
Chapter 13
Universal Relations and Alternative
Gravity Theories

Daniela D. Doneva and George Pappas

Abstract This is a review with the ambitious goal of covering the recent progress
in: (1) universal relations (in general relativity and alternative theories of gravity),
and (2) neutron star models in alternative theories.We also aim to be complementary
to recent reviews in the literature.

13.1 Introduction

Neutron stars are complicated astrophysical objects with a lot of physics involved
in their description, as one can see from the previous chapters in this volume. But
when it comes to their overall structure and their stationary properties, gravity is
the most important player. To determine the structure of a neutron star one specifies
an equation of state and then solves the Einstein field equations together with the
hydrostatic equilibrium equation (see Friedman and Stergioulas 2013; Paschalidis
and Stergioulas 2016). The resulting models and their structure depend on the
specific choice of the equation of state. At the moment there exists a large variety of
realistic equations of state that come from different nuclear physics models (a result
of our lack of knowledge with respect to the properties of matter at supra-nuclear
densities), which in turn result to quite a large variety in neutron star models as
Fig. 13.1 shows. Specifying the equation of state is therefore a very hot topic from
both astrophysical perspective as well as nuclear physics perspective.
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Fig. 13.1 Mass-Radius relation of non-rotating neutron stars for different equations of state. The
mass is given in solar masses M�

This large variety was always considered to be a natural outcome of having a
lot of degrees of freedom available in the description of the equation of state and
for this reason neutron stars were not considered to be useful objects for testing our
theories of gravity. The conventional wisdom was that neutron stars were infested
by matter that would hide any possible signal coming from modifications from
general relativity. Nevertheless, there always existed an interest in finding ways to
describe neutron stars in ways that were not very sensitive on the specific choice
of the equation of state. The motives behind such attempts are twofold. On the one
hand, having observables that are insensitive to the specifics of the equation of state
can be very advantageous in our attempts to measure astrophysically the various
properties of neutron stars, by reducing for example modelling uncertainties. This
can be also important in solving the inverse problem of determining the equation of
state from measurements of the bulk properties of neutron stars. On the other hand,
such observables would open the window to observing deviations that are due to
gravity and possible modifications to general relativity and not the equation of state
uncertainty. All the more so, since neutron stars can be in some cases a much more
suitable object for testing such modifications, as we shall discuss shortly.

Alternative theories of gravity attracted significant attention in the past decades.
The reasons for this come both from theory and observations. Modifications
of Einstein’s theory of gravity for example are often employed as alternative
explanation for the dark mater phenomenon or the accelerated expansion of the
universe. The idea is that instead of attributing the accelerated expansion to
unknown constituents of the Universe with rather unusual and strange properties
such as dark energy, one can attribute it to our lack of understanding of gravity.
Besides the observations, there are strong theoretical motivations for modifying
general relativity. The standard Hilbert–Einstein action is by no means the only
possible one but instead the simplest. That is why different generalizations are
possible coming for example from the theories trying to unify all the interactions.
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They predict the existence of a scalar field that can be considered as a new mediator
of the gravitational interaction in addition to the spacetime metric. On the other hand
the quantum corrections in the strong field regime which are introduced in order to
make the theory renormalizable or to cure the singularities in the solutions, naturally
lead to the fact that the Einstein–Hilbert action is supplemented with higher order
terms. Last but not least, as the experience shows, studying in detail theories of
gravity more general than Einstein’s theory can often give as a better insight to
general relativity itself.

Every viable theory of gravity should be consistent with the observations
at all scales and regimes (Will 2014). The weak field experiments give strong
constraints on the parameters of the theory, but the strong field regime is essentially
unconstrained and leaves a lot of space for modifications. Moreover, there are
theories of gravity that are completely indistinguishable from general relativity for
weak fields but can lead to large deviations for strong fields. Therefore, constraining
the strong field regime of gravity or even detecting possible deviations from pure
Einstein’s theory is a difficult but very important task.

Neutron stars and black holes in alternative theories of gravity have been
explored for several decades because they offer the possibility to test the strong field
regime of gravity at astrophysical scales. Black holes, though, have an important
disadvantage because of the no-hair theorems. According to these theorems, the
black hole solutions in some classes of alternative theories of gravity are the same
as in general relativity.1 Naturally, this poses obstacles to testing such theories
of gravity via the astrophysical observations of black holes. Neutron stars on the
other hand do not fall in the scope of the no-hair theorems because of the presence
of matter. Thus, alternative theories of gravity can lead to large deviations from
Einstein’s theory. The neutron star matter, though, is a double edged sword—indeed
it offers the possibility to have compact star solutions different from pure general
relativity, but on the other hand the uncertainties in the high density nuclear matter
equation of state are large. Moreover, there is a degeneracy between effects coming
from modifying the equation of state and the theory of gravity. That is why testing
the strong field regime of gravity via neutron star observations is also a subtle task.
In order to address these problems one has to build a dense net of neutron star
models and astrophysical predictions in various alternative theories that can help
us either break the degeneracy or find effects that are stronger pronounced than
the equation of state uncertainty. Again, as in general relativity, universal relations
can play a significant part here by taking the subtleties of the equation of state out
of the picture so that we can identify effects and deviations that are only due to
modifications in gravity.

Neutron star solutions (both static and rotating) have been constructed in various
alternative theories of gravity. The literature on the subject is vast and the size of
the present chapter is clearly not enough to cover thoroughly the subject. Moreover,

1The perturbations, though, could be different and thus used for testing alternative theories of
gravity.
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we aim at a more pedagogical review. This is why instead of reviewing the whole
subject in detail, we will concentrate on certain classes of alternative theories of
gravity. Since the goal of the chapter is to cover both neutron stars in alternative
theories and universal relations, a natural choice would be to focus mainly on those
theories, in which universal relations have been derived. In the present chapter we
will concentrate on scalar-tensor theories (STT), f (R) theories, Einstein–dilaton–
Gauss–Bonnet (EdGB) theories and the Chern–Simons (CS) theories of gravity. As
a matter of fact they are amongst the most natural and widely used generalizations
of Einstein’s gravity and most of the neutron star studies in the literature have been
done exactly in these alternative theories. In addition all of them fall into the same
class of modifications of Einstein’s theory, i.e. theories for which dynamical scalar
fields are included as mediators of the gravitational interaction in addition to the
metric tensor. A very nice recent review that covers a much larger spectrum of
theories can be found in Berti et al. (2015).

In what follows we will start by discussing in Sect. 13.2.1 the history and present
status of universal relations for neutron stars in general relativity. We will proceed
in Sect. 13.2.2 to briefly review neutron stars in various modifications of general
relativity. In Sect. 13.2.3 we will discuss the current status on the various extensions
of the universal relations to alternative theories of gravity. In Sect. 13.3 we will talk
about the work that needs to be done or could be done in the future as well as the
various challenges that we will face in extending our current results. Finally we will
close with some brief overview of the Chapter.

We will use geometric units (G = c = 1) throughout, unless it is specifically
mentioned otherwise.

13.2 Review of Past Work

13.2.1 Universal Relations in GR

13.2.1.1 Prehistory

Even though the subject of neutron star universal relations, i.e., equation of state
independent or insensitive relations, has received a lot of attention in recent years, as
was mentioned above it has a longer history. Some first results have been presented
in the literature already since the 90s when it was recognised in Lattimer and Yahil
(1989) that the binding energy BE ≡ (Nmn − M) of a neutron star, whereN is the
nucleons number and mn the corresponding nucleons mass, expressed in terms of
the stellar compactness C ≡ M/R (the mass here is in geometric units) is insensitive
to the equation of state. A later improved expression between the two quantities was
given by Lattimer and Prakash (2001) and reads,

BE/M = (0.60 ± 0.05)C(1− C/2)−1. (13.1)
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Such an expression is motivated by the fact that analytic solutions like that of the
incompressible fluid (ρ = const.), the Buchdahl solution (constructed using the
equation of state ρ = 12

√
p∗P − 5P , where p∗ is some constant with dimensions

of pressure) or the Tolman VII model (which is constructed by assuming that inside
the star the density goes like ρ = ρc

(
1 − (r/R)2

)
, where ρc is the central density

of the star), give similar expansions in terms of the compactness (see Lattimer and
Prakash 2001).

On a different direction, on the topic of asteroseismology, in the late 90s it was
recognised by Andersson and Kokkotas (1996); Andersson and Kokkotas (1998)
that the f -mode andw-modes exhibit some equation of state independent behaviour.
In particular it was shown that the f -mode frequency (in kHz) is related to the
average density of a neutron star following the relation

ωf

2π
= 0.78 + 1.635

(
M1.4

R3
10

)1/2

, (13.2)

where different equations of state have a relative small spread around this common
fit. In the above expression the mass is measured in units of 1.4M� and the radius
of the star in units of 10 km. The f -mode is related to fluid motion inside the star
that takes place in dynamic time scales. It is reasonable therefore to assume that
the f -mode frequency will be related to the characteristic dynamic time which is
proportional to the square root of the average density, τdyn ∼ √

ρ̄. It was also shown
that the damping time (in s) of the f -mode, when scaled in the right way, is related
to the compactness in a linear way,

(

τf
M3

1.4

R4
10

)−1

= 22.85− 14.65 C0, (13.3)

where again the masses and radii are measured using the same units as above (this
is the case also for C0 ≡ M1.4/R10). Finally for the first w-mode the corresponding
relations for the frequency (in kHz) and the damping time (in ms) are,

R10

(ωw

2π

)
= 20.92− 9.14 C0, (13.4)

M1.4(τw)−1 = 5.74 + 103 C0 − 67.45 C20, (13.5)

where the mass and radius units are as before.
Returning to the topic of the structure of neutron stars, in the 2000s it was found

by Lattimer and Prakash (2001); Bejger and Haensel (2002); Lattimer and Schutz
(2005) that there is an equation of state insensitive relation between a neutron star’s
moment of inertia and its compactness,

I

MR2 = (0.237± 0.008)(1+ 2.84C + 18.9C4), (13.6)
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where the compactness is expressed in terms of the mass in geometric units. This
expression is again motivated by the behaviour of the moment of inertia in the
various analytic models, such as the Tolman VII model. Finally, another instance
where relations of this sort were studied is in Urbanec et al. (2013) where for slowly
rotating neutron stars, relations between the reduced moment of inertia I/(MR2)

and the inverse compactness x = 1/(2C)where derived in addition to a new relation
between the reduced quadrupole q̃ ≡ QM/J 2 and x. This last relation could be of
additional interest since it distinguishes between neutron stars and quark stars. We
give here a fitting formula for neutron stars’ q̃ in terms of the compactness,

q̃ = −0.2588C−1 + 0.2274C−2 + 0.0009528C−3 − 0.0007747C−4, (13.7)

as it is given in Yagi and Yunes (2017a).
One will notice a common theme in all of these relations, which is that the various

quantities are expressed in terms of the compactness. Using the compactness was a
sensible first choice for parameterising the various properties of neutron stars, since
it is a dimensionless quantity that is representative of the overall structure of the
star. It was a sensible choice also because, in results from analytic models, relations
between various quantities would usually be expressed in terms of the compactness
which would be a measure of how relativistic a particular model is.2 One could think
of these results as precursors of the later proliferation of universal relations. In what
follows we will give an incomplete list of some of these relations. The interested
reader can complement the material presented here with a recently published review
on the subject (Yagi and Yunes 2017a).

13.2.1.2 I-Love-Q

Yagi and Yunes in 2013 (Yagi and Yunes 2013a; Yagi and Yunes 2013b), while
studying slowly rotating and tidally deformed neutron and quark stars, found that
there exist relations between the various pairs of the following three quantities,
the moment of inertia I , the quadrupole moment Q and the quadrupolar tidal
deformability or Love number λ, which are insensitive to the choice of the equation
of state for both neutron as well as quark stars. We will present here a very brief
outline of their calculation which comprises of two parts, first the calculation of the
slowly rotating models and then the calculation of the tidally deformed models.

Initial I-Love-Q Formulation The slowly rotating models were calculated using
the Hartle and Thorne slow rotation formalism (Hartle 1967; Hartle and Thorne
1968). In order to construct a slowly rotating model, one first calculates a non-
rotating spherically symmetric model that has some mass M∗ and radius R∗. The
structure of the star is described by the Tolman–Oppenheimer–Volkoff (TOV)

2The newtonian limit is for C → 0, while the relativistic limit is for C → 1/2.
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equation, while the metric has the form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (13.8)

where we can define the mass function M(r) = r
(
1 − e−λ(r)

)
/2. The spacetime

outside the star’s surface is the Schwarzschild spacetime. From the mass and the
radius of the star one calculates an angular frequency scale 
K = √

M∗/R3∗ which
is then used to introduce a small expansion parameter ε ≡ 
∗/
K that characterises
rotation. Then one introduces corrections to the geometry due to rotation in the form
of perturbations up to second order in the rotation,

ds2 = −eν(r)
[
1 + 2ε2 (h0 + h2P2)

]
dt2 + 1 + 2ε2 (m0 + m2P2) / (r − 2M(r))

1 − 2M(r)/r
dr2

+r2
[
1 + 2ε2K2P2

] [
dθ2 + sin2 θ (dφ − εωdt)2

]
, (13.9)

where P2 = (3 cos2 θ − 1)/2 is the second order Legendre polynomial and
ω1 ≡ 
K − ω is the angular velocity of the fluid relative to the local inertial
frame. The equations for the perturbations are then solved on top of the background
spherical non-rotating solution. The resulting perturbed configuration is deformed
due to rotation and the deformation of the surfaces of constant density has the form,
r̄ = r + ε2 (ξ0(r) + ξ2(r)P2). Since all the perturbations scale with the angular
velocity of the star, in practice one has only to calculate the model that rotates at

K for ε = 1 and then all the models with values of ε ∈ [0, 1] follow from that. Of
course we should note that the results are accurate for values of ε that correspond to
models that rotate as fast as a few milliseconds (Berti et al. 2005).

The various quantities of the rotating model will scale with rotation in term of
the corresponding quantities of the ε = 1 model as, angular velocity: 
 = ε
K ,
angular momentum: J = εJK , stellar radius: R = R∗ + ε2δRK , mass: M =
M∗ + ε2δMK , and quadrupole moment: Q = ε2QK . The moment of inertia for
a rigidly rotating configuration is defined as I ≡ J/
 = JK/
K which means
that for a calculation at the order of ε in J , the moment of inertia is independent
of ε. The angular momentum and the quadrupole moment of the configuration
can be evaluated from the form of the metric outside the star and in particular by
it’s asymptotic expansion in the appropriate coordinate system following Thorne’s
prescription (Thorne 1980; Quevedo 1990).3 Therefore, the angular momentum can
be calculated by the fact that outside the star the metric function ω1 has the form

ω1(r) = 
K − 2JK

r3
, (13.10)

3There will be a further discussion on multipole moments when we talk about the 3-hair relations.
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where the angular momentum JK is a constant calculated by the matching of the
interior metric to the exterior metric at the surface of the star. Similarly, in the
exterior of the star the h2(r) perturbation functions has the form

h2(r) = J 2
K

M∗r3

(
1 + M∗

r

)
+ AQ2

2

(
r

M∗
− 1

)
, (13.11)

where Q2
2(x) is the associated Legendre polynomial of the second kind4 and A is

an integration constant that is determined by the matching of the interior solution
to the exterior solution. From the asymptotic expansion of −(1 + gtt )/2, one can
read the quadrupole as the coefficient in front of the P2/r

3 term, which is QK =
−J 2

K/M∗ − 8
5AM3∗ .

In a similar way to the slowly rotating models, the tidally deformed models are
assumed to be slightly perturbed from sphericity due to the presence of an external
deforming quadrupolar field. For an l = 2, static, even-parity perturbation, the
perturbed metric will take the form,

ds2 = −eν(r) [1 + 2h2P2] dt
2 + 1 + 2m2P2

1 − 2M(r)/r
dr2 + r2 [1 + 2K2P2]

(
dθ2 + sin2 θdφ2

)
,

(13.12)

where we have introduced again the perturbation functions and assumed zero rota-
tion (Hinderer 2008). The tidal Love number is defined to be the deformability, i.e.,
the response, of a configuration for a given external deforming force. Specifically,
for a given external tidal field E tid that produces a quadrupolar deformation of the
star Qtid, the tidal Love number is defined to be,

λ ≡ −Qtid

E tid . (13.13)

In addition to this definition, one can define the tidal apsidal constant and the
dimensionless tidal Love number as

k2 ≡ 3

2

λ

R5∗
,

λ̄ ≡ λ

M5∗
= 2

3
k2C−5, (13.14)

respectively. The quadrupolar response and the external quadrupole tidal field can
both be extracted from the form of the metric perturbation h2(r) outside the star.
One should be careful though in this case because the exterior to the star is
not an asymptotically flat spacetime as it was in the rotating case. Instead, the

4The polynomial here is defined as Q2
2(x) = 3

2

(
x2 − 1

)
ln

(
x+1
x−1

)
+ 5x−3x3

x2−1



13 Universal Relations and Alternative Gravity Theories 745

asymptotic behaviour is determined by the external quadrupolar field that produces
the deformation. In the exterior of the star the h2(r) perturbation function has in this
case the form,

h2(r) = 2c1Q
2
2

(
r

M∗
− 1

)
+ c2

(
r

M∗

)2 (
1 − 2M∗

r

)
, (13.15)

where again the constants c1 and c2 are integration constants that are determined
from the matching conditions at the surface of the star. To identify the external tidal
field and the quadrupolar response of the star, one again expands −(1 + gtt )/2 in
powers of r . In this case, the expansion will have additional terms with positive
powers of r due to the external tidal field.5 The expansion will have the form,

− 1 + gtt

2
= −M∗

r
− Q

r3
P2 + · · · + 1

3
r2E tidP2 + · · · , (13.16)

and by comparing this to the corresponding expansion of −(1 + gtt )/2, where gtt

is evaluated from Eqs. (13.12) and (13.15), one finds that Qtid = − 16
5 M3∗c1 and

E tid = 3M−2∗ c2. Therefore, from the definition of the tidal love number and the
tidal apsidal constant, we have in terms of the integration constants c1 and c2 that,

λ = 16

15
M5∗

c1

c2
⇒ λ̄ = 16

15

c1

c2
, and k2 = 8

5

c1

c2
C5, (13.17)

where the ratio c1/c2 depends on the compactness and the quantity y =
R∗h′

2(R∗)/h2(R∗) at the surface of the star.
Having all the relevant quantities at hand, Yagi and Yunes calculated sequences

of neutron star models using various cold realistic equations of state6 and found that
the quantities, normalised moment of inertia: Ī ≡ I/M3∗ , normalised Love number:
λ̄ ≡ λ/M5∗ , and normalised quadrupole: Q̄ ≡ −Q/(χ2M3∗ ),7 where χ = J/M2∗ ,
are related in an equation of state independent way following the relation

ln yi = ai + bi ln xi + ci(ln xi)
2 + di(ln xi)

3 + ei(ln xi)
4, (13.18)

where the different coefficients depend on the pair of quantities to be related and
are given in Table 13.1. The relations presented here, i.e., the I-Love, I-Q and Q-

5We should also note that the expansion in this case is not at infinity. It takes place at a buffer
region outside the surface of the star and inside a radius given by the external field’s characteristic
curvature radius.
6See also Lattimer and Lim (2013) where the results were extended to a wider range of equations
of state. We remind here that these results apply to quark stars as well.
7The minus sign here is due to the fact that rotating neutron stars tend to be oblate due to rotation
which gives a negative value for the quadrupole. On the other hand, an object that is prolate has a
positive quadrupole.
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Table 13.1 Numerical coefficients for the fitting formula given in Eq. (13.18)

yi xi ai bi ci di ei

Ī λ̄ 1.496 0.05951 0.02238 −6.953×10−4 8.345 × 10−6

Ī Q̄ 1.393 0.5471 0.03028 0.01926 4.434 × 10−4

Q̄ λ̄ 0.1940 0.09163 0.04812 −4.283×10−3 1.245 × 10−4

¯δM λ̄ −0.703 0.255 −0.045 −5.707×10−4 2.207 × 10−4

This is an updated version of the table as it appears in Yagi and Yunes (2017a), where a very wide
range of equations of state has been taken into account. In the table we also give the universal
relation for the mass correction ¯δM presented in Reina et al. (2017)
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Fig. 13.2 I-Love, I-Q and Q-Love plots for three typical equations of state. The solid lines
correspond to the fits given in Table 13.1

Love relations, are equation of state independent in the sense that for any given
realistic equation of state, the calculated quantities follow the corresponding fits
given by Eq. (13.18) and Table 13.1 to an accuracy better than O(1%) in the range
of applicability of the fit, which is for neutron stars with masses slightly less than
1M� up to the maximum mass of the given equation of state. The fits with the data
from some typical equations of state are given in Fig. 13.2.

