shows the fake
Facebook video post of a bear allegedly attacking a woman, which once clicked directs the user to
a new web page prompting the user to complete a survey that harvests sensitive user information
to watch the spoofed video (bottom image)

the desired attack payload, and that in this composite attack architecture, some
attack parameters such as targeting and automation can be shared across attacks.
By focusing on both technical and non-technical mitigation concepts, rather than
conducting an exhaustive search of the defense literature across all possible attack
vectors (of which there are many, see Table 1), here we take a view of defense
according to key concepts that would address the wider semantic attack problem
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space. This is because relying solely on the low-level functionality of any single
defense is insufficient as a means for defending against the wider threat space. Here,
we consider defense across three complementary dimensions, which may offer a
holistic defense architecture against semantic attacks: Semantic attack killchain for
targeted defense simplification; principles for preemptive and proactive protection
for passive threats; and platform based defense-in-depth lifecycle designed to
harness technical and non-technical defense capabilities of platform providers and
their user base.

4.1 Semantic Attack Killchain: Defense Simplification

A primary aim for lasting and practical defense against semantic attacks is to
address a wide range of attack vectors without introducing considerable complexity.
Intuitively, it is possible to limit the number and types of user interfaces in which to
target defense mechanisms by focusing defense on initial (i.e., entry) attack vectors,
that if mitigated, would serve to kill a wider semantic attack chain. In line with
Lockheed Martin’s killchain model [70], we refer to this as the semantic attack
killchain. For example, consider a phishing email containing a URL to an attack
website, where once clicked the user is forwarded to a drive by download resulting
in infection with a Trojan horse spyware application. Focusing on the individual
semantic attacks in the attack chain (e.g., the drive-by download), rather than its
possible permutations (phishing email → attack website → drive-by download →
spyware), simplifies the objective of defense. In the above example, the spyware
would be thwarted by blocking the phishing email or the attack website or the drive-
by download.

Figure 12 illustrates how a semantic attack killchain architecture is constructed.
Firstly, the aim is to identify the different entry vectors by which a semantic
attack may target and reach an organisation/individual (which may change based
on the environment context and platforms used). The purpose is to help establish
an indicative threat landscape by highlighting the means by which both single and
multi-phase semantic attacks pose a risk to technical security. Determining the
potential entry vectors of semantic attacks then simplifies the strategic placement
of defence mechanisms to both address semantic attacks that rely on attack chains
in order execute certain deception vectors, as well as minimising the number
of different defence systems required to be implemented to address such threats
specifically. In Fig. 13, an example of how a semantic attack killchain would
function is illustrated.

Table 4 provides an indicative list of common user interface platforms required
to distribute different semantic attacks. For the instant messaging and website
distribution categories, we include functionality observed in modern social media
and networking sites, chat forums and message boards, whereas for the Appstore
category we include the functionality provided by online webstores, appstore and
app marketplaces for mobile devices. The table shows that prevalent user interfaces
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Fig. 12 The semantic attack killchain architecture aims to simplify the object of defence by
providing a means to identify key platform entry vectors for semantic attacks. The aim is to design
and implement defences which address a wide range of attacks whilst reducing the complexity of
security mechanisms employed

are website platforms, followed by email and instant messaging platforms. However,
for an attacker to initiate a targeted user attack (Target Description = “Explicit”),
direct communication with a specific victim user is always required. Therefore,
the sole use of a website or appstore interface as the primary distribution for
user targeting becomes impractical for attackers as it limits the types of attack
vectors available – especially for targeted attacks (thus introducing the need for
an attack chain). For instance, if a website were the primary distribution means
for a targeted exploit, the attacker may need to develop a complicated waterhole
attack after finding a vulnerable platform that their target visits, ensuring that the
deception vector for the target only activates for their specific browser’s user agent
string; this approach is of course complex and time consuming and therefore of less
practicality to threat actors. In the same sense, for an appstore, or network (Net)
or hardware (H/W) interface, simplicity is reduced by the need to direct the users
through some means to these platform types. As a result, attackers often first rely on
an initial unsolicited communication vector as distribution dependency in an attack
chain, such as the use of email or instant messages containing a link to the target
platform where a secondary semantic attack is positioned. As a basic high-level
example of defense simplification against targeted semantic attacks specifically, for
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Fig. 13 Here an (1) abstract semantic attack chain from Table 7 is illustrated to show how a
semantic attack consisting of multiple phases can be effectively nullified by addressing defence
against the attack parameters of its first phase. By example, using the spear phishing threat example
from Fig. 8 (2), we can see that by simply blocking the spear phishing attack as the first phase of
the semantic attack chain, all subsequent phases and attack vectors can be averted. Equally, by
blocking a malicious URL on a website, a malicious Dropbox share hosting PDF file malware can
be also be prevented from deceiving the user into downloading and opening the file (3)

unsolicited targeted attacks (e.g., attacker directly contacts the target) the killchain
can be reduced from 28 to 9 different attacks. The corresponding attacks and
distribution platforms are shown in Table 5. The number can be further reduced if an
attacker does not have control of a website for a waterhole and Bluetooth snarfing
is mitigated by simply turning off Bluetooth. Further analysis of Table 5 shows that
by developing defense mechanisms for email or instant messaging platforms would
address 6 of the remaining different semantic attack vectors.

For completeness, in Table 6 we expand beyond the key killchain defences
identified in Table 5 by further identifying applicable protection mechanisms that
have been proposed for the wider landscape of different semantic attacks (Table 1).
While we have no expectation to provide an exhaustive literature characterisation
for such a long list of attacks, here, a sample of defense mechanisms and literature
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Table 4 Methods of distribution required to directly exposure target users to corresponding
semantic attacks

Attack vector E-mail Instant message SMS Appstore Website
H/W
interface Net interface

Phishing ✓ ✓ ✓ ✓ ✓

Spear phishing ✓ ✓ ✓ ✓

QRishing ✓ ✓ ✓ ✓ ✓

Bluetooth
snarfing

✓

Smishing ✓

DriveyBy
download

✓

Waterhole ✓

File
masquerading

✓ ✓ ✓ ✓

Multimedia
masquerading

✓ ✓ ✓

GUI confusion ✓

URL spoofing ✓ ✓ ✓ ✓

Visual SSL
spoofing

✓ ✓

Scareware ✓ ✓

Malvertisement ✓ ✓

WiFi evil twin ✓

Trojan horse ✓ ✓

Self XSS ✓ ✓ ✓

Typosquatting ✓

Combosquatting ✓

Tabnabbing ✓

Sharebaiting ✓

Click jacking ✓

Cursor jacking ✓

Spamdexing ✓

Torrent
poisoning

✓

Fake app ✓ ✓

Fake plugin ✓ ✓

Malicious
browser add-on

✓ ✓

papers on each of these attacks provides a useful tool for evaluating the current
protection mechanisms against these threats. Here, we aim to identify existing
approaches to defence that can be employed in unison with the semantic attack
killchain to establish a practical and selective means of holistic defence against
semantic attacks.
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Table 5 Example of reduced semantic attack vectors by killchain platform defense

Attack vector
Primary
distribution Applicable defences

Phishing Email
IM
SMS
H/W

Machine learning [86, 89, 90, 99]
User awareness [77, 78, 85, 88, 95, 98]

Spearphishing Email
IM
SMS
H/W

Machine learning [84, 86]
User awareness [78, 92]

Smishing SMS Machine learning [71]

File masquerading Email
IM
Website
H/W

Integrity checking [83]

Multimedia masquerading IM
Website

Dynamic and static analysis [114]

Bluetooth snarfing Net Authentication/platform lock-down [100]

Waterhole Website Machine learning [72, 74]
Dynamic analysis [73]

URL spoofing Email
IM
Website

Machine learning [87, 97]
User awareness [77, 78, 85, 88, 95, 98]

Visual SSL spoofing Email
Website

Heuristic scanning [94]

The examples in Table 5 largely agree with recent commercial defense prod-
ucts focusing on messaging platforms. Currently, most major email (Gmail [23],
Microsoft Outlook [24], Yahoo [22]) and antivirus (Norton [25], Kaspersky [18],
Sophos [20]) providers claim to have integrated robust detection capabilities for
email threats.

In general, the utility of the semantic attack killchain can be expanded as a func-
tion of defense strategy across multiple and independent platforms, where platform
providers aim to simplify their own semantic attack security by focusing protection
mechanisms to address specific user interface functionality that would also serve
to thwart other potential deception vectors that this may lead to through attack
chaining. For instance, in the case of the social networking platform Facebook,
focusing defense measures on Facebook Messenger as a distribution mechanism
to plant malicious links to other semantic attacks within Facebook (e.g., Facebook
pages with malicious content, fake Facebook videos, file masquerading etc.) or
external phishing websites would serve as a killchain that simultaneously addressed
multiple deception-based threats distributed on or via the Facebook platform.
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Table 6 The application of defence

Attack pseudonym
Primary
distribution Defence category

Spam Email
IM
SMS, social media

Machine learning [86, 89–91]
User awareness [77, 78, 85, 88, 98]
Sandbox [96]

Pharming Email
IM
SMS

Machine learning [86, 89, 90]
User awareness [77, 85, 88, 95, 98]

Whaling Email
IM
SMS

Machine learning [86, 90]
User awareness [77, 85, 88, 95, 98]

QRishing Email
Website
SMS

Machine learning [106]

DriveyBy download Website Machine learning [72, 74]
Dynamic analysis [73]

GUI confusion Mobile app Machine learning/user awareness [93]
Static analysis [82]

Adware Website, app
marketplace

Sandbox [105]

SSL Spoofing Website Machine learning

Scareware Software app Machine learning [103, 104]

Rogueware Software app Sandbox [105]

Malvertisement Social media,
website

Machine learning [115, 116]

WiFi evil twin Net Integrity checking [80]
User awareness [79]

Trojan horse Software/App Sandbox [75, 76]

Rogue AP Net Integrity checking (RTT analysis) [107]

Self XSS Browser Integrity checking [117]

Typosquatting Browser Machine Learning [118]
Integrity checking (rule-based) [119]

Combosquating Browser Integrity checking (rule-based) [119]

RansomWare Software app Sandbox [109]
Machine learning [110]
Formal methods [111]

Tabnabbing Website Machine learning [108]

Sharebaiting Social media
Website

User awareness [81]

Click jacking Social media
Website

Integrity checking [101]

Like jacking Social media
Website

Integrity checking [123, 124]

Touch jacking Social media
(mobile)
Website (mobile)

Integrity checking [101, 123, 124]

(continued)
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Table 6 (continued)

Attack pseudonym
Primary
distribution Defence category

Cursor jacking Social media
Website

Integrity checking [123]

Spamdexing Search engine Machine learning [120, 121]
Heuristic scanning [122]

Torrent poisoning Torrent software Integrity checking (reputation scoring) [125]

DNS cache poisoning DNS server Authentication/integrity checking [102]

Fake app Mobile app
marketplace
Side-loaded
install

Machine learning/user awareness [93]

Fake plugin Browser Dynamic and static analysis [114]

Madware Mobile app
marketplace
Side-loaded
install

Machine learning/user awareness [93]
Static analysis [82]

Browser extension malware Browser Static analysis [112] Integrity checking [113]

4.2 Principles for Preemptive and Proactive Protection Against
Semantic Attacks

The use of a semantic attack killchain helps to simplify the placement and scope
of defense against semantic attacks by reducing to what kind of platforms and
where in those platforms to place defenses; with the aim to reduce the diversity of
where an attacker can initiate the exposure of a semantic attack on a given platform.
However, the killchain method alone cannot cater for the unpredictability of user
access to different computer platforms through passive activity. That is, where a
user inadvertently exposes themselves to a semantic attack through their computing
habits and behaviour. For example, the effectiveness of a semantic killchain
blocking certain semantic attacks by placing defenses within an email platform is
effectively bypassed if a user chooses them self to access a malicious website or
application directly, without being coerced to by an attacker. It is necessary therefore
to design defenses to protect against user activity and behaviour which may
expose users to passive semantic attack threats. Namely, preemptive (prevention of
semantic attack execution) and proactive (detection and treatment of semantic attack
exposure) system security. However, it remains a continued challenge to develop
best practice preemptive and proactive defense techniques when their exists such
extreme diversity between semantic attacks, even when they employ conceptually
similar deception vectors across multiple disparate platforms. To address this
complexity, it is valuable to revisit the generic semantic attack structure in Sect. 3.1
and analyse each modular component of a semantic attack to develop insights
for establishing generic principles of preemptive and proactive defense that are
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Fig. 14 Defense considerations with the generic semantic attack model. Here, the semantic attack
model is employed as a template framework to develop defence measures against key aspects of
an attack’s construction and behaviour

independent of individual attack vectors. Below, we provide instructional examples
for eliciting key parameters that aid the construction of preemptive and proactive
defense mechanisms based on each generic semantic attack component, as well
providing corresponding examples of defense systems that have been developed
in research and commercial platforms. Figure 14 summarises the key defense
considerations for each individual component of a semantic attacks structure.

• Target description. Distinguish between the different of targeting parameters
across a range of semantic attack to identify both distinct and common conditions
for exposure. For example, whether a user is at risk due to their identity (so
that these attributes can be monitored and evaluated), or whether a users passive
computer (whether personal or work related) usage inadvertently exposes them
to certain semantic attacks.
Recent advances in the detection of spear phishing email have demonstrated that
by monitoring explicit user attributes and interactions in email content, corre-
sponding meta-data can be learned proactively to generate anomalous behaviour
facilitating the detection of spear phishing. For example, in 2015 researchers
Stringhini and Thonnard developed a prototype spear phishing classification
engine which collected and profiled behavioural features associated to email
writing style, composition, communication context (e.g., time/date, email chain,
contact interaction) within a support vector machine learning system to detect
compromised email accounts. Similarly, commercial security vendor Barracuda
[21] have introduced a spear phishing detection system called Sentinel that
monitors an organisations communication history based on specific user email
interactions as a context feature-set to train an artificial intelligence system to
predict and prevent future attacks.

• Method of Distribution. Identify platforms that are involved in an attack to
provide defense developers with the insight to choose which remote (e.g.,
involving a network) or local system to monitor to determine where best place
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the defense mechanism. Establish patterns in distribution between systems, such
as shared functionality (e.g., cross-site advertising plugins) to highlight where
functionality supply chains open up a semantic attack distribution vector. Again,
guiding developers as to points of vulnerability within a platforms user interface.
Stringhini et al. have shown that by monitoring the redirection path taken to reach
a web destination effectively identifies attack platforms involved in a malicious
website, which are intentionally obfuscated from blacklists [56]. Instead of
positioning defense locally on a web browser platform which scrutinises physical
website features, the researchers demonstrated that patterns in HTTP redirection
can be used as a distributed means of detection through network-based analysis;
hence informing developers that such detection may be implemented within
network security systems monitoring DNS and HTTP requests.

• Method of Automation. The type of automation exhibited dictates to a large
degree the response mechanism or the type of data that can be collected for
its detection. For instance, an attack that is fully automated is likely to leave a
fingerprint of behaviour that can be used to develop attack signatures, whereas an
attack that is conducted manually will benefit from focusing on specific attacker
behaviour.
In 2014, an example of measuring automated attack procedures by Ruskov
et al. demonstrated how by dynamically monitoring the sequence of actions
within a semantic attack can help to model user and attacker behaviour through
simulation. This process can then be used to facilitate the development of
knowledge-based defense systems that can more efficiently detect deception-
based threats through enumeration of automatic attack procedures.

• Deception Vector. Establish the different deception vectors possible on a
platforms user interface so that developers and researchers can pinpoint the
mechanisms by which an attacker can manipulate the visual and/or system
behaviour to “trick” the user into committing a compromising action.
As susceptibility to deception vectors triggers user exploitation, it is generally
agreed that semantic attack education is a core element of defense-in-depth
against semantic attacks where technical mechanisms fail to prevent or proac-
tively detect threats. As a result, research has explored interactive training
through bitesize quizzes, test and games and attack simulations to maximise the
effectiveness of learning [57, 58, 62], some of which have empirically proven to
reduce susceptibility to deception vectors and have been converted into popular
commercial offerings, with examples including PhishGuru [26], Anti-Phishing
Phil and Phyllis [27] and PhishMe’s Simulator [28] applications. However, most
commercial solutions for security awareness training focus almost exclusively on
phishing emails and websites, which constitute only a small portion of different
semantic attacks possible deception vectors. Where research has explored further
deception vectors in other attacks, these remain largely as prototype products.
Moreover, the type of awareness training can vary just as much as the diversity of
different semantic attacks if training is based on specific attack vectors rather than
general concepts of good cyber hygiene; the prior of which can become outdated
quickly. Therefore, where possible it is important that embedded awareness
training and user interface security indicators are integrated both individually
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and across interdependent platforms based on generic semantic attack principles
rather than specific attack vectors.

• Interface Manipulation. Identify whether the deception vector occurs in code
or by abusing intended user space functionality, to shape the design of a defense
system and to narrow down its scope.
To prevent or detect deception vectors without relying on the effectiveness of user
awareness training requires platform developers to pinpoint vulnerabilities in the
user interface where it may be (ab)used to execute deception vectors, whether
through programmatic manipulation or intended user space functionality. In
both cases, preemptive functions have been explored in research [53] for
the android operating system to block malicious apps executing visual and
behavioural deception through spoofing a legitimate applications appearance.
The preemptive defense was implemented by capturing and analysing application
program interface calls to the android graphic user interface to classify malicious
behaviour. In the commercial space, the use of sandbox environments has
gained popularity to interrogate the legitimacy of user interface functionality, for
example as to whether certain functions result in potentially malicious behaviour.
For instance, most modern web browsers employ sandbox technologies to
isolate prevent website JavaScript coding from manipulating browsers’ visual
and behavioural properties, examples include the presentation of URLS in the
address bar and the format of visual user security indicators such as the level of
websites transport layer security. In the majority of cases commercial security
technologies focus on preemptive programmatic manipulation rather than the
misuse of normal user functionality.

• Executions steps. Execution steps: An attack that relies on more than one step
can potentially be detected more easily than a single-step one and before it
completes by looking for traces of its initial steps. It may also be thwarted by
preventing even one of the compromising actions that a user needs to be deceived
into committing.
Recent advances and greater uptake in the FIDO authentication protocol
[29] has demonstrated robust proactive defense against phishing attacks, by
enforcing two-factor authentication integrated between multiple architectures.
Successful deception will not always result in user account compromise as the
FIDO protocol employs temporal session keys generated by a second factor of
authentication always available to the user (typically biometric).

• Attack persistence. Contrary to one-off deception attempts, persistent ones
may have a high chance of succeeding in their target but could also help a
learning-based defense system (or platform user) to gradually identify its pattern
of behaviour and report or block it.
Whilst persistent deception for a singular semantic attack is uncommon, for
Scareware attack vectors in particular persistent deception forms part of the
exploitation payload. In 2011, Shahzad and Lavesson [54] proposed a machine
learning approach based on mining variable length instruction sequences
as a means for detection of persistent attack behaviors. In 2013, Microsoft
demonstrated high detection accuracy in a prototype system that identified
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Table 7 Summary of preemptive and proactive defenses based on generic semantic attack compo-
nents

Attack component Mechanism Preemptive Proactive Practicality Maturity

Target description Integrity checking ✓ ✓ P + O Medium

Method of
distribution

Platform
monitoring

✓ ✓ P + O Low

Method of
automation

Threat modelling ✓ O Medium

Deception vector User awareness
training

✓ ✓ O Low

Interface
manipulator

Platform sandbox ✓ P+O High

Execution steps Cross platform
AAA

✓ P+O High

Attack persistence Machine learning
classification

✓ ✓ P + O Low

persistent patterns in visual scareware deception through image detection with
Logistic Regression using stochastic gradient descent [55].

Table 7 summarises the types of preemptive and proactive defenses, according
to the generic functional elements of a semantic attack, their practicality for both
the personal (P) user and organisational (O) operating environment, including their
general maturity as defense solutions at the time of writing.

4.3 Platform-Based Defense-in-Depth Lifecycle

A defense-in-depth lifecycle for user platforms is intended to provide a multi-
faceted framework approach for effectively implementing semantic attack defense.
Its primary aim is to establish key roles and responsibilities for different components
of a system (e.g., platform provider, security, developer and users) that contribute
holistically to defense against semantic attacks. The platform defense lifecycle does
not just represent a specific software or hardware platform providers’ (e.g., social
media or app vendor, email or website host), but also includes any organisational
context providing access to user-interface platform(s) for their incumbent user base.
In both scenarios, the lifecycle applies as a framework to provide through life
defense for preemptive and proactive defense measures against semantic attack
threats by establishing the ecosystem of responsibility which can be utilised
to harness different defense capabilities through each functional element of the
lifecycle.

In Fig. 15, we illustrate three key roles: platform developer, platform security
and platform user, which form each element of a platforms defense lifecycle against
semantic attacks. Whilst each role is distinct in its own right (e.g., contribution to
defense and dependencies for its utilisation), this is not intended to indicate an
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Fig. 15 The semantic attack defence life cycle consists of three continuously interacting defence
functions: secure platform development, user threat reporting and platform security systems; which
in combination aim to provide holistic and complementary preemptive and proactive protection
against semantic attacks

implicit separation of the particular role amongst different entities, as each role
in the lifecycle can exist in the same organisation. As an example, Facebook is a
independent social network platform which implements internal functions for each
role described, but for the Facebook platform and users only. However, within an
organisational environment, each role may serve as a holistic function across all
platforms that the organisation hosts or makes available to their user base. So,
the lifecycle is intended as a high-level functional model that is applicable across
multiple contexts to describe how to combine the capabilities of each type of
platform role for defense against semantic attacks. Below, we elaborate on each
role as to their defense function:

• Platform developer. Developers are responsible for programming both the inter-
nal and user interface functionality of a platform that is both secure and resilient
to technical threats or abuse of intended user space functionality that would
result in deception vectors for semantic attacks. Platform developers can employ
the Secure Software Development Life cycle (S-SDLC) framework to design
and integrate security considerations systematically into the core requirements
and design of the platforms architecture, as well as utilise threat classification
from system and user security telemetry. The following S-SDLC life cycle
stages provide indications of activities to be carried out when introducing new
user interface functionality or applying security patches against deception based
threats.

– Requirements: Define intended user space functionality and its expected
limitations to establish any possible attack surface through misuse. This requires
documenting system-to-system and system-to-user interactions which form the
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platforms system of interest, then identifying how and if these interactions affect
other related platforms within the deployment environment.

– Design: Develop user interface threat models which consider different
elements of the platforms design. Highlight potential weak spots in the user
interface that may be targets for misuse or vulnerabilities in data representation
and transfer (within and externally from the platform) which can be used to inject
toward or extract data from target users.

– Coding: Build programmatic determinism through static code analysis to
establish confidence that the platforms programmatic features do not force the
platform to exhibit visual or behavioural deception vectors if targeted by spoofed
or injected data on the user interface (e.g., where a graphic or physical button
may be (ab)used through normal user usage).

– Testing: Utilise “fuzzing” based test within user interface scenarios where
different types of behaviour are arbitrarily executed as means to elicit anomalous
system responses or situations which can form the basis for a deception vector.

– Release/Maintain: Implements processes and procedures from the platforms
security monitoring capability as part of continual integration to support the
delivery of telemetry based patching (both system and user awareness based)
against internal as well as external platform vulnerabilities.

• Platform security. The security role within the platform defense lifecycle is
responsible for both implementing preemptive security measures (e.g., to prevent
technical vulnerability exploitation or platform misuse), as well supporting
proactive defenses through monitoring and collecting system and user telemetry
to aid in the detection of unknown or emergent threats. The latter of which feeds
into preemptive defense through activation of security rules (e.g., blocking an
activity), as well as providing crucial platform analytics and classification data
that is forwarded to platform developers to produce platform patches and or to
develop future secure user interface functionality. For semantic attacks, unlike
traditional platform security controls such as intrusion detection systems or
firewalls, the platform security requires to monitor and respond to key measurable
elements of the user interface via telemetry produced by the platform itself and
by the user base who access it.

• Platform user. Sole reliance on platform security alongside external technical
defense mechanisms provided by platform users is often insufficient as a means
of defense for detecting the vast range of semantic attacks, especially when
deception vector utilises legitimate user space functionality [33]. It is imperative
that outside of technical controls employed, that user telemetry is also harnessed.
Here, the contribution of platform users for semantic attack defense is twofold.
Firstly, platform users generate activity that can be analysed to determine if
their behaviour is consistent with malintent or victimisation. Platform-based
user activity creates meta-data that has been shown to be useful in a number
contexts where human activity can be used for establishing situational awareness
in natural disasters [59]. From a security standpoint, the same method can be
used to identify where user activity is consistent with exploitation by a semantic
attack or indeed the construction of one. The second utility of platform users
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is their ability to report security threats, where a growing trend in platform
security to address semantic attacks is to provide a means for users to report
suspected threats. Most major email and browser platforms now provide inbuilt
mechanisms for users to report phishing attacks or malicious content, with
various external security companies developing enterprise platforms, such as
PhishMe Reporter and Wombat Security PhishAlarm. In general, with access to
both types of user telemetry (passive platform usage and active threat reporting),
platform security and developers are provided with rich analytics that can be used
to classify and intercept suspected threats in online platform defense systems or
through patching of vulnerabilities in the user interface.

4.4 Defense in Hindsight

Taking in to consideration the three dimensions of defense we have discussed, here
we evaluate how these defense approaches would have provided defense against the
three real world semantic attacks illustrated in Sect. 3.2.

• Podesta Emails.

– Semantic Attack killchain: By detecting and blocking the Google phishing
email, the Google login phishing website which was used to capture user
credentials would have been thwarted. Therefore, to prevent this exploitation it
would have required only that the email was blocked or detected as malicious
to prevent compromise.

– Principles of preemptive and proactive defense: If the email account in ques-
tion had enabled mails two form factor authentication mechanisms then on
redirection to the attackers phishing login page and input of login credentials
the attackers would still have been unable to successfully access the email
account.

– Defense-in-depth lifecycle: This particular email template was spoofed
directly from Google and was not the first time it had been used or reported
as phishing. Therefore, if first phishing report had been forward by Google’s
platform security to their Gmail platform security developers the combination
of the emails content, images and domain name (i.e., not being an official
Google email address) would have served as key features to create a
detection signature. Which could have subsequently been built into Gmails
phishing detection engine. Here, the combination of user reporting, Gmail’s
security analyst (or system) forwarding the report details and classification to
developers, and security system updates by developers would have prevented
the email ever having reached John Podesta’s email account.

• WhatsApp QRishing.

– Semantic Attack killchain: As this specific attack it is dependent on either
a phishing email, instant message or SMS in order to coerce the user in to
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accessing the supposed WhatsApp URL detecting the attack through these
initial methods of distributions would prevent the user from being persuaded
into visiting the phishing webpage.

– Principles of premptive and proactive defense: A combination of standard
phishing defenses analysing the integrity of webpage content (e.g., use of
logos, scripts and redirection from site mirroring) alongside common phishing
website awareness training (e.g., domain highlighting) would provide both a
preemptive and proactive defense measure against this threat.

– Defense-in-depth lifecycle: Through a user reporting mechanism this partic-
ular threat to WhatsApp web application would have alerted the platform
security team of the QR code authentication vulnerability. As a result,
prompting developers to patch the system to enforce a secure means for
authentication through a secondary authentication mechanism only accessible
to the legitimate user, as well as instead exploring ways to protect to their web
platform by prevent third party mirroring of their website scripts generating
the QR code.

• The case of the “Hungry Bear”.

– Semantic Attack killchain: Multimedia masquerading serves as the first attack
in a chain, spreading through Facebook via user activity (“liking” and
manually sharing the video). However, the subsequent phishing website and
fake survey attack chain could have been thwarted by focusing defense on the
redirection behaviour of the post to external platforms outside Facebook.

– Principles of preemptive and proactive defense: Much like the Facebook
EdgeRank algorithm analyses features associated to social interaction to
suggested friends, posts, advertisements and material it believes certain users
are interested in, by monitoring post behaviours alongside textual information
and responses from affected users, this attack could be proactively identified
by developing machine learning models that match patterns of anomalous
redirection activity. For example, collecting data associated to the post video
nature (such as title text), user comments asking how to view the video on
Facebook, alongside the URL redirection provides features that can be fed into
a learning algorithm to classify the post’s malicious and deceptive behaviour.

– Defense-in-depth lifecycle: The combination of platform security measures
monitoring both platform functionality activity and that of its user base would
have served as crucial telemetry to Facebook security teams for classifying
this as a suspected malicious post automatically, in turn, highlighting to
platform developers the need to embed security measures in certain post
configuration (e.g., an image post with an embedded URL) before users are
redirected to external platforms automatically. Alongside technical detection,
providing user notification requesting for confirmation of external website
would highlight the nature of the post to users and indicate anomalous activity.
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5 Open Research Challenges

5.1 Emerging Threats in the Internet of Everything

Historically, semantic attack exploits in computer systems were limited to tradi-
tional Internet communications such as messaging and web application platforms.
However, in IoT, the threat landscape includes vehicles, industrial control systems,
and even smart home appliances. The result of this is that the impact is not limited
to cyberspace (such as stealing information, compromising a system, crashing a
web service etc.), but is branching into physical space too. Early examples can
be observed through physical damage dealt by malware in manufacturing plants,
rail signalling, water treatment plants and even nuclear facilities. We anticipate that
cyber-physical systems, such as industrial control systems and vehicles, will soon
become realistic targets for user deception. The potential impact in physical space
makes them attractive targets, and the limited diversity of human-system interaction,
makes it difficult for the users to detect misbehaviour. For instance, consider the
Tire Pressure Monitoring System (TPMS) on a modern automobile. It consists of a
sensor inside the tire, which monitors tire pressure and periodically transmits that
data wirelessly to an electronic control unit (ECU) on the in-vehicle network of
the automobile. If the tire pressure is below a threshold, this is displayed on the
driver’s dashboard as a tire pressure warning. Rouf et al. [68] have shown from as
early as 2010 that spoofing these messages can be relatively straightforward. So, an
attacker can wirelessly transmit fake TPMS data to the ECU and trigger a fraudulent
warning. The driver-system interface does not provide anything more than a visual
display of the warning. So, there is no way for the driver to tell that this is a deception
attempt rather than a legitimate safety issue, and as such will probably decide to pull
over as soon as possible.

While the potential of attacks on vehicles captures the public’s interest, it is
cyber-physical systems in industrial control that have been targeted several times
in high-profile incidents in the past. The exploitation was almost always highly
technical, but usually the initial point of entry was standard spear-phishing and in
some cases watering hole attacks. In 2014, a German steel mill was attacked via
spear-phishing, with the aim to capture user credentials, gain access to the back
office and from there to the control network, ultimately damaging a blast furnace.
In 2015, 80,000 homes in Ukraine lost power when phishing emails deceived
employees of the electricity provider into clicking on an attachment in an email,
purportedly from the Prime Minister of Ukraine [69].

Smart home IoT systems also constitute attractive targets as deception devices.
Most commonly, they involve access to cloud, voice-activated artificial intelligence
(such as Alexa or Siri) and workflow automation services, such as IFTTT and
Stringify. Each one of these can be compromised by deceiving a user or with the
purpose to deceive a user. A simple example would be to inject audio commands
(e.g. “Alexa, purchase item X”) in an audio or video file sent to a user via email.
In fact, a similar incident (albeit not an attack by design) occurred in 2016, when
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a 6-year old girl asked Alexa Can you play dollhouse with me and get me a
dollhouse? and Alexa actually did order a $160 dollhouse. Then, when a news
presenter repeated this on TV while covering the story, several Amazon Echos in
people’s homes attempted to order further dollhouses. At the same time, any breach
of confidentiality relating to the smart home can lead to breach of physical privacy
and thus be useful information in the hands of attackers building a picture about a
household’s pattern of life. Data sniffed from sensors or smart meters can tell when
someone is in or out during the week, and even how they look or sound like if their
Internet-connected camera is compromised. The impact can be further accentuated
if the breach of privacy extends to users’ smart wearables, especially when they
relate to health, as attackers can use information on likely medical conditions to
target them convincingly. Consider the impact that ransomware would have if it
were designed for wearable or implantable medical devices. Protecting against
semantic attacks in cyber-physical context has not been explored yet.

5.2 Human-as-a-Security-Sensor

By their very nature, semantic attacks are challenging for autonomous technical
defenses to detect and prevent. In recent years, the focus on user awareness training
has shifted to actively involving users as human sensors spotting and reporting
suspected attacks. As alluded to in Sect. 4.3, the user plays a crucial role in the
platform defense-in-depth lifecycle against semantic attacks, supplementing tech-
nical defense mechanisms with human detection efficacy. In [32], we established
the concept of Human-as-a-Security-Sensor by demonstrating how one’s ability to
detect different semantic attacks can be predicted. We then showed experimentally
how predictive modelling can be integrated into a real-world technical system to
actively engage and empower users to report detection of different semantic attacks
across a range of platforms in real-time; outperforming all technical defense systems
compared against [33]. Moreover, there are now examples of security vendors
and public organisations advocating and actively employing human security sensor
functions to augment defense against semantic attacks, such as the “human sensor”
publicised phishing detection platform PhishMe Reporter and the University of
Oxford CERT team’s phishing reporting portal [30]. However, to realise this
concept’s long term benefits, there is a need to extend to a wider range of threats
(other than phishing) and to find effective means of encouraging users to take part.
Furthermore, in IoT space, the means by which to report suspected threats may
be less intuitive or “safe” as that of a laptop or mobile device user interface. If
a deception vector is executed within the user interface of an industrial control
system or vehicle, it may be dangerous to stop any activity to report a suspected
threat and similarly dangerous to ignore a suspected deception as false. Taking the
example of spoofed tire pressure warnings again, if onboard vehicle security fails
to detect the deception, the driver has to make the decision whether to report the
suspected deception and ignore the tire pressure warnings or pull over as per the
attacker’s aim. The Human-as-a-Security-Sensor paradigm harbours great potential
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for augmenting existing technical defenses in the fight against semantic attacks, but
finding a consolidated and secure means of reporting threats against multi-platform
user interfaces is a complex challenge.

5.3 Cyber Hygiene 2.0

Perhaps the most common advice for stepping up the security of an individual
or organisation is to protect themselves against basic cyber threats by keeping
their software and operating system up to date, avoiding unsafe websites or email
attachments from people they do not know, and other basic measures collectively
referred to as “cyber hygiene”. The aim is prevention, and it is without doubt that
such measures do improve overall security posture. However, as threats gradually
become more advanced, and this is certainly the case for semantic attacks, individual
users need to be equipped with recommendations on not only how to prevent, but
also how to identify and respond to less basic attacks that have not been thwarted
through prevention. Here, researchers can make use of the early steps that have been
taken in the field of neuroscience, for instance using fMRI to show that the areas
that exhibit the most brain activity when a user successfully distinguishes between
a phishing and a legitimate website are those associated with decision-making,
attention, and problem-solving [67], or using mindfulness to improve attention when
facing a phishing attempt [66]. We anticipate that the next phase for cyber hygiene
efforts will be in the form of simple techniques and habits that can help detect threats
rather than relying on successful prevention.

6 Conclusion

Semantic attacks have been posing a significant and sustained threat to computer
information security for almost 30 years, with a cryptovirus appearing as early as
1989 and scareware existing since 1990. The basic principles in deceiving users have
remained largely the same, yet the threat has not been thwarted. On the contrary, all
statistics point to a continuous increase in the number and diversity of semantic
attacks and worsening impact. We argue that the ineffectiveness of the very large
number of technical security approaches developed is that they look at each type of
attack in isolation. For example, the deception logic and the nature of the tell-tale
signs of phishing in email and in social media are the same. Yet, the two cannot be
addressed by the same technical security mechanism. In response to this challenge,
we have discussed three high-level defense approaches, which can be attractive
areas for further exploration in addressing the wider semantic attack space. Wholly
unsurprisingly for a type of threat that is based on user deception, the key in defense
is again the human, whether as developer of user interfaces or as a user acting as
human sensor, but not making the same mistake of attempting to detect threats in
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isolation. The human users are best placed to thwart deception attempts against them
if this capability can be leveraged as part of technical defense systems.
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Abstract Program obfuscation is about modifying source or machine code into
functionally equivalent code that is hard to understand to a human or some
other program. Early obfuscation techniques included heuristic non-cryptographic
code transformations, many of which however, have been found to be ineffective
against sufficiently motivated adversaries. The recent area of cryptographic program
obfuscation targets the design and implementation of program obfuscators that
are provably secure under a widely accepted intractability assumption, following
the standard of modern cryptography solutions. In this chapter we provide a brief
summary of the state of the art in cryptographic program obfuscation, focusing on
two main aspects: first, there are many implementations of point function obfusca-
tors, satisfying different obfuscation notions, and many of them can be used with
practical performance guarantees; second, multiple application-driven obfuscation
models and problems can be generated, where practical attack classes can be
addressed by leveraging current implementations of point function obfuscators, as
well as potential future practical implementations of special-purpose obfuscators.
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1 Introduction

Program obfuscation is about modifying source or machine code into functionally
equivalent code that is however hard to understand to a human or some other
program. Until about 20 years ago, studies in program obfuscation were motivated
mainly by the intention to protect software intellectual property from reverse-
engineering attacks. Obfuscation techniques included heuristic code transforma-
tions performed by a human or by an obfuscator program, some of them building
on transformations similar to those applied during compilation (see, e.g., [15] for
a taxonomy of code transformation techniques). Many such techniques, however,
have been found to be ineffective against a sufficiently motivated adversary,
eventually being capable of developing automated deobfuscation techniques and
thus reverse-engineering of the program (see, e.g., [35]).

