
Chapter 10
Gravitational Waves from Merging
Binary Neutron-Star Systems

Tanja Hinderer, Luciano Rezzolla, and Luca Baiotti

Abstract The merger of binary neutron-star systems is among the scientifically
richest events in the universe: it involves extremes of matter and gravity, copious
emission of gravitational waves, complex microphysics, and electromagnetic pro-
cesses that can lead to astrophysical signatures observable at the largest redshifts.
We review here the recent progress in understanding the gravitational-wave signal
emitted in this process, focussing in particular on its properties during the inspiral
and then after the merger.

10.1 Introduction

Neutron stars are believed to be born in supernova explosions triggered by the
collapse of the iron core in massive stars. Many astronomical observations have
revealed that binary neutron stars (BNSs) indeed exist (Kramer et al. 2004;
Abbott et al. 2017). Despite this observational evidence of existence, the formation
mechanisms of BNS systems are not known in detail. The general picture is that
in a binary system made of two massive main-sequence stars of masses between
approximately 8 and 25 M�, the more massive one undergoes a supernova explosion
and becomes a neutron star. This is followed by a very uncertain phase in which the
neutron star and the main-sequence star evolve in a “common envelope”, that is,
with the neutron star orbiting in the extended outer layers of the secondary star
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(Kiziltan et al. 2013; Ivanova et al. 2013; Özel and Freire 2016). At the end of this
stage, also the second main-sequence star undergoes a supernova explosion and, if
the stars are still bound after the explosions, a BNS system is formed. The common-
envelope phase, though brief, is crucial because in that phase the distance between
the stars becomes much smaller as a result of drag, and this allows the birth of
BNS systems that are compact enough to merge within a Hubble time, following
the dissipation of their angular momentum through the emission of gravitational
radiation. It is also possible that during the common-envelope phase the neutron
star collapses to a black hole, thus preventing the formation of a BNS. Another
possible channel for the formation of BNS systems may be the interaction of two
isolated neutron stars in dense stellar regions, such as globular clusters, in a process
called “dynamical capture” (O’Leary et al. 2009; Lee et al. 2010; Thompson 2011).
Dynamically formed binary systems are different from the others because they have
higher ellipticities. It is presently not known what fraction of BNS systems would
originate from dynamical capture, but it is expected that these binaries are only a
small part of the whole population.

This is undoubtedly an exciting and dynamical time for research on BNS
mergers, when many accomplishments have been achieved (especially since 2008),
while many more need to be achieved in order to describe such fascinating objects
and the related physical phenomena. The first direct detection through the advanced
interferometric LIGO detectors (Harry et al. 2010) of the gravitational-wave (GW)
signal from what has been interpreted as the inspiral, merger and ringdown of a
binary system of black holes (The LIGO Scientific Collaboration and the Virgo
Collaboration 2016) marks, in many respects, the beginning of GW astronomy and
other detections of these systems have been made over the last few months (Abbott
et al. 2016).

More importantly, however, a long-awaited event has taken place on August
17, 2017: the Advanced LIGO and Virgo (Accadia et al. 2011) network of GW
detectors have recorded the signal from the inspiral and merger of a binary neutron-
star (BNS) system: GW170817 (Abbott et al. 2017). The correlated electromagnetic
signals that have been recorded by ∼70 astronomical observatories and satellites
have provided the striking confirmation that such mergers can be associated directly
with the observation of short gamma-ray bursts (SGRBs). Although the detection
rate of these events is still very uncertain and spans three orders of magnitude, it is
expected to be of several events per year (Abadie et al. 2010), so that the operation
of additional advanced detectors, such as KAGRA (Aso et al. 2013) and LIGO India
(see e.g., Fairhurst 2014), are likely to increase the number of detections in the near
future.

This Chapter aims at providing a quick overview of the efforts made to date to
model the GW signal produced by the (late) inspiral, merger and post-merger of
BNS systems (see also Baiotti and Rezzolla (2017), Paschalidis (2017) for some
recent reviews). Because the merger represents a natural divide—both in terms of
the physics involved and of the methods employed to describe this signal—the
report is organised in a first part dedicated to the inspiral and merger dynamics
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(Sect. 10.3) and to a second part devoted instead to the post-merger dynamics
(Sect. 10.4). Both of these parts are prefaced by a general broadbrush description
of the whole process (Sect. 10.2).1

10.2 The Broadbrush Picture

General-relativistic hydrodynamical simulations of BNSs started being performed
in Japan almost 20 years ago (Nakamura and Oohara 1998; Oohara and Nakamura
1999; Shibata 1999). Even if nowadays many state-of-the-art codes are able to solve
more complex sets of equations (e.g., for the evolution of magnetic fields, neutrino
emission, etc.), simulations involving only general-relativistic hydrodynamics are
still the benchmark for any new code and the necessary testbed for more advanced
codes. Furthermore, in many cases, results obtained with pure hydrodynamics,
most notably, gravitational waveforms, provide already a wealth of information on
BNS systems, especially during the inspiral. In many respects, the inspiral may
be considered the easiest part of the problem, in which the stars spiral towards
each other as a result of gravitational-radiation losses, being scarcely or not at all
affected by magnetic fields or neutrinos. Its simplicity notwithstanding, this problem
is still the object of continuous efforts and improvements, which are often carried out
through the synergy of numerical simulations and analytical calculations based on
post-Newtonian expansions or other approximation schemes. We describe progress
on this topic in Sect. 10.3. The inspiral has also recently attracted renewed attention
with the first simulations of arbitrarily spinning BNS systems (see Sect. 10.3).

In what follows, we give a general description of the BNS dynamics using the
figures of Baiotti et al. (2008), which was one of the first to provide complete and
accurate evolutions. Our description is here intentionally qualitative, as we focus
on those aspects that are robust and independent of the EOS. As an aid to the
discussion we show in Fig. 10.1 the various stages in the evolution of an equal-mass
binary system of neutron stars as a function of the initial mass of the binary. More
specifically, the diagram shows on the horizontal axis the progress of time during
the evolution of the system (the intervals in square brackets indicate the expected
duration range of each stage), while on the vertical axis it displays the ratio of the
total (gravitational) mass of the binary (i.e., the sum of the gravitational masses of
the stars composing the system), M , to the maximum mass of an isolated nonrotating
star,2 MTOV . Because the EOS describing neutron stars is still unknown, the precise

1Much of the material presented in the second part relative to the post-merger dynamics has been
presented elsewhere either in the form of original journal articles, as a Chapter in a textbook
(Rezzolla and Zanotti 2013), or as a part of a Review of Progress in Physics (Baiotti and Rezzolla
2017).
2An isolated nonrotating neutron star is the solution of the Tolman-Oppenheimer-Volkoff (TOV)
equation (Tolman 1939; Oppenheimer and Volkoff 1939) and so it is often called a “TOV” star.



578 T. Hinderer et al.

Fig. 10.1 Schematic diagram illustrating the various stages in the evolution of an equal-mass
binary system of neutron stars as a function of the initial mass of the binary. Depending on the
initial total mass of the binary M , and on how it relates to the maximum mass of a nonrotating
neutron star MTOV , the binary can either collapse promptly to a black hole surrounded by a torus
(top row), or give rise to an hypermassive (HMNS) (or to a supramassive neutron star (SMNS)
that ultimately collapses to a black hole and torus (middle row), or even lead to a SMNS (first
differentially and subsequently uniformly rotating) neutron star that eventually yields a black hole
or a nonrotating neutron star (bottom row). Also indicated in red are the typical frequencies at
which gravitational waves are expected to be emitted [Adapted from Rezzolla and Zanotti (2013)
by permission of Oxford University Press www.oup.com]

value of MTOV cannot be determined, although a number of different studies have
now converged on a possible upper limit of MTOV/M� � 2.16+0.17

−0.15 (Margalit
and Metzger 2017; Rezzolla et al. 2018; Ruiz et al. 2018; Shibata et al. 2017).
Furthermore, astronomical observations indicate that it should be larger than about
two solar masses, since there are two different systems that have been measured to
have masses in this range: PSR J0348+0432 with M = 2.01±0.04 M� (Antoniadis
et al. 2013), and PSR J1614–2230 with M = 1.97 ± 0.04 M� (Demorest et al.
2010).

For millions of years a comparatively slow inspiral progressively speeds up until
the two neutron stars become so close that tidal waves produced by the (tidal)
interaction start appearing on the stellar surface (these are clearly visible in the
second and third panels of Fig. 10.2). Such waves are accompanied by emission
of matter stripped from the surface and by shocks that represent the evolution of
small sound waves that propagate from the central regions of the stars, steepening
as they move outwards in regions of smaller rest-mass density (Stergioulas et al.
2004; Nagakura et al. 2014).

http://www.oup.com
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Fig. 10.2 Isodensity contours in the (x, y) plane for the evolution of a high-mass (individual
stellar rest mass 1.625M�) binary with an ideal-fluid EOS. The thick dashed lines in the lower
panels show the location of the apparent horizon [Reprinted with permission from Baiotti et al.
(2008). © (2008) by the American Physical Society]



580 T. Hinderer et al.

At the merger, the two stars collide with a rather large impact parameter. A
vortex sheet (or shear interface) develops, where the tangential component of the
velocity exhibits a discontinuity. This condition is known to be unstable to very
small perturbations and it can develop Kelvin-Helmholtz instability (KHI), which
curls the interface forming a series of vortices at all wavelengths (Chandrasekhar
1981; Bodo et al. 1994). Even if this instability is purely hydrodynamical and it
is likely to be important only for binaries with very similar masses, it can have
strong consequences if the stars possess magnetic fields. It has in fact been shown
that, in the presence of an initially poloidal magnetic field, this instability may
lead to an exponential growth of the toroidal component (Price and Rosswog 2006;
Giacomazzo et al. 2011; Rezzolla et al. 2011; Neilsen et al. 2014; Kiuchi et al.
2014, 2017). Such a growth is the result of the exponentially rapid formation
of vortices that curl magnetic-field lines that were initially purely poloidal. The
exponential growth caused by the KHI leads to an overall amplification of the
magnetic field of about three orders of magnitude (Kiuchi et al. 2014). At the same
time, high-resolution simulations in core-collapse supernovae find that parasitic
instabilities quench the MRI, with a magnetic-field amplification factor of 100 at
most, independently of the initial magnetic field strength (Rembiasz et al. 2016). Of
course, KHI and MRI are two different instabilities, but the lesson these simulations
provide is that parasitic instabilities may also appear during the development of the
KHI and limit the overall magnetic-field amplification; such parasitic instabilities
are at present not yet apparent because of the comparatively small resolutions
employed when modelling BNS mergers.

The hypermassive neutron star (HMNS) produced from the merger may not
collapse promptly to a black hole, but rather undergo large oscillations with
variations such that the maximum of the rest-mass density may grow to be twice
as large (or more) as the value in the original stars (see the right panel of Fig. 10.3).
These oscillations have a dominant m = 2 non-axisymmetric character (Stergioulas
et al. 2011) and will be discussed in detail in Sect. 10.4. As mentioned earlier,
the formation and duration of the HMNS depends on the stellar masses, the EOS,
the effects of radiative cooling, magnetic fields (Ravi and Lasky 2014; Rezzolla
and Kumar 2015; Ciolfi and Siegel 2015), and the development of GW driven
instabilities (Doneva et al. 2015). Furthermore, the equilibrium of the HMNS can
also be modified by the losses of rest mass via winds that can be driven by shock
heating (Sekiguchi et al. 2015; Bovard et al. 2017), by magnetic fields (Shibata et al.
2011; Kiuchi et al. 2012a; Siegel et al. 2014; Rezzolla and Kumar 2015; Ciolfi and
Siegel 2015; Murguia-Berthier et al. 2017), or by viscosity and neutrino emission
(Dessart et al. 2009; Perego et al. 2014; Just et al. 2015; Martin et al. 2015; Murguia-
Berthier et al. 2014, 2017; Fujibayashi et al. 2017).

In essentially all cases when a black hole is formed, some amount of matter
remains outside of it, having sufficient angular momentum to stay orbiting around
the black hole on stable orbits. In turn, this leads to the formation of an accretion
torus that may be rather dense (ρ ∼ 1012–1013 g cm−3) and extended horizontally
for tens of kilometres and vertically for a few tens of kilometres. Also this point will
be discussed in more detail in Sect. 10.4.
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Fig. 10.3 Left panel: Evolution of the maximum rest-mass density normalized to its initial value
for a high-mass (individual stellar rest mass 1.625M�; gravitational mass of the system 2.998M�)
binary using an ideal-fluid EOS. Indicated with a dotted vertical line is the time at which the binary
merges, while a vertical dashed line shows the time at which an apparent horizon is found. After
this time, the maximum rest-mass density is computed in a region outside the apparent horizon
[from Baiotti et al. (2008). © (2008) by the American Physical Society]. Right panel: The same
as in the left panel but for a low-mass binary (individual stellar rest mass 1.456M� ; gravitational
mass of the system 2.694M�). Note that the evolution is much longer in this case and that different
colours are used to denote the different parts of the evolution (see insets) [Adapted from Rezzolla
et al. (2010). © IOP Publishing. Reproduced with permission. All rights reserved]

The dynamics of the inspiral and merger of a reference equal-mass binary system
is summarised in Fig. 10.3, whose panels show the evolution of the maximum rest-
mass density normalized to its initial value (after the formation of the apparent
horizon, the curve shows the maximum rest-mass density in the region outside
the apparent horizon). Note that together with the large oscillations, the rest-mass
density also experiences a secular growth and the increased compactness eventually
leads to the collapse to a rotating black hole. The differences in the two panels are
essentially related to the initial mass of the system (i.e., M = 2.998 M� in the left
panel and M = 2.694 M� in the right panel) and it can be seen that, for a given EOS
(even a very simple one like the ideal-fluid EOS used in this case) smaller masses
will yield systematically longer-lived HMNSs.

The matter dynamics described so far in the various stages of the evolution of
a BNS system are imprinted in the GW signal, which then can be used to extract
important information on the properties of the neutron stars. Different parts of
the evolution will provide distinct pieces of information and with different overall
signal-to-noise (SNR) ratios. For example, the post-merger signal would provide
rather clear signatures but at such high frequencies that it may be difficult to measure
them with present detectors. On the other hand, as we will discuss in detail in the
following section, the inspiral signal does depend on the EOS much more weakly,
but in a way that is still measurable because it comes at frequencies where the
detectors are more sensitive.



582 T. Hinderer et al.

10.3 Matter Effects During a Binary Inspiral

For inspiraling compact-object binary systems, GW measurements of the source
parameters are based on matched filtering, where the datastream is cross-correlated
with theoretically predicted template waveforms for different possible parameters
within the wide physically plausible range. A detailed understanding and modelling
of the effect of neutron-star matter on the binary dynamics and GWs is therefore
essential to enhance the science gains from GW observations. For nonspinning
compact objects the main imprint of their internal structure on the GW signal
from the inspiral is due to tidal effects. The energy cost of the tidal deformation
together with the contribution from the moving tidal bulges to gravitational radiation
accelerate the inspiral inspiral and change the GWs compared to the signal from a
black-hole binary. The main characteristic equation-of-state parameter imprinted
in the GWs is the star’s tidal deformability, as recently measured for GW170817
(Abbott et al. 2017) the ratio of the induced quadrupole moment to the perturbing
tidal field.