As it was previously mentioned, the moment of inertia by definition (within
the slow rotation scheme) does not depend on the rotation parameter ε, while the
normalised quadrupole −Q/(χ2M3∗) is defined in such a way that the rotation
parameter is scaled out. Similarly, the tidal love number is defined in such a way that
it is independent of the strength of the external tidal field and characterises the given
neutron star model. This means that essentially the quantities Ī , λ̄, and Q̄ form one
parameter families characterised by the central density of the neutron star models.
We should also note that the normalisation of the various quantities in the initial
I-Love-Q formulation was performed with the masses M∗ of the corresponding
spherical configurations. From a practical perspective this could be considered to
be problematic, since when one observes a neutron star and measures it’s mass, that
mass is not the mass M∗ of the spherical configuration but instead it is the mass
M = M∗ + ε2δMK . Nevertheless, in the slowly rotating and small deformations
case δMK/M∗ is of the order of 10% and one can also assume values of ε up to
10%, which make any deviations from the given relations to be of the order of 10−3.
We will revisit this point later on when we will discuss rapidly rotating neutron stars.
Nevertheless, recent work (Reina et al. 2017) has shown that the mass correction,
normalised as ¯δM ≡ M3∗δMK/J 2

K , also follows a universal relation, extending in
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this way the original family of I-Love-Q relations to include the mass correction as
well.

Extensions Beyond the Initial I-Love-Q Formulation The discussion so far has
been about unmagnetised isolated neutron stars, in the sense that we have taken into
account deformations that are only due to rotation or due to some static external
tidal field, the latter of which is not what one would expect if we assumed that the
star was part of some binary for example and the source of the tidal field were a
companion star. The effects of adding a magnetic field were studied in Haskell et al.
(2014) while the effects of having the neutron star being part of a binary system
were studied in Maselli et al. (2013).

In Haskell et al. (2014), Haskell et al. investigated three magnetic field configura-
tions. The first was a purely poloidal magnetic field configuration, the second was a
purely toroidal magnetic field configuration and finally the third was a twisted-torus
configuration. It is known that magnetic fields can cause deformations to neutron
stars which depend on the magnetic field configuration. It is also known that neutron
stars can be strongly magnetised with magnetic fields at the surface as high as 1012G
for pulsars and 1015G for magnetars, while the magnetic field in the interior can be
even stronger than that on the surface. Therefore, for high enough magnetic fields
and sufficiently slow rotation, the deformations due to magnetic fields can dominate
those due to rotation.

When the magnetic field is purely poloidal, in the Newtonian limit and for an
n = 1 rotating polytrope, the normalised quadrupole Q̄ can be expressed in terms
of the normalised moment of inertia Ī as,

Q̄ ≈ 4.9Ī 1/2 + 10−3Ī

(
Bp

1012G

)2 (
P

s

)2

, (13.19)

where the first term is the induced quadrupole due to rotation, while the second term
is the induced quadrupole due to the magnetic field, Bp is the field at the pole and
P is the rotation period of the star. Similarly for a purely toroidal magnetic field the
reduced quadrupole is,

Q̄ ≈ 4.9Ī 1/2 − 3 × 10−5Ī

( 〈B〉
1012G

)2 (
P

s

)2

, (13.20)

where 〈B〉 is the field average over the volume of the star.8 There are a few things
that one notices from the above equations. The first is that for the purely toroidal
case the magnetic field tends to make the star more prolate in contrast to rotation and
the effect the magnetic field has in the purely poloidal case. The second is that the
induced quadrupole is proportional to the square of the productB ×P and therefore

8We should note that the numerical coefficients in these expressions depend on the specific
configuration.
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the effect is more prominent for larger periods, i.e., slower rotation rates. Finally,
one notices that the effect of the magnetic field is suppressed in relation to the effect
of rotation by factors of 10−3 and 10−5 respectively. These observations also hold in
the relativistic case studied in Haskell et al. (2014)where it was found that the purely
toroidal and purely poloidal magnetic field configurations give an approximately
universal relation between Q̄ and Ī which agrees with the unmagnetised case.

However, the purely toroidal or purely poloidal configurations are both known
to be dynamically unstable (although, the crust could stabilise such configurations
as long as it does not break). For this reason a more realistic configuration was also
studied in Haskell et al. (2014), that of a twisted torus, where both toroidal and
poloidal components of the magnetic field are present. In this case in addition to
the strength of the magnetic field and the rotational period, the results also depend
on the ratio of the toroidal-to-total magnetic field energy, i.e., on the particulars of
the configuration of the magnetic field, while the Ī − Q̄ relation also acquires some
equation of state dependence. Nevertheless, the I-Love-Q universality is preserved
as long as the magnetic field is not too strong, i.e., B � 1012G, and the neutron star
is not rotating too slowly, i.e., P � 10s.

In Maselli et al. (2013) Maselli et al. investigate what are the effects on the Ī − λ̄

relation if one were to assume the more realistic situation of having dynamic tides
caused by a companion star in a binary system. The method used to model tidal
deformations in compact binaries was the Post-Newtonian-Affine approach. It was
shown that the Ī − λ̄ relation is not the same as the one in the stationary case and
that the new relation depends on the inspiral frequency. However, for any given
inspiral frequency the Ī − λ̄ relation is insensitive to the equation of state with an
accuracy of a few %. The fits for the Ī − λ̄ relations for the different gravitational
wave frequencies fGW that the system would emit, that are related to the binary
inspiral frequency as fGW = 2f , are given in Table 13.2. These fits are accurate to
within 2% for every frequency, while there is also an overall fit given which is valid
up to a gravitational wave frequency of ∼ 900Hz and accurate to within 5% for any
frequency in that range.

The tidal fields and the corresponding tidal deformations that we have discussed
so far are of the so called “gravito-electric” type and they are the relativistic exten-

Table 13.2 Numerical coefficients for the binary Ī − λ̄ fitting formula, given in Eq. (13.18) with
yi = Ī and xi = λ̄

fGW ai bi ci di ei

170 1.54 −3.73 × 10−2 5.49 × 10−2 −4.78 × 10−3 1.87 × 10−4

300 1.58 −6.53 × 10−2 6.26 × 10−2 −5.68 × 10−3 2.26 × 10−4

500 1.60 −8.34 × 10−2 6.83 × 10−2 −6.39 × 10−3 2.59 × 10−4

700 1.64 −1.18 × 10−1 7.89 × 10−2 −7.69 × 10−3 3.18 × 10−4

800 1.68 −1.46 × 10−1 8.76 × 10−2 −8.77 × 10−3 3.68 × 10−4

Any 1.95 −3.73 × 10−1 1.55 × 10−2 −1.75 × 10−3 7.75 × 10−4

The different rows correspond to different inspiral frequencies, while the final row is an overall fit.
The table is from (Maselli et al. 2013)
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sions of their Newtonian counterparts. In general relativity though there can exist
“gravito-magnetic” tidal fields and deformations which result to gravitomagnetic
Love numbers. In order to allow for the fullest possible effect in the response
of a compact object under a gravitomagnetic tidal field one needs to go beyond
configurations that are in strict hydrostatic equilibrium (no internal motion of the
fluid), i.e., allow for the fluid to be in an irrotational state. This is because one
expects that the external gravitomagnetic tidal field in a binary system would also
drive internal fluid motion in the star. Allowing for irrotational fluid flows inside
the stars gives a dramatically different behaviour for the Love numbers with respect
to the restricted hydrostatic case. The magnetic Love numbers for irrotational stars
were studied by Landry and Poisson in (Landry and Poisson 2015) (where one can
find further references to previous work). Furthermore Delsate explored in Delsate
(2015) the existence of a universal relation between the � = 2 gravitomagnetic Love
number and the moment of inertia. As in the case of gravitoelectric Love numbers,
the gravitomagnetic Love numbers can be defined as the coefficients σ� that relate
the tidally induced response for a given external tidal field. Delsate found that in
the case of irrotational stars there exists a |k̄mag

2 | − Ī universal relation, where
k̄
mag

2 = σ̄2(2C)4 is analogous to the tidal apsidal constant for the gravitoelectric
Love number, which is equation of state independent with a variation less than 5%.

Another significant extension of the initial I-Love-Q analysis (performed in slow
rotation) was the investigation of the Ī −Q̄ relation for rapidly rotating neutron stars
with rotation rates as high as that of the mass shedding limit. Doneva et al. (2013a)
explored the Ī − Q̄ relation for neutron and quark stars rotating at different rotation
rates, from a few hundred Hz up to kHz frequencies close to the Kepler limit,
using models numerically constructed with the RNS numerical code (Stergioulas
and Friedman 1995). They found that the Ī − Q̄ relation changes with rotation
frequency f and in addition for higher frequencies there is an increasing scattering
of the different equations of state. Nevertheless Doneva et al. (2013a) produced
a general fit that captures the behaviour of neutron star models constructed with
modern realistic equations of state and for different rotation rates that has the form,

ln Ī = a0 + a1 ln Q̄ + a2(ln Q̄)2, where ai = c0 + c1

(
f

kHz

)
+ c2

(
f

kHz

)2

+ c3

(
f

kHz

)3

.

(13.21)

The coefficients of the fit are given in Table 13.3, while in Fig. 13.3 one can see
the fit for the rapidly rotating models for different frequencies compared to the

Table 13.3 Numerical
coefficients for the fitting
formula given in Eq. (13.21)

ai c0 c1 c2 c3

a0 1.406 −0.051 0.154 −0.131

a1 0.489 0.183 −0.562 0.471

a2 0.098 −0.136 0.463 −0.273
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Fig. 13.3 I-Q plots for three rotation frequencies and various equations of state. The solid red
lines correspond to the I-Q fit given in Doneva et al. (2013a), while the solid blue correspond to
the slow rotation I-Q fit given in Table 13.1. One can see that there is some scatter between the
different equations of state that was not present in the I-Q relation of Fig. 13.2
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Fig. 13.4 I-Q plots for three spin parameters and various equations of state. The solid red lines
correspond to the I-Q fit given in Pappas and Apostolatos (2014), while the solid blue correspond
to the slow rotation I-Q fit given in Table 13.1. Unlike in Fig. 13.3 there is no scattering between
the equations of state when the parameterisation is done with the spin parameter χ = J/M2

slow rotation fit. One can also notice the scattering around the fit for the different
equations of state and the different rotation frequencies.

A different approach in parameterising rotation for rapidly rotating models
was taken by Pappas and Apostolatos in Pappas and Apostolatos (2014), where
the rotation was parameterised in terms of the spin parameter χ = J/M2, a
dimensionless quantity, instead of the rotation frequency f . By comparing models
of equal spin parameter, Pappas and Apostolatos found that the different equations
of state exhibit no noticeable scattering as one can see in Fig. 13.4. They also
produced a fit for the I-Q relation in terms of the spin parameter, which has the
form,

√
Ī = 2.16 + (0.97 − 0.14χ + 1.6χ2)

(√
Q̄ − 1.13

)
+ (0.09 + 0.23χ − 0.54χ2)

(√
Q̄ − 1.13

)2

,

(13.22)

and is accurate to better than 1%. What becomes clear from the two different
approaches is that the “universality” of the behaviour is sensitive to the choice that
one makes in parameterising an effect. In this case, parameterising rotation with
the spin parameter preserves the equation of state independence of the description,
while the rotation frequency breaks it. Along these lines, Chakrabarti et al. explored
in Chakrabarti et al. (2014) different ways of parameterising rotation so as to
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preserve the equation of state independence of the I-Q relation. Specifically, in
addition to using the spin parameter, Chakrabarti et al. also explored relations that
are parameterised with respect to R×f andM×f , whereR andM are the radii and
masses of the corresponding models, and found that these dimensionless quantities
are also good parameters for preserving equation of state independence, although
the best choice remains the spin parameter.

At this point there is one more thing that we should note, with respect to an
earlier discussion on the normalisation of the various quantities in the initial slow
rotation approach and in view of the results from rapid rotation. As one can see
in Fig. 13.4, the models with spin parameter χ = 0.22 (left plot) are very close
to the curve for the slow rotation I-Q fit.9 But the normalisation for the moment
of inertia and the quadrupole in this case is performed with the total mass of the
numerically constructed model. Nevertheless, the agreement with the slow rotation
results and the normalisation with respect to the non-rotating TOV mass is very
good, providing thus more credibility to our earlier argument on the insensitivity
of the result to whether one uses the TOV or the corrected mass in normalising the
initial I-Love-Q relations.

Applications The existence of the I-Love-Q universal relations is of theoretical
interest by itself, but the most interesting aspect is the potential applications of
such relations. There are two ways in which these relations can be useful: (1) one
could use them to make indirect measurements of quantities that are difficult to
measure, i.e., assume that the relations hold and use them as tools to do physics and
astrophysics, or (2) test their validity by measuring more than one of these quantities
and in this way use them to test the assumptions on which the I-Love-Q relations
are based. Both of these are very interesting prospects.

(1) Assuming the validity of the I-Love-Q relations, one could for example use a
binary pulsar system to measure the moment of inertia (see for example Lattimer
and Schutz 2005) and from that, using the I-Q relation infer the quadrupole of
the neutron star. Such a quadrupole measurement together with the simultaneous
measurement of the mass and the angular momentum of the neutron star could be
used to constrain the equation of state, by taking advantage of the fact that different
equations of state constitute a different surface in an (M, χ, Q̄) parameter space, as
described in Pappas and Apostolatos (2014). Another application could be to use the
Q-Love relation to break degeneracies between individual spins and quadrupoles10

in the analysis of the waveforms of the gravitational waves emitted from the inspiral
of neutron star binaries, along the lines given in Yagi and Yunes (2013a); Yagi and
Yunes (2013b).

9In Chakrabarti et al. (2014) the authors arrive at the same result with χ values as low as 0.1, which
get even closer to the slow rotation fit.
10The degeneracy is in the gravitational wave phase where a spin-spin coupling term has a
contribution at the same order as the quadrupole term.
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Returning to the equation of state measurement front, another application of I-
Love-Q relations, as described by Silva et al. (2016), could be the estimation of
parameters of the equation of state from electromagnetic observations of binary
pulsars or gravitational wave observations of binary inspirals, from systems where
the members are low mass neutron stars. Specifically, Silva et al. (using various
equations of state) found that for low mass neutron stars, quantities like Ī , Q̄ and
λ̄ can be fitted by simple functions of the central density ρc and of the dimensional

parameter η = (
K0L

2
)1/3

, where K0 is the incompressibility of symmetric nuclear
matter and L is the slope of the symmetry energy at saturation density (all three
parameters have units of energy). A measurement of any two of Ī , Q̄ or λ̄ could be
used to constrain η and ρc and in this way constrain the parameters of the equation
of state. Alternatively, the measurement of one of the quantities and the use of the
I-Love-Q relations could also provide similar constraints. Finally, one could use
the simultaneous measurement of two or more of these quantities, the I-Love-Q
relations and the relations in Silva et al. (2016) to perform consistency checks on
the assumptions entering the modelling of the equation of state.

(2) Testing the validity of the I-Love-Q relations offers another possibility for
testing the equation of state. As it has been demonstrated (Yagi et al. 2014a; Sham
et al. 2015; Chan et al. 2015), the universality of the I-Love-Q relations comes from
properties of the equation of state that are related to the fact that the equation of
state for compact objects is close to being incompressible. Deviations from being
incompressible would change the different relations and in principle could also
introduce some spin dependence. Therefore, by measuring more than one of the
Ī , Q̄ or λ̄ one could test the validity of the I-Love-Q relations and in this way test
whether the equation of state is close to our current models or not. One possibility
for measuring more than one quantities is to combine astrophysical observations
with gravitational wave observations. So for example, pulsar timing could provide
a measurement of the moment of inertia while gravitational wave observations
could provide a measurement of the tidal Love number (Yagi and Yunes 2013a).
Another possibility has been recently proposed (Chirenti et al. 2017), where the
analysis of gravitational waves from highly eccentric binary systems, where the
f -mode is excited by close encounters between the members of the binary, could
provide simultaneous measurements of the masses, moments of inertia, and tidal
Love numbers of the members of the system.

Another prospect is to test general relativity by testing the I-Love-Q relations.
In principle one would expect that for different theories of gravity, neutron stars
could follow different I-Love-Q relations or no I-Love-Q relations. Therefore by
measuring combinations of the Ī , Q̄ or λ̄, one could test for deviations from general
relativity or even identify an alternative theory of gravity. These prospects will
be further discussed after the discussion of neutron stars in alternative theories of
gravity.