In the past 20 years or so, the problem of program obfuscation has been
attracting a significant amount of research in the modern cryptography literature,
as ‘cryptographic program obfuscation’ might remove the heuristic aspect from
obfuscation techniques. Following the success of modern cryptography, where
multi-party computation protocols can be designed and proved secure under widely
accepted computational intractability assumptions, cryptographic program obfus-
cation aspires at designing obfuscated programs whose obfuscation enjoys similar
provability guarantees. Actually early results in the area conveyed somewhat mixed
messages: on the positive side, in [25] it was showed that cryptographic program
obfuscation could solve a long-standing open problem in cryptography; while on the
negative side, results in [4] implied the very likely impossibility of constructing a
single obfuscator for all polynomial-time programs. This still left open the following
two main possibilities: (1) constructing a program obfuscator for all polynomial-
time programs (i.e., a general-purpose obfuscator) with respect to a less general
notion of obfuscation security (and thus, a less general class of attacks); and (2)
constructing a program obfuscator for each specific polynomial-time program (a
special-purpose obfuscator) with respect to a general notion of obfuscation security.

The line of research (1) has seen much excitement since several other uses of
general-purpose obfuscation with respect to this weaker notion of obfuscation were
presented (see, e.g., [3] and references therein), potentially solving several long-
standing open problems, including some rather surprising ones (e.g., transforming
any public-key encryption scheme into a private-key encryption ones). Many
candidate general-purpose obfuscator constructions have been proposed based on
heuristic constructions of an advanced mathematical objects, called multilinear
forms, or approximate versions of them; unfortunately, as of today, many of these
candidates have been broken and the future of this research direction has been
questioned.

The line of research (2) has actually shown some encouraging progresses, in
that recent results show the possibility of constructing obfuscators for restricted
families of functions, such as secret verification (aka point) functions, and a few
isolated extensions of them, under commonly used, and widely accepted, hardness
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assumptions. Point functions can be seen as functions that return 1 if the input value
is equal to a secret value stored in the program, and 0 otherwise. This line of research
has many more chances of being relevant to real-life applications. For starters,
commonly used protocols for password-based authentication have been reformu-
lated as instances of point-function obfuscation (the password playing the role of
the secret point to be matched). More specifically, the current research literature
contains a few theoretical definitions of program obfuscation for point functions
(see, e.g., [4, 5]), several constructions of program obfuscators for point functions
based on commonly used hardness assumptions, with different performance and
security features (see, e.g., [5, 11, 28, 36], as well as several other contributions cited
in these cited papers), and implementation efforts showing the practicality of some
of these results (see, e.g., [1, 18]). Some of the most relevant results are, in turn,
based on other cryptographic primitives (such as deterministic encryption, lossy
trapdoor functions, etc.), which have been previously studied in other sequences of
papers, even though following the paths of these relationships and understanding
the full applicability of these results is a non-trival task for the casual cryptography
or security reader. Further specific programs for which special-purpose obfuscators
have been proposed include hyperplane membership [13], short-distance matching
[19], proxy re-encryption [27], and wildcard-based matching [10]. For none of these
latter obfuscators, however, practical implementations have been shown yet.

This chapter can be divided into two conceptual parts, where we show:

1. practical implementations of point function obfuscators, provably secure under
widely used intractability assumptions and in theory-oriented models and defini-
tions of cryptographic program obfuscation, and

2. guidelines to generate application-oriented models and definitions of crypto-
graphic program obfuscations, addressing more practical classes of attacks.

In the first part of the chapter (Sects. 2, 3, 4, 5, 6, 7, and 8) we start by
considering theory-oriented models and definitions of program obfuscators from
the literature, and specialize it to a practice-oriented version that is more suited for
implementation, especially with respect to program obfuscators for a large class of
functions, including point functions. Then, we consider including 4 of the most used
security notions for cryptographic program obfuscators, capturing the following
theoretical classes of attacks:

1. learning some information on the obfuscated program significantly better than
by just evaluating a black box computing the same program;

2. learning the output of a predicate on input the obfuscated program significantly
better than by just evaluating a black box computing the same program;

3. distinguishing the output of a predicate on input the obfuscated program from
the output of a predicate on input an obfuscation of a random program within a
given class;

4. distinguishing the obfuscated program from an obfuscation of a random program
within a given class.
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We sort out the intricate literature on this sub-area to select some interesting point
function obfuscators from [1, 5, 11, 18, 28, 36], including: (a) at least one satisfying
each of these security notions; (b) at least one that is practically efficient and prov-
ably secure based on group-theory and no random oracles; (c) at least one based on
a lattice-theory assumption, which is resistant to quantum computation attacks. We
then report on our implementations of these obfuscators from [1, 18], showing their
practical performance, in terms of runtime and storage of the obfuscated program.
These implementations apply, wherever possible, a small amount of both design and
coding optimizations. Among the former type of optimizations, the computations of
certain values are replaced with different and more efficient computations of almost
equally distributed values. In one case, a similar distribution is maintained only
at the cost of a (much) stronger hardness assumption. Among the second type of
optimizations, in group-theory obfuscators, conventional modular exponentiation
(often, the most expensive operations in group-theoretic cryptography) is replaced
with modular exponentiation via pre-processing, combined with Montgomery
multiplication; in lattice-theory obfuscators, probabilistic testing techniques can be
used to reduce both storage and runtime.

Overall, our conclusion in this chapter’s first part is that implementations of point
function obfuscators, provably satisfying different obfuscation notions under widely
accepted intractability assumptions, can be used with practical performance (i.e.,
runtime and storage) guarantees.

In the second part of our chapter (Sect. 10), we present application-driven models
for cryptographic program obfuscation identifying research problems in this area
as a tuple of points, each point in the tuple being taken from a different 3-
dimensional space. We consider a first 3-dimensional space on problem models
(with dimensions on program representation models, input models and participant
models), a second 3-dimensional space on security requirements (with dimensions
on adversary resources, adversary attacks and adversary goals), and a third space on
performance requirements (with dimensions on runtime, memory use and storage
of the obfuscated program). Definitions of security requirements are driven by (a)
adversary goals and security notions based on distinguishing and computing over
obfuscated programs; (b) adversary resources such as chosen program inputs and
associated outputs, inspection of the program’s code, and eavesdropping program
inputs and associated outputs; and, most importantly, (c) practical attack classes
such as:

1. the adversary making remote calls to the obfuscated program;
2. the adversary stealing or being leaked the obfuscated program and being able to

run it in a different computing environment;
3. the adversary intruding in the same computing environment where the obfuscated

program resides, observing while it is being run in that environment as well as
being able to inspect and run the program.

Variants of these attacks are discussed in various models, where the adversary may
target general or secret-based programs, taking low-entropy or high-entropy inputs,
in a 2-party or 3-party model. The resulting application-driven research problems
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enhance the applicability of program obfuscation solutions. As an example for that,
we show an obfuscation in the 3-party model for simple function families with
low-entropy secrets that does protect the secret (instead, any obfuscation in the 2-
party model would not adequately protect the secret against learning or black-box
attacks).

Overall, our conclusion in this chapter’s second part is that current implemen-
tations of point function obfuscators (as well as potential future implementations
of special-purpose obfuscators) may soon be leveraged to address practical attack
classes with practical performance guarantees.

2 Theory-Oriented Modeling of Cryptographic Program
Obfuscation

This section introduces and refines a number of definitions and facts related to the
literature’s theory-oriented modeling of cryptographic program obfuscation. First,
it starts with some basic notations and definitions (in Sect. 2.1); then, it provides
functionality, efficiency and security requirements of program obfuscators for point
functions (in Sect. 2.2); finally, it quickly recalls known constructions of program
obfuscators for point functions (in Sect. 2.3).

2.1 Basic Notations and Definitions

Let a|b denote the concatenation of a and b, and let symbol Zq denotes the set of
integers {0, . . . , q − 1}.

If S is a set, an element of Sn is an n-component vector with components in S,
and an element of Sm,n is an m-row, n-column matrix with entries in S.

The expression y ← T denotes the probabilistic process of uniformly and
independently choosing y from set T . The expression y ← A(x1, x2, . . .) denotes
the (possibly probabilistic) process of running algorithm A on input x1, x2, . . . and
any necessary random coins, and obtaining y as output. A probability distribution
D is also written as D = {p1; p2; . . . ; pn : v} to denote the distribution of v after
the ordered execution of probabilistic processes p1, . . . , pn.

2.2 Modeling Cryptographic Program Obfuscation

The original definition from [4] of cryptographic program obfuscators contained
3 main requirements that can be briefly stated as follows: (program functionality)
the obfuscated program behaves like the original program; (polynomial slowdown)
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the obfuscated program is only polynomially slower than the original program;
(virtual black-box obfuscation) the obfuscated program does not leak more to
an adversary than access to a black box computing the original program. After
recalling a formal version of this definition, the rest of this subsection gives a refined
definition of cryptographic program obfuscators, obtained by syntax changes to the
original definition and by allowing for some very small error probability of incorrect
program output, even when the program input is adversarially chosen after seeing
the obfuscated program. The resulting definition is simpler to deal with, from both
theory and implementation purposes, and is semantically equivalent for a large class
of function families, including point functions. Finally, various security notions are
reviewed, including and beyond the original virtual black-box obfuscation (here
renamed ‘adversary output black-box simulation’).
The original definition. We say that the family of functions F admits an obfuscator
Obf if Obf is an efficient (possibly probabilistic) algorithm that, on input a
description of function f ∈ F and/or a circuit Cf computing f ∈ F , returns an
(obfuscated) circuit oCf , such that the following two properties are satisfied:

1. (Almost exact functionality): For all f in F , and inputs x, it holds that oCf (x) =
f (x), except possibly with very small probability.

2. (Polynomial slowdown): There exists a polynomial p such that for all f in F ,
the running time of oCf is ≤ p(|Cf |), where |Cf | denotes the size of circuit Cf .

A refined definition. In practice, it can be unnecessarily complex to implement an
obfuscator taking as input a circuit that computes function f , and returns as output
another (obfuscated) circuit. Therefore, we perform syntax changes to obtain a
definition involving simpler algorithms, from the point of view of implementation,
and semantically-equivalent for a large class of function families, including point
functions. We then generalize this definition to allow for some small error prob-
ability of incorrect program output, even when the program input is adversarially
chosen after seeing the obfuscated program. Specifically, we view an obfuscator as
a pair of efficient algorithms: an obfuscation generator oGen and an obfuscation
evaluator oEval, with the following syntax. On input function parameters fpar ,
including a description of function f ∈ F , oGen returns generator output gpar . On
input a description of function f ∈ F , generator output gpar , and evaluator input
x, oEval returns evaluator output y. The pair of algorithms (oGen, oEval) satisfies
the following two properties:

1. (Almost exact functionality): For any f in F , with function parameters fpar ,
and any algorithm A, the equality y = f (x) holds with probability 1 − δ, for
some very small value δ, where y is generated by the following probabilistic
steps:

1. gpar ← oGen(fpar),
2. x ← A(gpar)

3. y ← oEval(gpar, x).
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2. (Polynomial slowdown): There exists a polynomial p such that for all f in F , the
running time of oEval is ≤ p(|f |), where |f | denotes the size of the (smallest)
boolean circuit computing f .

Security notions. Obfuscators (in both the original and refined definition) can satisfy
any one of the following different obfuscation security notions (which have to be
valid for all functions input to the obfuscation generator chosen according to their
specified distribution, for all efficient adversary algorithms, and except possibly with
very small probability):

1. adversary view black-box simulation [4]: The adversary can read, and thus
execute, the evaluator program oEval(gpar, ·). Informally speaking, this notion
says that no efficient adversary with these capabilities learns any more informa-
tion than what it can learn by evaluating a black box program that computes
function f . A bit more formally, for any efficient adversary with these capa-
bilities, there exists an efficient algorithm, called the simulator, with black-box
access to function f , that produces an output indistinguishable from the evaluator
program oEval(gpar, ·).

2. adversary output black-box simulation [4]: The adversary can read, and thus
execute, the evaluator program oEval(gpar, ·) and is constrained to return a bit
at the end of its computation. Informally speaking, this notion says that for any
efficient adversary with these capabilities, the adversary’s output bit (indicating,
for instance, whether the obfuscated program satisfies a certain property or not)
could have been produced after evaluating a black box program that computes
function f . A bit more formally, the adversary’s output bit can be guessed by an
efficient algorithm, called the simulator, with black-box access to function f .

3. real-vs-random indistinguishability [5]: The adversary can read, and thus exe-
cute, an evaluator program oEval(rr, ·) which is randomly chosen between
the evaluator program obtained after an obfuscation of the program computing
function f and the evaluator program obtained after an obfuscation of the
program computing a function randomly chosen from F . The adversary is
returning a bit at the end of its computation. Informally speaking, this notion
says that at the end of its computation, the adversary cannot distinguish the two
cases: an obfuscation of the program computing function f from an obfuscation
of the program computing a random function from family F .

4. strong indistinguishability [5]: As in the real-vs-random indistinguishability, the
adversary can read, and thus execute, an evaluator program oEval(rr, ·) which
is randomly chosen between the evaluator program obtained after an obfuscation
of the program computing function f and the evaluator program obtained after
an obfuscation of the program computing a function randomly chosen from
F . Informally speaking, this notion says that at the end of its computation, no
efficient distinguisher algorithm can distinguish the adversary’s output in the two
cases: an obfuscation of the program computing function f from an obfuscation
of the program computing a random function from family F .
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All these notions intuitively capture important properties that a program obfuscator
should have, and for any two of these notions, their equivalence is either false or
unknown. It is not hard to see that an obfuscator satisfying notion 1 also satisfies
notions 2, 3, and 4. Moreover, in [5], it was proved that, for the family of point
functions, an obfuscator satisfying notion 4 also satisfies notion 3, and that the
converse may not hold.

2.3 Cryptographic Point Function Obfuscation

We consider families of functions as families of maps from a domain to a range,
where maps may be parameterized by some values chosen according to some
distribution on a parameter set. Let pF be a family of functions fpar : Dom →
Ran, where Dom = {0, 1}n, Ran = {0, 1}, and each function is parameterized by
value par from a parameter set Par = {0, 1}n, for some length parameter n. We
say that pF is the family of point functions if on input x ∈ Dom, and secret value
s ∈ Par , the point function fpar returns 1 if x = s and 0 otherwise.

In an obfuscator for the family of point functions, the following holds: the
obfuscation generator algorithm oGen takes as input the secret value s; the almost
exact functionality property implies that, except with very small probability, the
evaluator’s output is equal to 1 if x = s and 0 otherwise; and each of the security
notions implies a different type of obfuscation of secret value s.

We now summarize a sample of known constructions of point function obfus-
cators. A first obfuscator, satisfying adversary view black-box simulation, was
given in [28], under the random oracle assumption. Previous results, although
formulated as different cryptographic primitives, might be restated as point func-
tion obfuscators satisfying strong indistinguishability under the Decisional Diffie
Hellman assumption [11] or under the existence of claw-free permutations [12].
The obfuscator in [36] satisfies (a weakened version of) adversary output black-
box simulation under the existence of a strong type of one-way permutations.
Finally, more obfuscators were given in [5], and one of these, based on any
deterministic encryption scheme, satisfies real-vs-random indistinguishability, and
happens to have several instantiations. This is due to the fact that deterministic
encryption schemes can be built using hard problems on lattices [37] or lossy
trapdoor functions [7], and the latter have been built using any one of many group-
theoretic assumptions (see, e.g., [21]).

In Sects. 3, 4, 5, 6, 7, and 8, we review somewhat improved designs of these
obfuscators from [1, 18] and in Sect. 9 we compare their security and performance
properties.
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3 A Point Function Obfuscator from Cryptographic Hashing

The first obfuscator (from [18, 28]), denoted as (oGen1, oEval1), for the family
of point functions, is based on collision-resistant hashing, modeled in the security
analysis as random oracles.
Informal description: This well-known construction is based on a technique often
used to store passwords in certain operating systems, which has recently been re-
interpreted as an obfuscation of the password verification algorithm. Informally, it
goes as follows. The obfuscation generator first concatenates the secret value with
a sufficiently-long random string, then applies a cryptographic hash function on
this concatenated value, and finally returns the computed hash tag. The obfuscation
evaluator does essentially the same computations on the input point (instead of the
secret value), and returns 1 if the computed hash tag is equal to the hash tag returned
by the obfuscation generator or 0 otherwise. A more formal description follows.
Formal description: Let H denote a collision-resistant hash function (i.e., a function
mapping an arbitrary-length input string to a fixed-length output string, such that it is
hard for any efficient adversary to find two preimages of the same function output).
Scheme (oGen1, oEval1) goes as follows.
Input to oGen1: security parameters 1n, 1�0 , length parameter 1�, secret value z ∈
{0, 1}�,
Instructions for oGen1:

1. Uniformly and independently choose r ∈ {0, 1}�0

2. Compute v = H(r|z), where v ∈ {0, 1}n
3. Set gpar = (r, v) and return: gpar .

Input to oEval1: security parameter 1n, length parameter 1�, r ∈ {0, 1}�0 and v ∈
{0, 1}n, input value x ∈ {0, 1}�
Instructions for oEval1:

1. compute v′ = H(r|x), where v′ ∈ {0, 1}n
2. if v′ = v return 1 else return 0

Theoretical result. Assuming H behaves like a random oracle, (oGen1, oEval1) is
an obfuscator of the family of point functions, satisfying the adversary view black-
box simulation notion. In [28], it was first stated that if H behaves like a random
oracle, the value H(z) is a (not composable) obfuscation of secret value z. The
known technique of concatenating z with a sufficiently long random string r before
hashing makes the scheme composable (i.e., secure even if executed many times, on
input related secret strings).
Parameter and primitive settings. Parameter � can be set as needed in the specific
application. Parameter n can be set as ≥256, to guarantee security against generic
“birthday-type” collision attacks; our implementation sets it =512. Parameter �0 is
also set as =512. H can be any cryptographic hash function that is believed to
be secure enough in light of a significant amount of cryptanalysis efforts; thus,
including SHA2 and SHA3. Our implementation uses SHA512, which is SHA2
when set it to return n = 512 bits as output.
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4 A Point Function Obfuscator Based on Decisional DH

The second point function obfuscator (from [11, 18]) we describe, denoted as
(oGen2, oEval2), is based on the Decisional Diffie-Hellman (DH) assumption.
We first briefly recall this assumption and the notions of faster computation of
modular exponentiation via preprocessing, and then describe the obfuscator and its
properties.
Decisional DH assumption: Let p and q be primes such that p = 2q + 1 and
|q| = n + 1. The pair (Z∗

p, ·), where Z∗
p = {1, . . . , p − 1} and · denotes product

modulo p, is a group and has a q-order subgroup, denoted as Gq . Let g denote a
generator of Gq . Efficient algorithms are known to randomly choose primes p, q

of this form, and a generator for Gq . The Decisional DH problem over Gq asks to
efficiently distinguish, given p, q, g, the following two tuples:

1. (p, q, g, ga mod p, gb mod p, gab mod p), and
2. (p, q, g, ga mod p, gb mod p, gc mod p),

for uniformly and independently chosen elements a, b, c from Zq . The Decisional
DH assumption over Gq says that no efficient algorithm can distinguish these two
distributions, except with very small probability. The Discrete Logarithm problem
over Gq asks to efficiently compute, given p, q, g, and an element h ∈ Gq , the
exponent x ∈ Zq such that gx = h mod p. The Discrete Logarithm assumption
over Gq says that no efficient algorithm can solve the Discrete Logarithm problem,
except with very small probability. The Decisional DH assumption implies the
Discrete Logarithm assumption. Even if the converse is known not to hold in some
other groups, no polynomial-time algorithm is known to solve the Decisional DH
problem in subgroup Gq . A survey of the Decisional DH problem can be found in
[8].
Modular exponentiation with preprocessing: The pair of algorithms (ModExpPreproc,
ModExpCompute) denotes a scheme for faster computation of modular
exponentiation, using preprocessing, and defined as follows. On input a base
u and a modulus p, the algorithm ModExpPreproc computes some auxiliary
information auxu,p. On input a base u, a modulus p, an exponent d , and auxiliary
information auxu,p, the algorithm ModExpCompute computes a value v, such that
v = ud mod p. Here, the goal is to use auxiliary information auxu,p to compute
v faster than using a standard modular exponentiation algorithm, such as the
textbook square-and-multiply algorithm. A survey of such faster methods was given
in [24]. Some of these methods reduce exponentiation to an arbitrary exponent
to a sequence of multiplications of simpler and pre-computed exponentiations to
specific exponents. In the implementation described here, one of these methods is
further optimized by efficient variants of modular multiplications (i.e., performing
Montgomery modular multiplications [9]).
Informal description: First, the obfuscation generator computes a first value as a
random power of generator g, a second value as an exponentiation of the first
value to the secret value, and returns both values; then, the obfuscation evaluator
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exponentiates the first value to the input point (instead of the secret value), and
returns 1 if the computed group element is equal to the second value or 0 otherwise.
This basic idea is extended by replacing one modular exponentiation with a random
subgroup value computable using only one modular multiplication in the chosen
group, and by computing all other exponentiations by carefully distributing the
technique of exponentiation with preprocessing between the obfuscation generator
and evaluator. A formal description of (oGen2, oEval2) follows.
Input to oGen2: length parameter 1n, secret value z ∈ {0, 1}n
Instructions for oGen2:

1. Randomly choose primes p, q such that p = 2q + 1, |q| = n + 1
2. Randomly choose generator g of q-order subgroup Gq of Z∗

p

3. Randomly choose u ∈ Gq

4. Compute (auxu,p) = ModExpPreproc(u, p)

5. Consider z as an element of Gq

6. Compute v = ModExpCompute(u, p, z, auxu,p)

7. Return: (auxu,p, (u, v)).

Input to oEval2: security parameter 1n, input value x ∈ {0, 1}n and the output
from oGen, containing auxiliary information auxu,p for faster computation of
exponentiation modulo p in base u, and pair (u, v).
Instructions for oEval2:

1. Consider x as an element of Gq

2. Compute v′ = ModExpCompute(u, p, x, auxu,p)

3. If v′ = v then return: 1 else return: 0.

Theoretical result. Under the Decisional DH assumption, (oGen2, oEval2) is an
obfuscator of the family of point functions with (almost) uniformly distributed secret
values, according to strong indistinguishability obfuscation notion of [5] (which
generalizes the oracle hashing secrecy from [11]). This follows by a generalization
of the proof from [11] that the basic version of this construction is an oracle hashing
scheme for random secret inputs under the Decisional DH assumption.
Parameter and primitive setting. Parameter n can be set as =2048, to guarantee
security against known discrete logarithm finding algorithms. In algorithm initO2,
to perform the generation of prime p, along with prime q , and of generator g for
the q-order subgroup Gq of Zp, we used procedures from the OpenSSL library. The
scheme (ModExpPreproc, ModExpCompute) can be any pair of algorithms from
[24]. In one such schemes, algorithm ModExpPreproc precomputes exponentiations
modulo p in the same base u and for specific exponents (e.g., powers of 2 and
combinations of them). Later, based on these pre-computed values, algorithm
ModExpCompute computes exponentiations modulo p in the same base u and for
an arbitrary exponent, as a suitable sequence of multiplications modulo p.
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5 A Point Function Obfuscator Based on Discrete
Logarithms

The third obfuscator (from [18, 36]), denoted as (oGen3, oEval3), for the family of
point functions, is based on the Discrete Logarithm assumption. First, we briefly
recall this assumption, and then describe the obfuscator and its properties.
Discrete Logarithm assumption over Z∗

p: Let p be an (n + 2)-bit prime, and let g

be a generator of the group Z∗
p. The Discrete Logarithm problem over Z∗

p asks to
compute x, given p, g, y such that y = gx mod p, for a random x ∈ {0, . . . , p − 1}.
The Discrete Logarithm assumption over Z∗

p says that no efficient algorithm can
compute x with more than negligible, in n, probability. For any x ∈ {0, . . . , p − 1},
the function MostSigBit(x) returns 0 if 1 ≤ x ≤ (p − 1)/2 and 1 if (p − 1)/2 <

x ≤ p − 1. As for the obfuscator from Sect. 4, we use scheme (ModExpPreproc,
ModExpCompute) for faster computation of modular exponentiation.
Informal and formal description: The starting idea of this scheme is as in [36], using
two main tools: a one-way permutation (i.e., a permutation that can be efficiently
computed but is conjectured to be hard to invert when computed on a random input);
and a hard-core predicate for this one-way permutation (i.e., a predicate function that
returns a single hard-core bit, is efficiently computable from the input to the one-way
permutation and is hard to guess given only the output of the one-way permutation).
The obfuscation generator works in 3n iterations, and computes at each iteration the
output of a one-way permutation on input the output from the previous iteration,
and a hard-core bit associated with the current evaluation. The input in the first
iteration is the secret value z. At the end of all iterations, it returns the 3n hard-
core bits. The obfuscation evaluator performs the same computation of 3n hard-core
bits, using as input in the first iteration the input value x. At the end, it returns
1 if the computed hard-core bits are equal to those returned by the obfuscation
generator or 0 otherwise. This basic idea is instantiated by setting the one-way
permutation as exponentiation modulo a prime p (which is often conjectured to
be a one-way permutation over Z∗

p), and by setting the hard-core bit as the most
significant bit of the discrete logarithm exponent (which has been proved to be a
hard-core bit for exponentiation modulo p, under the same conjecture). Then, all
modular exponentiations are computed by carefully distributing the technique of
modular exponentiation with preprocessing between the obfuscation generator and
evaluator, similarly as done for our obfuscator in Sect. 4.

A formal description of (oGen3, oEval3) follows.
Input to oGen3: length parameter 1n, secret value z ∈ {0, 1}n.
Instructions for oGen3:

1. Randomly choose prime p ∈ {0, 1}n+1

2. Randomly choose a generator g of Z∗
p

3. Compute auxg,p = ModExpPreproc(g, p)

4. Consider z as an element of Z∗
p and set w1 = z

5. For i = 1, . . . , 3n,
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compute wi+1 = ModExpCompute(g, p,wi , auxg,p)

compute vi = MostSigBit(wi+1)

6. Set v = (v1| · · · |v3n)

7. Return: (auxg,p, v).

Input to oEval3: security parameter 1n, input value x ∈ {0, 1}� and the output
from oGen, containing auxiliary information auxg,p for faster computation of
exponentiation modulo p in base g, and 3n-bit vector v.
Instructions for oEval3:

1. Consider x as an element of Z∗
p and set w′

1 = x

2. For i = 1, . . . , 3n,
compute w′

i+1 = ModExpCompute(g, p,w′
i , auxg,p)

compute v′
i = MostSigBit(w′

i+1)

3. Set v′ = (v′
1| · · · |v′

3n)

4. If v′ = v then return 1 else return: 0.

Theoretical results. Under the Discrete Logarithm assumption, (oGen3, oEval3) is
an obfuscator of the family of point functions, according to (a weak version of) the
adversary output black-box simulation notion [4]. This follows by combining the
following: (1) the proof in [36] that the generalized construction is an obfuscator
under a strong one-way permutation assumption; (2) an instantiation of the strong
one-way permutation using exponentiation modulo a large prime, based on the
Discrete Logarithm assumption; (3) an instantiation of the hard-core predicate
for the one-way permutation using the most significant bit, based on the Discrete
Logarithm assumption and a result from [6].
Parameter and primitive setting. To guarantee security against known discrete
logarithm finding algorithms, we set n = 2048. In algorithm initO3, to perform
the generation of prime p and generator g for Z∗

p, we used procedures from the
OpenSSL library. The scheme (ModExpPreproc, ModExpCompute) can be any
scheme from [24].

6 A Point Function Obfuscator from Decisional Residuosity

This section presents an obfuscator from [5, 7, 17, 18, 21, 31], denoted as (oGen4,
oEval4), for the family of point functions, based on the Decisional Residuosity (DR)
assumption. We first briefly recall this assumption, and then describe the obfuscator
and its properties.
DR assumption: Let p, q be �-bit primes and let N = pq . The DR (modulo N2)
problem asks to efficiently distinguish, given N , a random value in Z∗

n2 from a

random n-th residue in Z∗
n2 (i.e., a value y = xN mod N2, for some random x ∈

Z∗
n2 ). The DR assumption says that no efficient algorithm can distinguish the two

distributions, except with negligible probability.
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Informal description: The starting idea of this scheme combines results in [5, 7],
where a point function obfuscator is constructed from any deterministic encryption
[5], and the latter is constructed from any pairwise-independent hash function and
lossy trapdoor function [7]. Finally, the construction of a lossy trapdoor function
from [21] is used, in turn based on the public-key cryptosystem from [17] (a variant
of the one in [31]). The resulting obfuscation evaluator only performs two modular
exponentiations, and one of them can be computed using preprocessing, similarly
as done in Sect. 4.
Formal description: For any x, let t = minH(x) denote the min entropy of string x;
that is, x is sampled from a distribution that returns no value with probability >2−t .
We now give a formal description of (oGen4, oEval4).
Input to oGen4: security parameter 1n, length parameter 1�, accuracy parameter ε,
secret value z ∈ {0, 1}�, and min-entropy parameter t , such that minH(z) ≥ t ≥
n + 2ε, and � = (n − 2)s + n/2 − 1, for some integer s ≥ 1.
Instructions for oGen4:

1. Randomly choose primes p, q such that |p| = |q| = n/2
2. Set N = pq

3. Randomly choose r ∈ Z∗
N

4. Set c = (1 + N)rNs
mod Ns+1

5. Write z as (u0, u1), where u0 ∈ ZNs and u1 ∈ Z∗
N

6. Randomly choose pairwise independent hash function piH : Zns × Z∗
n →

Zns × Z∗
n

7. Set (v0, v1) = piH(u0, u1), where v0 ∈ ZNs , v1 ∈ Z∗
N

8. Set auxc,Ns+1 = ModExpPreproc(c,Ns+1)

9. Set w0 = ModExpCompute(c,Ns, v0, auxc,Ns+1)

10. Set w = w0(v1)
Ns

mod Ns+1

11. Return: (t, piH, ε, c,N, s,w)

Input to oEval4: security parameter 1n, length parameter 1�, input value x ∈ {0, 1}�
and oGen4’s output, containing min-entropy parameter t , pairwise independent hash
function piH , accuracy parameter ε, auxiliary information auxc,Ns+1 for faster
computation of exponentiation modulo Ns+1 in base c, value c ∈ ZNs+1 , integer
N , integer s, and value w ∈ ZNs+1 .
Instructions for oEval4:

1. Write z as (u′
0, u

′
1), where u0 ∈ ZNs and u1 ∈ Z∗

N

2. Set (v′
0, v

′
1) = piH(u′

0, u
′
1), where v′

0 ∈ ZNs , v′
1 ∈ Z∗

N

3. Set w′
0 = ModExpCompute(c,Ns+1, v′

0, auxc,Ns+1)

4. Set w′ = w′
0(v

′
1)

Ns
mod Ns+1

5. If w′ = w then return 1 else return 0.

Theoretical properties. Under the Decisional Residuosity (modulo Ns+1) assump-
tion, the pair (oGen4, oEval4) is an obfuscator for the family of point functions,
according to the real-vs-random obfuscation indistinguishability definition of [5],
and where the point has min entropy at least n + 2ε. This is obtained by combining
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the following: (1) the proof in [5] that an obfuscator based on any deterministic
encryption scheme satisfies the real-vs-random indistinguishability obfuscation
notion; (2) the result in [7] saying that a deterministic encryption scheme can
be obtained by applying a pairwise-independent hash function to the input, and
then a lossy trapdoor function to its output; (3) the construction in [21] of a
lossy trapdoor function based on Damgaard-Jurik’s cryptosystem [17] (a variant
of Paillier’s cryptosystem [31]). The pairwise-independent hash function is used to
apply the Leftover Hash Lemma from [26].
Parameter and primitive setting. Parameter s can be set depending on what �

is needed in the specific application, and our implementation only requires an
essentially unrestricted � < 231. Parameter ε can be set as 128, to guarantee that
the statistical distance between the distribution of piH ’s output and a uniformly
distributed string of the same length, is ≤2−128. Parameter t can be set as t = n+2ε.
For the generation of n/2-bit primes p, q , we used procedures from the OpenSSL
library. Function piH can be any pairwise-independent hash function, including the
1-degree polynomial over GF(2�) [14], which we implemented using [34].

7 A Point Function Obfuscators Based on the LWR Problem

In this section we describe an obfuscator, denoted as (oGen5, oEval5), for the family
of point functions (with almost uniformly distributed secrets), using an assumption
related to the LWR problem. The obfuscator is obtained in [1] by first combining
results in [5, 30, 37] and then performing various design optimizations. We first
briefly recall the definition of the LWR problem and its related assumptions, and
then present the obfuscator and its properties.
Learning With Rounding assumption. Let AT denote the transpose of matrix or
vector A. Let p, q be primes, and, for any vector v = (v1, . . . , vm), let 	v
p denote
the vector whose i-th element is the closest integer to (q/p)vi , for i = 1, . . . ,m. Let
Z

n,m
q denote the set of n × m-matrix with elements in {0, . . . , q − 1}, and let Zn

q =
Z

n,1
q , for any positive integers n,m. Consider the following two distributions:

1. D0 = {A ← Z
n,m
q ; s ← Zn

q ; b = 	AT s
p : (A, b)}
2. D1 = {A ← Z

n,m
q ; b ← Zm

p : (A, b)}
The LWR problem asks to efficiently distinguish, whether a sample (A, b) came
from D0 or D1. The LWR assumption says that the distributions D0 and D1 are
indistinguishable to any efficient algorithm, except with negligible probability. The
LWR assumption has been introduced in [2], as a variant of the LWE assumption,
previously introduced in [33], and has been used in some cases to potentially
improve the design of cryptographic primitives and protocols based on the LWE
assumption. In [2] it is also conjectured that in light of known algorithmic attacks,
the LWR assumption seems to hold if q/p ≥ √

n is an integer and p is polynomial
in n. We also consider a modified LWR assumption, also called public-seed
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LWR assumption, which assumes the hardness of the LWR problem when matrix
A is pseudo-randomly generated with publicly known seed. The variant of this
assumption based on LWE has been discussed in detail in [22], and similar
conclusions can be reached in the LWR case. Specifically, the public-seed LWR
assumption does not appear to be significantly stronger than the LWR assumption.
Informal Description. We start with the obfuscator from any deterministic encryp-
tion scheme, as described in [5]. Then, we instantiate the deterministic encryption
scheme with the one from [37], based on the LWR assumption. Next, we use
two design optimizations from [18]: first, the key generation for the deterministic
encryption algorithm only generates the public key, and not the secret key, since the
latter is never used by the obfuscator; second, we generate a uniformly distributed
public key, instead of the one returned by the scheme in [37], in turn based on lattice
key generation approaches from [30]. The latter simplification is possible since the
distribution of the public key was proved in [30] to be statistically indistinguishable
from uniform. Finally, we use three design optimizations from [1]: (1) both the
obfuscation generator and the obfuscation evaluator use a pseudo-random (instead
of random) matrix M with published seed as the public key, and (2) the obfuscation
generator stores H(b) instead of a target vector b, and the obfuscation evaluator
uses H(b′) instead of a generated vector b′ in its test checking equality between a
generated and a target vector, where H denotes a collision-resistant hash function;
(3) inspired by probabilistic testing techniques, we expect that it suffices to run
the evaluator’s equality test only on a randomly chosen subset of the matrix A’s
rows, of size much smaller than the original number of rows; then, since matrix
A is pseudo-randomly generated, one might as well modify the obfuscator so that
it only returns a much reduced number of rows. Optimizations (1) and (2) reduce
storage, but slightly increase running time, while optimization (3) further reduces
both storage and running time.
Formal description: Let H be a collision-resistant hash function. We now give a
formal description of (oGen5, oEval5).
Input to oGen5: dimension parameters 1n, 1m, domain parameter 1q , factor param-
eter δ, rounding parameter p, statistical security parameter 1λ, and secret vector
z ∈ {0, 1}n.
Instructions for oGen5:

1. Set v = (n + λ)/ log q

2. Pseudo-randomly choose M from Z
v,n
q starting from a random seed s

3. Compute vector u = M · z
4. Compute rounded vector b = 	u
p

5. Compute tag w = H(b)

6. Return: (s,w)

Input to oEval5: dimension parameters 1n, 1m, domain parameters t, 1q , factor
parameter δ, rounding parameter p, statistical security parameter 1λ, input vector
x ∈ {0, 1}n, and the output from oGen5, containing seed s and w ∈ {0, 1}�.
Instructions for oEval5:
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1. Set v = (n + λ)/ log q

2. Pseudo-randomly generate M ′ ∈ Z
v,n
q using seed s

3. Compute vector u′ = M ′ · x

4. Compute rounded vector b′ = 	u′
p

5. Compute tag w′ = H(b′)
6. If w′ = w then return 1 else return: 0.

Theoretical result. Under the public-seed LWR assumption, and using results from
[5, 37], in [1] it is proved that (oGen5, oEval5) is an obfuscator for the family of point
functions (with almost uniformly distributed secrets), according to the adversary
view black-box simulation definition.
Parameter setting. Parameters for scheme (oGen5, oEval5) are set in [1] by
slightly improving some constants in those recommended by [37]. Specifically, all
parameters are set as a function of the dimension n and a parameter δ, and settings
for n, δ are determined so to approximately minimize other parameters, including
performance metrics, while subject to the following two constraints:

1. n >= log(q/σ) ∗ 33.1, for σ = 5, and
2. q/p is an integer ≥ √

n.

Constraint 1 is based on analysis in [23], which provides a lower bound on n,
guaranteeing that the strongest known attacks to the LWE problem, and also
applicable to LWR, are as successful as breaking a 128-bit cryptographic primitive.
Constraint 2 is based on a conjecture in [2], saying that, in light of the strongest
known attacks to LWE, and also applicable to LWR, the LWR problem seems to
remain hard as long as q/p ≥ √

n is an integer and p is polynomial in n. This set of
parameters is then generated starting from n = 1336. The resulting settings are:

1. n = 1336,
2. δ = 0.521,
3. m = 285707 (the dimension of the ciphertext),
4. p = 170396512836
5. q = 6304670974932, where q/p = 37, and
6. v = �(n + λ)/ log p
 = 40, where λ = 128.

An alternative set of parameter settings can be generated starting with the larger
value n = 2048, in case the above conjecture appears too optimist in the future,
using analogue formulae to derive all other parameters from n, δ.