Tidal effects in binary neutron-star systems are well-known in Newtonian gravity
(Bildsten and Cutler 1992; Reisenegger and Goldreich 1994; Lai 1994; Kochanek
1992; Kokkotas and Schaefer 1995), and in post-Newtonian (PN) theory (Damour
et al. 1992; Lombardi et al. 1997; Mora and Will 2004). A formal description
of the coupling of the neutron-star’s internal structure, described by full General
Relativity (GR), to the orbital dynamics of a binary at large separation was
developed in Flanagan (1998) and expounded upon in Racine and Flanagan (2005).
This provided a rigorous proof that there are no new relativistic “star crushing”
forces (Wilson and Mathews 1995) and that tidal interactions are the leading-
order finite-size effects for nonspinning objects with arbitrarily strong self-gravity
at large separation. The dominant tidal effects in the GWs and the associated
relativistic tidal parameter were derived in Flanagan and Hinderer (2008), Hinderer
(2008). Recent work computed the tidal parameters for higher multipole moments
(Damour and Nagar 2009; Binnington and Poisson 2009), for a wide range of
equations of state models (Hinderer et al. 2010; Postnikov et al. 2010), examined
their physics content (Fattoyev et al. 2013, 2014; Steiner et al. 2015; Lattimer and
Lim 2013; Van Oeveren and Friedman 2017) and the effect of stratification and
elasticity (Penner et al. 2011), considered various other quantities characterising
tidal deformations (Damour and Nagar 2009; Landry and Poisson 2014), the tidal
parameters of black holes (Damour and Lecian 2009; Kol and Smolkin 2012;
Porto 2016; Gurlebeck 2015) and of exotic objects (Cardoso et al. 2017; Sennett
et al. 2017; Mendes and Yang 2017; Uchikata and Yoshida 2016; Pani 2015),
and new tidal parameters that appear for slowly rotating neutron stars (Pani et al.
2015a; Landry and Poisson 2015a). Substantial recent interest has also focused on
I-Love-Q relations (Yagi and Yunes 2013a,b) that link dimensionless parameters
characterising various global properties of the neutron star in an approximately
EOS-independent way (Lattimer and Lim 2013; Pappas and Apostolatos 2014; Yagi
et al. 2014a; Pappas 2017, 2015; Haskell et al. 2014; Chakrabarti et al. 2014; Maselli



10 Gravitational Waves from Merging Binary Neutron-Star Systems 583

et al. 2013a; AlGendy and Morsink 2014; Chirenti et al. 2015; Pannarale et al. 2015;
Steiner et al. 2016; Breu and Rezzolla 2016; Silva et al. 2016; Yagi 2014; Reina et al.
2017; Chan et al. 2015, 2016); see also Chap. 13 of this book.

Significant progress has also been made on describing the tidal effects on the
orbital dynamics and gravitational radiation, within post-Newtonian theory (Vines
et al. 2011a,b; Bini et al. 2012; Steinhoff et al. 2016), a post-Newtonian affine
approach (Ferrari et al. 2012; Maselli et al. 2012), the gravitational self-force
formalism (Dolan et al. 2015; Bini and Damour 2014; Nolan et al. 2015; Shah
and Pound 2015), effective field theory (Goldberger and Rothstein 2006), and the
effective-one-body model (Damour and Nagar 2010; Vines et al. 2011a; Bini et al.
2012; Bini and Damour 2014; Damour et al. 2012; Bernuzzi et al. 2015a; Hinderer
et al. 2016; Steinhoff et al. 2016). Comparisons and tests of these descriptions
against numerical relativity simulations will be reported in Sect. 10.4 of this chapter.
Based on the above models, several measurability studies of the tidal signature in
the GW signal have been performed using Bayesian data analysis methods, both for
double neutron-star binaries (Del Pozzo et al. 2013; Agathos et al. 2015; Lackey and
Wade 2015; Wade et al. 2014; Chatziioannou et al. 2015; Markakis et al. 2009) and
for neutron-star–black-hole systems (Lackey et al. 2012, 2014; Kumar et al. 2017),
and a first result from LIGO and Virgo observations has recently been reported
(Abbott et al. 2017).

This section will focus on theoretical models of matter effects during the inspiral
epoch of a neutron-star binary system. We will focus on the main imprints from
tidal effects, but in Sect. 10.3.5 will also point out references containing discussions
of other effects including rotational deformations, the tidal excitation of a neutron
star’s various oscillation modes beyond the fundamental mode, nonlinear tidal
effects, and other tidal interactions in general relativity that are not present in
Newtonian gravity. To introduce the theoretical approaches for describing the
inspiral, we will start by recalling tidal effects in Newtonian gravity in Sect. 10.3.1.
The Newtonian discussion will be formulated in way that can be promoted to general
relativity with appropriate modifications, as will be delineated in Sect. 10.3.2, where
we will also review the information needed to compute the tidal parameters for a
given equation of state model, and briefly outline approximate universal relations
between these parameters and similar parameters characterising the rotational
deformation and moment of inertia in Sect. 10.3.3. The effect on the GW signal
from a binary inspiral will be considered in Sect. 10.3.4.

Conventions We will use units in which G = c = 1 unless otherwise indicated.
Indices on tensors consisting of Greek letters α, β, . . . denote four-dimensional
spacetime quantities, while Latin indices i, j, k, . . . denote spatial, three-
dimensional quantities. We will use overdots on quantities to denote derivatives
with respect to coordinate time, e.g., ẋ = dx/dt .
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10.3.1 Tidal Interactions in Newtonian Compact Binaries

In this section we will review Newtonian tidal interactions in a binary system,
discuss the characteristic tidal parameters, and derive an effective action that com-
pactly summarizes the dynamics. This formalism, with appropriate modifications,
will carry over to the relativistic case discussed in Sect. 10.3.2. We will first review
the multipole expansion of the self-field of a body and the gravitational potential of
a binary system, then consider the equations of motion and a corresponding action
principle. The discussion is based on Vines et al. (2011a) and Steinhoff et al. (2016);
some of the introductory material can also be found in the book Gravity by Poisson
and Will (2014).

10.3.1.1 Multipole Expansion of the Self-gravitational Potential

We consider two bodies labeled by A,B. In Newtonian gravity the gravitational
potential generated by a mass distribution with density ρA at a field point x is a
solution to Poisson’s equation ∇2UA = −4πρA or

UA(t, x) =
∫

d3x ′ρA(t, x′) 1

|x − x′| (10.1)

Outside the body’s mass distribution, for points x > x′, the potential can be written
as a Taylor series expansion around a moving reference point zA(t) as

UA =
∫

d3x ′ρA(t, x′)
∞∑

�=0

1

�!(x
′ − zA)L

(
∂

∂x ′L
1

|x − x′|
)

|x′=zA
(10.2a)

=
∫

d3x ′ρA(t, x′)
∞∑

�=0

(−1)�

�! (x ′ − zA)L∂L
1

|x − zA| . (10.2b)

Here, the notation is that L = a1a2 · · · a� denotes a string of � indices and

xL = xa1xa2 · · · xa�, ∂L = ∂

∂xL
= ∂

∂xa1
. . .

∂

∂xa�
, (10.3)

Throughout this review, the summation over repeated indices is implied.
Similar to the definitions in electromagnetism, we define the body’s Newtonian

mass multipole moments by the following integrals

MA =
∫

A

d3x ρA(t, x), QL
A =

∫
A

d3x ρA(t, x)(x − zA)<L>, (10.4)

where MA is the mass of the body and the integration is over a sphere surrounding
the matter distribution. The angular brackets around the indices denote the symmet-
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ric and trace-free projection of the tensor, e.g., x<ij> = xixj − δij |x|2; see Thorne
(1980), Hartmann et al. (1994) for a pedagogical introduction to symmetric and
trace-free tensors. The reason that the mass multipole moments defined in Eq. (10.4)
are only the trace-free parts of the integrals that would be read off from (10.2b) is
that the derivative ∂L|x − x′|−1 is a symmetric and trace-free tensor that projects
out only trace-free piece QL in the contribution to the potential (10.2a). Finally, the
mass dipole term (� = 1) has been omitted from the expansion (10.4) since it can
always be made to vanish by choosing the reference point zi

A(t) for the multipole
expansion to be the body’s center of mass. With the definitions from Eq. (10.4), the
potential outside the body becomes

UA(t, x) = MA

|x − zA| +
∞∑

�=2

(−1)�

�! QL∂L
1

|x − zA| . (10.5)

This form of the potential is convenient for computing the dynamics of a binary
system. When considering the deformation of a single object, it is useful to work
with spherical coordinates (x − zA)i/|x − zA| = (sin θ cos φ, sin θ sin φ, cos θ) and
express (10.5) as a spherical-harmonic expansion

UA(t, x) = MA

|x − zA| +
∞∑

�=2

�∑
m=−�

Q�m
Y�m(θ, φ)

|x − zA|�+1 . (10.6)

The spherical-harmonic components of the multipole moments are related to the
Cartesian multipole moments by (Thorne 1980)

QA
�m = 4π

2� + 1
Y∗ �m

L QL QL = �!
(2� − 1)!!

�∑
m=−�

Q�mY�m
L . (10.7)

Here, the quantities Y�m
L are symmetric-trace-free tensors consisting of complex

coefficients that appear in the conversion between unit vectors n and spherical
harmonics (Thorne 1980)

Y�m = Y�m
L n<L> n<L> = 4π�!

(2� + 1)!!
�∑

m=−�

Y�m
L Y ∗

�m. (10.8)

10.3.1.2 Expansion of the Companion’s Potential and Tidal Moments

Throughout the subsequent discussion, we will consider a binary system in the
regime where the separation between the bodies is large compared to the character-
istic size of the bodies. The potential due to external sources such as a companion
in the binary that is felt by body A is denoted by U ext

A and can be written as a Taylor
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expansion around A’s center of mass in the form

U ext
A (t, x) = U ext

A (t, zA) + (x − zA)j
[
∂jU

ext
A (t, x)

]
x=zA

−
∞∑
l=2

1

�!(x − zA)LEL
A,

(10.9a)

where “ext” denotes that the source of this part of the potential is external to
the body. The coefficients EL

A in the second line of (10.9) are the body A’s tidal
moments (Thorne and Hartle 1984). Assuming that the source of the external
potential is the potential of body B in a binary system, denoted by UB , the tidal
moments are

EL
A = −

(
∂

∂xL
UB(t, x)

)
x=zA(t)

. (10.9b)

Similar to the self-field, the decomposition of the external potential in Eq. (10.9)
can also be written as a spherical-harmonic expansion using the same conversion
and thus not given explicitly here.

10.3.1.3 Equations of Motion and Action Principle

The total potential for the binary is U = UA + UB and the equations of motion for
the center-of-mass positions of either the bodies (C = A or C = B) can be derived
from Newton’s second law:

MCz̈
j

C =
∫

d3x ρC

∂

∂xj
U(t, x) = M

∂

∂xj
U ext

C (t, x) |x=zC −
∞∑

�=2

1

�!Q
L
CEjL,

(10.10)

where in the second equality we have used the multipole expansions described above
and the fact that only the potential sourced by the companion contributes to the
body’s motion, as can be verified by direct calculation.

The dynamics can be conveniently summarised by an action principle con-
structed from the Lagrangian L = T − V , where T = TA + TB is the total kinetic
energy and V = VA + VB the potential energy for the binary system. As reviewed
in detail in Vines et al. (2011a), each of these contributions can be split into a the
center-of-mass motion of the body and an internal contribution:

TA = 1

2

∫
A

d3xρAż
2
A + T int

A , VA = 1

2

∫
A

d3xρAUB + Vint. (10.11)

For simplicity, we will specialise the subsequent discussion to the case where only A

is an extended body while B is a point mass. To linear order in the finite-size effects,
the case of two extended objects can be recovered by adding the same contribution
with A and B interchanged. Performing the expansions around A’s center of mass,
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using the definitions of the multipole and tidal moments, adding the contributions
TB and VB from the companion, and transforming to the barycentric frame of the
binary system leads to

T = 1

2
μv2 + Tint, V = −μM

r
+

∑
�≥2

1

�!QLEL + Vint. (10.12)

Here, we have defined the total mass M = MA + MB , the reduced mass μ =
MAMB/M , and the relative separation r = zA − zB whose magnitude we denote
by r = |r|, as well as the relative velocity v2 = ṙ · ṙ . The action is then given
by (Flanagan and Hinderer 2008; Rathore et al. 2003; Lai 1994)

S = Sorbit +
∫

dt
∑
�≥2

[
− 1

�!QLEL + Lint
]
, (10.13)

where Sorbit = ∫
dt Lorbit, with Lorbit = (μ/2)v2 + μM/r , describes the orbital

motion of point-masses and Lint encapsulates the internal dynamics of the multipole
moments mass multipole moment that still remain to be specified. We will discuss
the form of Lint for the case where the multipole moments are tidally induced in
the next subsection. The advantage of the formulation in Eq. (10.13) is that the
information about the binary dynamics in summarised in a simple, single scalar
function.

10.3.1.4 Tidally Induced Multipole Moments

We will now further specialise to the case of a body that would be spherically
symmetric in isolation and whose multipole moments result only from the response
to the companion’s tidal field (Bildsten and Cutler 1992; Reisenegger and Goldreich
1994; Lai et al. 1993; Lai 1994; Zahn 1977, 1970; Kopal 1978; Kochanek 1992;
Hansen 2006; Mora and Will 2004; Kokkotas and Schaefer 1995; Flanagan and
Hinderer 2008; Ferrari et al. 2012; Damour et al. 1992; Shibata 1994). For a neutron
star, the main dynamics of the tidally induced multipole moments can be described
by its fundamental oscillation modes (f -modes) with an internal Lagrangian having
the form of a harmonic oscillator (Flanagan and Hinderer 2008; Rathore et al. 2003;
Lai 1994; Kokkotas and Schaefer 1995)

Lint = 1

2�!λ�ω
2
0�

[
Q̇LQ̇L − ω2

0�QLQL
]
. (10.14)

An explicit derivation of this Lagrangian starting from the mode amplitudes of
the fluid displacement and their relation to the multipole moments is exhibited in
Chakrabarti et al. (2013). Here, the quantities ω0� denote the f -mode frequencies,
and only the contribution from the modes with no radial nodes have been included
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since higher modes contribute very little to the effect (McDermott et al. 1985).
The parameters λ� are the tidal deformability coefficients that are defined by
considering the adiabatic limit, where the body’s internal time scales τ int ∼
ω−1

0� ∼ √
R3/MA are fast compared to the time scale of variations in the tidal field

τorb ∼ √
r3/(MA + MB). They characterize the equation-of-state-dependent ratio

between the induced multipoles and the tidal field

Qadiab
L = −λ� EL, (10.15)

and are sometimes also referred to as the tidal polarizability. The tidal parameters
λ� are related to the body’s tidal Love numbers k� (or apsidal constants) that were
introduced by the British scientist A.E.H. Love in (1909) and its radius R by

λ� = 2

(2� − 1)!!k�R
2�+1. (10.16)

In many contexts it is useful to work with the dimensionless tidal deformabilities

�� = λ�

M2�+1
= 2

(2� − 1)!!k�C
−(2�+1), (10.17)

where C = M/R is the star’s compactness.
For adiabatically induced multipoles, dQL/dt = 0 and the internal Lagrangian

is only the elastic potential energy associated with the deformation

Lint
adiab = − 1

2�!λ�

QLQL. (10.18)

Using the relation (10.15), the finite size effects can be written entirely in terms of
the orbital variables and λ�:

Sadiab = Sorbit +
∫

dt

[
λ�

2�!ELEL

]
, (10.19)

where in this Newtonian context EL = −MB∂Lr−1. The quantities λ� or k� depend
on the details of the body’s internal structure, and their computation therefore
requires an explicit description of the perturbed interior.

