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Foreword

Compact stars, such as neutron stars, strange stars, and hybrid stars, are unique
laboratories that allow us to probe the building blocks of matter and their inter-
actions at regimes complementary to terrestrial laboratories. These exceptionally
complex astrophysical sources have already led to breakthrough discoveries in
nuclear and subnuclear physics, QCD, general relativity, and high-energy astro-
physics. The most recent landmark was the first gravitational wave detection from
the merging of two neutron stars on August 17, 2017 (GW170817), 2 years after
the first ever direct detection of gravitational waves, which has closed a chapter
initiated almost one century ago, with the first paper of Albert Einstein on general
relativity. With the observation of coalescing neutron stars, the gravitational-wave
detectors LIGO and Virgo have demonstrated their potential to directly probe
the properties of matter at the extreme conditions found in this scenario. Indeed,
constraints have been placed on the tidal effects of the coalescing stars, which in
turn constrain the neutron star radii and the equation of state of matter at twice
the nuclear saturation density. These observations also mark the beginning of the
multi-messenger astronomy era with the simultaneous detection of gravitational
waves, gamma-ray burst, and electromagnetic emission from the same source. In
the coming years, the predicted large number of new events will greatly improve our
understanding of neutron star mergers and of neutron star internal structure. During
2019, the observatory NICER (Neutron Star Interior Composition Explorer) hosted
by the International Space Station (ISS) will release its first one-year campaign of
X-ray observations of a few neutron stars aiming at determining the radius of these
stars within less than 10% accuracy. We shall also mention the GAIA satellite which
is measuring the position of billions of objects in our universe with an unprecedented
accuracy. We are confident that these measures will considerably help understanding
the multiple faces of neutron stars and will provide a better picture of the neutron
star jigsaw puzzle.

The nuclear and subnuclear experimental facilities, such as FAIR and GANIL in
Europe, offer a complementary approach to explore the phase diagram of dense
matter as well as reaction rates and transport properties. They have nurtured
innovative and fundamental discoveries thanks to the synthesis of new radioactive
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elements, on one side, and to the production of new states of matter in heavy ion
collisions, on the other side. Theoretical approaches in nuclear physics have also
been greatly renewed over the last decade, mainly thanks to the new chiral EFT
methods which have allowed to establish constraints on the properties of low-density
nuclear matter—up to 1−2 times the nuclear saturation density. The description
of the nuclear equation of state at zero and finite temperature, in uniform or non-
uniform matter, as well as reaction rates and transport properties has also made
a big step during the last decade. The more systematic use of nuclear physics
inputs in compact star modeling has contributed to reduce the uncertainties in the
model predictions. The various constraints coming from both nuclear physics and
astrophysics have been instrumental in improving our understanding of the dense
matter equation of state. Detailed questions related to phase transitions and transport
properties are now emerging, and future experiments and observations will provide
even better data to keep improving the models.

The outstanding variety of observational properties of compact stars challenged
observers and requires quite dedicated instruments. NICER is an example, but
observations in the whole electromagnetic range, from radio to gamma rays, are
crucial to understand the properties of compact stars. Future instruments, e.g.,
FAST, LOFT, ATHENA, and SKA, will provide an unprecedented amount of data
on compact stars. One particular issue that has received significant attention is
the astonishing large magnetic fields exhibited by neutron stars. From both the
microphysics and the macrophysics sides, the relevance of strong magnetic fields
in different processes has been acknowledged. Understanding their impact, for
instance, in core-collapse supernovae, the long-term cooling of strongly magnetized
neutron stars, the bursting activity of magnetars, the merger of neutron stars
binaries, and the crustal cooling of quiescent low-mass X-ray binaries, among other
scenarios, has been the object of many theoretical studies, improving our knowledge
of these fascinating objects.

The book is meant to address a large spectrum of readers, from first-year
PhD students up to senior researchers, who will find a thorough overview of the
various facets of the physics and astrophysics of compact stars. The aim is that of
summarizing the recent progress in the field and the many challenging questions
which still remain to be answered; most importantly, the book aims at identifying
effective strategies to explore, both theoretically and observationally, the open
problems. To accomplish this goal, each of the 13 chapters of the book written
by internationally renowned experts includes a brief overview of the historical
context, a detailed review of the main theoretical achievements, experimental and
observational results, and finally the present challenges, future prospects, and open
questions.

The book is organized into three thematic blocks: the first part (Chaps. 1–4)
covers the astrophysical context where neutron stars are formed (core-collapse
supernovae), discusses the impact of strong magnetic fields in neutron stars (mag-
netars and transient phenomena), reviews tests of gravity with compact stars and the
detection of gravitational waves, and studies the complexity of binary systems.
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The second part (Chaps. 5–9) is dedicated to nuclear physics. Several decades
ago, it was suggested that the neutron star equation of state could be directly
determined from observations. As a transition from astrophysics to nuclear physics,
a review is made of the constraints from electromagnetic observations. Then the
nuclear equations of state at both zero and finite temperature are presented, followed
by the connection with low-energy QCD and super-dense matter. Interestingly,
since the nuclear interaction is attractive at long range, a part of the volume of
neutron star core and crust could host superfluid neutrons, or charged particles
in superconducting state. Pairing is believed to be responsible for glitches and
can affect neutron star oscillations. Finally, the microphysics part of the book is
concluded by addressing the questions related to transport phenomena and reaction
rates in hadronic and quark matter.

The last part (Chaps. 10–13) is mainly focused on gravitational physics and
kilonovae phenomena; the gravitational wave emission from merging neutron star
binaries as well as the post-merging dynamics is discussed, and the electromagnetic
emission of kilonovae and its engine—the nucleosynthesis—is described. Gravita-
tional waves emitted by a single neutron star due to its quadrupolar “mountain”
deformation are also discussed, as these could be the next new signals to look
for in advanced terrestrial interferometers. Finally, this section is concluded with
a presentation of universal relations arising in general relativity—the so-called
I -Love-Q relations—and of alternative theories of gravity and their universal
relations.

This book, the NewCompStar White Book, is the final deliverable of the MP1304
COST Action, which ran from 2013 to 2017 and was the natural extension of the
ESF-funded RPN “CompStar” (2008–2013), which coordinated various initiatives
at the national level such as EMMI in Germany and TeonGrav in Italy (still
continuing), SN2NS continuing as MODE in France, and many more. After more
than 10 years of continued networking at the highest European level, research on
compact stars is more active than ever before and has reached maturity. The near
future activities are also guaranteed by the new COST Action PHAROS which
will operate until 2021. But NewCompStar did not end in Europe. It was also
connected to research groups in non-EU countries, such as Armenia, Australia, the
Russian Federation, and the USA. Many of the world leading experts in the field
have participated in our international conferences and schools. NewCompStar has
therefore been an important nexus acting as a global reference for compact star
physics.

At this point, the NewCompStar White Book provides a timely summary of the
enormous progress in our field during the last decade. As illustrated through the
chapters of this book, progress has been possible thanks to the multidisciplinary
interaction among astrophysicists, nuclear and particle physicists, and experts in
gravitational physics. NewCompStar was the framework which allowed leading
experts in these fields to work together and jointly address fascinating and chal-
lenging problems. The deep and rich interconnectivity between areas was stressed
and exploited since the beginning of our European networking efforts, being one of
the keystones of our project. In addition to the pure research agenda, Compstar and
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NewCompStar also provided a dedicated training program for a new generation
of scientists, which grew with a broader view and better skills than previous
generations. This book also represents a synthesis of the many ideas transmitted
to young researchers during the international schools.

To conclude, it is worth stressing again that, although this white book is a
collection of contributions from NewCompStar community members, most of the
discussed results have been obtained by large international, worldwide collabo-
rations trying to understand the physics of compact stars. Given its pedagogical
purposes and the very broad range of topics covered, we have no doubt that this
volume will find its place among the few general books on neutron stars, and
we hope it will further stimulate research on these fascinating celestial objects,
accompanying a new generation of physicists.

Roma, Italy Valeria Ferrari
Seattle, WA, USA Jerome Margueron
Alicante, Spain Jose A. Pons
June 2018



Preface

Astrophysical objects have always inspired in us a deep sense of wonder, awe
and inspiration. Astrophysical compact objects—such as neutron stars—obviously
belong to this class and are, arguably, among the most exquisite example of what
drives human fascination.

This sense of fascination has pervaded “NewCompStar”, a network that
between 2013 and 2017 has collected scientists across Europe with very different
backgrounds—astrophysics and gravitational and nuclear physics—in the common
quest for a better understanding of neutron stars and of the fundamental physics
behind them.

Numerous are the achievements of these scientists, who have met in a number of
meetings—small and large—and who have collectively written hundreds of papers
over 4 years only. More importantly, a legacy of collaborations, synergies and
friendships has been passed over to “PHAROS”, the new and improved incarnation
of this spirit.

As a way to cast on paper a small part of what NewCompStar has ultimately
achieved, we have organised this collection of chapters that aim at providing the
exciting portrait of our present understanding of neutron stars.

The authors of these chapters have been chosen for their extraordinary expertise
and to reflect NewCompStar’s natural geographic and gender balance. More
importantly, these authors are not only very active in their corresponding fields,
but they will probably shape them in a permanent manner.

We trust that this book will be useful both as a reference for researchers working
in the field and as a first introduction to the subject for the generation of young
scientists willing to join the exciting adventure of understanding compact stars.

Frankfurt, Germany Luciano Rezzolla
Milan, Italy Pierre Pizzochero
Southampton, UK David Ian Jones
Barcelona, Spain Nanda Rea
Catania, Italy Isaac Vidaña
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Chapter 1
Neutron Stars Formation and Core
Collapse Supernovae

Pablo Cerda-Duran and Nancy Elias-Rosa

Abstract In the last decade there has been a remarkable increase in our knowledge
about core-collapse supernovae (CC-SNe), and the birthplace of neutron stars, from
both the observational and the theoretical point of view. Since the 1930s, with
the first systematic supernova search, the techniques for discovering and studying
extragalactic SNe have improved. Many SNe have been observed, and some of
them, have been followed through efficiently and with detail. Furthermore, there
has been a significant progress in the theoretical modelling of the scenario, boosted
by the arrival of new generations of supercomputers that have allowed to perform
multidimensional numerical simulations with unprecedented detail and realism. The
joint work of observational and theoretical studies of individual SNe over the whole
range of the electromagnetic spectrum has allowed to derive physical parameters,
which constrain the nature of the progenitor, and the composition and structure of
the star’s envelope at the time of the explosion. The observed properties of a CC-SN
are an imprint of the physical parameters of the explosion such as mass of the ejecta,
kinetic energy of the explosion, the mass loss rate, or the structure of the star before
the explosion. In this chapter, we review the current status of SNe observations and
theoretical modelling, the connection with their progenitor stars, and the properties
of the neutron stars left behind.
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1.1 Introduction

1.1.1 Core-Collapse Supernovae and Their Importance

Neutron stars (NS) appear at the end point of the evolution of massive stars (M >

8 M�). At this stage, most of these stars have grown an iron core that cannot be
supported by hydrostatic pressure and collapses. In most of the cases it produces
a supernova (SN), releasing a gravitational energy of about ∼1053 ergs (mainly in
form of neutrino radiation), and leading to the complete destruction of the progenitor
star (e.g. see Janka 2012). SNe leave behind compact remnants, such as neutron stars
(NS) or black holes (BH) (e.g. see Heger et al. 2003). The first interpretation of a
SN as a transition between massive stars and neutron stars was introduced by W.
Baade and F. Zwicky in the 1930s (Baade and Zwicky 1934) in order to explain the
extraordinary amount of energy liberated. It still holds nowadays (see Sect. 1.2.3 for
a detailed description about how NS are born).

SNe are studied from multiple perspectives. They are crucial for a complete
understanding of stellar evolution, being associated with NS and black holes (BH),
as well as with other extreme events such as gamma-ray bursts (GRBs; e.g. Galama
et al. (1998) or Woosley and Bloom (2006)) and X-ray flashes (XRFs; Pian et al.
2006), mainly connected to stripped-envelope core-collapse SNe. SNe are also
among the most influential events in the Universe regarding their energetic and
chemical contribution to the interstellar medium in galaxies (Thielemann et al.
1996). In fact, SNe are the major “factories” of heavy elements synthesized
along the progenitors life and in the SN explosion itself, as well as sources of
gravitational waves, neutrinos, and cosmic rays (e.g. Andersson et al. 2013; Hirata
et al. 1987; Koyama et al. 1995). SNe also produce dust (e.g. Todini and Ferrara
2001), and induce star formation (e.g., Krebs and Hillebrandt 1983) since the shock
waves generated in their explosion heat and compress interstellar molecular clouds.
Finally, they can be used as cosmological distance indicators, and to set constraints
on the equation of state of Dark Energy (e.g. Riess et al. 1998; Perlmutter et al.
1999; Hamuy and Pinto 2002).

