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6.1  Why Is Genomics Important?

Genomics, or the study of genomes, is concerned with under-
standing how the deoxyribonucleic acid (DNA) of which 
genomes are constituted contributes to making an organism 
unique. Accordingly, human genomics focuses on how DNA 
sequences produce individuals’ traits, e.g., skin color and 
cholesterol levels, and contribute to diseases, e.g., myocar-
dial infarction and diabetes mellitus. The last decade has wit-
nessed a remarkable leap forward in the use of genomics 
technology to understand human traits and diseases, to the 
point that new discoveries regarding what makes each person 
unique are being widely reported in the press and advertised 
by companies to the lay public. Although currently practical 
use of genomics is limited, there are high expectations that it 
will be clinically useful in the near future. Discussions with 
patients of the implications of genomics – whether it is in the 
form of genetic testing for disease risk, pharmacogenomics, 
or personalized medicine – will be unavoidable for primary 
care providers. This chapter seeks to (1) explain the basic 
biology underlying genomics technology; (2) describe the 
potential future uses of genomics to improve patient care, 
particularly in cardiovascular medicine; and (3) set realistic 
expectations for the utility of genomics and explore the ethi-
cal implications of the technology.

6.2  A Brief Introduction to Molecular 
Biology

Deoxyribonucleic acid (DNA) is a molecule with two strands 
that are wrapped around each other in a helical formation, 
hence its description as a “double helix.” The outer part of 
the helix contains the sugar and phosphate “backbone” of the 
DNA, and the inner part contains the “coding” portion of the 

molecule with four types of bases – adenine (A), cytosine 
(C), guanine (G), and thymine (T). An organism’s genetic 
information is determined by the order of the sequence of the 
bases – with four bases available; the number of potential 
sequences is almost endless. The versatility of DNA results 
from the obligatory pairing of bases in the two strands. An 
adenine in one strand is always matched up with a thymine 
in the other strand, and cytosine is always paired with gua-
nine. Thus, the two strands contain redundant information, 
and each can serve as a template on which a new comple-
mentary strand can be synthesized. This allows for easy 
duplication of the DNA so that when a cell divides into two, 
each descendant cell receives the same genetic information 
as the original cell.

An organism’s DNA is organized into superlong strands 
that are packaged by a large complex of supporting proteins 
into chromosomes. Humans have 23 pairs of chromosomes, 
including the pair that determines gender, which in females 
comprises two X chromosomes, and in men, one X and one 
Y chromosome. For each chromosome pair, one was inher-
ited from the mother and one from the father. The full set of 
chromosomes is collectively called the genome. The human 
genome is contained within the nucleus of each cell, where it 
is separated from the rest of the cell’s functions.

In general, the genome is characterized by vast stretches 
of “noncoding” DNA sequence punctuated by small areas of 
“coding” DNA, also called genes, that represent the instruc-
tions needed by cells to perform their functions. Coding 
DNA is “transcribed” into a single-stranded molecule called 
ribonucleic acid (RNA) by a transcription enzyme complex. 
RNA is structurally similar to a DNA strand and also con-
tains four types of bases, including adenine, cytosine, and 
guanine [in RNA, uracil (U) is substituted for DNA’s thy-
mine (T)]. The transcription enzymes have proofreading 
functions that ensure that the sequence of the RNA molecule 
perfectly matches the sequence of the DNA template from 
which it was synthesized. RNA is more flexible and mobile 
than DNA and is transported out of the nucleus of the cell 
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into the outer compartment, the cytoplasm. Thus, RNA pro-
duction is the mechanism by which genetic information is 
“expressed” and relayed from the central repository (DNA) 
to the rest of the cell, where it directs cellular functions.

While some RNAs have specialized functions – e.g., serv-
ing as structural components of certain parts of the cell  – 
most RNAs take the form of “messenger” RNAs (mRNAs) 
that are “translated” by ribosomes into proteins. The ribo-
some reads from the beginning of the mRNA and uses it as a 
coding template with which to build proteins, with each non-
overlapping set of three consecutive bases (“codons”) serv-
ing to specify a particular amino acid. With four available 
types of bases, there are 64 possible codon combinations; 
with some redundancy, these codons are translated into any 
of 20 different amino acids or into a “stop” signal. In this 
way the RNA sequence is converted into an amino acid 
sequence until a stop signal is reached that prompts the ribo-
some to finish and release the protein. The protein is then 
processed by the cell and then deployed to serve its purpose 
(as an enzyme, as a secreted factor, etc.).