For the Newtonian calculations of λ� we work in the rest frame of the body,
in a region surrounding it that excludes the companion. The first step is to obtain
an equilibrium configuration for the body in isolation, by solving to the Poisson
equation for the gravitational potential together with the continuity and Euler’s
equations that express the conservation of mass and momentum:

∇2U = −4πρ,
∂ρ

∂t
+∇·(ρv) = 0,

∂vi

∂t
+(v·∇)vi = −∂ip

ρ
+∂iU+ai

ext,

(10.20)
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where ai
ext is the acceleration due to external forces. Next, we suppose that the

star is disturbed by an external static tidal gravitational field, e.g., due to a
distant companion. The tidal disturbance is characterized by the set of moments
EL, that each cause the star to deform in response and settle down to a new
static configuration which has a nonzero set of mass multipole moments QL. The
gravitational potential outside the perturbed star is

Utotal = Uself+Utidal = M

r
+

∞∑
�=2

�∑
m=−�

Y�m

[
Q�m

r�+1 − 1

(2� − 1)!!E�mr�

]
(10.21)

The multipole moments Q�m characterising the body’s response are associated with
the piece of the exterior potential that falls off as 1/r�+1, while the external tidal
field is related to the terms that grow as r�. To linear order in the external tidal
perturbation and in the adiabatic limit, the induced distortion will be linearly pro-
portional to the tidal perturbation as in Eq. (10.15). Using the properties from (10.8)
and an analogous decomposition as in (10.7) for EL the relation (10.15) can be
written as

Q�m = −λ�E�m (10.22)

for each �th multipole. To compute λ� it is sufficient to consider a single value
of m. The parameters are computed by matching the interior solution and the
exterior description (10.21) at the surface of the star, as we briefly recall here. First,
we compute the interior solution by noting that the perturbed neutron star is still
described by (10.20) but with perturbed pressure p = p0 +δp, density ρ = ρ0 +δρ,
gravitational potential U = U0 + δU , and an external acceleration aext = ∇Utidal.
The fluid perturbation can be represented by a Lagrangian displacement ξ(x, t)

which is defined so that the fluid element at position x in the unperturbed star is
at position x + ξ(x, t) in the perturbed star. Expanding Euler’s equation about the
background star to linear order in the perturbations yields

d2ξ i

dt2 = −∂iδp

ρ0
+ ∂ip0

ρ2
0

δρ + ∂iδU + ai
ext. (10.23)

For a barotropic equation-of-state relation of the form p = p(ρ) we can eliminate
δp from (10.23) in terms of δρ. After further specialising (10.23) to static pertur-
bations (ξ̇ = 0), combining all terms that involve δρ into a total derivative, and
integrating we obtain

1

ρ0

dp0

dρ0
δρ − δUtot = const, (10.24)
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where δUtot = δU + Utidal. Using the expansions

δρ = f (r)Y�m(θ, φ), δUtot = H(r)Y�m(θ, φ), (10.25)

and substituting this decomposition into the linearized Poisson’s equation leads to

− 4πf (r)Y�m = Y�m
1

r2

d

dr
r2 dH(r)

dr
+ H(r)

[
1

r2 sin θ
∂θ sin θ∂θ + 1

r2 sin2 θ
∂2
φ

]
Y�m (10.26)

= Y�m

[
H ′′ + 2

r
H ′

]
− H(r)

�(� + 1)

r2 Y�m. (10.27)

Next, using (10.25) in Eq. (10.24) shows that the integration constant must vanish
since the rest of the equation is purely � ≥ 2, and we obtain the relation between the
radial functions

1

ρ0

dp0

dρ0
f − H = 0. (10.28)

Combining Eqs. (10.27) and (10.28) leads to a single master equation for H(r) in
the region r ≤ R:

H ′′ + 2

r
H ′ − �(� + 1)

r2 H = −4π

(
1

ρ0

dp0

dρ0

)−1

H. (10.29)

Except for special choices of the equation of state (EOS), this ODE has to be
integrated numerically in the interior of the object, with the boundary condition
that ensures regularity at the center of the star, H ∝ r� for r → 0. For r > R the
exterior solution is

H ext = Q�m

r�+1 − 1

(2� − 1)!!E�mr� = −E�m

[
λ�

r�+1 + 1

(2� − 1)!! r
�

]
. (10.30)

To extract the Love numbers we eliminate E�m by considering the logarithmic
derivative

y(r) = rH ′(r)
H(r)

. (10.31)

We solve for k� by using (10.30) in (10.31) and matching the results for y(R)

obtained from the interior and exterior solutions at the stellar surface:

k� = � − y(R)

2 [� + 1 + y(R)] | (10.32)

The strategy for practical computations of the Love number is thus the following:
(1) obtain a solution for the background configuration, (2) compute the perturbed
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interior described by (10.29) and evaluate from it y(R) at the surface, and (3) use this
result in Eq. (10.32) to obtain the Love number. Exact solutions can be obtained for
simple EOSs, for example for an incompressible n = 0 polytrope k� = 3/(4� − 4).
The same general method applies in the relativistic case, where, however, one has
to use Einstein’s equations and a more general definition of the multipole moments
and hence the solutions become more complex.

10.3.2 Tidal Effects in General Relativity

The Newtonian results for the binary dynamics of extended nonspinning
objects (10.14) and computation of the characteristic tidal deformability coefficients
can be turned into a relativistic result in the following way (Flanagan and Hinderer
2008; Hinderer 2008; Steinhoff et al. 2016), see also Bini et al. (2012) for the
action in the adiabatic limit and Goldberger and Rothstein (2006) for an effective
field theory approach. We still consider the regime where the separation between
the bodies is large compared to their size, so that the description of the binary
can be divided into several zones, each amenable to a different approximation
method (Flanagan 1998; Racine and Flanagan 2005): (1) The “body-zone”
extending over the neighbourhood of each body, where the presence of the
companion produces small perturbations to its equilibrium structure but a fully
relativistic description is required. (2) The “orbital zone” far from the bodies where
the dynamics can be computed from post-Newtonian (PN) theory and is dominated
by their point-mass contributions, with small corrections due to their finite size
encoded in their multipole moments. (3) The “buffer zone”, at distances large
compared to the size of the body but small compared to the orbital separation,
where both descriptions are connected by matching; this is also the region where
the body’s multipole and tidal moments are defined.

10.3.2.1 Definition of the Body’s Tidal Moments

The generalisation of expanding the gravitational potential around the body’s center
of mass is the so-called worldline-skeleton description (Dixon 1970), where one
considers a reference center-of-mass worldline zμ(σ ) with σ being a parameter
along the worldline, together with a set of multipole moments of the body. The
body’s gravitoelectric tidal moments Eμν are given by projecting the “electric part”
of the spacetime curvature due to the companion that is characterized by the Weyl
tensor Cμανβ as (Thorne and Hartle 1984)

Eμν = Cμανβ
uαuβ

z2
(10.33)
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where uμ = dzμ/dσ is the tangent to the worldline and

z = √−uγ uγ (10.34)

Since we are considering a region of spacetime that excludes the source of the
curvature, the Weyl tensor is the same as the Riemann tensor and Rμανβ could
equivalently be used in (10.33). The tensor Eμν has the properties that it is symmetric
and trace free and is purely spatial in the body’s rest frame, Eμνu

ν = 0. In the rest
frame, uμ = (−1, 0, 0, 0) and Eij = C0i0j replaces (10.33). Higher multipole tidal
moments are defined in an analogous way from covariant derivatives of the Weyl
tensor projection

EL = 1

(� − 2)!C〈0a10a2;a3···a�〉, (10.35)

where a semicolon denotes a covariant derivative.

10.3.2.2 Definition of the Body’s Multipole Moments

To define the body’s multipole moments we consider a region of spacetime at
distances outside the body that are large compared to the size of the object but
small compared to the radius of curvature of the source of the tidal perturbations. In
this zone, the body’s multipole moments can be read off from the asymptotic metric
expressed in a local asymptotic frame (Thorne 1980, 1998). For example, the time-
time component of the metric can be written in terms of an effective potential Ueff
that is analogous to the Newtonian gravitational potential:

gtt = − (1 − 2Ueff) , (10.36)

where for a spherical body described by the Schwarzschild exterior spacetime
Ueff = M/r with r denoting the distance from the body. For a nonspherical body,
the asymptotic form of this metric function is

lim
r→∞ Ueff = M

r
+ 3n<ij>Qij

2r3 + O(r−4) − 1

2
n<ij>Eij r

2 + O(r3). (10.37)

In this setting, the �th mass multipole moment is associated with the piece in the
asymptotic expansion that falls off as r−(�+1). This method to define the multipole
moments of a body is equivalent to the Geroch-Hansen multipole moments for
stationary spacetimes (Guersel 1983). However, for tidally induced moments in a
binary system a small ambiguity remains in the above definitions (Thorne and Hartle
1984).

Finally, the definition of λ� from Eq. (10.15) still applies for the relativistic
definitions of EL and QL.
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Another new feature of General Relativity that is absent in Newtonian gravity is
that there are also gravitomagnetic tidal fields that induce current multipoles. In the
local frame of the star, the gravitomagnetic part of the curvature is given by

BL = 3

2(� + 1)(� − 2)!ε<a1jkC
jk

a20;a3···a�>
, (10.38)

where εijk is the completely antisymmetric permutation tensor. The induced current
moments SL appear in the time-space part of the asymptotic metric in a local
asymptotic frame

gtj = − 8

r3 εjkiSkin
<ki> + O(r−4) + 2

3
εjpqBq

kr
2 n<pk> + O(r3), (10.39)

where Sij is the body’s current quadrupole moment and Bij the quadrupolar
gravitomagnetic tidal moment. Similar to the tidal deformability tidal deformability
coefficients λ�, the relation between SL and BL is characterized by a set of
gravitomagnetic Love numbers σ�

SL = −σ�BL . (10.40)

These have no Newtonian analogue but can also be written in terms of dimensionless
Love numbers j� as σ� = (� − 1)/[4(� + 2)(2� − 1)!!]R2�+1j� . See e.g. Damour
and Nagar (2009) and Landry and Poisson (2015b) for further details.

10.3.2.3 Computation of Tidal Love Numbers in General Relativity

Before discussing tidally perturbed bodies we briefly review the construction of a
spherically symmetric, isolated nonspinning neutron-star solution. The metric can
be expressed as (Hartle 1967)

ds2
0 = −eν(r)dt2 + eγ (r)dr2 + r2(dθ2 + sin2 θdϕ2) , (10.41)

and neutron-star matter is modeled by a perfect-fluid stress-energy tensor

Tμν = (ρ + p)uμuν + pgμν , (10.42)

where p and ρ are the neutron-star’s pressure and energy density and uμ is the
fluid’s four-velocity. In the body’s rest frame, the normalization condition uμuμ =
−1 implies that uμ = (e−ν/2, 0, 0, 0). Substituting these expressions into the field
equations Gμν = 8πTμν yields the Oppenheimer-Volkoff equations:

dm

dr
= 4πr2ρ ,

dν

dr
= 2

4πr3p + m

r(r − 2m)
,

dp

dr
= − (4πr3p + m)(ρ + p)

r(r − 2m)
,

(10.43)
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where m(r) is defined by

m(r) ≡
[
1 − e−γ (r)

]
r

2
. (10.44)

Outside the star, m(r) becomes the body’s constant gravitational mass M . To solve
Eq. (10.43) requires specifying an EOS, p = p(ρ). The interior solution is obtained
by imposing regularity at the neutron-star center with a choice of central density
ρc. The initial conditions close to the center r → 0 are ρ = ρc + O(r2) , p =
pc + O(r2), and m = (4π/3)ρcr

3 + O(r5) where pc is the central pressure. The
neutron-star’s surface r = R corresponds to a vanishing pressure p(R) = 0.

We next consider linear, static perturbations to the equilibrium configuration
described by the metric

ds2 = ds2
0 + hμνdxμdxν. (10.45)

We will work in the Regge-Wheeler gauge where hμν can be analysed into tensorial
spherical harmonics (Regge and Wheeler 1957; Thorne and Campolattaro 1967;
Ipser and Price 1991; Detweiler and Lindblom 1985). These are characterized by
the mode integers (�,m) and by a parity π which can be either (−1)� or (−1)�+1.
For small perturbations the (�,m, π) modes are decoupled and the electric-type or
even-parity π = (−1)� perturbations to the metric take the form

he
μνdxμdxν =

∑
�,m

[
− eνH�m

0 dt2 + 2H�m
1 dtdr + eγ H�m

2 dr2 + r2K�md�2
]
Y �m

(10.46)

Here, the functions H0,H2 and K generically depend on (t, r). However, for our
purposes it is sufficient to consider static perturbations, where these functions
depend only on r . The perturbations to the stress-energy tensor are given by (Thorne
and Campolattaro 1967)

δT 0
0 = −δρ�Y�m(θ, ϕ) = −dρ

dp
δp�Y�m(θ, ϕ) , δT i

i = δp�Y�m(θ, ϕ) .

(10.47)

We substitute the above decompositions into the Einstein field equations Gν
μ =

8πT ν
μ and the stress-energy conservation ∇μT μν = 0, and extract only the pieces

that are linear in the perturbations in all the components. This leads to the relations

H0 = H2 ≡ H , H1 = 0 ,
δp

ρ + p
= −1

2
H . (10.48)

Further, the (r, r) and (r, θ)-components can be used to algebraically eliminate K

and K ′ in favour of H and its derivatives. Finally, the (t, t) component leads to the
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following second-order differential equation

0 = d2H

dr2
+

{
2

r
+ eγ

[
2M

r2
+ 4πr(p − ρ)

]}
dH

dr

+
{

eγ

[
−�(� + 1)

r2
+ 4π(ρ + p)

dρ

dp
+ 4π(5ρ + 9p)

]
−

(
dν

dr

)2
}

H . (10.49)

The initial condition at the center, for r → 0, is H ∝ r� to ensure regularity of the
solution. The constant of proportionality is irrelevant in further calculations of the
tidal deformabilities and can be chosen arbitrarily.