1.1.2 Brief History of Supernova Observations

Temporary stars, comets and novae, as well as occasional supernovae, were fairly
frequently recorded in East Asian history (Stephenson and Green 2005). Possibly,
the first supernova for which written reports exist is SN 185, which took place in
the year AD 185 in the Milky Way Galaxy (precisely it occurred in the direction of
Alpha Centauri).

The birth of modern SN astronomy occurred in 1885, when the first extragalactic
SN (S Andromedae or SN 1885A) was detected with a telescope (Hartwig 1885).
In the 1920s scientists begun to realise that there was a particular class of very
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bright novae, and a decade later, Baade and Zwicky (1934) named this kind of event
“supernova”. The distinction between novae and supernovae was at first based on
twelve objects discovered between 1895 and 1930, plus the galactic SN observed by
Tycho in 1572. Between 1936 and 1941, the first systematic supernova search was
started by W. Baade and F. Zwicky using the Palomar 18-in. Schmidt telescope and
led to the discovery of 19 SNe. In the same years, SNe were first classified as Type
I or Type II based on the lack or presence of hydrogen spectral lines, respectively
(Minkowski 1941). This subdivision is still the basis of the SN classification used
today (Sect. 1.2.1 and Turatto et al. 2003; Gal-Yam 2016).

In the following years, the improvement of the instrumentation, the construction
of new telescopes and also the numerous progresses in the understanding of the
stellar evolution, stimulated the research and cataloguing of the SNe. By the
Eighties, with the introduction of the CCD and the construction of larger diameter
telescopes, not only did the number of SNe observed grow but it was possible also to
obtain spectra with better resolution and to study their luminosity evolution for long
times. SNe classification became consequently more complex due mainly to more
careful comparison among the SNe, and the previous types of SNe were further
sub-categorised attending to the presence/absence of chemical elements other than
hydrogen.

Computer controlled search programs of SNe were initiated in the following
decade. Thanks to past and ongoing surveys (e.g. the All-Sky Automated Survey for
SuperNovae—ASAS-SN; Shappee et al. (2014), the ESA Gaia transient survey—
Hodgkin et al. (2013), or the Panoramic Survey Telescope & Rapid Response
System—Pan-STARRRS; Kaiser et al. (2002), among numerous others), and to
the efforts of amateur astronomers, the rate of SN discoveries has dramatically
increased, going from less than 20 SNe at the beginning of the twentieth century,
to more than ∼200 SNe per year in the first decade of the twenty-first century, and
finding today up to 1000s of events per year.

These technological advances also allowed SN searches at z > 0.2 (e.g. Dark
Energy Survey—DES1), and the multi-wavelength observation of SNe. The optical
band has played a fundamental role in the knowledge and classification of the SNe,
but with the technological progress, it has been possible to observe the SNe in the IR
bands, and in the radio, ultraviolet (UV) and X-ray. In particular, with the explosion
of the SN 1987A in the LMC, the closest extragalactic SN observed (50 kpc), it has
been possible also to directly identify for the first time the SN progenitor in archival
images and to detect the neutrino flux produced during the explosion (see e.g. Arnett
et al. 1989; McCray 1993 for reviews).

To further complicate this scenario, these new generation of deep, and wide
surveys, are discovering new types of transients with unprecedented observational
characteristics, as we will describe in Sect. 1.3.1. For example, it has been found
extreme SNe types such as superluminous SNe, hundreds of times brighter than
those found over the last 50 years (MV < −21 mag), whose energy regime is not

1http://www.darkenergysurvey.org/.

http://www.darkenergysurvey.org/
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explained by the standard core-collapse and neutrino-driven mechanisms. Or ultra-
faint SNe (MV > −14 mag), which are characterized by a very low explosion
energy (∼1049 ergs) and small amount of 56Ni mass (<10−3 M�).

The wide variety of classes of SNe has also shown that core-collapse supernovae
(CC-SNe) present observational heterogeneity, consequence of the different proper-
ties of the progenitor star at the moment of the explosion, their energetic, angular
momentum, and environment. Thus, in the last decades SNe have been studied in
order to better establish the link to their progenitor stars and thereby to clarify the
evolution of massive stars. This make the SNe a very valuable probe of mass loss,
circumstellar structure, and star formation rates. For nearby CC-events it has been
possible to directly image the precursor star in pre-explosion images (mainly from
the archive of the Hubble Space Telescope, HST) and to verify its disappearance
years after the SN exploded (Smartt et al. 2009; Smartt 2015 and Sect. 1.2.2.2).

1.1.3 The Theoretical Perspective

In parallel to the observations, our theoretical understanding of the processes leading
to the formation of a neutron star as a result of a supernova explosion has grow
significantly in the last century. Although the basic scenario was set by Baade and
Zwicky (1934), it was not until the 1960s, with the appearance of the first modern
computers, that a significative progress was achieved. It was established that the
collapsing core should bounce when reaching nuclear matter density (Colgate and
Johnson 1960; Colgate et al. 1961) and suggested that the primary energy source in
supernova explosions should be in form of neutrino radiation (Colgate and White
1966). The basics behind most advanced models nowadays was set by Bethe and
Wilson (1985) in the so-called delayed neutrino-heating mechanism. They realised
that, when included the most sophisticated microphysics, a prompt explosion after
bounce was not possible, but the energy deposited by neutrino radiation could revive
the shock and power the explosion. We know now that multidimensional effects play
a primary role in the explosion, and that a comprehensive numerical modelling of the
scenario including all relevant physical effects is a computational challenge (see e.g.
Janka et al. 2007; Janka 2012; Burrows 2013; Müller 2016). Therefore, our current
understanding of the supernova mechanism relies heavily in the results of numerical
modelling and the progress in the field has tracked closely the improvements of
modern supercomputers and the development of high performance computing.

However, in order to understand the plethora of observations it is not sufficient
to be able to model numerically the collapse of massive stars. One also has to be
able to link these explosions with their progenitor stars, make predictions of how
common or uncommon each type of event is, and what are the consequences for the
galactic environment in which they live. The complete picture can only be achieved
with the help of the complementary discipline of stellar evolution (see e.g. Woosley
et al. 2002). Even if more than 2500 CC-SNe have been discovered so far, it is
still missing a complete picture of this progenitor-explosion link. In order to better
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understand the way in which these stars end their evolution, it is necessary to get
stronger constrains of the physical characteristics of the progenitor stars alongside
the explosion parameters through the observation of SNe, and thus test and constrain
the models. At the same time, studying compact remnants like neutron stars, we
can determinate explosion conditions and understand associated phenomena such
as mass loss, r-process nucleosynthesis, gravitational waves and neutrino emission.

1.1.4 Aim

The aim of this work is to review the current knowledge about supernovae as
the place of birth of neutron stars from both an observational and a theoretical
perspective. In Sect. 1.2 we review the status of observations of core-collapse
supernovae and our current knowledge about the scenario in which these explosions
are produced. In Sect. 1.3 we discuss the present challenges and future perspectives
in the field.

1.2 Current Status of Supernova Observations
and Modelling

1.2.1 Traditional Supernova Types

As we see in Sect. 1.1.2, the first fundamental classification was given by Minkowski
(1941) who distinguished the SNe in two different classes based on the lack (SNe
I) or presence (SNe II) of hydrogen lines such as Hα 6563 Å and Hβ 4861 Å in
their early spectra. Since SNe can be very different one from another as to spectral
features (i.e. chemical composition, physical conditions), photometry, overall SED
(spectral energy distribution), time evolution, radio and X-ray properties, in the
1980s sub-classes were introduced such as Ib, Ic, II-P, II-L, IIn, IIb which are related
to characteristics of their spectra (small letter) or light curves (capital letter).

The SNe of type I are subdivided in three subclasses, depending basically
on the presence or absence of Si II and He I in the spectra (see left panel of
Fig. 1.1). Type Ia SNe spectra present the line of Si II (rest wavelength 6347,
6371, and 6150 Å) in absorption, while the spectra of the SNe Ib do not have
these features but are characterized by pronounced lines of He I, such as those
at 5876, 6678 and 7065 Å. Finally, the SNe Ic do not show Si II nor He I lines
(or He I is very weak). Within this last subclass, we can distinguish events with
fast-expanding ejecta (v∼ 20,000 km s−1), named broad-line SNe Ic (Ic-BL) or
hypernovae. These transients are sometimes related to long gamma-ray burst or X-
ray flashes (SN 1998bw is the prototypical SN Ic-BL, discovered at the same time
and location as GRB 980425; Galama et al. 1998). Currently, it is known that type
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Fig. 1.1 Left: Representative spectra near maximum light of the main SN types (SN Ia 2011fe
(Pereira et al. 2013), Type Ib iPTF13bvn (Cao et al. 2013), Type Ic SN 2007gr (Valenti et al.
2008), and Type II-P SN 1999em (Leonard et al. 2002)). The most prominent spectral features are
indicated. The spectra are available in the public WISeREP repository (Yaron and Gal-Yam 2012).
Right: Average light curves of the main SN types (Li et al. 2011)

Ia SNe arise from the thermonuclear runaway of an accreting white dwarf (WD),
whereas Type Ib and Ic originate from the core collapse of massive stars that had lost
their hydrogen, or hydrogen plus helium envelopes before explosion, respectively.

The SNe II are also believed to be CC-SNe whose progenitors have retained (at
least part of) their outer envelopes before exploding, reason for which their spectra
are dominated by hydrogen lines all the time. As shown in the right panel of Fig. 1.1,
SNe II are sub-classified as SNe II-P and SNe II-L, based on their light curve shape.
The former exhibit light curves that decrease slowly after maximum for about three
months displaying a “plateau”. The light curve of SNe II-L shows instead, a linear
decline starting shortly past maximum. Recently, it has been argued that these two
subclasses are at the extremes of a continuous distribution of SNe with different
light-curve slopes (e.g. Anderson et al. 2014).

This classification, based on early phase spectra, is normally used when a new
SN candidate is confirmed, but it is not always accurate, as it can also be that the
appearance of a SN can change in time due to the characteristics of the progenitor
or to those of the circumstellar material (CSM).
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During the last part of the 1980s and the 1990s, the family of CC-SNe begun
to grow with the identification of various sub-types. The SNe IIn (named after the
detection of narrow emission lines in their spectra) present blue continuum spectra,
with Balmer emission lines formed by several components that evolve in the time
in various ways (Schlegel 1990). The narrow component, with inferred full-width-
at-half-maximum (FWHM) velocities from a few tens to a few hundreds km s−1,
are believed to arise from photoionised, slowly expanding gas which recombines
and emits photons. This gas, most likely expelled by the progenitor star during the
last phases of its evolutions, is located in the outer CSM and is not perturbed by
the SN ejecta, at least during the early phases of the SN evolution. At later phases,
intermediate-velocity line components (FWHM of a few thousands km s−1) may be
generated when the high velocity SN ejecta (a few 10−4) collides with the dense pre-
existing CSM. Although the interaction may mask the innermost ejecta (as well as
the explosion mechanism; Chevalier and Fransson 1994), in some cases, particular
geometric configurations may also favour the detection of high-velocity components
(a few 10−4 km s−1) arising from the photoionised SN ejecta. SNe IIn light curves
are instead quite heterogeneous, showing both slow and fast declining SNe, as well
as faint (MR � −16 mag) and very bright (MR � −19 mag) objects (e.g. Kiewe
et al. (2012) for a sample of SNe IIn). Note that recently it has been discussed that
SNe IIn are not really a SN type, but an external phenomena where any type of
SN (due to thermonuclear or core-collapse explosion) or not terminal outburst with
fast ejecta and sufficient energy, interact with a slower and denser CSM. It produces
a phenomena which appears or mimic what we know as a SN IIn. Therefore this
sub-class is more commonly named “interacting SNe” (e.g. see Smith 2016).

Finally, the spectrum of the SNe IIb is similar to that of the SNe II-P and II-
L during maximum light, i.e. it has strong lines of H, but in the following week
it metamorphoses to that of SNe Ib. This points out a physical link between these
two classes (SN 1993J represents the prototypical object of this subclass; Richmond
et al. 1994), suggesting that SNe II and SNe Ib/c share a common origin, i.e., the
CC of a massive star, but with just different amounts of stripping on the progenitors’
outer layers.

Together the Type II-P and II-L represent the majority of CC-SNe (considering
a volume-limited rate in the local Universe; Li et al. 2011). Almost 9% is formed
by interacting SNe. H-poor SNe (SNe IIb, Ib, Ic) constitute instead the remaining
∼37%. Recently, Cappellaro et al. (2015) find similar rates for CC-SNe groups
considering a redshift range 0.15 < z < 0.35. Rare events like SN 1987A-like
objects are estimated to form∼3% of the CC-SN population (Pastorello et al. 2012).
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1.2.2 Observational Constraints on the Progenitors
of Core-Collapse Supernovae

In the last decades SNe have been studied in order to better establish the link to their
progenitor stars and thereby to clarify the evolution of massive stars.