8 A Point Function Obfuscator Based on the LWE Problem

In this section we present an obfuscator from [1], denoted as (oGen6, oEval6), for
the family of point functions (with almost uniformly distributed secrets), using an
assumption related to the LWE problem. We first briefly recall the definition of the
LWE problem and its related assumptions, and then present the obfuscator and its
properties.
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Learning With Error assumption. Let AT denote the transpose of matrix or vector A,
let q be a prime, let · denote matrix-vector product mod q , and let + denote vector
sum mod q . Let Gμ,σ denote the probability density of the Gaussian distribution
with mean μ and standard deviation σ . For any set S ⊆ Z, let dGS,μ,σ denote the
probability density of the discrete Gaussian distribution with mean μ and standard
deviation σ , with assigns to any x ∈ S the probability Gμ,σ (x)/

∑
z∈S Gμ,σ (z). We

note that dGZq,μ,σ can be efficiently sampled [20].
Now, consider the following two distributions:

1. D0 = {A ← Z
n,m
q ; s ← Zn

q ; e ← dGZq,0,2
√

n; b = AT · s + e : (A, b)}
2. D1 = {A ← Z

n,m
q ; b ← Zm

q : (A, b)}
The LWE problem asks to efficiently distinguish, whether a sample (A, b) came
from D0 or D1. The LWE assumption states that the distributions D0 and D1 are
indistinguishable to any efficient algorithm, except with negligible probability. The
LWE assumption has been introduced in [33] and has been used to design various
cryptographic primitives and protocols since then. The literature includes both
research on attack efforts, and on its relationship to other well studied assumptions
on lattices, such as bounded-distance decoding and shortest-vector finding. (See
[29, 30, 32] for detailed bibliographies and problem overviews). We also consider
a modified LWE assumption, also called public-seed LWE assumption, which
assumes the hardness of the LWE problem when matrix A is pseudo-randomly
generated with publicly known seed. This assumption has been discussed in detail
in [22], where it is suggested that it might not be significantly stronger than the LWE
assumption.
Informal Description. Although similar to the obfuscator in Sect. 7, the approach
used by obfuscator (oGen6, oEval6) is not based on a deterministic encryption
scheme and in fact is inherently probabilistic. On input an n-bit secret string z, the
generator algorithm uses the LWE assumption to embed the secret into a random
matrix A and a vector b computed as A · z + e, for some short Gaussian error e.
Note that by the LWE assumption, vector b is computationally indistinguishable
from a random vector of the same structure. On input an n-bit string x, the evaluator
algorithm computes vector b′ as A · x, and returns 1 if the vector b′ − b is short with
respect to some norm (e.g., the L1 norm), and 0 otherwise. As for the obfuscator in
Sect. 7: (1) matrix A is pseudo-randomly generated by both generator and evaluator,
using the same short random seed, which is returned as output by the generator and
then taken as input by the evaluator; and (2) the generator only returns a much
reduced number of rows for matrix A. We refer the reader to [1] for a formal
description.
Theoretical results. Under the public-seed LWE assumption, in [1] it is proved that
(oGen6, oEval6) is an obfuscator for the family of point functions (with almost
uniformly distributed secrets), according to the adversary view black-box simulation
definition.
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9 Security and Performance Comparisons

Security comparisons. Table 1 contains the security notions satisfied by the pre-
sented obfuscators and the hardness assumptions under which the obfuscators
satisfy these security notions.
Performance comparisons. Table 2 contains the generator runtime, evaluator run-
time and storage complexity of the presented obfuscators. The implementation
of the first 4 obfuscators was performed on a Dell 2950 processor (Intel(R)
Xeon(R) 8 cores: CPU E5405 @ 2.00GHz, 16GB RAM), without parallelism.
The implementation of the last 2 obfuscators was performed on an 8-core x8664
machine, with 2 CPU GHz and 3990.05 BogoMIPS. In all cases, both the secret and
the input length were chosen as = 2048.

Remarks The 6 point function obfuscators can be mapped to uncomparable points
in a multi-dimensional space based on the following attributes: evaluator runtime,
storage, security notion, hardness assumption, as well as quantum-resistant security.
While (oGen1, oEval1) has the slowest evaluator runtime, it also assumes that
the hash function behaves like a random oracle (a very strong assumption that
turned out to be false for some older hash functions). Obfuscators (oGeni , oEvali),
for i = 2, 3, 4, are the only ones satisfying strong indistinguishability, adversary
output black-box simulation, and real-vs-random indistinguishability, respectively.
Obfuscators (oGenj , oEvalj ), for j = 5, 6, are the only ones satisfying a security
notion under a quantum-resistant hardness assumption.

Table 1 Security notions and hardness assumptions

Obfuscator Security notion Hardness assumption

(oGen1, oEval1) Adv view bb simulation Random Oracle

(oGen2, oEval2) Strong indistinguishability Decisional DH

(oGen3, oEval3) Adv output bb simulation Discrete Log

(oGen4, oEval4) Real-vs-random indistinguishability Decisional Residuosity

(oGen5, oEval5) Adv view bb simulation Learning with Rounding

(oGen6, oEval6) Adv view bb simulation Learning with Errors

Table 2 Performance of the 6 point function obfuscators (oGeni , oEvali ), for i = 1, . . . , 6

Obfuscator Generator runtime Evaluator runtime Storage

(oGen1, oEval1) 0.0004 s 0.0002 s 1 KB

(oGen2, oEval2) 0.0734 s 0.0139 s 1 MB

(oGen3, oEval3) 76.46 s 12.09 s 0.22 GB

(oGen4, oEval4) 0.1317 s 0.1005 s 2.4 MB

(oGen5, oEval5) 0.0178 s 0.144 s <100 B

(oGen6, oEval6) 0.5580 s 0.3271 s <250 B
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10 Application-Driven Modeling of Cryptographic Program
Obfuscation

Our treatment of application-driven modeling for cryptographic program obfus-
cation identifies research problems in this area as a tuple of points, each point
in the tuple being taken from a different 3-dimensional spaces. In particular, we
focus our dicussion on two 3-dimensional spaces that contain the seemingly most
interesting problem variables. In a first 3-dimensional space, based on problem
models, we consider dimensions on program representation model, input entropy
model and participant model. In a second 3-dimensional space, based on security
requirements, we consider dimensions on adversary resources, attacks and goals.
Here, identified practical attack classes include remote calls, program theft, and
system intrusion. One could consider yet another 3-dimensional space, based on
performance requirements, with most interesting dimensions being running time,
storage complexity, and memory usage of the evaluator program.

Most tuples generated using points in these 3-dimensional spaces have not been
investigated in the literature or even posed as open problems. In the rest of this
section, we describe all the mentioned dimensions and 3-dimensional spaces, and
discuss which problems in these spaces have been studied in the literature or are
currently open problems.
Program Representation. The formalism used to represent programs can be impor-
tant to determine what features of a program need to be obfuscated or not.
Certain program parameters, such as input length, might often be leaked to an
adversary without compromising the secrecy desired in the application at hand (as
is most typically the case with encryption). Most interestingly, programs can be
parameterized by additional secret values or have sensitive logic or both.

In some applications, it might be of greater interest to obfuscate these secret
values while it might be not a problem to reveal the program’s logic. For instance,
consider the family of point functions, defined as pF = {fs | s ∈ {0, 1}n}, where s is
a secret string, and fs : {0, 1}n → {0, 1}n maps an input x ∈ {0, 1}n to 1 if x = s or
to 0 otherwise. For such family, it is of interest to obfuscate secret s while allowing
the capability of evaluating fs , and it may be not important or of less interest to hide
the logic (i.e., conditional, equality, etc.) used by function fs . Applications captured
by this program representation include password/passphrase verification, password
managers, and, more generally, secret-based entity authentication.

In other applications, it might be of greater interest to obfuscate the sensitive
logic than parameter values. For instance, consider the family of all polynomial-time
functions over n-bit inputs, defined as aF = {f | Dom(f ) = {0, 1}n}, where f can
be any polynomial-time computable function. For such family, it might be of interest
to obfuscate the function’s logic (i.e., the structure and gates of the circuit computing
f ), while allowing the capability of evaluating f , and it may be not important or of
less interest to hide parameters (i.e., the input length or any auxiliary input values)
used by function f . Several applications related to protection of program logic and
any related intellectual property are captured by this program representation.
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Input Model. The amount of entropy in the program’s input can be important to
determine if the program can be securely obfuscated or not against adversaries with
certain resources or interaction models. In particular, consider a program with a low-
entropy input and an adversary capable of unlimited evaluations of this program on
inputs of its choice. By evaluating the program on all candidate inputs, the adversary
can efficiently determine the entire program’s input/output behavior, regardless of
whether the program is obfuscated or not. If the program’s input has low entropy,
this adversary can efficiently learn the program and thus bypass any obfuscation.
Note that in the literature the definition of low-entropy input is often left unspecified
or limited to an asymptotic statement (i.e., an input’s entropy is low if it is at most
logarithmic in the security parameter). On the other hand, the definition of high-
entropy input is usually identified with the value of the security parameter (i.e.,
the entropy amount for which exhaustive search attacks are actually impractical).
While it is true that there are many applications, especially when it comes to
cryptography programs, where inputs have high entropy, it is also true that in many
non-cryptographic applications, inputs might have low entropy. In the latter case, to
allow any obfuscation approach to maintain desired security properties, one needs
to resort to a weaker model for the adversary’s resources and/or interaction with
the program. (See, for instance, participant, adversary resource and adversary attack
models below.)
Participant Model. As the most basic participant model for cryptographic program
obfuscation, one can consider 2 logical entities:

1. a program deployer, in charge of generating the obfuscated program, and
2. a program evaluator, being allowed to evaluate the program (obfuscated by the

program deployer).

Figure 1 depicts the interaction between the two parties, as considered in most
literature papers in the area. In some applications, however, the obfuscated program

Fig. 1 2-party participant model for cryptographic program obfuscation
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Fig. 2 3-party participant model for cryptographic program obfuscation

is hosted with a server and the input to the program is generated from an additional
input source. Thus, one can extend the above 2-participant model into a model with
3 logical entities, defined as follows:

1. a program deployer, in charge of generating the obfuscated program,
2. an input generator, in charge of generating inputs to the obfuscated program, and
3. a program host, being allowed to store the obfuscated program. (Note that an

adversary corrupting or intruding into the program host is expected to be also
capable of evaluating the program.)

Figure 2 depicts the interaction between the three parties as a natural extension of
the interaction between the two parties shown in Fig. 1.
Adversary resources. We identify three main types of program resources that an
adversary may use during its attacks:

1. program inputs, chosen by the adversary, and corresponding outputs,
2. program inputs, chosen by a honest user, and corresponding outputs; and
3. a description of the (obfuscated) program’s code.

Without knowing further details on how resources of type (2) are generated and the
relative state of knowledge of honest users and adversaries with respect to program
secrets, it is unclear whether these are less or more valuable (to the adversary) than
resources of type (1). For instance, if a honest users generates inputs according
to a distribution that somehow depends on program secrets, these inputs and their
corresponding outputs might have not been obtained by an adversary with no
knowledge of the program secrets. We also note that in practical attacks resources
of different types might more or less naturally compose. For instance, access to a
resource of type (3), a description of the obfuscated program’s code, would directly
allow an adversary resources of type (1), as the adversary can use this description to
run the program on inputs of its choice and thus see the corresponding outputs.
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Table 3 Security notions and hardness assumptions

Adversary attack classes Adversary resources classes

Remote call Program inputs, chosen by adversary, and corresponding outputs

Code theft Description of (obfuscated) program’s code

Program inputs, chosen by adversary, and corresponding outputs

System intrusion Description of (obfuscated) program’s code

Program inputs, chosen by adversary, and corresponding outputs

Program inputs, chosen by honest program users, and

corresponding outputs, all eavesdropped by adversary

Adversary attacks. We identify three main types of attack that an adversary may run,
in order of increasing strength:

1. remote call to program functionality, according to which the adversary can
remotely execute the program on chosen inputs and receive corresponding
outputs;

2. program theft, where the adversary can inspect the program’s code, run the
program with chosen inputs and receive corresponding outputs; and

3. system intrusion, according to which the adversary can inspect the program’s
code, and eavesdrop program executions with inputs chosen by honest users and
their corresponding outputs.

There is a natural mapping between these three types of adversary attacks and the
three types of program resources available to the adversary, as shown in Table 3.
Adversary goal. Similarly as for other cryptographic primitives, one can define
various goals for an adversary attacking an obfuscated program. To protect against
such goals, researchers have identified various security notions in the literature.
Goals and identified notions in the literature include the following:

1. distinguishing a random obfuscation of the given program from information
computable in polynomial time given access to a virtual black-box computing
the same function (with associated security notions identified in [4, 11, 25]);

2. distinguishing a random obfuscation of the given program from a random
obfuscation of a randomly chosen program within the defined class (with
associated security notions identified in [5, 25]);

3. distinguishing a random obfuscation of any two programs computing the same
given function (with associated security notions identified in [4]);

4. computing, on input a random obfuscation of a program, an unobfuscated version
of the same program (with associated security notions identified in [16]).

Models and security requirements. Models in cryptographic program obfuscation
can be identified as points in a 3-dimensional space (pictorially depicted in Fig. 3),
consisting of the previously discussed 3 dimensions: program representationmodel
(secret-based programs, general programs, etc.), input entropy model (low-entropy,
high-entropy, etc.) and participant model (2-party, 3-party, etc.).



164 G. D. Crescenzo

Fig. 3 Problem space for cryptographic program obfuscation

Fig. 4 Security requirement space for cryptographic program obfuscation

Security requirements in cryptographic program obfuscation can be identified
as points in a 3-dimensional space (pictorially depicted in Fig. 4), consisting of the
previously discussed 3 dimensions: adversary resources (chosen program inputs and
associated outputs, program’s code, eavesdropped program inputs and associated
outputs, etc.), adversary attacks (remote access, program theft, system intrusion,
etc.) and adversary goals (on distinguishing the obfuscated program from virtual
black boxes, obfuscations of random programs in the class, or other obfuscations
for the same program, or computing unobfuscated versions of the same program,
etc.).

Performance requirements in cryptographic program obfuscation can be identi-
fied as points in a 3-dimensional space, consisting of the previously mentioned 3
dimensions: running time, storage and memory use of the evaluator program.
State of the art and open problems. By taking a model from the 3-dimensional
space in Fig. 3, a security requirement from the 3-dimensional space in Fig. 4, and
a desired level of performance with respect to the above mentioned performance
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requirements, one can generate a meaningful research problem for cryptographic
program obfuscation. Most of these research problems have not yet been considered
in the literature. More specifically, with respect to models, the literature has focused
so far on the obfuscation of general programs, as well as various secret-based
programs, including point functions, with high-entropy inputs in the 2-party model.
With respect to attack classes, the literature has only considered program theft,
for which several different security notions have been defined including those for
point functions discussed in Sect. 2.2. With respect to performance requirements,
the literature has mainly considered running time of the evaluator program, and
practical runtime has been achieved by point function obfuscators, as discussed in
Sect. 9.
Application-driven Solutions: a simple example. As a simple example of the
increased applicability of the models introduced in this section, we discuss how
to design a cryptographic program obfuscator of a program that checks equality
between an input bit and a secret bit. More formally, define the family of bit equality
functions as beF = {fb|b ∈ {0, 1}}, where b is a secret bit, and fb : {0, 1} → {0, 1}
maps an input x ∈ {0, 1} to 1 if x = b or to 0 otherwise.

Note that for any obfuscation of such program in the most common 2-party
model, the secret bit b is easily learnable from the obfuscated program by an
adversary that can run the obfuscated program on inputs of its choice. (The
adversary runs the obfuscated program on a bit x, obtains an output bit y, and returns
x if y = 1 and 1 − x if y = 0, which is a correct guess for secret bit b).

On the other hand, in the 3-party model, one can construct an obfuscator for beF ,
starting from any block cipher BC, as follows. Let k denote a random key shared
by the obfuscated program generator and the input generator. On input secret bit b,
the obfuscated program generator computes a nonce r0|R = BC(k, 0), for some bit
r0, and returns c = BC(k, b|r). On input a bit x, the input generator computes the
same nonce r0|R = BC(k, 0), with the same bit r0, and returns d = BC(k, x|r).
On input c, d , the obfuscated program evaluator returns 1 if c = d and 0 otherwise.

It is not hard to see that this program obfuscator satisfies almost exact function-
ality, polynomial slowdown and adversary view black box simulation (assuming
block cipher BC behaves like a pseudo-random permutation). The almost exact
functionality follows from BC(k, ·) being a deterministic function that returns the
same value when evaluated twice on the same input string. The adversary view black
box simulation follows from the pseudo-randomness of BC, as k and r are unknown
to the adversary (only attacking the program host).

11 Conclusions

Cryptographic program obfuscation is very promising as it might change the
heuristic nature of previous code obfuscation techniques into rigorous and provable
solutions, along the paradigm of modern cryptography research. Early negative
results on the existence of a single obfuscator for all polynomial-time programs have
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been recently mitigated by constructions of obfuscators for specific polynomial-
time programs. As of today, the literature contains many implementations of point
function obfuscators, satisfying different obfuscation notions, many of which can
be used with practical performance guarantees. Moreover, the early theory-driven
obfuscation models can be enriched with multiple application-driven obfuscation
models by which researchers can protect computer programs against practical attack
classes by leveraging current implementations of point function obfuscators, as
well as upcoming future practical implementations of obfuscators for other specific
functions.
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Botnet-Based Attacks and Defence
Mechanisms

Dilara Acarali and Muttukrishnan Rajarajan

Abstract This chapter considers the threat posed by botnets and the impact of
botnet-based attacks on both private domains and the global digital infrastructure.
Botnets are widely employed by cyber-criminals for a variety of malicious activities
and are frequently observed as a component within large-scale organised cyber-
crime campaigns. In addition to this, botnets are a varied and evolving threat,
bound to grow in parallel with our increasing dependence on digital services and
the Internet, as well as the adoption of upcoming technologies like the Internet-
of-Things. Botnets can be considered as attacks in-and-of themselves, as well as
platforms for future attacks. With this as the foundational perspective, this study
examines how a botnet is defined and classified, how it is built and used, the
characteristics of a botnet attack, and the factors contributing towards its success.
We then analyse how a botnet provides other attack capabilities for the cyber-
criminal. This is supplemented with a discussion of how the threat is adapting to
new technologies, followed by a short survey of some outstanding problems to be
considered in future research.

1 Introduction

Botnets are a growing problem in our increasingly digital world, underpinning
malicious activities such as identify theft, financial fraud, corporate espionage,
and even cyber-terrorism. They come in a variety of shapes and flavours, can be
deployed on a multitude of platforms, and can vary in functionality and scope,
making it difficult to find a single, standardised solution. To provide a general
framework for discussion, botnet activities can be considered in two distinct parts
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consisting of the initial penetration and infection of a target, followed by the
exploitation of that target. To build a foundation for the rest of the study, this
section explains how we define botnets and what kind of behaviours we can expect
to observe from them.

1.1 Definition of a Botnet and Basic Functionality

At the most basic level, a botnet is defined as a collection of bot clients connected
to each other via a control network through which they can send and receive
updates and information. The word “bot” (shortened from “robot”) refers to a piece
of software which is written to carry out some automated tasks on behalf of the
user. Legitimate services frequently use bots as part of their routine processes. For
example, consumption bots on Twitter curate content for individual users based on
their tastes [1]. The overall purpose of a bot is to free the human user from tasks
which need to be performed constantly and consistently over time. Malicious bots
function on the same principles. The cyber-criminal behind a botnet campaign is
commonly referred to as a botmaster or botherder.

Although there are variations from case to case, the key components of a
botnet can be summarised as follows: the bot client program, the infection vector,
the communication protocol, the control architecture, the control servers, and the
botmaster. The infection vector is the means by which the bot client is inserted
into a victim system (e.g. worms, viruses or Trojan software). This tends to be
defined as part of the malware design. Opposite the client, the command and
control servers (referred to as C&C or C2 servers) are distribution and collection
points for instructions and information. The communication protocol and control
architecture in combination define how messages will be sent and received. Finally,
the botmaster is the human brain and the driver behind the botnet, and their
intentions or aims determine how it will be used.

Similarly, we can abstract the activities of a botnet into a generalised lifecycle
(Fig. 1), which may begin with initial conception and design [2] or at the point of
the first successful infection [3]. For practical purposes, we will focus on the second
scenario here. Once executed, the malware performs its initial setup, and then enters
the rally stage. This is where a previously isolated bot attempts to connect to the
C&C network. Once this connection is achieved, the cycle moves into the secondary
injection stage, in which relevant binaries and tools are gathered and installed on the
host [3]. The bot is now ready for use and will be provided with commands via the
C&C network. When the relevant command comes through, the cycle moves into
the attack phase [3]. Note that when the attack ends, the botnet will probably fall
back into waiting mode, ready for the next round of activity.

A botnet’s main functionality comes from its ability to exploit the resources
(e.g. memory, RAM, bandwidth, or data) of existing domains and devices to carry
out large-scale tasks. Denial-of-Service (DoS) attacks and spam campaigns are
both examples. To achieve this, the bot malware needs to propagate to as many
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Fig. 1 Botnet lifecycle based on stages proposed by [3] with alignment to the 2-part attack

networked devices as possible, thereby increasing this pool of exploitable resources.
Additionally, a bot provides a back-door into the victim system, thereby allowing
a botmaster to gain access to potentially sensitive data and environments. It is
the flexibility and range of botnets that make them an attractive option for cyber-
criminals.

These functionalities are also what distinguish botnet attacks from others. The
attack is not a one-off situation, but rather a continuous one. As long as a piece of bot
malware remains within a network (and its C&C servers are online), that network
should be considered under attack. The difficulty in dealing with this scenario is that
there may be no visible symptoms whilst bots operate intermittently or stay dormant
until their next update. In propagation modelling, the analogy applied to malware
is that of an infectious disease. Bot malware can be thought of as a specialised
strain that weakens a body’s immune system, making it more vulnerable to future
health problems or other illnesses. The network’s functionality and integrity is
compromised by the presence of this infection.

1.2 Botnet Classifications

Botnets can be classified in terms of their command dissemination style, broadly
defined as either push- or pull-based (Fig. 2a). Commands originate from the
botmaster, who plants them into the C&C network. C&C servers may then “push”
messages out for the clients to receive. This was the typical approach of earlier
botnets [4], but has also been used in more recent theoretical mobile setups [5]. In
contrast, pull-based spread involves each client individually polling the C&C server
to receive an update. Perimeter defences like firewalls contain default rules to block
all unknown incoming web traffic. The pull-based approach is effective in getting
around this issue, thanks to the client (who is internal to the network perimeter)
initiating the connection. Examples of botnets which use pull-based methods are
Storm [6], Zeus [7], and Asprox [8]. Meanwhile, GameOver Zeus is reported to use
a hybrid push/pull approach for contingency [9].
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Fig. 2 Botnet classifications, including command dissemination style and architectures. (a) Push
vs. pull-based dissemination (b) Centralised botnet (IRC- or HTTP-based) (c) Decentralised botnet
(P2P-based) (d) Hybrid botnet (combined P2P- and HTTP-based) [10]

Botnets may also be classified by architecture, which refers to the way their
client-server relationships are organised. Early botnets used solely centralised
architectures (Fig. 2b), where many clients connect to a few central servers. This
approach is simple and straightforward, but also vulnerable thanks to the single
point-of-failure in its design [11]. Silva et al. [3] lists early examples of centralised
botnets including EggDrop (first detected in 1993), GTBot (1998), SDBot and
Agobot (2002), and Spybot (2003). The alternative is a decentralised architecture
(Fig. 2c), where many clients connect to many servers, and the same devices may
act as both clients and servers depending on the situational requirement [11].
This clearly eliminates the single point-of-failure, making the botnet more robust,
discrete and resistant to takedown attempts [11].
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Hybrid architectures have emerged more recently (Fig. 2d), featuring both
centralised and decentralised elements to make the botnet easy to maintain and
sturdy against adversaries [11]. This can also be used to obfuscate C&C networks
behind layers of clients, making it harder to identify or trace them. For example,
[14] reported that Waledac uses a decentralised hierarchical topology made up of
spammer nodes, repeater nodes, and 3 layers of servers, combining centralised top-
level C&Cs with a decentralised client node layout.

The C&C categories described so far tend to align with the use of particular
protocols, providing another angle for classification. Centralised architectures use
IRC or HTTP. For instance, EggDrop, AgoBot, and the Chuck Norris botnet are
all IRC-based [3, 17]. However, this protocol has fallen out of favour after being
targeted by network defenders and was replaced with HTTP, widely used in modern
botnets including Rustock [12], Clickbot.A [13], Waledac [14], Koobface [16],
Asprox [8], and Dirt Jumper [18]. HTTP-based C&C communication is effective
in enabling bot flows to blend in with benign web traffic, and is often combined
with pull-based dissemination to overcome defences. Meanwhile, P2P protocols
are obvious choices for decentralised architectures, allowing bots to act as peers
to exchange data symmetrically within overlay networks. Examples of P2P-based
botnets are Storm and Nugache [6], Sinit, Phatbot, SpamThru, and Peacomm [22].
Custom protocols may also be used, like Mariposa’s UDP-based Iserdo Transport
Protocol [15].

The final classification method is based on malware family, which can be defined
in two ways. In the first, botnets belonging to the same family are built using
separate instances of the same malware [23]. For example, two botmasters may have
access to the same binaries, and launch their own separate campaigns [23]. This
is relevant where malware code is known to be highly accessible via underground
forums or the black market [7]. The second definition is a group of separate malware
codes, which appear to have a single progenitor. Zeus is a famous example of this.
After first appearing in 2007, the malware was made public in 2011 [24] leading
to the appearance of many derivatives, including GameOver Zeus, Citadel, and
Shylock [24]. This is significant to our understanding of botnet evolution.

To summarise, Table 1 lists some botnets along with their classifications.

1.3 The Two-Part Attack

The botnet lifecycle establishes separate stages for spreading, rallying, awaiting
commands, and performing attacks [3]. In this study, we further abstract these stages
into two parts; the initial compromise and the continuous threat (Fig. 1). The first
refers to the process of infiltration and infection, whilst the second refers to the
cycle of attacks and waiting periods. From a defensive perspective, our intention
is to frame the botnet with two opportunities for mitigation, where missing the
opportunity to stop the infection opens the pathway to many future attacks.
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Table 1 Summary of classification methods for a selection of botnets

Classification method

Botnet Push/Push Architecture Protocol

Storm [6] Pull Decentralised P2P

Nugache [6] Pull/Push Mixed P2P/IRC

Rustock [12] Pull Centralised HTTP

Clickbot.A [13] Pull Centralised HTTP

Waledac [14] Pull Decentralised P2P

Mariposa [15] Pull Centralised UDP

Koobface [16] Pull Centralised HTTP

Chuck Norris [17] Push Centralised IRC

Asprox [8] Pull Centralised HTTP

Zeus [7] Pull Centralised HTTP

Dirt Jumper [18] Pull Centralised HTTP

GameOver Zeus [9] Pull/Push Decentralised P2P

Kelihos [19] Pull Decentralised P2P

Citadel [20] Pull Centralised HTTP

ZeroAcess [21] Pull Decentralised P2P

The initial compromise attack is designed to discreetly implant malware into a
node of the target network. Bots take great care to stay hidden at this stage, as
the ultimate success of the botnet depends on it. Examples of obfuscation methods
used are packing (Storm [6], Citadel [20]), encryption (Citadel [20], Mariposa [15]),
rootkits (Nugache [6]), and registry amendments (Nugache [6], Dirt Jumper [18],
Citadel [20]). These may also double as methods to weaken the host, making it more
malleable. Successful detection and mitigation of this propagation process reduces
the later impact of a botnet presence in the network.

A person with an infectious disease can become more vulnerable to further
health issues, becoming a health-hazard to others in the process. The concept of the
continuous threat is similar to this, as a compromised network (with even a single
bot) is now in a weakened state with an increased chance of receiving new infections
from unrelated malware and of propagating binaries on to others. The continuous
threat also encompasses the possibility of the compromised network being used as
a weapon in attacks against third-parties.

There are several benefits to considering botnet threats in this manner. Firstly, the
distinction allows us to approach the two attacks separately and in a way befitting
of their characteristics. We cannot approach single-host infections the same way we
approach a DDoS attack, for example. However, both are botnet-related issues that
need to be addressed as such. Secondly, it provides two opportunities for dealing
with the problem. If the original infection can be resolved, no further action is
needed. If not, there is still an opportunity for damage limitation, provided that the
correct understanding and defensive strategies are in place.
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2 Domain Impact

Despite the level of compromise, if the malware is well-designed, network users and
analysts may be none the wiser. Bot presence may only become apparent once the
botnet is offensively engaged. This section explores some of the ways in which an
infected network may be directly impacted by the its unwelcome guests.

Maintaining stealth is crucial to a successful bot infection. Hence, the executed
bot binary makes various changes to the host system. For example, Nugache installs
a rootkit driver to System32 of Windows operating systems, which is then loaded
into the kernel [6]. Both Nugache and Dirt Jumper make modifications to the
system registry [6, 18]. These changes have an overall weakening effect on the host
(and consequently, the wider network), perhaps re-opening previously dealt-with
vulnerabilities, causing other malicious processes to go unnoticed, or introducing
new exploits.

During the rally stage, bots register with the C&C and authenticate themselves,
usually providing information on the host. This allows the botmaster to gain
an overview of the variation of nodes recruited. These messages may contain
details of hardware, operating system version, and patch levels – all potentially
valuable in planning further attacks [8]. Additionally, many bots including Shylock,
SpyEye, and Tinba contain keylogging and screen-capture modules used to steal
user information [25]. Botmasters may sell this and network details on to other
adversaries for future exploitation. Furthermore, captured user credentials enable a
botmaster to personally manoeuvre into secure environments in the network.

Another impact of bot infection is the draining of a victim’s resources, including
physical memory, RAM, processing power, and bandwidth. Botnets are designed to
use the collective power of many machines to reach some end goal. An example is
the launch of DDoS attacks. Whilst the target may be a third-party, the continuous
stream of messages sent out by bots can negatively affect the source network too,
especially if multiple infections are present. In mobile botnets, C&C traffic may
cause devices to hit data usage limits resulting in additional fees [26]. Alternatively,
users of infected nodes may notice their devices running more slowly as bot
processes operate in the background.

Discussion so far has focused on instances of a single botnet malware, but the
presence of multiple unique malware infections is also possible. This could result
in competitive behaviour for the finite resources available, and to the doubling of
traffic generated. If analysts then become suspicious, this is a hinderance to both
botnets. An example of possible competitive behaviour is the disabling or removal
of one malware by another when the two exist on the same host [27]. Alternatively,
botnets may collaborate with each other, providing access to core sets of nodes, as
reported by [23], who observed separate botnets belonging to the same families with
large areas of population overlap.

Case studies reveal that bots often spread laterally through the network resulting
in localised clusters of infected hosts. This propagation may be driven by automated
worms which scan the local network or via viruses and Trojans delivered through
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Table 2 Methods used by botnets as part of initial and continuous attacks

Techniques Used by

Initial compromise stage

Binary obfuscation Chuck Norris [17], Citadel [20], SpyEye [25]

Client testing Citadel [20], Mariposa [15], Miner [28]

File system manipulation Zeus [7], DirtJumper [18], Citadel [20]

Registry manipulation Nugache [6], Rustock [12], Waledac [14]

Hardcoded C&Cs Asprox [8], DirtJumper [18], Miner [28]

Fast-fluxing Mirai [29], Waledac [14], Asprox [8]

DGA/domain-fluxing Carberp [25], GameOver Zeus [25], Kraken [30]

Continuous threat stage

Trojans Storm [6], Nugache [6], Koobface [16]

Social engineering Asprox [8], Chuck Norris [17], Miner [28]

Drive-by-downloads JiFake [31], Plankton [31], Asprox [8]

DDoS DirtJumper [18], Mirai [29], Kelihos [19]

Data theft Zeus [25], SpyEye [25], Citadel [25]

Web-injects/fake pages Tinba [25], Bugat [25], Asprox [8]

Click-fraud Clickbot.A [32], ZeroAccess [21]

messaging channels (e.g. internal email) as spam. Mariposa reportedly checks for
P2P applications and if found, copies itself to the shared folder to propagate [15].
When a bot infection is detected, it should always be assumed that there are others
in the vicinity Table 2 summarises behaviours observed in various botnets.

In summary, a botnet infection can weaken a domain’s defence against other
threats, expose the network structure, and diminish productivity by causing slow
connections and interrupted services. As even minor infections can quickly grow,
botnet mitigation should be a top priority for all organisations, large and small.

3 Launching the Attack

The way in which an attack is initiated provides details as to its design, function,
and purpose. Here we discuss the launch stages of both the initial compromise
and continuous threat, demonstrating both the short-term and long-term effect of
a botnet on the target domain.

3.1 The Initial Threat: Compromise Attack

During the infection stage, botnets expand through the propagation activities of
individual bots. The characteristics of this process are largely defined by the
chosen propagation vector, defined as the bot binary delivery method. Choice of
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vector depends on the connectivity capabilities of targets – the more channels, the
more possibilities. Malware may be delivered through LANs, the Internet, WiFi,
Bluetooth, and even USB devices. Bot binaries piggyback on infectious malware,
the choice of which has an impact on the rate and speed of spread. For example,
botnets using worm-based propagation may expand faster than those using Trojans.
This is because worms are self-activated and self-replicating (e.g. Chuck Norris
botnet [17]), whereas Trojans require user interaction to execute and share them
(e.g. GameOver Zeus [9]).

Once the bot binary is executed, it goes through a setup process. If the binary is
highly obfuscated, it first needs to be unpacked and decrypted (e.g. Mariposa [15]).
Next, it will create new directories in system folders and make copies of itself or
important files. This allows the binary to launch from within the system folders,
giving it the illusion of being part of the OS [6, 7]. The Zeus bot also copies the
MAC details of nearby system files to further blend in [7]. The registry is edited to
manipulate system processes (e.g. Dirt Jumper [18] and Citadel [20]), and some bots
like Nugache install rootkits in the operating system kernel to help them stay hidden
[6]. The Citadel bot also goes to the additional step of removing its binary files
after installation [20]. These details can vary between families and implementations,
making detection difficult without a priori knowledge.

After installation, the bot must rally to the C&C network to register and
authenticate itself. This often includes the use of a unique ID (e.g. iKee.B [32] and
Clickbot.A [13]) as well as details on the host system. For instance, Mirai bots
send the IP, port, and login credentials of the victims [29], whilst Miner bots report
on connectivity and speed testing results [28]. These details give the botmaster an
overview of node capabilities and statuses, which may then be used to devise attacks
or adapt propagation strategies. Bot binaries may be hardcoded with lists of C&C
domain names or IPs [18] that are queried sequentially until one can be resolved.
However, these C&Cs are easily detected by defenders through binary analysis.
Botnets may employ expendable proxies (allowing bots to register and pull-down
instructions to access the main C&Cs) to get around this. The rally process typically
generates a large amount of erroneous DNS traffic, especially if servers have been
migrated or taken offline. This characteristic can be used for detection [30].

Fluxing may be used to minimise detection risk or to protect the C&C network
from exposure. Fast-fluxing is where DNS records are periodically updated to
rapidly change the IP that a domain name resolves to, thereby obfuscating the true
location of C&C servers. Waledac uses this approach, employing its upper tier nodes
to act as DNS servers [14]. Double-fluxing adds the cycling of authoritative name
server IPs, as observed in Asprox, which uses layered double-fluxing to create a
“hydra-flux” setup [8]. Alternatively, botmasters may replace hardcoded lists with
a domain name generation algorithm (DGA). Bots use DGAs to generate sets of
possible domains, and test each one until a resolving IP is found. This is known
as domain-fluxing. DGAs are pseudo-random, taking a seed value shared by the
botmaster to ensure that matching domains can be achieved [30]. This behaviour
was observed in Zeus, Conficker, and Kraken [9, 30].
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The botmaster now has access to system resources, visibility of some users, and
the ability to move stealthily through the network. The stage is set for follow-up
attacks.

3.2 The Continuous Threat: Follow-Up Attacks

The continuous threat can be considered as either (a). the activities of a previously-
initialised botnet (at macro scale), or (b). the activities of a single activated bot (at
micro scale). Whichever is chosen, a variety of attack options are available to the
botmaster at this stage.

One option is a Denial-of-Service (DoS) attack, where a large number of
connection requests are sent to a target server with the intention of overwhelming its
capacity. Distributed-DoS (DDoS) consists of requests generated by many devices,
thereby increasing the total force of the attack [33]. Dirt Jumper reportedly has
4 different types of DDoS capability, including HTTP flood made up of standard
HTTP requests, synchronous flood consisting of batches of 150 requests, downloads
flood designed to consume bandwidth, and POST flood aimed at overloading the
processing capacity of servers [18]. Large-scale DDoS attacks were also reported
for Mirai in 2016 [33]. Alternatively, botnets may deliver ransomware, which once
installed ‘locks’ the device, blocking user access. The authors then demand a ransom
to unlock the system [34]. These types of attacks are designed to cause disruption
to services.

User data is a precious commodity, and can be farmed via client bots. A
keylogger records the keystrokes of a user, whilst screen capture tools record an
image of the desktop. Harvested data is then sent back to the C&C. Examples of this
behaviour have been observed in Carberp, Tinba, and Bugat [25]. Another method
of data theft is a man-in-the-browser attack, where a web browser is hijacked with
script injections allowing form details submitted by the user to be intercepted by
the malware [25]. Bots may also manipulate browsers to redirect users to malicious
replicas of legitimate web pages for social engineering.

Click-fraud is the manipulation of the online ad system to generate revenue for
botmasters. Search engines maintain ad networks, agreeing with advertisers to host
their content and serving it to users when certain keywords are triggered in search
queries. Clicking an ad takes users to a landing page for which search engines
receive payments-per-click. Third-parties (known as syndicates) are also allowed to
display ads, receiving a cut of the earnings for the traffic they generate. Syndicates
may then employ sub-syndicates, and so on, to extend ad visibility. Click-fraud
exploits this system by generating fake traffic to the landing page. Clickbot.A sets
up its own search engines (called doorways) which are registered as syndicates [13].
Bots are provided with a list of keywords to query, receiving ad URLs to be clicked
[13]. ZeroAccess has a built-in auto-clicking module which runs in the web browser,
opening hidden windows to access C&C-provided URLs (which are periodically
updated) [21]. An additional module also redirects users themselves to ad landing
pages when they perform searches [21].
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4 Reasons for Attack Success

Botnets operate in phases with attacks formed of sequential steps. This means that
many factors may have impact on attack success along the way. In this section, we
identify and discuss some of these factors.