13 Universal Relations and Alternative Gravity Theories 753

13.2.1.3 Multipole Moments 3-Hair

The spacetime around a rotating neutron star is a stationary and axisymmetric
spacetime, i.e., there exist two Killing vectors, one timelike ξa which characterises
the spacetime’s symmetry with respect to time translations and one spacelike ηa

which characterises the spacetime’s symmetry with respect to rotations around an
axis which in this case is the stars’ axis of rotation. In addition, for isolated stars, it is
assumed that the spacetime is asymptotically flat. Under these general assumptions
the line element for the spacetime of a rotating neutron star can take the form

ds2 = −e2νdt2 + r2(1 − μ2)B2e−2ν(dϕ − ωdt)2 + e2a(dr2 + r2

1 − μ2
dμ2)

(13.23)

where μ = cos θ and the metric functions ν, B, ω, and a are all functions of
(r, μ). For such a spacetime one can define relativistic multipole moments, which
can characterise the structure and the properties of the spacetime, as the multipole
moments in Newtonian theory characterise a Newtonian potential. As one would
expect, the moments in the two cases are not completely equivalent, with one
difference between relativistic and Newtonian moments being that in the relativistic
case there exist angular momentum or mass current moments in addition to the
usual mass moments. Another one is that the relativistic moments are also sourced
by geometry in addition to masses and currents, a consequence of the non-linear
nature of the theory.

There exist a few different ways of defining the relativistic multipole moments
of a spacetime, such as the Geroch and Hansen algorithm for stationary spacetimes
(Geroch 1970a,b; Hansen 1974) which was later customised to axisymmetric
spacetimes by Fodor et al. (1989), or alternatively the Thorne algorithm that
was mentioned earlier (Thorne 1980). These formalisms give essentially the same
moments related by a multiplicative factor as,11

M� = (2� − 1)!!MT
� and J� = 2�(2� − 1)!!

2� + 1
J T
� (13.24)

(for a review see Quevedo 1990). While the Thorne formalism seems easier and
more intuitive, because it is based on identifying the coefficients of the asymptotic
expansion of the metric functions, which reminds the Newtonian case, in practice
finding the appropriate coordinate system for calculating higher order moments can

11 Multipole moments in general are tensorial quantities. The rank of the tensor is given by the
order of the corresponding multipole moment. In the case that we also have axisymmetry, the
moments are multiples of the symmetric trace-free tensor product of the axis vector na with itself.
In this case therefore one can define scalar moments as P� = 1/(�!)Pi1 ...i�n

i1 . . . ni� , where P�

is the �-th order moment. Since we will discuss about stationary and axisymmetric spacetimes we
will only talk about the scalar moments.
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be very difficult. On the other hand the Geroch–Hansen formalism, even though it
is more involved mathematically, in practice it is more algorithmic. Furthermore,
it’s reformulation in terms of the Ernst potential in the case of stationary and
axisymmetric spacetimes by Fodor et al., makes the calculation of multipole
moments even more straightforward. For the different applications in the literature
so far, where the multipole moments of numerical neutron star spacetimes have been
calculated, people have used the properties of circular equatorial geodesics and their
relation to the moments (Laarakkers and Poisson 1999; Pappas and Apostolatos
2012a,b, 2013a; Yagi et al. 2014b). This has been based on Ryan’s formalism (Ryan
1995) for relating the various relativistic precession frequencies between them and
to other orbital properties, in terms of the multipole moments spectrum of the
background spacetime. Although this approach has served us well in calculating the
multipole moments of numerical spacetimes, it is somewhat limited and therefore
here we will briefly present a more straightforward and rigorous way of calculating
the moments of stationary and axisymmetric numerical spacetimes, that has the
additional benefit of providing higher order moments in a less computationally
expensive way.

As mentioned earlier, the spacetime around a neutron star is a stationary,
axisymmetric, vacuum spacetime that admits the Killing vectors ξa (timelike) and
ηa (spacelike). Using the timelike Killing vector one can define the two scalar
quantities f and ψ through the equations,

f = −ξaξa, ψ,a = εabcdξ
bξc;d, (13.25)

where f is related to the norm of the Killing vector, while ψ is the scalar twist of
the Killing vector. In the Ernst reformulation of the Einstein Field Equations these
two scalar quantities define the complex Ernst potential E = f + iψ . If one has the
Ernst potential for a given spacetime in terms of the Weyl–Papapetrou coordinates
(ρ, z) then one can define along the axis of symmetry ρ = 0 the potential

ξ̃ (z̄) = (1/z̄)
1 − E(z̄)
1 + E(z̄) =

∞∑

j=0

mj z̄
j , (13.26)

in terms of the coordinate z̄ = 1/z which is centred at infinity. The different
coefficients in the expansion of ξ̃ (z̄) are the parameters mi that give the moments
of stationary and axisymmetric spacetimes as they were calculated by Fodor et al.
(1989). The process of calculating the moments therefore involves initially two
steps, first the calculation of the Ernst potential and then the transformation of the
metric coordinates to Weyl–Papapetrou coordinates.

Returning to neutron star spacetimes, the metric functions in (13.23) have an
asymptotic expansion outside the star of the form

ν =
∞∑

l=0

( ∞∑

k=0

ν2l,k

r2l+1+k

)

P2l(μ), (13.27)
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ω =
∞∑

l=1

( ∞∑

k=0

ω2l−1,k

r2l+1+k

)
dP2l−1(μ)

dμ
, (13.28)

B = 1 +
(π

2

)1/2 ∞∑

l=0

B2l

r2l+2 T
1/2
2l (μ), (13.29)

where Pl(μ) are the Legendre polynomials, T 1/2
2l (μ) are the Gegenbauer polyno-

mials,12 and the various coefficients are not all independent, with the constraints
coming from the field equations in vacuum, which in the frame of the zero angular
momentum observers take the form,

D · (BDν) = 1

2
r2 sin2 θB3e−4νDω · Dω, (13.30)

D · (r2 sin2 θB3e−4νDω) = 0, (13.31)

D · (r sin θDB) = 0, (13.32)

where D is a flat space 3-dimensional derivative operator in spherical coordinates
(see Butterworth and Ipser 1976). As an indicative example of how the coefficients
are constrained, we have from the field equations that ν0,1 = 0, which means
essentially that there is no “mass dipole” contribution in the metric function ν, while
the next coefficient is constrained to be ν0,2 = − 1

3B0ν0,0. We should note here that
the coefficient ν0,0, as one can see from the asymptotic expansion of ν, gives the
mass, i.e., ν0,0 = −M , while similarly the angular momentum comes from the
asymptotic expansion of ω, which gives ω1,0 = 2J . Coefficients such as ν0,0, ν2,0,
ω1,0, ω3,0, and so on, as well as all the B2l coefficients, are not constrained by the
field equations and are free parameters of the external spacetime that are determined
by the characteristics of the fluid configuration.

Having the metric in terms of μ and as an expansion in 1/r one can proceed to
calculate the scalar twist from Eq. (13.25). The definition of the scalar twist results
in two equations, one for ψ,r and one for ψ,μ. Since the calculation is done using
an expansion in 1/r , the resulting scalar twist will be accurate up to some order in
1/r and can be evaluated as

ψ(r, μ) = −
∫ ∞

r

ψ,r |μ=const.dr, (13.33)

where the asymptotic condition is that ψ(r → ∞, μ) = 0. With the scalar twist
at hand, the Ernst potential will be given in terms of the angular coordinate μ and
an expansion in inverse powers of r . By further setting μ = 1 we have the Ernst

12The Gegenbauer polynomials are given by the definition T
1/2
l (μ) = (−1)l�(l+2)

2l+1/2l!�(l+3/2)
(1 −

μ2)−1/2 dl

dμl (1 − μ2)l+1/2.
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potential along the axis. What remains is to express the r coordinate in terms of the
Weyl–Papapetrou coordinate z along the axis of symmetry. This is done following
the procedure given in Pappas and Apostolatos (2008). By integrating along curves
of constant r from the equatorial plane up to the axis of symmetry and inverting the
resulting expansion to solve for r we have,

z =
∫ 1

0
dμ(r2B,r + rB) ⇒ r = z + B0

z
+ B2 − B2

0

z3
+ 2B3

0 − 4B0B2 + B4

z5
+ . . .

(13.34)

In this way we can calculate the Ernst potential along the axis of symmetry for a
spacetime given in the form of a quasi-isotropic metric as in Eq. (13.23). From that
Ernst potential one can calculate the moments from the coefficients of the expansion
of ξ̃ . The resulting first few multipole moments are,

M0 = −ν0,0, M2 = 1

3
(4B0ν0,0+ν30,0−3ν2,0),

M4 = −ν4,0−32

21
B0ν

3
0,0−

16

5
B2
0ν0,0+

64

35
B2ν0,0+24

7
B0ν2,0+ 3

70
ν0,0ω

2
1,0−

19

105
ν50,0+

8

7
ν2,0ν

2
0,0,

J1 = ω1,0

2
, J3 = − 3

10
((4B0+ν20,0)ω1,0−5ω3,0),

J5 = 5

2
ω5,0+104

63
B0ν

2
0,0ω1,0+24

7
B2
0ω1,0−32

21
B2ω1,0−20

3
B0ω3,0+ 25

126
ν40,0ω1,0−5

3
ν20,0ω3,0

− 5

21
ν2,0ν0,0ω1,0− 1

28
ω3
1,0. (13.35)

Multipole Moments of Neutron Stars and 3-Hair (M, χ, Q̄) Relations The
calculation of the moments up to the mass hexadecapole M4 has been numerically
implemented so far for a wide variety of equations of state and for both slowly
and rapidly rotating neutron (and quark) stars (Pappas and Apostolatos 2012a,b;
Urbanec et al. 2013; Pappas and Apostolatos 2014; Yagi et al. 2014b). One very
interesting property of the neutron star multipole moments that has been discovered
is that they follow a simple scaling with the spin parameter χ and the massM that is
the same as the one that the moments of rotating black holes follow, i.e., the higher
than the angular momentum moments behave as

M2 = aχ2M3, J3 = βχ3M4, M4 = γχ4M5, (13.36)

where for Kerr black holes the mass moments behave as M2n = (iχ)2nM2n+1

and the mass current moments behave as iJ2n+1 = (iχ)2n+1M2n+2, where i is
the imaginary unit. Table 13.4 gives the values of the coefficients a, β, and γ for
some typical equations of state. As one can see, while for Kerr black holes these
coefficients are equal to ±1, in the case of neutron stars their magnitude can be
quite larger than that. An immediate implication of this is that the spacetime around
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neutron stars can be quite different from that of Kerr black holes. One should notice
from Table 13.4 that softer equations of state, like AU, FPS and UU, produce
smaller values for the quadrupole and the higher order moments than the stiffer
equations of state, like Sly4, APR and L. Also, as one increases the central density
and approaches the models close to the maximum mass, then the deviations of the
moments from their corresponding Kerr values become smaller, which means that
in these cases the neutron star spacetime behaves more like a Kerr spacetime. We
should note though that neutron star models never quite reach to the Kerr point
where −a = −β = γ = 1.

If we further define the reduced moments, Q̄ ≡ M̄2 ≡ − M2
χ2M3 , J̄3 ≡ − J3

χ3M4 ,

and M̄4 ≡ M4
χ4M5 , then it was shown in Pappas and Apostolatos (2014); Yagi et al.

(2014b) that both J̄3 and M̄4 are related to Q̄ following universal relations, i.e.,
relations that are equation of state independent. These relations can be seen plotted
in Fig. 13.5. As it can be seen from the two plots, the points seem to follow a power-
law with some break appearing towards the lower values of the reduced quadrupole,
which correspond to the most compact models close to the maximum mass limit.
The two curves can be fitted with an expression of the form,

yi = A + B1x
n1 + B2x

n2, (13.37)

where yi can be either (J̄3)1/3 or (M̄4)
1/4, while x is (Q̄)1/2. The two fits presented

in Table 13.5 have been performed for neutron star models only and deviate from
the models by less than 4–5%. In Yagi et al. (2014b); Yagi and Yunes (2017a) one
can find fits for the relations J̄3 − Q̄ and M̄4 − Q̄ that also include quark star
models. Including quark stars results in a slightly wider spread of the data points,
but nevertheless the relations between the moments remain remarkably equation
of state independent. We should note here that the range of quadrupoles plotted in
Fig. 13.5 is between the most compact neutron stars close to the maximum mass
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Fig. 13.5 Relations between the higher order moments and the mass quadrupole for different
equations of state. The solid lines correspond to the best fits using a double power-law given in
Table 13.5. The J̄3-Q̄ fit comes from Pappas and Apostolatos (2014), while the M̄4-Q̄ fit comes
from Pappas (2017)
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Table 13.5 Numerical coefficients for the fitting formula given in Eq. (13.37)

yi x A B1 B2 n1 n2

(J̄3)
1/3 (Q̄)1/2 −4.82 5.83 0.024 0.205 1.93

(M̄4)
1/4 (Q̄)1/2 −4.749 0.27613 5.5168 1.5146 0.22229

limit down to neutron stars with masses a little less than 1M�, i.e., within the entire
observed mass range.

The 3-hair universal relations have been studied in both the slow rotation limit,
using a Hartle and Thorne expansion in terms of rotation up to the fourth order so
that M4 can be included in the calculation, as well as for rapidly rotating neutron
stars in full numerical relativity using both LORENE and RNS numerical codes.
The results from all approaches have been in full agreement.

Newtonian Insights 3-hair relations where also studied in Newtonian theory by
Stein et al. (2014), providing some insight on the possible origin of this universality,
as well as a very elegant result. Stein et al. studied the Newtonian limit of multipole
moments for a rotating neutron star by using the definitions,

M� = 2π
∫ π

0

∫ R(θ)

0
ρ(r, θ)P�(cos θ) sin θdθr�+2dr, (13.38)

J� = 4π

� + 1

∫ π

0

∫ R(θ)

0

ρ(r, θ)

dP�(cos θ)

d(cos θ)
sin3 θdθr�+3dr, (13.39)

where R(θ) is the surface of the star as a function of the polar angle θ and ρ(r, θ)

is the density inside the star. Since the star is rotating it is assumed to have axial
symmetry and in addition we also assume reflection symmetry with respect to the
equatorial plane. These symmetries require that the odd mass moments and the even
angular momentum moments are zero. Of course the angular momentum moments
have no physical meaning in Newtonian theory but could be formally defined as the
Newtonian limit of their relativistic counterparts.

Stein et al. in order to make progress with the analytic calculation of the
moments introduced the following two assumptions, (1) the isodensity surfaces
inside the star are self-similar ellipsoids with a constant eccentricity, and (2) the
density as a function of the isodensity radius r̃ for a rotating configurations is
the same as the corresponding radius of a non-rotating configuration with the
same volume. For these two assumptions, the eccentricity is defined as e =√
1 − (semi-minor axis)2/(semi-major axis)2, while the isodensity radius is defined

as r̃ ≡ r/�(θ), where

�(θ) =
√

1 − e2

1 − e2 sin2 θ
. (13.40)
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The first assumption is strictly true only for constant density stars, i.e., for n = 0
polytropes,13 which give Maclaurin spheroides. In any other case the eccentricity
of the iso-density surfaces varies with the radius inside the star. Nevertheless,
for slowly rotating and compact objects, where the the deviations from sphericity
are not large and the equation of state is close to the incompressible limit, these
assumptions turn out to be good approximations.

Under the aforementioned assumptions, the integrals for the multipole moments
separate to an angular and a radial part and can be given by the expressions,

M� = 2πI�,3R�, and J� = 4π�

2� + 1

(I�−1,5 − I�+1,3)R�+1, (13.41)

where the radial and angular integrals are,

R� ≡
∫ a

0
ρ(r̃)r̃�+2dr̃, and I�,k ≡

∫ 1

−1
�(μ)�+kP�(μ)dμ, (13.42)

where μ ≡ cos θ and a is the equatorial radius of the surface. The angular
integral depends only on the eccentricity e, while the radial integral depends on
the eccentricity and the mass distribution. Using the second assumption, the density
profile can be expressed in terms of a non-rotating model. Assuming a polytropic
equation of state, the density will be given by solving the Lane-Emden equation

1

ξ2

d

dξ

(
ξ2

dϑ

dξ

)
+ ϑn = 0, (13.43)

where n is the polytropic index, the function ϑ is related to the density as ρ = ρcϑ
n,

and the radial coordinate is r = αξ with ξ being dimensionless and α being a length
scale that depends on the equation of state.14 For any choice of the polytropic index
corresponds a solution of the Lane-Emden ϑ(ξ) that has a surface when ϑ(ξ1) = 0.
Substituting such a solution in the integrals for the moments, we have that

2� + 2 = (−1)�+1

2� + 3

e2�+2

(1 − e2)
�+1
3

Rn,2+2�

ξ2�+4
1 |ϑ ′(ξ1)|

M2�+3

C2�+2 ,

J2�+1 = (−1)�

2� + 3

2
e2�

(1 − e2)
�+1
3

Rn,2+2�

ξ2�+4
1 |ϑ ′(ξ1)|

M2�+3

C2�+2
, (13.44)

13A polytropic equation of state has the form P = kρ� , where the exponent can be written as
� = 1 + 1/n in terms of the polytropic index n.
14For n = 0 Lane–Emden admits an exact solution which is ϑ = 1 − 1

6 ξ
2 with a surface at

ξ1 = √
6, while for n = 1 it admits the solution ϑ = sin ξ

ξ
with a surface at ξ1 = π .
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where we have defined the integralRn,� ≡ ∫ ξ1
0 ϑn(ξ)ξ�+2dξ, and the compactness

C = M/R̄ in terms of the mean radius R̄ = a(1 − e2)1/6. The expressions for
the multipole moments can be combined so as to eliminate 
 and C giving the
final result in terms of the normalised moments M̄� = (−1)�/2 M�

χ�M�+1 and J̄� =
(−1)(�−1)/2 J�

χ�M�+1 . The 3-hair relations for the Newtonian moments will be,

M̄2�+2 + iJ̄2�+1 = Bn,�M̄
�
2(M̄2 + iJ̄1), (13.45)

where we note that M̄0 = J̄1 = 1 by definition. In this expression all the dependence
on the equation of state is incorporated in the coefficient Bn,� which has the form,

Bn,� ≡ 3�+1

2� + 3

R�
n,0Rn,2�+2

R�+1
n,2

, (13.46)

where we can see that everything depends on the polytropic index n and the
corresponding ϑ(ξ) as well as the order � of the moment. Therefore the universality
of the 3-hair relations will depend on how sensitive the coefficients Bn,� are to
different choices of the equation of state. The numerical analysis in Stein et al.
(2014) as well as analytic investigations performed by Chatziioannou et al. (2014)
(where the coefficients Bn,� are expanded around the n = 0 solution) show that
the variation of the coefficients for � ≤ 2 and for polytropic indices in the range
of 0 ≤ n ≤ 1 is less than 10% around a fiducial value obtained for n = 0.6.
This means that the Newtonian moments up to M6 and J5 satisfy an approximate
universal relation that expresses them in terms of the mass, the angular momentum
and the quadrupole. Unfortunately, the variation in the coefficients Bn,� increases
with increasing �, therefore for higher order moments the coefficients become more
sensitive to the equation of state. These results have been also tested for piecewise
polytropes by Chatziioannou et al. (2014) and have been found to be robust.