Outside the star, the metric perturbation reduces to the general form

H� = a
Q
� Q�2(x) + aP

� P�2(x) , (10.50)

where x ≡ r/M −1 and P�2(x) and Q�2(x) are the normalized associated Legendre
functions of the first and second kinds respectively. The normalization is such that
for x → ∞ the asymptotic forms are P�2(x) ∼ x� and Q�2(x) ∼ x−(�+1). The
constants aP

� and a
Q
� are determined by matching the logarithmic derivative of the

interior and exterior solutions,

y� ≡ r

H�

dH�

dr
, (10.51)

at the neutron-star surface. Comparing with the definition of Q� and E� in the
asymptotic metric (10.37) and the definition of the Love numbers enables writing
the general expression for �� in the form given in Damour and Nagar (2009) (see
Binnington and Poisson (2009) for an alternative expression):

(2� − 1)!!�� = − P ′
�2(x) − Cy�P�2(x)

Q′
�2(x) − Cy�Q�2(x)

∣∣∣∣
x=1/C−1

, (10.52)

where C = M/R is the neutron-star’s compactness. The computation of ��

thus proceeds by numerically solving for the background and perturbations in the
interior, evaluating the results at the neutron-star surface, and using Eq. (10.52). For
the dominant quadrupolar effect the explicit expression is

� |�=2 = 16

15
(1 − 2C)2[2 + 2C(y − 1) − y]

×
{

2C[6 − 3y + 3C(5y − 8)] + 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]

+3(1 − 2C)2[2 − y + 2C(y − 1)] ln(1 − 2C)
}−1

, (10.53)
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where y is evaluated at the surface r = R. Since H itself does not enter into
Eq. (10.53) and only the combination of potentials (10.51) is needed it is more
efficient to transform Eq. (10.49) into an equation for y. For � = 2 this becomes
(Lindblom and Indik 2014; Landry and Poisson 2014):

dy

dr
= 4(m + 4πr3p)2

r(r − 2m)2
+ 6

r − 2m
−y2

r
− r + 4πr3(p − ρ)

r(r − 2m)
y− 4πr2

r − 2m

[
5ρ + 9p + ρ + p

(dp/dρ)

]
.

(10.54)

Recasting the problem into the form (10.54) thus requires only integrating the first
order differential equation with the boundary condition y = 2 at the center and
evaluating the result at r = R. See Chakrabarti et al. (2013b) for a more general
approach that simultaneously determines the tidal deformability and oscillation
mode frequencies.

For an incompressible star with ρ = const or p = Kρ1+1/n with n = 0,
the density profile is a step function and the matching of the interior and exterior
solutions must be modified in the following way (Damour and Nagar 2009). After
obtaining a numerical solution to Eq. (10.54) in the interior the result is evaluated
at the surface to determine y in(R). The step-function density discontinuity has a
nonvanishing derivative at the neutron star surface, which must be taken into account
and leads to a correction to the value of y just outside the star yout that is computed
from the relation, valid for any �,

yout
incompressible = y in

incompressible − 3. (10.55)

10.3.2.4 Tidal Love Numbers for Current Multipoles

Gravitomagnetic tidal perturbations are described by the odd-parity sector of the
metric. They can be decomposed as (Thorne and Campolattaro 1967)

ds2 = ds2
0 − 2h0,�(r)

∂ϕY�m(θ, ϕ)

sin θ
dtdθ + 2h0,�(r) sin θ∂θY�m(θ, ϕ)dtdϕ .

(10.56)

The perturbations to the stress-energy tensor depend on the assumptions on the
fluid such as strict hydrostatic equilibrium as used in Damour and Nagar (2009) or
that an irrotational configuration as a more realistic scenario studied in Landry and
Poisson (2015b). The differential equations for the perturbed metric components
can be derived similar to the procedure in the even-parity case. The master variable
in this case is defined by

h ≡ r3 d

dr

(
h0,�

r2

)
(10.57)
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and it satisfies the differential equation (Landry and Poisson 2015b)

d2h

dr2
+ eγ

r2

[
2M + 4π(p − ρ)r3

] dh

dr
−eγ

[
�(� + 1)

r2
− 6M

r3
+ (1 − 2ε)4π(ρ − p)

]
h = 0 .

(10.58)

Here, the parameter ε characterises the assumptions on the fluid: ε = 1 for the
irrotational case, and ε = 0 for strict hydrostatic equilibrium.

The gravitomagnetic Love numbers σ� are computed similar to the electric-type
ones. The differential equation (10.58) is integrated numerically in the neutron-star
interior with the initial condition at the center h ∝ r�+1 to ensure regularity, where
the constant of proportionality is irrelevant for the final result. For the exterior solu-
tion, the asymptotic behavior of the two independent solutions at spatial infinity is
ĥP

� ∼ (r/M)�+1 and ĥ
Q
� ∼ (r/M)−�. Specifically, for � = 2, the exterior solutions

are given by ĥP
2 = (r/M)3 and ĥ

Q
2 = −(r/M)3∂(r/M)[F(1, 4; 6; 2M/r)M4/r4]/4,

where F(a, b; c; z) is a hypergeometric function. As in the even-parity case, Love
numbers are determined by matching yσ

� ≡ (r/h)(dh/dr) at the neutron-star
surface, which leads to (Damour and Nagar 2009; Landry and Poisson 2015b)

σ� = − (� − 1)M2�+1

4(� + 2)(2� − 1)!!
ĥP

�
′(C−1) − Cyσ

� (C−1)ĥP
� (C−1)

ĥ
Q
�

′(C−1) − Cyσ
� (C−1)ĥ

Q
� (C−1)

. (10.59)

10.3.2.5 Love Numbers for Deformations of Isodensity Surfaces

The Love numbers discussed in the previous sections characterize the spacetime
geometry at large distances from the deformed object. In the Newtonian limit, the
multipole moments of the gravitational potential are related to the shape or surficial
Love numbers h� characterising the deformation of the object’s surface by h� = 1+
2k�. In General Relativity, this relation becomes more complex and must be obtained
by considering gauge-invariant quantities such as curvature scalars. Consider an
initially spherical star of radius R whose surface deforms in response to a tidal
disturbance. To linear order in the deformation, the Ricci scalar curvature of the
surface is given by (Damour and Nagar 2009; Landry and Poisson 2014)

R = 1

R2 (2 + δR), δR = −2
∞∑

�=2

� + 2

�
h�

R�+1

M
ELnL. (10.60)

The general-relativistic relation between shape and tidal Love numbers is (Landry
and Poisson 2014)

h� = �1 + 2�2 k�, (10.61)
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where

�1 = � + 1

� − 1
(1 − M/R)F(−�,−�;−2�; 2M/R) − 2

� − 1
F(−�,−� − 1;−2�; 2M/R),

(10.62a)

�2 = �

� + 2
(1 − M/R)F(� + 1, � + 1; 2� + 2; 2M/R) + 2

� + 2
F(� + 1, �; 2� + 2; 2M/R),

(10.62b)

where F(a, b; c; z) is the hypergeometric function.
The relation of Eq. (10.61) can be applied directly to black holes, for which

M/R = 1/2 and k� = 0, and thus (Damour and Lecian 2009)

hBH
� = � + 1

2(� − 1)

�!2
(2�)! , (10.63)

10.3.2.6 Love Numbers for Tidally Perturbed Spinning Neutron Stars

For spinning neutron stars, new kinds of tidal couplings arise for which there
are corresponding new Love numbers (Pani et al. 2015b; Landry 2017). The
calculations become more complicated than for nonspinning objects because it
leads to a coupling between spherical harmonic modes in the perturbation equations
and because the identification of the Love numbers from asymptotic considerations
becomes more subtle (Pani et al. 2015a,b; Landry and Poisson 2015a; Landry 2017).
These issues have only recently received consideration and work is still ongoing to
fully address the calculations of spin-tidal effects in a binary systems.

10.3.3 I-Love-Q Relations

The I-Love-Q relations are inter-relations between dimensionless quantities char-
acterising the stellar moment of inertia I , the tidal parameter �, and spin-induced
quadrupole moment Q that are insensitive to the equation of state to within a good
approximation. These and similar relations in more general contexts beyond the
inspiral and post-merger are discussed in Chap. 13. The computation of I and Q is
reviewed in Yagi and Yunes (2017a) and will not be discussed in detail here.

The moment of inertia and spin-induced quadrupole moment are computed using
a similar approach as for the computation of tidal deformabilities discussed above,
by solving Einstein’s equations and stress-energy conservation for small perturba-
tions around an equilibrium stellar configuration. In this case the perturbations are
due to the star’s rotation instead of an external tidal field. At linear order in the spin
the perturbation equations give the moment of inertia I relating the magnitude of
the spin angular momentum S to the angular frequency � through S = I� and
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computed from (Hartle 1967; Kalogera and Psaltis 2000)

I = 8π

3

1

�

∫ R

0

e−(ν+γ )/2r5(ρ + p)ωint
1

r − 2m(r)
dr , (10.64)

where ωint
1 is the solution to the following differential equation in the interior of the

star:

d2ω1

dr2 + 4 − 4πr2(ρ + p)eλ

r

dω1

dr
− 16π(ρ + p)eλω1 = 0 . (10.65)

In the Newtonian limit, Eq. (10.64) reduces to (Hartle 1967) IN = (8π/3)
∫ R

0 r4

ρ(r)dr .
The spin-induced quadrupole moment Q determines the magnitude of the

quadrupolar deformation of a star due to rotation and is obtained by carrying out
the perturbative analysis to quadratic order in the spin. The details are described
in Laarakkers and Poisson (1999), Mora and Will (2004), Berti et al. (2008) and
will not be discussed here. Similar to the tidal Love numbers, the dimensionless
measures of the spin-induced deformations are known as rotational Love numbers.
In the Newtonian limit, the rotational and tidal Love numbers quadrupolar are
exactly the same, however, relativistic effects break this degeneracy. Nevertheless
for current models of neutron star EOSs, there exist mutual relations between the
dimensionless parameters � and

Ī = I

M3 Q̄ = −QM

| �S|2 , (10.66)

that are nearly independent of the EOS, to within percent-level accuracy. These take
the empirical form that were tested for a large set of currently available EOSs (Yagi
and Yunes 2017a)

ln(Q̄) = 0.1940 + 0.09163 ln� + 0.04812(ln�)2 − 4.283 × 10−3(ln �)3

+1.245 × 10−4(ln �)4 (10.67a)

ln(Ī ) = 1.496 + 0.05951 ln� + 0.02238(ln�)2 − 6.953 × 10−4(ln �)3

+8.345 × 10−6(ln �)4 (10.67b)

ln(Ī ) = 1.393 + 0.5471 lnQ̄ + 0.03028(ln Q̄)2 + 0.01926(ln Q̄)3

+4.434 × 10−4(ln Q̄)4. (10.67c)

The above relations are only valid in the region where the fit was developed, roughly
for the intervals M ∈ [0.8, 2.4]M�, Ī ∈ [5, 30], � ∈ [2, 4000], and Q̄ ∈ [2, 10];
see Yagi and Yunes (2013a,b) and Lattimer and Lim (2013).
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The I − Q universality encodes a relation between the neutron-star’s spin or
current dipole moment and its mass quadrupole moment that in some sense is
reminiscent of a generalisation of the no-hair relations for black holes. A similar
relation was also found for higher multipole moments (Pappas and Apostolatos
2014; Yagi et al. 2014a) that greatly simplify the structure of the exterior spacetime
of a neutron star (Pappas 2017, 2015). The universal relations were also found to
hold in the presence of weak magnetic fields (Haskell et al. 2014), and rapid rotation
(Doneva et al. 2014; Chakrabarti et al. 2014). Universal relations between different
neutron-star parameters had been found previously (Lattimer and Prakash 2001,
2004; Lattimer and Yahil 1989; Prakash et al. 1997; Andersson and Kokkotas 1998;
Bejger and Haensel 2002; Carriere et al. 2003; Benhar et al. 2004; Tsui and Leung
2005; Lattimer and Schutz 2005; Morsink et al. 2007; Haensel et al. 2009; Lau
et al. 2010; Urbanec et al. 2013; Bauböck et al. 2013). The work of Yagi and Yunes
(2013a,b) prompted a number of further studies of universal relations (Maselli et al.
2013a; AlGendy and Morsink 2014; Chirenti et al. 2015; Pannarale et al. 2015;
Steiner et al. 2016; Breu and Rezzolla 2016; Silva et al. 2016; Yagi 2014; Reina et al.
2017; Chan et al. 2015, 2016). From the studies in Majumder et al. (2015), Doneva
et al. (2014), Pappas and Apostolatos (2014), Chakrabarti et al. (2014), Gagnon-
Bischoff et al. (2018), from which it has become clear that universality holds only
between dimensionless measures of the neutron-star properties, and that the choice
of normalization for such appropriate quantities has an impact on the accuracy
with which the interrelations hold. Approximate universal relations were recently
also found for quantities characterising neutron-star binaries (Kiuchi et al. 2010;
Kyutoku et al. 2010; Bauswein and Janka 2012; Takami et al. 2014, 2015; Bernuzzi
et al. 2014a, 2015b; Bauswein and Stergioulas 2015; Yagi and Yunes 2016, 2017b;
Rezzolla and Takami 2016; Maione et al. 2016); a more comprehensive review of
universality in binaries will be discussed in Sect. 10.4. Finally, a list of work on
(non-)universality in alternative theories of gravity and for exotic compact objects
can be found in the review article (Yagi and Yunes 2017a) and also in Chap. 13 of
this review.

Various possible reasons for the existence of universal relations for neutron stars
have been considered, see e.g., the discussion in Yagi et al. (2014b). There is
evidence that an approximate symmetry, specifically the self-similarity of radial
profiles of iso-density surfaces in the interior of stars containing cold degenerate
nuclear matter, is linked to the emergence of the universal relations in neutron
stars and their absence in ordinary stars (Yagi et al. 2014b). The universal relations
have several applications (Yagi and Yunes 2013a,b). For example, they be used
to improve measurements by reducing the number of parameters, and for cross-
comparisons between interpretations of measurements such as from GW and
electromagnetic observations. The fact that the universal relations break down for
exotic objects and in some alternative theories of gravity can also be used for tests
of General Relativity and the nature of compact objects.
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10.3.4 Binary Inspiral Dynamics and GWs

Having discussed the calculation of the relevant parameters we now return to the
description of finite-size effects during a binary inspiral, specialising to nonspinning
binaries where the models are currently well-developed. We will focus on the
dominant mass-quadrupolar tidal effects, and only indicate extensions to other
mass multipole moments and to gravitomagnetic interactions. As in the Newtonian
context, unless explicitly indicated, we will take the system to be one extended
object and a point-mass for simplicity and throughout work only to linear order in
the tidal effects.

The action describing tidal interactions in a relativistic binary system can be
obtained as follows. Recall that in the relativistic context we consider a worldline
zμ(σ ) with tangent uμ = dzμ/dσ , where σ is an evolution parameter. We start by
expressing the Newtonian result from Eq. (10.13) in a covariant form and inserting
the appropriate redshift factors, defined in Eq. (10.34), to ensure invariance under
re-parametrizations (Steinhoff et al. 2016):

S = Sorbit +
∫

dσ
[
− z

2
EμνQ

μν + Lint
rel

]
, (10.68)

Here, Lint
rel denotes the relativistic internal Lagrangian. The action (10.68) can also

be derived from an effective-field-theoretical approach (Goldberger and Rothstein
2006), by considering all possible terms that respect the symmetries (general covari-
ance, parity, and time reversal) and re-defining variables to eliminate accelerations.
For tidally induced quadrupoles due to the f -mode we can obtain Lint

rel from the
Newtonian result given in Eq. (10.14) by replacing all time derivatives by covariant
derivatives along the center-of-mass worldline and inserting appropriate factors of
the redshift. This leads to (Steinhoff et al. 2016)

Lint
rel = z

4λz2ω2
02

[
DQμν

dσ

DQμν

dσ
− z2ω2

02QμνQ
μν

]
, (10.69)

where

D

dσ
= uβ∇β (10.70)

and ∇α is the covariant derivative. This neglects contributions from quadrupolar
modes with higher radial nodes, as in the Newtonian case, and also omits other terms
due to the incompleteness of the mode spectrum of relativistic compact objects.
Contributions from higher multipoles can be described in a similar manner but are
not given explicitly here. After decomposing Eq. (10.68) into the time and space
components and imposing the constraints to isolate only the physical degrees of
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freedom, the action takes the form

S = Sorbit +
∫

dσ

[
− z

2
EijQ

ij + z

4λz2ω2
02

(
Q̇ij Q̇ij − z2ω2

02Qij Qij
)

+ LFD

]
.