1.2.2.1 Observables of Core-Collapse Supernovae

Indirect clues about the SN origin can be derived from the interaction of the
material dismissed during the explosion with dense circumstellar medium lost by
the progenitor during its turbulent life, or as said before, from their light curve and
spectral evolution.

Light Curves

The first observable of electromagnetic radiation from a SN is the shock-breakout. It
is a short time scale (minutes for SNe with compact progenitors) in which the shock
wave produced during the collapse of the stellar core, reaches the stellar surface.
In this instant a flash of soft X-rays and ultra-violet (UV) photons are released.
The shock-breakout was directly observed in X-rays for the type Ib SN 2008D
(Soderberg et al. 2008), whereas the fast cooling tail (due to the adiabatic expansion
of the ejecta) after the shock-breakout has been observed in optical and UV bands
for a few other objects (e.g. SNe 1993J and 2013df (Morales-Garoffolo et al.
2014)). This post shock-breakout phase mainly depends on the progenitor radius
(e.g. Chevalier 1992).

Successively, the photons gradually leak out of the photosphere in a diffusion
time scale (tdiff ∝ ρκR2, where ρ is the density, κ the opacity, and R the SN
radius) shorter than the expansion time scale (texp = R/V , whereV is the expansion
velocity). During this period (tens to days) the thermal shock energy decreases as the
ejecta expands, and the radioactive decay of 56Ni (produced in the explosion, which
has a lifetime of 8.8 days) and 56Co (lifetime of 111.3 days) becomes important,
reaching a peak of luminosity. After this maximum the SN ejecta continue to
expand and cool, eventually arriving to the hydrogen recombination temperature
of the ejecta. While the recombination wave moves inward through the ejecta, the
temperature remains practically constant. Hence, depending on the mass of the
hydrogen envelope and the radius of the SN progenitor star, the SN luminosity
could show a constant or plateau phase (e.g. the case of the SNe Type II-P), or a
steep decline after maximum light (e.g. the SNe Type II-L).

Once all the hydrogen has recombined, i.e. at late time (t > 100 days), the
light curve declines at the rate of the decay of 56Co→ 56Fe (0.0098 mag day−1).
The late time light curve observations are useful to determine the mass of 56Co
(and hence synthesized 56Ni). At times later than 1000 days past explosion, other
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radioactive elements with longer half-lives such as 56Co and 56Ti power the
luminosity evolution of the CC-SNe.

Physical parameters from the SN explosion like the kinetic energy of the
explosion, the total ejected mass, the mass of 56Ni synthesized and the radius of
the progenitor, can be estimated through the fit of the SN bolometric light curves by
semi-analytic functions (e.g. Arnett 1982) or more sophisticated hydrodynamical
models (e.g. Blinnikov et al. 2000). More details about the SN modelling can be
found in Sect. 1.2.3.2.

Spectral Evolution

SN spectral time evolution are a scan through the SN ejecta. They are important to
study the chemical compositions of SNe and their progenitors, and the kinematic of
the SN ejecta. A clear example is their utility is to classify SNe.

During the early phases or photospheric phase, the SN ejecta are not completely
transparent and only the outer layers of the ejecta are observed. Consequently,
spectra are characterized by showing a black-body continuum superposed by
absorption and/or emission lines (e.g. see Filippenko (1997) for a detailed review).
These features are broad because the SN ejecta is expanding at high velocity. They
often show P-Cygni profiles with blue-shifted absorption and red-shifted emission
components. Precisely via the absorption component of the P-Cygni profile it is
possible to measured the velocity of the region at which the line predominantly
forms (through the Doppler effect).

Late-time (nebular) SN spectra, taken several months after the explosion, are a
unique way to peer into the very centre of the exploded stars. At those phases the
opacity for optical photons has dropped substantially due to the expansion of the
ejecta, so that the innermost parts, which were previously shielded by an effective
photosphere, are now uncovered. The inner ejecta composition, unveiled by the
nebular emission lines, is one of the most powerful tools to constrain the mechanism
that gave rise to an explosion, since they all have a characteristic and widely unique
nucleosynthesis. Late time spectra are characterized by strong emission lines on top
of a faint continuum. Also the profile of a nebular emission line carries important
information. The width of an emission line is a measure for the radial extent of
the emitting species, and the detailed shape encodes asymmetries in its spatial
distribution (e.g. Taubenberger et al. 2009).

When the SN ejecta interact with the CSM, the spectra present a blue continuum
with superposed narrow emission lines, arisen from the CSM ionized by the shock
interaction emission. If the CSM is thin, it is also possible to observe broader
emission lines from the ionized ejecta.

The radiative-transport modelling of the SN late-time spectra can give us
information about the kinematics of the ejecta and constrain the SN progenitor
masses (e.g. Jerkstrand 2017). For example, considering the sensitive dependency of
the oxygen nucleosynthesis with the main-sequence mass of the star, the modelling
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of the [O I] 6300, 6364 Å features helps us to constrain the progenitor mass (e.g.
Morales-Garoffolo et al. 2014).

Supernova Remnants

Studying the observed properties of young SN remnants (SNR) is also an indirect
path to connect with the SN progenitors (e.g. see the reviews Chevalier (2005),
Patnaude and Badenes (2017)). The remnant phase begins when, after the light
from a SN fades away, the ejecta in expansion, cools down, and strongly interacts
with the surrounding material, either the interstellar medium (ISM) or a more or
less extended CSM modified by the SN progenitor. Thus SNR provide detailed
information on the chemical composition of the ejecta, the explosion dynamics, and
the progenitor star mass loss distribution. The most notable cases are the Galactic
SNR Cassiopeia A, and the youngest know remnant, SN 1987A, in the Large
Magellanic Cloud. The advantage of the study of Galactic SNR is that they can
be resolved in fine detail. However, their link with CC-SN is complex given the
large diversity of the CC-SN explosions and circumstellar environment, and the
large mass range of the progenitors.

1.2.2.2 Searching for SN Progenitor Stars

Still, the killer case is made with the direct identification of the star prior to
explosion. Until the early 90s, only nearby events such SNe 1987A (∼50 kpc; White
and Malin 1987) and 1993J (∼3.6 Mpc; Aldering et al. 1994) have allowed the
direct progenitor identification in pre-explosion images. In recent years over a dozen
CC-SN progenitors have been identified based on the inspection of archival, pre-
explosion images. The identification relies on the positional coincidence between
the candidate precursor and the SN transient. This requires high spatial resolu-
tion and very accurate astrometry because, at the typical distance of the targets
(>30 Mpc2), source confusion becomes an issue. In practice, only HST or 8-m
ground-based telescopes mainly provided by adaptive optics images can be used
to accurately pin-point (with a typical uncertainty of a few tens mas) the progenitor
candidate. Even so, there is always the chance of mis-identification with foreground
sources or associated companion stars. Thus, a final approach is visiting the SN
field when the SN has weakened: if the candidate star has disappeared, then it was
indeed the progenitor, otherwise it was a mis-identification (e.g. see Maund and
Smartt 2009, Van Dyk et al. 2013, and Fig. 1.2).

2This distance limit is based on practical experience. Smartt et al. (2009) and Eldridge et al.
(2013) set to 28 Mpc the distance limit for a feasible search of SN progenitors, although there
are exceptions such as the massive progenitor of SN 2005gl at 60 Mpc (Gal-Yam et al. 2007).
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Fig. 1.2 Subsections of the pre-explosion (panel a), post-explosion (panel b), and late-time (panel
c) HST image of the SN 2010bt site. SN 2010bt is likely a Type IIn SN and its progenitor was a
massive star that experienced a powerful outburst. The positions of the SN candidate progenitor
and SN are indicated by circles each with radius of 3 pixels (between 0.08 and 0.15 arcsec), except
for panel c, for which the radius is 6 pixels (∼0.23 arcsec). The positions of three neighbouring
sources of SN 2010bt, “A”, “B”, “C”, and “D” are also indicated

Once a progenitor star candidate is identified, its initial mass and evolutionary
state before the CC can be estimated by comparing its brightness and colour (if
multi-colour imaging is available) measured with stellar evolution models. These
models are chosen taking into account the metallicity in the SN environment, and
the distance and the extinction to the star, derived from detailed light curves and
spectral evolution of the SN with ground-based data (see Sect. 1.2.4 for a discussion
about stellar evolution models).

Taken together, the availability and depth of archive images of nearby galaxies
is a determining factor that delimits the rate of SN progenitor stars identified. There
is an approximate probability of about 25% to find an image of the host galaxy of a
nearby SNe in the HST archive (Smartt et al. 2009).

Following the above or similar steps, direct detections or upper mass limits have
been established for progenitors of some types of SNe:

• Type II-P: Based on the statistics of around 15 SNe II-P, it appears that all of
these progenitors exploded in the red supergiant phase from stars with initial
mass range of 8–18 M�, as we would theoretically expect (see Sect. 1.2.4.2).
However there has been no detection of a higher mass stars in the range 20–
40 M�, which should be the most luminous and brightest stars in these galaxies.
This has led to the intriguing possibility that higher mass stars undergo core-
collapse, but form black-holes which prevents much of the stellar mass escaping
the explosion (Reynolds et al. 2015). Theoretically, such quenched, low energy
explosions have been proposed. Our lack of detection of high mass progenitors
could be evidence for this missing population (Kochanek et al. 2008; Smartt et al.
2009). But exceptions exist as the case of SN 1987A, considered a peculiar SN
Type II because in spite of exhibiting prevalent hydrogen P-Cygni profiles in
the early spectra, it had slow rise to maximum, faint, and broad light curves. Its
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progenitor was instead found to be a blue supergiant of around 14–20 M�, with
a hydrogen envelope of around 10 M�.

• Type II-L: Only in a couple of cases, e.g. SNe 2009hd (Elias-Rosa et al. 2011)
and 2009kr (Elias-Rosa et al. 2010; Fraser et al. 2010), the progenitor has
been identified and related with more yellow stars than expected by theoretical
stellar evolution models, with estimated initial mass of between 18 and 25 M�.
However, a recent work argues that the progenitor of SN 2009kr is most probably
a small compact cluster (Maund et al. 2015). It should be noted that it is no clear
the separation between the historically defined SNe II-P and SNe II-L.

• Type IIb: These SNe likely originate from binary stripped progenitors with
masses in the range 12–18 M�. The precursor of the prototype SN 1993J
(exploded in M81) was a K-type supergiant with ∼15 M� with a B-type star
as companion (e.g. Maund and Smartt 2009). In addition, it has been identified
the progenitor of other four SNe IIb. SN 2011dh was found to have a yellow
supergiant precursor (Maund et al. 2011; Van Dyk et al. 2011; Bersten et al.
2012), likely part of a binary system with a compact companion (Benvenuto
et al. 2013), and with relatively low initial mass (∼13 M�). This result was
confirmed by the disappearance of the bright yellow star (Van Dyk et al. 2013),
and the detection of a UV source at the SN position (Folatelli et al. 2014). The
progenitors of SNe 2013df (Van Dyk et al. 2014) and 2016gkg (Tartaglia et al.
2017) have been also associated with moderate mass yellow supergiant stars
of 13–17 M�. Only in the case of SN 2008ax, the colours of the progenitor
candidate might be those of a young Wolf-Rayet (WR) star (single massive stars
that have lost their hydrogen envelopes and in some cases also helium layers),
which had retained a thin, and low-mass shell of H, or with a system which
has contaminated flux from an associated cluster or nearby stars (Crockett et al.
2008).

• Type Ib/c: It has been proposed that these SNe arise from either massive stars
with initial mass > 25–30 M� (which have lost their outer hydrogen envelopes
during a WR phase through radiatively driven winds or intense mass loss) or
lower mass stars 8 < M < 30 M� in a binary system (which have been stripped
of mass by their companion stars). Deep, high resolution images of pre-explosion
sites of about 14 type Ib/c SNe have been analysed so far (Eldridge et al. 2013;
Elias-Rosa et al. 2013), but with not detections of progenitors, or progenitors
systems in any of these. The probability of not finding a progenitor if these SNe
originate from WR stars with initial masses > 25 M� similar to those seen in the
Milky Way and Magellanic Clouds is only 12%. Although some authors argue
that the parameters derived for the observed WR population do not correspond to
those of WR stars at the point of collapse (Yoon et al. 2012; Groh et al. 2013). In
short, it is still not possible to set range of masses, or discriminate unambiguously
between single WR stars or interacting massive stars in binary systems as the
progenitors of Ib/c. Only for the case of iPTF13bvn (Cao et al. 2013) a possible
WR was detected at the position of the SN. However, further detailed stellar
evolution modelling indicates that the progenitor candidate is a better match to
a low mass progenitor in a binary system (Bersten et al. 2014; Eldridge et al.
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2015). The recent analysis of post-explosion observations of the iPTF13bvn site
finds the disappearance of the progenitor of iPTF13bvn, which is most likely a
helium giant of 10–12 M� rather than a WR star (Eldridge and Maund 2016).