This highly organized progression from DNA, to tran-
scribed RNA, to translated protein is known as the “central 
dogma” of molecular biology (Fig. 6.1), and while there are 
exceptions to this sequence of events, the central dogma 
explains the vast majority of cellular processes. By and large, 
in humans these processes combine with environmental 
influences to determine each person’s individual characteris-
tics, susceptibility to diseases, and responses to medications. 
The technology is now available to study the cellular pro-
cesses at any step of the central dogma. When the investiga-
tion occurs at the level of DNA, it is termed “genomics”; 
when at the level of mRNAs, “transcriptomics”; and when at 
the level of proteins, “proteomics.” Processed proteins or 
other products of enzymatic reactions are called metabolites, 

the study of which is termed “metabolomics.” The study of 
structural modifications to the chromosomes, which can 
have effects on the transcription of DNA, is termed 
“epigenomics.”

6.3  The Principles of Human Genomics

The human genome is roughly 6 billion DNA bases in size, 
spanning the 23 chromosome pairs, and represents the com-
plete list of coded instructions needed to make a person. 
There are an estimated 20,000–25,000 genes in the human 
genome, most of which encode proteins or components of 
proteins. What makes each person unique is a large number 
of DNA variations distributed throughout the genome. Some 
people have particular genetic variations that can predispose 
to heart disease; some of these variants require the presence 
of environmental factors (such as smoking and obesity) to 
trigger heart disease. Less commonly, certain variations have 
such a strong effect that they can cause heart disease out-
right. Other variations may determine how well patients 
respond to particular medications.

One reason some people are more susceptible to getting a 
disease than other people or respond differently to medica-
tions is that their DNA variants affect the function of genes. 
There are rare variants that have a large effect on a gene’s 
function, either by significantly increasing or decreasing the 
gene’s activity; these are the kind of variants that cause dis-
ease in many members of a single family and are also known 
as “mutations.” There are common variants (>1% of the gen-
eral population) that have a small effect on a gene’s function. 
These variants do not change gene activity enough to cause 
disease by themselves but, instead, need to be combined with 
other gene variants or with environmental factors in order for 
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Fig. 6.1 Decoding and 
implementation of genetic 
information. Also known as 
the “central dogma,” the 
cellular pathway begins with 
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transcription of DNA into 
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transcripts, followed by 
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disease to occur. This is the case with most cardiovascular 
diseases where there are many contributing factors (e.g., 
hypercholesterolemia, myocardial infarction). Conversely, 
there are common variants that have the opposite effect  – 
they offer modest protection against disease.

All of these differences at the DNA level are called “poly-
morphisms,” of which there are several types (Fig. 6.2). The 
best characterized to date are single nucleotide polymor-
phisms (SNPs) in which a single base in the DNA differs 
from the usual base at that position. A copy number variant 
(CNV) is a polymorphism in which the number of repeats of 
a DNA sequence at a location varies from person to person. 
An “indel” (short for insertion–deletion) is a polymorphism 
in which a DNA sequence is either present or absent at a 
location, varying from person to person. SNPs are the most 
common and best understood of the polymorphisms, with 
tens of millions of SNPs having been identified across the 
human genome.

“Locus” is one of the several terms used to describe a 
local area on a chromosome around an SNP. In most cases, 
each person has two copies of each locus because of the pair-
ing of chromosomes; the exceptions are loci on the X or Y 
chromosome in men, who have only one of each. A person’s 
“genotype” at an SNP is the identity of the base position for 
each of the two copies – also called “alleles” – of the SNP on 
paired chromosomes; thus, a genotype is typically two let-
ters. A “haplotype” is a combination of SNPs at multiple 
linked loci – often adjacent to each other – that are usually 
transmitted as a group from parent to child (Fig. 6.3).

Some SNPs lie in genes and affect the genes’ function. 
Most SNPs lie outside genes, in the large stretches of non-
coding DNA between genes, and do not directly affect the 
genes. Groups of SNPs near genes tend to stay together with 
the genes from generation to generation, over thousands of 
years, in what are called “linkage disequilibrium” blocks that 

are separated by chromosomal recombination hotspots (for a 
more detailed explanation of this phenomenon, please see 
[1]). Thus, even if it is not known which polymorphism in a 
gene causes a disease (which is usually the case), one can use 
a SNP that is not in the gene but is in linkage disequilibrium 
with the gene – as a “tag” for that disease-causing variant of 
the gene (Fig. 6.3).