(10.71)

Here, the term LFD describes relativistic frame-dragging effects that are contained in
the kinematical term (DQμν/dσ)2 when it is expressed with coordinate time as the
evolution parameter. Specifically, LFD describes the coupling of the orbital angular
momentum to the angular momentum (or spin SQ) associated with the quadrupole

Si
Q = 1

λω2
02

εijm

[
Qkj Q̇m

k − QkmQ̇j
k

]
. (10.72)

To proceed with computing the dynamics and GWs requires explicit expressions for
the various quantities such as Eij and z and the frame-dragging terms appearing in
the action. These have been computed in post-Newtonian (PN) theory (Vines et al.
2011a; Bini et al. 2012; Steinhoff et al. 2016), in the test-particle limit (Bini and
Geralico 2015) or the gravitational self-force formalism (Dolan et al. 2015; Bini
and Damour 2014; Nolan et al. 2015; Shah and Pound 2015). There also exists an
alternative approach to the worldline-skeleton method termed the affine model. In
the affine approach, the stars are described as triaxial ellipsoids and one solves a
set of coupled ODEs for the evolution of the axes and the orbit. The most recent
developments that take into account PN effects are derived in Ferrari et al. (2012),
Maselli et al. (2012), where we refer the reader for more details about this model.
Below, we will continue to work within the worldline-skeleton approach and outline
the computation of tidal effects in the GW signal in PN theory before discussing
their inclusion in more sophisticated GW models.

In PN theory, the GW signal can be computed by imposing that the power
radiated by a binary system is balanced by a change in the energy of the binary. This
enables computing the phase evolution of the orbital dynamics where at the leading
order, the GW phase is twice the orbital phase. The radiated power is computed
in a multipolar approximation that at leading order gives the quadrupole formula
involving the total quadrupole moment of the system QT

ij = μr2n<ij> + Qij .
The energy of the binary is E = Epm + Etidal, where the subscript “pm” denotes
point-masses. The computations starting from the action, are described in detail
in Vines et al. (2011b) for the current state-of-the art complete knowledge at 1PN
order in the tidal effects, and in Flanagan and Hinderer (2008), Hinderer et al.
(2010) in Newtonian but more general contexts that include various other effects
and estimate the size of the corrections. Partial information at higher PN orders
is also available (Damour et al. 2012). The idea is to start from the action written
out explicitly to 1PN order, derive from it the equations of motion, specialise to
circular orbits r̈ = ṙ = 0 and φ̇ = �, φ̈ = 0, and perturbatively solve from this
for the orbital separation r in terms of the frequency variable x = (M�)2/3. The
reason for wanting to eliminate r is that it is a gauge-dependent quantity whereas the
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frequency is an observable and hence less gauge-dependent. From the potential and
kinetic energies contained in the action one can compute the energy of the system E

and find the following tidal contribution in the limit of adiabatic tides (Vines et al.
2011a)

Etidal(x) = −1

2
μx

[
−9

MB

MA

λAx5

M5 − 11

2

(
3M

MA

− MB

M
− 3

M2
A

M2

)
λAx6

M5

]
+ (A ↔ B).

(10.73)

The factor outside the brackets is the result for Newtonian point masses. The results
when including the finite f -mode frequency at Newtonian order can be found
in Flanagan and Hinderer (2008), and the 1PN extension can be determined from the
Hamiltonian and circular-orbit solutions given in Hinderer et al. (2016), Steinhoff
et al. (2016). Next, the mass-quadrupole tidal corrections contribute to the power
radiated in GWs as (Vines et al. 2011b)

P tidal
GW = 32μ2

5M2 x5/2

[(
18M

MA

− 12

)
λAx5

M5 +
(

643MA

4M
− 176M

7MA

− 1803

28
− 155M2

A

2M2

)
λAx6

M5

]
.

(10.74)

By requiring that PGW be balanced by a change in the energy E of the binary one
can derive the evolution equations

dφ

dt
= x3/2

M

dx

dt
= −PGW

dE/dx
(10.75)

There are several ways to solve for φ in a PN approximation. For example, one
can numerically solve Eq. (10.75) for φ(t) and x(t) after first expanding the ratio
PGW/(dE/dx) about x = 0 to the consistent PN order. These waveforms are known
as TaylorT4 approximants as reviewed in Buonanno et al. (2009), where the point-
mass terms are also given explicitly. The adiabatic quadrupolar tidal corrections that
add linearly to the point-mass contributions are (Vines et al. 2011b):

dx

dt
|tidal = 32

5

MB

M7
λA x10

[
12

(
1 + 11

MB

M

)

+x

(
4421

28
− 12263

28

MA

M
+ 1893

2

M2
A

M2
− 661

M3
A

M3

)]
+ (A ↔ B). (10.76)

Other possibilities to perturbatively solve (10.75) and obtain the tidal contribu-
tions to different approximants for the gravitational waveform are detailed in the
Appendix of Wade et al. (2014). The reason why the phase evolution is the most
important prediction for GW data analysis is that matched filtering is employed
to identify and interpret signals, where the datastream is cross-correlated with
theoretical predictions for the GWs (see e.g., Cutler and Flanagan 1994), thus
making the process very sensitive to the phasing (Cutler et al. 1992). Besides
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the TaylorT4 approximants, another widely utilised class of template waveforms
for data analysis are TaylorF2 waveforms. Their advantage is that they provide
a fully analytic frequency-domain model and are thus very fast to generate. The
derivation is explained e.g., in Cutler and Flanagan (1994) and in the stationary
phase approximation leads to a Fourier transform of the signal, denoted by h̃, of the
form

h̃(f ) = Af −7/6 exp
[
i
(
ψpm + ψtidal

)]
. (10.77)

Here f is the GW frequency, A ∝ M5/6/D, where M is the chirp mass M =
η3/5M , and D is the distance between the GW detector and the binary. Extrinsic
parameters of the source such as the location on the sky are also contained in A,
where higher PN order (and tidal) corrections to the amplitude also enter. The point-
mass phase ψpm to the current best knowledge for nonspinning binaries is given
e.g., in Eq. (3.18) of Buonanno et al. (2009). The mass-quadrupole adiabatic tidal
contributions to ψtidal in the adiabatic limit can be expressed in the following form
given explictly in Wade et al. (2014):

δψtidal = 3

128ηx5/2

[
−39

2
�̃x5 +

(
−3115

64
�̃ + 6595

364

√
1 − 4

μ

M
δ�̃

)
x6

]
,

(10.78a)

where

�̃ = 16

13

[(
1 + 12MB

MA

)
�AM5

A

M5
+

(
1 + 12MA

MB

)
�BM5

B

M5

]
(10.78b)

δ�̃ =
(

1 − 7996MB

1319MA

− 11005M2
B

1319M2
A

)
�AM6

A

M6
+

(
11005M2

A

1319M2
B

+ 7996MA

1319MB

− 1

)
�BM6

B

M6
(10.78c)

In Eq. (10.78c) the assumption is that MA > MB . The parameter �̃ plays an
analogous role as in GW measurements as the chirp mass Mchirp = μ3/5M2/5

as the most readily measurable combination of parameters. For equal-mass binary
neutron stars �̃ reduces to � of the individual neutron stars, and the parameter
δ�̃ vanishes. Other combinations of the two parameters �A and �B are also in
use and have advantages in different contexts, e.g., to characterize the dominant
effect in the conservative dynamics (Damour and Nagar 2010), or to improve the
measurability (Yagi and Yunes 2016, 2017b). The key point to note is that for a
double neutron-star system GW measurements are most sensitive to a weighted
average of the deformability parameters of the two objects.

From the discussion above, it is apparent that the fractional corrections to the
Newtonian point-mass results due to tidal effects scale as a high power of the
frequency, x5 and higher, where x = (πMf )2/3. This means that in a PN counting
that is based on assigning to each power of x an additional PN order, tidal effects
first enter effectively as 5PN corrections, although physically, they are Newtonian
effects. Point-mass terms are currently only known to 4PN order in the dynamics
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(Damour et al. 2016; Marchand et al. 2017) and only to 3.5PN order in the GW
phasing (Blanchet 2006). This lack of complete information has raised concerns
about systematic errors in GW measurements of tidal effects (Favata 2014; Yagi
and Yunes 2014; Wade et al. 2014). However, there are two classes of effective
or phenomenological models for black hole binaries that effectively include all
PN orders in an approximate way. These are the effective one body (EOB) model
(Buonanno and Damour 1999, 2000) and the so-called “Phenom” models (Ajith
et al. 2007, 2008), both of which aim to combine the available information on the
relativistic two-body problem from different regimes into a single framework to
generate waveforms for data analysis.

The EOB approach is a framework to compute the dynamics and GWs from
a binary by evolving a description of the coupled system of ODEs for the
orbital motion, GW generation, and radiation-backreaction in the time-domain.
The purpose of the Phenom models is to provide an efficient description of the
dominant effects in the GW signal in the frequency-domain, through a general-
isation of (10.77). Both approaches rely not only on analytical results but also
include information from numerical relativity simulations for black hole binaries;
the current state-of-the art refinements and calibrations of the models are described
in Bohe et al. (2017), Babak et al. (2017) and Nagar et al. (2017, 2018) for an
alternative version of the EOB model, and Khan et al. (2016), Schmidt et al.
(2015) for the Phenom models. By design, these models therefore include high-PN
order information, albeit only in an approximate and phenomenological manner.
When tidal effects are included in such models one might expect the system-
atic uncertainties due to missing high-PN-order point-mass terms to be reduced.
However, the level of remaining systematic errors must be assessed by testing the
models in various ways, such as by comparing to numerical relativity simulations
or comparing results from data analysis studies with the two different classes of
models.

The Phenom models are frequency-domain models that prescribe an analytical
expression for the amplitude and phase of h̃. In the Phenom models, the tidal
terms from Eq. (10.78a) can directly be added to the black hole waveforms without
further work. Alternative tidal phasing models based on a fit to numerical relativity
results have recently also been developed (Dietrich et al. 2017, 2018; Kawaguchi
et al. 2018) and can likewise be added on top of the black hole waveforms for the
inspiral. There also exist surrogate models for EOB waveforms in the frequency
domain (Purrer 2016; Lackey et al. 2017) where the tidal contributions can be
directly added to the phasing as described for the Phenom models. The different
kinds of frequency-domain models are the most efficient for data analysis and were
used in the EOS inferences of GW170817 (Abbott et al. 2018a) as the analysis
in Abbott et al. (2018b) indicated that statistical errors dominate over modeling
uncertainties.

Time-domain models such as the EOB models are less computationally efficient
than frequency-domain models but have other advantages, e.g. they describe both
the binary dynamics and GWs and are based on additional theoretical consid-
erations about the relativistic two-body problem. To include tidal effects in the
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EOB approach at a fundamental level requires both the tidal corrections to the
conservative dynamics and to the gravitational radiation. At present, tidal effects
have only been fully included in the EOB model for nonspinning binaries. Spin
effects for point masses as well as the spin-induced quadrupole effects are currently
incorporated in the EOB models, however, including all spin-tidal interactions to the
relevant order is the subject of ongoing work. Below, we will briefly summarise the
different EOB tidal models available at present and refer the reader to the overviews
of models in Dietrich and Hinderer (2017), Nagar et al. (2018) more specific details.
For adiabatic tidal effects, tidal contributions to the conservative EOB dynamics
were computed from a PN expansion of tidal effects in Damour and Nagar (2010),
Vines et al. (2011a), Bini et al. (2012). These effects were also calculated within
the gravitational self-force approximation in Bini and Damour (2014). The PN
approximation assumes small corrections to Newtonian dynamics but is valid for
any mass ratio, whereas the gravitational self-force formalism assumes linear-in-
mass-ratio corrections to the strong-field test-particle limit. To a certain extent,
the two approximations therefore provide different kinds of information. Tidal
corrections to the GW amplitudes that are used in the EOB model to compute the
emitted GWs and the radiation reaction forces on the orbital dynamics were given
in Damour et al. (2012). These models, however, tend to underestimate finite-size
effects when compared against numerical relativity simulations, see e.g. Bernuzzi
et al. (2015a), Hinderer et al. (2016), Dietrich and Hinderer (2017) for recent studies.
There are three main reasons to expect an enhancement of tidal effects relative to
the information included in the models described above: relativistic corrections that
lead to a stronger tidal field, an enhanced response of the neutron-star matter to
tidal perturbations, and the fact that the tidal models are used to describe the binary
including the nonlinear regimes at merger or tidal disruption. These considerations
motivated two classes of improved EOB models. The first, discussed in Bernuzzi
et al. (2015a), Nagar et al. (2018) is based on extrapolating the results of Bini
and Damour (2014) to second-order in the mass ratio in a particular gauge. The
second, discussed (Hinderer et al. 2016; Steinhoff et al. 2016) includes dynamical
tidal effects due to the f -mode oscillations in the EOB model that can lead to a
substantial tidal enhancement even if the mode resonance is not fully excited during
the inspiral. Note that while the underlying EOB model for black holes are calibrated
to numerical relativity simulations, the tidal part of the model of Hinderer et al.
(2016), Steinhoff et al. (2016) is currently purely based on analytical results, without
any calibrations.

10.3.5 Other Finite-Size Effects

The finite size of neutron stars in a binary system has a number of additional
impacts on the dynamics and GWs, besides the tidal effects discussed above.
For rotating neutron stars, the spin-induced quadrupole moment (and the higher
moments) leads to a contribution to the GW signal that is quadratic in the neutron-
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star’s spin (Poisson 1998; Laarakkers and Poisson 1999; Mora and Will 2004; Berti
et al. 2008). As mentioned above, these effects from the rotational deformations are
already included in the template models described in the previous subsection, both
in the PN models (see Krishnendu et al. (2017) for the latest update) as well as in
the EOB and Phenom models. The GW imprints from gravitomagnetic tidal effects
(Banihashemi and Vines 2018) and spin-tidal interactions (Landry 2018; Jimenez-
Forteza et al. 2018) have recently also been examined within PN theory.