• Interacting SNe: Some successful detection of progenitors of interacting SNe
related these with either high luminosity or high-mass progenitors. A clear
progenitor detection is the case of SN IIn 2005gl (Gal-Yam et al. 2007; Gal-
Yam and Leonard 2009) which exploded at the same location as a luminous
blue variable (LBV) star. For SN 2010jl (Smith et al. 2011) it was also found
blue flux coincident with the SN, likely from a very young cluster or a single
massive star. Smith et al. (2011) argues that the initial mass of the progenitor
should be, in any case, >30 M�. In addition, the SN Ibn 2006jc precursor was
observed as a carbon-oxygen WR star embedded within a helium circumstellar
medium with a mass between 60 and 100 M� (Pastorello et al. 2007). It has
been found pre-explosion outbursts for some of these objects. In fact, Ofek et al.
(2014) allege that this activity is common in SNe IIn. As we will discuss in more
detail in Sect. 1.3.1, some interacting SNe show pre-SN photometric variability
of the precursor stars which are invaluable to characterise the final stages of the
progenitors. The most famous example is SN 2009ip for which were observed
regular, but temporally sporadic, series of stellar eruptions in 2009 and 2012,
before a final outburst in late 2012 (e.g. Pastorello et al. 2013; Fraser et al.
2013; Mauerhan et al. 2013; Margutti et al. 2014). A luminous progenitor for
this transient (MV = −10) was detected in HST archival images taken in 1999
(Smith et al. 2010; Foley et al. 2011). The nature of this transient or those of
similar objects remains debated: some are undoubtedly genuine core-collapse
SNe, while others may be giant non-terminal outbursts from LBV-like stars.
The LBV progenitor scenario for SNe IIn is currently the favoured one, but
given the large variety of this SN class it is natural to think about the existence
of multiple precursor channels. For example, it has been suggested alternative
scenarios such as a merger burst event in a close binary system (e.g. Soker
and Kashi 2013), or the collision of the SN ejecta of a red supergiant with the
surrounded photoionization-confined shell formed through repeated mass loss
events (Mackey et al. 2014).

Figure 1.3 shows a Hertzsprung-Russell diagram with a summary of the detected
progenitor stars and estimated upper limits of the main SN types (Smartt 2015). As
we can see, although it is possible to delimit observationally SNe with their stellar
progenitors, there are still many unknowns. Each case we study provides new clues.

1.2.3 Theory of Core Collapse Supernovae

Massive stars, with masses between ∼8 and ∼100 M�, end their lives collapsing
under their own gravity. However, the most common kind of progenitors for nearby
supernovae and the likely origin of most observed neutron stars consist of isolated
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Fig. 1.3 Hertzsprung Russell diagram showing the temperature and luminosity of the detected
progenitor stars and upper limits of the main type of SNe presented in Sect. 1.2.2.2 and Smartt
(2015). For comparison, model stellar evolutionary tracks from Eldridge and Tout (2004) are also
illustrated (figure reproduced from Smartt (2015))

(or non-interacting) massive stars of a mass between 9 and 30 M� and solar
metallicity. We focus next on the case of a typical star of this kind while other
kind of progenitors are explored in the next sections.

1.2.3.1 The Collapse of a Typical Star

In a typical star, the original material from which it was built, mainly hydrogen,
has experienced a series of thermonuclear reactions leading to a stratified onion-
like shell structure result of the intermediate ashes of fusion chain reactions. The
innermost region, the core, is composed by elements of the iron family, which
posses the highest nuclear binding energy per nucleon and hence are unable to
fusion further regardless of the density and temperature. The iron core is fed by
the surrounding silicon burning shell and it grows until it reaches a mass of 1.2–
2 M�, which is just below its Chandrasekhar mass (Chandrasekhar 1938). Typical
conditions in the iron core, which determine its Chandrasekhar mass, are an electron
fraction of Ye ∼ 0.42, a specific entropy of s ∼ 1kB per baryon (kB being the
Boltzmann constant), a temperature of T ∼ 1010 K (about 1 MeV) and a central
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density of ρ ∼ 1010 g cm−3. The Fermi energy of this gas of partially degenerate
electrons is εF ∼ 8 MeV, therefore, finite temperature corrections are important for
the estimation of the “effective” Chandrasekhar mass (Woosley et al. 2002), which
reads
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]

(1.1)

At this point the iron core starts collapsing due to two processes: first, electron
captures by nuclei reduce the electron pressure while the neutrinos produced carry
away energy from the core. Second, at densities above 1010 g cm−3, photo-
disintegration of iron nuclei into alpha particles cools down the core. Both processes
reduce the value of the Chandrasekhar mass until the pressure is not able to
counteract the self gravity of the object and the collapse becomes inevitable
(Fig. 1.4a). The detailed structure of the progenitor, in particular the iron core,
determines largely the outcome of the collapse and deserves a detailed discussion
(see Sect. 1.2.4).

In this case, the collapse progresses in dynamical timescales of several 100 ms,
enhanced by deleptonization and cooling processes. Beyond densities of ρ ∼
1012 g cm−3 neutrinos become trapped preventing further cooling and delep-
tonization. From this stage on, the collapse proceeds adiabatically inside the
neutrinosphere, where matter reaches rapidly beta equilibrium. At ρ ∼ 2 ×
1014 g cm−3 nuclear interactions between nucleons become the fundamental source
of pressure. This stops the collapse abruptly as the equation of state stiffens, i.e.
as matter becomes less compressible. The supersonically infalling matter forms a
shock at about 10 km from the centre that propagates outwards (Fig. 1.4b). At the
time of bounce, the shock encloses ∼0.5M� of nuclear matter the seed that will
form a neutron star, which at this stage is known as proto-neutron star (PNS). The
initial mass of the PNS is largely fixed by the deleptonization and cooling processes
driving the collapse, which determine the local sound speed of the fluid and this,
in turn, the location of the shock formation. As a result, massive stars always end
their collapse with a bounce and the formation of a gravitationally supported object,
a PNS, and never with a prompt collapse to a black hole.3

As the shock propagates against the infalling material of the remaining iron
core, nuclei are photo-dissociated into free nucleons. About 1051 ergs per 0.1M�
of infalling material is used in this process. This weakens the shock that stalls at
about 100 km from the centre in a time of a few 10 ms (Fig. 1.4c). The standing
shock can survive for timescales of several 100 ms and is effectively a gigantic

3Note however that pop III stars have very massive (M > 100M�) iron cores with high entropy
(s ∼ 8kB per baryon) and may form black holes promptly (Sekiguchi and Shibata 2011).
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Fig. 1.4 Stages in neutrino-driven core collapse explosion: gravitational collapse (a), core bounce
(b), shock stagnation and neutrino heating (c) and shock revival (d). Figure approximately at scale
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is released in form of kinetic energy of the infalling material, which is then
transformed into thermal energy at the shock. This is the main source of energy
of all the events that will develop next. At this time the PNS is growing rapidly in
mass and has a size of about 30 km. It consists of an cold inner core of ∼10 km
radius, composed of the unshocked material, and a thick hot envelope. The electron
neutrinosphere is located right below its surface, preventing a rapid cooling of the
PNS, which is now in thermal and beta equilibrium with neutrinos and stores about
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1053 erg of thermal energy. Most of this energy is released as thermal neutrinos
and antineutrinos streaming out in diffusion timescales of a few ∼10 s. However,
this neutrino cooling process will not stop at that point but will continue for the next
106 years, acting as the main cooling process in neutron stars. Under the appropriate
conditions, a small fraction of the neutrino energy, of about 1051 erg, is deposited
behind the stalled shock, which is revived disrupting the rest of the star and forming
a supernova explosion (Fig. 1.4d). This is the so-called delayed neutrino-heating
mechanism (Bethe and Wilson 1985). If this mechanism fails, the PNS will grow
in size until its maximum mass is reached and will collapse to a black hole (see
Sect. 1.2.4.2).

In the region between the PNS surface and the shock, the temperature radial
profile is such that neutrino emission rates, responsible for the cooling, have a
steeper radial decline than neutrino absorption rates, responsible for the heating.
This leads to the formation of a gain radius, above which there is a net absorption
of energy by the fluid. This region is called the gain layer. Neutrino heating is a
self-regulated process because fluid elements being heated in the gain layer expand
away, which in turn decreases the ability of this fluid to absorb energy. This process
limits the amount of energy being released in a supernova explosion to ∼1051 ergs
and makes the outcome of the events invoking only the delayed neutrino-heating
mechanism rather homogeneous (supernovae with additional sources of energy are
discussed in the next sections). As simple as it appears to be, heating proceeds in
a rather complicated way due to multidimensional processes. Ultimately, what sets
the amount of energy transferred to the shock is determined by the so-called dwell
time, which is the average time that takes for a fluid element to cross the gain layer
(Janka et al. 2008; Buras et al. 2006; Marek et al. 2009). Two processes increase
the residence time of matter in the gain layer and are crucial for the development
of a successful explosion: convection and the standing accretion shock instability
(SASI). On the one hand, convection overturn produces plumes of low-entropy
matter that fall rapidly towards the PNS while hot bubbles of high entropy, which
would otherwise fall into the PNS, rise constantly up into the gain layer. On the
other hand, the SASI (Blondin et al. 2003) produces a sloshing motion of the shock
due to an unstable acoustic-advective cycle that couples the PNS surface with the
shock (Foglizzo and Tagger 2000). This instability enhances non-radial motions and
helps to expand the shock, which increases its energy deposition efficiency (Marek
et al. 2009). Which of both processes is the dominant effect leading to the supernova
explosion is still matter of intense debate in the supernova modelling community.
The analysis of Yamasaki and Yamada (2007) suggests that SASI would be more
favourable in cases with lower neutrino luminosity while convection in cases with
higher luminosities. Regardless of this details, the explosion begins whenever the
dwell time of matter in the gain layer is longer that the time required to transfer
the amount of energy necessary to unbind this matter from the star. At this stage,
the shock expands rapidly at the same time as it is continuously being heated by
neutrinos. In this runaway situation, the globally expanding shock will gain energy
for the next few seconds until reaching the final explosion energy. The shape of the
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expanding shock is highly asymmetric at this stage, dominated by either the sloshing
motions produced by the SASI or by rising hot bubbles produced by convection.

1.2.3.2 Numerical Modelling

While we start having a clear picture of the scenario in which neutron stars are
formed, the exact conditions under which successful supernova explosions are
produced are still not completely well understood. The modelling of core collapse
supernova requires a wide variety of physical ingredients, including among others a
nuclear physics motivated finite temperature equation of state, a detailed description
of neutrino interactions and general relativity (see e.g. Janka et al. 2007; Janka 2012;
Burrows 2013; Müller 2016, for recent reviews). The numerical modelling of this
scenario is computationally challenging and even today, with the use of the largest
scientific supercomputing facilities available, we cannot afford solving the full set
of 6-dimensional Boltzmann equations, necessary for the neutrino transport, or to
use sufficiently high numerical resolution to resolve small-scale three-dimensional
turbulence that may affect the dynamics of the system. Additionally, the problem at
hand, results in a set of non-linear equations associated with the evolution of a fluid
interacting with neutrino radiation, which, even if we could manage to solve them
accurately, lead to a complex dynamics that may behave in a stochastic and chaotic
way, very sensitive to small changes in the initial conditions. Nevertheless, a huge
progress have been made in the last four decades. We focus here on the current status
of numerical modelling and mostly in the developments of the last decade, which we
hope will help the reader understanding the current uncertainties in the theoretical
knowledge of the scenario in which neutron stars are born. A more complete and
historical perspective of the numerical modelling of supernova can be found e.g. in
Janka (2012).