The technology is now available to decode millions of 
“tag” SNPs in a person’s DNA all at once using “gene chips” 
or “arrays” or “panels.” By applying the gene chips to thou-
sands of individuals, some with a disease and some without 
the disease, researchers are able to identify tag SNPs that are 
associated with disease (though the association is typically 
not perfect nor do associations imply causality). These stud-
ies are termed “genome-wide association studies” or 
“GWAS.”

As an example of how this technology might be used, 
consider GWAS performed for myocardial infarction. The 
study design would entail collecting DNA samples from 
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Fig. 6.3 Linkage disequilibrium. SNPs in proximity to a gene tend to 
stay together with that gene through many generations, a phenomenon 
known as linkage disequilibrium. In this example, only E is in the gene 
and directly affects its function. Genotypes at B, C, D, E, and F will stay 
together on a chromosome as it is passed from parents to offspring. In 
contrast, A and G are separated from the gene and the other SNPs by 
recombination hotspots, and thus they may not stay together on a chro-
mosome through many generations – they will not be in linkage dis-
equilibrium. Being linked, B through F make up a haplotype. Knowledge 
of any one of the five SNPs gives information on – acts as a “tag” for – 
the other four SNPs. Thus, genotyping B (or C or D or F) will indirectly 
yield information about the gene, even though the SNP is not in the 
gene
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thousands of patients who have suffered heart attacks and 
thousands of control individuals (who have not have had 
heart attacks but are otherwise similar to the patients). A 
gene chip is used to determine the genotype for more than 1 
million SNPs in each of the study subjects. Despite having a 
massive amount of information (1 million genotypes for sev-
eral thousand people or billions of pieces of data), the statis-
tical methods to analyze the information are relatively 
simple. The investigators set up computer software to ana-
lyze each SNP and ask: Does allele “A” versus allele “B” of 
this SNP occur in equal proportions in the myocardial infarc-
tion patients and the control individuals? In the vast majority 
of cases, there will be no difference in proportions; for a par-
ticular SNP, however, there may be a significant difference in 
the proportions (Fig.  6.4). Because the SNP “tags” any 
nearby genes, the implication is that there is a variant 
 affecting the function of one of the nearby genes in such a 
way as to modify the risk of myocardial infarction (presum-
ably through involvement in a pathophysiological process).

Several GWAS with precisely this design have been per-
formed for myocardial infarction and coronary artery dis-
ease. These studies all found SNPs in a locus on chromosome 
9p21 to be highly associated with coronary disease, with 
weaker associations seen for SNPs in other chromosomes 
[2–9]. (At the time of this writing, it remains unclear which 
gene near the 9p21 locus contributes to myocardial infarc-
tion.) Other studies have identified SNPs associated with 
atrial fibrillation [10–16], lipid levels [17–25], diabetes mel-
litus [26–41], electrocardiographic QT interval [42–46], 
abdominal aortic aneurysm [47–52], and statin-induced 
myopathy [53–56].

Recently, genome-wide approaches have been expanded 
to also study the relationship of physical modifications to 
the structure of chromosomes (epigenome-wide associa-
tion studies) [57] and gene expression levels (transcrip-
tome-wide association studies) [58] in relevant tissues to 
cardiovascular traits. Such studies are still in their early 
phases and have been applied to some of the traits men-
tioned above, but they have the potential to further establish 
the relationship of common DNA compositional and 
expression differences to disease when applied to larger 
populations, tissue types, and specific disorders and clini-
cal outcomes.

In parallel with GWAS, which rely on testing the associa-
tion of common variants one-by-one with a trait or disease 
being considered, great progress has been made in methods 
to discover rare variants as they relate to cardiovascular dis-
eases and traits. Among these approaches are deep medical 
resequencing of candidate genes, whole-exome sequencing 
(WES), and exome-wide genotyping. All of these approaches 
rely on the notion that (1) the genetic variation that is most 
likely to significantly impact the function of a gene is that 
which disrupts the protein encoded by the gene and thus may 
exist in the coding regions of the gene (“exons”) and (2) such 
variation underlying an extreme trait or disease may be rare 
in the population but enriched in subsets with a high burden 
of disease.