Tidal interactions can also lead to the resonant excitation of various oscillation
modes during the inspiral (Ho and Lai 1999; Flanagan and Racine 2007; Shibata
1994; Yu and Weinberg 2017; Lai 1994; Kokkotas and Schaefer 1995; Tsang 2013;
Tsang et al. 2012), to nonlinear mode coupling effects (Xu and Lai 2017; Essick
et al. 2016; Landry and Poisson 2015c), and to the full f -mode excitations for
eccentric orbits (Gold et al. 2012; Chirenti et al. 2017). In neutron-star–black-hole
binaries, depending on the parameters, the neutron star may get tidally disrupted,
which leads to a sudden shutoff of the GW signal and contains additional equation-
of-state information (Vallisneri 2000; Shibata and Taniguchi 2011; Pannarale et al.
2011; Ferrari et al. 2010; Maselli et al. 2013b; Foucart et al. 2014; Kawaguchi et al.
2017; Lackey et al. 2014). For a review article on GWs from neutron-star–black-hole
binaries containing a comprehensive list of references on the topic see Shibata and
Taniguchi (2011), and for the characteristics of possible associated electromagnetic
counterparts see Fernández et al. (2017), Schnittman et al. (2018), Paschalidis et al.
(2015a). An additional distinction between neutron stars and black holes is that the
neutron star has a surface while a black hole possesses an event horizon that absorbs
all incoming GWs; this effect is also imprinted in the GWs (Maselli et al. 2018).

As discussed above, there are several issues in modelling neutron-star binary
inspirals that remain to be fully addressed and are an active area of research. Most
of these concern currently unmodeled physics, which is also of great interest for
enhancing the potential to extract more details about neutron-star interiors from
GW observations. Examples of remaining work for the inspiral are to develop full
waveform models that incorporate matter effects in spinning neutron-star binaries,
to assess the importance of dynamical tides for various oscillation modes for
a more realistic description of the neutron stars (e.g., including the effects of
superfluidity (Gualtieri et al. 2014) and the effects of spins), and to analyze the
effects of nonlinear couplings in a relativistic setting.

Another issue that could be improved concerns the fact that at present the models
constructed for the inspiral of isolated, perturbed neutron stars are used up to merger,
defined as the peak in the GW amplitude. The peak approximately coincides with the
collision of the high-density neutron star cores, shortly after the neutron outer parts
have already come into contact. The theoretical predictions of the very late stage in
the evolution, could thus be improved by accounting for the main physical effects
of the cores moving through the material of their former outer parts. Similarly, for
neutron star – black hole binaries, developing an improved description that accounts
for nonlinearities of the tidal disruption process remains an open issues.

Other ongoing efforts are focusing on developing a complete model that com-
bines the information from the inspiral, merger and postmerger epochs, and likewise
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for the inspiral and possible tidal disruption in mixed binaries for more generic
systems than considered to date. These studies must rely on interfacing the theo-
retical insights with numerical relativity and data analysis to test and improve the
models and select the order of priorities for addressing the issues mentioned above.
An important application of such models will not only be for the current network
of GW detectors but also to inform the design and science case for future, third-
generation detectors. More work is also required on optimising methods to combine
information from the GWs with those from the electromagnetic counterparts (Baiotti
and Rezzolla 2017; Paschalidis 2017), together with nuclear physics knowledge and
other astrophysical measurements of neutron-star properties to maximise the overall
scientific payoffs. Lastly, other areas of active research are to consider finite-size
effects in alternative theories of gravity, for exotic objects, and for possible bound
states of fundamental fields around black holes.

10.4 Post-merger Dynamics

Research on the post-merger phase has been undergoing intense development over
the last few years because of its importance for linking numerical simulations and
astrophysical observations. The (early) post-merger is also the phase in which most
of the energy in GWs is emitted, as pointed out in Bernuzzi et al. (2016), even
though the GWs emitted in this stage are not those that give the largest signal-
to-noise ratio, because their frequency range is not in the best sensitivity zone of
current interferometric detectors. The numerical description of this stage is far more
challenging than the inspiral one because of the highly nonlinear dynamics and of
the development of strong, large-scale shocks that inevitably reduce the convergence
order, thus requiring far higher resolutions than the ones normally employed. As
a result, the accuracy of some quantities computed after the merger is sometimes
only marginal. The most notable example of these quantities is the lifetime of the
remnant (be it an HMNS or an SMNS) before its collapse to black hole; since this
object is only in metastable equilibrium, even small differences in resolution or even
grid setup are sufficient to change its dynamical behaviour, accelerating or slowing
down its collapse to a black hole. Fortunately, other quantities, such as the spectral
properties of the GW post-merger emission appear far more robust and insensitive
to the numerical details; we will discuss them later in this section.

Since the first general-relativistic simulations of BNS mergers, several works
have studied the nature (neutron star or black hole) of the objects resulting from
the mergers (Shibata and Uryū 2000, 2002; Shibata et al. 2005; Shibata and
Taniguchi 2006; Yamamoto et al. 2008; Baiotti et al. 2008; Anderson et al. 2008;
Giacomazzo et al. 2011). It is of course important to establish whether a black
hole forms promptly after the merger or instead an HMNS forms and lives for
long times (more than 0.1 s), because the post-merger GW signal in the two cases
is clearly different. Anderson et al. (2008) and Giacomazzo et al. (2011) started
investigating the dependence of the lifetime of the HMNS on the magnitude of the
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initial magnetic field in the case of magnetised binaries. However, as mentioned
above, such investigations are extremely delicate since it is not straightforward
to completely remove the influence of numerical artefacts on the lifetime of the
remnant even in the absence of magnetic fields, at least with present resolutions.

In an alternative approach, Kaplan et al. (2014) have investigated the role of
thermal pressure support in hypermassive merger remnants by computing sequences
of axisymmetric uniformly and differentially rotating equilibrium solutions to the
general-relativistic stellar structure equations and found that this too is a subtle
issue: the role of thermal effects on the stability and lifetime of a given configuration
depends sensitively and in a complicated way on its details, like central or mean rest-
mass density, temperature distribution, degree of differential rotation and rotation
rate (see discussion in Hanauske et al. 2016).

Clearly, the issue of the precise lifetime of the binary-merger product before
it reaches its asymptotic state, especially when its equilibrium is mediated by the
generation of magnetic fields or radiative losses is far from being solved and will
require computational resources and/or methods not yet available.

Recently, Paschalidis, East and collaborators (Paschalidis et al. 2015b; East et al.
2016) pointed out that a one-arm spiral instability (Centrella et al. 2001; Watts et al.
2005; Baiotti et al. 2007; Corvino et al. 2010) can develop in HMNSs formed by
dynamical-capture and that the m = 1 mode associated with this instability may
become the dominant oscillation mode if the HMNS persists for long enough3; this
instability has been subsequently studied also in quasi-circular BNSs (Radice et al.
2016; Lehner et al. 2016). The instability, is reminiscent of the shear instability
that has been studied in detail for isolated stars (Baiotti et al. 2007; Corvino et al.
2010; Camarda et al. 2009; Franci et al. 2013; Muhlberger et al. 2014) and seems
to be correlated with the generation of vortices near the surface of the HMNS that
form due to shearing at the stellar surface. These vortices then spiral in toward the
center of the star, creating an underdense region near the center. The growth of the
m = 1 mode and so of the instability, could be related to the fact that the maximum
density does not reside at the center of mass of the star (Saijo et al. 2003), or to
the existence of a corotation band (Balbinski 1985; Luyten 1990; Watts et al. 2005).
The instability has an imprint on the GW signal, but the prospects of detection are
not encouraging, because of the small emitted power (Radice et al. 2016).

10.4.1 Gravitational-Wave Spectroscopy of the Post-merger
Signal

Many researchers have taken up the challenge of studying the properties of the
binary-merger product, because this may give indications on the ultra-high density
EOS, the origin of SGRBs, and even the correct theory of gravity. In what follows

3The m = 1 mode had been studied previously together with the other modes, but it had never
been found to become dominating (see, e.g., Dietrich et al. 2015a).
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we will focus in particular on the determination of the EOS. While detectable
differences between simulations that employed different EOSs already appear
during the inspiral (see Sect. 10.3), the post-merger phase depends more markedly
on the EOS (Bauswein et al. 2014; Takami et al. 2014, 2015; Bernuzzi et al. 2014a,
2015a,b; Rezzolla and Takami 2016; Maione et al. 2016). A note of caution is
necessary here to say that post-merger waveforms are at rather high frequencies
and thus probably only marginally measurable by detectors like Advanced LIGO.
Third-generation detectors, such has ET (Punturo et al. 2010a), may provide the
first realistic opportunity to use GWs to decipher the stellar structure and EOS
(Andersson et al. 2011).

The first attempts to single out the influence of the EOS on the post-merger
dynamics were done in Shibata et al. (2005), Shibata and Taniguchi (2006),
Yamamoto et al. (2008), Baiotti et al. (2008). These works focused mostly on the
dynamics of equal-mass binaries, as these are thought to be the most common
(Osłowski et al. 2011) and are easier and faster to compute, since symmetries of
the configuration can be exploited to save computational resources. The study of
the effect of realistic EOSs in general-relativistic simulations has been subsequently
brought forward by many groups. Kiuchi et al. (2009) made use of the Akmal-
Pandharipande-Ravenhall (APR) EOS (Akmal et al. 1998).4 This nuclear-physics
EOS describes matter at zero temperature and so during the simulation it needs
to be combined with a “thermal” part that accounts for the energy increase due to
shock heating (this is mostly done through the addition of an ideal-fluid part to
the EOS; see Rezzolla and Zanotti (2013) for a discussion). The resulting “hybrid
EOS” appears to be appropriate for studying the inspiral and merger, but may not be
satisfactory for studying the remnant formation and the evolution of the accretion
disc around the formed black hole, because for such cases, effects associated with
the thermal energy (finite temperature), neutrino cooling, and magnetic fields are
likely to play an important role. In another work of the same group (Hotokezaka
et al. 2011), the dependence of the dynamical behavior of BNS mergers on the EOS
of the nuclear-density matter with piecewise-polytropic EOSs (Read et al. 2009)
was studied.

One family of EOSs that has received special attention in the past years is that
describing strange matter, namely matter containing hyperons, which are nucleons
containing strange quarks. The strange-matter hypothesis (Witten 1984) considers
the possibility that the absolute ground state of matter might not be formed by iron
nuclei but by strange quark matter: a mixture of up, down, and strange quarks. This
hypothesis introduced the possibility that compact stars could be stars made also of
strange-quark matter, or strange stars (Haensel et al. 1986; Alcock et al. 1986). One
of the astrophysical consequences of this is the possibility that collision events of

4The APR EOS, and many of the proposed EOSs, were later found to violate the light-speed
constraint at very high densities and phenomenological constraints (Taranto et al. 2013), but no
strong conclusions can be made to rule out such EOSs on this basis because the constraints
themselves are affected by errors.
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two strange stars lead to the ejection of strangelets, namely small lumps of strange
quark matter.

Although the occurrence of hyperons at very large nuclear densities is rather
natural, hyperonic EOSs are generally very soft and currently disfavoured by
the observation of a 2M� star (Antoniadis et al. 2013; Demorest et al. 2010),
which they can hardly reproduce, except by fine tuning of the parameters (see,
e.g., Alford et al. 2005; Rikovska-Stone et al. 2007; Weissenborn et al. 2011). This
basic inconsistency between the expectations of many nuclear physicists and the
observational evidence of very massive neutron stars is normally referred to as the
“hyperon puzzle”; those supporting the use of hyperonic EOSs also state that the
existence of exotic phases in strange stars remains unconstrained and could lead
to higher masses (Bhowmick et al. 2014). Additional work is needed to settle this
“hyperon puzzle” and we will present results on strange-star simulations setting
these doubts aside.

The first investigations of binary strange stars were those of Bauswein et al.
(2009, 2010), who employed the MIT bag model (Farhi and Jaffe 1984). Within
this model, quarks are considered as a free or weakly interacting Fermi gas
and the nonperturbative QCD interaction is simulated by a finite pressure of the
vacuum, the bag constant B. Three-dimensional general-relativistic simulations
with conformally flat gravity of the coalescence of strange stars were performed
and the possibility to discriminate on the strange matter hypothesis by means of
GW measurements was explored. The dynamics of mergers of strange stars, which
are usually more compact, is different from those of neutron-star mergers, most
notably in the tidal disruption during the merger. Furthermore, instead of forming
dilute halo-structures around the binary-merger product, as in the case of neutron-
star mergers, the coalescence of strange stars results in a differentially rotating
hypermassive object with a sharp surface layer surrounded by a geometrically thin,
clumpy high-density strange-quark-matter disc. It was found that in some cases
(some types of EOS and stellar properties) the analysis of the GW signals emitted by
strange-star mergers showed that it may be possible to discern whether strange-star
or neutron-star mergers produced the emission. In particular, it was found that the
maximal frequency during the inspiral and the frequency of the oscillations of the
post-merger remnant are in general higher for strange-star mergers than for neutron-
star mergers. In other cases, however, there remains a degeneracy among different
models, and a conclusion about the strange-matter hypothesis could be reached only
if other types of observations (e.g., of cosmic rays) were available.

Strange-matter EOSs were later studied with a fully general-relativistic code in a
series of articles by Sekiguchi, Kiuchi and collaborators (Sekiguchi et al. 2011a,
2012; Kiuchi et al. 2012b,c), who showed results of simulations performed by
incorporating both nucleonic and hyperonic finite-temperature EOSs (and neutrino
cooling as well). It was found that also for the hyperonic EOS, an HMNS is first
formed after the merger and subsequently collapses to a black hole. The radius
of such an HMNS decreases in time because of the increase of the mass fraction
of hyperons and the consequent decrease in pressure support. Such a shrinking is
noticeably larger than the one simply due to angular-momentum loss through GW
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emission that is present also in nucleonic EOSs. These differences in the dynamics
are clearly visible in the GW signal, whose characteristic peak frequency has an
increase of 20–30% during the HMNS evolution. By contrast, for nucleonic EOSs,
the peak GW frequency in the HMNS phase is approximately constant on the
timescales considered. It was also stressed that these results raise a warning about
using the peak frequency of the GW spectrum to extract information of the neutron-
star matter (see below), because it may evolve and so make the relation of the peak
frequency with the HMNS structure ambiguous. Finally, it was found that the torus
mass for the hyperonic EOS is smaller than that for nucleonic EOSs, thus making
hyperonic EOSs less favourable for the description of SGRBs.

More recently, Radice et al. (2017) performed numerical simulations of BNS
mergers with one EOS, BHB�φ (Banik et al. 2014), that includes �-hyperons but
that satisfies all presently known EOS constraints, including the astrophysical ones.
They found that the rapid contraction of the merged object due to the appearance of
hyperons does affect amplitude modulation and phase evolution of the gravitational
waveform, but the peak frequencies in the PSD are very similar to those produced
in case of a similar EOSs, DD2 (Hempel and Schaffner-Bielich 2010), that however
has no phase transitions. It was also found that Advanced LIGO could distinguish
the two EOSs considered in that work with the detection a single merger at a distance
of up to about 20 Mpc (Radice et al. 2017).

10.4.2 Spectral Properties of the Signal

In addition to simulating BNS mergers with various EOSs, it is important to
find ways to connect future GW observation with the EOS of the neutron stars.
Recently there have been several suggestions on how to achieve this, based either
on the signature represented by the tidal corrections to the orbital phase or on the
power spectral density (PSD) of the post-merger gravitational waveforms or on
the frequency evolution of the same. The first approach, described in Sect. 10.3, is
reasonably well understood analytically (Flanagan and Hinderer 2008; Baiotti et al.
2010; Bernuzzi et al. 2012, 2015b; Read et al. 2013) and can be tracked accurately
with advanced high-order numerical codes (Radice et al. 2014a,b). Here we describe
works on the post-merger approach in some detail.