Most of the efforts have been focused in developing an accurate description for
the neutrino transport in simulations, since this is a crucial ingredient for the revival
of the supernova explosion. So far, state-of-the-art multi-energy group solvers for
three-flavour neutrino transport, including energy-bin coupling terms and velocity-
dependent corrections, have only been possible in spherically symmetric (1D)
simulations (Yamada et al. 1999; Liebendörfer et al. 2004). Under such restrictive
symmetry conditions, the energy deposited by neutrinos is not sufficient to revive
the shock and simulations fail to produce successful supernova explosions. The
exception are stars with O-Ne-Mg cores (see Sect. 1.2.4). In order to tackle the mul-
tidimensional case, one has to consider approximations of the Boltzmann transport
equations. The two-momentum approximation is a popular choice, in which only
equations for the neutrino number, energy and momentum are solved, supplemented
by an Eddington factor closure. This approach has been used in 1D simulations
(Burrows et al. 2000; Müller et al. 2010) and extended to multidimensional (2D and
3D) simulations in the so-called ray-by-ray-plus (RbR+) scheme (Rampp and Janka
2002; Buras et al. 2006). In this scheme a set of radial 1D problems is solved for
each angle in a spherical polar coordinates grid. Angular couplings appear through
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neutrino pressure gradients and the advection of neutrinos trapped with the fluid
in the optically thick regions. Truly multidimensional, multi-energy schemes have
been only possible in 2D. The most sophisticated version of those are multi-group
flux-limited (MGFD) schemes (Burrows et al. 2006, 2007b,c; Swesty and Myra
2009), specially schemes including multi-angle treatment (Ott et al. 2008; Brandt
et al. 2011).

As an alternative to those computationally expensive Boltzmann solvers, a
series of additional approximations have appeared in the literature: In the M1
scheme (Obergaulinger et al. 2014), a local algebraic closure was used in the
two-momentum transport equations yielding a set of hyperbolic equations. In
the isotropic diffusion source approximation (IDSA) (Liebendörfer et al. 2009),
neutrino distribution is decomposed into a trapped and a free streaming component.
The fast multi-group transport (FMT) method (Müller and Janka 2015; Müller 2015)
solves the stationary neutrino transport problem in a ray-by-ray fashion. The so-
called neutrino leakage scheme (O’Connor and Ott 2010) is a simple prescription
to describe cooling and heating of energy-averaged (grey) neutrinos, which can be
easily applied in multidimensional scenarios with a ray-by-ray approach (Ott et al.
2012). The leakage scheme has also been extended to the multi-energy group case
(Perego et al. 2016). Although the results of the latter series of approximations
cannot be truly compared to RbR+ or MGFLD methods, they are useful to explore
a large space of physical parameter or to study in details certain processes taking
place during the explosion (e.g. instabilities, 3D effects and magnetic fields).

Also crucial is an accurate and complete treatment of neutrino interactions
with matter. These set the emission and absorption rates, which are essential to
determine neutrino luminosity and energy deposition rates at the shock driving
the supernova explosion. The most relevant interactions included in numerical
simulations (see e.g. Buras et al. 2006; Lentz et al. 2012) are: β processes, including
neutrino and antineutrino absorption and emission processes by nucleons (Burrows
and Sawyer 1998) and nuclei (Langanke et al. 2003); scattering of neutrinos
with nucleons (Burrows and Sawyer 1998), nuclei (Horowitz 1997), electrons
and positrons (Mezzacappa and Bruenn 1993); nucleon-nucleon bremsstrahlung
(Hannestad and Raffelt 1998); and neutrino-antineutrino annihilation to produce
either electron-positron pairs (Bruenn 1985; Pons et al. 1998) or different flavour
neutrino-antineutrino pairs (Buras et al. 2003). Special care has to be taken in the
computation of these interactions to include inelastic terms in the scattering that
produce an interchange of neutrino energy with their targets, Pauli blocking factors,
high-density nucleon-nucleon correlations and weak magnetism corrections, among
others (for a more complete description see Janka (2012) and Chap. 9; for a
particular implementation description see Rampp (2000)). The use of incomplete
sets of interactions with different corrections implemented has been one of the
sources of disagreement in the results of numerical simulations among different
supernova groups. This tendency has changed in the last few years as the main
groups have adopted a complete and accurate set of interactions, which has
facilitated direct comparisons (see e.g. Burrows et al. 2016).
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General relativity (GR) also plays an important role in the dynamics of the
supernova explosion (Müller et al. 2012a). In comparison to Newtonian gravity,
GR deepens the gravitational potential well leading to more compact PNSs. This
increases the amount of gravitational binding energy released during the collapse,
which adds up to the energy budget of the PNS and has a positive impact in
triggering the explosion. Full GR simulations of the core collapse scenario (e.g.
Ott et al. 2007b, 2013; Mösta et al. 2014; Abdikamalov et al. 2015) have been
performed in the BSSN formulation (Shibata and Nakamura 1995; Baumgarte
and Shapiro 1999). To avoid the use of computationally expensive full GR codes,
several approximations have been developed. The conformally flat condition (CFC)
approximation (Isenberg 2008; Wilson et al. 1996) is a waveless approximation
to GR, which is exact in spherical symmetry, and has been used in core collapse
simulations codes (see e.g. Dimmelmeier et al. 2002a; Müller et al. 2010; Cerdá-
Durán et al. 2013). Direct comparisons of the CFC approach with full GR
simulations have shown that differences in the dynamics are minute (Shibata and
Sekiguchi 2004; Ott et al. 2007b,a). The CFC approximation has been reformulated
(XCFC, Cordero-Carrión et al. 2009) to overcome uniqueness problems; with this
improvement it is possible to study the formation of black holes (Cerdá-Durán et al.
2013) and, with the use of excision techniques (Cordero-Carrión et al. 2014), its
posterior evolution. Second post-Newtonian corrections to the CFC metric (CFC+,
Cerdá-Durán et al. 2005) showed only quantitatively small differences (<1%) in
the dynamics. Another popular approximation is the use of an effective pseudo-
Newtonian potential to mimic GR effects (Rampp and Janka 2002; Marek et al.
2006). This approximation is widely used by the core-collapse community (see e.g.
Buras et al. 2006; Kitaura et al. 2006; Obergaulinger et al. 2006; Scheidegger et al.
2008; Wongwathanarat et al. 2013; Hanke et al. 2013; Bruenn et al. 2013; O’Connor
and Couch 2015; Bruenn et al. 2016; Summa et al. 2016; Burrows et al. 2016) and it
produces an excellent agreement with GR in spherical symmetry. However, it agrees
only qualitatively in the presence of fast rotation, for which either CFC of full GR
are better suited. Regarding the computation of gravitational waves, the approximate
quadrupole formula is used almost exclusively in all simulations, regardless of the
gravity treatment. This approximations has been shown to be accurate for the mildly
relativistic gravity of these system even when compared with more sophisticated
waveform extraction techniques (Reisswig et al. 2011).

Additionally, simulations need realistic equations of state (EOS) able to handle
a wide range of conditions present in the core collapse scenario. These general
purpose EOS, also known as Supernova EOS, typically can handle densities from
∼108 to 1015 g cm−3 and finite temperature dependence to cover all steps in the
collapse from the iron core to the final neutron star. The composition is parametrised
by the value of the electron fraction because nuclear statistical equilibrium (NSE)
is considered. This is possible since, for the typical conditions inside the iron
core and in the PNS, nuclear reactions occur in timescales much shorter than the
dynamical evolution timescales. These EOSs consider the fluid composed by a
mixture of heavy nuclei, alpha particles, photons, neutrons and protons. Several
families of EOS are available including all these conditions: LS (Lattimer and
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Douglas Swesty 1991), STOS (Shen et al. 1998a,b, 2011c), FYSS (Furusawa et al.
2011, 2013), HS (Hempel and Schaffner-Bielich 2010), SFH (Steiner et al. 2013)
and SHO/SHT (Shen et al. 2011a,b). Additional details of those EOS and their
variants can be found in the recent review by Oertel et al. (2017) and on Chap. 6.
The main uncertainties in EOS calculations are the properties of nuclear matter,
parametrised in terms of constants such as the incompressibility modulus K and
the symmetry energy J , among others. Their values are currently constrained by
nuclear physics experiments and neutron stars observations (Oertel et al. 2017). The
impact of these EOS uncertainties in the dynamics of the collapse is only moderate.
It mainly affects three aspects: first, below nuclear density, most supernova EOS use
one average nucleus to describe all nuclei. This has an impact on electron capture
rates, which in turn affects the shock formation location and the size of the inner
core (Lattimer and Prakash 2000; Langanke et al. 2003; Sumiyoshi et al. 2005; Suwa
et al. 2013; Steiner et al. 2013). Secondly, the properties of matter at supranuclear
densities influence the structure of the PNS. For a “soft” EOS, i.e. that producing
more compressible matter at typical post-bounce densities, more compact PNSs are
formed. This enhances neutrino emission and favours supernova explosions (Marek
et al. 2009; Hempel et al. 2012; Suwa et al. 2013). Lastly, the EOS has an impact on
the maximum mass that a neutron star can support, which is relevant for the possible
formation of a black hole (see Sect. 1.2.4.2).

For the treatment of the matter outside the iron core, NSE is no longer a good
approximation and nuclear burning happens in longer timescales than dynamics
ones. The EOS at densities below ∼108 g cm−3 depends on the full composition
of the fluid in terms of the mass fractions of different isotopes, which have to
be advected with the fluid during the evolution. Therefore, at low densities, the
supernova EOS described above is matched to a full composition EOS. A popular
choice is the Timmes EOS (Timmes and Arnett 1999; Timmes and Swesty 2000). To
avoid computationally intensive calculations of nuclear reaction networks (see e.g.
Timmes 1999), phenomenological “flashing” prescriptions have been considered
(see e.g. Rampp and Janka 2002; Buras et al. 2006) or simply NSE as a crude
approach (see e.g. O’Connor and Ott 2010).

The most advanced core collapse simulations include all the physics described
above using state-of-the-art numerical methods and the best available approxima-
tions in each case. In axial symmetry (2D) recent simulations including full sets of
neutrino interactions, three-flavour neutrinos and general relativistic corrections to
the gravitational potential, have resulted in successful explosions for a wide range
of progenitors (12–25 M�) using both the RbR+ approach (Müller and Janka 2014;
Summa et al. 2016; Bruenn et al. 2016) and 2D-MGFLD transport (Burrows et al.
2016). Comparison among different groups shows a qualitative agreement in the
results but still differences in the time of the onset of the explosion and its energy
(Burrows et al. 2016). Analogous simulations with similar physical content have
been performed in 3D by Lentz et al. (2015) and Melson et al. (2015a) using
a ray-by-ray approach for the neutrino transport. In both cases only low mass
progenitors were considered (15 and 9.6 M� respectively) and although both cases
produce successful explosions, 3D effects weakened or enhanced the explosion with
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respect to 2D, depending on the work. Similar work for a 20 M� progenitor did
not produced successful explosions unless strange-quark contributions to neutrino-
nucleon scattering were considered. 2D and 3D simulations with less sophisticated
neutrino transport and incomplete neutrino physics Takiwaki et al. (2016) (3D
Newtonian, IDSA transport), Roberts et al. (2016) (3D GR, M1 transport), Dolence
et al. (2015) (2D Newtonian, MGFLD transport), Nagakura et al. (2017) (2D
Newtonian, Boltzmann transport), O’Connor and Couch (2015) (2D GR, M1
transport) and Suwa and Müller (2016) and Pan et al. (2016) (2D Newtonian, IDSA),
have also shown successful explosions in some cases but not in all models.

Overall, results from numerical 2D simulations show that, when an appropriate
and complete description of the physics involved is considered, it is possible to
produce consistently successful supernova explosions. However, the more realistic
3D case still proves to be a challenge. This is an indication that either the
approximations used in the simulations are not sufficiently accurate (specially
regarding neutrino transport) or that some important physical ingredient is missing.
Unresolved hydrodynamic turbulence could be also be a problem in 3D simulations
(Melson et al. 2015b; Abdikamalov et al. 2015; Couch and Ott 2015) and should be
investigated in more detail in the future.

1.2.4 Progenitor Dependence

In Sect. 1.2.3 we have described the scenario in which most neutron stars are born,
what is thought to be the typical progenitor star of most supernova explosions.
Here we discuss how this scenario changes when different progenitor are consid-
ered. There are several factors in stellar evolution that lead to differences in the
progenitors of core collapse supernovae. The main one is its mass at birth, the so-
called zero-age main-sequence (ZAMS) mass. Additionally, there are variations in
the metallicity of the environment in which the star was born, its rotation rate, and
the presence of a companion star.