4.1 Pre-Existing Vulnerabilities

Exploitation of software is one of the most common approaches used by malware to
infect or attack systems. ZeroAccess uses the BlackHole exploit kit for propagation
[21], whilst [31] reports that some Android bots use root exploits for privilege
escalation. In the underground community, exploitable areas of code are actively
sought out and shared. Therefore, continuous use of old software leaves devices, and
subsequently networks, vulnerable as flaws and loopholes become known amongst
cyber-criminals. Delaying or disabling of scheduled updates can increase the
chances of contracting a botnet infection. However, even with defensive measures in
place, all software inevitably contains vulnerabilities that, despite extensive testing
and review, can go unnoticed. Therefore, networks should contain layers of defence
including scheduled backups, perimeter defences (where applicable), and failover
systems.

Probability of attack success is greatly impacted by the behaviour of users. Some
botnets rely on user negligence to spread. For example, iKee.B and Mirai both used
default login credentials to gain access to target devices [29, 32]. Others count on
users lacking the vigilance or skills needed to differentiate between legitimate and
malicious applications and services. For instance, Clickbot.A uses Trojans disguised
as games [13], Asprox uses a fake Flash Player and anti-virus package [8], and
Koobface sends malicious URLs from fake Twitter/Facebook accounts [16]. Each
of these approaches require user interaction to reach their goal. From an enterprise
perspective, employees may circumvent security policies and guidelines by using
company devices for personal tasks (expanding the attack surface), connecting
unsecured devices to the network via USB (used by Mariposa for propagation [15]),
or not using encryption for sensitive data.

4.2 Malware Variability

Malware increases its chances of success when it manages to deviate enough from
known attacks. This is because defences tend to be heavily based on previous
experiences. At the initial infection stage, propagation vectors vary wildly. Some
vectors observed in the past include drive-by-downloads (Asprox [8]), spam mail
(Waledac and Storm [14], Dirt Jumper [18]), instant messaging (SpyEye and
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Citadel [25], Mariposa [15]), social networks (Kelihos [19], Koobface [16]), and
social engineering (Asprox [8]). This level of variation makes it difficult to have a
‘one-size-fits-all’ defensive approach, which is further exasperated by the constant
emergence of day-0 threats. As a result, (at least) some attacks inevitably slip
through the net.

Variation is also born out of customisation and adaptations of existing malware.
For example, the original Zeus source code was used as a foundation for the
development of new threats, including Citadel and ICE IX [9]. Despite being
derivatives of Zeus, these botnets developed into distinct threats in their own right.
The same malware was later developed further to become GameOver Zeus, which
incorporates the use of P2P, making it more resilient than earlier iterations [9]. Bot
malware also evolves in response to defensive measures. An example of this is the
use of IRC in early botnets. When defenders started to block the IRC protocol,
botmasters began using decentralised networks like P2P, and more inconspicuous,
harder-to-block protocols like HTTP.

4.3 Discrete Operation

We have already discussed the measures taken by bot binaries to obfuscate their
presence. In addition to this, active bots may avoid engaging in superfluous activities
in order to draw less attention to themselves. By remaining dormant, the botnet may
improve its longevity, allowing more bots to be cultivated in preparation for a larger
attack [35]. Alternatively, propagation may be selective rather than randomised so
that only specific domains are targeted and the botnet size is deliberately kept small
to avoid detection. Similarly, it may be beneficial to the botmaster to avoid creating
active nodes beyond a given time threshold to reduce the botnet’s footprint [36].
These characteristics help the malware to stay under the radar.

In a typical enterprise network, traffic is generated by hundreds or thousands
of systems, resulting in millions of daily flows. Botmasters may exploit this by
blending C&C traffic in with normal user behaviours. For example, the imple-
mentation of HTTP as a C&C protocol allows polling bots to circumvent firewalls
whilst mimicking benign web traffic. Furthermore, traffic-based detection tends to
focus on anomalies or patterns suggestive of unauthorised automated processes.
Botnets may therefore evolve to include functions designed to distort these patterns.
For example, periodicity is a popular flow-based detection metric, measured as
frequency, duration, or intervals lengths [37]. Randomised delays can be added
between events to break up periodic patterns in propagation or polling traffic, as
demonstrated by [38].
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4.4 The Black Market

The current state of the black market is major driver behind the success of
today’s botnets. In the early days, simple malware threats were thought to be
written by amateur individuals, largely for their own entertainment. By contrast,
malware development and distribution is now a growing underground business
[39]. A modern cyber-criminal does not require prior experience or technical
expertise. Sophisticated bot malware and related exploit tools are readily available
for purchase, including bot binaries, SQL injection kits and browser exploits [40],
to name just a few.

Malware authors themselves stand to make massive profits from this. For
example, in 2015 the complete Zeus toolkit reportedly cost between $1,500 and
$20,000 depending on the version [24]. Complex business models have also
emerged, including pay-per-install, pay-per-use [41], and hacking-as-a-service [40],
allowing customers to outsource malware distribution or rent existing botnets for a
period of time to suit their needs. With such a high degree of availability and a range
of options, it is fair to suggest that any malicious group or individual could feasibly
launch their own botnet-based cyber-crime campaign.

5 Existing Solutions and Classifications

Botnet solutions can be broadly classified into two groups; proactive and pre-
emptive (Fig. 3). Proactive approaches encompass detection-related tasks, including
bot identification, mitigation, removal, and takedowns (which may also be con-
sidered pre-emptive in stopping future attacks). Generally, these strategies deal
with existing threats. Meanwhile, pre-emptive approaches include modelling and
simulation aimed at exploring botnet characteristics for a better understanding of
behaviours for predictive purposes. In this section, we provide an overview of both.

Fig. 3 Classification hierarchy for botnet solutions
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5.1 Proactive Approaches

At the highest-level, detection systems can be classified as either signature- or
anomaly-based. Signature-based refers to the use of markers which are known
a priori to be indicators of malicious activities in the host or network. These
‘signatures’ are stored within a database, and the detection mechanism is triggered
if matching activity is observed. Due to its reliance on heuristics, signature-based
detection is highly effective against familiar threats but not for day-0 cases. Rishi
[42], a signature-based tool, checks TCP packets containing certain IRC commands
for strings that match its collection of known bot keywords.

In contrast, anomaly-based detection generates a baseline of normal activity for
the system, triggering when it detects significant deviations from this norm. This is
advantageous because unfamiliar threats can also be defended against. However,
baselines must be sufficiently representative of actual behaviour, which can be
difficult if it is highly random. Unrepresentative baselines can lead to both false
positives and false negatives, potentially exasperated by the presence of benign and
malicious activities with similar characteristics. An example is BotSniffer [4]. It
monitors IRC/HTTP traffic at the network perimeter, which is then checked for
group bot-to-C&C communication patterns. Similar tools include BotMiner [43]
and BotProbe [44].

Anomaly- and signature-based approaches may be combined so that known
threats are handled quickly, or so newly-discovered anomalies are recorded as
signatures for future use. Examples of such hybrid schemes are BotHunter [45] and
BotCop [46].

Detection systems can be further classified by the scope of their observational
areas, as either host- or network-based. Host-based approaches monitor the system-
level activities of a single device, including API calls, use of the registry, and
generation of outbound traffic [47]. This is advantageous in observing specific
infection processes or dormant bots who communicate infrequently. However, this
approach alone may be insufficient when there are many connected hosts to secure.
An example of host-based detection schemes is BotTracer, which targets automated
bot installation and rally processes by isolating them via a virtual machine it runs
and monitors on the host [47].

A network-based system observes the traffic generated between multiple hosts,
and is placed strategically at ingress/egress points to capture the most relevant or
risky traffic. Suspicious behaviours that may be flagged include failed connection
attempts [48], failed DNS requests [30], web connections to blacklisted sites [49],
encrypted payloads in outgoing messages [50], and use of randomised domain
names [49]. Network-wide monitoring provides an overview of all activity in the
observation space, and is beneficial in detecting behavioural patterns, fluctuations
and group actions [43]. The main disadvantage is the sheer volume of data generated
daily, requiring a greater amount of resources to collect and process.

This approach can be divided into the flow and deep-packet analysis sub-
categories. Traffic data is often collected as NetFlow logs. A flow is the aggregation
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of packets exchanged between two endpoints in a specific conversation, and consists
of a vector of features (including timestamps, transport protocol, ports, IP addresses,
and a range of statistics) which provide a summary of that exchange. Flow
analysis is therefore a shallow but fast examination of traffic, using features like
duration, length, size, and frequency for statistical analysis. Bots generate traffic
automatically in response to commands, resulting in more systematic flows than
that of normal users. Therefore, detection using flow analysis involves searching for
automated processes which manifest as repetitive anomalous patterns, or searching
for instances of anomalous group behaviour. A drawback of this approach is the
number of false positives caused by benign automated traffic picked up erroneously.
BotMiner [43] is a flow-based detection scheme. It collects communication (C-
plane) and activity (A-plane) traffic and clusters the flows. Then cross-plane
correlation is performed to identify suspicious behaviour [43]. BotCop [46] is
another example.

The alternative to this traffic aggregation is to use packet captures (PCAPs)
which record the full details of every packet exchanged. This is used in deep-
packet analysis to examine protocol implementations and payloads, providing richer
detail, and is particularly useful when researching new malware or observing custom
protocols. However, it is costly in terms of time and processing power, and payload
examination is typically unsuccessful when dealing with encrypted traffic. However,
[51] developed BlindBox to perform deep-packet analysis on HTTPS traffic by
adapting signature-based methods to encrypted payloads.

Flow and deep-packet analysis can be combined, as demonstrated by [52]. They
first use statistical analysis to extract sets of suspicious flows. Then, false positives
are minimised by performing fine-grained deep analysis on only the packets of those
flows.

A takedown is the process of infiltrating and hijacking a botnet’s C&C infrastruc-
ture to disable communication between servers and nodes [53]. Sinkholing is the
most common method for achieving this, where botnet domains are identified and
pre-emptively purchased by researchers, who then setup their own servers to receive
incoming bot communication [54]. The ethics of sinkholing (including what to do
with harvested user data) is an open debate [54]. The first successful takedown was
against the Conficker botnet in a collaborative effort between Conficker Working
Group (consisting of researchers and industry professionals) and ICANN, who
helped to take control of Conficker’s domains [53, 55]. These were shared with
registrars who blocked them, cutting off the botnet’s C&C channels [55]. This was
followed by other successful takedowns of Mariposa in 2009 [53], Waldeac in 2010,
Rustock and Kelihos in 2011, Zeus and Nitol in 2012, and Batimal and Citadel in
2013 [55].

Figure 4 illustrates how proactive approaches are implemented and which part
of the botnet they address. Step 1 highlights a bot-infected client aiming to
communicate with a C&C using a hardcoded domain name. The blue dashed line
represents the end-to-end communication between the bot and the server. Client
devices are equipped with host-based monitors, which observe unusual system calls
triggered by the malware. At 2, the request is picked up by the network-based
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Fig. 4 Example of a bot-infected network illustrating the application of proactive defences

monitor of the local network. This observes all local clients, recording patterns if
they exist. Similarly, at 3, the same request hits the network monitor of the wider
domain network. The observational scope is expanded and, where multiple bots
exist, group behaviours can be identified. Step 4 highlights another bot making a
separate connection request. However, this time, the DNS registry has been modified
so that the domain resolves to a sinkhole run by defenders. The dashed purple line
represents hijacked bot communications in a botnet takedown effort.

5.2 Pre-emptive Approaches

We categorise pre-emptive works as propagation models and concept models.
Propagation modelling aims to identify factors contributing to bot spread and
the relationships between them, allowing researchers to explore both offensive
and defensive possibilities. Meanwhile, concept models are explorations of new
architectures or attack paradigms. The aim is to predict how botnets may adapt to
current defences or utilise new technologies as a means of prevention. The following
sections highlight some examples of pre-emptive research.

5.2.1 Propagation Models

Most botnet propagation studies are based upon state-based, compartmental tran-
sition models from the field of epidemiology. These models divide individu-
als from the total population into states representative of their condition at a
given time [56]. Some examples are S-I-R (susceptible, infected, recovered),
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S-I-S (susceptible-infected-susceptible), and S-E-I-R (susceptible-exposed-infected-
recovered), though many more variations exist. The transition of individuals
between groups is captured by a set of differential equations, where the rate of
change for each state is given by a time derivative [56]. In this way, the progress
of an infectious disease is tracked through a susceptible population. The results
can then be used to identify the best vaccine provision methods. When applied
to botnets, the susceptible population is represented by the nodes of the observed
domain, the infected population aligns with bot-infected nodes, and the recovered
population tends to denote patched or cleaned nodes.

Understanding the propagation characteristics of a bot malware can help predict
the speed and reach of spread, potential botnet strength, mitigating factors, and
may even provide clues as to the botmaster’s intentions. In [57], the authors
used sinkholes with known C&C IPs to capture bot traffic. They counted active
bot populations (using 3-way TCP handshakes and preventing disconnections to
minimise DHCP churn) and found that bot activity appears to be diurnal in nature,
probably due to targeted devices being powered down each evening [57]. Based
on this they adapted the S-I-R model for worm-based propagation to capture this
behaviour across time zones. They then used this to make predictions about optimal
worm release and patching periods [57].

In another work [27], researchers combined a S-I-R-S variation with fast evo-
lutionary game theory to model competitive and cooperative behaviours between
botnets. The two interacting botnets are given unique characteristics, where the first
can enable/disable local defences, whilst the second can kill-off the first botnet’s
nodes. A cooperative strategy is where defences are disabled and/or no nodes
are terminated. A competitive strategy is the opposite scenario [27]. Based on
their tests, the authors derived thresholds for the defensive presence needed to
minimise chances of cooperative behaviour. They also reported that cooperation
significantly decreased the extinction probabilities of both botnets even at low
infection rates, whilst a competitive strategy lead to the first botnet being killed
off by the second [27].

Standard epidemic models as described previously are deterministic. In [58],
the authors develop the probabilistic S-I-C model (susceptible-infected-connected).
I nodes carry the minimal amount of malware code for compromise, but don’t
communicate with the C&C until they transition into C nodes. Continuous-time
Markov Chain modelling is used to determine stochastic transition rates [58]. Their
aim was to measure the overall growth of P2P botnets, and to test the effectiveness
of various mitigation strategies. Using the model, they studied the impact of sybil
attacks (where clean nodes join the botnet to corrupt the C&C infrastructure by
sharing false information), and identified a relationship between the number of sybil
inserts required to reach a desired mitigation in growth [58].

Meanwhile, [59] abstracted epidemic concepts to build a stochastic model
of botnet propagation in mobile networks. Specifically, they aimed to observe
the impact of moving nodes and node proximity on the speed of spread. The
network consists of user and infrastructure nodes, with transmission range and
total bandwidth as parameters [59]. S is defined as a population of infected nodes,
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representing the mobile botnet. Based on population density and node mobility
range, they identified a threshold which when exceeded causes the botnet to grow
at a quadratic rate. If not exceeded, the botnet size is predicted to have a finite
limit [59].

These examples – which are just a few – demonstrate how propagation models
can be used to explore factors which contribute to the growth of botnets in different
environments and under different constraints. Simulations allow researchers to
experiment with scenarios which may not be practical or safe in real networks,
whilst empirical data collected from botnets in the wild can be used to validate
models or serve as input data. The main drawback of this approach is that
whilst using epidemic models, generalised assumptions are frequently made about
homogenous populations and mixing that can make the results somewhat unrealistic.
In [60], the authors outline some of the challenges that need to be addressed when
applying epidemic modelling to network-based environments.

5.2.2 Concept Models

In [38], the authors propose the delay-tolerant botnet, designed to add random delays
to its C&C traffic to disrupt any observable patterns in its communication. It is
assumed that the botnet can handle delays because functionality can be maintained
even if member bots don’t all receive commands at the same time [38]. For randomly
selected delay durations, they develop schemes for centralised and decentralised
architectures where delays are inserted between bot-initiated connections and data
forwarding events, respectively. They also experiment with hybrid architectures
using a combined approach. They suggest that the overall delay (i.e. time-taken
for all bots to receive a command) must have a logarithmic correlation with botnet
size to maintain scalability [38].

In [61], the authors introduced the concept of alias-fluxing, which is the use
of URL shortening services to obfuscate C&Cs. This is based on existing fast-
or domain-fluxing mechanisms. The C&C network is made up of proxies and the
main C&C that the botmaster controls. Using an algorithm, similar to a DGA, the
botmaster generates a number of shortened URL strings every period, and registers
these with the relevant services for each of the proxy servers. The bots use the
same algorithm, or retrieve short URL lists, which they then use when rallying
[61]. The authors suggest that this approach circumvents DNS-based detection, and
obfuscates traffic where HTTPS is used [61].

Xu et al. [62] explored the use of DNS as a pull-based C&C protocol. Assuming
the botmaster has access to a DNS server (setup with short TTL), they defined 2
scenarios; code-word and tunnelled, for unidirectional and bidirectional communi-
cation, respectively. In the first, the botnet uses a set of codewords which denote
certain functions and requests [62]. Bots make DNS queries for domains containing
a specific code-word, to which the DNS server replies with the appropriate data.
Meanwhile in tunnelled mode, requests from the bot consist of CNAME queries
to which the server responds with encoded CNAME records [62]. They also
demonstrate that Markov Chains can be used to generate code-word-containing
domain names in such a way as to avoid detection [62].
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The authors of [5] built a prototype of a botnet which uses Cloud-to-Device
Messaging (C2DM) as a push-based C&C network. This Google service is designed
to efficiently incorporate push notifications into apps for Android devices. The
botmaster registers an account for the malware package with the C2DM. This
account is identified by a unique username which is then distributed with copies
of the package to target devices [5]. Clients joining the botnet connect with C2DM
servers using the same username, and receive a registration ID which they then share
with the C&C server. Then, the C&C server can send its messages to the C2DM
service with its authentication details, and the service will forward them on to the
bots [5]. Noting the restrictions on the number of push messages per period, the
authors suggest that larger botnets may be built from a series of smaller sub-botnets.
They also suggest that communication can be further obfuscated by using 2 separate
C2DM accounts (one for the C&C and one for the bots) [5].

The research outlined here shows how new perspectives and approaches may
be explored. By adopting the position of the botmaster, the authors imagine how
they may adapt to the changing digital landscape, what avenues might be most
profitable, and how to avoid detection. The ideas proposed therefore give researchers
the chance to design better, forward-thinking defensive solutions. Combined with
the lessons learnt from propagation modelling (as well as historic botnet attacks),
defenders aim to pre-empt threats and mitigate risk.

6 New Flavours

In this study so far, we have generally assumed that the targets of botnets are average
LAN or WAN networks. However, modern technology has brought about many new
scenarios, some of them pertaining to specific or specialised types of network. In this
section, we highlight some of these and the issues surrounding them.

6.1 Mobile Botnets

Mobile devices are now ubiquitous. They are always with us, always in use, and
always connected. This flexibility, sustained connectivity (on multiple channels),
and lack of diurnal behaviour [26] makes mobile a viable botnet platform. Mobile
devices use Internet, WiFi (both infrastructure and ad-hoc), SMS/MMS, and
Bluetooth to connect with other devices, providing several channels for both attack
and propagation. The battery life and processing power of mobile devices have
improved, allowing bots to carry out complex tasks. Furthermore, apps like those
provided by the Google Android and Apple iOS marketplaces serve a large range of
functionality – users interact with many services (e.g. finance, commerce) sharing
lots of valuable data. Apps are also an ideal infection vector, as botmasters can
circumvent marketplace regulations to use their own Trojans or hijack existing
offerings.
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The iPhone-based iKee.B is a classic example of mobile botnets [32]. It uses
Internet-connectivity to spread, scanning for phones running SSH services. Porras
et al. [32] reports 3 distinct methods; scanning of specific IP ranges belonging to
Australian and European mobile operators, scanning of a randomly chosen subnet
on the Internet (using a time-seeded algorithm), and scanning of the client’s current
local network. Hence, propagation is a blend of Internet- and mobile-based methods,
with device mobility exploited to attack each new local network it joins. The bot
then uses default passwords to get shell access and once installed, shares host data
(including archives of SMS messages) with C&Cs via HTTP [32]. Unique IDs are
used for bots, allowing them to be tracked despite changing IPs across zones [32].

Zhou and Jiang [31] characterise features of Android-based botnets. They iden-
tify drive-by-downloads (with multiple redirections), repacking (malware embedded
within legitimate apps), and update attacks (malware injected into apps via fake
updates) as the main infection vectors. Some examples include Anserver and
Plankton who use partial updates for added discretion, and the Jifake bot which
triggers redirections via fake QR codes [31]. Meanwhile, data theft is identified
as a key attack type, with targets including SMS messages, phone numbers, email
addresses, and user accounts for third-party services. Another popular attack is
where bots covertly sign-up to corrupt “services” which they poll via SMS, incurring
premium-rate charges for the victim. As with iKee.B, HTTP-based C&C is most
commonly observed [31].

Current botnets rely on the Internet for their C&C backends, but we can expect
this to expand into other available channels. For example, [5] demonstrated the use
of push notifications, whilst [63] showed the Bluetooth is also a viable option. As
a larger number of service providers offer app-based interfaces, the pool of data to
be harvested by bots will also expand. Furthermore, hacked accounts may act as
vectors to target those services themselves. As mobile devices are used to interface
with social media, the IoT, and the cloud, we could see cross-platform botnets using
a mix of attack and propagation vectors. Finally, device mobility makes it difficult
to locate propagation sources or to apply defences where there are no set perimeters.
Ad-hoc networks may be used to obfuscate bot nodes, making DDoS attack sources
difficult to trace [26] and botnets harder to enumerate.

6.2 Social Network Botnets

Social networking is a staple of modern communication and, as a result, has become
a target for botnets. Social networks are free with simple registration processes,
accessible from anywhere via mobile or desktop devices. This makes them easy to
infiltrate. The platforms sustain massive user bases, who frequently submit personal
details (which can be stolen) and exchange multimedia messages, giving botmasters
ample possibilities for spam and malware delivery. These platforms provide both
attack and propagation vectors, as the spreading of information throughout the
network is inherent to their design. Additionally, user-to-user relationships are often
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ambiguous, with individuals lacking in awareness of potential risks. Bots may
therefore easily infiltrate communities. Finally, resiliency and upkeep is handled
by the platform/service providers, easing the maintenance of the botnet for the
botmaster.

Koobface is a social network botnet, and was studied by [16]. They report that
it exploits Twitter and Facebook as gateways to compromise user devices. It targets
existing accounts, whilst simultaneously creating new accounts using fake personal
details provided by the C&C. CAPTCHAs served during this process are forwarded
to bots for real users to solve [16]. Fake accounts spread malicious links as short
URLs, which redirect users to web pages encouraging them to download Trojan
software. Once infected, bots connect to master C&Cs (who serve spam commands)
and upload statistics on their activities. Meanwhile, existing accounts are given
keywords to determine the communities they must join or establish friendships in
[16]. This demonstrates how propagation can be targeted at particular groups.

The “Bursty Botnet”, documented by [64], is similar. It exploits Twitter by cre-
ating new accounts which then disseminate spam, even using mentions (messages
containing a specific user’s Twitter handle) to entice users to click on malicious
links. During their study, [64] identified 500,000 members of this botnet, with a total
of 2.8 million spam tweets generated. Like Koobface, Bursty uses URL shortening
to obfuscate targets. Bursty bots are designed to only tweet several times in a short
period after their creation (hence the name), before falling permanently silent [64].
This one-time-use policy is probably a resiliency measure; the botnet should still
function even if many nodes were taken offline. Silent bots may also avoid detection,
but can be reactivated later [64].

Whilst Twitter and Facebook are currently the main targets, social botnets
could expand to other platforms. For example, LinkedIn may be used to identify
employer-employee relationships for targeted spam and even corporate espionage.
Bot programs are developing to better mimic user behaviour, but may not even
be needed. In their design of Stegobot, [65] demonstrated a C&C channel made
only of existing social links, without the need for fake accounts or relationships.
Furthermore, social networks make revenue from advertising – botnets may expand
their functionality to include click-fraud. Lastly, from a socio-political perspective,
social networks can be exploited to quickly spread misinformation or target groups
for manipulation, as demonstrated by Koobface [16].

6.3 IoT-Based Botnets

Internet-of-Things (IoT) is the concept of adding network connectivity and automa-
tion to sensors, specialised devices, and every-day appliances to provide better
services. The IoT is an attractive target for botmasters because its deployment
vastly increases the population of vulnerable nodes which can be converted into
bots. Devices which have traditionally always been offline now come packaged
with Internet access (and often lacking sufficient security provisions), expanding
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the reach of botnets into sectors/domains which previously wouldn’t have been
exploitable, e.g. vehicle networks. Some IoT devices like sensors are low-energy
consuming by design and hence do not have the processing power for complex
security mechanisms. User awareness also plays a role – many may not be aware of
built-in IoT functionality when purchasing new electronics.

In 2016, the IoT botnet Mirai was used to launch several high-profile DDoS
attacks, most notably targeting a French web hosting service with a massive force
of between 1.1 and 1.5 Tbps [33]. At this time, this botnet reportedly consisted
of home routers and digital cameras [33], demonstrating how simple devices may
be recruited into large botnets with highly potent attacks. Mirai propagates by
scanning address spaces for Linux-based platforms [29], and then uses a simple
database of 62 default login credentials to gain access [29, 33]. During scanning,
[29] reports that the malware is hardcoded to avoid certain domains such as the
US Postal Service, the US Department of Defence, and IANA. This is probably
a precautionary measure. Bots collect and forward device details to the C&C,
which the botmaster accesses over Tor for additional anonymity [29]. Analysis
of Mirai’s binaries reveal both network layer (SYN floods) and application layer
(HTTP floods) DDoS functionality [29].

Mirai could become the IoT version of Zeus [24]; its source code has been made
public and since then, variations with new features (e.g. enhanced encryption) have
been reported [29]. This shows the level of criminal interest in IoT systems, and
reinforces the potential risks involved in rapid deployment. IoT devices could be
used to infiltrate particular sectors of industry for surveillance and espionage, as
well as theft of sensor data. The range of use cases means there are no standard
configurations, protocols, or known patterns on which to base generalised defensive
approaches [33]. Furthermore, manual interaction with every IoT device is not
scalable [33]. Combined with the limited processing capability of some devices,
this means that security could be neglected. IoT is still a young technology which
means we currently have limited experience of possible flaws and their implications.
Therefore, to prevent significant risks, protocols and devices must be secure-by-
design.

6.3.1 A Note on IPv6

Whilst IPv4 is the current dominant addressing protocol, organisations will increas-
ingly have to shift to IPv6 in order to accommodate the massive influx of devices
caused by the IoT. IPv6 uses 128-bit addresses (as opposed to the current 32-bit),
providing a much larger address space of unique IPs. The robustness of IPv6 security
is still largely unknown [66], and by removing the need for NAT and DHCP, it makes
current control mechanisms obsolete. This has serious implications for existing
botnet defences. This is further exasperated by IPv6’s dynamic addressing function,
as perimeter defences and blacklists become ineffective [66]. These issues apply to
both IoT and non-IoT networks, and must be addressed before wide-scale adoption
of the protocol.
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6.4 Cloud-Based Botnets

Cloud computing is built on the business paradigm of computational resources as-
a-service, always online and accessible via the web. It provides systems of servers
and clients with built in redundancy, easy accessibility and remote storage. These
characteristics make them ideal platforms to exploit as C&C networks. For instance,
Plankton uses C&Cs in the Amazon cloud where its payloads are processed [31].
The centralised architecture means many potential bot clients are accessible (perfect
for spam or malware delivery), whilst resource-rich servers can provide high-levels
of processing power and storage for the botnet back-end. Web-based interfaces
for services may be used to reach new targets, e.g. by redirecting users to fake
versions or by intercepting login credentials. Cloud services are also used by large
corporations and organisations – the cloud may be attacked by botnets to ultimately
cause harm to those organisations.

Chen et al. [67] proposes a botnet with a cloud-based C&C network using push
notifications on mobile devices. This approach is similar to [5], but unlike that
model, [67]’s design uses a range of cloud services (e.g. Airbop, JPush, and Google
Cloud) for a network of multiple push servers. First, new bots register with a local
server. Using a transmission delay metric, bots with similar delays are clustered
together (assuming this means they currently sit in the same region). C&Cs then
use a round-robin schedule to cycle through push servers to disseminate commands,
where servers with the least delay appear more frequently on schedules for that
region [67]. This distributes command traffic, making it harder to detect, whilst
delivering messages efficiently. Chen et al. [67] suggest that botnet functionality
can be maintained even if some push servers go offline.

Meanwhile, [68] proposes cloud-based bots that can be used to launch slow-read
DDoS attacks. This type of DDoS uses TCP or UDP to setup connections with
small windows, forcing servers to keep connections open for extended periods. As
a result, fewer back-to-back connections are required, and consequently, fewer bots.
As requests are processed slowly, these attacks are also more difficult to detect [68].
Bot malware is not propagated in this setup. Instead, the botmaster uses image files
containing all the required malicious functionality, registers with a cloud service
and loads the image onto multiple cloud-based virtual machines (a sustainable
approach for smaller botnets) [68]. Bot images also speed up the setup process,
giving defenders less time to detect the initial compromise before further attacks are
launched.

Malware with standard propagation capabilities could spread within the cloud
infrastructure to create computationally powerful botnets with unique attack capa-
bilities (dependent on the available cloud services). Pay-as-you-go provision models
may be exploited via fraudulent resource consumption, leading to financial loss
for users or reduced performance for the provider [69]. The cloud itself could be
targeted in DDoS attacks, causing disruption to millions of users, or as a mechanism
to infect the domains of cloud customers by piggybacking on services.
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6.5 Crypto-Mining Botnets

Cryptocurrency is designed to be anonymous, decentralised, and unregulated;
characteristics that directly align with the requirements of botmasters. Botnets can
be built using the Bitcoin infrastructure, exploiting its use of P2P to maintain the
blockchain as a C&C channel [70]. The built-in anonymity of users makes it harder
to identify the botmaster or to enumerate bots across the network, even if individual
bots are discovered [70]. This is a vast improvement in resiliency over typical
Internet botnets as previously discussed. Anonymisation is supported by the fact
that all transactions look identical to the observer, allowing malicious activities to
stay hidden. Such activities are also not easily disrupted as direct action against
suspected users would result in large-scale disruption to the blockchain as a whole
[70]. Lastly, bots can be arranged into crypto-mining pools to generate their own
Bitcoins for income.

The so-called Miner botnet was studied by [28], and is made up of 4 tiers with
the top 2 forming the C&C infrastructure and bottom 2 containing the infected
clients. P2P bots with Internet connectivity at tier 3 run a special Bitcoin mining
module in the binary. Tier 4 bots (who lack Internet connectivity) then use the P2P
bots as relays to download Bitcoin client software and to join mining pools from a
hardcoded list. Coins and wallets are backed-up to tier 3 bots, which in turn upload
this data to the C&C in 20 min intervals [28]. When first infecting a victim, Miner
reportedly checks video and graphic card drivers, updating them if necessary and
running speed tests to determine the host’s capabilities [28].

ZombieCoin is a conceptual botnet with a Bitcoin-based C&C architecture,
where commands are encoded into transactions between the botmaster and bot
clients [70]. A pair of keys are generated by the botmaster, with the public key
hidden in the bot binary. When bots join the Bitcoin network, this key and the
botmaster’s digital signature are used to identify and interpret commands. Ali et al.
[70] identify a selection of methods. The first is to use OP_RETURN, a function
allowing 80 bytes of ID data to be added to a transaction. Second is the use of un-
spendable outputs, which allow the addition of 20 bytes of custom data. The third
is to use key leakage; a random factor is used twice, enabling the derivation of
the signer’s private key. Last is the use of subliminal channels where commands
are hidden within signature strings [70]. These options show how resourceful
botmasters can build complex C&C structures which would be very difficult to
detect and dissolve in real life.

Extending their work on ZombieCoin, [70] suggest the use of rendezvous
points, disseminated in near real-time to all bots telling them when/where to
upload data, as well as transaction chaining where long commands are encoded
as the inputs/outputs to an ordered sequence of transactions. Attacks may include
selfish mining (where blocks are used to build private chains for mining without
competition) and BGP hijacking (where traffic to and from the blockchain is
interrupted, partitioning the network) [71]. Another possibility is an eclipse attack
where currency is stolen directly from compromised devices by capturing their
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communications [71]. Cryptocurrency is increasingly utilised for black market
transactions, making it hard to track the exchange of botnet tools and services.
Furthermore, blockchain technology has so far been used primarily for cryptocur-
rencies, but its functionality is expanding into other applications [71], extending the
botnet attack plane.

7 Future Developments and Possible Research Directions

Botnets are constantly adapting to changes in the digital landscape. We must match
this with our detection and mitigation strategies to respond to the threat effectively.
Here, we summarise some outstanding issues and suggest areas for further research.

Propagation is a difficult activity to detect and observe due to the sheer variability
of infection types, vectors and mechanisms, all of which are designed to be discreet.
Historic traces of past propagation events are not made publicly available due to
privacy concerns, and data of this kind is difficult to accurately simulate in lab
environments. Therefore, there is a need for improved propagation research, with
high-quality, rich datasets and shared testing environments made widely available
to researchers so that better predictive models (with better applicability to real-life)
may be built.

In addition to this, most existing work in this area is directly based on com-
partmental epidemiology. Epidemic models are well-established and useful as a
foundation for understanding spread dynamics, but several outstanding challenges
remain in their application to network environments, including considerations of
complexity, heterogeneity, and prediction accuracy [60]. Furthermore, there is a
need to expand past epidemiology, and to explore other characteristics of spread that
are domain-specific, including different business settings, different types of devices,
and other influences on potential infection reach and rate.

Around the world, many institutions and individuals have studied botnets over the
years, and categories of distinct detection and mitigation approaches have emerged
as a result. As a community, we have also established classifications for botnet types
and behaviours. However, there is still no generalised standard for the measurement
of botnet characteristics, like size, infectiousness, force of propagation, or various
traffic metrics. The same can be said of the measurement and characterisation of
vulnerable networks. A widely-accepted standard for determining the degree of
vulnerability and variability would help in building better approaches and for more
accurate comparisons between detection schemes.

Recently, we have seen a general push in all areas of cyber-security towards the
use of artificial intelligence and machine learning. Whilst this comes with its own
set of challenges, this approach can be particularly effective when large, accurate
and relevant datasets are available to train predictive models. However, the role of
the human analyst is still significant in adaptively and flexibly interpreting new,
unfamiliar and evolving threats. Therefore, future approaches shouldn’t rely solely
on machine learning or AI to perfectly protect against botnets, and should instead
be a balance between machine and human interpretation. Future systems should be



194 D. Acarali and M. Rajarajan

efficient and flexible, with intuitive visualisation for defenders to interface with data
for improved analysis and response.

The research community needs to maintain awareness of the botnet threat when
developing and deploying new protocols and technologies. Security must be built-
in at the design phase and shouldn’t consist primarily of reactionary patches. We
previously discussed risks related to mobile technologies, the IoT, and the IPv6
protocol. Other topics for consideration include new protocol versions like HTTP/2
[72] and DNSsec [73], anonymization services like Tor [74], and biometric security
[75]. Researchers needs to develop concept models to creatively explore these
technologies, imagining new attack scenarios, new targets of interest for adversaries,
and potential vulnerabilities to bolster industry standards against future botnets.

In order to achieve the highest possible level of defence, there must be a greater
level of global collaboration between researchers, vendors, network infrastructure
providers, and law enforcement agencies. This is vital in dealing with threats effec-
tively and efficiently, as demonstrated in numerous successful botnet takedowns
[53–55]. Collaboration may be also happen through the sharing of resources and
research platforms (e.g. the DETER TestBed [76]). Security needs to extend beyond
business and government networks. For example, the Stratosphere Project aims to
empower NGOs by providing free botnet defence tools [77]. Users should also
be personally empowered to actively maintain their privacy. A possible path to
achieving this is open-source software, though there is some debate as to whether
this is more or less secure than proprietary solutions [78].

Another area for development is in legislation and policy. As technology has
developed in past decades, legislation around the world has struggled to keep up
[55]. The rapid dissemination and adoption of new technology results in legal grey
areas which can be exploited by criminals, but also by legitimate businesses and
states for profit, power, or surveillance. Such areas in need of clear and robust
laws include user privacy, collection of user data, and remote admin of private
systems. The reactive nature of cyber-crime legislation risks harsh laws that address
symptoms rather than causes, and ultimately threaten the future of a free Internet.
Botnets are a unique and complex threat, their impact dependent on context and
environment. For the future Internet to be secure whilst remaining democratic and
free, new legislation (and the underpinning technology) must balance the rights of
individuals with the safe and secure provision of services.

Finally, botnet malware has the potential to cause significant damage to national
infrastructure. Combined with the possibility of state-sponsored attacks, this has
large implications about the future of warfare and conflict. Hence, nations need to
invest in securing critical infrastructure. This requires significant research into the
defence of highly specialised systems against sustained, sophisticated attacks. With
botnet tools highly available to anyone on the Internet, the potential for large-scale
cyber-terrorism must be a major consideration.
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8 Conclusions

In this chapter, we have outlined the basics of what a botnet is, how it works, possible
variations, and how they are categorised. We defined botnet attacks in 2 distinct
parts; the initial compromise and the continuous threat. The former encompasses the
infection of a domain, including installation, system manipulation, and propagation
activities. Identification of the malware at this stage mitigates the development of
the botnet. The latter denotes the state of the domain after a successful compromise,
where the botnet is ready to be utilised for a variety of attacks. At this stage,
detection is a damage limitation exercise. Building on this, we discussed the impact
of infections on the host domain, the attack process, and factors contributing to
successful deployment.