Deep medical resequencing involves choosing candi-
date genes for sequencing on the basis of their known role 
in a particular trait or disease. The exons of an entire gene 
or set of genes are resequenced. Variants identified in the 
candidate genes can then be ascertained for their  functional 
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each of millions of SNPs distributed across the genome, the genotypes 
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be seen in higher proportions in cases than controls. This SNP is there-
fore associated with the disease, and the strength of the association (P 
value) and exact increase in disease risk can be calculated using biosta-

tistics. Even if this SNP is not in the causal gene (as in this example), it 
may be in linkage disequilibrium with a polymorphism in the gene, 
explaining the association with disease. On the right, the SNP alleles 
are present in the same proportions in cases and controls; this SNP is 
not associated with disease. Typically, out of hundreds of thousands of 
SNPs, only a few (if any) show a statistically robust association with 
disease
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effects on the encoded proteins as well as their potential to 
cause the observed trait or disease. Such variants are nota-
ble when they are identified in multiple individuals harbor-
ing the trait or disease but absent in those who are 
unaffected. Similarly, when candidate mutations are iden-
tified in families and are present in affected members but 
not in unaffected members, this supports the possibility 
that the mutation is directly causing the trait or disease. 
Targeted sequencing gene panels are currently being devel-
oped, primarily for research purposes, to identify variants 
in genes known to contribute to cardiovascular traits and 
diseases [59–67]; however, their applicability for clinical 
diagnostics and risk prediction are still limited because it 
is challenging to interpret whether the identified rare vari-
ants are “neutral” (i.e., are of no consequence) or patho-
genic [68].

WES applies the principle described for deep medical 
resequencing across all the regions of the genome that 
encode proteins (the “exome”). In addition to having appli-
cations similar to those for candidate gene deep resequenc-
ing, WES allows the ability to identify novel heritable causes 
underlying traits and diseases. As an example, the first appli-
cation of WES to a clinical cardiovascular phenotype was its 
use to identify the underlying cause of a newly identified 
syndrome of low plasma levels of all the major lipid traits 
(total cholesterol, HDL cholesterol, LDL cholesterol, and tri-
glycerides), a disorder called familial combined hypolipid-
emia [69]. The authors performed WES in two siblings with 
this disorder and found that both harbored two novel protein- 
truncating variants in the ANGPTL3 gene, which encodes a 
protein that delays the turnover of triglycerides and HDL in 
experimental models. The authors found no other mutations 
in other genes that could account for the condition and that 
were present in both of the affected siblings, and they were 
thus able to conclude that loss of ANGPTL3 function was the 
cause of the dyslipidemia. This example highlights the 
potential power of WES in identifying new heritable causes 
of rare or poorly understood clinical traits. Additional poten-
tial clinical applications of WES will be discussed further 
below.

Exome-wide genotyping combines approaches similar to 
GWAS and WES together to assess protein-coding variation 
in the genome as it relates to traits and diseases. This method 
uses SNP panels similar to those used in GWAS but that 
cover only protein-coding variants for genotyping. These 
panels include both common and rare coding variants to 
allow for their combined assessment for association with 
traits of interest [70–72]. The utility of this approach may be 
in its ability to capture known rare variants and to assess their 
burden in particular populations [73] and test their associa-
tions with a broad range of traits across large cohorts of 
patients [74, 75] in a less expensive and more scalable man-
ner than current WES approaches allow.

6.4  Practical Uses of Genomics Studies

GWAS allow for the mapping of diseases (e.g., myocardial 
infarction) and clinical traits (e.g., cholesterol levels) to spe-
cific regions on chromosomes. They narrow the resolution 
from 3 billion bases (the entire human genome) to around 
100,000 bases (chromosomal locus) surrounding a tag 
SNP. In principle, the tag SNP can then be used for disease 
risk prediction or for pharmacogenomics (see below). The 
tag SNP can also be used to pinpoint causal genes underlying 
the disease or trait or response to therapy. Subsequent studies 
on those genes can give important insights into basic biology 
as well as facilitate the development of new therapies that 
target the genes (Fig. 6.5).

Similarly, sequencing to uncover rare variants has identi-
fied multiple putative targets for drug therapies for cardio-
vascular diseases. A notable example is the discovery of both 
loss-of-function and gain-of-function protein-coding vari-
ants in the PCSK9 gene. In 2003, rare variants in the PCSK9 
gene were identified that caused extremely high LDL choles-
terol levels [76]. Subsequent studies in humans confirmed 
that these variants were likely gain-of-function mutations 
that increased PCSK9 function [77–79], and additional work 
in mice demonstrated that indeed PCSK9 increased LDL 
cholesterol levels [80, 81]. Following this work, sequencing 
of human subjects with extremely low LDL cholesterol lev-
els identified common loss-of-function PCSK9 mutations 
[82]. These mutations result in up to 88% reduction of risk 
for coronary disease [82, 83]. Additional studies further 
established the causal and direct relationship of LDL choles-
terol levels to coronary disease [84, 85] and paved the way 
for the development of therapies targeting PCSK9 [86–94]. 
In 2015, two PCSK9-inhibiting monoclonal antibodies were 
approved for clinical use to treat extreme forms of hypercho-
lesterolemia [95]. This marked the success of a bench-to- 
bedside journey that had started only 12 years earlier.