1.2.4.1 O-Ne-Mg Cores

Stars with ZAMS mass of 8–10 M�, can burn carbon to produce O-Ne-Mg cores.
However, for such low mass stars, temperatures are not sufficiently high to ignite
Ne. Instead, the core, which is close to electron degeneracy, grows to a mass of
about∼1.34 M�, close to the Chandrasekhar mass. At this point, electron captures,
the dominant process under this conditions, take over and trigger the collapse of
the core. The resulting SNe are the so-called electron capture supernovae (ECSNe)
(Nomoto 1984, 1987). The main feature of these progenitors is that they have a
very steep density gradient outside the core (see Fig. 1.5), with very thin carbon and
helium layers and a rapid transition to the hydrogen envelope. Due to this structure,
once the core bounces, only a small fraction of the neutrino energy is necessary to
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Fig. 1.5 Density profile as a function of mass coordinate for 8.75–12 M� pre-supernova models of
Jones et al. (2013), the 8.8 M� model of Nomoto (1987) (N87), and a 12 M� model from Woosley
et al. (2002) (WHW). From these models, those with a mass of 9.5 or 12 M� have formed an iron
core and the rest an O-Ne-Mag core. Vertical red lines show derived pre-collapse masses for the
two peaks in the observed neutron star distribution of Schwab et al. (2010) (figure reproduced from
Jones et al. (2013))

power the explosion, shortly after bounce. Numerical simulations of this scenario
show that it is possible to obtain successful explosions even in 1D models (Kitaura
et al. 2006; Fischer et al. 2010). This has been confirmed by multidimensional
simulations (Janka et al. 2008). The resulting supernova explosions are weak
(∼1050 erg) and Ni-poor. They are possibly associated with some subluminous type
II-P supernovae e.g. see Smartt (2009), Botticella et al. (2009). The Crab remnant
associated with SN 1054 is likely the result of such an explosion (Hillebrandt 1982;
Nomoto 1982).

For solar metallicity stars, the range in which O-Ne-Mg cores are formed is
limited to a small interval (∼0.2 M�) close to 9 M� (Poelarends et al. 2008; Jones
et al. 2013). Depending on metallicity and the interaction with a close companion
the range of masses may shift and widen (Podsiadlowski et al. 2004; Pumo et al.
2009). As a consequence, the ECSNe represent a contribution of ∼4% to all
supernovae in the local universe (Poelarends et al. 2008). Comparable results are
obtained when comparing abundances of r-process elements in ECSNe simulations
with observations of stars in the Galactic halo (∼4% of all core-collapse SNe,
Wanajo et al. 2011). This results are consistent with an estimated rate of low-
luminosity type II SNe of 4–5% (Pastorello et al. 2004).

Neutron stars formed in this scenario are expected to have a lower mass than
typical neutron stars formed from progenitors with iron cores and appear in a very
narrow range of masses fixed by the Chandrasekhar mass of the O-Ne-Mg core
(Nomoto 1987; Podsiadlowski et al. 2004). Velocity kicks are also expected to be
low (Podsiadlowski et al. 2004), since there are neither large asymmetries involved
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or a large amount of ejected mass (see Sect. 1.2.4.3). This theoretical expectation
matches some evidence of a bimodal distribution in the observed masses of neutron
stars that have not undergone accretion (van den Heuvel 2004; Schwab et al. 2010).
The interpretation is that the lower and higher mass populations would correspond
to a ECSNe and iron-core SNe, respectively. However, this bimodal distribution has
not been found in a more recent analysis of the observations (Özel et al. 2012).
Schwab et al. (2010) also indicated that the observed orbital eccentricity of neutron
stars in binaries is lower in cases with lower NS masses, which is consistent with
the low velocity kicks resulting of ECSNe.

In the particular case of double neutron stars (DNS), population synthesis
calculations favour systems with an ECSNe (Andrews et al. 2015). The reason is
that ECSNe produce weaker explosions with lower mass ejecta than iron-core SNe.
This prevents the binary to unbind, leading to a low eccentricity binary neutron star.
These results are qualitatively compatible with the narrow observed distribution
of NS masses in DNS systems, with a mean mass of 1.33 M� and a dispersion
< 0.1M� (Özel et al. 2012; Özel and Freire 2016). Interestingly, these are precisely
the candidates for neutron star mergers. Therefore, neutron stars formed from O-Ne-
Mg cores may be crucial for understanding phenomena such as short GRBs and to
estimate merger rates relevant for GW detectors.

1.2.4.2 Iron Cores in Solar Metallicity Stars: Mass Dependence and Black
Hole Formation

We consider next mass dependence in solar metallicity stars forming an iron
core, i.e. those with a mass above ∼9M�. The evolution of massive stars with
solar metallicity to their pre-supernovae stage has been studied by a number of
authors (Woosley et al. 2002; Limongi and Chieffi 2006; Nomoto et al. 2006;
Woosley and Heger 2007; Chieffi and Limongi 2013; Sukhbold and Woosley 2014;
Woosley and Heger 2015). These models are the result of 1D simulations in which
multidimensional effects (convection, rotation, magnetic fields, mass transfer in
binaries) are included in a phenomenological way (see e.g. Woosley et al. 2002).
Generally speaking, more massive stars reach higher temperatures at the core
and thus have higher specific entropies. The thermal contribution increases the
Chandrasekhar mass, and, as a consequence, more massive stars can host larger
iron cores (Woosley et al. 2002). This can be seen in the left panel of Fig. 1.6, which
shows the dependence of the pre-collapse iron core mass with the ZAMS mass for
solar metallicity progenitors (red and black symbols). The relation is however non
monotonic due different processes taking place at different mass ranges.

Stars with masses in the range 9–12 M� form iron cores. However, their stellar
structure is somewhat similar to the O-Ne-Mg cores described in Sect. 1.2.4.1, with a
steep decline in density outside the core (see 9.5 M� model in Fig. 1.5). Numerical
simulations of the collapse of these low mass iron cores in 1D (Müller et al. 2012b),
2D (Müller et al. 2013) and 3D (Melson et al. 2015b), show that the resulting
SN explosions are weak, resembling to ECSNe. Although 1D simulations produce
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Fig. 1.6 (Left) Mass inside a radius of 3000 km for progenitors up to 30 M�, at the time when
the central density reaches the same value of 3 × 1010 g cm−3, as a function of ZAMS mass.
Black and red symbols denote models forming an iron core (“SN1987-like”) or an O-Ne-Mg core
(“Crab-like”), respectively. Progenitor models are the results from simulations by Woosley and
Heger (2015) (WH15, squares) and Sukhbold and Woosley (2014) (SW14, crosses). The rest of
the symbols are calibration models to SN 1987A (see Sukhbold et al. (2016), for details). (Right)
Compactness parameter ξ2.5 (see Eq. (1.3)) as a function of ZAMS mass for the 200 models
between 9.0 and 120 M� of Sukhbold and Woosley (2014), Woosley and Heger (2015) used in
Sukhbold et al. (2016). Note the scale break above 32 M� (both figures reproduced from Sukhbold
et al. (2016))

successful explosions, multidimensional effects play here a more important role than
in ECSNe, increasing the explosion energy in about a factor 5 (Melson et al. 2015b)
with respect to spherical symmetry.

In the range 12–20 M� the stars are highly convective during their carbon
burning phase. Convection enhances neutrino cooling, which drives the core towards
degeneracy. This in turn produces light and compact iron cores. In the range 20–
30 M� radiative (non-convective) carbon burning occurs, which hinders neutrino
cooling leading to large and hot iron cores. Around 20 M�, in the limit between
convective and radiative carbon burning, there is a high variability in the resulting
iron core masses and compactness (Sukhbold and Woosley 2014). However, not all
features can be explained in terms of carbon burning alone. Details in burning of
O, Ne and Si, as well as shell burning introduce a non-trivial dependence of the
structure of the final iron core as a function of the initial mass (see Woosley et al.
2002, for a review on the topic). At the pre-supernova stage, these stars appear as
blue or red supergiants, depending on the details of hydrogen shell burning and
mixing.

In the range 30–100M� density profiles outside the iron core become shallower,
due to the presence of thick shells of heavy elements. These stars experience an
important mass loss due to winds and as a result their pre-supernova masses decrease
for increasing ZAMS mass, reaching pre-supernova values of 6–8 M�. Above
35 M� these stars appear as blue variables or WR stars. If winds are able to strip
away the hydrogen envelope they may explode as type Ib/Ic SNe. Rotation may also
play an important role in the evolution and explosion of these stars, by adding an
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additional source of energy (see Sect. 1.2.4.5). In that case they may be the origin of
long GRBs.

Multidimensional core-collapse simulations with the most advanced micro-
physics and transport have focused mainly in progenitors in the mass range
12–30M� (Müller and Janka 2014; Summa et al. 2016; Bruenn et al. 2016; Burrows
et al. 2016; Lentz et al. 2012; Melson et al. 2015a). The lower side of this range
of masses (12–18 M�) is the main contributor to all core collapse supernovae
observed in the local universe (see Smartt (2015) and Sect. 1.3.3.1). SN 1987A
is a peculiar example of this class, with a blue supergiant progenitor that has
been estimated to have a mass of 14–20 M� and solar metallicity (Shigeyama and
Nomoto 1990; Woosley et al. 1988, 2002). In this mass range, simulations show that
stars with masses below 20M� result “easier” to explode (shorter time to explosion,
higher energies), while above this limit they become “harder” to explode (longer
time to explosion, lower energies). By performing a wide set of 1D simulations
using a simplified neutrino leakage scheme, O’Connor and Ott (2011) identified
that the relevant parameter determining the “explodability” of a progenitor in the
compactness of the core, ξ2.5 defined as

ξM = M/M�
R(M)/1000 km

. (1.3)

A small value of ξ2.5 indicates that the layers surrounding the core are extended
and that there is a steep density profile outside the core (as e.g. in O-N-Mg cores).
On the contrary, a large value of ξ2.5 indicates that the core is surrounded by a
thick envelope, where the density profile is shallow. As a result, cores with high
values of ξ2.5 are harder to explode than those with lower values.4 Right panel of
Fig. 1.6 shows the compactness of the core as a function of the progenitor ZAMS
mass. The compactness of the core is highly correlated with the mass of the iron
core (compare both panels of Fig 1.6, below 30 M�). Above 40 M�, compactness
declines to a nearly constant value, due to the significant mass loss of these stars.
The compactness of the iron core is thus relevant to determine if a progenitor star
will produce a neutron star or a black hole as a result of the collapse.

Traditionally, the onset of black hole formation has been thought to occur
for progenitors with masses above certain threshold of ∼30 M�. But recent
numerical simulations suggest that this simple picture is likely wrong and that
there are interleaved intervals of masses forming either neutron stars or black
holes. A number of works have addressed this issue by exploring systematically the
dependence of the supernova properties with the initial progenitor mass (Zhang et al.
2008; Ugliano et al. 2012; Pejcha and Thompson 2015; Ertl et al. 2016; Sukhbold
et al. 2016). To be able to cover a wide range of progenitor masses and to evolve

4The reader should not confuse the parameter ξ2.5 with the compactness of a neutron star
(MNS/RNS) often appearing in the literature, despite of its similarity in name and definition. While
more compact neutron stars have higher values of MNS/RNS, a higher value of ξ2.5 indicates that
the core of the star is more extended (less compact).
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the supernova explosion to very late times, including the fallback into the neutron
star, these simulations were performed in spherical symmetry (1D) and with a very
simplified parametrised explosion engine. Despite of these simplifications important
information can be extracted from these simulations. We review the main results
next.

Explodability Below 15 M� and in the range 25–28 M�, coinciding with low
compactness progenitors (see right panel of Fig. 1.6) the outcome is preferentially
a neutron star accompanied by a supernova explosion. Similarly, for masses of
about 15–16 M� and 22–25 M� the outcome is preferentially a black hole. In the
range 16–22 M� and above∼28M� both neutron stars and black holes can appear.
Although the ξ2.5 provides a rough guide to explain this behaviour, it is clearly
insufficient to explain all features observed (Ertl et al. 2016; Sukhbold et al. 2016);
for example a star in the range 25–28 M� has a larger value of ξ2.5 than one of
about 15 M� and nevertheless, the latter is more likely to collapse to a black hole
than the former. The introduction of a second parameter has proven to be sufficient
to explain the phenomenology of all the 1D simulations (Ertl et al. 2016).

Black Hole Production Rate When these results are weighted with the initial mass
function (IMF), the resulting fraction of massive stars forming black holes is
about 20–30% (Ugliano et al. 2012; Sukhbold et al. 2016), increasing significantly
previous estimates of ∼10% based on a single mass threshold model (Woosley
et al. 2002). These results partially solve the so-called “SN rate problem” (Horiuchi
et al. 2011), namely that the SN rate predicted from the star formation rate is
higher than the SN rate measured by SN surveys. It is currently unclear what
would be the observational signature of BH forming events. Even if no supernova
explosion is produced there are suggestions that some weak transient could be
associated with these events (Nadezhin 1980; Lovegrove and Woosley 2013; Piro
2013) rather than an unnovae (Kochanek et al. 2008) (also know as failed SNe
or dark SNe; see Sect. 1.3.3.1). A non-negligible fraction of the dim core-collapse
SNe in the very local Universe (10 Mpc), could in fact be related to BH forming
events (Horiuchi et al. 2011). Additionally, there are observational indications of a
paucity of potential SN progenitors (red supergiants) in the mass range 16.5–25M�
(Kochanek et al. 2008), which could be associated with BH forming progenitors.
Direct observations of SNe progenitors are also consistent with most of the stars
above ∼18 M� forming BHs (see Smartt (2015) and Sect. 1.3.3.1). Fast rotation
has a strong influence in the behaviour of these systems and is treated separately in
the next sections.