We then outlined current defensive strategies, categorising them as proactive
(practical solutions for securing real networks) and pre-emptive (theoretical explo-
rations for better understanding and prediction). We demonstrated the adaptability
of botnets by discussing new types of bot malware on platforms like mobile, social
networks, IoT, the cloud, and blockchain. Finally, we considered some unresolved
issues, and made suggestions for future research. Botnets are highly versatile,
powerful multi-function tools. They are relatively easy to setup and difficult to take
down, and can impact any area of digital infrastructure. Therefore, we need to have
equally powerful defensive strategies, with a concentrated focus on early detection
and a culture of security awareness.
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Abstract With the advent of highly sophisticated cyber-physical malware (CPM)
such as Industroyer, a cyberattack could be as destructive as the terrorist attack on
9/11, and it would virtually paralyze the nation. We discuss as the major risks the
vulnerability of: telecommunication infrastructure, industrial control systems (ICS),
and mission-critical software.

In differentiating CPM from traditional malware, the difference really comes
from the open-ended possibilities for malware triggers resulting from the wide
spectrum of sensor inputs, and the almost limitless application-specific possibilities
for designing malicious payloads.

Fundamentally, the challenges of detecting sophisticated CPM stem from the
complexities inherent in the software at the heart of cyber-physical systems. We dis-
cuss three fundamental challenges: explosion of execution behaviors, computational
intractability of checking feasible behaviors, and difficult-to-analyze programming
constructs.
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In detecting novel CPM, the tasks are: developing plausible hypotheses for
malware trigger and malicious payload, analyzing software to gather evidence based
on CPM hypotheses, and verifying software to prove or refute a hypothesis based
on the gathered evidence. We discuss research directions for effective automation to
support these tasks.

1 Introduction

The imminent danger of cyber-physical malware (CPM) is evident from attacks
such as the power outage in Ukraine [122] or the hijacking of a Jeep Cherokee [83].
The net-centricity of modern systems offers an adversary affordable attack vectors
through cyberspace against critical missions. We are arguably at risk to an asym-
metric attack vector launched by a terrorist organization or rogue nation that cannot,
or chooses not to confront in a conventional conflict. The Internet of Things (IoT)
implies more software-driven devices and thus increased CPM risk.

The traditional notion of malware is too narrow, and the prevalent charac-
terizations (virus, worm, Trojan horse, spyware etc.) are neither precise nor
comprehensive enough to characterize CPM. Detecting sophisticated CPM is like
searching for a needle in the haystack without knowing what the needle looks like.
Employing real-world examples, this survey chapter discusses: the fundamentals
of CPM, the need for threat modeling, analysis and verification of CPM, and the
challenges and directions for future research.

CPS security problems are often rooted in the complex CPS software. Securing
CPS software requires knowledge of both software analysis and verification as
well as CPS architecture and attack surface. It is hard for the CPS community
to understand the intricacies of software analysis and verification. Whereas for
the software engineering community, the lack of adequate CPS knowledge is
a major roadblock. Technological advances in computing, communications, and
control have set the stage for a next generation of CPS for energy, environment,
transportation, and health care. The context for modeling CPM [58, 101, 104]
needs to be exposed so that the software engineering community can engage in
collaborative interdisciplinary research for evolving CPM characterizations that can
cover the vast expanse from mobile phones apps to Supervisory Control and Data
Acquisition (SCADA) systems.

Let us overview testing and verification as techniques for software assurance.
Testing cannot verify that every potential vulnerability instance is safe or not.
Avionics companies try to compensate for limitations of testing by requiring high
test coverage using the modified condition/decision coverage (MC/DC) metric [45]
and instituting stringent software development and auditing practices as required by
DO-178B [45]. When it comes to cybersecurity, the limitations of testing become
more pronounced. An attacker can craft a clever trigger for the malicious software
to defy getting caught with high test coverage.
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Next, let us consider formal verification [59, 116] as an alternative to testing. The
point often argued in its favor is that it can verify whether every instance is safe or
not. The end result of formal verification can be: (a) it proves that an instance is
safe, (b) it proves that an instance is unsafe, or (c) it is inconclusive when it crashes
or times out. Formal verification provides a counter example as evidence for (b).
However, it does not provide evidence for (a) and (c). The core dump it may provide
for (c) is not human-comprehensible. While scalability of formal verification has
been the subject of intense research with the use of binary decision diagrams and
host of other techniques [80], the topic of automated verification with human-
comprehensible evidence has not received much attention. Avionics, automotive and
other industry practitioners of safety-critical software consider such lack of evidence
a serious short-coming of formal methods [64]. De Millo, Lipton, and Perlis (the first
Turing Award recipient) [70] have argued that software verification, like “proofs” in
mathematics, should provide evidence that humans can follow and thus be able to
build trust into the correctness of the software verification. This is especially crucial
given the potential for tremendous harm from CPM.

With novel CPM, the first challenge is to hypothesize it. The sensor inputs
create open-ended possibilities for attackers to craft CPM. The analyst must narrow
down a nebulous specification of a vulnerability to something specific that can
be verified. Unbeknownst to the user, a global positioning system (GPS) may
contain malicious code that compromises integrity of the system. The analyst must
specifically hypothesize how the integrity breach could occur. Currently, threat
modeling for trigger-based CPM is often a tedious manual endeavor with hardly
any automated tools support [56].

A completely automated solution for detecting catastrophic malware in mission-
critical software is unlikely, as it is an extremely complex problem. Fred Brooks
(1996 Turing Award recipient) points out [55]: “If indeed our objective is to build
computer systems that solve very challenging problems, my thesis is that IA >

AI, that is, that intelligence amplifying systems can, at any given level of available
systems technology, beat AI systems. That is, a machine and a mind can beat a mind-
imitating machine working by itself.” As elaborated in our paper [93], there is dire
need for analysis and verification tools to facilitate a human-in-the-loop approach
for addressing the CPM problem.

This survey chapter leverages our team’s experience with: (a) analyzing complex
CPM on the DARPA Automated Program Analysis for Cybersecurity (APAC) [5]
and Space/Time Analysis for Cybersecurity (STAC) [29] programs, and (b) design-
ing and developing commercial products to model and analyze control systems
software for automobile, avionics, and other industries for whom safety and security
is a major concern.
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2 CIA Triad and CPM Metrics

Government agencies such as National Institute of Standards and Technology
(NIST) and National Security Agency (NSA) have channelized their efforts towards
developing metrics for measuring the ease of exploitability, and the impact of CPM
(e.g., national vulnerability database (NVD) [24] and common vulnerability scoring
system (CVSS) [12]). These efforts to calibrate CPM are aimed at enabling industry
and government to better assess and manage risks.

2.1 CIA Triad

The CIA triad (confidentiality, integrity, availability) [22] has evolved as a general
and robust model to systematically explore hypotheses related to malicious behav-
iors. CIA triad covers a vast expanse of CPM that are targeted towards devices
ranging from smart phone apps to power grids. Thus, the CIA triad may be used as
a framework to hypothesize potential vulnerabilities.

For example, confidentiality may be breached in an Android app when sensitive
data (e.g., image data from the camera, or GPS location) is leaked to an unauthorized
sink (e.g., the internet, or to an adversary). Similarly, integrity may be breached in a
GPS Android app when the coordinates are incorrectly shown in some geographic
locations. Availability may be breached in a text processing application if the appli-
cation runs vulnerable sorting algorithms that have asymmetrically large runtime on
certain relatively small inputs (e.g., quick sort whose pivot degenerates to the last
element in the unsorted input list for certain cases, or the app runs unnecessary loops
to drain the device battery). In some cases, sophisticated CPM may breach two or
all three CIA security attributes. For example, Stuxnet [31] was able to access and
modify sensitive information (breach confidentiality and integrity) about Siemens
PLC controllers installed on the centrifuges while remaining unobservable for years.
This eventually led to damage of the centrifuge controllers beyond recovery (breach
of availability).

2.2 Metrics for Measuring CPM Impact

We mention a few of the prevalent metrics that measure the impact of attacks caused
by CPM on ICS. For a detailed discussion of CPM impact metrics, see [65].

• The CVSS measures CPM impact in terms of three kinds of metrics (See [100]):
(a) Base metrics measure how easy it is for an attacker to exploit the vulnerability,
and the confidentiality, integrity and availability impact of the vulnerability on the
compromised system. (b) Temporal metrics represent the evolving exploitability
of a vulnerability, such as the availability of exploit code and availability of
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patches to fix the vulnerability. (c) Environmental metrics represent the char-
acteristics of a vulnerability that are specific to a particular user’s environment,
such as the potential damage incurred by the organization due to CIA breach.

• Potential impact metrics is part of a framework drafted by the National Security
Agency (NSA) for ICS networks, outlining potential impact and loss due to a
CPM attack on a system. This framework also characterized CPM attack impact
in terms of the CIA triad.

• Ideal-based metrics defined seven security dimensions and the ideal or best
possible values for each of them [54]. The seven dimensions include: Security
Group Knowledge, Attack Group Knowledge, Access, Vulnerabilities, Damage
Potential, Detection, and Recovery. For example, the ideal for the Vulnerabilities
dimension is that there are no vulnerabilities in the system, and the ideal for
the Damage Potential dimension is that there is no confidentiality, integrity or
availability impact to the system in the face of a CPM attack. The ideals are meant
as a reference point to assess a system’s vulnerability, and are not necessarily
realizable in practice.

A common theme that runs across all prevalent CPM attack impact metrics is
that they characterize impact in terms of the CIA-triad: (a) confidentiality breach
(leak of sensitive information to an adversary), (b) integrity breach (corruption of
sensitive information by an adversary), and (c) availability breach (denial of service
to legitimate users due to excessive consumption triggered by CPM).

3 CPM Attack Phases

A cyber attack is not all that different from a military attack. A cyber attacker will
dedicate a significant amount of time observing and probing the target organization
to find weaknesses in its defense. Any weakness found may lead to infiltration and
eventually an assault. We have consolidated the discussion of cyber attack phases
into three main phases. We have used the United States Navy Academy [32] as the
primary source of information for this discussion.

3.1 Reconnaissance

An attacker’s first goal is to identify potential targets for their mission. Attackers are
often motivated by financial gain, access to sensitive information or damage to an
entity (could be a company, organization, nation etc.).

The attacker may collect information on targeted organization’s security systems
and available entry points. The attacker might set up a fake company, register
domains and create fake profiles for social engineering purposes.
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Once the attacker determines what defenses are in place, the next step is to
identify a weak point that allows the attackers to gain access. This is usually
accomplished by scanning an organization’s network with tools easily found on
the Internet. This step of the process usually proceeds slowly, sometimes lasting
months, as the attackers search for vulnerabilities. We list some critical infor-
mation that are typically obtained during the reconnaissance phase: (a) Network
Information: IP Addresses, subnet mask, network topology, domain names; (b)
Host Information, user names, group names, operating system family and version,
TCP and UDP services; (c) Security Policies: password complexity requirements,
password change frequency, expired/disabled account retention, physical security,
firewalls, intrusion detection systems; and (d) Human Information: home address,
telephone number, frequent hangouts (physical and online), computer knowledge,
hobbies and interests. Based on how interaction is done with the target subject, the
reconnaissance can be passive and active.
Passive Reconnaissance is gathering information in a manner unlikely to alert
the subject of the surveillance. This is the natural start of any reconnaissance
because, once alerted, a target will likely react by drastically increasing security
in anticipation of an attack. The attacker minimizes any interaction with the target
network which may raise flags in the computer logs. For example, visiting the
target’s website may leave behind a trace that your IP Address established a TCP
connection to the target’s web server, but it will be one of millions of connections
that day – probably not going to stand out to the administrator in the periodic review
of server logs. On the other hand, visiting the target’s website so frequently that the
server becomes overloaded is certain to alert an administrator.
Active Reconnaissance is gathering information while interacting with the subject
directly, in a way that usually can be discovered. A number of tools that can be
used for active network recon: ping, traceroute, and netcat (nc). If the attackers
know the range of potential IP addresses for their target network, they can use
ping to determine which IPs are actually in use by hosts on the network. They can
use traceroute to figure out the topology of the network: i.e. where the routers are
with respect to the hosts. Finally, they can use netcat (nc) to determine which ports
are open with servers listening on them. Nmap is a powerful network scanner that
attackers use to discover hosts on a target network.

As a defensive measure, an organization should centrally collect the log messages
related to established or rejected connections from their network devices and use a
tool to visualize their network communications and connection paths.

3.2 Intrusion and Escalation

At the second phase of a cyber attack, the attacker seeks to breach the organization
perimeter and gain a persistent foothold in the environment.
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Now that weaknesses in the target network are identified, the next step in
the cyber attack is to gain access and then escalate. In almost all such cases,
privileged access is needed because it allows the attackers to move freely within
the environment. Techniques and tools such as Rainbow tables help intruders steal
credentials, escalate privileges to admin. Once the attackers gain elevated privileges,
the network is effectively taken over by the attackers. The attackers can spear-
phish the company to gain credentials, use valid credentials to access the corporate
infrastructure, and download more tools to access the environment. The initial
intrusion is expanded to persistent, long-term, remote access to the environment.
Once the attackers own the target organization’s network, they establish a command
and control channel from the outside into the victim’s infrastructure.

As a defensive measure, it is important to have an enterprise-wide log manage-
ment. It is important to constantly monitor network traffic and look for anomalies
and signs of attacks, and to make intrusion harder, add two factor authentication to
the services. The goal is to detect and disarm the control channel before the attacker
can start to move laterally inside the network, causing more harm. One can use
network and operating system logs to find connections from the outside that should
not be there.

3.3 Assault

The final stage is where cost to businesses rise exponentially if the attack is not
defeated. This is when the attacker executes the final aspects of their mission,
stealing intellectual property or other sensitive data, corrupting mission-critical
systems, and generally disrupting the operations of the victim’s business.

This is when the hackers might alter the functionality of the victim’s application,
or disable the application entirely. Typically, attackers use exploit kits [95] which
use drive-by downloads to download and run the appropriate exploit for the target
system. The Stuxnet attack [31] on Iran’s critical infrastructure is a classic example.
During the assault phase, the attack ceases to be stealthy. However, the attackers
have already effectively taken control of the environment, so it is too late for the
breached organization to defend itself. Finally, the attacker may either terminate the
connection if no further access is required, or create a backdoor for future access to
the target.

Usually the attackers want to hide their tracks, but this is not universally the
case, especially if the hackers want to leave a calling card behind to boast about
their exploits. The purpose of trail obfuscation is to confuse, disorientate and divert
the forensic examination process. Trail obfuscation covers a variety of techniques
and tools including log cleaners, spoofing, misinformation, backbone hopping,
zombied accounts, trojan commands, and more. The “Flame” malware [67] came
to light in the summer of 2012. It’s a very sophisticated piece of malware, probably
produced by some nation-state, not by random hackers, terrorists or criminals.
The Flame malware is designed to “cover its tracks”, i.e. to erase traces of its
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existence on computers that it had infected, but was finished with. The creators
of the Flame cyber-espionage threat ordered infected computers still under their
control to download and execute a component designed to remove all traces of the
malware and prevent forensic analysis [67].

Note that not all CPM attacks necessarily go through all the above phases. For
example, side channel attacks do not require any installation and command or
control; passive observations suffice for that.

4 National Cybersecurity: Critical Concern and Need

When people think of cybersecurity today, they worry about hackers and criminals
who prowl the Internet, stealing people’s identities, sensitive business information,
or even national security secrets. Those threats are real and they exist today. But the
even greater danger facing us in cyberspace goes beyond crime and harassment. A
cyber attack perpetrated by nation states or violent extremists groups could be as
destructive as the terrorist attack on 9/11. Such a destructive cyber-terrorist attack
could virtually paralyze the nation. The most destructive scenarios involve cyber-
terrorists launching several attacks on our critical infrastructure at one time, in
combination with a physical attack. Attackers could also seek to disable or degrade
critical military systems and communication networks. The collective result of these
kinds of attacks could be a cyber Pearl Harbor: an attack that would cause physical
destruction and loss of life. In fact, it would paralyze and shock the nation and create
a new and profound sense of vulnerability. These are observations of the Secretary
of Defense Leon Panetta [103].

Internet of Things (IoT) implies increasing dependence on software, making
software assurance an important requirement for everyday life. White House
reports [37] point to the urgent national need to shift the cybersecurity posture from
defending computer networks to assuring critical missions. Telecommunication
infrastructure, industrial control systems and mission-critical software are critical
concerns for the security of cyberphysical systems.

4.1 Risk: Telecommunication Infrastructure

Telecommunications hardware includes a vast range of products that enable com-
munication across the entire planet, from video broadcasting satellites to telephone
handsets to fiber-optic transmission cables. Services include running the switches
that control the phone system, providing Internet access, and configuring private
networks by which international corporations conduct business. Software makes it
all work, from sending and receiving e-mail to relaying satellite data to controlling
telephone switching equipment to reducing background noise on your cell phone
call.
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Huawei, a Chinese multinational, is the largest telecommunications equipment
manufacturer in the world in 2017, having overtaken Ericsson in 2012. In June
2016, Huawei was reportedly working on and designing its own mobile OS for
future usage. From July to September 2017, Huawei surpassed Apple and became
the second largest smartphone manufacturer in the world after Samsung. It also
aims to be one of the world’s five largest cloud players in the near future. Currently,
the world’s five largest vendors of telecommunication equipment (excluding mobile
phone handsets), ranked by revenues are: Huawei, Ericsson, Cisco, Nokia (including
Alcatel-Lucent), and ZTE corporation [33].

Warning about a potential threat to national security, US lawmakers decided
to scrutinize a bid by Huawei to supply telecommunications equipment to Sprint
Nextel in the United States. Sprint Nextel reportedly decided in 2011 to block
Chinese companies Huawei and ZTE from its multi-billion-dollar network mod-
ernization project because of mounting national security concerns. The US House
Intelligence Committee conducted an investigation of Huawei, recommending that
the US government should block acquisitions, takeovers, or mergers involving
Huawei, given the threat to US national security interests [40]. Committee Chairman
Mike Rogers noted claims by US companies that Huawei equipment exhibited
unexpected behavior, including routers allegedly sending large data packets to China
late at night.

The telecommunications sector plays a critical role in the safety and security of a
nation, and thus is a target of foreign intelligence services. The country’s reliance on
telecommunications infrastructure includes more than consumers’ use of computer
systems. Multiple critical infrastructure systems depend on information transmis-
sion through telecommunications systems. These modern critical infrastructures
include electric power grids; banking and finance systems; natural gas, oil, and water
systems; and rail and shipping channels. Inter-dependencies among these critical
infrastructures greatly increase the risk that failure in one system will cause failures
or disruptions in multiple critical infrastructure systems. Therefore, a disruption in
telecommunication networks can have devastating effects on all aspects of modern
living, causing shortages and stoppages that ripple throughout society.

A company providing telecommunication equipment is likely to have access
to or detailed knowledge of the telecommunication infrastructures’ architectural
blueprints. The threat posed to national security interests by vulnerabilities in
the telecommunications supply chain is an increasing priority given the country’s
reliance on interdependent critical infrastructure systems; the range of threats these
systems face, the rise in cyber espionage, and the growing dependence all consumers
have on a small group of equipment providers.

4.1.1 Complexity of Network Configuration

Effective and efficient configuration of networks has been widely recognized as a
grand challenge [97]. It is a challenge to analyze how settings in the configuration
space impact functionality and security. Misconfigurations are prevalent and can
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have a dramatic impact. For example, one misconfigured router in AS 9121
(Autonomous System in Turkey) resulted in misdirected/lost traffic for tens of
thousands of networks [105]. In real-world systems, the size of configurations is
large and can easily reach thousands of lines of commands in each router, while
there are hundreds to thousands of routers in a large network. Finally, network
configurations are decomposed in multiple routers as in distributed programs, and
these distributed pieces are dependent upon one another. Configuring routers is a
tedious, error-prone and complex task. The paper [125] presents a quantitative study
of configuration errors in 37 firewalls.

In addition to the complexity of managing a network of firewalls, the process
of ensuring their correctness is even more complicated due to subtle interactions
between firewall configurations and the dynamics of routing. Configuration prob-
lems occur between firewalls of different devices placed along a network path,
and such a distributed problem might surface only in a particular routing state. To
detect such inconsistencies, there is a need to consider routing as well as firewall
configurations. Particularly in a large, growing network with a complex topology,
keeping track of all of the possible sets of routes can be extremely time-consuming
and inaccurate.

The complexity of the configuration process is analogous to distributed assembly
programs [47, 77, 97]. For example, the behavior of inter-domain routing policy
configurations could be modeled as a program flow graph similar to the way a
compiler models a program. This graph represents the way routes are advertised
according to the routing policy configurations in a network. The program flow
graph can be used to do what-if scenario testing for any pending changes to a
configuration.

4.2 Risk: Industrial Control Systems

Those living in developed industrialized nations tend to take modern-day conve-
niences for granted. Flip a light switch, and the home illuminates. Turn on the tap,
and clean water flows. It all happens routinely, without a hiccup. Now imagine a
world where the delivery of sustained services is interrupted. Suddenly there is
no clean water, or electric power disappears. The effects of such failures can be
disastrous. How could such disasters happen? Industrial controls systems (ICS), the
backbone of such services, can be attacked. Threats to ICS can come from numerous
sources, including adversarial sources such as hostile governments, terrorist groups,
industrial spies, disgruntled employees, malicious intruders, and natural sources
such as from system complexities, human errors and accidents, equipment failures
and natural disasters. The term “ICS,” as used throughout this section, includes
Supervisory Control and Data Acquisition (SCADA) systems.

On August 17, 2009, at the Sayano–Shushenskaya hydroelectric power station
in Russia, excessive vibration caused a 920 ton turbine to break apart, flooding the
facility, killing 75 people, and causing a power grid failure. It happened because
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the control software designed to shut down the turbine in the event of excessive
vibration did not work. While commenting on the accident, General Keith B.
Alexander, commander of U.S. Cyber Command noted that we are living in a time
where such a deadly incident could also happen as a result of a cyber attack [48].

The December 2016 attack on the Ukrainian power grid points to the use
of Win32/Industroyer, an advanced piece of devastating malware targeted at an
ICS. Industroyer is considered the biggest threat to ICS since Stuxnet [42, 60].
Industroyer is highly customizable malware. It is universal, in that it can be used to
attack any ICS using some of the targeted communication protocols. For example,
its wiper component and one of the payload components are tailored for use against
systems incorporating certain industrial power control products by ABB, and the
DoS component works specifically against Siemens SIPROTECT devices used in
electrical substations and other related fields of application [60].

Industroyer is modular malware (Fig. 1). Its core component is a backdoor used
by attackers to manage the attack: it installs and controls the other components and
connects to a remote server to receive commands and to report to the attackers.

What sets Industroyer apart from other malware targeting infrastructure is its
use of four payload components, which are designed to gain direct control of
switches and circuit breakers at an electricity distribution substation. Each of these
components targets particular communication protocols specified in the following
standards: IEC 60870-5-101, IEC 60870-5-104, IEC 61850, and OLE for Process
Control Data Access (OPC DA).

Fig. 1 Schematic of Industroyer ICS malware
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Fig. 2 Changing landscape of ICS security vulnerabilities

Industroyer’s dangerousness lies in the fact that it uses protocols in the way they
were designed to be used. The problem is that these protocols were designed decades
ago, and back then industrial systems were meant to be isolated from the outside
world. Thus, their communication protocols were not designed with security in
mind. That means that the attackers did not need to look for protocol vulnerabilities;
all they needed was to teach the malware “to speak” those protocols.

The U.S. Department of Homeland Security (DHS) National Cyber Secu-
rity Division’s Control Systems Security Program (CSSP) performs cybersecurity
assessments of ICS to reduce risk and improve the security of ICS and their
components used in critical infrastructures throughout the United States [39].

Most ICS began as proprietary, stand-alone collections of hardware and software
that were walled off from the rest of the world and isolated from most external
threats. Today, widely available software applications, Internet-enabled devices and
other non-proprietary IT offerings have been integrated into most such systems. This
connectivity has delivered many benefits, but it also has increased the vulnerability
of these systems. Figure 2 shows the changing landscape of ICS security vulnerabil-
ities based on data from DHS Cybersecurity Report [39]. It shows that the improper
input validation vulnerabilities (e.g., buffer overflow) have gone down from 45%
to 29%; whereas, the security configuration and maintenance vulnerabilities have
shown a major up rise from 6% to 15%.

Cybersecurity Evaluation Tool (CSET) from DHS is a desktop software tool that
guides users through a step-by-step question and answer process to collect facility-
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specific control and enterprise network information. CSET is a self-assessment
software standards application for performing cybersecurity reviews of industrial
control and enterprise network systems. The tool may be used by any organization to
assess the cybersecurity posture of ICS that manage a physical process or enterprise
network. The tool also provides information that assists users in resolving identified
weaknesses in their networks and improving their overall security posture.

The NIST Guide to Industrial Control Systems Security [79] discuss three
broad categories of ICS incidents including intentional attacks, unintentional con-
sequences or collateral damage from worms, viruses or control system failures,
and unintentional internal security consequences, such as inappropriate testing of
operational systems or unauthorized system configuration changes. The NIST report
discusses examples of intentional attacks such as Stuxnet[31] and Maroochy Shire
Sewage Spill [115], and also examples of unintentional consequences such as Davis-
Besse [106] and the Northeast Power Blackout [36].

Maroochy Shire Sewage Spill In the spring of 2000, a former employee of an
Australian organization that develops manufacturing software applied for a job with
the local government, but was rejected. Over a two-month period, the disgruntled
rejected employee reportedly used a radio transmitter on as many as 46 occasions to
remotely break into the controls of a sewage treatment system. He altered electronic
data for particular sewerage pumping stations and caused malfunctions in their
operations, ultimately releasing about 264,000 gallons of raw sewage into nearby
rivers and parks.

Stuxnet Stuxnet is a Microsoft Windows computer worm discovered in July 2010
that specifically targets industrial software and equipment. The worm initially
spreads indiscriminately, but includes a highly specialized malware payload that
is designed to target only specific SCADA systems that are configured to control
and monitor specific industrial processes.

Davis-Besse Nuclear Plant In August 2003, the Nuclear Regulatory Commission
confirmed that in January 2003, the Microsoft SQL Server worm known as Slammer
infected a private computer network at the idled Davis-Besse nuclear power plant in
Oak Harbor, Ohio, disabling a safety monitoring system for nearly 5 h. In addition,
the plant’s process computer failed, and it took about 6 h for it to become available
again. Slammer reportedly also affected communications on the control networks of
at least five other utilities by propagating so quickly that control system traffic was
blocked.

Northeast Power Blackout In August 2003, failure of the alarm processor in
First Energy’s SCADA system prevented control room operators from having
adequate situational awareness of critical operational changes to the electrical
grid. Additionally, effective reliability oversight was prevented when the state
estimator at the Midwest Independent System Operator failed due to incomplete
information on topology changes, preventing contingency analysis. Several key
345 kV transmission lines in Northern Ohio tripped due to contact with trees. This
eventually initiated cascading overloads of additional 345 and 138 kV lines, leading
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to an uncontrolled cascading failure of the grid. A total of 61,800 MW load was lost
as 508 generating units at 265 power plants tripped.

An IBM Report [88] published in 2015 looks at the history of ICS, the
susceptibility of these systems to certain attacks, and how the systems can be
defended. According to IBM Managed Security Services (MSS) data, attacks
targeting ICS increased over 110% in 2016 [88]. Specifically, the spike in ICS traffic
was related to SCADA brute-force attacks, which use automation to guess default or
weak passwords. Once broken, attackers can remotely monitor or control connected
SCADA devices. In January 2016, a penetration testing solution [22] containing
a brute-force tool that can be used against Modbus [21], a serial communication
protocol, was released. The public release and subsequent use of this tool by various
unknown actors likely led to the rise in malicious activity against ICS in 2016 [88].

4.3 Risk: Vulnerable Mission-Critical Software

If a desktop operating system fails, the computer can be rebooted. If a flight control
system fails, it can be a disaster with no chance to reboot the system. Malfunctioning
of mission-critical software results in serious impact on business operations or upon
an organization, and even can cause social turmoil and catastrophes. Mission-critical
software drives online banking systems, railway/aircraft operating and control
systems, electric power systems, and many other computer systems that adversely
affect business and society when they fail.

There are four different types of critical systems: mission critical, business
critical, safety critical and security critical. The key difference between a safety
critical system and a mission critical system, is that a safety critical system is a
system that, if it fails, may result in serious environmental damage, injury, or loss of
life, while a mission critical system may result in failure in goal-directed activity. An
example of a safety critical system is a chemical manufacturing plant control system.
Mission critical system and business critical system are similar terms, but a business
critical system fault can influence only a single company or an organization. A
security critical system may lead to loss of sensitive data through theft or accidental
loss.

4.3.1 Examples of Mission-Critical Software Flaws

Following are two concrete examples of mission-critical software to show how the
nature and the code mechanics can vary significantly across flaws.

Ariane 5 Software Flaw On June 4, 1996 an unmanned Ariane 5 rocket launched
by the European Space Agency exploded just forty seconds after lift-off. The rocket
was on its first voyage, after a decade of development costing $7 billion. The
destroyed rocket and its cargo were valued at $500 million. A board of inquiry
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investigated the causes of the explosion and in two weeks issued a report. It turned
out that the cause of the failure was a software error in the inertial reference system.
Specifically a 64 bit floating point number relating to the horizontal velocity of
the rocket with respect to the platform was converted to a 16 bit signed integer.
The number was larger than 32,767, the largest integer storeable in a 16 bit signed
integer, and thus the conversion failed [98].

Apple SSL Flaw In February 2014, Apple published iOS 7.0.6, a security update
for its mobile devices. The update was a patch to protect iPhones, iPads and
iPods against what Apple described as a data security problem: an attacker with
a privileged network position may capture or modify data in sessions protected by
SSL/TLS. SSL stands for Secure Sockets Layer and, it is the standard technology
for keeping an internet connection secure and safeguarding any sensitive data
that is being sent between two systems, preventing criminals from reading and
modifying any information transferred, including potential personal details. In short,
the software layer for secure connection itself was flawed and became leaky. The
flawed Apple SSL code segment is shown below.

. . .
hashOut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx)) != 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom))

!= 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom))
!= 0)

goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams))

!= 0)
goto fail;
goto fail; // Bug

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(...);
. . .

The following quote from an analysis of the bug by the security firm Sophos [76]
provides a concise summary of what went wrong.

The programmer is supposed to calculate a cryptographic checksum of three data items
via the three calls to SSLHashSHA1.update(), and then to call the all important function
sslRawVerify(). If sslRawVerify() succeeds, then err ends up with the value zero, which
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means “no error”, and the SSLVerifySignedServerKeyExchange function returns to say,
“all good.” But in the middle of this code fragment, you can see that the programmer has
accidentally (no conspiracy theories, please!) repeated the line “goto fail;”. The first goto
fail happens if the if statement succeeds, i.e. if there has been a problem and therefore err is
non-zero. This causes an immediate “bail with error,” and the entire TLS connection fails.
But because of the peccadilloes of C, the second goto fail, which should not be there, always
happens if the first one does not, i.e. if err is zero and there is actually no error to report.
The result is that the code leaps over the vital call to sslRawVerify(), and exits the function.
This causes an immediate “exit and report success,” and the TLS connection succeeds even
though the verification process has not actually taken place.

In short, the addition of second goto fail; statement following an if statement
without curly braces indicates an unconditional control flow jump to the fail

block making the code following the second goto fail; statement unreachable.
The result was that critical signature checking code not executed, allowing invalid
certificates to by quietly accepted as valid signatures. The bug went undetected for
nearly a year, affecting both personal computers and mobile devices.

4.3.2 Dormancy of Mission-Critical Software Flaws

Flaws in mission-critical software can remain dormant and be silently exploited. The
dormancy is especially troubling because the damage caused by the flaws can go
undetected while the damage continues. In Apple SSL and Heartbleed examples the
critical secure communication features themselves were flawed and caused serious
confidentiality breaches without being noticed. In the Stuxnet example, the malware
has actually two elements, the first one caused a confidentiality breach. The second
element caused an integrity breach in the control system. The second malware
element silently destroyed almost a fifth of Iran’s reactors. The first malware element
enabled espionage to learn the electrical blueprint of the reactors. And the first
element of Stuxnet was only detected with the knowledge of the second.

The Apple SSL flaw appears to have been introduced in a code change made
ahead of the launch of iOS 6.0. It became public and Apple released a fix 15 months
later in iOS 7.0.6. The flaw also existed in Mac OS X and for which the fix came
even later. Depending on who knew about it, it allowed connections to secure sites
to be spied on and/or login details captured. In other words, all iOS and Mac OSX
users were subject to a serious confidentiality breach for several months.

In his blog [114], the noted cybersecurity expert Bruce Schneier commented on
the Heartbleed flaw “Catastrophic is the right word. On the scale of 1 to 10, this is
an 11.” The heartbleed attack allows an attacker to retrieve a block of memory of
the server up to 64 kb in response directly from the vulnerable server via sending
the malicious heartbeat and there is no limit on the number of attacks that can be
performed. It opens doors for the cyber criminals to extract sensitive data directly
from the server’s memory without leaving any traces. An attacker can manage to
obtain the private encryption key for an SSL/TLS certificate and could set up a
fake website that passes the security verification. An attacker could also decrypt the
traffic passing between a client and a server. Schneier blogged: “the probability
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is close to one that every target has had its private keys extracted by multiple
intelligence agencies.” It turned out that flawed code was inadvertently added on
New Year’s Eve in 2011 and the flaw was spotted in April 2014 [126].

The Stuxnet virus that ravaged Iran’s Natanz nuclear facility “was far more
dangerous than the cyberweapon that is now lodged in the public’s imagination,” as
per cybersecurity expert Ralph Langer [90]. The exploit had a previous element that
was much more complicated and “changed global military strategy in the twenty-
first century,” according to Langer. The lesser-known initial attack was designed
to secretly “draw the equivalent of an electrical blueprint of the Natanz plant” to
understand how the computers control the centrifuges used to enrich Uranium [111].
Only after years of undetected infiltration did the U.S. and Israel unleash the
second variation to attack the centrifuges themselves and self-replicate to all sorts
of computers.

The impact of the first virus was much greater. That attack provided a useful
blueprint to future attackers by highlighting the royal road to infiltration of hard
targets – humans working as contractors.

A recent report by the Citizen Lab [26] describes how Deep Packet Inspection
(DPI) devices used by internet service providers have been misused to redirect
hundreds of users in Turkey and Syria to nation-state spyware when those users
attempted to download certain legitimate Windows applications. The report also
describes how the DPI devices may have been used to hijack Egyptian Internet
users’ unencrypted internet connections en masse, and redirect the users to revenue-
generating content. These misuses of DPI illustrate potential threats to human rights.

The somber reality is that at a global scale, pretty much every single industrial
or military facility that uses ICS at some scale is dependent on its network of
contractors. As one of the architects of the Stuxnet plan told [111]: “It turns out
there is always an idiot around who doesn’t think much about the thumb drive in
their hand.” Given that the next attackers may be terrorist organizations, civilian
critical infrastructure becomes a troubling potential target. Most modern plants
operate with a standardized industrial control system, so an attacker who gets
control of one industrial control system can infiltrate dozens or even hundreds
more of the same breed. While governments can work hard to secure their
own mission-critical facilities, the attackers can target the defense contractors by
planting malware in mission-critical systems they build for the government. As the
Pentagon was in the final stages of formalizing a doctrine for military operations in
cyberspace, big defense contractors Lockheed Martin, Northrop Grumman, and L-3
Communications were hit by cyberattacks [38]. These attacks suggest that intruders
obtained crucial information, possibly the encryption seeds for SecurID tokens,
that they used in targeted intelligence-gathering missions against sensitive U.S.
targets. SecurID adds an extra layer of protection to a login process by requiring
users to enter a secret code number in addition to their password. The number is
cryptographically generated and changes every 30 s. The possible attack surface
is extremely broad, it doesn’t have to be intrusion through the corporate network;
attackers can use a disgruntled employee to plant malware.
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4.4 IoT Risk

It may have only taken one click on a link that led to the download of malware strains
like WannaCry [35] to set off cascading global victims of the malware. It just shows
that humans will always represent the soft underbelly of corporate defenses.

The Internet-of-Things (IoT) is going to make the security risk much worse.
Connected devices are proliferating at a rate IT departments and security teams can’t
keep up with. They are manufactured with little oversight or regulatory control, and
are all WiFi and Bluetooth-enabled. We may use Amazon Echos for convenience
and productivity gain. However, such devices, designed to listen and transmit
information, also introduce unquantifiable risks. Recent research [8] demonstrated
that the Amazon Echo is susceptible to airborne attacks. Amazon has patched the
vulnerabilities, but this finding demonstrates how easily a compromised device can
lead to the leak of confidential information. Attacks are coming at businesses from
all channels, with IoT creating a significantly larger attack surface. Businesses are
likely to face a range of consequences, from brand damage to recovery costs and
loss of customers in the face of breaches. The stakes are higher than ever to secure
systems and networks.

The cyber-attack that brought down much of the Internet in the US in October
2016 was caused by a new weapon called the Mirai botnet and was likely the largest
of its kind in history, experts said [13]. The cause of the outage was a distributed
denial of service (DDoS) attack, in which a network of computers infected with
special malware, known as a “botnet”, are coordinated into bombarding a server
with traffic until it collapses under the strain. The victim was the servers of
Dyn, a company that controls much of the internet’s domain name system (DNS)
infrastructure. It was hit on 21 October 2016 and remained under sustained assault
for most of the day, bringing down sites including Twitter, the Guardian, Netflix,
Reddit, CNN and many others in Europe and the US.

What makes the Mirai botnet interesting is, the Mirai botnet is largely made up
of so-called IoT devices such as digital cameras and DVR players. Because it has
so many internet-connected devices to choose from, attacks from Mirai are much
larger than what most DDoS attacks could previously achieve. Dyn estimated that
the attack had involved 100,000 malicious endpoints, and the company, which is
still investigating the attack, said there had been reports of an extraordinary attack
strength of 1.2 Tbps.