Subsequent large-scale WES efforts in patients with coro-
nary artery disease or early-onset myocardial infarction have 
also identified cholesterol-related targets of therapeutic rele-
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Fig. 6.5 Potential uses of information learned from genome-wide 
association studies
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vance. These include the LDLR gene, the indirect target of 
statin therapy and also the gene responsible for many cases 
of familial hypercholesterolemia [96]; the NPC1L1 gene, the 
target of the cholesterol absorption antagonist ezetimibe 
[97]; and the LPA gene, which encodes the defining protein 
component of lipoprotein(a) [Lp(a)], a strong coronary dis-
ease risk factor [98].

Genomics has also been useful in assessing whether bio-
markers for coronary disease are truly causal for disease. In 
this regard, the recent application of genomics to study the 
impact of HDL cholesterol and triglycerides to cardiovascu-
lar risk has been particularly informative. In the case of HDL 
cholesterol, the failure of several HDL-raising therapies such 
as nicotinic acid [99–103] and CETP inhibitors [99, 100, 
104–106] was almost simultaneous with the finding that 
genetic variants that raise HDL cholesterol do not reduce the 
risk of coronary disease [99, 100, 107–109]. For example, 
exome-wide genotyping and deep resequencing of the 
SCARB1 gene identified carriers of a protein-coding loss-of- 
function variant in this gene who had extremely high levels 
of HDL cholesterol but, unexpectedly, had a moderately 
increased risk of disease, casting doubt on the “protective” 
role of HDL cholesterol [110]. These and other studies have 
fueled interest in identifying the physiological functions of 
HDL beyond their cholesterol content as possible mecha-
nisms by which HDL may still confer protection from car-
diovascular diseases [99, 100, 102, 111–113].

In contrast, GWAS and other approaches to studying 
common variants affecting triglyceride levels have shown 
that variants associated with decreased triglycerides are also 
associated with decreased risk of coronary disease [25, 114]. 
Additional studies of rare protein-coding variants have fur-
ther established that the lipoprotein lipase (LPL) pathway of 
circulating triglyceride clearance is protective against coro-
nary disease [115–120]. In particular, loss-of-function muta-
tions in two genes encoding inhibitors of LPL, the APOC3 
gene [116–118, 120] and the ANGPTL4 gene [115, 119], are 
protective against coronary disease, making them prime tar-
gets for the development of novel therapies to reduce cardio-
vascular risk [119, 121–123]. A third inhibitor of this 
pathway, ANGPTL3, is also being explored as a therapeutic 
target [124, 125].

6.5  Genetic Testing and Disease Risk 
Prediction

After identifying a number of SNPs – in different chromo-
somal loci across the genome  – that are associated with a 
disease of interest, one can use these SNPs to calculate a 
genetic risk score for the disease (Fig.  6.6). One simple 
example entails cataloging for each SNP: Does the patient 
have two copies of the lower-risk variant of the SNP, two 

copies of the higher-risk variant of the SNP, or one copy each 
of the lower-risk and the higher-risk variant? Risk “points” 
are assigned depending on the genotype at the SNP. These 
points are added up for all of the SNPs, yielding a total risk 
score. This risk score, especially when combined with a tra-
ditional risk score (e.g., Framingham risk estimate) that 
accounts for endogenous (blood pressure, serum lipids, age) 
and environmental factors (e.g., cigarette smoking), might be 
useful in predicting the likelihood of developing the disease. 
Eventually, clinicians would be able to order this panel of 
SNPs as a blood test and get back a risk score that would help 
guide patient management.

One of the first published reports of a genetic risk score 
for cardiovascular disease, in early 2008, demonstrates the 
potential usefulness of a risk score [126]. The investigators 
calculated a lipid-based genetic risk score using nine SNPs 
associated with LDL cholesterol or HDL cholesterol (score 
from 0 to 18) and found that the score is associated with 
cardiovascular disease. The higher the risk score, the more 
likelihood the individual had of developing cardiovascular 
disease during the study period. However, when this particu-
lar genetic risk score was added to a traditional risk predic-
tion model, it did not improve overall risk prediction. After 
adjustment for traditional risk factors, the relative risk 
between individuals with high genetic risk scores and those 
with low genetic risk scores was 1.63, a modest difference 
[126]. Although the degree of risk discrimination is likely to 
improve as additional SNPs discovered to be associated with 
cardiovascular disease are added to the genetic risk score, it 
remains to be seen whether it will be enough to significantly 
improve on current risk prediction strategies.