Explosion Energy One could expect that, since ξ2.5 is related to the explodability
of the star, stars with lower value of this parameter, and thus “easier” to explode,
would produce more energetic events. However, all stars producing supernova
explosions with initial masses above∼10 M�, have very similar explosion energies
of ∼1051 erg (Ugliano et al. 2012; Pejcha and Thompson 2015; Sukhbold et al.
2016), due to the self-regulation of the delayed neutrino-heating mechanism (see
Sect. 1.2.3.1). Below 10 M�, regardless of whether they have an iron core or an
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O-Ne-Mg core, the resulting explosions are weaker, with energies of ∼1050 erg in
the lowest end of the progenitor masses. The exception are progenitors very close
to the onset of black hole formation, which are very hard to explode and produce
explosion a factor of a few weaker than typical explosions. In general, there is a
positive weak correlation between Nickel mass production and explosion energy
(Zhang et al. 2008; Pejcha and Thompson 2015; Sukhbold et al. 2016).

Remnant Mass All simulations show that progenitors with initial masses larger than
∼10 M� form neutron stars with an average mass of MNS ∼ 1.4M�, while, below
this threshold, lighter neutron stars are formed with (MNS ∼ 1.2M�) (Pejcha and
Thompson 2015; Sukhbold et al. 2016). When these results are weighted with the
IMF (Sukhbold et al. 2016), the resulting mass distribution (see Fig. 1.7) is weakly
bimodal, resembling the observed distribution of NS masses (van den Heuvel 2004;
Schwab et al. 2010) (see discussion in Sect. 1.2.4.1). In this distribution, most
neutron stars with masses above/below 1.3 M� belong to progenitors with masses
above/below 10 M�. The higher end of neutron star masses, above 1.6 M�, belong
to progenitors mostly above∼20 M� (Pejcha and Thompson 2015; Sukhbold et al.
2016), very close to the onset of black hole formation, and that produce weak
explosions. As a general result it is fair to say that, according to current numerical
modelling, the most common type of neutron stars was formed with a mass of
∼1.4 M� in supernova explosions of progenitors in the range 10–20 M�. However,

Fig. 1.7 Distributions of neutron star masses for the explosions calculated by Sukhbold et al.
(2016) (colour coded), plotted against the observational data from Özel and Freire (2016). Different
colour indicate the ZAMS mass of the progenitor star. The calibration W18 was used in these
calculations (see Sukhbold et al. (2016) for additional details) (figure reproduced from Sukhbold
et al. (2016))
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these numerical simulations still lack of a complete modelling of the neutrino-
heating mechanism and of important multidimensional effects, so the predicted NS
mass distribution functions have to be taken with care. Regarding systems forming
black holes, the work of Ugliano et al. (2012), Pejcha and Thompson (2015),
Sukhbold et al. (2016) predicts masses above ∼5M�, producing a gap in the range
∼2–5 M� in the remnant mass distribution.

Fallback Even if the explosion is sufficiently energetic to disrupt the star, some
of the material of the star may fall back onto the neutron star, increasing its
mass and potentially forming a black hole (Colgate 1971; Chevalier 1989). This
process occurs mainly as the supernova shock crosses composition interfaces, e.g.
that between the He shell and the H envelope, with steep density declines, and a
reverse shock is formed. The formation of such a reverse shock has been observed
in multidimensional simulations of the supernova shock propagation through the
star in 2D (Kifonidis et al. 2003; Scheck et al. 2006) and 3D (Hammer et al. 2010;
Joggerst et al. 2010; Wongwathanarat et al. 2015). However, estimating the total
amount of mass accreted into the NS by this process is difficult, since it implies
following the matter falling back for timescales of hours, which is numerically
challenging. This limits fallback mass estimates to 1D numerical simulations
(Ugliano et al. 2012; Ertl et al. 2016; Sukhbold et al. 2016). In general, the amount
of fallback material is expected to be small, mostly in the range 10−4–10−2 M�,
progenitors with lower initial mass experiencing a lower fallback accretion. In
simulations by Ertl et al. (2016) and Sukhbold et al. (2016), a few stars of ∼30 M�
formed black holes as a result of the fallback accretion, however this mechanism
does not appear to be a significant channel for BH formation. There have been
suggestions that, for weak explosions with strong fallback, it would produce an
under-luminous SN, that could explain some observed peculiar Type Ia SN (Moriya
et al. 2010). Fallback has also been invoked to explain the low magnetic field
observed in central compact objects (CCOs), young neutron stars located near
the centre of SN remnants. In this “hidden magnetic-field” scenario (Young and
Chanmugam 1995; Muslimov and Page 1995; Geppert et al. 1999; Shabaltas and
Lai 2012), the fallback material is able to bury the NS magnetic field explaining
the observations of young NSs. In a longer timescale of 1–107 kyr, the magnetic
field is able to re-emerge explaining magnetic fields in older objects (Young and
Chanmugam 1995; Muslimov and Page 1995; Geppert et al. 1999). Numerical
simulations of the accretion of matter onto magnetised material have shown that this
mechanism is indeed feasible (Payne and Melatos 2004, 2007; Bernal et al. 2010;
Mukherjee et al. 2013a; Bernal et al. 2013; Mukherjee et al. 2013b). It has been
estimated that it is sufficient an accreted mass of 10−3–10−2 M� to bury typical
NSs magnetic fields (Torres-Forné et al. 2016). As a consequence, it is expected
that some neutron stars are born with hidden magnetic fields (CCOs) while other
appear as regular pulsars (e.g. Crab). This scenario could also explain the lack of
NS detected in SN 1987A.
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1.2.4.3 Supernova Kicks and Binary Disruption

Considering that the most of stars live in binaries (Sana et al. 2012), if the supernova
explosion is able to impart some kick velocity on the newly formed neutron star,
then this could be ejected or at least introduce some eccentricity in the resulting
system. Kicks are genuinely multidimensional effects that cannot be accounted for
in the 1D numerical simulations reviewed in the previous section, so we deal with
them separately here. There are two mechanism that produce kicks in neutron stars:
asymmetries in the supernova explosion and the ejection of large amounts of mass
by the explosion. These kicks have been observed in young neutron stars that show
typical velocities of several 100 km/s, with some neutron stars moving at more than
1000 km/s (see e.g. Hobbs et al. 2005; Arzoumanian et al. 2002).

As we show in Sect. 1.2.3.1, supernova explosions are likely to occur in a very
asymmetric way, tracing the multidimensional instabilities that helped to revive
the stalled shock. Therefore, the expanding shock it is likely to have some net
linear momentum in a random direction. This produces a reaction on the neutron
star that, being less massive than the envelope, can experience a sudden increase
of its velocity, the so called kick, in the opposite direction. Since the kick is
the result of an instability breaking the initial symmetry of the star, the resulting
kick direction and velocity are highly stochastic. Numerical simulations (Janka and
Mueller 1994; Fryer and Young 2007) have shown that this mechanism alone is not
able to accelerate NSs to more than a few 100 km/s, which is insufficient to explain
observations. However, this initial kick is not the final velocity of the neutron star.
In longer time-scales the gravitational interaction between the remnant and the slow
moving massive ejecta accelerates further the neutron star in the so called “tug-boat”
mechanism (Nordhaus et al. 2010, 2012). A series of 2D (Scheck et al. 2004, 2006;
Nordhaus et al. 2010, 2012) and 3D (Wongwathanarat et al. 2010, 2013) simulations
have shown that this mechanism can explain natal kick velocities of more than
1000 km/s. The extensive study of Wongwathanarat et al. (2013) showed that, not
only the kick velocities are consistent with the observed velocity distribution of
NSs, but also the same mechanism would impart a spin in the NS (see also Spruit
and Phinney 1998). The resulting NS periods, in the range 100–8000 ms, are similar
to those encountered in pulsars.

The second mechanism is specific of binaries. During a supernova explosion,
the stars loses most of its mass in very short time, compared to the orbital period
of the binary. Even if the explosion is perfectly spherically symmetric with respect
to the remnant compact object, there is always a strong asymmetry with respect
to the centre of mass of the system. That leads inevitably to a recoil of the compact
object, which acquires a kick velocity. This case can be studied analytically (Blaauw
1961; Boersma 1961) and gives very interesting predictions. If more than half of
the mass of the binary is ejected during the explosion, the binary is disrupted,
and the compact remnant flies away (see e.g. Postnov and Yungelson 2014). For
lower ejected masses, the kick is not able to disrupt the system, but can introduce a
significant eccentricity to the binary. Note that, unless the previous kick mechanism,
this one has low degree of stochasticity, and it can be predicted, which kind of
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binaries are likely to survive a SN explosion and which are not. This systematic
effect has important consequences in stellar evolution that are beyond of the scope
of this review (see e.g. Postnov and Yungelson 2014, for more information).

1.2.4.4 Metallicity

Metallicity and rotation play an important role in stellar evolution. They may be
responsible for the wide variety of observed properties in supernova explosions and
neutron stars. There is often an interplay between both rotation and metallicity, so
we start summarising the results for non-rotating stars, and we deal with the effect
of metallicity in rotating stars in the next section.

The metallicity of the environment in which a star was born has a significant
impact in processes of mass loss. Metallicity increases the opacity of the envelope
of the star and allows for the formation of a radiation driven wind. As a consequence,
stars with higher metallicity have stronger winds and hence a higher mass loss. In
the previous sections we have dealt exclusively with solar metallicity stars, which
have a significant mass loss above 20 M�, and become WR stars (basically bare
He cores) above ∼30 M�. In low metallicity stars these mass limits are shifted
upwards and the typical iron cores formed are more massive, specially for the most
massive stars (see e.g. Woosley et al. 2002). A number of authors have performed
1D stellar evolution calculations of low metallicity stars (Woosley and Weaver 1995;
Marigo et al. 2001; Heger and Woosley 2002; Eldridge and Tout 2004; Umeda and
Nomoto 2005; Hirschi et al. 2006; Tominaga et al. 2007; Limongi and Chieffi 2012;
Sukhbold and Woosley 2014). The more extreme cases can be found in population
III stars. In very low metallicity environments, stars may form with masses above
100M�. These stars produce a copious amount of e−−e+ pairs after central carbon
burning, which cools down the star and leads to a gravitational pair instability. The
outcome is either a black hole or a thermonuclear explosion (pair-instability SN)
(see Woosley et al. 2002; Heger et al. 2003 for details), but no neutron stars are
formed.

Below ∼100 M�, simplified 1D core collapse simulations (Zhang et al. 2008;
Pejcha and Thompson 2015) show that, since the iron core masses are in average
larger for low metallicity, in stars with initial masses above ∼25 M� the most
common outcome are black holes. In this mass range, those stars not forming a black
hole, have larger masses than in the solar metallicity case (Zhang et al. 2008; Pejcha
and Thompson 2015). In fact, many of these neutron stars experience a significant
fallback, which is favoured under low-metallicity conditions. For initial masses
M < 25 M�, the properties of the supernova explosions and the resulting neutron
stars are similar, regardless of metallicity, because these stars do not experience
a significant mass during their lives. Taking the IMF into account, the fraction of
stars forming black holes could be as large as 50% at low metallicities (Pejcha
and Thompson 2015). Multidimensional simulations of low metallicity stars have
been performed mainly for fast rotating progenitors, which are discussed in the next
sections.
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1.2.4.5 Rotation and Magnetic Fields

Main sequence stars rotate rapidly, with typical observed surface velocities of the
order of 200 km/s (Fukuda 1982). Such a high rotation rate can have important
implications on the evolution of the star and in the spin period of the remnant
compact object after the supernova explosion. Depending on whether the core is
able to retain its angular momentum during its evolution or not, the resulting iron
core will produce a neutron star with a period of about 1 ms, very promising as
a progenitor of GRBs and magnetars, or a slowly rotating neutron star, compatible
with measurements of spin periods in pulsars (see Sect. 1.2.4.3 for the case of a non-
rotating core). It is thus clear that there has to be important differences in the rate of
angular momentum loss among different stars, depending on initial mass, rotation,
and metallicity, to produce the variety of events observed.