There is simply no way to rely on humans to avoid security breaches with IoT.
IoT complicates matters further. Traditional solutions, such as training employees,
will not mitigate the massive security challenge companies and government orga-
nizations are facing. The scope of IoT is far too complex for traditional security
teams to manage with legacy solutions. There is much debate over the effectiveness
of security and awareness training. It cannot be denied, however, that in the age
of increased social-engineering attacks and unmanaged device usage, reliance on a
human-based security strategy is questionable at best.
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4.5 Critical Need: Software Assurance

Take a second look at the flawed Apple SSL code segment shown in Sect. 4.3.1. Is
the unconditional “goto fail” a bug or malware? It could easily be an inadvertent
cut and paste error. Or else, it could also be an intentionally planted line of code
to enable espionage. Initially there was speculation that the Heartbleed flaw was
deliberately created by government agencies to spy on citizens. Later, a developer
came forward and confessed to causing the problem [25].

The real question is: can we detect catastrophic software vulnerabilities –
whether intentionally planted or not? If we were to guard our reactors from Stuxnet,
how could we have done that? There is no escape but to create the best possible
technology to analyze mission-critical software to discover and confirm intentional
malware or inadvertent vulnerability that could be catastrophic. But oddly enough,
much of the activity that takes place under the guise of computer security is not
really about solving security problems at all; it is about cleaning up the mess that
security problems create. Virus scanners, firewalls, patch management, and intrusion
detection systems are all means by which we make up for shortcomings in software
security.

It is imperative to work software security as deeply into the development process
as possible and taking advantage of the engineering lessons software practitioners
have learned over the years. Two excellent books on secure programming [87, 117]
advocate combining code review with static analysis tools and architectural analysis.
The programming community tends to repeat the same security mistakes. Almost
two decades of buffer overflow vulnerabilities serve as an excellent illustration
of this point. In 1988, the Morris worm [23] made the Internet programming
community aware that a buffer overflow could lead to a security breach, but as
recently as 2004, buffer overflows were the number one cause of security problems
cataloged by the Common Vulnerabilities and Exposures (CVE) Project [11].

Machine learning or completely automated static analysis are not adequate for
software assurance. Unlike the widely studied malware in the wild, the catastrophic
malware aimed at mission-critical systems is uniquely designed for a target and it
can remain in a stealth mode until a trigger activates it. With uniquely designed
malware, machine learning is futile. With difficult to track data and control
flows [93] and state-space explosion [59], automated static analysis becomes signif-
icantly inaccurate and unscalable. While code reviews for known vulnerabilities are
warranted and useful, they not an adequate solution for guarding mission-critical
software from catastrophic vulnerabilities or malware that cannot be captured by
signatures derived from known vulnerabilities. The complex design of catastrophic
malware requires sophisticated modeling, analysis, and verification not addressed
by the current automated static analysis tools [10, 19, 30] approach used for code
review.

DoD Directive 3020.40 for the Defense Critical Infrastructure Program
(DCIP) [14] defines Mission Assurance (MA) as “a process to ensure that assigned
tasks or duties can be performed in accordance with the intended purpose or
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plan. It is a summation of the activities and measures taken to ensure that
required capabilities and all supporting infrastructures are available to the DoD
to carry out the National Military Strategy.” In accordance with this directive, a
principal responsibility of a commander is to assure mission execution in a timely
manner. The reliance of a Mission Essential Function (MEF) on cyberspace makes
cyberspace a center of gravity an adversary may exploit and, in doing so, enables
that adversary to directly engage the MEF without the employment of conventional
forces or weapons.

The paper Science of Mission Assurance [89] from the Air Force Research
Laboratory (AFRL) introduces warfare in the cyber domain, identifies the weak-
nesses of the traditional approach to building reliable systems, and leads to an
alternative approach that seeks to build secure systems. Engineering focuses tradi-
tionally on designing, developing, building, testing, and deploying complex systems
that operate reliably in a permissive environment, but fail catastrophically in a
contested environment. Mistaking reliability for security characterizes a generation
of military, industrial, and financial systems that make little to no provision for
functional vulnerability to cross-domain cyber threats. The ultimate goal of mission
assurance is to develop an engineering culture that mathematically represents the
specifications of a critical MEF and verifies its implementation. The paper [89]
calls for a tool for reasoning on security properties and proving certain relationships
among vulnerabilities and threats.

4.5.1 Software Assurance: Federal Research Programs

Software assurance and cybersecurity research and education projects are a top pri-
ority for several US Federal agencies including National Science Foundation (NSF),
Department of Homeland Security (DHS), Army Research Office (ARO), Army
Research Laboratory (ARL), Office of Naval Research (ONR), Naval Research
Laboratory (NRL), Air Force Office of Scientific Research (AFOSR), Air Force
Research Laboratory (AFRL), Defense Advanced Research Agency (DARPA),
National Security Agency (NSA), and the National Institute of Standard and
Technology (NIST).

DARPA has been at the forefront of funding projects to address software
assurance in the context of sophisticated malware of particular interest to national
defense. DARPA research played a central role in launching the Information
Revolution. The agency developed and furthered much of the conceptual basis for
the ARPANET prototypical communications network launched nearly half a century
ago, and invented the digital protocols that gave birth to the Internet. The agency that
brought us the Internet is working to secure it. To illustrate, we will briefly describe
the goals of a few DARPA programs of particular interest to this survey topic.

Automated Program Analysis for Cybersecurity (APAC) Program This pro-
gram aimed at developing new automated program analyses capable of proving that
programs have security properties of interest to the Department of Defense (DoD),
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and to demonstrate those analyses in the form of tools designed specifically to keep
malicious code out of DoD Android-based mobile application marketplaces [5].

Vetting Commodity IT Software and Firmware (VET) Program This program
aimed at developing new techniques and tools for demonstrating the absence of
backdoors and other hidden malicious functionality in the software and firmware
shipped on commodity Information Technology (IT) devices. The VET program
seeked to demonstrate that program analysis, coupled with updatable checklists
of entries that each rule out broad classes of hidden malicious functionality, can
provide a more effective proactive defense than that provided by present-day
Anti-Malware products that use structural or behavior-based signatures to detect
malware [41].

High Assurance Cyber Military Systems (HACMS) Program This program
aimed at creating technology for development of high-assurance software for cyber-
physical systems. HACMS called for a clean-slate, formal methods based approach
that enables semi-automated code synthesis from executable, formal specifications.
In addition to generating code, such a synthesizer is expected to produce a machine-
checkable proof that the generated code satisfies the functional specification as well
as security and safety policies [78].

Space/Time Analysis for Cybersecurity (STAC) Program This program aims to
develop new program analysis techniques and tools for identifying vulnerabilities
related to the space and time resource usage behavior of algorithms, specifically,
vulnerabilities to algorithmic complexity and side channel attacks. STAC seeks to
enable analysts to identify algorithmic resource usage vulnerabilities in software at
levels of scale and speed great enough to support a methodical search for them in
the software upon which the U.S. government, military, and economy depend [29].

DARPA programs typically involve Blue and Red teams and one White team.
Blue teams develop the technology for high-assurance software. Red teams develop
attacks to assess and in the process help to evolve the technology developed by the
Blue teams. The White team coordinates the interactions between the Blue and Red
teams and develops performance assessment measures. Over a period of 3–4 years
about 100 or more highly sophisticated attacks are presented to the Blue teams in
the form of on-site and off-site engagements. The progress is assessed with respect
to the accuracy and scalability of techniques and tools developed by the Blue teams.
Sometimes, there is also a control team that uses off-the-shelf tools for the purpose
of comparison. Periodically, the tools developed by the Blue teams are delivered to
the Red teams so that they understand the strengths and weaknesses of the tools and
design new attacks to challenge the tools. Overall, it is a competitive environment
to drive both the practical and theoretical advances in research. DARPA often seeks
to develop practical tools that will not require PhDs to operate but can be used by a
large work force of trained professionals.
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4.6 Critical Need: Practical Tools and Cyberforce Training

It is important that the cybersecurity research leads to practical tools and education
to train a cyberforce with the necessary thinking skills to use the tools effectively.

A skilled cybersecurity workforce is needed to meet the unique cybersecurity
needs of critical infrastructure, enterprise, and operational technology systems and
networks. In USA, the National Initiative for Cybersecurity Education (NICE)
led by NIST is a partnership between government, academia, and the private
sector working to energize and promote a robust network and an ecosystem of
cybersecurity education, training, and workforce development [43]. As the threats
to cybersecurity and the protections implemented grow and evolve, a cybersecurity
workforce must be prepared to adapt, design, develop, implement, maintain,
measure, and understand all aspects of cybersecurity.

4.6.1 Human-in-the-Loop Automated Analysis

Detecting catastrophic malware in mission-critical software is an extremely com-
plex problem. As elaborated in the paper [93] we need tools that facilitate human-
in-the-loop approach. Generally, an automated malware detection tool runs in three
steps: (1) a human specifies the software to be analyzed and analysis parameters, (2)
the tool runs on the input and outputs a report of potential anomalies in the software,
(3) an analyst goes through the report. A tool is considered sound and complete if
it reports all anomalies in the software with no false positives or false negatives.
However, quite often it not possible to build a sound tool. Balancing coverage vs.
accuracy in an analysis tool involves an inherent trade-off: one can list only true-
positives (low coverage, high accuracy) or one can output all potential anomalies
(high coverage, low accuracy). Achieving high coverage and high accuracy in
a fully automated tool can be impossible or incur prohibitive cost in terms of
implementing the automation and/or sifting through the large number of erroneous
results manually.

To understand the need for a human-in-the-loop approach, let us classify the
set of anomaly-prone scenarios into two groups: ordinary and complex. Ordinary
scenarios correspond to the scenarios that are amenable to automation and do not
pose extraordinary analysis challenges. On the contrary, complex scenarios are the
ones that pose significant barriers to full automation. Even if automation for a
complex scenario is possible, it may well be infeasible due to economics of time
and effort. As summarized in Fig. 3, static analysis tools hit an automation wall and
the cost for resolving complex scenarios escalates beyond the automation wall.

The human-in-the-loop analysis paper [93] advocates Amplified Reasoning
Technique (ART) for analyzing software for complex malware. The ART philosophy
is: Instead of resolving complex anomalies as definitive Yes/No answers through a
fully automated tool, bring the human in a man-machine loop and use the tool to
amplify human reasoning to resolve such anomalies faster and efficiently, so that it
can be scaled to large software.
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Fig. 3 Analysis cost
escalates beyond automation
wall

Fig. 4 Traditional automated malware analysis vs. ART

Figure 4 brings out the difference between the traditional approach to automation
vs. the ART. In the traditional automation, the role of human is to sift through
the false positives and unresolved cases generated from the automation run, and is
segregated from the role played by the machine. Whereas, the ART puts the human
and machine in an interactive loop.

Analyzing software for a zero-day mission-critical flaw (a kind of flaw that has
never been seen before) is like looking for a needle in the haystack, but without
knowing what the needle looks like. As we shall discuss later, the first step in
detecting such a flaw requires us to develop plausible flaw hypotheses and then
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gather evidence to prove or refute each hypothesis. The open-ended task cannot
be performed automatically. Developing plausible a hypothesis requires human
intelligence and gathering knowledge about the software. Without a human-in-the-
loop tool this task of gathering knowledge from software can be extremely time
consuming and prone to human errors. Thus, human-in-the-loop tools are essential
for detecting zero-day mission-critical software flaws.

4.6.2 Tools for Transparent Verification

Software verification is especially important in the context of CPS for critical
applications, where failures have had catastrophic consequences. Verifying software
is an important but daunting task with challenges of accuracy, scalability, and
practicality. Formal verification of large software has been an elusive target, plagued
with the problem of scalability [53, 59, 124]. Two fundamental limitations are: (1) a
completely automated and accurate analysis required for formal verification encoun-
ters NP hard problems [61, 110, 120], and (2) formal verification methods work as
automated black boxes with very little support for cross-checking [53, 75, 127].

The second limitation leads to issues that leave several practical needs unad-
dressed. Although the formal verification works as an automated black box, it
requires an inordinate amount of preprocessing effort, involving a transformation
from the software to the formal specification that can be checked automatically
using a model checker or a SAT solver. This transformation is not automatic, it
requires domain knowledge of the particular formal method and a lot of cumber-
some human effort.

Besides the preprocessing, another serious issue is the lack of supporting evi-
dence to be able to understand and use the results of formal verification. Without the
evidence, it is not possible to use formal verification as a certification apparatus, or
to integrate formal methods in a development environment. As we shall exemplify,
it is quite hard for the user to know that the verification result is wrong without
supporting evidence. We will present an empirical study to elaborate the notion of
evidence and its importance in practice.

Leaning on visionary papers [55, 73] by Turing Award recipients, the paper [92]
explores the question: “What advances in formal methods would it take to meet
the practical needs?” The paper [92] presents empirical study that provides deep
insights into some of the state of the art formal verification methods. The study uses
the Linux Driver Verification tool (LDV) [53] which has been the top Linux device
driver verification tool in the software verification competition (SV-COMP) [51].
The study includes three versions of the Linux operating system with altogether 37
MLOC and 66,609 verification instances. Each instance involves verifying that a
Lock is followed by Unlock on all feasible execution paths. Running LDV on these
Linux versions yields the result that pairing is correct for 43,766 (65.7)% of Lock
instances. LDV is inconclusive on 22,843 instances, i.e. either the tool crashes or
it times out. LDV does not find any instance with incorrect pairing. LDV does not
provide evidence to support its results except for the instances where the verification
reveals a bug.
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5 Difficulties of Detecting CPM

It has been hard to be proactive to stop adversaries from mounting new CPM attacks.
The core difficulty of detecting CPM lies in the open-ended possibilities for malware
triggers and payloads, the subtle boundary between “malicious” and “legitimate,”
the obfuscation and other ways to impede program comprehension that is necessary
to detect malware. Fundamentally, the challenges of detecting sophisticated CPM
stem from the complexities inherent in the software itself.

It is almost impossible to improve software security merely by improving
quality assurance. In practice, most software quality efforts are geared toward
testing program functionality. Most software testing is aimed at comparing the
implementation to the requirements, and this approach is inadequate for finding
security problems. Imagine testing a piece of software by running down the list
of requirements and making sure the implementation fulfills each one. It will miss
many security problems because security problems are often not violations of the
requirements. Instead, security problems are frequently “unintended functionality”
that cause the program to be insecure.

To begin with, the key difficulty is to first hypothesize possibilities for malware.
Software theorists are after executable specifications, automated model checking,
and theorem proving in order to verify software. Software practitioners are after
perfecting the art of penetration testing. How can the theorists or the practitioners
effectively apply their knowledge to CPM? If we were to use today’s software
verification tools based on Formal Methods (FMs) to verify the GPS software, how
do we decide what to prove?

5.1 GPS Malware: An Illustrative Example

Detecting CPM requires the knowledge of malware triggers and malware payloads.
Malware payload refers to the part of the software that, when executed, actually
causes the damage. Malware trigger refers to the conditional part of the software
that, when the condition is met, the execution follows a control flow path with the
malware payload. Thus, malware is only activated when properly triggered. Code
paths implementing malicious behaviors are executed only when certain trigger
conditions are met.

Imagine a GPS device that works accurately, except it malfunctions in
Afghanistan on full moon days. No matter how exhaustive the reliability testing is
in their Kansas City factory, the GPS manufacturer will not catch mission-critical
malware that malfunctions only in a certain geographical region. Figure 5 shows
a code snippet for the malware. The conditional part of the software that enacts
the trigger is shown in a box and the geographic region it specifies is shown
to the right. The malware payload consists of the location.setlongitude()

and location.setlatitude() calls that result in malicious modification of the
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Fig. 5 GPS malware with obscure trigger

longitude and latitude information when the GPS device operates in the particular
geographic region. We shall use this malware example to illustrate why it is hard to
detect CPM.

5.2 Why it Is Difficult to Detect CPM

In contrast to the limited triggers for traditional computer malware, the sensor inputs
lead to open-ended possibilities for CPM triggers. The traditional malware is limited
by typical inputs to a computer such as the keyboard, file, or mouse etc. Moreover,
inputs are explicit and can be associated with a short list of program artifacts such
as read or get statements. Thus, traditional computer malware can be detected
by auditing such statements. For example, the size of the input can be checked to
avoid the buffer overflow attack. CPM detection becomes tricky because of sensory
inputs, as the physical environment itself can be the input, not just the user input.
For example, the geographic region is the input for the GPS malware.

Currently, trigger-based malware analysis is often performed in a tedious, manual
fashion. The paper [56] on automatically identifying trigger-based malware states
that there is no previous work on automating trigger-based malware analysis. It
discusses integration of techniques from formal verification, symbolic execution,
binary analysis, and whole-system emulation and dynamic instrumentation to
enable automatic identification and analysis of trigger-based behaviors in malware.
Even when complete automatic analysis is not possible, they claim that their system
still provides valuable information about potential trigger-based code paths which a
human would otherwise have to discover manually.

Identifying trigger-based behaviors in malware is an extremely challenging task.
The paper [56] considers trigger-based denial-of-service attacks. Attackers are free
to make code arbitrarily hard to analyze. This follows from the fact that, at a
high level, deciding whether a piece of code contains trigger-based behavior is
undecidable, e.g., the trigger condition could be anything that halts the program.
Thus, a tool that uncovers all trigger-based behavior all the time reduces to the
halting problem.
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In differentiating CPM from traditional malware, the difference really comes
from the open-ended possibilities for malware triggers and payload. The open-
ended possibilities are tied to the wide spectrum of sensor inputs and the almost
limitless application-specific possibilities for designing the payloads. In the GPS
malware, the payload is designed to corrupt the location information given to the
user. In Stuxnet, the payload is designed to corrupt the behavior of the algorithm
that controls the centrifuges. Both fall under the integrity breach according to CIA
triad. However, the breaches are so application-specific that knowing that it is an
integrity breach and the understanding of the breach in one application, hardly helps
in hypothesizing the malware for the other application. In other words, the difficulty
of detecting CPM is really the difficulty of open-ended possibilities.

The subtle boundary between “malicious” and “legitimate,” is another difficulty
that is exacerbated by the open-ended possibilities. Consider the GPS malware
example. The modifications of latitude and longitude is per se not as malicious as
GPS software that includes legitimate modifications. Significant domain knowledge
about the application is often required to draw the boundary between “malicious”
and “legitimate.” In the case of the GPS malware the trigger region does hint at the
possibility of malware.

6 Software Assurance: Fundamental Challenges

Fundamentally, the challenges of detecting sophisticated CPM stem from the
complexities inherent in the software itself. Add to a simple calculator with
arithmetic operations two features: conditional computation and store and recall
and the calculator becomes a powerful Turing complete computer [109]. The first
feature leads to the control flow (CF), and the second feature to the data flow (DF).
The fundamental challenges of analyzing software stem from data and control flow.

6.1 Memory Leak: An Illustrative Example

This example is taken from XINU [66], a small operating system. It brings out the
challenges of analyzing software to verify its safety and security properties. In this
example, the problem is to verify that memory allocation is followed by deallocation
on all feasible control flow (CF) paths. The allocation and deallocation system calls
are respectively getbuf and freebuf.

The starting point is the dswrite function shown in Fig. 6a. Function dswrite

calls getbuf but it does not call freebuf. The verification problem is to match the
getbuf call in dswrite with the corresponding freebuf call(s) which would be in
other functions.

As seen from the Fig. 6a, dswrite passes the allocated memory pointer drptr
to function dskenq. As shown in Fig. 6b, dskenq has four CF paths. On path 1:
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Fig. 6 The importance of evidence to reason about the possibility of a memory leak in the function
dswrite

drptr is passed to function dskstrt which does not free the allocated memory.
But, we cannot conclude that it is a memory leak because on the same path drptr

is assigned to dsptr->dreqlst where dsptr (passed as a parameter to dskenq

from dswrite) points to a global linked list. On path 2: drptr is passed to function
dskqopt. On paths 3 and 4: drptr is assigned to q->drnext and earlier q is set to
points to dsptr->dreqlst. Thus, on three paths (1, 3 and 4) the allocated memory
is not freed but the pointer to the allocated memory is inserted in a global linked list.
The dskenq code snippet in Fig. 6 is incomplete; only the relevant parts are shown.

Since the pointer to the allocated memory gets passed as a parameter to other
functions, the call chains must be tracked. Moreover, one path in dswrite multiplies
into 4 paths in dskenq and the path proliferation continues through functions down
the call chain. Analyzing the call chains and the proliferation of paths is tedious and
challenging.

Even more challenging is to analyze the part where the pointer to the allocated
memory is assigned to a global linked list. Since the memory pointer is accessible
through a global variable, any function could access that pointer and free the
memory. Do we then examine and verify all functions? It would be a huge
verification challenge.

The reality is, only dswrite, dskenq, dskqopt, dsinter are the relevant
functions to be analyzed to reason about this memory leak example. The verification
can be completed by analyzing just these functions. The call relationships among
these functions are shown in Fig. 6c. Starting with the allocation in dswrite, all the
CF paths go through dskenq, and dskqopt. One of the two things happen on these
CF paths: (a) the getbuf calls in dskqopt deallocate memory, or (b) the pointer
to the allocated memory is assigned to a global linked list. The function dsinter,
an interrupt-driven function, gets called asynchronously. It goes through the linked
list and deallocates the memory for each pointer in the list until the list becomes
empty. We can thus verify that there is no memory leak. We will use this example to
exemplify each fundamental challenge listed in the next subsection. The challenge
is how to discover the relevant functions efficiently. Without such discovery, we are
faced with examining all functions.
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Fig. 7 Counting CF paths with CFG and associated acyclic CFG

6.2 Explosion of Execution Behaviors

Verifying a safety or security property usually requires analysis of all paths. That can
make software assurance computationally intractable. An IF statement creates two
paths where as a function call expands a path into m paths where m is the number
of paths in the function. With b non-nested conditions, the number of paths is 2b.

Let us illustrate how the computational intractability is exacerbated by program
loops. The control flow graph (CFG) for the function dskenq shows one loop
(Fig. 7a). The loop header, the entrance to the loop, is the first reachable node
shaded dark blue in the figure. The loop-back edge is colored blue and the true
and false branches are shown by white and black edges respectively. The loop has
three termination nodes, defined as the nodes that have a successor that is outside
the loop body. The loop header is one of the termination nodes and it is referred to
as the normal termination node. Other termination nodes due to break or return
are referred to as exceptional termination nodes. The loop has two such termination
nodes due to return. The paths from those termination nodes lead to the return

statements marked 3 and 4 in Fig. 7a.
The loop behaviors can be computed as iterations of base behaviors of a loop.

Each base behavior corresponds to one iteration of a loop. The base behavior is
the sequence of program statements executed during one iteration of the loop. The
base behaviors for loops are partitioned into: (a) normal base behaviors (BN ) – the
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behaviors along the paths that terminate at the normal termination point, and (b)
exceptional base behaviors (BE) – the behaviors along the paths that terminate at
the exceptional termination points.

An iterative behavior is a sequence of base behaviors of length i, where i

is a positive integer representing the number of iterations of a loop. For i > 0
iterations, n normal base behaviors, e exceptional base behaviors, the number of
iterative behaviors is: (ni + e × ni−1) with (ni) iterative behaviors that do not end
with an exceptional base behavior, and (e × ni−1) iterative behaviors with i − 1
iterations of normal base behaviors followed by a final iteration of an exceptional
base behavior. Note that the exceptional behavior can only be at the end because the
loop is terminated after the exceptional behavior.

The base behaviors can be discerned by breaking the loop-back edges to create
an acyclic graph. Figure 7a shows the CFG with a loop and Fig. 7b shows the
corresponding acyclic graph. These graphs are generated by using the path counter
tool built using Atlas [71]. The layouts are different but the correspondence
between the CFG and its associated acyclic graphs are shown by numbering the
corresponding return nodes. The node numbered 5 is interesting. It is the tail of
the loop-back edge in Fig. 7a. It is a leaf node in the acyclic graph representing
the normal base behavior. The normal base behavior is the sequence of program
statements from the loop header to the node numbered 5. The exceptional base
behaviors are the sequences of program statements from the loop header to the nodes
numbered 3 and 4 respectively. Thus, we have one normal base behaviors BN

1 and
two exceptional base behaviors BE

1 and BE
2 .

The maximum number of normal base behaviors for a loop is n = 2b, where b

is the number of branch nodes in the loop body. Then, a successive exponentiation
is due to iterations of a loop. Suppose the acyclic graph of a loop has n normal base
behaviors and e exceptional base behaviors, then for i iterations, it has (ni + e ×
ni−1) iterative behaviors. The double exponentiation leads to utter intractability if a
brute force approach were to be applied to reason about software safety and security
problems that require analysis behaviors on all paths. The number of behaviors is
bigger than the number of atoms in the universe if we have a loop with just 5 non-
nested IF conditions and 50 iterations.

The exponentiality of paths coupled with explosion due to iterative behaviors are
the root problems that go by various names in software analysis and verification
literature. For example, Clarke et al. [63] discuss the state explosion problem
for model checking. Model checking is an automatic verification technique for
concurrent systems that are finite state or have finite state abstractions. Model
checking is a collection of automatic techniques for verifying finite-state concurrent
systems. This framework was developed independently in the early 1980s by
Clarke and Emerson [62] and by Queille and Sifakis [107, 108]. It has been used
successfully to verify computer hardware, and it is beginning to be used to verify
computer software as well. As the number of state variables in the system increases,
the size of the system state space grows exponentially. This is called the state
explosion problem. Much of the research in model checking over the past 40 years
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has involved developing techniques for dealing with this problem. The behavior
associated with each path creates a set of states. As the number of paths grows
exponential, so does the totality of states associated with those paths. The iterative
behaviors, as discussed here, cause a successive explosion. Thus the state explosion
problem is rooted in explosion of behaviors.

6.3 Computational Intractability of Path Feasibility

Given a description of a set of control flow paths through a procedure, feasible path
analysis (FPA) determines if there are appropriate input values that would cause
execution to flow down some path in the collection [82]. If no input values can cause
the program to be executed along a path, we say that the path is infeasible or non-
executable. In the context of software testing, feasibility analysis plays an important
role in identifying testing requirements which are infeasible. In software assurance,
the analysis may find a path with a safety or security vulnerability. Declaring it to
be an actual vulnerability becomes a false positive if the path is not feasible.

FPA is central to most applications of program analysis. But, because this
problem is formally unsolvable, syntactic-based approximations are used in its
place. For example, the dead-code analysis problem is to determine if there are
any input values which cause execution to reach a specified program point. The
approximation determines whether there is a control flow path from the start of the
program to the program point of interest . This syntactic approximation is efficiently
computable and conservative: if there is no such path the program point is clearly
unreachable, but if there is such a path, the analysis is inconclusive, and the code is
assumed to be live. Such conservative analysis too often yields unsatisfactory results
because the approximation is too weak.

Feasible path analysis requires both symbolic analysis [91] and theorem prov-
ing [50]. Symbolic analysis relates expressions occurring at different program
points and theorem proving determines the validity of logical relations between
expressions. A popular approach is to use constraint solvers – firstly extract a set
of constraints from the given path, and then solve the constraints [129]. Given a
path, we can obtain a set of constraints called path predicates or path governing
conditions. After the path conditions are obtained, we need to decide whether they
are satisfiable or not. For satisfiable conditions, we often have to find the variables’
values to satisfy them. The path is feasible if and only if these conditions are
satisfiable.

A Constraint Satisfaction Problem (CSP) [99] consists of a set of variables, each
of which can take values from some domain. In addition, there are some constraints
defined on the variables. Solving a CSP means finding a value for each variable,
such that all the constraints hold. Obviously, CSP represents a very general class of
problems. Special cases of interest in software analysis are: linear inequalities as
constraints and Boolean satisfiability.
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A Boolean variable can only be assigned some truth value (TRUE or FALSE). A
Boolean formula is constructed from a set of Boolean variables using the logical
operators AND (i.e., conjunction), OR (i.e., disjunction), etc. A literal is a variable
or its negation. The disjunction of a set of literals is a clause. A Boolean formula
can be transformed into a conjunction of clauses. If we can assign a truth value to
each variable such that the whole formula evaluates to TRUE, then the formula is
said to be satisfiable. If the formula is in conjunctive normal form (CNF), i.e., it is a
conjunction of clauses, the problem is well-known as SAT. This is the first NP-hard
problem [81].

6.4 Difficult to Analyze Programming Constructs

As noted earlier, two simple but powerful programming constructs: conditional
computation and store and recall are at the heart of a Turing-complete computation
model. Modern programming languages have added new programming constructs to
enable paradigms such as: structured programming, object-oriented programming,
collections (e.g., structures, arrays, etc.), and dynamic binding.

These new programming constructs have their benefits, but they create new com-
plexity beyond the two fundamental challenges we have discussed. The complexity
arises from inter-dependencies between data and control flows created by these
programming constructs. We view it as indirect and invisible flows that complicate
program comprehension and also make automated program analysis difficult.

6.4.1 Indirect Control Flow

Control Flow (CF) is about the order in which program statements are executed.
The ability to modify control flow enables the construction of program loops and
provides the ability to create multiple execution behaviors. CF artifacts such as the
IF statement or a function call modify the linear order in which program statements
are executed. The CF artifacts provide the capability to create different execution
behaviors in software.

We use the term direct control flow to refer to flow created by program constructs
IF and function call that directly specified that flow, i.e. no computation is
needed to discern the flow. This is not the case with indirect control. Take the case
of dynamic binding in C as exemplified by a device driver call in XINU:

SYSCALL write(descrp, buff, count)
int descrp, count;
char *buff;
{

struct devsw *devptr;
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if (isbaddev(descrp))
return(SYSERR);

devptr = &devtab[descrp];
return((*devptr->dvwrite)(devptr,buff,

count));
}

The function write calls a function (*devptr->dvwrite)(devptr,buff,count)
using a function pointer. To compute the control flow at the callsite, we must identify
the called function. However, we need to compute data flow to do so. We have a
complex dependency: to compute the control flow we need to compute the data
flow. In turn, to compute the data flow we always need control flow. Moreover,
depending on the path by which arrive to the write call, the function called through
the function pointer could be different. In essence, the function pointer call creates a
branch point at the callsite and adds further complexity to the fundamental challenge
of explosion of behaviors.

We use the term indirect control flow to refer to function calls that require
computing data flow to identify the called function.

The object-oriented languages employ type hierarchy for the indirect control
flow. For example, to identify the function called by O.f(x). A data flow computa-
tion is needed to determine the type of the object O. The called f is the one that is
implemented for the determined type.

Another variety of indirect control flow stems from program constructs for
handling exceptions. In Java, the try block contains set of statements where an
exception can occur. A try block is always followed by a catch block or a finally
block. The catch block handles the exception that occurs in the associated try

block.
There are also specialized program constructs such as Android intents. An intent

is a specialized data structure that is passed to signal dispatching logic to change
an application’s control flow from executing one component to another within the
Android framework. Depending on the intent, apps or the OS might be listening for
it and will react accordingly. Think of it as a blast email to a bunch of friends, in
which you tell your friend John to do something, or to friends who can do X (intent
filters), to do X. The other folks will ignore the email, but John (or friends who can
do X) will react to it. To listen for a broadcast intent (like the phone ringing, or an
SMS is received), broadcast receiver is implemented, to which the intent will be
passed [1, 2].

The indirect control flow is used rampantly in object-oriented languages. The
Object class, in the java.lang package, sits at the top of the class hierarchy tree.
Everyclass is a descendant, direct or indirect, of the Object class. Every class you
use or write inherits the instance methods of Object. Accurate static analysis is often
unnecesarily complex as a result. In contrast, the C developers employ function
pointers only when their use makes good sense. We did a quick sampling of Linux
and XINU builds using Atlas [71] queries to find call sites that use function pointers.
Of the total 2,325,293 call sites in Linux 53,741 (2.3%) use function pointers. Of
the total 1,007 call sites in XINU, 14 (1.4%) use function pointers.
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Fig. 8 A Linux bug in
drxk_gate_crtl with
odd use of function pointers

A Linux bug rooted in odd use of function pointers We present an example of
a complex bug in a Linux device driver involving an odd use of function pointers.
The bug is reported in our paper [92]. It shows a feasible path on which Lock is not
followed by Unlock. A function f1 is called using a function pointer. Oddly, it has
dual use: serves as Lock or Unlock depending on whether its boolean parameter is
TRUE or FALSE. The function has two control flow paths with Lock on one path and
Unlock on the other path. The function is called twice on most paths except on one
path which is the bug. This function with its dual use and its function pointer calls
make it unnecessarily complex.

The lock and unlock are on disjoint paths in the function drxk_gate_crtl (f1)
and if C = true, the lock occurs, otherwise, the unlock occurs. The lock and unlock
can match if f1 is called twice, first with C = true and then with C = false. An
Atlas query shows that f1 is not called directly anywhere. Thus, it is either dead
code or f1 is called using a function pointer.

Resolving indirect control due to function pointers, we find the scenario shown
in Fig. 8. The function tuner_attach_tda18271 (f2) calls the function f1 via
function pointer. demo_attach_drxk sets the function pointer to f1, the pointer
is communicated by parameter passing to dvb_input_attach, then to f2.

Recall that f1 must be called twice. The function f2 has a path on which there is
a return before the second call to f1 and thus it is a bug.

6.4.2 Indirect Data Flow

Data flow is about the store and recall in a program. The data flow artifacts include
assignment statements, function parameters, function returns, local variables, and
global variables, object or structure fields, and pointers to objects or structures. The
ability to flow data enables the construction of multi-part programs where different
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parts can share their computations. One part (control block or function) can compute
and store the result and another part of the program can recall the stored result.

Direct data flow is through assignment of variables. Data flows from variable y

to variable x through assignment x=y. The direct data flow is directly computed by
tracking assignments. The data can flow through multiple assignments, but that by
itself is not a major difficulty and the Def-Use (DU) Use-Def (UD) chains are used
respectively to track the forward and backward data flow [46].

Indirect data flow is the data flow through a function or a field of a structure. The
indirect data flow through a function can be further divided into three categories: (a)
parameter assignment, (b) function return, and (c) assignment to a global variable.
The analysis difficulty increases from (a) to (c). In (a) the data flows into a specified
function f. In (b), the data returned by the function f can flow any of its callers. In
(c), the data assigned to a global variable by a function f can be accessed by any
other function.

Indirect data flow through an object or structure field creates the complexity of
backward flow as exemplified here:

1. Lock(x);
2. O1.a = O2;
3. O2.b = x;
4. y = O1.a.b;
5. Unlock(y);

The assigned x in Line 3 flows back through the assignment in Line 2 and thus
Unlock(y) is actually Unlock(x).

6.4.3 Invisible Control Flow

Unlike direct or indirect, the invisible control flow change is not specified by any
visible program artifact. Instead, an interrupt causes the change. In case of indirect,
the callee is not directly specified but it can be computed. In case of invisible,
neither the callee nor the program point (a statement in the program) for control
change is specified. The added uncertainty of the program point makes analysis of
invisible control flow even more difficult. The invisible flow is illustrated by our
earlier memory leak example (Fig. 6):

1. Memory is allocated by invoking getbuf inside the function dswrite. The
memory is allocated for a structure of type dreq. The drptr pointer to the
allocated memory is passed to other functions and eventually it is inserted in
a globally shared linked list with the code dsptr->dreqlst = drptr.

2. The function dsinter gets drptr, and deallocates memory with the code drptr
= dsptr->dreqlst followed by freebuf(drptr).

The function dsinter is interrupt-driven. It is not linked by a call chain to
dswrite which allocates memory. The drptr pointer to the allocated memory is
communicated through a global linked list dsptr->dreqlst.
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In invisible control, interacting program parts are not linked by control flow. They
act asynchronously and communicate through a shared object.

6.4.4 Invisible Data Flow

Invisible data flow occurs when an individual variable or a pointer becomes part of
a collection, looses its individual identity and cannot be tracked individually.

The invisible flow is illustrated by our earlier memory leak example (Fig. 6). In
dsptr->dreqlst = drptr, the drptr pointer to the allocated memory becomes
part of a linked list. In fact, this linked list contains pointers to allocated memory in
different functions, not just dswrite.

Pointer analysis attempts to determine the set of objects to which a pointer can
point (called the points-to set of the pointer). Unfortunately, these analysis are
necessarily approximate (since a perfectly precise static analysis amounts to solving
the halting problem). Pointer analyses have difficulty analyzing invisible data flow
precisely. In order to determine points-to sets, a pointer analysis must be able to
name a program’s objects. In invisible flow instances, programs can allocate an
unbounded number of objects; but in order to terminate, a pointer analysis can only
use a finite set of names.

7 Research Directions

We shall discuss new research directions in terms of: (a) threat modeling to
hypothesize CPM, (b) analyzing software to gather evidence based on a CPM
hypothesis, and (c) verifying to prove or refute a hypothesis based on gathered
evidence.

7.1 Threat Modeling

Security threat modeling is often studied and applied for specifying security
requirements during application development [87, 117]. There is however paucity
of established techniques and tools for threat modeling and analysis [102]. Ongoing
work at the Open Web Application Security Project (OWASP) organization includes
several resources for threat modeling [44].

A different view of threat modeling is pertinent in the context of catastrophic
malware that has never been seen before. Searching for such malware is like
looking for a needle in the haystack not knowing what the needle looks like.
The OWASP [44] notes that threat modeling is a complex endeavor that involves
drawing trust boundaries. How does one draw trust boundaries in software? Drawing
boundaries with respect to known exploits is doable, but doing so with unknown
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exploits is uncharted territory requiring new research. Threat modeling is important
for the following reasons.

• Without the threat model as a powerful abstraction, we are left to deal with an
endless variety of problems. For example, without the abstraction of variables
and the linear system of equations, there is an endless variety of constraint-
satisfaction problems. Similarly, without effective modeling of CPM, we have
an endless variety of physical systems as well as their varied malfunctions.

• Threat modeling with appropriate rigor is a crucial prerequisite for efficient
analysis and verification of CPM. A powerful abstraction is necessary to avoid
ad-hoc and inefficient solutions. For example, the abstraction of linear system
of equations has enabled the powerful Gauss and Jacobi methods that scale
to extremely large constraint satisfaction problems encountered in science and
engineering. Similarly, modeling is a necessity to design efficient and accurate
algorithms to analyze and verify CPM.