Hotokezaka et al. (2013) used their adaptive mesh-refinement (AMR) code5

SACRA (Yamamoto et al. 2008) to perform a large number of simulations with a
variety of mass ranges and EOSs (as done before, approximate finite-temperature
effects were added to the cold EOSs through an additional ideal-fluid term), in order
to find universal features of the frequency evolution of GWs emitted by the HMNS
formed after the merger. In their analysis they found it convenient to decompose the
merger and post-merger GW emission in four different parts: (1) a peak in frequency

5In previous works by this group, described above, a different code with a uniform grid had been
used.
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Fig. 10.4 Top sub-panel: evolution of h+ for binaries with the APR4 and GNH3 EOSs (dark-red
and blue lines, respectively) for optimally oriented sources at a distance of 50 Mpc. Bottom sub-
panel: spectral density 2h̃(f )f 1/2 windowed after the merger for the two EOSs and sensitivity
curves of Advanced LIGO (green line) and ET (light-blue line); the dotted lines show the power in
the inspiral, while the circles mark the contact frequency [Reprinted with permission from Takami
et al. (2014). © (2014) by the American Physical Society]

and amplitude soon after the merger starts; (2) a decrease in amplitude during the
merger and a new increase when the HMNS forms; (3) a damped oscillation of
the frequency during the HMNS phase lasting for several oscillation periods and
eventually settling to an approximately constant value (although a long-term secular
change associated with the change of the state of the HMNSs is always present);
(4) a final decrease in the amplitude during the HMNS phase, either monotonical or
with modulations. Based on this, they find an optimal 13-parameters fitting function,
using which it may be possible to constrain the neutron star radius with errors of
about 1 km (Hotokezaka et al. 2013).

In contrast with this multi-stage, multi-parameter description of Hotokezaka et al.
(2013), other groups have concentrated on the analysis of the full PSD of the post-
merger signal, isolating those spectral features (i.e., peaks) that could be used to
constrain the properties of the nuclear-physics EOSs. As a reference, we show in
Fig. 10.4 the PSDs of some representative GWs when compared with the sensitivity
curves of current and future GW detectors (Takami et al. 2014). More specifically,
two examples are presented in Fig. 10.4, which refers to two equal-mass binaries
with APR4 and GNH3 EOSs, and with individual gravitational masses at infinite
separation of M̄/M� = 1.325, where M̄ is the average of the initial gravitational
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mass of the two stars. The top sub-panel shows the evolution of the � = m = 2
plus polarization of the strain (h+ ∼ h22+ ), aligned at the merger for optimally
oriented sources at a distance of 50 Mpc (dark-red and blue lines for the APR4 and
GNH3 EOSs, respectively). The bottom panel, on the other hand, shows the spectral
densities 2h̃(f )f 1/2 windowed after the merger for the two EOSs, comparing them
with the sensitivity curves of Advanced LIGO (2009) (green line) and of the Einstein
Telescope (Punturo et al. 2010b; Sathyaprakash and Schutz 2009) (ET; light-blue
line). The dotted lines refer to the whole time series and hence, where visible,
indicate the power during the last phase of the inspiral, while the circles mark the
“contact frequency” fcont = C3/2/(2πM̄) (Damour et al. 2012), where C := M̄/R̄ is
the average compactness, R̄ := (R1+R2)/2, and R1,2 are the radii of the nonrotating
stars associated with each binary.

Note that besides the peak at low frequencies corresponding to the inspiral
(cf., dashed lines), there is one prominent peak and several others of lower
amplitudes. These are related to the oscillations of the HMNS and would be absent
or much smaller if a black hole forms promptly, in which case the GW signal would
terminate abruptly with a cutoff corresponding to the fundamental quasi-normal-
mode frequency of the black hole (Kokkotas and Schmidt 1999). The behaviour
summarised in Fig. 10.4 is indeed quite robust and has been investigated by a
number of authors over the last decade (Oechslin and Janka 2007; Stergioulas et al.
2011; Bauswein and Janka 2012; Bauswein et al. 2012, 2014, 2016; Hotokezaka
et al. 2013; Takami et al. 2014, 2015; Clark et al. 2014; Kastaun and Galeazzi
2015; Bernuzzi et al. 2015b; Bauswein and Stergioulas 2015; Dietrich et al. 2015b;
Foucart et al. 2016; De Pietri et al. 2016; Rezzolla and Takami 2016; Maione et al.
2016; Bose et al. 2018).

Figure 10.5 provides a summarising view of some of the waveforms (i.e., of h+
for sources at a distance of 50 Mpc) computed in this paper and that are combined
with those of Takami et al. (2015) to offer a more comprehensive impression of
the GW signal across different masses and EOSs. The figure is composed of 35
panels referring to the 35 equal-mass binaries with nuclear-physics EOSs that were
simulated and that have a postmerger signal of at least 20 ms. Different rows refer
to models with the same mass, while different columns select the five cold EOSs
considered and colour-coded for convenience. It is then rather easy to see how small
differences across the various EOSs during the inspiral become marked differences
after the merger. In particular, it is straightforward to observe how the GW signal
increases considerably in frequency after the merger and how low-mass binaries
with stiff EOSs (e.g., top-left panel for the GNH3 EOS) show a qualitatively
different behaviour from high-mass binaries with soft EOSs (e.g., bottom-right
panel for the APR4 EOS). Also quite apparent is that, independently of the mass
considered, the post-merger amplitude depends sensitively on the stiffness of the
EOS, with stiff EOSs (e.g., GNH3) yielding systematically larger amplitudes than
soft EOSs (e.g., APR4).

The first detailed description of a method for extracting information about the
EOS of nuclear matter by carefully investigating the spectral properties of the post-
merger signal was provided by Bauswein and Janka (2012), Bauswein et al. (2012).
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After performing a large number of simulations using their conformally-flat SPH
code, they pointed out that the largest peak in the PSD (whose frequency is dubbed
there fpeak) correlates with the properties of the EOS, e.g., with the radius of
the maximum-mass nonrotating star for the given EOS. The correlation found was
rather tight, but this was partly due to the fact that their sample was restricted to
binaries having all the same total mass (i.e., 2.7 M� in the specific case). It was
shown that such a correlation can be used to gain information on the high-density
EOS through GW measurements, if the masses of the neutron stars forming the
binaries are known. Additionally, it was recognized that fpeak corresponds to a
fundamental fluid mode of the HMNS with � = 2 = m (Bauswein and Janka
2012; Stergioulas et al. 2011) and that the value of this frequency could also be
used to set constraints on the maximum mass of the system and hence on the EOS
(Bauswein et al. 2013, 2014). Subsequent analyses were performed by a number of
groups with general-relativistic codes (Hotokezaka et al. 2013; Takami et al. 2014,
2015; Dietrich et al. 2015b; Foucart et al. 2016; De Pietri et al. 2016; Rezzolla and
Takami 2016; Maione et al. 2016; Radice et al. 2017), which confirmed that the
conformally flat approximation employed by Bauswein and collaborators provided
a rather accurate estimate of the largest peak frequencies in the PSDs.

Takami et al. (2014, 2015) presented a more advanced method to use detected
GWs for determining the EOS of matter in neutron stars. They used the results of a
large number of accurate numerical-relativity simulations of binaries with different
EOSs and different masses and identified two distinct and robust main spectral
features in the post-merger phase. The first one is the largest peak in the PSD (whose
frequency was called there f2 and essentially coincides with the fpeak of Bauswein
and Janka 2012; Bauswein et al. 2012). The functions describing the correlations
of f2 with the stellar properties (e.g., with the quantity (M̄/R3

max)
1/2, where Rmax

is the radius of the maximum-mass nonrotating star), which were first proposed by
Bauswein and Janka (2012), are not universal, in the sense that different (linear)
fits are necessary for describing the f2-correlations for binaries with different total
masses. This conclusion can be evinced by looking at Figs. 22–24 of Bauswein et al.
(2012), but the different linear correlations were first explicitly computed by Takami
et al. (2014, 2015) (see also Hotokezaka et al. 2013).

The second feature identified in all PSDs analysed by Takami et al. (2014, 2015)
is the second-largest peak, which appears at lower frequencies and was called f1
there. Clear indications were given about this low-frequency peak being related to
the merger process (i.e., the first ≈3 ms after the merger). This was done by showing
that the power in the peak is greatly diminished if the first few ms after the merger
were removed from the waveform. Furthermore, a simple mechanical toy model
was devised that can explain rather intuitively the main spectral features of the post-
merger signal and therefore shed light on the physical interpretation of the origin of
the various peaks. Despite its crudeness, the toy model was even able to reproduce
the complex waveforms emitted right after the merger, hence possibly opening the
way to an analytical modelling of a part of the signal (Takami et al. 2015).

More importantly, it was shown that the potential measurement of the f1
frequency could reveal the EOS of the merging objects, since a correlation was
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found between the f1-frequency and the average compactness of the two stars in the
binary. Interestingly, this relation appears to be universal, that is, essentially valid
for all EOSs and masses, and could therefore provide a powerful tool to set tight
constraints on the EOS (Takami et al. 2014, 2015). Indeed, an analytic expression
was suggested in Takami et al. (2015) to express the f1 frequency via a third-order
polynomial of the (average) stellar compactness, which reproduces reasonably well
the numerical results. In addition to the correlations described above, Takami et al.
(2014, 2015) also discussed additional correlations (24 in all), some of which had
been already presented in the literature, e.g., in Read et al. (2013), Bernuzzi et al.
(2014a), and some of which are presented there for the first time. Examples of these
correlations are reported in Fig. 10.6, where different colours refer to different EOSs
(see Fig. 1 of Takami et al. (2015) for a legend). The correlations refer to the fmax, f1
and f2 frequencies and the physical quantities of the binary system, e.g., the average
compactness M̄/R̄, the average density (M̄/R̄3)1/2, the pseudo-average rest-mass
density (M̄/R3

max)
1/2, or the dimensionless tidal deformability tidal deformability

(λ/M̄5)1/5 (cf., also Fig. 15 of Takami et al. 2015). In confirmation of the accuracy
of the computed frequencies, very similar values for the f1 frequencies were also
found by Dietrich et al. (2015b) in a distinct work aimed at determining the impact
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that conservative mesh-refinement techniques have on the accuracy of the post-
merger dynamics.

Even though the toy model proposed by Takami et al. (2015) provides a simple
and convincing explanation of the power associated to the f1 frequency peak,
alternative interpretations of the low-frequency part of the PSD have also been
suggested. More specifically, Bauswein and Stergioulas (2015) claimed that the
lower-frequency peak (i.e., the f1 peak in Takami et al. 2014, 2015; Kastaun and
Galeazzi 2015) is actually made of two separate peaks originating from different
processes. One of these peaks is said to be produced by a nonlinear combination
between the dominant quadrupolar oscillation (fpeak or f2 in different notations)
and the quasi-radial oscillation of the remnant and is named f2-0 (Stergioulas et al.
2011), while the other is said to be caused by a strong deformation initiated at the
time of the merger, the pattern of which then rotates (in the inertial frame) more
slowly than the inner cores of the remnant and lasts for a few rotational periods,
while diminishing in amplitude. The GW emission associated with this motion then
powers a peak that was named fspiral in Bauswein and Stergioulas (2015). The
connection between the fspiral peak and the deformation was supported by showing
that only PSDs computed from time intervals of the gravitational waveform that
contain the deformation have the fspiral peak. It was also claimed that the fspiral peak
can be roughly reproduced in a toy model, where two bulges orbit as point particles
around the central double-core structure for a duration of few milliseconds, but no
details were given in Bauswein and Stergioulas (2015).

In their analysis, Bauswein and Stergioulas (2015) also proposed an explanation
for the low-frequency modulations seen in quantities like the lapse function at the
stellar center, the maximum rest-mass density, and the separation between the two
cores of the remnant. Such quantities are modulated according to the orientation
of the antipodal bulges of the deformation with respect to the double central cores:
the compactness is smaller, the central lapse function larger, and the GW amplitude
maximal when the bulges and the cores are aligned, and viceversa.

Making use of a large set of simulations, Bauswein and Stergioulas (2015) were
able to obtain empirical relations for both types of low-frequency peaks in terms
of the compactness of nonrotating individual neutron stars. Different relations,
however, were found for different sequences of constant total mass of the binary, in
contrast with what found in Takami et al. (2014, 2015), where a different definition
for the low-frequency peak was used. As discussed by Bauswein and Stergioulas
(2015), the different behaviour could be due to the fact that the results of Takami
et al. (2014, 2015) were based on a limited set of five EOSs of soft or moderate
stiffness (with corresponding maximum masses of nonrotating neutron stars only
up to 2.2 M�), as well as on different chosen mass ranges for each EOS with a
spread of only 0.2 M� in the total mass of the binary. In Bauswein and Stergioulas
(2015), on the other hand, ten EOSs (including stiff EOSs with maximum masses
reaching up to 2.8 M�) and a larger mass range of 2.4–3.0 M� were used. Overall,
the differences between the results of the two groups are significant only for very
low-mass neutron stars (i.e., M = 1.2 M�), which Takami et al. (2014, 2015) had
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not included in their sample because of the low statistical incidence they are thought
to have (see also below).

One important consideration to bear in mind is that measuring the fspiral frequen-
cies through the motion of matter asymmetries via gauge-dependent quantities such
as the rest-mass density is essentially impossible in genuine numerical-relativity
calculations. This is because the spatial gauge conditions can easily distort the
coordinate appearance of mass distributions and even the trajectories of the two
stars during the inspiral (see Appendix A 2 of Baiotti et al. (2008) for some dramatic
examples). In an attempt to clarify the different interpretations suggested in Takami
et al. (2014, 2015), Bauswein and Stergioulas (2015) and to bring under a unified
framework the spectral properties of the post-merger GW signal, Rezzolla and
Takami (2016) have recently presented a comprehensive analysis of the GW signal
emitted during the inspiral, merger and post-merger of 56 neutron-star binaries
(Rezzolla and Takami 2016) (waveforms from this work are shown in Fig. 10.5).
This sample of binaries, arguably the largest studied to date with realistic EOSs,
spans across five different nuclear-physics EOSs and seven mass values, including
the very low-mass binaries (e.g., with individual neutron-star masses of 1.2 M�)
that were suggested by Bauswein and Stergioulas (2015) to be lacking in the
previous analysis of Takami et al. (2015). After a systematic analysis of the complete
sample, it was possible to sharpen a number of arguments on the spectral properties
of the post-merger GW signal. Overall it was found that: (1) for binaries with
individual stellar masses differing no more than 20%, the frequency at the maximum
of the GW amplitude is related quasi-universally with the tidal deformability of
the two stars; (2) the spectral properties vary during the post-merger phase, with
a transient phase lasting a few milliseconds after the merger and followed by a
quasi-stationary phase; (3) when distinguishing the spectral peaks between these
two phases, a number of ambiguities in the identification of the peaks disappear,
leaving a simple and robust picture; (4) using properly identified frequencies, quasi-
universal relations are found between the spectral features and the properties of the
neutron stars; (5) for the most salient peaks analytic fitting functions can be obtained
in terms of the stellar tidal deformability or compactness. Overall, the analysis of
Rezzolla and Takami (2016) supports the idea that the EOS of nuclear matter can be
constrained tightly when a signal in GWs from BNSs is detected.