The question now is, what does the Newtonian analysis tells us about the
relativistic 3-hair relations? The first thing we should note is that the Newtonian
results are in good agreement with the relativistic results at the low compactness
limit (Stein et al. 2014; Yagi et al. 2014a) for a polytropic index n ≈ 0.5 and
the agreement extends to the relativistic polytrope as well, which means that
the Newtonian calculation captures the basic elements of the relativistic problem.
Furthermore it is known (Lattimer and Prakash 2001) that realistic equations of state
behave as polytropes with an effective polytropic index in the range 0 ≤ n ≤ 1. As
it was shown in Yagi et al. (2014a), the assumption in the Newtonian calculation to
which the result is most sensitive is that of the isodensity surfaces being self-similar
ellipses. If one were to violate this assumption by introducing a radial dependence
to the eccentricity of the form e(r̃) = e0f (r̃), then the result would be to change the
form that theBn,� coefficients would have, introducing a dependence on the function
f (r̃). Specifically, it was shown in Yagi et al. (2014a) that the larger the variation of
the eccentricity inside the star, the larger the variation in Bn,� in the range n ∈ (0, 1).
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For Newtonian polytropes with n ∈ (0, 1), one can calculate the radial profile of the
eccentricity and see that the variation between the centre and the surface of the star
ranges from 0% for incompressible n = 0 models up to 20% for n = 1 models,
while for models with n > 1.5 it is larger than 40%. Therefore the small variation
we see in the Newtonian case for Bn,� is related to a less than 20% variation in the
eccentricity profile. These results, i.e., regarding the eccentricity variation, generally
also hold for relativistic polytropic stars, as well as realistic equations of state. The
only difference with realistic equations of state is that lower compactness models
can have a lower density atmosphere where the equation of state differs from the
interior higher density equation of state and in this region the eccentricity varies
more drastically. In these cases though, the outer parts of the star contribute a very
small percentage of the mass of the star and have a small contribution to the various
quantities. Therefore, having almost self-similar ellipses seems to be a key element
in having universal 3-hair relations.

The above results can be seen from a slightly different point of view. As it
has been presented in Yagi et al. (2014a); Chatziioannou et al. (2014); Sham
et al. (2015); Chan et al. (2015), one could alternatively consider the 3-hair
universal relations as well as the I-Love relation in terms of how close are realistic
equations of state to being incompressible, as it was discussed earlier. Specifically, in
Chatziioannou et al. (2014); Sham et al. (2015); Chan et al. (2015) various universal
relations were expanded in terms of deviations from the incompressible equation
of state (n = 0 limit) and it was shown that the results were insensitive to these
deviations.We remind here that there is a relation between having an incompressible
equation of state or one close to incompressible and the zero or small eccentricity
variation inside the star, so in a sense statements about eccentricity variation and
incompressibility are equivalent. These conclusions are further strengthened by the
analysis of proto-neutron stars constructed with hot equations of state that was
performed by Martinon et al. (2014). Martinon et al. found that in the first moments
of the proto-neutron stars, where the equations of state have large entropy gradients,
which correspond to models with high effective polytropic indices n and therefore
deviate significantly from being incompressible, the ellipticity profiles inside the
star vary significantly while the corresponding I-Love-Q relations differ from the
relations that hold for cold starts.

Applications As with the I-Love-Q relations, the 3-hair relations could be used
either as tools, by assuming their validity, to infer the higher order multipole
moments from the mass, the angular momentum, and the quadrupole, or alterna-
tively could be tested for their validity against observations.

In the context of general relativity, one could use the 3-hair relations to construct
more accurate spacetimes for describing the exterior of rotating neutron stars
(Manko et al. 1995; Berti and Stergioulas 2004; Pappas and Apostolatos 2013b;
Teichmüller et al. 2011; Pappas 2015; Tsang and Pappas 2016; Pappas 2017).
There exist general algorithms for constructing stationary and axisymmetric neutron
star spacetimes that can be parameterised by the multipole moments. Having the
moments of these spacetimes prescribed using the 3-hair relations one could have
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an accurate description of the neutron star spacetime that in addition depends on
only three essential parameter, i.e., the first three multipole moments. This is of
relevance to astrophysical observations in the electromagnetic spectrum. There is a
plethora of astrophysical phenomena in the environment of neutron stars. One can
observe phenomena related to matter accreting onto neutron stars that are members
of X-ray binaries, such as quasi-periodic oscillations of the X-ray flux coming from
the disc, the reflection spectra also coming from the disc, X-ray pulse profiles from
matter accreting to the surface of the neutron star and so on. The accurate modelling
of these phenomena depends on having an accurate description of the spacetime so
that the motion of both matter and photons is described accurately. Furthermore, the
analytic modelling in terms of only three parameters could improve our capability to
solve the inverse problem of determining the equation of state from observations. As
it has been discussed for the I-Love-Q case, one could in principle use combinations
of observables to estimate the parameters (M, J,Q) for a given neutron star
spacetime, which in turn can be used to constrain the equation of state for the matter
inside neutron stars (Pappas 2012; Pappas and Apostolatos 2014; Pappas 2015).

The alternative use of the 3-hair relations will be to test their validity. As in
the case of I-Love-Q relations this could provide a test for our models of realistic
equations of state, but the most interesting possibility will be to test general relativity
itself. The last prospect will be further discussed after we have discussed neutron
stars in alternative theories of gravity.

13.2.1.4 Universality in Oscillation Frequencies

Asteroseismology is discussed more thoroughly in Chap. 12. Here we will only
briefly present results that are related to the equation of state independent description
of the various oscillation frequencies of neutron stars. We have already mentioned
some early work (Andersson and Kokkotas 1996; Andersson and Kokkotas 1998)
that indicated that there could be some equation of state independent description
of f -modes and w-modes and their damping times in terms of some neutron star
parameters. These results were later extended by including other modern realistic
equations of state (Benhar et al. 2004). As it has become clear from our discussion
so far, a key element to having a universal description is the appropriate choice of
parameters.

In an attempt to extend earlier work, Tsui and Leung (2005a) and Lau et al.
(2010) used a different type of normalisation, more similar to the I-Love-Q type
of normalisations, that has demonstrated a higher degree of equation of state
independence.15 The approach by Lau et al. (2010), inspired by Lattimer and Schutz

15One should always keep in mind that at the end of the day what matters most is not exactly
the errors of the fitting function but instead the accuracy of solving the inverse problem, i.e.
determining the stellar parameters from the observed gravitational wave frequencies and damping
times.
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(2005) where a universal behaviour for the normalised moment of inertia was
observed, turned out to be more useful since both neutron and quark stars could be
fitted with a single relation. Lau et al. (2010) investigated the relation between the
QNM frequency (both real ωr and imaginary ωi parts) of the (fundamental) f -mode
oscillations to the mass andmoment of inertia of compact stars. In contrast though to
Tsui and Leung (2005a) and earlier work, Lau et al. convincingly argue that a better
quantity instead of the compactness C to characterise models of different internal
mass profiles would be the inverse square root of the normalised moment of inertia,
η ≡ Ī−1/2 = √

M3/I , which they call effective compactness. The reason is that this
quantity is on the one hand a measure of the compactness16 while on the other hand
it also takes into account the distribution of mass inside the star and it could in this
way counterbalance differences coming from having a stiffer or softer equation of
state. The universal relations that Lau et al. found to describe the f -mode in terms
of the effective compactness are,17

Mωr = −0.0047+ 0.133η + 0.575η2, and Ī 2ωiM = 0.00694− 0.0256η2,
(13.47)

and describe the real and imaginary parts of the � = 2 f -mode frequency with
an accuracy that is better than 1 − 2% for both neutron and quark stars. These
two relations could be used to determine the mass and the moment of inertia of a
compact object, if the f -mode was detected by gravitational waves. We should note
here that this discussion is for non-rotating compact stars. Combining this work to
the I-Love-Q results, Chan et al. (2014) extended the relation between the f -mode
frequency and the moment of inertia to include also the Love number. They further
proceeded to produce relations between higher order oscillation modes and higher
order Love numbers (for a review see Yagi and Yunes 2017a).

The f -mode asteroseismology relations were further investigated and more
equations of state were included by Blázquez-Salcedo et al. (2014) and Chirenti
et al. (2015), where in addition an alternative relation for the f -mode damping time
was proposed in terms of the compactness. The asteroseismology relations with w-
modes were investigated further by Tsui and Leung (2005b,c) and Blázquez-Salcedo
et al. (2013) with a special emphasis on the influence of the presence of hyperons
and quarks in the neutron star core in the latter papers.

Up to this point the discussion has been about the quasi-normal modes of non-
rotating stars. In the case of rotating stars things become a little more complicated.
Due to rotation the frequencies of modes with the same spherical mode number � but
opposite azimuthal index m = ±|m|, which correspond to co- and counterrotating
modes, separate and become distinct. In this case, one needs to express the modes
in the comoving frame in order to remove the complications that the rotation is

16If we approximate the moment of inertia by MR2 then we can see that η = M/R = C.
17See the relevant comment in Chan et al. (2014) for correcting some typos in the numerical
coefficients given in Lau et al. (2010).
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creating. Rapidly rotating models in the so-called Cowling approximation, where
the spacetime is assumed to be frozen, were studied by Gaertig and Kokkotas in
Gaertig and Kokkotas (2011) were the aforementioned behaviour was observed. For
a star rotating at a frequency 
, the relation between the mode frequencies in the
inertial frame and the comoving frame is ωin = ωco − m
. Gaertig and Kokkotas
observed in Gaertig and Kokkotas (2011) that even though the mode frequencies
in the inertial frame showed a large variation with the equation of state, the
corresponding frequencies in the comoving frame were quite insensitive to the
equation of state. The real part of the quasi-normal modes in the comoving frame
for the m = −2 stable modes, ωs

co, can be fitted with the expression

ωs
co

ω0
= 1.0 − 0.27

(




K

)
− 0.34

(




K

)2

, (13.48)

where the frequency is normalised with respect to the frequency of the non-rotating
models ω0, while the rotation frequency 
 is normalised with the Kepler limit
frequency 
K . Similarly, the m = 2 potentially unstable modes, ωu

co, frequency
is fitted with the expression,

ωu
co

ω0
= 1.0 + 0.47

(




K

)
− 0.51

(




K

)2

. (13.49)

The non-rotating frequency ω0 can be expressed in terms of the average density and
has the form,

ω0

2π
= 0.498+ 2.418

(
M1.4

R3
10

)1/2

, (13.50)

where the mass is measured in units of 1.4M� and the radius of the star in units
of 10 km. One will notice that Eq. (13.50) is slightly different than Eq. (13.2) from
Andersson and Kokkotas (1998). This is because in Gaertig and Kokkotas (2011),
the calculations are done in the Cowling approximationwhich tends to overestimate
the values of the frequencies. Also, the reference to stable and potentially unstable
modes here is with respect to the Chandrasekhar, Friedman and Schutz (CFS-
)instability of non-axisymmetric pulsation modes, which is discussed in Chap. 12.
The imaginary part of the quasi-normal modes will give the damping times for the
different models. Things in this case are a little more complicated and damping
times can be better expressed in terms of the frequencies in the inertial or the
comoving frame. For the retrograde branch (m > 0) the fit for the damping times
has the form,

τ0

τ
= sgn(ωu

in) × 0.256

(
ωu
in

ω0

)4

×
[

1 + 0.048

(
ωu
in

ω0

)
+ 0.359

(
ωu
in

ω0

)2
]4

,

(13.51)
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where τ0 is the damping time of the non-rotating models and sgn(x) is the sign
function. Similarly for the prograde branch (m < 0) the fit for the damping times
has the form,

τ0

τ
= −0.656×

[

1 − 7.33

(
ωs
co

ω0

)
+ 14.07

(
ωs
co

ω0

)2

− 9.26

(
ωs
co

ω0

)3
]

.

(13.52)
The damping time of the non-rotating models can be given by the equation

(

τ0
M3

1.4

R4
10

)−1

= 22.49− 14.03

(
M1.4

R10

)
, (13.53)

where again the mass is measured in units of 1.4M� and the radius of the star in units
of 10 km. One will notice that Eq. (13.53) is much closer to Eq. (13.3). These results
were extended to higher order modes and realistic equations of state by Doneva
et al. (2013b), where it was found that higher modes exhibit the same behaviour.
The fitting formulas for these cases are given in Chap. 12.

A more recent approach that is closer to the I-Love-Q perspective using a
parameterisation in terms of the effective compactness η was investigated by
Doneva and Kokkotas (2015) and was found to be even more universal with respect
to different equations of state. The detailed expressions for the frequencies and
damping times are given in Chap. 12.

We should again stress at this point that these results are in the Cowling
approximation and should be taken with a grain of salt. An obvious necessary
extension of these results is to go beyond the Cowling approximation. Moreover,
some improvement in the universality might also come, as we have seen in the case
of I-Love-Q relations for rapidly rotating stars, if the rotation is parametrised in
terms of the spin parameter χ = J/M2 instead of 
.

13.2.1.5 Other Universal Properties

Having reviewed the three main classes of universal relations we will briefly
mention here some additional results that either extend those that we have already
discussed or go in a different direction.

One of the extensions of the I-Love-Q results was the multipole Love relations
by Yagi (2014), where he produced universal relations among various �-th (dimen-
sionless) electric, magnetic and shape tidal deformabilities for neutron stars and
quark stars, in the same sense as we have the various universal relations between the
quadrupole and higher order multipole moments. His results are also reviewed in
Yagi and Yunes (2017a).We should note that the tidal Love numbers were calculated
for non-rotating compact objects.

Another extension of the I-Love-Q and 3-hair relations, with a more theoretical
interest, is the one for anisotropic stars by Yagi and Yunes (2015a,b, 2016a). As
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we have noted, when we calculate the multipole moments for example of compact
objects we see that as we increase the compactness up to the maximum possible
value for these objects, we never quite get to the Black Hole limit of Q̄ = J̄3 =
M̄4 = . . . = 1. Instead there seems to be a gap between fluid configurations and
Black Holes. Of course this is expected with respect to compactness, because a
matter configuration cannot be more compact than the Buchdahl limit, i.e., C <

4/9 ≈ 0.4̄ (Buchdahl 1959). The Buchdahl limit though is not a hard physical
limit. One can go around it by using anisotropic pressure, which can produce objects
with a compactness arbitrarily close to the Black Hole value of C = 1/2 (Bowers
and Liang 1974). For this reason Yagi and Yunes (2015a) used anisotropic stars to
study how one approaches the Black Hole limit for the multipole moments and the
other neutron star parameters. For anisotropic stars one has the radial pressure p

and a tangential part of the pressure p⊥ and the difference defines the anisotropy
σ = p − p⊥. In the model that they used, neutron stars with negative anisotropy
reached continuously the Black Hole limit. The exact way that the Black Hole limit
is reached though depends on the value of the anisotropy. The very interesting result
was that there is a critical value of anisotropy above which the models reach the
Black Hole limit directly, while below that value the models circle around the Black
Hole limit until they almost spiral to it. Finally, in order to get to the Black Hole
values one needs to have an “extreme” value of anisotropy. On a more practical
side, there is also the question of how some anisotropy would affect the various
universal relations of regular neutron stars. On that front Yagi and Yunes (2015b)
find that anisotropy affects the universal relations only weakly, i.e., the relations
become less universal by a factor of 1.5–3 relative to the isotropic case when
anisotropy is maximal, but even then they remain approximately universal to 10%.
They further find that this increase in variability is strongly correlated to an increase
in the eccentricity variation of isodensity contours.

The results presented so far are mostly about isolated neutron stars, with the
exception of the work by Maselli et al. (2013) where they studied I-Love-Q for a
binary system. Extending this work Yagi and Yunes investigated the existence of
universal relations between tidal parameters for binaries (Yagi and Yunes 2016b,
2017b) which they called binary Love relations. These relations are between the
individual tidal Love numbers of the members of the binary λ̄1, λ̄2, as they are
combined to form the symmetric λ̄s and antisymmetric λ̄a tidal parameters, and the
so-called dimensionless chirp tidal deformability �̄ and it’s companion parameter
δ�̄. The idea behind this is that the parameters �̄ and δ�̄ enter the analysis of the
waveforms from binary inspirals with the dimensionless chirp tidal deformability
�̄ being the dominant tidal parameter in analogy with the chirp mass being the
dominant mass parameter in the waveform. Yagi and Yunes find universal relations
that relate �̄ to δ�̄ as well as λ̄s to λ̄a , that depend on the symmetric mass ratio
X ≡ q

(1+q)2
, where q is the mass ratio of the members of the binary. These results

are also reviewed in Yagi and Yunes (2017a).
Continuing with binary inspirals, there is another recent interesting result. Ini-

tially Read et al. (2013) found, bymodelling numerically the waveforms from binary



768 D. D. Doneva and G. Pappas

inspirals and coalescences (spinning, equal mass, q = 1), that the instantaneous
frequency at the moment of maximum amplitude in the waveform, which indicates
the transition from the inspiral phase to the merger or coalescence phase, is related
in an equation of state independent way with a parameter which is essentially the
tidal Love number λ̄ of one of the neutron stars defined in Eq. (13.14). Specifically
they find the relation

log10(fGW/Hz) = 8.51155− 0.303350 λ̄1/5. (13.54)

Since in their numerical calculations they considered only equal mass inspirals,
essentially one tidal Love number characterises both neutron stars. Expanding on
this result, Bernuzzi et al. (2014) showed that for more general inspirals, where
q �= 1, a more appropriate quantity should be used, which is essentially an effective
tidal Love number, called tidal coupling constant and is defined as,

κ� ≡ 2

[
1

q

(
XA

CA

)2�+1

kA� + q

(
XB

CB

)2�+1

kB�

]

, (13.55)

where the definition is with respect to different �-orders in tidal deformabilities and
we define the mass ratio to be q ≡ MA/MB ≥ 1, and for each member of the
binary with respect to the total mass XA ≡ MA/M and XB ≡ MB/M , where
M = MA + MB is the total mass, while CA,B are the respective compactnesses
and k

A,B
� the respective �th order tidal apsidal constants.18 For � = 2 one can see

that κ ≡ κ� ∝ λ̄ and the results of Bernuzzi et al. reproduce the results of Read et
al. quite accurately. Using the tidal coupling constant, Bernuzzi et al. produced an
empirical relation for the mass scaled instantaneous frequency at peak amplitude in
terms of κ , which is

MωGW = 0.360
1+ 2.59 × 10−2κ − 1.28× 10−5κ2

1 + 7.49 × 10−2κ
, (13.56)

and also produced a relation for the binding energy per reduced mass μ =
MAMB/M in terms of κ , which is

Eb = −0.120
1+ 2.62 × 10−2κ − 6.32 × 10−6κ2

1 + 6.18× 10−2κ
. (13.57)

These relations were found to be insensitive to variations in the mass ratio q and
showed small sensitivity to the spin of the members of the binary, probably due
to spin-orbit coupling (the calculations were performed for aligned spin binaries).
These results were reproduced by Takami et al. (2014, 2015), where they also find

18Here we are using the naming convention employed in Sect. 13.2.1.2, which is different than the
one used in Read et al. (2013); Bernuzzi et al. (2014).
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by doing spectral analysis of the waveforms, that there is an equation of state
independent relation between the lowest observed frequency f1 of the spectrum
and the average compactness C̄ = M̄/R̄, where M̄ = (MA + MB)/2 and R̄ =
(RA + RB)/2, which is

f1

kHz
= (−22.0717± 6.477) + (466.616± 31.2)C̄ + (−3131.63± 878.7)C̄2

+ (7210.01± 1947)C̄3. (13.58)

Returning to isolated neutron stars, there are some more results that we would
like to conclude with. Bauböck et al. (2013) produced in the slow rotation
approximation (using the Hartle and Thorne approach ) analytic formulae that relate
the ellipticity and eccentricity of the stellar surface to the compactness, the spin
parameter, and the quadrupole moment of the neutron star. Defining the ellipticity
εs and the eccentricity es as,

εs ≡ 1 − Rp

Req

, and es ≡
√(

Req

Rp

)2

− 1, (13.59)

where Rp and Req are the polar and equatorial radius respectively, they found in
terms of the compactness C, the spin parameter χK and the quadrupole q̄K , the
relations

eKs (C, χK, q̄K) =
[

1 − 4χKC3/2 + 15(χ2
K − q̄K)(3 − 6C + 7C2)

8C2
+ C2χ2

K(3 + 4C)

+ 45

16C2
(q̄K − χ2

K)(C − 1)(1 − 2C + 2C2) ln (1 − 2C)
]1/2

, (13.60)

εKs (C, χK, q̄K) = 1

32C3

{
2C

[
8C2 − 32χKC7/2 + (χ2

K − q̄K )(45 − 35C + 60C2 + 30C3)

+24χ2
KC4 + 8χ2

KC5 − 48χ2
KC6

]
+ 45(χ2

K − q̄K )(1 − 2C)2 ln (1 − 2C)
}
.