For a healthcare provider presented with this type of 
genetic information, it will be a challenge to meaningfully 
integrate it into clinical practice. This is especially true when 
the relative risks associated with SNP variants are in the 1.0–
2.0 range – i.e., the at-risk genotype confers between one and 
two times the risk of developing the disease – as seems to be 
the case with most disease-associated genotypes. Providers 
must already ponder the utility of novel biomarkers, such as 
high-sensitivity C-reactive protein, that are only modestly 
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predictive of cardiovascular disease and do not reclassify 
large proportions of patients into new risk categories [127]. 
To date, genetic risk scores do not appear to be any more 
predictive than these biomarkers. Indeed, it remains unclear 
in the absence of any clinical trials whether a genetic risk 
score will prove more useful than simply asking the ques-
tion: “Do you have a family history of heart disease?”

Nevertheless, several companies see significant commer-
cial potential in these types of risk scores and have already 
started marketing SNP panels to the general public, charging 
hundreds to thousands of US dollars. The implication of the 
advertising for these panels is that they will let patients know 
if they are at higher risk for particular diseases. None of 
these panels has yet been shown to add value to traditional 
risk factor algorithms, and they should not be recommended 
to patients at this time for that purpose.

There are other important limitations of these SNP pan-
els. They do not include rare variants that cause disease 
(these include the mutations that are unique to one person, or 
to one family, and so are not going to be found on the SNP 
panels). So while the patient may learn from an SNP panel 
that she has a variant of a common SNP that modestly 
decreases the risk of a particular disease, e.g., breast cancer, 
she may unknowingly harbor a mutation – not found by the 
SNP panel  – that dramatically increases her breast cancer 
risk. In this case, having only partial genetic information 
would give false reassurance and may even be harmful if the 
patient chooses to forego screening with mammography.

Furthermore, because the initial series of GWAS were 
performed in Caucasian populations of European ancestry, 
the first generation of SNP panels may not be relevant to 
individuals of other ethnic or racial backgrounds. For now, 
non-Caucasian individuals will benefit less than Caucasians 
from the recent advances in genomics, although this situa-
tion should change as more GWAS are performed in a wider 
variety of racial and ethnic groups.

When asked about SNP panels by patients, it is appropri-
ate to say that the tests are experimental – they may eventu-
ally prove to be useful, but they may also prove to be a waste 
of money. It is also appropriate to point out that many old- 
fashioned preventative health practices – good diet, weight 
control, exercise, and smoking cessation  – can have a far 
larger impact on one’s risk of getting a disease than any 
genetic influences that one may learn about from genetic 
testing.

6.6  Pharmacogenomics

The field of pharmacogenomics – the use of human genomic 
variation to predict efficacy and toxicity of drug therapy – is 
a promising area for the clinical application of genomic 
information. Commonly used medications such as lipid- 

lowering therapy, antihypertensive drugs, antiarrhythmic 
drugs, and anticoagulants have differential effects depending 
on variation in certain genes. The ultimate objective of phar-
macogenomics is to deliver the “right drug for the right 
patient” by accurately predicting both therapeutic response 
and safety before a drug is prescribed.

One scenario for the practical application for pharma-
cogenomics is the use of a screening test to identify patients 
who are at risk for adverse side effects from medications or 
who are unlikely to respond to a therapy (Fig.  6.7). A 
patient presenting to medical attention with a particular 
condition would undergo the screening test, which would 
identify the genotype of a relevant polymorphism or set of 
polymorphisms. The genotype information would be used 
to determine whether the patient’s condition is likely to 
improve from the treatment, whether the treatment poses a 
risk and should be avoided altogether, or how much of the 
treatment should be given – i.e., tailoring the dose to the 
patient.

When associations between genotype and drug sensitiv-
ity have been identified, as in the case of INR response to 
warfarin therapy on the basis of CYP2C9 genotypes and 
VKORC1 haplotypes, trials must be conducted to evaluate 
the clinical efficacy of the gene-based prescribing strategy 
and determine whether the increment in efficacy or safety 
warrants the cost of genetic testing [128]. An initial trial 
reported in 2007 assessed an algorithm that used a patient’s 
specific CYP2C9 and VKORC1 SNPs to calculate an ideal 
starting warfarin dose for anticoagulation. When compared 
to the usual practice (i.e., providers picking a starting dose 
using best judgment), this specific algorithm did not 
improve the safety of warfarin initiation (out-of-range INR 
measurements were not reduced compared to traditional 
dosing), although it did reduce the number of dosing 
changes needed [128]. A subsequent study using six addi-
tional algorithms for calculating warfarin dose based on 
CYP2C9 genotype versus a nongenetically determined dos-
ing strategy found a significantly higher percentage of gen-
otype-dosed patients with INR >2 5 days after initiation 
relative to the non-genotype- based dosing cohort [129]. 
More research studies are underway to see whether genetic 
dosing of warfarin will be clinically useful in broader 
practice.