In detecting novel CPM, the first challenge for a human analyst is the open-ended
search for plausible hypotheses of malicious behavior. The space of hypotheses can
be arbitrarily large for a given app. With no prior knowledge of an app’s malicious
behavior, the analyst has to rely on a general model such as the CIA model [69]
to systematically explore hypotheses for malicious behaviors. As examples from
Android apps, an analyst may consider hypotheses for confidentiality leaks (e.g.,
GPS location is leaked to an adversary), integrity breaches (e.g., incorrect GPS
location is displayed in some geographic locations), or denial of service (e.g.,
malware runs loops to drain the device battery) attacks enabled by unscrupulous
use of Android APIs. However, this can still be prohibitively expensive, as there
may be numerous potential CIA hypotheses to explore for a given app.

Hypothesizing a vulnerability amounts to specializing the CIA model by coming
up with specific events and rules surrounding the events to specify a breach. To
precisely explore only the relevant CIA hypotheses, it is critically important for the
analyst to visualize and understand the data and control flow interactions between
the app and the Android components it uses. For example, knowing that an app
interacts with the hardware and messaging APIs via data flow leads to the hypothesis
that it may leak camera images by sending them as attachments with messages.
Coming up with a good CPM hypothesis is a highly creative activity requiring
human intelligence at its best. Based on our experience of hypothesizing malware
in DARPA programs, we have found the following research directions particularly
useful:

Automated Exploration The purpose is to identify and characterize relevant
program artifacts. It requires research to determine what artifacts could be relevant.
The relevant program artifacts are characterized with respect to a class of malware.

Automated Filters The purpose is to enable the analyst to quickly sift through
relevant program artifacts to identify targets for formulating malware hypothesis.
The analyst starts developing a hypothesis by experimenting with various filters.
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7.2 DARPA Research: Threat Modeling

Our work on DARPA APAC and STAC projects is summarized here to exemplify
the threat modeling research directions. The papers [49, 71, 72, 84, 85, 112, 113]
describe our research related to threat modeling and the relevant toolboxes we have
developed. These papers include research on interactive visualization and querying
which analysts need, in order to understand complex software and gather relevant
information during threat modeling.

7.2.1 Automated Exploration

Android Vulnerabilities The gathered information includes the data, control and
exceptional flows within the app, the permissions granted to the app and the APIs
used to exercise them, and program artifacts that use the Android resource files. The
pre-computed information also includes the call and data flow interactions of the
app with various Android subsystems. Subsystems are logical groupings of Android
APIs according to the functionality they provide such as networking, storage device
access, address book, and others. The interactions provide information about how
the app interacts with Android components.

Side Channel Vulnerabilities Software side-channel vulnerabilities (SSCVs)
allow an attacker to gather secrets by observing the differential in the time or space
required for executing the program for different inputs. The possibilities are open-
ended for the ways various program artifacts may be used to create side channels.
Attackers exploit SSCVs by presenting a set of inputs and observing the space or
time behaviors to construe the secret. The input could vary from HTTP requests to
multiple log-in attempts depending on the application. The observable differential
behaviors could be execution time, memory space, network traffic, or some output
patterns of application-specific significance.

The paper [113] describes a three dimensional variability spectrum shown in
Fig. 9 corresponding to fundamental SSCV attributes: entry points, potential secrets,
and programming constructs or artifacts causing differential behavior. Adversaries
use entry points to provide inputs to induce differential behaviors, secret types are
the broad categories of secrets that adversaries target, and observables are the space
or time program execution behaviors produced by control flow constructs in the
code such as loops, branches and exceptions. The relevant artifacts are gathered by
automated exploration. It is important to characterize relevant program artifacts and
their specific attributes that define how the artifacts relate to the secret, how they
create observable space/time behaviors, or how they create differential behaviors.

Algorithmic Complexity Vulnerabilities The algorithmic complexity vulnerabili-
ties (ACVs) are about runtime space or time consumption of programs. Adversaries
can exploit ACVs to mount denial of service attacks. For example, the denial of
service commonly known as the “billion laughs attack” or an XML bomb, is caused
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Fig. 9 Three variability dimensions of SSCVs

by an ACV in the application that creates a string of 109 concatenated “lol” strings
requiring approximately 3 gigabytes of memory [68] when parsing a specially
crafted input file less than a kilobyte. A recent study has characterized a class of
ACVs in the Java library [74]. Similar to the XML bomb, it is a class of ACVs
associated with the serialization and deserialization APIs.

The program artifacts that usually lead to ACVs include loops, recursion, or
resource-intensive library APIs. Moreover, ACVs typically result from complex
loop termination logic. An important part of our research has been to decipher
relevant loop characteristics by studying publicly known examples of ACVs and
the ACV challenges posed by DARPA. It is important to characterize loops in the
context of program artifacts that connect a loop to the rest of the program. For
example, since ACVs are triggered by attacker’s input, it is important to characterize
whether the termination of a loop can be controlled by user input. We developed
loop abstractions capture and represent the essentials of loops and the connecting
parts of the program that affect loop behaviors. One abstraction is to capture the
loop termination behavior based on the data flow to the loop termination conditions.

The gathered information includes: (a) a catalog of all loops in the program along
with characteristic attribute vector for each loop, (b) the uses of resource-intensive
library APIs, (c) loop call graphs to bring out loops nested over multiple functions,
(d) a catalog of branch nodes including branches that govern the paths containing
loops.

7.2.2 Automated Filters

The paper [49] describes automated filters to isolate complex loops with high like-
lihood of ACVs. The analyst can use filters to select loops matching a combination
of the loop characteristics from the loop catalog. The framework currently supports
the creation of custom filters by adding constraints on String, primitive and boolean
properties. An example of a boolean property is monotonicity – a loop is either
monotonic or not; and the two possible constraints based on this property would be
“monotonic: true” and “monotonic: false”. The nesting depth of a loop is an example
of a primitive (integer) property. For example, the constraint “nesting-depth greater
than 4” selects all loops having nesting depth of 5 or above within the method. A
filter consists of a conjunction of constraints, i.e., a filter consisting of the above two
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constraints would select monotonic loops with nesting depth over 4. The filtering
framework also allows analysts to fork a filter, i.e., create a new filter that includes
a subset of the constraints added to an existing filter. This is useful for the analyst to
explore multiple hypotheses related to ACVs in the application simultaneously.

Currently, we provide filters based on following six characteristics: (1) Reach-
ability, (2) Subsystem Interaction, (3) Presence of branch conditions that affect
the resource consumption of the loop, (4) Loop Termination Patterns (LTP), (5)
Monotonicity, and (6) Nesting Depth.

7.2.3 Applicability of Automated Exploration and Filters

The paper [49] reports a case study of Gabfeed3, a web forum software which
allows users to post messages and search posted messages. The application utilizes
a custom merge sort for sorting messages. The application consists of 23,882 lines
of Jimple, an intermediate representation of Java bytecode.

Automated exploration creates a loop catalog consisting of all loops in the
program with the following characterization for each loop: (1) the Termination
Dependence Graph (TDG) and Loop Projected Control Graph (LPCG) abstractions
for the loop, (2) whether the loop is monotonic, (3) applicable termination patterns,
(4) subsystem APIs and the control flow paths on which they are invoked in the
loop, and (5) structural characteristics such as the number of nesting levels and the
inter-procedural nesting depth of the loop when the nesting is split across multiple
functions.

The loop characterization can be used to create a variety of filters to select loops.
This case study illustrates five filters. Using the filters, the analyst is able to isolate
for further scrutiny one loop out of 112 loops in the app. On further scrutiny, an
ACV was detected in this loop. The view from our filtering tool in Fig. 10 shows a
succession of filters that narrows down the search for a vulnerable loop.

Fig. 10 Using filters to select
a loop likely to have an ACV
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7.3 Software Analysis

The purpose of software analysis is to produce evidence that is needed to prove
or disprove the malware hypothesis developed by the analyst. For example, the
hypothesis could be: GPS location is being leaked by sending it to a web client. The
analysis could produce data and control flow paths from the program point where the
GPS information is obtained to the point where it is sent to the web client. Another
outcome could be that the information produced by the analyzer is used to verify
that the GPS location is not leaked on any feasible control flow path.

Software analysis tools that work on source code use the programming language
syntax and semantics to represent and reason about the possible behaviors at run-
time. Tools that work on binary such as Java byte code or LLVM are useful when the
source code is unavailable (e.g., analyzing proprietary COTS components). Binary
analysis is often necessary to uncover potential malicious behavior introduced by an
erroneous or unanticipated transformations by the compiler. Both the source code
analysis [27, 28, 34, 71] and the binary analysis [6, 7, 9, 18, 20, 57, 71] are evolving
research topics, with several tools being actively developed, maintained and used in
practice. We discuss research directions applicable to both source code and binary
analysis.

Before we discuss research directions, we make a quick note about static and
dynamic analyses. The term static analysis refers to any process for analyzing
code without executing it. Static analysis is powerful because it allows for the
quick consideration of many possibilities. A static analysis tool can explore a large
number of “what if” scenarios without having to go through all the computations
necessary to execute the code for all the scenarios. Static analysis is particularly
well suited to security because many security problems occur in corner cases and
hard-to-reach states that can be difficult to exercise by actually running the code.
The term dynamic analysis refers to any process for analyzing code by executing it.
Dynamic analysis has the advantage that it can reveal the ground truth by running the
code. Whereas the approximation performed by static analysis may be inaccurate
and often produce false positives, static analysis can be used to narrow down the
possibilities for vulnerable code. Dynamic analysis can be used to try out those
possibilities dynamically to ensure that the code is indeed vulnerable. Combining
static and dynamic analyses is a topic of ongoing research including statically-
informed dynamic analysis [86] and dynamically-informed static analysis.

We will discuss two static analysis research directions that we find particularly
important in the context of detecting CPM:

Computing Relevant Program Behaviors All relevant program behaviors must
be analyzed to verify a safety or security property. An efficient algorithm must
compute the relevant behaviors directly without computing all the behaviors. This is
crucial in practice because it is computationally intractable if one were to compute
all behaviors to find the subset of relevant behaviors.



242 S. Kothari et al.

Interactive Graphical Static Analysis Analyzing software for CPM inherently
involves performing experiments. Static analysis is supposed to be useful to explore
a large number of “what if” scenarios. However, performing such experiments is not
easy in practice. There are many issues, for example, existing tools do not support
on-the-fly composition of analyses to cope with open-ended “what if” possibilities.
Graphs are important as a common underlying abstraction for composability of
analyses.

7.4 DARPA Research: Software Analysis

Our work on DARPA APAC and STAC projects is summarized here to exemplify
the software analysis research directions. The papers [49, 72, 84–86, 112, 112, 113,
113] describe our software analysis research and the relevant toolboxes we have
developed as part of these projects.

7.4.1 Computing Relevant Program Behaviors

The papers [118, 119] present a mathematical foundation to define relevant behav-
iors. Computing the relevant program behaviors involves: (a) computing the relevant
program statements, (b) computing the relevant conditions to determine the feasi-
bility of relevant behaviors, and (c) computing the relevant program behaviors. The
papers introduce the Projected Control Graph (PCG) as an abstraction to directly
compute the relevant behaviors for a fairly broad class of software safety and
security problems. The paper presents an efficient algorithm to transform CFG to
PCG with complexity O(|V |+ |E|), where |V | and |E| are respectively numbers of
nodes and edges in the CFG.

As illustrated by the following example, computing relevant behaviors is impor-
tant for addressing the two fundamental software analysis challenges discussed in
Sect. 6. In practice, the number of behaviors relevant to a task is often significantly
smaller than the totality of behaviors. Computing just the relevant behaviors enables
us to surmount the intractability of computing the totality of behaviors. The
following example also illustrates that using PCG to compute relevant behaviors
minimizes the number of path governing conditions to be analyzed for checking
path feasibility.

Illustration of Relevant Program Behaviors and PCG Consider the problem of
verifying the function foo (Fig. 11a) for division-by-zero (DBZ) vulnerability on
line 24 which involves division by d . The CFG for foo is shown in Fig. 11b. The
CFG is an acyclic graph with six paths. Each path yields a unique base behavior.
The base behaviors are as listed in Table 1. The behaviors (B1 and B2) exhibit the
DBZ vulnerability. The yellow highlighted statements shown in Fig. 11a are the
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Fig. 11 A division-by-zero (DBZ) vulnerability

Table 1 Base behaviors and relevant behaviors for foo

Base behaviors Relevant behaviors

B1 : 7, 8, 9[c1], 10, 15[c2], 16[c̄3], 19, 24
RB1 : 8, 15[c2], 16[c̄3], 19, 24

B2 : 7, 8, 9[c̄1], 12, 15[c2], 16[c̄3], 19, 24

B3 : 7, 8, 9[c1], 10, 15[c̄2], 22, 24
RB2 : 8, 15[c̄2], 22, 24

B4 : 7, 8, 9[c̄1], 12, 15[c̄2], 22, 24

B5 : 7, 8, 9[c1], 10, 15[c2], 16[c3], 17, 24
RB3 : 8, 15[c2], 16[c3], 24

B6 : 7, 8, 9[c̄1], 12, 15[c2], 16[c3], 17, 24

relevant program statements. In this example, these statements are relevant to the
DBZ vulnerability because they affect the value of the denominator d in line 24.

Weiser’s highly cited paper [121] on program slice in essence introduced the
notion relevant statements. This research is crucial generalization in two important
directions: (a) generalizing the notion of relevant statements for software safety and
security problems, (b) generalizing from relevant statements (nodes in the CFG) to
relevant behaviors (paths in the CFG).

Multiple base behaviors can be grouped so that each group corresponds to a
unique relevant behavior. The relevant statements for the DBZ vulnerability on
line 24 (Fig. 11a) are: 8, 19, 22 and 24. The relevant behaviors and the correspond-
ing groups of base behaviors are listed in Table 1. Of the three relevant behaviors,
RB1 exhibits the DBZ vulnerability. Conditions C2 and C3 are included in relevant
behaviors as relevant conditions. These conditions determine the feasibility of the
vulnerable relevant behavior is RB1.
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The PCG for foo is shown in Fig. 11c. The PCG is an acyclic graph with three
paths. Each path yields a unique relevant behavior. This illustration brings out
that the PCG produces exactly the relevant behaviors and retains only the relevant
conditions to check feasibility of the path with vulnerable behavior.

7.4.2 Interactive Graphical Static Analysis

The Eclipse and Atlas infrastructure incorporates multi-language support, a graph
database, a query language, the eXtensible Common Software Graph Schema
(XCSG), a variety of program analyzers, and interactive program graph visualiza-
tion. This infrastructure can be used to create domain-specific toolboxes such as the
Android Security Toolbox [85]. These toolboxes are written in Java and deployed as
Eclipse plug-ins. The key components of Atlas infrastructure are described below.

Graph Database After parsing a program, its complete semantics is saved as
a graph with many different types of nodes and edges. Results from a number
of commonly needed control and data flow analysis are incorporated in the
graph database. We use attributed graphs [71] for representing program semantics.
Attributes are tags for nodes and edges to represent program semantics. Program
analyzers can use the tagging mechanism to add new semantics (e.g. call sites in C
programs are tagged by an analyzer to denote use of function pointers). The tagging
has multiple uses including its use for analyses to communicate with each other. As
an example, we use the loop-detection analyzer to compute and tag the loop-back
edges. These loop-back edges are then used by another analyzer to create an acyclic
graph to compute the paths corresponding to relevant behaviors.

eXtensible Common Software Graph (XCSG) Schema Just as high-level pro-
gram languages are designed with affordances for humans, effort must be invested
in designing humane representations for program analyses. Interactive analysis for
human-machine collaboration must be enabled to tackle difficult problems now,
and to help inspire creative solutions to automate or semi-automate verification
in the future. XCSG is designed to enable interactive analysis to tackle difficult
analysis problems in multi-million line programs. XCSG is designed to represent
the semantics of the software, blend various common analyses, provide a basis for
composing new analyses, and provide affordances required for human-machine col-
laboration. XCSG provides a unified approach to support for multiple programming
languages. XCSG also serves as the foundation for a graphical query language. The
comprehensive XCSG semantics links program text with its graphical representation
as shown in Fig. 12.

Graphical Query Language The query language is implemented as an embedded
domain-specific language (DSL) in Java. The rationale behind making a DSL is that
it adds a layer of abstraction for expressing what to select from the graph, provides
some conciseness of expression, and leaves a layer of indirection permitting query
optimization. The rationale behind making it embedded is that it avoids recreating
the useful features already present in an imperative language such as Java.
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Fig. 12 Linking program text and graph with XCSG

The query language is usually informally referred to simply as Q, which is the
simple name of the Java interface. Q is used to describe what to select from a graph,
the expression yielding a subgraph. By the builder pattern, almost all methods in the
interface Q return an expression of type Q, and chaining method calls effectively
specifies the query AST. A chain of Q expressions can be evaluated by calling
the Q.eval() method, which transitions to a graph API suitable for imperative
implementations. Methods of Q are responsible for ensuring that the subgraph
returned is a proper graph, where edges are present iff the incident nodes are as
well. From the perspective of Q, the entire graph database is an expression called
Q.universe(). Query results are therefore confined to returning subgraphs of the
universe.

The primary use case behind the design of Q is enabling an analysis designer
to quickly draft single line queries to select relevant portions of the graph – in
essence, enabling them to “look around the corner” from their current position, and
bring together related but lexically non-local elements of the program. Unlike many
other graph query languages [96, 123], Q deliberately unions all matches at each
step. For example, given several tagMethod nodes as an origin, a query for a call
graph returns a single unified graph, as opposed to returning individual matches to
a pattern.

In addition to interactive queries, we provide the capability to write Java
programs with query APIs to write novel analyzers and verification tools. Docu-
mentation for the query APIs and XCSG are available at [3, 4, 16].

Graph Interactions with Source Correspondence This is important for multiple
reasons. For example, this capability can be used for composition of analysis. The
textual queries and graph interactions can be combined. For example, for a textual
query to create CFG can have selected as the parameter. Clicking on a node of
a displayed call graph, serves as selected and the CFG for the selected node is
displayed. Or as another example, relevant program statements can be selected by
clicking on them (e.g. highlighted statements in Fig. 11a) can produce the PCG
shown in Fig. 11c. A spectrum of such capabilities can be seen in the demo videos
linked with our papers [71, 84, 85].
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Our research has led to the Atlas platform [15, 71] as a pluggable architecture
using the Eclipse IDE. We have built various toolboxes such as the Android Security
Toolbox [85] as Atlas plug-ins.

7.5 Verification

The safety and security problems are similar for the purpose of verification. A
safety verification would be: verify that an event e1(O) is followed by an event
e2(O) on every feasible execution path, where the two events are operations on
the same object O (e.g., lock must be followed by unlock). A security verification
would be: verify that an event e1(O) is not followed by an event e2(O) on every
feasible execution path, where the two events are operations on the same object O .
We shall refer to these as 2-event matching or anti-matching. Anti-matching covers
software security verification defined according to the CIA triad. A confidentiality
verification problem could be defined as: a sensitive source must not be followed by
a malicious sink on any feasible execution path. Similarly, an integrity verification
problem could be defined as: an access to sensitive data must not be followed by a
malicious modification to sensitive data on any feasible execution path.

Formal verification techniques map the software verification problem to another
problem that is amenable to a generic proof technique. This approach ties back to the
computation complexity theory in which problems are mapped to the satisfiability
problem. A common formal verification approach is to map the software verification
problem to the satisfiability problem and use a SAT solver [80]. This formal
approach breaks the verification into tiny steps well suited for machine execution.
However, it has two major problems: (1) it makes the verification incomprehensible
to humans, and (2) it hits scalability hurdles with explosion of steps.

De Millo, Lipton, and Perlis (the first recipient of the Turing Award) [73] point
to the fallacy of “absolute correctness” and argue that software verification, like
“proofs” in mathematics, should provide evidence that humans can follow and thus
be able to build trust into the correctness of the software verification. Our paper [94]
on Linux verification gives examples of incorrect results by a top-notch formal
verification tool.

Given the possibility of tremendous harm from CPM, we find the following
research directions particularly important for software verification:

Automated Verification with Human-comprehensible Evidence Automated ver-
ification should generate evidence alongside. Without automatically generated
evidence, it can be extremely difficult and labor-intensive to cross-check the
correctness of automated verification. A verification tool should convey at high-
level the knowledge of specific hardness it encounters in verifying a vulnerability
instance, and how that hardness is being correctly addressed by the software
verification technique.
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Big-step Automated Verification Proofs in mathematics use high-level abstrac-
tions to create “big-step” proofs. The powerful machinery created by abstract
algebra with its theory of groups, rings, and fields has been the foundation on
which mathematician have built numerous proofs for difficult problems in number
theory such as the Fermat conjecture [17]. It is inconceivable to build such
proofs by simply invoking generic proof techniques devoid of deep concepts.
There is a pressing need for developing “big-step” proofs for software assurance.
Even for NP-complete problems, practical algorithms are designed by employing
problem-specific abstractions. Big-step proofs hold the promise to render software
verification proofs human-comprehensible, as well as make them efficient and
scalable.

7.6 Linux Verification Research

Our verification research has evolved around 2-event matching and anti-matching
that covers both software safety and security problems. We present here the work
reported in papers [92, 94] to exemplify the two verification research directions.

The following verification study is done with the Berkeley Lazy Abstraction
Software Verification Tool (BLAST) [52], the formal verification tool used by the
Linux organization. We used BLAST to verify three recent versions (3.17-rc1,
3.18-rc1 and 3.19-rc1) of the Linux kernel. We enabled all possible x86 build
configurations via allmodconfig flag. The three Linux versions altogether amount
to 37 million lines of code and 66,609 verification instances. The BLAST results are
reported in Table 2. BLAST verifies 43, 766 (65.7)% of Lock instances as safe, and
it is inconclusive (crashes or times out) on 22,843 instances. BLAST does not find
any unsafe instances.

The results reported in Table 2 are shown as: C1 Category of instances verified
as safe, C2 Category of instances verified as unsafe, and C3 Category of the
remaining instances where the verification is inconclusive. Column Type identifies
the synchronization mechanism. Columns Locks and Unlocks show the number of
lock/unlock instances of each type. Note that a lock may be paired with multiple
unlocks on different execution paths.

BLAST does not report any unsafe instances (C2 Category) but it is inconclusive
on 22,843 (34.3)% instances. BLAST does not produce evidence which makes it
challenging to trace its verification to understand its failures [128].

Our study shows a practical need for evidence that shines light on why the formal
verification is inconclusive. It is especially important to know if some of the 22,843
inconclusive instances are actually unsafe. The possibility of unsafe instances is
worrisome for mission-critical cyber-physical systems.

BLAST pronounces 43,766 (65.7)% Lock instances to be safe (C1 Category).
Are all these instances really safe? BLAST [53] uses the Counter Example
Guided Abstraction Refinement (CEGAR) method for verification. CEGAR does
not produce a proof or other evidence to support its assertion that an instance is
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Table 2 BLAST Linux verification results

BLAST

Kernel LOC Type Locks Unlocks C1 C2 C3 Time

3.17-rc1 12.3 M
spin 14,180 16,817 8,962 (63.2%) 0 5,218 26 h

mutex 7,887 9,497 5,494 (69.7%) 0 2,393 27 h

3.18-rc1 12.3 M
spin 14,265 16,917 9,152 (64.2%) 0 5,113 30 h

mutex 7,893 9,550 5,427 (68.8%) 0 2,466 30 h

3.19-rc1 12.4 M
spin 14,393 17,026 9,204 (63.9%) 0 5,189 32 h

mutex 7,991 9,653 5,527 (69.2%) 0 2,464 29 h

All Kernels 66,609 79,460 43,766 (65.7%) 0 22,843 173 h

safe. While the model checker is supposed to be formally correct, it can still have
false negatives (e.g., due to incorrect transformation of software into the low-level
representation that the model checker requires). Without human comprehensible
evidence to cross-check correctness of a formal proof, we are left with blind trust.
The practical need is for evidence that makes it possible to cross-check the formal
proof without having to construct a new proof starting from scratch. Without such
evidence, it is practically impossible to answer the following question: Among
the 43,766 instances verified as safe by BLAST, are there any cases of erroneous
verification where an unsafe instance is verified as safe?

8 Conclusions

Most of the national critical infrastructure relies on industries which employ
networked industrial control systems such as SCADA. Sabotage of these industries
can have wide-ranging negative effects including loss of life, economic damage,
property destruction, or environmental pollution.

A cyber attack is not all that different from a military attack. A cyber attacker will
dedicate a significant amount of time observing and probing the target organization
to find weaknesses in its defense. Any weakness found may lead to infiltration and
eventually an assault.

When people think of cybersecurity today, they worry about hackers and
criminals who prowl the Internet, steal people’s identities, steal sensitive business
information, or even steal national security secrets. Those threats are real and they
exist today. But the even greater danger – the greater danger facing us in cyberspace
– goes beyond crime and it goes beyond harassment. A cyber attack perpetrated by
nation states or violent extremists groups could be as destructive as the 9/11 terrorist
attack. Especially of concern are the communication infrastructure, the industrial
control systems, and the vulnerable mission-critical software.
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Most industrial control systems began as proprietary, stand-alone collections of
hardware and software that were walled off from the rest of the world and isolated
from most external threats. Today, widely available software applications, Internet-
enabled devices and other non-proprietary IT offerings have been integrated into
most such systems. This connectivity has delivered many benefits, but it also has
increased the vulnerability of these systems.

A disruption in telecommunication networks can have devastating effects on all
aspects of modern living, causing shortages and stoppages that ripple throughout
society. Telecommunications hardware includes a vast range of products that enable
communication across the entire planet, from video broadcasting satellites to
telephone handsets to fiber-optic transmission cables. Services include running the
switches that control the phone system, providing Internet access, and configuring
private networks by which international corporations conduct business. Software
makes it all work.

If a desktop operating system fails, the computer can be rebooted. If a flight
control system fails, it can be a disaster with no chance to reboot the system.
Malfunctioning of mission-critical software results in serious impact on business
operations or upon an organization, and even can cause social turmoil and catastro-
phes. Mission-critical software drives online banking systems, railway and aircraft
operating and control systems, electric power systems, and many other computer
systems that adversely affect businesses and the society when they fail.

The real question is: can we detect catastrophic software vulnerabilities –
whether intentionally planted or not? If we were to guard our reactors from the
Stuxnet, how could we have done that? There is no escape but to create the best
possible technology to analyze mission-software to discover and confirm intentional
malware or inadvertent vulnerability that could be catastrophic. But oddly enough,
much of the activity that takes place under the guise of computer security is not
really about solving security problems at all; it is about cleaning up the mess that
security problems create. Virus scanners, firewalls, patch management, and intrusion
detection systems are all means by which we make up for shortcomings in software
security.

It is important that the cybersecurity research leads to practical tools and
education to train a cyberforce with the necessary thinking skills to use the
tools effectively. A skilled cybersecurity workforce is needed to meet the unique
cybersecurity needs of critical infrastructure, enterprise, and operational technology
systems and networks.
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Defense Mechanisms, and New Directions

Gulshan Kumar Singh and Gaurav Somani

Abstract Cloud computing is a service which provides virtual machines (VMs) to
the cloud customer with an ability to scale its resources on-demand. Cloud offers
logical isolation among the VMs to isolate one VM from another VM. VMs running
on the same physical server share the same resources. Hence, cross-VM attacks are
possible in the multi-tenant virtualized environment. Most of the researchers focus
on cross-VM attacks which primarily target the cache memory. There are additional
attack instances which target other essential resources such as CPU, memory, I/O
devices, and the cloud network. This chapter features a taxonomic classification
of the cross-VM attacks and discusses the attacks space and the solution space to
combat the cross-VM attacks. We also explain new sophistication in the cross-VM
attack space and provide a comprehensive discussion to the solution design and
guidelines.

1 Introduction

In recent times, cybersecurity is one of the primary concerns for the communities
owing to the proliferation of cybercrime in the cyber world. The primary aim of
cybersecurity primitives is to protect data in today’s environment by studying and
understanding the behavior of attackers. According to [8], most of the companies
today have more than five security consultants and products for protecting their
systems against malware. Also, the same report found that 75% of corporations
are infected with adware. When it comes to security, cybersecurity is always on
top for the industries to secure their environment and fight against malware. These
days, the top priorities for the security professionals include mobile devices and
cloud infrastructure. Attacker behavior and attack sophistication change according
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to latest trends in the cyber world, therefore we need to understand the behavior of
the attacker before stopping the attacks.

Cloud computing (CC) platform has become very popular today as it provides
many services by “pay as you go” model. Real-time scalability, ease of access,
service availability, and cost-effectiveness are vital features of cloud computing
services which attract the user towards the cloud. Cloud computing allows multi-
tenancy through which multiple disjoint virtual machines can run on the same
physical server. Cloud computing provides three primary service layers to the
customers in the form of infrastructure as a service (IaaS), platform as a service
(PaaS), and software as a service (SaaS). Owing to the cloud’s on-demand service,
low-cost offerings, and ease of access attracts all the major industries are drawn
toward the cloud computing.

Even though many industries have adopted cloud services, a lot of security issues
are still there in the cloud environment. Cybersecurity is the primary concern for
the cloud customer protect their business from data theft and unavailability. There
are two major security issues on which security professionals mostly focus, i.e.,
data security and network security. Due to cloud’s multi-tenancy, running VMs of
disjoint users on same hardware attract attackers to communicate with co-hosted
victim VMs and plan a variety of attacks.

Virtualization is the crucial component for a cloud, and virtualization is a method
which involves the abstraction of a physical machine into multiple virtual machines
(VM) over same physical hardware. Cloud computing architecture has numerous
physical servers connected through a high-speed network for data transfer. Each vir-
tual machine runs an operating system isolated to other VMs. Isolation of physical
hardware is achieved by virtual machine monitor (VMM) or hypervisor. VMware,
Xen, KVM, and Hyper-V are some widely used hypervisors. A hypervisor provides
logical isolation rather than physical isolation by using sandboxing techniques.
Virtualization has solved many aspects of cloud, but it also opened the door for
some vulnerabilities to the cloud computing. Litchfield et al. in [28] showed how
virtualization could leave the system vulnerable to attacks. The authors focused
on cache-based cross-VM attacks due to vulnerability caused by virtualization and
shared resources which lead to data leakage of the co-resident VM. Some of the
common weaknesses of virtualization are VM sprawl, hyper jacking, VM escape,
denial of service attacks, etc. These vulnerabilities can be mitigated by employing
prevention mechanisms such as VM traffic monitoring and administrative control
for authenticating the VM.

In this chapter, our primary concern is to study the cross-VM attacks which are
attacks coming out from the malicious VM and target the victim VM. All the attacks
that are coming out from the attacker VM are also known as the out-VM attack.
These out-VM attacks may also target non-virtualized environment. Therefore out-
VM attack is the superset of all the attacks coming out from the VM. A cross-VM
attack is the subset of out-VM attacks, i.e., all cross-VM attack are out-VM, but all
out-VM attacks are not cross-VM attacks. In this chapter, we primarily focus on the
cross-VM attacks.
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Most of the public cloud platforms allow multi-tenancy by running multiple
virtual machines on the same physical server. Multi-tenancy among the different
VMs attract the attacker VM to communicate covertly with the victim VM and
extract the sensitive information. Multi-tenancy feature of the cloud allows an
attacker to place malicious VM on the same hardware as that of victim’s VM. After
the placement, side channel attack is used to obtain the data from the victim VM.
Since VMs are residing on the same hardware, it opens up a channel for the attacker
VM to interact with the victim VM. These channels are known as side channels and,
therefore, the chances of side channel attack in the cloud computing environment
are higher than the traditional non-virtualized environment. Side channel attack that
leaks the fine grain information of victims’ machine may even allow extraction of
the private key of the victim VM. Co-residency and memory sharing of the VM are
the primary reasons for the success of cross-VM side channel attack.

The rest of this chapter is organized as follows: Sect. 2 describes the taxonomy
of the cross-VM attack. Section 3 describes the attack and threat model of the cross-
VM attack. In Sect. 4, we detail the attack launch and provide different methods
to accomplish the cross-VM attack. Section 5 details the reason for the success of
the attack. Section 6 describes the existing solutions and their limitations. We also
give a list of possible solutions from the literature to mitigate the cross-VM attacks.
Section 7 describes the new sophistication and flavors of the cross-VM attacks and
open research direction. Finally, Sect. 8 provides a conclusion for our discussion.

2 Cross-VM Attacks and Taxonomy

Side channel attacks are present for more than past 20 years in the non-virtualized
environment. We conducted a systematic literature search and paper studies from the
year 2009 related to cross-VM attacks. Our study shows that cross-VM attacks are
discussed in the literature with different names. Out-VM attacks, inter-VM attacks,
resource freeing attacks, and co-residency attacks are often used names for the
cross-VM attacks. After the exhaustive study of a large number of contributions,
we prepared a taxonomy which classifies the cross-VM attacks into five different
categories. These categories are based on the type of shared resources. We show
the cross-VM attack taxonomy in Fig. 1. We classify the cross-VM attacks into
following five categories:

1. CPU based attacks
2. Cache based attacks
3. Memory based attacks
4. Network based attacks
5. I/O device based attacks

In side-channel attacks, the attacker manages to communicate with the victim
machine due to some vulnerabilities in the system architecture from the perspective
of resource sharing and information leakage. Side channel attacks exist in both
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Fig. 1 Taxonomy of cross-VM attacks

virtualized and non-virtualized environment. However, our primary focus is on side
channel attacks in the virtualized environment. Running multiple VMs over same
hardware provides a side channel for an attacker to extract the information of the
victim running over same hardware. Ristenpart et al. [43] considered two main steps
while performing a cross-VM attack: placement and extraction. In placement, the
attacker’s VM is placed on the same physical server where victim’s VM is placed.
After successfully placing the attacker VM with some effort, next step is to extract
confidential data from the victim VM. The prominent target of a cross-VM attack
is usually a cryptosystem where cryptographic operations are running. Attacker
focuses on extracting this information to perform cryptanalysis and obtains the
cryptographic key segments through which attacker can reconstruct the original key.

In cloud environment where multiple VMs are running over the same hardware,
memory virtualization is provided to fulfill the resource requirements of the VMs.
Virtualization is used to create the multiple instances of a single hardware unit and
distribute among co-hosted VMs. Single processing core of hardware is distributed
to multiple VMs via virtualizing the processor. As the VMs share the underlying
processor, an attacker VM can play with this facility to gain some information of
the CPU usage of the victim VM. Today’s computing devices have multiple cores
where each processor has its first level (L1) and second level (L2) cache but third
level cache (L3) or last level cache is always shared among the processors. We
show the memory hierarchy in Fig. 2. Attackers focus on the L3 cache to gain the
sensitive information as it is shared among all the processors. Therefore, we can see
that memory sharing is one of the major features of cloud computing which enables
the side channel attack to happen in the virtualized environment.

Cloud computing also uses memory deduplication to enhance the performance of
the system. Memory deduplication is the concept of removing memory redundancy
from the cloud where cloud keeps a single copy of the page if multiple copies
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Fig. 2 Memory sharing in virtualization

of the same page exist, and the rest of the copies are rejected or deleted. This
process improves the efficiency of the memory due to decreased memory space
and bandwidth. Memory deduplication is also used to learn that the content that it
is requesting is already available. On the other hand, attackers also come to know
about the content accessed by the victim. This content aware sharing of the memory
is another reason for the cross-VM side-channel attack on deduplicated systems.

Despite memory sharing and memory deduplication, cloud’s internal network
is also a resource which allows an attacker to gain information about the victim
VM and its actions. Spoofing is one of the major attacks through which an attacker
can impersonate itself as another VM and can launch an attack on behalf of other
VM. Spoofing is commonly used to accomplish the DDoS (Distributed Denial of
Service) attacks. Network scanning of internal cloud provides the basic information
of the VMs and the network organization of the cloud as demonstrated by the
authors in [43]. In [33], the authors provided a framework to detect the malicious
activity of VM using virtual machine introspection (VMI) to get the current state
information of the monitored VMs. The authors used network traffic analysis to
analyze and detect the MAC address and IP address spoofing in the cloud to defeat
DDoS participating VMs.

Now, we will discuss the classification categories from the cross-VM attack
taxonomy.

2.1 CPU-Based Attacks

CPU based attacks are those in which the CPU load is monitored to predict the
types of instruction it is running. Similarly, Okamura et al. in [38] presented a
load-based CPU covert channel. In their paper, the authors used two module, a
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sender, and a receiver. Both the module runs with the user level permissions in
which sender is on the victim VM. For their experiment, both the VM (attacker
and victim) are co-hosted on the same CPU core. CPU load is used to transmit the
bits between the attacker and victim VM. The authors used an application running
on both victim and attacker VM to determine the bit to be transferred. Wang et
al. in [51] showed that latest processors with SMT (Simultaneous Multi-Threaded)
technology are vulnerable to side channel attacks. In SMT processors two processes
can execute simultaneously. Therefore a simultaneously running victim process and
attacker process can leak the sensitive information of the victim process. The authors
in their paper showed how ALU (Arithmetic Logical Unit) of the processor is used
to extract the bits of ongoing communication using timing channel.

Similarly, there are some attacks demonstrated in the non-virtualized environ-
ment but seems to be equally applicable in the virtualized environment. As shown
in [10, 25], attacker notices and records the time taken to execute an instruction
to guess the cryptographic key. Similarly, monitoring of CPU power consumption
gives the fine grain information about the types of cryptographic instruction being
executing by the CPU. More complex instructions draw more power and generate
more heat. Similarly, electromagnetic emission also changes according to the type
of instructions. In [1], the authors demonstrated cryptographic key guessing using
branch prediction. There are instances, where this information is shown to be
sufficient for an attacker to reconstruct the private key of the victim or extract some
confidential information.