(13.61)

In these relations, the compactness is defined in terms of the non-rotating models’
masses and radii, while the spin parameter χK = JK/M2∗ , the quadrupole q̄K =
−QK/M3∗ and the ellipticity εKs and eccentricity eKs correspond to the models that
rotate at the frequency 
K , as it is discussed in Sect. 13.2.1.2. The ellipticities and
eccentricities of models rotating with a rotation 
 < 
K will be εs = ε2εKs
and es = εeKs respectively, where ε = 
/
K . The above exact expressions
hold independently of the equation of state. All the equation of state information
is encoded in the various parameters. AlGendy and Morsink (2014) also produce
an equation of state independent fit for the ellipticity, where they use a slightly
different parameterisation for the surface than the one used in the Hartle and Thorne
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approach. They parameterise the surface with a function of the form,19

R(θ) = Req

(
1 + o2(C, ε) cos2 θ

)
, (13.62)

where the function o2(C, ε), which is minus the ellipticity defined above, has the
form

o2(C, ε) = ε2(−0.788+ 1.030C), (13.63)

where ε = 
/
K as in the Hartle and Thorne case. Their results are in good
agreement with previous results for rapidly rotating neutron stars. Additionally they
find that the effective gravity at the surface of a rotating neutron star can be written
as the simple function g(θ)/g0 = c(C, ε2, θ), where g0 is the acceleration due to
gravity on the surface of a non-rotating relativistic star while the function c can be
written in an equation of state independent form.

Finally, Breu and Rezzolla (2016) find that the mass of rotating configurations on
the turning-point line shows a universal behaviour when expressed in terms of the
spin parameter at the Kepler limit. In particular they find that the mass at the turning
point,Mcrit normalised by the maximum non rotating mass MTOV , is expressed in
terms of the spin parameter, χ normalised by the spin parameter at the Kepler limit
χK , as

Mcrit

MTOV

= 1 + 0.1316

(
χ

χK

)2

+ 0.07111

(
χ

χK

)4

. (13.64)

This expression implies that the maximum mass for any given equation of state will
be, for χ = χK ,M � 1.203MTOV .20 Of courseMTOV will depend on the equation
of state. In addition, they further explore the Ī = I/M3 relation to inverse powers of
C, where they find that there is a universal relation (that holds up to 10%) that also
depends on the spin χ , as expected. In Breu and Rezzolla (2016) they give fitting
coefficients for different values of χ , while here we will give a relations that is spin
dependent, i.e.,

I/M3 = (1.471+ 0.448χ) − 0.0802+ 0.27289χ

C + 0.438 − 0.0346χ

C2

−0.01694+ 0.0056χ

C3 + (3.316+ 1.57χ) × 10−4

C4 (13.65)

19The radius here is expressed in terms of Schwarzschild-like coordinates which reduce to being
circumferential at the non-rotating limit. The radial coordinates in the Hartle and Thorne approach
also have this property.
20The interested reader might want to also have a look at the review by Hartle (1978).
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Fig. 13.6 I-C plots for three spin parameters and various equations of state. The solid lines
correspond to the I-C fit given in Eq. (13.65)

which is also accurate to 10% and is in agreement with the relations given in Breu
and Rezzolla (2016); Staykov et al. (2016) (Fig. 13.6).

13.2.2 Neutron Stars in Alternative Theories

Below we will review the basic theory behind the alternative theories of gravity
we have chosen to concentrate on, the neutron star models in these theories and
their astrophysical implications. We will consider the scalar-tensor theories, f (R)

theories, Einstein–dilaton–Gauss–Bonnet theories and Chern–Simons theories of
gravity. These are all theories for which neutron stars universal relations have been
considered. The strongest emphasis will be on the scalar-tensor theories that are
ones of the simplest and most natural extensions of general relativity.

13.2.2.1 Alternative Theories of Gravity: Mathematical Setup
and Overview

Scalar-Tensor Theories of Gravity The simplest representative of gravitational
theories with an additional scalar field are the scalar-tensor theories of gravity.
Historically, these are some of the first alternative theories to be constructed. The
reason lies on one hand in their simplicity and the fact that such generalization of
Einstein’s theory seems quite natural. On the other hand there is a deep theoretical
motivation coming from the theories trying to unify all the interactions such as
Kaluza-Klein theories, string theories, etc. It can be easily shown for example that
after a dimensional reduction of the five dimensional Kaluza-Klein theory action to
four dimensions, an additional scalar field appears as a mediator of the gravitational
interaction. The scalar-tensor theory of gravity can be formulated also independently
and that was done first by Brans and Dicke on the basis of Mach’s principle
(Brans and Dicke 1961; Dicke 1962). According to it, the inertia of a particle is
a consequence of the total mass distribution in the Universe. Therefore, the inertial
mass is not a constant but also depends on the mass distribution, i.e. it depends on
the interaction of the particle with some cosmological field �. According to the
weak equivalence principle, which is verified extremely precisely, the interaction
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with this scalar field should be the same for all the particles up to some constant.
Thus the mass of the particles should be

m = m0f (�), (13.66)

where f (�) describes the interaction of the particles with the scalar field. Using the
above considerations and also the fact that the absolute scale of the masses of the
particles can be measured only by their gravitational acceleration, we can conclude
that the gravitational constant should depend on the total distribution of the matter
in the universe, i.e. from the cosmological field �. Using all this, one can derive
the scalar-tensor theory action and a very interesting fact is that its vacuum sector
coincides with the action coming from the dimensional reduction of the Kaluza-
Klein theory.

The most general form of the action in the scalar-tensor theories is Damour and
Esposito-Farese (1992)

S = 1

16πG∗

∫
d4x

√−g̃
(
F(�)R̃ − Z(�)g̃μν∂μ�∂ν� − 2U(�)

)
+ Smatter(g̃μν, χ), (13.67)

whereG∗ is the bare gravitational constant and as a matter of fact the scalar field �

can be interpreted as a “variable gravitational constant”. The second and the third
term in the action are the kinetic and potential terms for the scalar field respectively.
The choice of functions F(�), Z(�), and U(�) determine the specific class of
scalar-tensor theory. The requirement that the gravitons carry positive energy leads
to the following condition F(�) > 0, while the non-negativity of the scalar field
energy requires that 2F(�)Z(�)+3[dF(�)/d�]2 ≥ 0. It is important to point out,
that the action of the matter Smatter(g̃μν, χ), where χ denotes collectively the matter
fields, is the same as in general relativity. Therefore, there is no direct coupling
between the matter and the scalar field, and the scalar field influences the matter
only via the spacetime metric g̃μν . Thus, the equation of motion is the same as in
general relativity ∇̃αT̃

α
μ = 0 and the weak equivalence principle is satisfied.

The action (13.67) is in the so-called Jordan frame which is the physical frame
where distances, time, etc. are measured. The field equations, though, are quite
complicated and difficult to work with in this frame. That is why a common
practice is to introduce the so-called Einstein frame which simplifies the field
equations considerably. The transition to the Einstein frame is made by performing
a conformal transformation of the metric21 and a re-definition of the scalar field:

gμν = F(�)g̃μν, (13.68)
(

dϕ
d�

)2 = 3
4

(
d ln(F (�))

d�

)2 + Z(�)
2F(�)

, (13.69)

21For the interesting case of disformal coupling we refer the reader to (Minamitsuji and Silva
2016).



13 Universal Relations and Alternative Gravity Theories 773

where ϕ and gμν are the Einstein frame scalar field and metric. After we introduce
the functionsA(ϕ) and V (ϕ) defined as

A(ϕ) = F−1/2(�), (13.70)

V (ϕ) = 1
2U(�)F−2(�), (13.71)

the Einstein frame action becomes

S = 1

16πG∗

∫
d4x

√−g
(
R − 2gμν∂μϕ∂νϕ − 4V (ϕ)

) + Smatter(A2(ϕ)g̃μν, χ),

(13.72)

where R is the Ricci scalar curvature with respect to the spacetime metric gμν . As
we can see the action in the Einstein frame is much simpler and easier to work
with, but everything comes with a price and the price we pay for this simplicity is
that a direct coupling between the sources of gravity and the scalar field appears
through the function A(ϕ). Nevertheless, the resulting field equations are easier to
handle and most of the studies of compact objects in scalar-tensor theories adopt
the Einstein frame. The specific choice of the scalar-tensor theory is completely
determined by the functionA(ϕ) and by the potential of the scalar field V (ϕ).

The transformation between the two frames is regular practically for all of the
physically relevant scalar-tensor theories. Thus, it is irrelevant in which frame we
are going to perform our calculations as long as the final observable quantities are
expressed in the physical Jordan frame.

The field equations in the Einstein frame are much simpler as well

Rμν = 8πG∗
(
Tμν − 1

2gμνT
)

+ 2∂μϕ∂νϕ − 1
2gμνV (ϕ), (13.73)

∇α∇αϕ − 1
4V

′(ϕ) = −4πα(ϕ)T , (13.74)

where ∇α is the covariant derivative with respect to the metric gμν and T is the
trace of the Einstein frame energy momentum tensor Tμν . The function α(ϕ) is
called coupling function and it is defined as

α(ϕ) = d lnA(ϕ)

dϕ
. (13.75)

The connection between the Einstein frame and the Jordan frame energymomentum
tensor is

Tμν = A4(ϕ)T̃μν. (13.76)

Since we have a direct coupling between the matter and the scalar field in the
Einstein frame, the equations of motion for the matter fields differ from that in pure
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general relativity:

∇αT
α
μ = α(ϕ)T ∂μϕ. (13.77)

Therefore, there will be an additional force acting on the particles in the Einstein
frame which is proportional to the gradient of the scalar field and the particles will
not move on the geodesic of the metric gμν .

Let us briefly comment on the field equations and more precisely under what
circumstances nontrivial scalar field can develop. For simplicity we will consider
the case with zero scalar field potential. The right hand side of Eq. (13.74) is nonzero
only for nonzero trace of the energy momentum tensor T . For isolated black holes
T = 0 which roughly speaking leads to the fact that the solutions are the same as in
pure general relativity, but for neutron stars T is nonzero and thus nontrivial scalar
field can develop.

Let us now discuss briefly the parametrized post-Newtonian (PPN) expansion of
the metric in scalar-tensor theories and the observational constraints one can impose,
since in general different theories of gravity predict different values of the post-
Newtonian parameters. In what follows we will again assume that the scalar field
potential is zero for simplicity. The coupling function α(ϕ) on the other hand can be
expanded in power series of the scalar field ϕ

α(ϕ) = α0(ϕ − ϕ0) + 1

2
β(ϕ − ϕ0)

2 + O(ϕ − ϕ0)
3, (13.78)

where ϕ0 is the background value of the scalar field and α0 and β are constants. The
case with β = 0 corresponds to the well known Brans–Dicke scalar-tensor theory.
The PPN expansion of the Schwarzschild metric in isotropic coordinates takes the
form (Damour and Esposito-Farese 1992; Will 2014):

−g00 = 1 − 2Gm

rc2
+ 2βPPN

(
Gm

rc2

)2 + O
(

1
c6

)
, (13.79)

gij = δij

(
1 + 2γ PPNGm

rc2

)
+ O

(
1
c4

)
. (13.80)

As one can see, in scalar-tensor theories only two of the PPN parameters differ
from GR—βPPN and γ PPN which were introduced for the first time by Eddington
for the Schwarzschild metric in isotropic coordinates. They are connected to the
coefficients in the expansion of the coupling function (13.70) in the following way:

γ PPN − 1 = − 2α2
0

1 + α2
0

, βPPN − 1 = 1

2

α0βα0

(1 + α2
0)

2
. (13.81)

Clearly, for α0 = 0 and β = 0 we have γ PPN = 0 and βPPN = 0 and the theory
reduces to pure general relativity.



13 Universal Relations and Alternative Gravity Theories 775

Different observations can impose constraints on the PPN parameters γ PPN and
βPPN in the weak field regime, such as the rate of precession of the Mercury
perihelia, deflection of light by the Sun, delay of the light travel time in the vicinity
of the Sun and Lunar Laser Ranging experiment (for a review on this subject see
Will 2014). One can easily show, though, that all these experiments set constraints
only on the parameter α0, while β remains essentially unconstrained. This is natural,
since the case of α0 = 0 and β �= 0 corresponds to a scalar-tensor theory that
is perturbatively equivalent to general relativity, i.e. all the weak field experiments
are automatically satisfied, but large deviations can be observed for strong fields.
Currently, only the pulsars in close binary systems can impose constraints on β

through observations of the shrinking of their orbits due to gravitational wave
emission because the strong field effects in this case are non-negligible. More
precisely, the shrinking would be different in general relativity and in scalar-tensor
theories because in the latter case we have scalar gravitational radiation in addition
to the standard gravitational waves. It turns out that the observations match very
well to the predictions of pure general relativity and limit severely the emitted scalar
radiation and thus the value of the scalar field. At the end, taking into account both
the weak and the strong field experiments, we have α0 < 10−4 and β > −4.5
(Freire et al. 2012; Antoniadis et al. 2013). The observational constraints on STT
coming from both the weak field and the strong field experiments are plotted in
Fig. 13.7. Such small values of α0 make the neutron stars in Brans–Dicke scalar
tensor theories practically indistinguishable from general relativity and leave little

Fig. 13.7 Solar-system and
binary pulsar constraints on
the constant α0 and β in the
expansion of the coupling
function (13.78). LLR stands
for lunar laser ranging,
Cassini for the measurement
of a Shapiro time-delay
variation in the Solar System,
and SEP for tests of the strong
equivalence principle using a
set of neutron star-white
dwarf low-eccentricity
binaries [Credit Ref. Freire
et al. (2012)]
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space for deviation even for the class of scalar-tensor theory with α0 = 0 and
β �= 0.22

The discussion above was concentrated on the case with zero scalar-field
potential. The picture changes drastically if we consider a nontrivial potential. One
of the simplest cases is to assume the following standard form of the Einstein frame
potential:

V (ϕ) = 2m2
ϕϕ

2 (13.82)

that is equivalent to considering a scalar field with nonzero mass mϕ . Even though
this might seems like a simple and straightforward extension, it has dramatic
influence on the observational constraints of the theory because of the following
reasons. Introducing a scalar-field mass means that we have introduced a new
characteristic scale, namely the Compton wave-length of the scalar field λϕ =
2π/mϕ, and the scalar field is loosely speaking confined inside λϕ . More precisely,
it drops exponentially at infinity and has non-negligible values only inside its
Compton wave-length. This help us reconcile the theory with the observations for
a much larger range of parameters compared to the massless case. For example
let’s consider the binary pulsar observations. If the Compton wavelength of the
scalar field is smaller than the orbital separation between the two stars, no scalar
gravitational radiation will be emitted and the predictions for the shrinking of the
orbit would be the same as in pure general relativity. For such values of the scalar
field mass the parameter β is essentially unconstrained (Ramazanoğlu and Pretorius
2016; Yazadjiev et al. 2016).

Below we will briefly discuss other alternative theories of gravity that are either
equivalent to scalar-tensor theories, or fall into the same class of modifications of
general relativity, i.e. we have inclusion of a dynamical scalar field. Exactly in these
theories universal relations were built.

f (R) Theories of Gravity We will continue with the f (R) theories, since they are
equivalent to a particular class of scalar-tensor theories with nonzero scalar field
potential. The essence of these theories is that the Ricci scalar R in the Hilbert–
Einstein actions is substituted with a function of R, thus f (R) theories:

S = 1

16πG

∫
d4x

√−gf (R) + Smatter(gμν, χ). (13.83)

The viable f (R) theories have to be free of tachyonic instabilities and the
appearance of ghosts which is equivalent to Sotiriou and Faraoni (2010); De Felice

22As we will discuss below, this is true only in the static case. The rapid rotation magnifies the
differences significantly and offers new possibilities for probing scalar-tensor theories of gravity.
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and Tsujikawa (2010)

d2f

dR2 ≥ 0,
df

dR
> 0 (13.84)

respectively. One can easily show that after certain transformations (see e.g.
Yazadjiev et al. 2014) this action is equivalent to a scalar-tensor theory with zero
kinetic term in the Jordan frame and nonzero potential. The gravitational scalar �
and the potential U(�) are connected to the f (R) function via the relations

� = df (R)

dR
, U(�) = R

df

dR
− f (R). (13.85)

If one wants to express these quantities in terms of the Einstein frame function that
appear in the action (13.72), then the coupling function becomes α(ϕ) = −1/

√
3

and the potential V (ϕ) = A4(ϕ)U(�(ϕ)) = [R(df/dR) − f (R)]/(df/dR)2. For
example, for one of the simplest case—the R2 gravity, where f (R) = R + aR2, we
have

V (ϕ) = 1

4a

(
1 − e

− 2ϕ√
3

)2

. (13.86)

f (R) theories of gravity were mainly explored in cosmological context as an
alternative explanation of the accelerated expansion of the Universe. Every viable
theory of gravity should pass the observational test on astrophysical scales as well
and that is why neutron stars in f (R) theories attracted particular interest recently.
The form of the f (R) function, though, that is normally used to explain the dark
energy phenomenon would not give significant influence on astrophysical scales.
That is why most of the authors considered the problem the other way around—
assume that indeed the gravitational theory is not the pure Einstein’s theory, but
instead we have an f (R) type of modification of the action. Then one can ask the
question what would be the additional terms in the f (R) function that would give
the dominant contribution on astrophysical scales. It is expected that this is exactly
the R2 term and that is why most of the compact star solutions were constructed in
R2 gravity.