Just as GWAS are being used to characterize disease risk, 
a similar strategy can be used to characterize appropriate or 
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Fig. 6.7 The general strategy of pharmacogenomics
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adverse responses to therapy. A GWAS published in 2008 
showed that individuals with one genotype at an SNP in the 
SLCO1B1 gene have 17 times the risk of statin-induced 
myopathy than individuals with another genotype [53]. This 
dramatic difference in relative risk (though not absolute 
risk, given the overall rarity of statin-induced myopathy) 
suggests that a genetic test for this SNP could be helpful in 
predicting which patients are at risk of getting myopathy 
before they are started on statins. A SLCO1B1 SNP test 
might be particularly useful for patients in whom there is 
already a clinical suspicion for risk of myopathy (e.g., fam-
ily history, history of myalgias on statin therapy). As with 
all genetic findings to date, however, this strategy needs to 
be tested in a clinical trial before it can be recommended for 
general use.

Another potential application of genetics to predicting 
response to therapy involves the antiplatelet agent clopido-
grel, which has become a mainstay of post-acute coronary 
syndrome (ACS) patient management, particularly after per-
cutaneous coronary intervention (PCI). Clopidogrel is con-
verted into its active metabolite in the liver by the cytochrome 
P-450 2C19 enzyme. In three large studies of post-ACS 
patients on clopidogrel therapy (TRITON-TIMI 38, 
FAST-MI, and AFIJI), the CYP2C19 gene encoding this 
enzyme was genotyped, with identification of at least one 
reduced-function allele in ~30% of individuals. In all of the 
three studies, carriers of reduced-function CYP2C19 alleles 
suffered significantly higher rates of cardiovascular death, 
myocardial infarction, and stroke [130–132]. This is consis-
tent with the finding in TRITON-TIMI 38 that reduced- 
function allele carriers had lower plasma levels of the active 
metabolite of clopidogrel [131].

However, further studies have called into question the 
value of using CYP2C19 genotype to guide post-ACS clop-
idogrel dosing. One study compared data from clinical tri-
als examining effects of clopidogrel vs. placebo on 
outcomes and observed a comparable impact on risk 
between the two groups [133]. Another study in patients 
who largely underwent PCI with stenting found that carri-
ers of reduced- function CYP2C19 alleles had a higher rate 
of adverse events within 30  days of initiating treatment 
[134]. Larger meta- analyses of patients undergoing PCI 
have had mixed findings, with one study finding that 
reduced-function allele carriers had a higher rate of in-stent 
thrombosis and other adverse cardiovascular events than 
non-carriers [135]; however, these conclusions were not 
supported by other meta- analyses in lower-risk patients 
[136–138]. To date, there are still no published reports from 
large clinical trials assessing the utility of prospective 
CYP2C19 genotyping in improving clinical outcomes. 
Such studies will be needed to determine whether routine 
post-ACS genotyping of CYP2C19 will be of any merit in 
reducing poor outcomes.

6.7  Risks of Genetic Testing

Although some “early adopter” patients may take the ini-
tiative to avail themselves of commercial SNP genotyping 
services and then bring genetic information to providers 
for interpretation, others will approach their providers 
first and ask whether genetic testing is advisable. It may 
seem harmless for a patient to undergo SNP genotyping – 
typically involving only a swabbing of the inside of a 
cheek or a drawing of a blood sample  – but there are 
important potential consequences to consider. As men-
tioned above, it is not yet clear how physicians should 
best interpret the results of genetic testing, since few clin-
ical trials have been done. Furthermore, in the “Google 
era,” there is the danger of patients overinterpreting the 
results of their tests based on misleading information 
available on the Internet.

One worrisome possibility is that a patient may be falsely 
reassured by hearing that his genetic risk score is low. He 
may not be vigorous about lifestyle changes that, if enacted, 
would reduce his risk of disease even more than the protec-
tion offered by his favorable genetic profile. Conversely, a 
high genetic risk score may cause undue worry and even 
strain family relations. For example, a person may learn that 
the spouse is more likely to develop a serious illness, and this 
may impact their relationship as well as relationships with 
parents and potential offspring. Arranging for a patient and 
family members to meet a genetic counselor is recommended 
if this type of situation should arise.