An interesting extension of the work of Takami et al. (2014, 2015) was suggested
by Bernuzzi et al. (2015b), who expressed the correlation between the peak
frequencies f2 with the tidal coupling constant κT

2 instead of the tidal deformability
parameter �, as done in Takami et al. (2014, 2015). As found in previous works by
Bernuzzi et al. (2014a, 2015a) (see Sect. 10.3), the dimensionless GW frequency
depends on the stellar EOS, binary mass, and mass ratio only through the tidal
coupling constants κT

2 and thus this is a better choice of parameter, also because
it can be extended more straightforwardly to the case of unequal-mass binaries. The
relation f2(κ

T
2 ) was found in Bernuzzi et al. (2015b) to be very weakly dependent

on the binary total mass, mass ratio, EOS, and thermal effects (through the ideal-
fluid index �th). Relevant dependence on the stellar spins was instead found. This
is shown in Fig. 10.7, which reports the dimensionless frequency Mf2 as a function
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of the tidal coupling constant κT
2 . Each panel shows the same data set; the colour

code in each panel indicates the different values of binary mass (top left), EOS (top
right), mass-ratio (bottom left), and �th (bottom right). The black solid line is the fit
obtained by Bernuzzi et al. (2015b), while the grey area marks the 95% confidence
range.

Although not explicitly stated, all of the considerations made so far about the
spectral properties of the post-merger signal refer to binaries that are initially
irrotational. It is therefore natural to ask what changes, both qualitatively and
quantitatively, when spinning binaries are considered. This was done in part by
Bernuzzi et al. (2014b) and by Kastaun et al. (2013) and Kastaun and Galeazzi
(2015). The first work considered in particular whether the main-peak frequency
f2 is influenced by the initial state of rotation and found that this is indeed the
case at least for very rapidly rotating neutron stars, suggesting that spin effects may
be more important than those found in Bauswein and Janka (2012). Kastaun and
Galeazzi (2015), on the other hand, analysed the spectral changes induced by the
initial spin on high-mass binaries and showed that the direct influence of the spin on
the frequency f2 is weak and comparable to the width of the corresponding peak.
They also studied in detail the Fourier decomposition of the rest-mass density of the
binary-merger product and its rotational profile, which is important for determining
its lifetime, especially in view of the amplification of the magnetic field. A problem
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that needed to be tackled in their analysis is that of potential gauge artefacts. We
recall, in fact, that rest-mass density distributions are gauge-dependent quantities
and even when the system approaches an axisymmetric state after the merger, the
spatial coordinates may not reflect this, because the gauge conditions employed
in the evolution introduce local and global deformations. In order to exclude
such systematic gauge effects, Kastaun and Galeazzi (2015) introduced a different
coordinate system, used just for post-processing. In this new coordinate system,
they found that, the Fourier decomposition is far more regular than in the coordinate
system normally used in the evolution. Furthermore, they showed that, contrary to
common assumptions, the law of differential rotation of the binary-merger product
consists of a slowly rotating core with an extended and massive envelope rotating
close to Keplerian velocity (see discussion in Hanauske et al. 2016). The latter result
has been confirmed recently also for the binary-merger product produced by the
merger of unequal-mass magnetised binaries (Endrizzi et al. 2016).

A rather different approach to analysing post-merger waveforms has been taken
by Chatziioannou et al. (2017). In order to obtain results that rely less on numerical-
relativity simulations, they use a morphology-independent Bayesian data analysis
algorithm, BAYESWAVE (Cornish and Littenberg 2015; Littenberg and Cornish
2015), to reconstruct as a sum of wavelets injected post-merger GW signals that are
assumed to have been measured (in the absence of observational data, data based on
simulations were used). It was found that BAYESWAVE is capable of reconstructing
the dominant features of the injected signal, in particular the dominant post-merger
frequency, with an overlap between injected and reconstructed signals of above 90%
for post-merger SNRs above 5. This allows f2 to be measured at the 90% credible
level with an error of about 36 (27) [45] Hz for a stiff (moderate) [soft] EOSs and
so to set bounds on the NS radius obtained by the post-merger signal of order
100 m for a signal emitted at 20 Mpc. This accuracy is similar to that predicted
by the other methods discussed above, which are completely based on numerical
simulations. Actually also Chatziioannou et al. (2017) had to use empirical formulas
from numerical simulations (Bauswein and Janka 2012; Bauswein et al. 2012, 2016)
to relate f2 to the radius and they indeed found that their error on the radius is
dominated by the systematic uncertainty (scatter) in such a formula, rather than the
statistical error of the reconstruction.

Before concluding this discussion on the post-merger GW signal we shall also
make some additional important remarks.

• First, GW measurements at the expected frequencies and amplitudes are very
difficult, namely limited to sources within ∼20 Mpc. This number can be easily
estimated with back-of-the-envelope calculations, but it was confirmed through
detailed analysis of the detectability of the dominant oscillation frequency in
Clark et al. (2014), Bose et al. (2018), Yang et al. (2018) via large-scale Monte
Carlo studies in which simulated post-merger GW signals are injected into
realistic detector data that matches the design goals of Advanced LIGO and
Advanced Virgo.
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• Second, the post-merger frequencies evolve in time, albeit only slightly. Hence,
the spectral properties of the GW signal can be asserted reliably only when the
signal-to-noise ratio is sufficiently strong so that even these changes in time can
be measured in the evolution of the PSDs (Kiuchi et al. 2012b; Hotokezaka et al.
2013; Takami et al. 2014; Shibata et al. 2014). In light of these considerations,
the prospects for high-frequency searches for the post-merger signal are limited
to rare nearby events. Yet, if such detections happen, the error in the estimate of
the neutron star radius will be of the order of a few hundred metres (Clark et al.
2014, 2016; Bose et al. 2018; Yang et al. 2018).

• Third, viscous dissipation and energy transport in the post-merger phase may
considerably affect gravitational waveforms. It has been recently pointed out
that shear viscosity and thermal conductivity are not likely to play a major
role in post-merger dynamics unless neutrino trapping occurs, which requires
temperatures T � 10 MeV, or flows that experience shear over short distances of
the order of 0.01 km (Alford et al. 2018). By using the most likely values of the
parameters describing shear viscosity other works had already estimated that the
post-merger GW amplitude is affected, but its frequency peaks are not (Radice
2017; Shibata and Kiuchi 2017). On the other hand, bulk viscous dissipation
could provide significant damping of the high-amplitude density oscillations
observed right after merger, if modified-Urca processes (and not direct-Urca
processes; see e.g. Lattimer et al. 1991) are those that establish flavor equilibrium
(Alford et al. 2018). Hence, viscous dissipative processes deserve more careful
investigation since they may well affect the spectral properties of the post-merger
gravitational-wave signal, especially the f1 and f3 peaks that are produced right
after the merger and that are dissipated rapidly (Takami et al. 2015). In addition, if
viscous dissipation is active after the merger, it will also heat the merger product,
possibly stabilising it on longer timescales via the extra thermal pressure (Baiotti
et al. 2008; Sekiguchi et al. 2011b; Paschalidis et al. 2012; Kaplan et al. 2014).
Finally, future gravitational-wave observations may also give indications about
the fraction of merger material in which direct or modified Urca processes are
dominant.

At the end of this long Section, we summarise the main finding on the spectral
properties of the post-merger signal as follows:

• The most powerful methods to connect observations of the post-merger GW with
the EOS of those neutron stars is based on analyses of the GW PSD.

• In general, there are three main peaks in the PSDs of the post-merger phase
of binary mergers that do not result in a prompt collapse to a black hole.
The frequencies of these peaks are named f1, f2, f3 in Takami et al. (2014,
2015), Rezzolla and Takami (2016), while other works use different symbols,
in particular the frequency of the highest peak,f2, is referred to as fpeak in
e.g., Bauswein and Janka (2012), Bauswein and Stergioulas (2015), Bauswein
et al. (2016). The frequencies were found to roughly follow the relation f2 �
(f1 + f3)/2.
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• The f2 frequencies correspond to the � = 2 = m fundamental mode of the
HMNS and hence are equal to twice the rotation frequency of the bar deformation
of the HMNS. Their values change slightly in time (by ∼5%). The f1 and f3
frequencies are produced only in the first few milliseconds after the merger. A
simple toy model was proposed in Takami et al. (2015) to explain their origin.
See also Bauswein and Stergioulas (2015) for another model.

• The frequencies f2 and f1 were found to correlate well with properties of the
stars in the BNS system. In particular, f2 correlates well with the quantity
(M̄/R3

max)
1/2 for a given total mass of the BNS (Bauswein and Janka 2012),

while f1 correlates well with the average compactness of the two stars in the
binary and such a relation seems valid for any total mass of the BNS, prompting
Takami et al. (2014, 2015) to call the relation universal.

• Such correlations between post-merger frequencies and stellar properties can be
used to estimate rather accurately the radius of the neutron stars and so to infer
information on their EOS. There are, however, caveats against a simplistic use
of post-merger frequencies, since they may vary in time, be affected by bulk
viscosity (Alford et al. 2018) and by the spins of the stars in the binary (if very
high) (Bernuzzi et al. 2014b), and since the post-merger GW signals have a small
SNR in current detectors and therefore the chances of a detection are very small.

10.4.3 Spectral Properties and the Mass-Redshift Degeneracy

Besides providing information on the EOS, the spectral properties of the
gravitational-wave post-merger signal can also be used in a completely different
manner, namely, to remove the degeneracy in the determination of redshift and mass
for cosmological investigations. Indeed, a well-known problem of the detection
of gravitational waves from compact-object binaries at cosmological distances
is the so-called “mass-redshift degeneracy”. More precisely, given a source of
(gravitational) mass M at a cosmological redshift z, a direct gravitational-wave
observation provides information only on the combined quantity M(1 + z), so
that it is not possible to have an independent measurement of M and of z. The
standard solution to this problem is to detect an electromagnetic counterpart to the
gravitational-wave signal, so as to measure z and hence the mass M . However, this
may be not easy in some cases.

In a recent investigation, Messenger et al. (2014) described how this degeneracy
can be broken when exploiting information on the spectral properties of the post-
merger gravitational-wave signal. More specifically, making use of numerically
generated BNS waveforms, it was shown that it is possible to construct frequency-
domain power-spectrum reference templates that capture the evolution of two of the
primary spectral features in the post-merger stage of the waveforms as a function of
the total gravitational mass.

This is summarised via a cartoon in Fig. 10.8, which shows how the information
on the redshifted mass as a function of the redshift (blue stripe) can be correlated
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Fig. 10.8 A cartoon illustrating how the mass-redshift degeneracy is broken through the use of
information from the inspiral and HMNS stages of a BNS merger event. Cross-correlating the
information on the redshifted mass as a function of the redshift (blue stripe) with the information
from the spectral properties of the HMNS phase (red stripe) will provide a localised range in mass
and redshift, breaking the degeneracy [Reprinted with permission from Messenger et al. (2014).
© (2014) by the American Physical Society]

with complementary information from the spectral properties of the HMNS phase.
The overlap will provide a localised range in mass and redshift, breaking the
degeneracy. A Bayesian inference method was then used to test the ability of the
Einstein Telescope (Punturo et al. 2010b) to measure the characteristic frequencies
in the post-merger stage of the signal, finding that redshift and gravitational mass
can be determined separately, with uncertainties in the redshift of sources at z =
0.01–0.04 of 10–20% and in the gravitational mass of <1% in all cases.

10.5 Conclusions

As anticipated in the Introduction, there is little doubt that this is a particularly
exciting and highly dynamical time for research on neutron stars, in general, and
on BNS mergers, in particular. In about 10 years, i.e., starting approximately
from 2008, a considerable effort by several groups across the world has obtained
numerous important results about the dynamics of binary systems of neutron stars,
employing a large variety of numerical (in most cases) and analytical (in a few cases)
techniques and exploring this process with different degrees of approximation and
realism.

Altogether, these works have revealed that the merger of a binary system of
neutron stars is a marvellous physical laboratory. Indeed, BNS mergers are expected
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to be behind several fascinating physical processes, which we recall here: (1)
they are significant sources of gravitational radiation; (2) they act as possible
progenitors for short-gamma-ray bursts (SGRBs); (3) they have the potential to
produce electromagnetic and neutrino emission that is visible from enormous
distances; (4) they are likely responsible for the production of a good portion of
the very heavy elements in the Universe. When viewed across this lens, it is quite
natural to consider BNS mergers as Einstein’s richest laboratory, binding in the same
environment highly nonlinear gravitational dynamics with complex microphysical
processes and astonishing astrophysical phenomena.

The huge progress accomplished over the last 10 years has helped trace a
broadbrush picture of BNS mergers that has several sound aspects, among which
the most robust in our opinion are the following ones6:

• Independently of the fine details of the EOS, of the mass ratio or of the
presence of magnetic fields, the merger of a binary system of neutron stars
eventually leads to a rapidly rotating black hole with dimensionless spin J/M2 �
0.7–0.8 surrounded by a hot accretion torus with mass in the range Mtorus ∼
0.001–0.1 M�. Only very low-mass progenitors whose total mass is below the
maximum mass of a (nonrotating) neutron star would not produce a black hole.
It is unclear whether such progenitors are statistically important.

• The complete GW signal from inspiralling and merging BNSs can be computed
numerically with precision that is smaller but overall comparable with that
available for black holes.

• When considering the inspiral-only part of the GW signal, semi-analytical
approximations either in the post-Newtonian or EOB approximation, can repro-
duce the results of numerical-relativity calculations essentially up to the merger.

• The GW spectrum is marked by precise frequencies, either during the inspiral or
after the merger that exhibit a “quasi-universal” behaviour. In other words, while
the position of the peaks depends on the EOS, it can be easily factored out to
obtain EOS-independent relations between the frequencies of the peaks and the
properties of the progenitor stars.

• The result of the merger, i.e., the binary-merger product, is a highly massive
and differentially rotating neutron star. The lifetime of the binary-merger product
depends on a number of factors, including the mass of the progenitors, their mass
ratio and EOS, as well as the role played by magnetic fields and neutrino losses.
While sufficiently large initial masses can yield a prompt collapse at the merger,
for smaller masses the object resulting from the merger can be a neutron star for
at least some milliseconds or maybe forever.

Note that many of the aspects listed above are robust but have been addressed
mostly at a rather qualitative level, with precisions that range from “a-factor-of-
a-few” up to “order-of-magnitude” estimates. Furthermore, these results can be

6In this Section we will intentionally omit references to avoid cluttering the text; all the relevant
references can be found in the various Sections covering the topics discussed here.
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seen as the low-hanging fruits of a tree that still has a number of results to offer,
although these will require an equal, if not larger, investment of effort, microphysical
and numerical developments, and, of course, of computer time. In conclusion, if
GW170817 and the first direct detection of the GW signals from binary systems
of neutron stars has officially given birth to the era of multimessenger astronomy,
the huge advances that are expected to come in the next few years on the physics
and astrophysics of BNSs will help lift many of the veils that still cover Einstein’s
richest laboratory.
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