Quadratic Gravity The idea of the quadratic gravity is to supplement the Hilbert–
Einstein action with all the possible algebraic curvature invariants of second order.
These invariants are: R2, R2

μν ≡ RμνR
μν , R2

μνρσ ≡ RμνρσR
μνρσ and the

Pontryagin scalar ∗RR ≡ 1/2Rμνρσ ε
νμλκRρσ

λκ , where ενμλκ is the Levi-Civita
tensor. An extra dynamical scalar field is included as well that couples non-
minimally to the second order curvature corrections.

The motivation behind such modifications lies in the fact that pure general
relativity is not a renomalizable theory which naturally poses severe obstacles to
the efforts of quantizing gravity. The modification of the action proposed by the
quadratic gravity makes the theory renormalizable (Stelle 1977). The price we pay
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is the appearance of ghosts. A way to circumvent this problem is just by assuming
that the quadratic gravity is a truncated effective theory of a more general one (such
as the string theory where the effective action contains infinite series of higher
curvature corrections and it is ghost free).

A general form of the action is Yunes and Stein (2011); Pani et al. (2011a):

S = 1

16π

∫ √−gd4x
[
R − 2∇μϕ∇μϕ − V (ϕ) (13.87)

+ f1(ϕ)R
2 + f2(ϕ)RμνR

μν + f3(ϕ)Rμνρσ R
μνρσ + f4(ϕ)

∗RR
]

+ Smatter
[
χ, γ (ϕ)gμν

]
,

(13.88)

where V (ϕ) is the scalar field potential, the coupling functions f1..f4 depend only
on the scalar field, χ denotes collectively the matter fields in the matter action Smatter
and we have a nonminimal coupling between the scalar field and the matter via the
function γ (ϕ).

The field equations derived from this action in their most general form are of
order higher that two. This leads to problems in the theory such as the appearance
of ghosts as we mentioned above. In some special cases, though, the field equations
remain of second order as discussed below.

Two sectors of the quadratic gravity attracted particular interests—the Einstein–
dilaton–Gauss–Bonnet gravity and the Chern–Simons gravity. As a matter of fact
almost all of the studies of compact objects in quadratic gravity were made exactly
in these sub-theories.

Einstein–dilaton–Gauss–Bonnet Gravity In the EdGB theory the function f4(ϕ) =
0 and one choses a special combination between the other three, namely f1(ϕ) =
f3(ϕ) = −1/4f2(ϕ) ≡ f (ϕ) (Kanti et al. 1996). This combination is chosen in
such a way that the resulting field equations are of second order. The action has the
form

S = 1

16π

∫ √−gd4x
[
R − 2∇μϕ∇μϕ − V (ϕ) + fGB(ϕ)(R2 − 4R2

μν + R2
μνρσ )

]
,

(13.89)

where R2
GB ≡ R2 − 4R2

μν + R2
μνρσ is called Gauss–Bonnet scalar. Clearly the

function f (ϕ) has dimensions of inverse curvature and thus a characteristic scale can
be introduced in the EdGB theory equal to

√
αGB where we assumed that f (ϕ) is

proportional to αGB times a dimensionless function of the scalar field. The strongest
constraint on the parameters of the theory comes form the observations of black
hole low-mass X-ray binaries (Yagi 2012), namely

√|αGB| � 5 × 106 cm. Another
purely theoretical constraint comes from the requirement for the existence of black
hole solutions, that is fulfilled when

√
αBD is smaller than the black hole horizon

size (Kanti et al. 1996). This leads to αGB/M
2 � 0.691 (Pani and Cardoso 2009).

One should note that the scalar field potential is neglected in most of the studies of
compact objects in EdGB gravity.
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Chern–Simons Gravity The CS gravity considers a different sector of the quadratic
gravity when f1 = f2 = f3 = 0 and only the function f4 is nontrivial (for a review
on the CS theory see e.g. Alexander and Yunes 2009). This means that only the term
proportional to the Pontryagin scalar ∗RR remains.

There are two versions of the theory. The first one is a non-dynamical version
where the kinetic and the potential terms for the scalar field are omitted and the
scalar field is externally prescribed, i.e. it does not evolve dynamically. This case
is simpler and it was the first one to be considered. It turned out, though, that in
this case the theory has certain problems and restrictions, such as the Pontryagin
constraint ∗RR = 0 (Grumiller and Yunes 2008; Alexander and Yunes 2009) That
is why in the last several years another version of the theory, where the scalar field
is dynamical, attracted much more attention. In order to distinguish the dynamical
CS gravity from the non-dynamical version, the abbreviation dCS is used.

Thus the dCS action takes the form

S = 1

16π

∫ √−gd4x
[
R − 2∇μϕ∇μϕ − V (ϕ) + fCS(ϕ)(

∗RR)
]
. (13.90)

A very interesting property of the dCS gravity is that the static spherically symmetric
solutions do not differ from Einstein’s theory but rotation can introduce large
deviations. As a matter of fact the dCS gravity is almost the only theory with such
property which makes it very interesting to study.

In most of the studies, the function fCS = αCSϕ and the potential of the scalar
field V (ϕ) is zero, which introduces a length scale of the theory

√
αGB. As we

discussed above the general form of the quadratic gravity is prone to problems
such as the appearance of ghost, because of the fact that the field equations contain
higher order derivatives. This problem is circumvented in the EdGB theory because
of the special combination of the curvature invariants, but this is not true for the
dCS theory. Instead, in order to have a well posed theory, one can consider the
decoupling limit, where the field equation are still of second order. Thus, in most
paper dCS gravity is studied perturbatively in the coupling constant αGB. In order
to be able to apply the perturbative approach, the following condition should be
fulfilled, αGB/M2 � 1. Due to the fact that the static solutions are the same as
in GR, the only weak field experiments that can impose constraints on αGB are the
ones measuring the frame dragging effects, such as the Gravity Probe B, which gives√
αGB � 1013 cm (Ali-Haimoud and Chen 2011) that is also in agreement with the

results in Yagi et al. (2012).

13.2.2.2 Alternative Theories of Gravity: Neutron Star Models and
Astrophysical Implications

Here, we will review the neutron star models constructed in the above discussed
alternative theories of gravity and their astrophysical implications. We are not
aiming towards an exhaustive review, but instead we will discuss the most important
results with an emphasis on the recent achievements in the field.
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Neutron Stars in (Massive) Scalar-Tensor Theories Historically, the compact star
models in STT were some of the first to be considered (see e.g. Horbatsch and
Burgess 2011 and the references therein) and they still attract significant attention,
because of the fact that STT are ones of the most natural and widely used alternative
theories of gravity. Most of the results fall into two categories based on the exact
form of the Einstein frame coupling function α(ϕ) (see Eqs. (13.75) and (13.78))—
neutron stars in Brans–Dicke scalar-tensor theories with constant coupling function
α(ϕ) = α0 and neutron stars in a theory with α(ϕ) = βϕ that is perturbatively
equivalent to general relativity in the weak field regime but can lead to large
deviations for strong fields. As we discussed in the previous section, α0 is severely
limited by the weak field observations which leaves practically no space for any
measurable deviations in the neutron star properties. This is not the case, though,
with the second type of STT, where the only constraints come from the strong
field experiments such as the observations of pulsars in binary systems. The current
constraint on β, i.e. β > −4.5, still leaves space for non-negligible deviations from
the pure Einstein’s theory especially in the rapidly rotating case. That is why we
will consider only the second class of scalar-tensor theory.

Neutron stars in scalar-tensor theories with the Einstein frame coupling function
α(ϕ) = βϕ were considered for the first time in Damour and Esposito-Farèse (1993)
where an effect, called sponteneous scalarization, was found that consists of the
following. There exists a range of stellar parameters where neutron stars can develop
nontrivial scalar field even if the background cosmological value of the scalar field
ϕ0 is zero. As a matter of fact very similar phenomenon is observed also for black
holes in the presence of nonlinear fields, such as charged black holes described
by nonlinear electrodynamics (Stefanov et al. 2007a,b, 2009, 2008; Doneva et al.
2010), in the presence of a complex scalar field (Kleihaus et al. 2015) or black holes
surrounded by matter (Cardoso et al. 2013a,b).

Sequences of scalarized solutions are plotted in Fig. 13.8 for several values of
the parameter β and for both nonrotating star and stars rotating at the Kepler
(mass-shedding) limit. Let us now discuss first the static case. This corresponds
to the black, blue and green tick lines in Fig. 13.8. Note that the case with β =
−4.8 is actually outside of the observational limit β > −4.5 but we plotted it
so that one can have a better intuition about the qualitative behavior with the
increase of β. One of the most important properties of this class of scalar-tensor
theories is the nonuniqueness of the solutions. First, one should note that for
α(ϕ) = βϕ the field equations (13.73) and (13.74) always admit the solutions
with zero scalar field (we will call them trivial solutions). This means that the
pure general relativistic solutions are also solutions for this class of STT. As one
can see from the left panel in Fig. 13.8, at some critical central energy density a
new sequence of neutron star solutions with nontrivial scalar field (we will call
them nontrivial solutions) branch out of the sequence of trivial solutions. This is the
so-called spontaneous scalarization with the name coming from the analogy to the
spontaneous magnetization in ferromagnets. Thus, for a certain range of parameters
nonuniqueness of the solutions is present.
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Fig. 13.8 Left panel: The neutron star mass as a function of the central energy density for static
sequences of neutron stars (solid lines) and sequences of stars rotating at the mass-shedding limit
(dotted lines) with different values of the coupling constant β. A polytropic equation of state with
N = 0.7463 and K = 1186 is used. Right panel: The quantity 1 − M0/M , connected to the
gravitational binding energy, as a function of the baryon rest mass M0 for a fixed value of the
angular momentum cJ/(GM2�) = 1.38 [Credit Ref. Doneva et al. (2013c)]

It is even more interesting that the scalarized neutron stars are energetically more
favorable over the neutron stars with zero scalar field (Damour and Esposito-Farèse
1993; Doneva et al. 2013c) and they will be the ones that will be realised in practice.
This is demonstrated also in the right panel of Fig. 13.8 where the quantity 1 −
M0/M , that is connected to the gravitational binding energy, is plotted as a function
of the baryon rest mass M0. The sequences are calculated for the more general
case of rotating stars with a fixed value of the angular momentum. As one can see,
there is a cusp at the point where the mass reaches maximum which represents a
turning point along the fixed-J sequence. This is the point where secular instability
to collapse sets in. Moreover, the scalarized neutron stars have lower values of 1 −
M0/M and therefore, higher binding energy compared to the pure GR case, which
makes them energetically more favorable. The stability of the scalarized neutron
stars was examined in Harada (1997, 1998) and it was found that nontrivial scalar
field develops for β < −4.35 in the non-rotating case. This result was derived in
Harada (1998) for one particular polytropic EOS, but it turns out that the threshold
value of β is quite similar for other realistic EOS (Novak 1998a). Since the current
observational constraint is β > −4.5 there is not much space for deviations from
pure general relativity.

The scalarization was further examined in Salgado et al. (1998) and the maxi-
mummass limit was studied in Sotani and Kokkotas (2017). Slowly rotating neutron
stars in STT where constructed in Damour and Esposito-Farèse (1996) where also
the constrains on β coming from the binary pulsar observations where discussed for
the first time. Rotational corrections up to first order in the rotational frequencywere
studied later in Sotani (2012) and up to second order in Pani and Berti (2014). What
gives the largest difference, though, is the inclusion of rapid rotation (Doneva et al.
2013c) that enhances the differences between the pure general relativistic solutions
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and the scalarized ones, especially close to the Kepler limit, and also increases the
range of parameters where nontrivial scalar field can developed. It was shown for
example that scalarized solutions exist even for β < −3.9 close to the Kepler limit.
As a matter of fact these were the first rapidly rotating models in alternative theories
of gravity. The effect of rapid rotation is demonstrated in Fig. 13.8 where the dotted
lines correspond to sequences of models rotating at the mass-shedding limit. As one
can see for β = −4.2 no scalarized branch of solutions exists in the nonrotating
limit, but such branch clearly appears close to the Kepler frequency with significant
deviations from pure general relativity. Moreover, while the differences between
the pure general relativistic solutions and the scalarized ones is quite small for the
maximum allowed value β = −4.5 in the static case, the rapidly rotating models
can reach large deviations for the same value of β.

The regime of rapid rotation opens a completely new window towards testing
scalar tensor theories. Currently the fastest known pulsar rotates with a frequency
of about 700Hz (Hessels et al. 2006) where the rotational effects are important but
they would not lead to significant enhancement of the differences with pure general
relativity. Other objects, though, such as the binary neutron star merger remnants,
will rotate with frequencies close to the Kepler limit shortly after their birth and they
are supposed to be observed in the near future via their gravitational wave emission.
This makes them perfect candidates for further testing of scalar-tensor theories and
the strong field regime of gravity in general.

All the solutions discussed so far are in the negative β regime. It was argued
recently that scalarization can occur for positive β as well for a limited set of
equations of state that admit negative values of trace of the energy-momentum
tensor inside the star (Mendes 2015; Palenzuela and Liebling 2016; Mendes and
Ortiz 2016). This condition practically means that there are regions inside the star
where the pressure surpasses one third of the energy density that can be translated to
a threshold value of the compactness weakly dependent on the particular equation
of state, i.e. (M/R)min ∼ 0.265 (Mendes 2015).

A lot of work has been done on astrophysical implications of the scalarized
neutron stars. Possible ways to constrain scalar-tensor theories through measure-
ments of surface atomic line redshifts was considered in DeDeo and Psaltis (2003).
The orbital and epicyclic frequencies, and the innermost stable circular orbit for
particles orbiting around scalarized neutron stars were calculated in DeDeo and
Psaltis (2004) in the non-rotating case and in Doneva et al. (2014a) for rapidly
rotating models, while general expressions in terms of the multipole moments
have been produced in Pappas and Sotiriou (2015a). These quantities are related
to the properties of accretion discs around compact stars and the observations of
quasi-periodic oscillations in the emitted X-ray flux, and that is why they can
be used to put constraints on the theory. The process of dynamical scalarization
resulting for example after accretion of matter on the neutron star that brings it
above the scalarization threshold, was considered in Novak (1998a). The collapse
in scalar-tensor theories was examined in Harada et al. (1997); Novak and Ibanez
(2000); Gerosa et al. (2016) and the collapse of a neutron star to black holes was
considered in Novak (1998b). Almost all of these studies, with the exception of
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Doneva et al. (2014a), are in the nonrotating limit. Even though some of them
offered promising ways of constraining the coupling parameter β at that time, the
very recent observations of pulsars in binary systems set very tight limit on β which
makes the deviations from pure general relativity in these astrophysical scenario
practically unmeasurable. Only the rapidly rotating case leads to larger deviations.
If we restrict ourselves to objects rotating with frequencies up to 700Hz, though,
the deviations in the epicyclic frequencies and the position of the innermost stable
circular orbit considered in Doneva et al. (2014a), would be still difficult to measure.
That is why one needs to go to rotation close to the Kepler limit expected for
example for the binary neutron star merger remnants.

As a matter of fact the neutron star merger in scalar-tensor theories was studied
for the first time a few years ago in Barausse et al. (2013); Shibata et al. (2014). In
these studies a phenomenon called “dynamical scalarization” was observed similar
to the spontaneous scalarization. The essence of the phenomenon is that even though
the two neutron stars would not be scalarized when they are isolated, they can
develop nontrivial scalar field if they are close enough, i.e. as the orbital separation
shrinks the stars undergo dynamical scalarization. This can have significant effect
on the stellar dynamics and leads to some observable effects. Later a semi-analytical
approach based on a modification of the post-Newtonian formalism was developed
that takes into account the presence of a nontrivial scalar field and was proven to be
in agreement with the previous fully nonlinear relativistic results (Palenzuela et al.
2014). This approach was recently improved in Sennett and Buonanno (2016). The
advantage of the semi-analytical approach is that a much larger parameter space can
be explored and template of waveforms can be generated. The problem of binary
neutron star mergers in scalar-tensor theories was examined also via calculation
of quasi-equilibrium sequences of equal-mass, irrotational binary neutron stars in
Taniguchi et al. (2015). The question of detectability of possible (dynamically)
scalarized stated by the Advanced LIGO, VIRGO and KAGRA was discussed in
Sampson et al. (2014) and the results show that the gravitational wave signal is
indeed detectable in certain case that are in agreement with the current observational
constraints. In addition, the electromagnetic counterpart of the binary neutron star
mergers was studied (Ponce et al. 2015) and it was concluded that the differences
with pure general relativity are small but if they are combined with gravitational
wave observations, constraints can be imposed on the deviations from Einstein’s
theory.

The oscillations of neutron stars in scalar-tensor theories were examined for the
first time in Sotani and Kokkotas (2004) where the non-radial polar oscillations
modes (f - and p-modes) were calculated in the Cowling approximation, i.e. when
the spacetime and the scalar field perturbations are neglected. Even though this is a
crude approximation it gives us good qualitative picture of the possible deviations
from pure general relativity. Later, the full perturbation equations for both the
axial and polar modes were derived and the frequencies of the axial modes were
calculated (Sotani and Kokkotas 2005). In Sotani (2014) a different approach was
undertaken—the radial oscillations of scalarized neutron stars were considered in
the Cowling approximation, but without neglecting the scalar field perturbations.
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The radial perturbations of course do not lead to gravitational wave emission
but due to the presence of a scalar field, scalar waves are emitted (Morganstern
and Chiu 1967). All these studies showed that the scalarization indeed changes
significantly the oscillations spectrum leading to non-negligible deviations from
general relativity for small enough values of β. The most recent constraints on β,
though, limit the possible deviations from Einsteins’ theory considerably similar to
the other astrophysical scenarios. Torsional oscillations of scalarized neutron stars
were examined in Silva et al. (2014). The results in Silva et al. (2014) showed that if
one considers realistic values of the β the deviations due to scalarization are smaller
than the uncertainties in microphysics and therefore there is no degeneracy between
the two effects. Oscillations of rapidly rotating neutron stars were examined in
Yazadjiev et al. (2017). The results show that the deviations from pure Einstein’s
theory can be significant especially in the case of nonzero scalar field mass.