Finally, privacy issues should be seriously considered 
prior to the use of genetic tests. It remains to be seen what 
insurance companies will do if they obtain access to genetic 
data. The US Congress has acted to prohibit discrimination 
by employers and health insurers on the basis of genetic test-
ing with the Genetic Information Nondiscrimination Act 
(GINA), but further ethical safeguards will undoubtedly be 
needed as the social implications of genomics become 
clearer.

6.8  Conclusion

Although genomics offers great promise for the improve-
ment of cardiovascular medicine, applications of the tech-
nology are still being demonstrated and validated, and the 
clinical utility of genomics for diagnosis and intervention is 
in its infancy. Yet with the enormous publicity surrounding 
genomics discoveries, it will be natural for patients to seek 
advice about genetic testing from their providers. These 
inquiries should be welcomed, since they reflect patients tak-
ing an active interest in their own health, and they are oppor-
tunities for providers not only to educate patients about 
genomics – to highlight the present uncertainty of the  clinical 
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usefulness of the tests, as well as the potential hazards of 
obtaining the information  – but also to reinforce old- 
fashioned preventive messages, good diet, weight control, 
exercise, and smoking cessation, as well.

6.9  Case Study 1

A 57-year-old Caucasian man presents to your clinic for the 
first time. He is eager to talk to you about the results of his 
“gene tests.” Upon hearing about a commercial “personal 
genome service” that reads more than 500,000 locations in 
the genome and offers information on more than 100 dis-
eases, he immediately signed up for the service. He has 
printed out all the results of the tests and brought them to you 
so you can read them and keep them in his medical record. 
He is particularly concerned because the tests reveal that he 
has an increased risk of having a heart attack. When you look 
at the specific information in the printouts, you see that on 
the basis of several SNP genotypes, his relative risk of myo-
cardial infarction is estimated to be 1.6 times that of the gen-
eral population.

On physical examination, the patient is overweight and 
moderately hypertensive. He admits that he does not regu-
larly exercise, smokes half a pack of cigarettes a day, and has 
not been taking the cholesterol medication prescribed to him 
by a physician 3 years ago. He asks how concerned he should 
be about the results of his genetic testing.

Answer: You can advise the patient that although his 
genetic testing may suggest a modestly increased risk of 
heart attack, the information is not useful at the present 
time because there have been no clinical trials testing 
whether this type of information is valid. You should point 
out that he has several traditional risk factors for myocar-
dial infarction – high blood pressure, high cholesterol, and 
tobacco use – all of which make it much more likely that 
he will get a heart attack in comparison to his putative 1.6-
fold risk from his SNP genotypes. Importantly, he can do 
something about those risk factors  – improve his diet, 
exercise regularly, take his prescribed medications, and 
stop smoking  – while he cannot do anything about his 
genetics.

Given the potential privacy issues, keeping the results of 
nonclinical genetic testing in the medical record is not advis-
able at this time.

6.10  Case Study 2

You are seeing in your clinic a 63-year-old woman whom 
you have been following for several years. She suffered a 
myocardial infarction 2  years ago, after which she was 
appropriately prescribed a statin drug for secondary 

 prevention. She stopped taking the statin because she devel-
oped severe muscle aches, and she was switched to ezeti-
mibe instead. On a fasting lipid profile taken several weeks 
ago in anticipation of today’s visit, her LDL cholesterol 
remains quite elevated – 135 mg/dL – far above the optimal 
goal of 70 mg/dL. You advise her that she really should be on 
a statin drug, and you can prescribe her a different statin than 
the one she took before in the hope of avoiding her prior 
symptoms. She is hesitant to proceed; she has learned that 
her father developed bad “muscle disease” when he was tak-
ing a statin 10 years ago, requiring hospitalization, and both 
her brother and sister have experienced muscle aches when 
taking statins.

Is there a role for genetic testing in this patient’s 
management?

Answer: A SNP in the SLCO1B1 gene has recently been 
reported to be strongly associated with myopathy [53]. 
Individuals with the at-risk genotype have 17 times the risk 
of developing myopathy compared to other individuals. 
There is now a commercial test for this SLCO1B1 variant 
available. Given this patient’s prior symptoms and her strong 
family history, she appears to be at increased risk of statin- 
induced myopathy. Determining if she has the at-risk 
SLCO1B1 genotype could be helpful in her management; if 
she does have the genotype, it would be prudent to avoid 
statin therapy altogether. If she does not have the genotype, 
one might be encouraged to cautiously start her on a different 
statin.
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