2.2 Memory-Based Attack

Risk of memory attack is also present in the virtualized environment. Main memory
allotted to a VM is the segment of the large memory of the underlying physical
server. Hypervisor manages the isolation of the memory among the VMs and
handles the memory requirement of the tenant VMs. Any time a VM can request
for increase or decrease its memory according to its needs. This scalability to the
memory also opens up the door to the security attacks. A row-hammer attack is
the most popular attack on the main memory segments which affects the charge
of the neighboring memory cell and can modify the values. Main memory is also
shared among the VMs and can be exploited to obtain information. Schwarz et al.
[44] introduced new source for timing measurements using dynamic random access
memory (DRAM) of the victim VM. The authors demonstrated an attack using
JavaScript and its function to get timing information. In their DRAM-based covert
channel attack, they used a website and an unprivileged app in a virtual machine
without the use of any network hardware. They revealed that web browsers like
Google Chrome, Mozilla Firefox, Microsoft Edge, and even the Tor browser which
ensures the user anonymity, leak fine grain timing information of the DRAM. The
method used by the authors to extract timing information from a web browser is
performance.now which can give fine grain timing information at the scale of
microseconds (μs).
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Similarly, Pessl et al. [41] and Xiao et al. [55] designed and implemented a
Row-hammer attack on DRAM. Their attack is possible due to the highly dense
memory cell in DRAM. As memory cells in DRAM are compact, an electric charge
stored in one memory cell can flip the charge stored in neighboring memory cell
if DRAM is frequently accessed with specific patterns. Their attack is capable of
extracting the private key from HTTPS web server and code injection to bypass the
OpenSSH password authentication. Another new attack on RAM is also discussed
by the authors in [61]. DoS on memory can slow down the VM hosted on the same
hardware. The authors able to slow down the E-commerce website 32 times hosted
on Amazon EC2 and also caused a performance degradation to Hadoop application.
In their experiment, attacker VM send massive memory request to flood the DRAM
bank of the victim. As bank scheduler use FCFS (First Come First Serve) policy to
serve the memory request, attacker VM can easily flood the memory channel of the
victim VM.

Another shared memory-based attack is demonstrated by wang et al. in [53]. The
authors exploited the balloon driver used by VMM to change the memory size of the
VMs dynamically. Ballon driver is used by almost all the VMM (Xen, VirtualBox,
VMware ESXi, etc.) to manage the memory of the guest VMs. In their paper, the
authors used two virtual machines in their scenario in which one VM was a victim
VM and another one was serving as an attacker VM. At the first instance, the victim
VM starts inserting data into the main memory. When memory size reaches to the
current allocation size, VMM initiates ballon driver to expand the memory of the
VM up to its maximum limit. After this event, the victim VM stops the process
to insert data into the memory. Thereafter, the VMM releases the idle pages to the
shared pool to again compress the size of the memory. Now, attacker VM does the
same thing and expand its memory to the maximum limit. After which it reads the
memory and try to reconstruct the memory pages to find the useful information
from it. The authors demonstrated two attack cases. In the first case, they showed to
extract the shared memory data and, in the second case, they showed the insertion
of a malware into the victim VM.

In virtualized environment memory error can lead to leakage of data. Govindava-
jhala et al. in [14] showed how a memory error in VMs which are running services
like Java and .NET can manage to take control over JVM. The authors also claim
that the attack is equally applicable to the system which uses the type-checking for
an untrusted program. The authors in their demonstration used multiple Java objects
of two different classes to fill the heap. They tested their attack on IBM’s and Sun’s
Java virtual machines successfully. Their attack module sends a program to JVM
and waits for memory error to happen after which it arranges the memory block in
a manner such that the memory error will manage to take control from JVM and
allows the program to handle it. For their experiment, the authors use heat to flip
the memory bit so that the attack can be performed. The authors in [32] showed that
Intel’s SGX (Software Guard Extensions) is also vulnerable to cross-VM attacks.
SGX is developed to protect the machine from this kind of leakage though it is
possible to extract data of co-resident VM. The authors in their experiment designed
and implemented a malware which extracts the RSA private key with the help of
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DRAM and prime + probe technique (explained in Sect. 4.1). The authors retrieved
the private key in the presence of the SGX restriction, i.e., no timers, no shared
memory, no physical addresses, and no large pages. In their attempt, the authors
extracted 4096 bits RSA key in which 96% portion of the key is extracted in the first
attempt of prime + probe. The authors also claim that SGX is not only vulnerable to
cross-VM attacks, but it also protects the malware from detection.

2.3 Cache-Based Attacks

In this category of cross-VM attack, attackers use cache latencies to extract the fine
grain information from the victim VMs. The attacker tries to detect and monitor the
cache hit and miss operations to reveal which data item is used by the victim VM
and utilizing these cache latencies attacker can reconstruct the private keys of the
victim VM. We further classify this category into three sub-categories of access-
driven, trace-driven and time-driven cache attacks. We show a comparison of these
categories of attacks based on their impact and target infrastructure in Table 1.

2.3.1 Access-Driven Attack

This attack is the most dominant attack among the three sub-categories of cache-
based cross-VM attacks. In this attack, an attacker tries to find out accessed cache
lines during execution of a cryptographic algorithm. Attacker execute the same
algorithm as victim alongside on the same physical server to observe the shared
memory access pattern to extract the confidential data and keys related information
and construct the key. The leading cause of this attack is the use of shared memory
component, i.e., instruction cache, floating-point multiplier, and branch prediction
cache. Attacker monitors these shared resources and extracts the private information
of the victim. In this attack, attacker fills the cache with its data and wait for the
victim to write. Next time, when attacker again comes to access the cache, they
can get the data of the victim VM (including keys related data) by finding out the
differences.

This attack is the most discussed attack among the researchers. In [47], Varadara-
jan et al. presented some evidence to show the information leakage in the public
cloud computing. They have performed co-residency check of VM and also able to
host their VM co-resident to the victim with some effort. These information leads
authors to extract cache related data. They have performed their experiment on the
public cloud such as Amazon EC2, Google Compute Engine, and Microsoft Azure.
Even though they have not attacked the victim but shed light on the way to launch
an attack, following their approach Zhang et al. in [63] managed to launch the attack
and extract the ElGamal decryption key of the victim. Similarly, Irazoqui et al. in
[22] exploited OpenSLL implementation of AES to retrieve the cryptographic keys.
Page deduplication is the cause of the success of the attack.
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2.3.2 Trace-Driven Attack

In this attack, an attacker monitors the cache latencies of the victim VM when it
is running a cryptographic algorithm. This attack is related to the access-driven
attack (discussed in Sect. 2.3.1) that keeps tracking the cache hit (when the cache
is accessed) and the cache miss (when memory is accessed). This monitoring
makes easy for the attacker to detect whether S-box is accessed or not for the
algorithms like AES and DES [2]. This attack also monitors some features of
VMs like electromagnetic emission and power consumption during execution of
a cryptographic algorithm.

In [59], the authors designed a trace-driven attack to extract the cryptographic
keys of RSA. In their experiment, they exploited the GnuPG implementation of
RSA to extract the keys. Their experimental setup includes two different hypervisors
(VMware ESXi and KVM) on which they used the Flush + Reload attack. Modern
Intel X86 introduced clflush instruction for flushing memory location of the
cache. As clflush instruction does not require any special privilege to flush the
cache lines. Hence, an unprivileged user can easily flush the specific cache line. Due
to this instruction implementation, cross-VM attacks are successful.

2.3.3 Time-Driven Attack

In the time-driven cache-based attacks, an attacker monitors the timing parameters
of a cryptographic algorithm to gain the private key of the victim. Besides, attacker
notices the CPU execution time of a particular cryptographic algorithm to guess
which instruction is currently being executed by the CPU. This attack is quite
successful in cloud computing platform due to the use of memory deduplication and
isolation provided by the hypervisor. Although hypervisor provides logical isolation,
it is not similar to the physical isolation. Memory deduplication enables an attacker
to find the page table used by the victim VM by finding the time to access the
page table. For instance, first the attacker flush the cache and sit idle for some time,
then after waiting, the attacker will re-access the cache. If the time taken to access
particular page is less than Victim VM is using the same page table which is already
present in the cache. Attacker VM can extract the sensitive information of the victim
VM by running the method continuously. This attack can be performed on both co-
resident VM as well as remote VM. This attack also produces some noise due to the
network latency and access time delay.

Many researchers presented their attack methodology in the time-driven cate-
gory. In [40], Osvik et al. presented an attack which extracts the cryptographic
keys of AES without the knowledge of plain text and ciphertext. Their experiment
exploited the “dm-crypt” system of Linux and OpenSSL library call which include
the Prime + Probe attack. Similarly, Irazoqui et al. [21] presented their attack in
this category in which they conducted Bernstein’s correlation attack to extract AES
keys. Their attack proved that OpenSSL, PolarSSL, and Libgcrypt are vulnerable
when running on Xen and VMware hypervisors. Prime + Probe technique is used to
accomplish their attack.
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Table 1 Cache-based cross-VM attack in virtualized environment

Ref. Attack type Method Target Impact

[22] Access-driven Flush + Reload OpenSSL Extracted AES key

[43] Access-driven Prime + Probe Amazon EC2 Co-residency and cache
access pattern

[63] Access-driven Prime + Probe libgcrypt Extracted ElGamal
decryption key

[59] Trace-driven Flush + Reload GnuPG Extracted RSA key

[54] Time-driven Prime + Probe OpenSSL Extracted AES key

[21] Time-driven Prime + Probe OpenSSL,
PolarSSL and
libgcrypt

Extracted AES key

[20] Time-driven Prime + Probe OpenSSL Extracted AES key

2.4 I/O Device Based Attacks

Most of the industries today run their web servers in the cloud to serve the dynamic
requirement of incoming traffic from the customers. All these servers are I/O greedy
applications which need I/O resources frequently in addition to the CPU. Therefore
a malicious VM in the cloud can affect the execution speed of the victim VM by
playing with the shared I/O among the VMs. These type of attacks slow down the
victim VM and make the VM unavailable to use. In [42], the authors discussed how
parallel processing of CPU and I/O workload affects the execution of the VMs. The
shared hardware causes high overhead due to an increase in the number of context
switching. Similarly, a CPU intensive application on shared hardware can cause
CPU contention due to the fast memory page swapping. The authors also presented
some key features to manage resources in the virtualized environment for both
cloud customers and providers in which the authors showed how a CPU intensive
application and a network-intensive application on shared hardware delivers the best
performance.

Chiang et al. [7] proposed a framework which delays the victim VM with the
minimum resource consumption. The authors experimented on Amazon’s EC2 to
show the delays in the victim VM. Their attack first monitors the I/O request of the
victim VM and then request for the same I/O frequently to slow down the victim
VM. In their paper, the authors try to create a race around condition between an
attacker VM and a victim VM for the I/O resources which are co-located. First,
attacker VM will monitor the pattern of I/O request, if the pattern is available
attacker will ask for the same resource with high request rate if the pattern is not
available the attacker VM will log the access pattern and then follow the same
procedure to perform the attack. Therefore, the attacker VM tries to synchronize
same I/O request to slow down the victim VM. The authors used sequential read
operation to perform the attack which is successfully slow down the Amazon EC2
instance.



Cross-VM Attacks: Attack Taxonomy, Defense Mechanisms, and New Directions 267

Similarly, Yang et al. [57] designed a mechanism which characterizes the disk I/O
scheduler of the hypervisor and performs I/O based attack on the victim VM which
degrades the performance of the victim VM. The authors designed a distributed
workload based attack method which runs on several VMs so that the scheduling
policy of the hypervisor can be determined. After monitoring the workload, the
attacker will now try to identify the scheduler used by hypervisor and characteristics
related to it. After whole profiling of the scheduler, the attacker will monitor the
access pattern of the victim VM and try to use the same resource more than the
victim VM so that the I/O performance of the victim VM degrades. The authors
performed their attack on Xen and VMware hypervisor also the authors deployed
their mechanism on Amazon EC2 and successfully slow down the victim VM.

2.5 Network-Based Attacks

All the attacks which leverage cloud network for attacking come under this category.
We are considering spoofing attacks in this category by which an attacker VM
impersonate another VM identity in the cloud. Spoofing is the attack which used
to generate massive traffic targeted towards victim to exhaust its resources and
make the system unavailable. This attack is known as DDoS (Distributed Denial
of Service) attack which is the most notorious attack in cloud computing. Many
methods are proposed to defeat the DDoS attack, but still, it proves its strength by
affecting the cloud environment.

2.5.1 External Attacks

This is the attack in which an attacker VM masquerade as victim VM which is
hosted outside the current cloud network. Attacker VM can spoof either MAC
(Media Access Control) or IP address of the victim and can perform the attack with
the identity of the victim. A single VM can masquerade multiple VM identities to
generate massive network traffic to attack the victim. Figure 3 explain the external
attack scenario where one VM is attacking an externally hosted VM. These attacks
are possible due to the hypervisor managed internal cloud network. Simple network
scanning can provide the information about the cloud network architecture to the
attacker. For instance in Fig. 3, attacker VM is VM1 and victim VM is VM5. Real
IP address of VM1 is 192.168.17.45, and real IP address of VM5 is 182.8.47.65. In
this case, VM1 which is an attacker VM spoofing its IP with the VM5 IP address
182.8.47.65.
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Fig. 3 External attack

2.5.2 Internal Attacks

An internal attack is similar to the external attack, but in this, the attacker
masquerades as the VM which is hosted in the cloud network same as the attacker.
This attack is further classified into two categories, i.e., within the cloud and within
the hypervisor.

Within Hypervisor

In this attack, attacker VM masquerade as the VM which is hosted on the same
hypervisor as of attacker. Figure 4 explain how one VM can impersonate as another
VM hosted on the same physical server. In our case, VM1 is an attacker VM which
spoofing its IP address 192.168.3.15 with victim VM which is VM3 IP address
192.168.3.38. In this attacker can spoof either MAC or IP address to launch an
attack.

Within Cloud

In this attack, attacker VM masquerade as the VM which is hosted on the same
cloud as of attacker. Figure 5 explain how one VM can spoof as another VM hosted
in the same cloud but on the different physical server. In our case, real IP address
of attacker VM (VM1) is 192.168.17.45 and IP address 192.168.17.35 is of victim
VM (VM4). VM1 is spoofing its IP address with VM4 IP address for launching an
attack. Similarly, in this attack, an attacker can use either spoof MAC or IP address
to establish an attack.
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Most of the researcher focuses on the victim’s side to stop the attack rather than
the attacker’s side. In [33] authors has designed an approach to prevent such type
of activity in the cloud computing. They have devised a technique which leverages
hypervisor’s traffic to analysis the network traffic and detects the malicious packets
in the network. In their approach, the authors focused on IP and MAC spoofing to
identifying the malicious packets. This attack also affects the VMs hosted either in
the same or different cloud network, and that’s why we included this attack in the
cross-VM attack category.

3 Attack and Threat model

Attack model and threat model help in understanding an attack family from the
perspective of attack methods, objectives, and possible threats. We collated various
parameters to detail the attack model of Cross-VM attacks in Table 2. Similarly,
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Table 2 Attack model

Attack domain Description

Attack motives Obtain cryptographic keys and other memory related information
like cache usage, CPU usage, etc.

Targeted application libgcrypt, Cryptlib, OpenSSL, PolarSSL, dm-crypt, and GnuPG

Targeted algorithm DES, AES, ElGamal, and RSA

Targeted hypervisor Xen, KVM, and VMware ESXi

Traced information Memory segments, Cryptographic key’s related data, Detecting
VMs co-residency

Attack method Prime + Probe, Flush + Reload, Spoofing, etc.

Attack target Shared resources (cache, CPU, etc.) and Network resources

Table 3 Threat model

Stakeholders Threats

Victim VM Victim private data leakage due to memory sharing and
deduplication

Co-hosted VM Memory access time increases due inclusive cache, pages
flushes from L1 and L2 cache too when page is flushed
from L3 or last level cache

Host physical server/Hypervisor Resource exhaustion and unavailability due to VM based
DDoS attack

In Table 3 we proposed the threat model of the cross-VM attacks. Cross-VM
attacks target information leakage due to the resource sharing and vulnerabilities
in the virtualized environment. In virtualization, a hypervisor is a software layer
which helps in providing on-demand resources to the VM and maintains the
logical isolation among VMs. Attacker’s primary motive is to extract confidential
information of the victim VM. As detailed in [43] and [47], co-location detection
and placing attacker VM co-resident to victim VM in public cloud (Amazon EC2,
Google Cloud Engine, and Microsoft Azure) helps in launching the attack. In
[56], Xu et al. showed that co-residency could also be performed in VPC (Virtual
Private Cloud) of Amazon EC2. Once VM is co-resident, information extraction is
achieved. Most of the cross-VM attacks leak data from the cache of victim’s VM,
hence cache is the shared resource which is targeted most of the time. Therefore,
memory sharing in the virtualized environment makes the system less reliable and
more susceptible to cross-VM attacks.

Cache access pattern depends on the implementation of the cryptographic algo-
rithm. There are many applications (libgcrypt, Cryptlib, OpenSSL,
dm-crypt, etc.) which implement different cryptographic algorithm, many of
these applications are vulnerable to cross-VM attacks. OpenSSL is the application
on which most of the researchers demonstrated [5, 16, 17, 20, 21, 40, 46, 58]
cross-VM attacks. Similarly libgcrypt [19, 63] and GnuPG [30, 59] are also
vulnerable to cross-VM atacks. Xen and VMware ESXi are widely used hypervisor
in public cloud computing which is also targeted by attackers. Many researchers
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showed cross-VM attack on Xen [20, 21, 30, 63] and VMware ESXi [16, 20–
22, 30, 59] hypervisor.

Information traced from cross-VM attack may be in the form of part of the data
or the complete data. Contributions such as [5, 21, 39, 54], and [58] show partial
data extraction. On the other hand, contributions such as [16, 19, 40, 46] and [17]
show full data extraction.

The threat model details the possible threats to the different stakeholders of the
cloud computing environment. Cross-VM attacks also affect the co-hosted VMs and
the cloud network. Similarly, all the stakeholders who are prone to cross-VM attacks
are shown in Table 3 of the threat model. The authors in [45] explained how a VM
based DDoS could affect the VMs on the other physical server as well as cloud
network.

4 Launch of the Cross-VM Attacks

Memory sharing and deduplication is the root of the cross-VM attacks. Also, multi-
tenancy of cloud and hypervisor administered network is the cause of these attacks.
Flush + Reload and Prime + Probe are the two technique by which these attacks
are performed. Prime + Probe attack is possible where memory deduplication and
a huge page table is used. On the other hand, Flush + Reload can be done where
physical memory pages sharing is done between the attacker and the victim VM.
Due to the sharing of page table between the victim and the attacker VM, an
attacker can determine the cache line eviction. In this section, we will detail about
the launching methods of few critical instances of the cross-VM attacks.

4.1 Prime + Probe

This is an attack technique in which the attacker monitors the cache activity of the
victim. In this attack, the attacker tries to determine the cache set accessed by the
victim. To accomplish this attack, the attacker runs a process which performs the
following three task.

Prime: In this phase of the attack, attacker fills one or some cache set with its
own random data which is of size equal to the cache line.

Wait: In this phase, attacker wait for some predefined time interval to let victim
access the cache.

Probe: This is the final phase of attack in which attacker resume its execution and
measures the amount of time taken to load the cache set primed in the first
phase. If the victim has accessed some primed cache set of the attacker,
then there is an increased time to access those sets.

Running the above process will leak the cache related information to the attacker
from which attacker can launch the attack. Figure 6 is showing how attacker
monitors the cache lines. In stage 1, attacker VM prime the selected cache lines. In
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Fig. 6 Monitoring cache latencies in Prime + Probe attack
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Fig. 7 Prime + Probe attack

stage 2, attacker VM wait for some time and let victim VM use the cache. Finally,
in stage 3, attacker VM continue its execution and check whether cache miss or hit
occurs. An attacker needs to know the physical address of the monitored cache lines
to prime the cache. The virtual address is used by the attacker to get the physical
address with the help of virtual to physical memory mapping. Similarly, clflush
instruction is used to prime the selected cache line which converts the virtual address
to physical address and then flushes the resulting cache line. Priming cache using
physical address makes the launch easy for the attacker. Figure 7 show the instance
of Prime + Probe attack is accomplished using the physical address.

4.2 Flush + Reload

This attack is also accomplished by following three steps:
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Fig. 8 Flush + Reload attack
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Fig. 9 Flush + Reload cycles

Flush: In this phase of the attack, all the monitored cache lines are flushed from
the cache. As cache follows inclusive property, the cache line is flushed
from all the level, i.e., L1, L2, and L3 cache.

Idle: In this phase, attacker wait for some time to let victim access the cache
line during execution of cryptographic operations.

Reload: In this phase, attacker reloads the monitored cache lines and measures
the time delays in cache latencies. If time is low, that means cache hit
occurred, and if time is high, that means cache miss has occurred.

This attack technique is possible due to the memory sharing policy in the virtu-
alization. This concept of memory sharing is known as memory deduplication in
which redundant data is deleted, and only one copy is shared between VMs. In
Fig. 8 we can see that, in stage 1, attacker VM flush the cache memory. In stage
2, attacker VM sit idle and wait for victim VM to access the cache. Finally, in
stage 3, attacker VM measure the time to access the page. Figure 9 explain how
time is measured using flush and reload cycle. If time is small, that means the
cache is accessed by the victim VM, and if time is large, it means the page is
loaded from memory. Therefore, the cache is not accessed by victim VM. Xen and
VMware ESXi both uses this technique (known as transparent page sharing (TPT)
in VMware) to increase memory and storage efficiency. Memory deduplication also
aware VMs about the data shared between them from which they can identify the
data used by the other VMs. Time taken to perform all the three steps is known as
Flush + Reload cycle. If time is high, that means data is fetched from memory and,
if time is low, that means data is fetched from the cache.
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4.3 Other Techniques

There are some more attack techniques related to the above methods which
exploit cache memory. Though these methods experimented in the non-virtualized
environment, but they seem to be quite possible in the virtualized environment.

4.3.1 Evict + Time

This method is a time driven attack which uses the execution time to predict the key
of the victim. This attack follows three steps to complete the attack.

Trigger: In the first step attacker and the victim runs the same cryptographic
algorithm.

Evict: In this step, attacker fill the cache line with its own data assuming that
it will overwrite the cached data of the victim.

Time: Now attacker resume the execution and measure the execution time to
find the data evicted from the cache.

This method is less noisy as it measures its own execution over the shared cache
memory. Osvik et al. in [40] introduced this method by which the authors extracted
the AES key from the OpenSSL library.

4.3.2 Flush + Flush

This attack method is introduced by Gruss et al. in [15] which is faster than the
Flush + Reload method. This attack includes a single step to complete the attack.
In this attack, a loop of clflush instruction is executed which flushes the cache
line. The authors measure the execution time of the clflush instruction to predict
whether data is cached or not. Execution time is measured by the rdtsc instruction
which is used to measure the time stamp counter. As this method never access the
cache data, it is much stealthier than other attacks.

4.3.3 Prime + Abort

This attack is the variant of Prime + Probe attack method. This attack method is
introduced by Disselkoen et al. in [11] which is possible due to the Intel TSX
(Transactional Synchronization Extensions) hardware. In this attack, the first step
is same as in the Prime + Probe. After priming the cache line attacker wait for the
abort signal. Upon receiving the abort signal, an attacker can confirm that the cache
line is accessed by the victim. In this attack, there is no need of probing to get the
caching information.
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5 Cross-VM Attack: Success Factors

In this section, we discuss various important factors contributing to the success of
the cross-VM attacks. In cross-VM attack one VM (attacker) target another VM
(victim) in the virtualized environment. After studying all the aspect of the cross-
VM attacks we can see that the root cause of the cross-VM attacks is resource
sharing, memory deduplication and hypervisor managed cloud’s internal network.
We provide a glimpse through these reasons.

1. Multi-tenancy: Public cloud allows multi-tenancy to host multiple disjoint
VMs over the same server (Hardware). This feature of cloud computing grants
attackers to launch a cross-VM attack towards victim VM. It also allows to place
attacker VM co-resident with the victim, as described in [43, 47, 56] checking
for the co-residency with the victim in Amazon EC2. Although in virtualization
sandboxing technique is used to maintain the logical isolation between VMs
which is not equivalent to physical isolation, that’s why it is always vulnerable
to cross-VM attacks.
The major problem which is solved by the use of cloud computing is resource
utilization and resource scalability. Cloud computing fulfills these requirements
by running multiple VMs over the same physical machine, that’s why multi-
tenancy in the cloud computing cannot be ignored and hence chances of cross-
VM attacks are always in the cloud computing.

2. Virtual network administered by hypervisor: All the major cloud provider
uses hypervisor which manages the resource sharing and isolation among the
VMs. Xen is the most reliable hypervisor used by the cloud provider such as
Amazon and Rackspace. Hypervisor creates the virtual environment by creating
the virtual component of the physical machine like virtual CPUs (vCPUs), virtual
RAM, virtual storage, virtual NIC (Network Interface Card), etc. The hypervisor
then distribute these virtual resources among the VMs.
Cloud’s internal virtual network is managed by the hypervisor to maintain the
communication between VMs and hypervisors. This virtual network allows the
attacker to scan the cloud network and get the idea about the network architecture
of the cloud. This provides the information about the hosted VMs in the cloud to
the attacker and launches the attack against the victim.

3. Shared cache memory: Cache memory is used between RAM (Random Access
Memory) and CPU to decrease the execution time. Cache memory is divided into
three parts, i.e., L1, L2, and L3 cache. In which L3 cache of last level cache is
shared between the CPU core. This sharing of cache memory enables the user to
monitor the victim activity on the cache. Monitoring cache activity of victim VM
leaks the sensitive information to the attacker. This leaked information is enough
to reconstruct the cryptographic keys of the victim.

4. Memory deduplication: Memory deduplication is the major cause of the cross-
VM attack, sharing data among the VMs is the reason for the success of the
attack. In this, CPU preserves only one copy of redundant pages to share it
between the VM and rest of the copies are deleted. Although, this method
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improves the efficiency of the memory by reducing space and bandwidth but
also opens the door for the attack. Deduplication reveals the data shared among
the VMs and attackers take advantage of this feature.

5. Storage deduplication: Currently, users are adopting cloud storage to store
essential data in the cloud. This feature allows the user to access their data
seamlessly with feature such as data security. Similar to memory deduplication
redundant data in the cloud storage can be removed by deduplication method
which increases the storage space but again opens the door for cross-VM attack.

6. Huge page size: Almost in all hypervisor (Xen, VMware, KVM, etc.) huge
paging is enabled by default, which allows an attacker to launch the cross-
VM attack. Attackers create huge pages to find out the physical address of
the memory, also in some cases, they use huge pages to find co-location and
cryptographic keys.

7. Unprivileged cache flushing: Cross-VM attacks are the success due to the
unprivileged flushing of the cache line. Intel x86 processor provides unprivileged
clflush instruction through which a normal user (unprivileged) can easily
flush the specific cache line and rdtsc instruction through which user can
read the time stamp counter value. Access to this instruction without any special
permission make the attack smooth and increase the cache hit which decreases
the execution performance of the machine.

6 Mitigation Solutions

Mitigation techniques for cross-VM attacks can be divided into two categories by
their implementation type, i.e., software and hardware solutions. Many researchers
have presented mitigation and detection techniques in both of the categories. We
have studied contributions which presented countermeasure techniques to mitigate
side-channel attacks and cross-VM attacks which we are going to discuss in
the coming section. Software-based solutions focus on the implementation of the
cryptographic algorithm or the cache locking mechanism. On the other hand,
hardware-based solutions concentrate on cache partitioning or disabling cache in
some cases. Table 4 details the countermeasures proposed by the authors and their
limitations. Intel has also proposed SGX to create a trusted environment. Even
though SGX enforce the trusted environment, the authors in [34] explained that
SGX is vulnerable to cache attacks.

Other solutions to mitigate cross-VM attacks are also proposed by the authors.
The authors in [13] and [35] proposed a constant time algorithm to mitigate timing
based side channel attacks. In [6], the authors proposed a method for obfuscating
the cache access on the secret data to protect it from the side channel attacks.
Another mitigation technique MTD (Moving Target Defense) is discussed among
the communities. The authors in [36] and [66] introduced this technique which
leverage the VM migration algorithms of the hypervisor to interrupt the attacker
VM and prevent the side channel attacks.
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Table 4 Existing solutions for Cross-VM attacks

Ref. Category Attack type Proposed solution Drawbacks

[40] Cache based Access-driven Proposed for disabling cache
and cache sharing

Requires changes in
hardware

[6] Cache based Access-driven Proposed pre-loading of
cache lines, compacting
S-Box table and randomize
table frequently

Need software alteration and
faces performance
degradation

[52] Cache based Time-driven Proposed cache partitioning
or locking the cache lines

Requires hardware
modification and incurs
performance degradation

[26] Cache based Access-driven Proposed bitslice
implementation of AES

Require software
modification and incurs
performance overhead

[23] Cache based Time-driven Proposed cache decay
approach

Required hardware
modification

[4] Cache based Time-driven Proposed provider-enforced
deterministic execution

Required support of
fine-grained parallel
applications

[24] Cache based Trace-driven
and
Time-driven

Proposed lock cache line to
prevent cache eviction

Performance overhead and
require hypervisor
modification

[9] Cache based Access-driven Proposed a method for
generating diversified
replicas to get unique
program trace and introduce
random memory load

Moderate performance
overhead

[65] Cache based Access-driven Proposed copy-on-access for
physical pages and
cacheability management
for pages

Performance overhead

[29] Cache based Access-driven Proposed cache partitioning Require hardware
modification

[31] Cache based Time-driven Proposed degrading Time
Stamp Counter (TSC)
Fidelity

Specific to Intel processors

[33] Network
based

IP and MAC
spoofing

Proposed hypervisor level
network traffic monitoring

Performance overhead

[60] Memory
based

Denial of
Service

Proposed statistical analysis
to detect DoS on memory
and the attacker VM,
employing execution
throttling to reduce the
effect of the attacker VM

Performance overhead on
co-hosted VMs

[49] Memory
based

Shared
memory
covert timing
channel

Proposed CovertInspector, a
VMM based solution to
detect covert channel in
shared memory

Requires VMM
modification and
performance overhead

(continued)
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Table 4 (continued)

Ref. Category Attack type Proposed solution Drawbacks

[50] Memory
based

Memory
disclosure
attacks

Proposed RERANZ a
lightweight VM which
leverage shuffling process
for code re-randomization

Performance and memory
overhead

[18] I/O Device
based

Co-Resident
attacks

Leverage VM allocation
policies to combat
co-resident attack

Performance overhead

6.1 Other Possible Solutions

In this section, we discuss some of the other possible solutions through which the
cross-VM attack can be combated.

1. Disabling memory deduplication: As we discussed that memory deduplication
provides efficiency to memory by removing redundant pages. On another hand,
it will also reveal the information about the other users’ data sometimes. An
attacker can find the pages shared with the victim VM by noticing the access
time. Therefore by disabling memory deduplication, attacks which are caused
by it can be stopped. Although this method will degrade the performance of the
system as memory requirement will increase if all the copies of the pages are to
be stored. This type of solution is explained in [22], which prevent the cache-
based side channel attack in Xen and VMware hypervisor.

2. Restrict user-level cache flushing: All the modern x86 processors provide
unprivileged clflush instruction which enables the user to flush the specific
cache line. The authors in [59] explained how clflush instruction amplify
their attack. Every time cache memory flushed, the execution time of system
increases. Therefore, CPU architecture must not allow a normal user to flush the
cache and restricting it provide better stability to CPU and stops attacker against
Flush + Reload attack.

3. Disable huge paging: Huge page is the reason for cross-VM attacks to gain
physical address of the machine. This feature is by default active in almost all
the hypervisors. The authors in [20] used huge pages to exploit the system and
launch a cross-VM attack. Attacks related to huge pages can be prevented by
disabling this feature in the hypervisor. Disabling this will stop the attacker to
gain the physical address and reduce the attack space for the attacker. Finding
co-location and extracting keys becomes hard for the attacker.

4. Hypervisor-based solutions: Hypervisor level monitoring of VMs can be
applied to monitor the execution of the VMs. Load on each VM and monitoring
the network traffic of the VMs can predict the behavior of the VM and can stop
the VM from participating in the cross-VM attacks. In [33] and [48] the authors
provided hypervisor-based solutions to mitigate such type of attacks. A VM
based attack can be detected if monitoring of VM is employed in the hypervisor.
As hypervisor manages all the resources (I/O, network, CPU, etc.) it is the best
spot to keep an eye on each VM.
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5. Cache slicing: As attacker targets on the last level of the cache (LLC or L3),
L3 can be sliced into the private partition among the VMs. The authors in
[52] presented this approach to mitigate cross-VM attacks using software cache
slicing. VMs hosted on the same physical server will able to access one cache
slice hence attacker cannot predict the cache activity of the victim VM. This
technique needs changes in the structure of the cache and also reduce the size of
the last level cache due to which performance of the system degrades.

6. Locking cache lines: Locking the cache line for a cryptographic operation is
another way to stop attacker VM to access the cache line of the victim VM.
Whenever a cryptographic process is executing, the hypervisor will lock the
cache line used by that process to stop another process to access its data. Kim et
al. [24] provided the same solution in their paper by managing the cache locking
with the help of hypervisor.

7. Adding noise/delay: Another way to prevent cache-based timing attack is to add
timing delay in the output event as the noise so that attacker is limited to the
bounded information about the victim VM. The authors in [3, 64] have explained
this method in detail to create such noises and prevent side-channel attacks in
cloud computing.

8. Periodic cache flushing: Flushing the cache memory during context switching
is a way to stop side channel attacks. Flushing cache will not leak the information
about the shared pages and timing information. Flushing cache increases the exe-
cution time. Therefore, an attacker cannot determine the victim VM information
by cache latencies. Zhang et al. [64] proposed this solution of periodic cache
memory flush to eliminate the risk of timing based attack.

7 New Flavors/Sophistication and Future Directions

We discussed the cross-VM attack and their impact on the different domain in the
cloud computing. Public clouds are the most prominent targeted by the attackers
as co-residency on the public cloud is an important feature. In this section, we will
discuss the latest VM based attack and possible research direction.

Virtual machines hosted in the cloud are vulnerable to cross-VM attack due
to the shared cache. Similarly, mobile devices are also equipped with latest
processors and cache memory. There are attack incidents where the authors
demonstrated attacks on mobile devices and extracted information. Zhang et al.
[62] performed Flush + Reload attack on latest x86 ARM processors. The authors
used Android OS and leverage its clearcache system call to flush the cache and
clock_gettime() system call for fine grain time measurements.clearcache
and clock_gettime() both are unprivileged system calls and therefore, it is
possible for normal user to flush cache without any special permission. Similarly,
Lipp et al. [27] also demonstrated four different attacks on x86 ARM cache using
Android OS, i.e., Prime + Probe, Flush + Reload, Evict + Reload, and Flush + Flush.
All the attacks also do not require root privilege to perform the attack. Their attack
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is also able to monitor device events like user touch action, keystroke, and inter-
keystroke timing. Therefore, cache attack on mobile devices is also discussed in the
research communities.

Hypervisor manages the on-demand resource requirements of the VMs, and
all the communication of the VMs pass through the hypervisor. Therefore, in
public cloud where untrusted VMs run simultaneously, there is a risk of “VM to
hypervisors” attacks and vice-versa. One of the common attacks which VMs can
plant against hypervisor is DDoS, which will stop hypervisor to provide services to
another VM. Nezarat et al. [37] presented a game theory based detection method for
VM-to-hypervisor attack in cloud computing. In their paper, the authors classified
attacks in four different categories: VM-to-hypervisor, VM-to-VM, hypervisor-
to-VM, and hypervisor-to-hypervisor attack. Figures 10 and 11 show how VM-
to-hypervisor and hypervisor-to-hypervisor attack scenarios. Their method used a
group of mobile agents as which play a non-cooperative game with the attacker
to calculate the Nash value and maximum utility to differentiate the benign user
from the attacker. Similarly, Wahab et al. [48] proposed a load distribution based
detection method for the VM-based DDoS attack in the cloud computing. In their
paper, the authors designed a trust model based on VM monitoring to establish the
trust relationship between the hypervisor and guest VMs in the cloud computing.

As VMs in cloud computing are more susceptible to attacks, containers are the
OS level hosting service solution to create a lightweight virtualized environment
instead of VMs which is more reliable and scalable than VMs. Dockers and
Kubernetes are the common containers provider which provides the Linux based
container. Containers create the thin layer of the virtualization and hence decrease
the attack space. Even though containers are more secure than VMs, memory
leakage is still present in the containers. Gao et al. in [12] explained that how
the container is also vulnerable to information leakage. Even though Unikernel are
there which is single address space machine and more secure than containers still
dockers are used in many cloud computing. Due to the improper implementation of
the resource partitioning of dockers in Linux kernel, such attacks are possible.

8 Conclusion

Public cloud computing offers to host multiple VMs of different owners in the same
cloud using multi-tenancy which fascinates the attacker to place their malicious VM
in the same cloud to extract the private information of the target VM. In this chapter,
we show through a detailed literature survey and analysis that Cross-VM attacks are
capable of leaking sensitive information like cache access patterns, deduplicated
pages, cryptographic keys, etc. We also discuss that the resource sharing, multi-
tenancy, and memory deduplication are few important reasons which help these
attacks to get success.
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This chapter presents a detailed introduction to cross-VM attacks and extends
the discussion with a detailed systematic review of the literature related to cross-VM
attacks and defense mechanisms. We also prepare a comprehensive attack taxonomy
showing various kinds of attack methods and attacked resources. While discussing
attack and solution space, we derive that the major focus of a large number of
cross-VM attacks is on the shared cache and the deduplication in the virtualized
environment. In addition, there are other shared resources such as CPU, I/O and
network resources. In few attack cases, balloon driver in VMM and CPU timers are
also exploited to extract the victim VM information. In most of these cases, attackers
are interested in deriving cryptographic keys from the victim VM. However, in few
attack instances, I/O based channel is used to slow down the victim VM speed and
subsequently degrading its performance. There are other attack instances, where
memory-based attacks are used to leak the personal data of the victim VM.

We also give a typical solution guideline and a light on new and sophisticated
attack instances to help in understanding the evolving attack model. The solution
provided by the authors are hardware and software based which include cache
flushing, cache coloring, cache partitioning, etc. We observe that most of the
solutions in the literature are VMM based solutions monitoring and stopping the
leakage. Our proposed attack taxonomy covers the cross-VM attack space and
provide an in-depth analysis to prepare future solutions.
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