Additional “ingredients” to the scalarized neutron stars were also explored, such
as the presence of anisotropic pressure (Silva et al. 2015) both in the nonrotating
and slowly rotating regimes using a quasi-local equation of state similar to the
pure general relativistic case (Horvat et al. 2011; Doneva and Yazadjiev 2012).
Depending on the “sign” of the anisotropy, i.e. whether the tangential pressure is
larger than the radial one or the other way around, the deviations from pure general
relativity due to the presence of nontrivial scalar field are either suppressed or
magnified. This gives us hope that the binary pulsar observations can set constraints
on the degree of anisotropy.

An interesting extension of the above work is to consider not only one scalar
field coupled to the metric, but multiple scalar fields instead. This problems is of
course much more involved and the first steps in this direction were undertaken in
Horbatsch et al. (2015) (see also Damour and Esposito-Farese 1992). The simplest
case is to consider two real scalar fields instead of one, that after a complexification
can be cast to the problem of adding one complex scalar field. The criterion for
neutron star scalarization were examined in this theory and the 3+1 formulation of
the field equations was derived.

So far all the presented results are for the case when the potential of the scalar
field V (ϕ) = 0. New and interesting effects arise, though, if we drop this assumption
as commented in the previous subsection. For example the inclusion of scalar-
field mass mϕ , via the specific form of the potential given by Eq. (13.82), leads
to the fact that the scalar field is suppressed at length scales larger that its Compton
wavelength λϕ . Therefore, if properly chosen, the mass of the scalar field can help
us reconcile the theory with the observations for a much larger range of parameters.
One should note that the calculation of the neutron star models is numerically
challenging because of the following reason. The presence of nonzero mass makes
the field equation for the scalar field (13.74) stiff because this equation admits both
exponentially decreasing and exponentially growing solutions at infinity. Clearly,
only the exponentially decreasing solutions is physically relevant, but it is very
difficult in certain cases to converge numerically to it and special techniques should
be used.
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Let us consider the same class of scalar-tenor theories with coupling function
α(ϕ) = βϕϕ and impose the constraint that the Compton wavelength λϕ � 1010m
(this is roughly the minimal observed orbital separation for close binary pulsars) or
equivalently mϕ � 10−16 eV. Then the emission of scalar gravitational waves will
be suppressed which means that practically no constraints can be imposed on the
parameter β. Thus, the deviations from pure general relativity can be very large.
Neutron star models in such class of scalar-tensor theories were considered for
the first time in Popchev (2015); Ramazanoğlu and Pretorius (2016) for the static
case and in Yazadjiev et al. (2016) for the slowly rotating case. Rapidly rotating
models in massive scalar-tensor theories were examined in Doneva and Yazadjiev
(2016). Further studies on the astrophysical implications of neutron stars in massive
scalar-tensor theories are needed because too large, negative β would clearly lead to
dramatic changes in the neutron star structure that can be tested with the present
astrophysical observations. Considering other forms of the scalar field potential
would be interesting as well. The gravitational radiation of compact binaries in
another class of massive scalar-tensor theories, the massive Brans–Dicke theory,
was considered in Berti et al. (2012); Alsing et al. (2012).

Neutron Stars in f (R) Theories of Gravity Neutron star models in f (R) theories
of gravity attracted considerable interest recently as a natural attempt to study the
astrophysical applications of a class of alternative theories that gives promising
results on cosmological scales, such as an alternative explanation of the accelerated
expansion of the universe. Here we will not give a thorough review on the subject
but instead focus mainly on the realistic astrophysically relevant models which were
also used to construct the universal relations discussed in this chapter. We will
concentrate on the particular case of R2 gravity that is supposed to give the leading
corrections for the neutron star structure. Moreover, the f (R) theories of gravity are
mathematically equivalent to a specific class of scalar-tensor theories with nonzero
scalar field potential, as discussed in the previous subsection, which can simplify
their treatment.

The initial work on the subject was concentrated mainly on discussing the
existence of solutions and building such solutions (see for example Kobayashi and
Maeda 2008; Upadhye and Hu 2009; Babichev and Langlois 2009; Jaime et al.
2011; Babichev and Langlois 2010). In the beginning there was some controversy on
the question of whether compact star solutions exist in f (R) theory but the overall
studies showed that such stars can indeed be constructed. A drawback, though, is
that solving the reduced field equations suffers from severe numerical instabilities.
This can be easily demonstrated using the scalar-tensor formulation of f (R) theory.
Let us consider for example the case of R2 gravity, i.e. when f (R) = R + aR2. In
this case the resulting scalar field potential will lead to a nonzero mass of the scalar
field. Thus, similar to the massive scalar-tensor theories, the field equation for the
scalar field (13.74) becomes stiff and thus leads to severe computational difficulties
in certain cases. That is why, as a simplification, realistic neutron stars in R2 gravity
were first studied perturbatively (Cooney et al. 2010; Arapoglu et al. 2011) (see
also Alavirad and Weller 2013 for the case of logarithmic f (R) theory), i.e. instead
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of solving the full field equations a perturbative expansion in the parameter a was
made. The studies in Yazadjiev et al. (2014) went beyond the perturbative approach
calculating for the first time sequences of realistic neutron star models in R2 gravity
and comparing them with the observations. The calculations were performed using
the mathematical equivalence to a particular class of scalar-tensor theories and they
were later verified by deriving and calculating the full unperturbed field equations
directly in f (R) theories without going through scalar-tensor theories or different
frames (Yazadjiev and Doneva 2015). The results showed that the nonperturbative
results are not only quantitatively but also qualitatively very different from the
results in the perturbative approach. Thus the perturbative approach is not applicable
for f (R) theories and in order to obtain correct results one has to calculate the full
field equations.

The results in Yazadjiev et al. (2014) confirmed what was expected from the
theory—in the limit when a → 0 the solutions converge to the general relativistic
ones and in the limit a → ∞ the solutions tend to the case of massless Brans–Dicke
theory with coupling function α(ϕ) = −1/

√
3. Therefore, the neutron star solutions

in R2 gravity are bounded between two limiting cases which also puts an upper
limit on the deviations from general relativity. This can be seen on Fig. 13.9 where
different colors correspond to different dimensionless values of a and the case of
a = 104 corresponds to nearly the maximum possible deviation from pure general
relativity (we use the dimensionless parameter a → a/R2

0, where R0 is one half of
the solar gravitational radius R0 = 1.47664 km, i.e. the solar mass in geometrical
units). The Gravity Probe B experiment imposes the following constraints on the
values of a, namely a � 2.3× 105 in the same dimension units (or a � 5× 1011m2

in physical units) which means that all cases plotted on Fig. 13.9 fall into the allowed
range of values of a. The studies for several equations of state in Yazadjiev et al.
(2014) showed, though, that the deviations due to the change of the parameters a

are of the same order of magnitude as the equation of state uncertainties which

Fig. 13.9 The neutron star mass as a function of the radius (left panel) and the moment of inertia as
a function of the mass (right panel) for static and rotating at the Kepler limit sequences of neutron
stars in R2 gravity. The results for several values of the parameter a are plotted for the APR4 EOS
[Credit Ref. Yazadjiev et al. (2015)]
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of course poses significant obstacle for testing the f (R) theories. This is not
the case, though, with the moment of inertia calculated in Staykov et al. (2014);
Yazadjiev et al. (2015) where the differences with pure general relativity are better
pronounced. Thus, the future observations of the neutron star moment of inertia
can be used to discriminate between different gravitational theories in the strong
field regime. Rapidly rotating models in R2 gravity were calculated in Yazadjiev
et al. (2015) and similar to the case of scalar-tensor theories, the rotation magnifies
the deviations from pure general relativity considerably in comparison to the static
case. The gravitational collapse in f (R) theories was studied in Borisov et al.
(2012); Cembranos et al. (2012). The astrophysical implication of the constructed
neutron star solutions, such as the orbital and epicyclic frequencies, were considered
in Staykov et al. (2015a) and the oscillations of neutron stars, including different
asteroseismology relations, where examined in Staykov et al. (2015b). These studies
showed that the deviations from Einstein’s gravity are non-negligible, even though
in some cases they are within the equation of state uncertainty. This gives us
hope that the f (R) theories would be better constrained in the future when the
astrophysical observations limit further the allowed range of equations of state.

Neutron Stars in EdGB Gravity Neutron stars in the EdGB theories of gravity were
constructed for the first time in Pani et al. (2011b) both in the static and the slowly
rotating cases. The coupling function between the scalar field and the Gauss–Bonnet
scalar in Eq. (13.89) is chosen to be

f1(ϕ) = αGBeβϕ, (13.91)

where αGB and β are constants.
An interesting fact is that in the decoupling limit the monopole scalar charge,

i.e. the coefficient in front of the 1/r term in the asymptotic of the scalar field at
infinity, is zero unlike for example the massless scalar-tensor theories.23 Thus there
would be no scalar dipole radiation and it is not possible to impose constraints on
the theory from the binary pulsar observations (Yagi et al. 2016).

In Figs. 13.10 the mass as a function of the central energy density and themoment
of inertia as a function of the mass for neutron stars in EdGB gravity are plotted.
As one can see, contrary to scalar-tensor and f (R) theories, the maximum neutron
star mass decreases with the increase of αGB for fixed β. Even more, it was proven
in Pani et al. (2011b) that for fixed αGBβ no neutron star solutions exist above
some critical maximum central energy density (the exact limit is a quite lengthy
expression and can be found in Pani et al. 2011b). This can serve as a way to impose
constraint on the theory if the nuclear matter equation of state is known with a
good accuracy—one should simply require that αGBβ is below some critical values
chosen in such a way that the maximum mass is above the two solar mass barrier
(Demorest et al. 2010; Antoniadis et al. 2013).

23The neutron stars, though, can still have nonzero higher scalar multipoles and thus nontrivial
scalar field.
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Fig. 13.10 The mass as a function of the central energy density (left panel) and the moment of
inertia as a function of the mass (right panel) for neutron stars in EdGB gravity using the APR
EOS. Models for different values of the Gauss–Bonnet coupling constants α (denoted by αGB in
the text) and β are shown. In the right panel the recent observation of a neutron star withM ≈ 2M�
and a possible future observation of the moment of inertia confirming general relativity within
10% Lattimer and Schutz (2005) are shown [Credit Ref. Pani et al. (2011b)]

As we mentioned above, one of the hopes to test the deviations from pure
general relativity is via the future observations of the neutron star moment of inertia.
Unfortunately, the studies showed that for EdGB gravity this would not be possible
since the moment of inertia deviate from the one in pure Einstein’s theory by a few
percents at most, that is inside the expected observational error.

The axial quasinormal modes of neutron stars in EdGB were examined in
Blázquez-Salcedo et al. (2016). The frequencies of the fundamental spacetime
modes increase compare to pure general relativity. An interesting observation is that
the universal (equation of state independent) relations for the oscillation modes that
are available in Einstein’s theory still hold for the EdGB gravity that can be used to
put constraints on the parameters of the theory.

Rapidly rotating neutron star models in EdGB gravity were calculated in
Kleihaus et al. (2014, 2016). The properties of the rotating compact stars are
examined there in detail and the quadrupolemoment is calculated as well. The mass-
radius relation for rapidly rotating neutron stars is shown in Fig. 13.11.

Neutron Stars in dCS Gravity As we commented above, static neutron stars in
dCS gravity are identical with the pure general relativistic ones and differences
are present only in the rotating case. Up to now only models in the slow rotation
approximation were calculated at first order in the rotation (Yunes et al. 2010; Ali-
Haimoud and Chen 2011) and later at second order (Yagi et al. 2013). Up to leading
order in rotation only the moment of inertia is affected by the dCS gravity, while the
mass-radius relation remains the same as in Einstein’s theory.
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Fig. 13.11 The mass-radius relation for different values of the Gauss–Bonnet coupling constant
α = 0, 1 and 2 (α ≡ αGB/M2�) for the EOS DI-II (the parameter β in Eq. (13.91) is fixed
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used in the graph. For a given α the left boundary curve represents the sequence of static solutions,
while the right boundary curve represents the sequence of neutron stars rotating at the Kepler limit.
Both are connected by the secular instability line [Credit Ref. Kleihaus et al. (2016)]

The change in the moment of inertia �ICS/IGR induced by the CS gravity as
a function of the CS coupling strength is shown in Fig. 13.12. As one can see,
depending on the Chern–Simons coupling constant, the moment of inertia can
deviate significantly from general relativity and if we assume that the accuracy of
the future observations of the neutron star moment of inertia are of the order of 10%,
the Chern–Simons coupling constant can be constrained several orders of magnitude
better than the current estimates.

The calculation of neutron stars in dCS gravity up to second order in rotation
allowed to calculate the mass quadrupole moment and the rotational corrections
to the mass and radius that is plotted in Fig. 13.13. Unfortunately, it turns out that
these corrections are inside the EOS uncertainty and they can not be used to test
the dCS gravity with the present observations. The corrections to the post-Keplerian
parameters are also too small to be observable nowadays via double binary pulsars.

13.2.3 Universal Relations in Alternative Theories

Neutron star universal relations offer a very important tool for testing alternative
theories of gravity, because the equation of state uncertainty, that causes a lot of
problems as we have already mentioned, is taken out of the picture. There are
three classes of universal relation in generalised theories of gravity that have been
discussed in the literature so far. These are the gravitational waves asteroseismology
relations, the I-Love-Q relations, and relations between the moment of inertia and
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the compactness of neutron stars. In general relativity we also discussed the 3-
hair relations for the multipole moments but this topic has not been tackled yet in
alternative theories of gravity. Below we will comment on the three former classes
in further detail.

The oscillations of neutron stars are directly related to the emitted gravitational
wave signal. That is why relations that connect the neutron star parameters to
the oscillations frequencies and damping times, the so-called gravitational wave
astereseismology relations, were extensively studied in pure Einstein’s theory. They
can be used in practice when gravitational waves from oscillating neutron stars are
observed in the future (see discussion in Sect. 13.2.1.4). The extension to alternative
theories of gravity was done in Sotani and Kokkotas (2004, 2005) for the case of
massless scalar-tensor theories, in Staykov et al. (2015b) for f (R) theories in the
static case. The results there show, that if we restrict ourselves to values of the
parameters that are in agreement with the current observational constraints, the
relations are as equation of state independent as in pure general relativity but the
deviations from pure Einstein’s theory are very small in most of the cases. For
example in R2 gravity one can use an expression like the one in Eq. (13.47) with
a small variation to the coefficients to fit the f -mode frequency in terms of η.
Extensions to other alternative theories of gravity would be interesting, especially
the massive scalar-tensor theory case that can produce very large differences. The
first studies of oscillations modes of rapidly rotating neutron stars in alternative
theories of gravity were performed very recently (Yazadjiev et al. 2017) in the case
of (massive) scalar-tensor theories and the results show that the deviations from pure
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general relativity can be large. Asteroseismology relations in the rapidly rotating
case are still lacking.

Another set of relations that attracted a lot of attention recently are the I-Love-Q
relations, that are discussed in a lot of detail in the rest of the chapter for the pure
general relativistic case. A natural question is whether we can use them to constrain
the strong field regime of gravity. If such universal relations hold in alternative
theories as well and we are able to determine independently via observations two
quantities from the I-Love-Q trio, then possible deviations from general relativity
can be detected. With this motivation in mind, such relations were examined in Yagi
and Yunes (2013a); Yagi and Yunes (2013b) for the dCS gravity, in Pani and Berti
(2014); Doneva et al. (2014b) for massless and in Doneva and Yazadjiev (2016)
for massive scalar-tensor theories, in Kleihaus et al. (2014) for the EdGB theory,
in Sham et al. (2014) for the Eddington-inspired Born-Infeld (EiBI) theory and in
Doneva et al. (2015) for f (R) theories. From these studies only the papers (Doneva
et al. 2014b; Kleihaus et al. 2014; Doneva et al. 2015; Doneva and Yazadjiev 2016)
include the rapidly rotating case. It turned out that for all these theories the equation
of state independence is preserved up to a large extend. The deviations from pure
general relativity, though, are almost negligible for a big portion of the cases if one
considers the allowed range of parameters of the corresponding theory. These are the
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massless STT, the EdGB and the EiBI theory. Larger differences on the other hand
are observed for dCS gravity, massive STT and f (R) theories. One should note that
all these conclusions are true only for the normalized relations, if one considers the
non-normalized relations then the deviations from pure general relativity can reach
very large values. This means that the normalization that is used for the I-Love-Q
relations is so good that not only the equation of state dependence is taken away, but
in some cases also the dependence on the particular theory of gravity. Therefore, it
is unclear so far up to what extend the I-Love-Q relations can be used to test the
various alternative theories of gravity.

We should note here that, as with I-Love-Q, 3-hair relations could also be used
to test gravity modifications, but as we have mentioned earlier these relations have
not been studied yet in alternative theories of gravity. It is possible that the 3-hair
relations in alternative theories can be quite different from their general relativity
counterparts. The caveat here is that it might not be possible to define multipole
moments in all classes of alternative theories of gravity, the way that they are defined
in general relativity. This has been done so far only in scalar-tensor theory for a
massless scalar field (Pappas and Sotiriou 2015b), where possible astrophysical
applications in terms of these moments have been explored (Pappas and Sotiriou
2015a). We should note here that the quadrupole moment has been calculated
in some additional cases such as in the case of EdGB theory by Kleihaus et al.
(2016, 2014) as well as in R2 gravity by Doneva et al. (2015), where the I-Q
relations in these theories were compared against the corresponding relations in
general relativity. Another case where a general definition of multipole moments has
been given, is the case of f (R) theories by Suvorov and Melatos (2016), although
they investigate only Ricci flat cases where there are no extra degrees of freedom
present and the correspondingmultipole moments are equivalent to those of general
relativity.

Finally, relations between different normalizations of the moment of inertia and
the compactness of neutron stars, including also relations involving the maximum
stellar mass, were examined for STT and f (R) theories (Staykov et al. 2016)
motivated by the work in pure general relativity (Breu and Rezzolla 2016; Lattimer
and Schutz 2005).24 The results showed that the equation of state universality is
as good as in Einstein’s theory of gravity but the deviations from general relativity
can be large in certain cases,25 especially for the relations involving the maximum
stellar mass, that can be used as a probe of the gravitational theories. Specifically,
Staykov et al. (2016) studied neutron star models using the following theories: (1)
a scalar-tensor theory (denoted as STT) with a massless scalar field (V (ϕ) = 0)
and a conformal factor, that relates the Einstein frame to the Jordan frame, of the

24I-C relations have been also studied in Horndenski and beyond-Horndeski gravity (Maselli et al.
2016; Babichev et al. 2016; Sakstein et al. 2017), as well as for theories with disformal couplings
(Minamitsuji and Silva 2016), which are not covered here.
25For the I-C relations in EdGB, as we have noted earlier, this is not the case though. On the
contrary we expect that the general relativistic relations to hold also in EdGB.
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form A(ϕ) = eβϕ
2/2, with a chosen value for β = −4.5, which is within the range

allowed by observational constrains and produces spontaneous scalarisation, (2) an
f (R) theory with the specific choice for the Lagrangian, f (R) = R + aR2, where
the coupling parameter a is in km2 in geometric units and has the value a = 104M2�,
where the mass of the Sun is M� = 1.477 km, and finally (3) general relativity. For
these theories and the various models that they constructed, they fitted the moment
of inertia in terms of the compactness C for two different choices of normalisation
using two different polynomial forms following Lattimer and Schutz (2005) and
Breu and Rezzolla (2016), i.e.,

Ĩ = I/(MR2) = ã0 + ã1C + ã2C4, and Ī = I/M3 = ā1C−1 + ā2C−2 + ā3C−3 + ā4C−4,

(13.92)

respectively. The coefficients of the fits for the three theories and for three rotation
rates are given in Table 13.6.

For the relations that concern the maximum stellar mass in the various theories,
Staykov et al. (2016) used the following two fitting functions, one where the mass
is normalised with respect to the maximum non-rotating mass, MTOV, and another

Table 13.6 The fitting coefficients for the fit given by Eqs. (13.92)

Ĩ = I/(MR2) Ī = I/M3

ã0 ã1 ã2 ā1 ā2 ā3 ā4

GR

Slow. rot. 0.210 0.824 2.480 1.165 0.0538 0.0259 −0.00144

χ = 0.2 0.211 0.788 3.135 1.077 0.100 0.0172 −9.830 × 10−4

χ= 0.4 0.200 0.823 2.469 1.024 0.123 0.0129 −7.985 × 10−4

χ = 0.6 0.176 0.839 2.393 0.943 0.143 0.00714 −5.539 × 10−4

STT

Slow. rot. 0.201 0.897 0.603 1.057 0.110 0.0173 −0.00103

χ = 0.2 0.196 0.909 0.224 0.884 0.197 0.00270 −3.254 × 10−4

χ = 0.4 0.171 1.055 −2.985 0.664 0.313 −0.0163 5.647 × 10−4

χ = 0.6 0.127 1.256 −7.190 0.257 0.513 −0.0492 0.00202

f (R)

Slow. rot. 0.221 0.981 −0.755 0.941 0.214 0.00521 −4.412 × 10−4

χ = 0.2 0.216 0.989 −1.255 0.853 0.243 0.00190 −3.841 × 10−4

χ = 0.4 0.208 1.011 −1.748 0.805 0.264 −0.00201 −1.978 × 10−4

χ = 0.6 0.201 0.998 −2.143 0.725 0.280 −0.00407 −1.706 × 10−4

The results are given for the slowly rotating cases and rapidly rotating cases with χ = 0.2, χ = 0.4,
χ = 0.6, for the GR case, followed by the STT case and by the f (R) case. The table is taken from
Staykov et al. (2016)
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Table 13.7 The fitting
coefficients for the maximal
mass for the fits (13.93)

a0 a1 a2

M/MTOV

(
J/JKep

)

GR 1 0.251 −0.0626

f (R) 1 0.382 −0.127

STT – – –

M/MKep

(
J/JKep

)

GR 0.844 0.203 −0.0484

f (R) 0.800 0.290 −0.0933

STT 0.724 0.403 −0.126

The table is taken from Staykov et al. (2016)

Fig. 13.14 The maximal
mass normalised to the
maximal Keplerian mass as a
function of the angular
momentum, normalised to the
maximal Keplerian one for
the three different theories.
The curves are for the fit
coefficients in Table 13.7
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where the normalisation of the rotation is done with the angular momentum at the
Kepler limit JKep. As one can see in Table 13.7, where the various coefficients
of the fits are given, there is no fit for the STT case in the M

MTOV
normalisation.

This is because in this particular scalar-tensor theory the neutron star models get
spontaneously scalarised, which means that the models of the theory are the same
as the corresponding models in general relativity with a vanishing scalar field, until
one gets to some critical value of central density and rotation and then the scalarised
solutions appear. This causes a discontinuity in the behaviour of the M/MTOV
and the results are quite scattered, also because the point where spontaneous
scalarisation starts depends on the equation of state. This is the reason why the
second normalisation with respect to MKep was also considered in Staykov et al.
(2016). This latter normalisation gives a nice behaviour without discontinuities and
significantly less scattering in the STT case. The very interesting result is that the
three different theories separate and are distinguishable as one can see in Fig. 13.14.
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13.3 Present Challenges and Future Prospects

As we have seen, the topic of universal relations in general relativity is quite wide
with a variety of relations having already been found. This does not mean that there
are no more topics to be explored and progress to be made. One such case is the
question of what happens in the presence of strong magnetic fields. We have seen
already that there has been some work on I-Love-Q relations and magnetic fields
(Haskell et al. 2014) but there has been no work on 3-hair relations and strong
magnetic fields. In the I-Love-Q case we saw that strong magnetic fields and slow
rotation can destroy universality, but it might be worth exploring the possibility that
there is a more appropriate parameterisation that takes into account the magnetic
field and in the end preserves universality. Universal relations that take into account
magnetic fields could be useful in observationally constraining the strength of the
magnetic field in neutron stars.

There is also a lot of work to be done on the quasi-normal modes universal
relations. So far the calculations have been done mainly using the Cowling
approximation. It is very important therefore that the quasi-normal modes are
calculated beyond that approximation and it is verified that the universal relations
that have been found for the various modes and decay times still hold. This will
enable the more accurate determination of the various neutron star parameters that
can be extracted by the quasi-normal modes observations from gravitational waves.
Another question that could be of interest in the quasi-normal modes topic is to
identify the theoretical/mathematical reason behind the existence of the universality
in the modes.

Further expanding on this, it would be interesting to know if the various universal
relations can be traced to a common mechanism or not. We should note here that
relations like the I-Love-Q, the 3-hair or the quasi-normal modes universal relations
are relations between “integral” or average quantities of the entire star. The question
then is, are there any other quantities that are local and satisfy universal relations
or is it that such relations can exist only between particularly weighted average
quantities?

Finally, there is a lot of work to be done on the front of utilising universal
relations for making measurements of astrophysical observables from neutron stars.
Some work has already been done on using the I-Love-Q relations in order to
break degeneracies in gravitational wave observations (see for example Yagi and
Yunes 2013a; Yagi and Yunes 2013b) and there has been some preliminary work
on using the 3-hair relations to model electromagnetic observables from X-ray
binary systems in order to measure neutron star parameters (Pappas 2015; Tsang
and Pappas 2016; Pappas 2017), but there is a lot more work to be done.

Turning to neutron stars in alternative theories, even though the topic has been
studied for several decades, there is still a lot to be done in the field. One of the
main reasons for this is the complexity of the equations especially if one wants to
consider not only static but also rapidly rotating neutron stars. Thus the studies have
to be extended in two main directions—constructing new neutron star models in
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alternative theories of gravity and studying their astrophysical implication in further
detail. Below we will discuss both of them.

Constructing compact star models for a broader spectrum of alternative theories
of gravity, such as more general or more realistic cases of tensor-multi scalar
theories, Quadratic gravity, Horava gravity, Lorentz-violating theories, etc., is
important since there are many extensions of Einstein’s theory and the neutron
stars offers a unique way of testing them. In addition, for some alternative theories
of gravity a perturbative approach was used for constructing the solutions. This
is a drawback since some strong field effects can be omitted or even worse,
the perturbative approach can be misleading in certain cases such as the f (R)

gravity where it was explicitly shown that the non-perturbative results are not only
quantitatively but also qualitatively different from the perturbative ones. As far as
rotation is concerned, rapidly rotating neutron star solutions were constructed up to
now only in three classes of alternative theories—the scalar-tensor theories, f (R)

theories and Einstein–dilaton–Gauss–Bonnet theory. All these studies show that the
rapid rotation offer new phenomenology that should be further explored in other
generalized theories of gravity. In addition, the full stability of neutron stars in
alternative theories of gravity has not been studied yet, not even in the case of scalar-
tensor theories.

The astrophysical implications of neutron stars, such as stellar collapse, neutron
star mergers, quasiperiodic oscillations, absorption lines, etc. are scarcely studied
in most of the alternative theories of gravity, with the exception of scalar-tensor
theories and some sectors for the quadratic gravity. One of the problems there is that
the observations themselves either suffer from large uncertainties or even there are
multiple astrophysical models explaining the same observations that makes testing
the strong field regime of gravity extremely difficult. Nevertheless, neutron stars are
ones of the very few astrophysical objects where the strong field regime of gravity
can be explored and that is why further studies in this directions are needed.

Last but not least, larger efforts should be put in the directions of breaking the
degeneracy between the effects coming from the alternative theories of gravity and
the uncertainties of the nuclear matter equation of state. Currently this degeneracy
is plaguing a very large portion of the attempts to constrain the strong field regime
of gravity. Some advance in this direction is actually expected to come in the near
future since the astrophysical observations are narrowing the possible set of nuclear
matter equations of state more and more. One thing we should always keep in mind,
though, is that the interpretation of these observations is always done within general
relativity, or even some type of Newtonian approximation. Therefore, an interesting
study that deserved to be done is to explore whether the alternative theories of
gravity could change the corresponding predictions.

On this note, the study of universal relations in alternative theories of gravity is
very important, because in principle such relations could be used to test deviations
from general relativity while evading the equation of state degeneracies. So far work
has been done on the I-Love-Q relations in alternative theories of gravity and in most
of the cases the I-Love-Q relations have been found to be identical to those that hold
in general relativity. Exception to this are the cases of dCS gravity, massive scalar-
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tensor theories and f (R) theories. At a first glance therefore one would say that the
applicability of I-Love-Q relations in testing theories alternative to general relativity
is limited. Still, more work needs to be done before we can definitively decide on
the extent of the usefulness of I-Love-Q relations as tests of our theories of gravity.

Beyond the I-Love-Q relations, there are other relations, discussed in Sect. 13.2.3
that show more promise in distinguishing different theories. The exploration of
these relations is only the beginning. There are many more relations discussed in
Sect. 13.2.1 that should be also explored in other theories as well. Two important
classes of relations that should be explored in alternative theories are the quasi-
normal modes relations and the 3-hair relations. The quasi-normal modes relations
are important to be studied in alternative theories especially in this moment in time
since the opening of the gravitational waves observational window offers a unique
opportunity to probe the structure of compact objects. So far, studies of gravitational
waves emission in alternative theories are missing from the literature. These studies
are very difficult but need to be made in order to better constrain possible deviations
from general relativity.

3-hair relations in alternative theories will be easier to study and already some
steps towards that direction are being made. For example multipole moments in
some classes of alternative theories have been defined (Pappas and Sotiriou 2015b;
Suvorov and Melatos 2016), while there exist numerical codes that can calculate
neutron star models in these theories (Doneva et al. 2013c). Again a possible issue
might be to properly define the normalised quantities that will enter the various
universal relations in the different theories. Also, it will be necessary to have a good
correspondence between the quantities in different theories. At this point there is an
issue that will have to be addressed in order to make progress. Multipole moments
are defined in general relativity as asymptotic quantities (these are the Geroch–
Hansen multipole moments) that characterise fields that exist on asymptotically flat
spacetimes. This definition will not be always possible in all classes of alternative
theories of gravity. Therefore one should be careful when talking about moments in
other theories, making sure that the asymptotic moments are meaningful quantities.
Furthermore, in the cases that asymptotic moments (a la Geroch–Hansen) cannot be
defined, alternative quantities should be considered. Possible alternatives could be
source integrals like the ones given in the case of general relativity by Gürlebeck
(2014) for example, or maybe other type of source integrals like those given by
Hernández-Pastora et al. (2016). In that case one would have to re-evaluate all the
relevant quantities in general relativity as well and find the new relations that they
will satisfy. In addition one will also have to find a way to relate these new quantities
to astrophysical observables as well as some of the usual neutron star properties,
such as the moment of inertia for example.26

26It is also worth noting that one could take a theory independent approach in studying neutron
stars and universal relations in alternative theories of gravity, such as the post-TOV approach
(Glampedakis et al. 2015, 2016).
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Finally there is an elephant in the room that we should address. As we place
more constrains on the equation of state from astrophysics, the notion of universal
relations will become meaningless. This is not expected to happen soon and
probably there will be faster progress on universal relations than on the equation
of state question, but eventually it will happen. Will universal relations become
obsolete? The answer is, not necessarily. If the equation of state is determined,
then it will be in all likelihood one that will preserve the universal relations. These
relations can express quantities (neutron star parameters) in terms of other quantities
and therefore will still be a tool for determining parameters that are difficult
to measure directly. In addition, such relations can serve as consistency checks
for our various astrophysical models that enter the “measurement” of different
quantities from observations. Therefore they will continue to be a useful tool to do
astrophysics. Furthermore, the class of these relations that can distinguish between
different theories of gravity will be a particularly useful tool to do some fundamental
physics by testing general relativity and even possibly selecting a likely alternative,
or at least excluding unlikely ones.

13.4 Conclusions

This chapter has covered two quite wide topics, that of neutron star universal
relations and that of neutron stars in alternative theories of gravity. We have tried
to present the fullest possible spectrum of universal relations in general relativity,
but inevitably some results were covered very briefly or not at all. Similarly, for
neutron stars in alternative theories of gravity we have focused on the better studied
classes of these theories, such as scalar-tensor gravity, f (R), EdGB and CS. These
are all theories for which neutron star universal relations have been considered. Our
aim has been to present some of the basic ideas, giving some attention to the most
important aspects of them, and then focus on the most important results.

As it was discussed, the notion of neutron star universal relations is not new,
but the field gained a lot of momentum the last few years and has opened the way
to circumvent the uncertainties of the equation of state. With respect to isolated
neutron stars, one could say that the main classes of universal relations are three.
The first class are the I-Love-Q relations which relate the moment of inertia, the
quadrupolar love number and the mass quadrupole of a neutron star. The second
class is the 3-hair relations that relate the higher order multipole moments of the
spacetime around neutron stars to the first three non-zero multipole moments, i.e.,
the mass, the angular momentum and the mass quadrupole. Finally the third class
are the universal relations of the oscillation frequencies, which relate the real parts
and the imaginary parts of neutron star QNMs to its other parameters such as
the moment of inertia or the compactness or the average density. Relations like
the I-Love-Q and the 3-hair relations, characterise both neutron and quark stars
and can have many useful applications. They can be used to measure neutron star
properties that are hard to measure directly or they can be used to break degeneracies
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between parameters that enter the description of observables. They could also be
used to test our assumptions or our models of astrophysical mechanisms, if one
could measure one member of the I-Love-Q trio in one way and infer another
member from another observation and an assumed model for example. Furthermore,
by measuring the neutron star parameters from different channels, with the help
of the universal relations, we could use our knowledge of these parameters to
solve the inverse problem and constrain initially and maybe finally identify the
equation of state for matter at supra-nuclear densities. In addition, with the opening
of the gravitational wave observational window, we expect to learn many things
for the structure of neutron stars from the mergers of binary systems and the
universal relations of the oscillation frequencies will play an important part since the
fundamental frequencies of the remnants will be some of our primary observables.
In addition, apart from using the various universal relations, one could also test
for their validity. In this way one could test the assumptions that enter the various
relations, such as the assumptions on the equation of state, i.e., whether our current
models are correct or not. Even more, one could test one of the most fundamental
assumptions of all, that of the theory of gravity that we are using to construct neutron
stars.

Modifications or extensions to general relativity are motivated for several
reasons, such as cosmological and astrophysical considerations like the nature of
dark matter and dark energy questions, as well as more theoretical considerations
coming from attempts to create a theory of everything where additional degrees
of freedom are introduced to the low energy description of such a theory. The
resulting modifications can have the form of additional scalar fields or modifications
of the Einstein–Hilbert action with the introduction of higher powers or arbitrary
functions of the Ricci scalar or various contractions of the Riemann tensor. Apart
from the cosmological implications of such modifications, the implications for
the structure of compact objects in general and neutron stars in particular are of
extreme interest and this is why neutron stars have been extensively studied in such
theories. Here we focused on the most widely studied classes of these theories, i.e.,
scalar-tensor gravity, f (R), EdGB and dCS, that are also the ones for which there
have been studies of various universal relations beyond general relativity. When
studying neutron stars in these theories one needs to also take into account the
constrains that exist on various scales: from laboratory and solar system tests of
gravity to constraints coming from astrophysical and cosmological observations,
as well as viability restrictions to the theories. Although the aforementioned
constrains can be very strong for some parameters of modified theories and the
viability considerations limit the possible options, there is still the possibility to
find theories that are viable and free of pathologies (like tachyonic instabilities
and such), to which the various classes that we present here belong, and have
neutron stars that are quite different from their general relativistic counterparts.
One such example are neutron stars in massive scalar-tensor theory that exhibit
spontaneous scalarisation and another example are neutron stars in R2-gravity,
a subclass of f (R) theories. In both cases neutron stars can be quite different
than their general relativistic counterparts, which makes them very interesting
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astrophysical targets. On the other hand, the deviations of neutron star masses
and radii constructed in EdGB and dCS from their general relativistic counterparts
are quite small, making them more difficult to distinguish with astrophysical
observations (we should note though that in dCS only slow rotation models have
been studied so far). The main source of uncertainty again is the unknown equation
of state and any changes in the structure and the parameters of neutron stars in
modified theories needs to be measured against the range of these parameters that
is possible within general relativity and comes from choosing different equations of
state.

This is where universal relations come into play. Comparing the relations in
general relativity against their counterparts in modified theories of gravity has
the potential to distinguish different theories even though the uncertainty due to
the equation of state seems to give a mixed picture. Such success stories are the
applications of the I-Love-Q relations in dCS and massive scalar-tensor or f (R)

theories, where the relevant relations have been found to differ from their general
relativistic counterparts. In contrast, theories such as the massless scalar-tensor or
EdGB seem to have the same relations as in general relativity, if we restrict ourselves
to values of the parameters of the theory allowed by the observations. Apart from
the I-Love-Q relations, some other classes of promising relations have emerged
such as the relations that express the maximum neutron star mass in terms of the
maximum non-rotating mass and the rotation rate, which seem to be more potent
in distinguishing different theories of gravity. Finally, there is plenty of work to be
done in other directions as well, such as the study of 3-hair relations in alternative
theories, as well as extending work on the study of neutron star QNMs in alternative
theories.

In conclusion, with respect to universal relations, although their usefulness now
that the equation of state is still uncertain is quite obvious, it is important to stress
that these relations will still be useful even after the equation of state has been
determined. This is because they will still express useful relations between different
properties of neutron stars, that can be utilised in the analysis of observations and in
measuring the full range of the relevant neutron star parameters.
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