Loss of angular momentum in massive stars occurs mainly during the red
supergiant phase, for stars with M < 30M�, or WR phase, above this limit (see
e.g. Woosley et al. 2002). As the hydrogen envelope expands it spins down, due to
angular momentum conservation, and starts rotating differentially with respect to
the core. The angular momentum of the envelope can be extracted from the star if
there is mass loss due to winds. This process is specially important in WR stars that
will lose the whole hydrogen envelope during this phase. If there is some process
transporting angular momentum efficiently, coupling the core with the outer layers
of the star, the wind will extract angular momentum from the core as well (Langer
1998). Therefore, the final total angular momentum of the core in the pre-supernova
stage depends on both, the efficiency of angular momentum transport processes
and the amount mass lost by winds. Mass loss depends mainly on metallicity and
has been discussed in the previous section. We focus next on angular momentum
transport.

Multiple hydrodynamic instabilities contribute to the transport of angular
momentum, both in convective and radiative regions (Heger et al. 2000; Maeder
and Meynet 2000a,b). However, in the absence of magnetic fields, this transport
is rather inefficient and leads to rapidly rotating cores (Heger et al. 2000; Hirschi
et al. 2004; Chieffi and Limongi 2013). The main mechanism responsible for the
transport of angular momentum are magnetic fields (Spruit and Phinney 1998;
Spruit 1999). Regardless of the initial magnetic field, instabilities in combination
with rotation can lead to the formation of a dynamo, able to support magnetic fields
during the life of the star (Spruit 2002). A detailed understanding of magnetic field
dynamos in stars is a long standing problem, which is not even completely solved
for the most studied star, the Sun (see e.g. Charbonneau 2013). The incorporation of
magnetic fields in stellar evolution codes has only been attempted using simplified
1D models for the magnetic torques so far (Heger et al. 2005). In this case, for stars
with M < 30 M�, magnetic torques are able to enforce rigid rotation in the star and
spin down the core by a factor 30–50 with respect to the case in which magnetic
fields are not considered, producing progenitors of pulsar-like objects. This leads
to the conclusion that, for the most common type of progenitor of core-collapse
supernovae, the iron core is likely to have lost most of its angular momentum during
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its evolution, and the outcome of its collapse would be very similar to the case of
non-rotating progenitors, as described in Sect. 1.2.3. The remaining spin of the iron
core, in combination with the spin imparted by the SN explosion (see Sect. 1.2.4.3),
would explain the variety of periods observed in most pulsars.

Furthermore, rotation accelerates burning by introducing additional mixing. This
has consequences in the mass of the core, the amount of mass loss, the colour of the
star in the late evolution (blue instead of red supergiant) and the type of supernova
producing (Type Ib/c instead of Type II) (Hirschi et al. 2004; Chieffi and Limongi
2013).

1.2.4.6 Fast Rotation: Hypernovae, Long GRBs and Magnetic Field
Amplification

Massive stars with very large initial rotation velocity (∼400 km/s) may undergo a
completely different evolutionary path to that described in the previous sections.
Rotationally induced mixing produce stars that are chemically homogeneous and
that are able to burn efficiently all the hydrogen and skip the red supergiant phase
(Maeder 1987). The result is a bare helium core without a hydrogen envelope, very
similar to a WR star. Similar situation could be reached if the star is stripped down to
a helium core as the result of mass transfer in a binary system (Woosley and Heger
2006). In solar metallicity environments, this helium core can still lose a significant
amount of angular momentum due to winds. However, for low metallicities winds
cannot spin down the star and the core is able to retain its angular momentum until
the pre-supernova stage (Yoon and Langer 2005; Woosley and Heger 2006). These
stars can potentially form neutron stars with periods of ∼1 ms or fast spinning
black holes, and are potential candidates for long GRB progenitors. Additionally,
the absence of a hydrogen envelope would explain the observed association of long
GRBs with Type Ib/c supernovae.

Although it is not well known the exact evolutionary path that leads to the
formation of high spinning cores, it is clear that they are necessary to clarify
the phenomenology associated with long GRBs and hypernovae. For those cases,
the neutrino heating mechanism is clearly insufficient to explain the presence of
a highly collimated jet or the energetics of the explosion in hypernovae. The
current understanding is that, in the presence of magnetic fields, the energy
stored in the rotation of the star can be extracted and used to drive a powerful
magnetorotational explosion. In some cases a relativistic jet may be produced by
black hole accretion (collapsar model, MacFadyen and Woosley 1999) or by the
presence of a millisecond magnetar (Usov 1994; Wheeler et al. 2000). Fast rotation
could also be an explanation for the recently discovered class of superluminous SNe
(see Nicholl et al. (2013) and Sect. 1.3.1)

Multidimensional numerical simulations of the collapse of rapidly rotating mag-
netised cores have been performed both in 2D (Shibata et al. 2006; Obergaulinger
et al. 2006; Ott et al. 2006; Burrows et al. 2007a; Cerdá-Durán et al. 2008; Takiwaki
and Kotake 2011; Sawai et al. 2013; Sawai and Yamada 2016; Obergaulinger
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and Ángel Aloy 2017) and 3D (Mikami et al. 2008; Kuroda and Umeda 2010;
Scheidegger et al. 2010; Mösta et al. 2014, 2015; Winteler et al. 2012), with different
degree of sophistication in the treatment of the neutrinos. For sufficiently high
initial magnetic field in the progenitor, numerical simulations show that magneto-
rotational effects help in the explosion, producing more energetic events exploding
at earlier times than the corresponding non-magnetized models. Explosions are
usually highly asymmetric and aligned with the rotation axis. In 2D simulations
mildly relativistic outflows have been observed along the axis, but 3D simulations
have shown that this effect is likely exaggerated by the axisymmetry imposed to the
system (Mösta et al. 2014). Recent 2D simulations have shown that, the asymmetries
in the magneto-rotational explosion make it possible to keep the accretion onto the
neutron star, even after the shock expands (Obergaulinger and Ángel Aloy 2017).
This would allow for the formation of a black hole after the supernova explosion,
which could in turn serve as central engine for a long GRB. This would solve the
problem that, if a black hole is formed too early, no supernova explosion would be
formed.

All the simulations assume a large scale initial magnetic field in the iron core in
the range 109–1012 G, consistent with stellar evolution results by Heger et al. (2005).
However, this magnetic field is expected to be amplified once the proto-neutron
star has formed by the action of the magneto-rotational instability (MRI) (Akiyama
et al. 2003). The MRI (Velikhov 1959; Chandrasekhar 1960) is an instability that
appears in differentially rotating magnetised fluids and was proposed as the main
mechanism driving accretion in discs (Balbus and Hawley 1991). The MRI is able
to amplify the magnetic field and generate turbulence, so it has been invoked in
numerous times in the literature as a justification to start numerical simulations
with an artificially enhanced magnetic field strength, using as an argument that
the MRI would be responsible for this effect. However, the direct simulation of
the MRI in core collapse simulations is challenging, because it develops in very
small length-scales that require an amount of numerical resolution not feasible with
present day supercomputers (see discussion in Rembiasz et al. 2016a). Nevertheless,
a few attempts have been carried out using artificially enlarged magnetic fields
(Cerdá-Durán et al. 2008; Sawai et al. 2013; Sawai and Yamada 2016; Mösta
et al. 2015); by increasing the magnetic field the MRI length-scale grows being
easier to resolve numerically. However, it is unclear how close to reality are these
simulations. Increasing artificially the global magnetic field may not be equivalent
to the turbulent state that would be expected form the development of MRI.

To explore the amplification of the magnetic field due to the MRI, local and
semi-local simulations have been performed with the conditions present in proto-
neutron stars (Obergaulinger et al. 2009; Guilet and Müller 2015; Rembiasz
et al. 2016b,a). The result of the simulations show that the amplification of the
magnetic field by MRI is severely limited by the presence of parasitic instabilities
of the Kelving-Helmholtz type. These instabilities can limit the magnetic field
amplification to a factor of about ∼10 (Rembiasz et al. 2016a). Additionally, the
development of the MRI could be severely affected by the presence of neutrinos
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inside the neutrinosphere (Guilet et al. 2015). Nevertheless, MRI is able to create
and sustain turbulence with non-zero kinetic helicity. In presence of differential
rotation, this turbulence could create a large scale dynamo (see e.g. Brandenburg
and Subramanian 2005) capable of generating a large scale field similar to what is
needed to power a hypernova or a GRB. The results by Mösta et al. (2015) may be
indicative that this is the case although more detailed simulations will be required
in the future to explore this possibility.

1.3 Challenges and Future Prospects

1.3.1 New Supernova Types

As discussed previously, thanks to the current sky surveys, astronomers are col-
lecting unprecedented samples of known classes of objects, as well as discovering
novel types of stellar transients that cannot be explained with traditional explosion
channels. Some examples are described below:

• Superluminous SNe (SLSNe): Their absolute magnitude exceed −20 mag, and
may occasionally reach −22 mag, which is one order of magnitude brighter than
Type Ia SNe. They have a slow photometric evolution, and are preferentially
hosted in very faint, likely metal-poor, dwarf galaxies (Quimby et al. 2011).
Most of them are H-poor (Pastorello et al. 2010), though some others show
evidence of H spectral lines originated in the stellar CSM (Benetti et al. 2014).
In addition, due to their intrinsic luminosity, some SLSNe have been proposed as
standardisable candle candidates to redshifts z≈ 3–4 (Inserra and Smartt 2014).
However, the sample is still small (only eight to ten objects currently have enough
data to test this method) and there are still some concerns about the unknown
progenitor systems or the explosion physics. SLSNe seems to be incompatible
with models powered only by the radioactive decay chain 56Ni→ 56Co→ 56Fe
and to favour alternative explosion scenarios, in which the additional energy is
provided by the spin-down of a rapidly rotating young magnetar, pair-instability
and/or strong interaction of SN ejecta with a very massive opaque CSM (e.g. see
Nicholl et al. (2013) and Sect. 1.2.4 for more details). No models yet provide an
excellent and unique fit with observations.

• Type Ibn SNe: There is wide heterogeneity in SNe showing strong interaction
with their CSM. They can be generated in a H-rich environment as we have seen
before (Type IIn), or also by stars exploding in a He-rich medium, being labelled
as Type Ibn SNe (Pastorello et al. 2008). These Ibn SNe can be luminous objects
(peaking at∼−19 mag), usually followed by quickly declines (∼0.1 mag day−1),
and show a spectroscopically heterogeneity (Pastorello et al. 2016). Since the
discovery of its prototypical object, SN 2006jc (Pastorello et al. 2007; Foley et al.
2007), other∼30 Type Ibn SNe has been observed at this time.
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• Faint stripped-envelope SNe: These SNe show faint luminosity peaks (M <

−15 mag), fast-evolving light curves and weird spectroscopic properties (narrow
features, very weak Si and S lines, sometimes evidence of He, and prominent [Ca
II] in the nebular phases; e.g. Valenti et al. 2009). The possible explanation of
these weird observables are exotic explosions involving white dwarfs below the
Chandrasekhar mass limit (Perets et al. 2010), failed SN explosions, or unusual
CC-SNe (e.g. fallback SNe from very massive stars or electron-capture SNe from
super-AGB stars; Pumo 2010 and Sect. 1.2.4).

• SN impostors: Sometimes there are sneak cases of powerful eruptions of
LBVs that mimic the true appearance of an interacting SN. The latter are
commonly known as “SN impostors” (e.g. Van Dyk and Matheson 2012). This
misclassification used to happen because the spectra of these giant eruptions
are characterized by incipient narrow hydrogen lines in emission, like those of
type IIn SNe. However, their luminosities are considerably lower (fainter than
−14 mag). Although SN impostors may not be SNe, they are included here
because it is not clear yet their nature. A grown number of SN impostors have
interestingly heralded the terminal SN explosion, from weeks to a few years after
the outburst episode (e.g. SN 2009ip (Pastorello et al. 2013), LSQ13zm (Tartaglia
et al. 2016), or SN 2015bh (Elias-Rosa et al. 2016)), but some others show
repeated intermediate-luminosity without leading (so far) to a SN explosion (e.g.
SN 2000ch (Pastorello et al. 2010), or SN 2007sv (Tartaglia et al. 2015)). LBV
stars are the most usual channel to explain the bursty activity of the SN impostors,
however, these outburst have been also linked to lower mass stars, interacting
massive binary system, or pre-SN nuclear burning instabilities. Nevertheless, the
mechanisms triggering this class of outbursts are still very poorly understood.

• Other unusual SNe:

– There are a handful of events that have broad light curves with much longer
rise times from estimated explosion to peak, like SN 2011bm (Valenti et al.
2012), a Type Ic SN with a rise time of 35 days (instead of 10–22 days for
normal SNe of this class), or Type II SN 1987A with an exceeding long rise
rime of >80 days (Arnett et al. 1989). The long rise times suggest much larger
ejected masses.

– Other objects show faster decline rates, such as SN 2005ek (Drout et al. 2013).
It is spectroscopically a Type Ic with a decline of 2.5–3 mag in 15 days.

– The wide range of magnitudes during the plateau phase of type II-P SNe is a
well established fact (Hamuy and Pinto 2002). However, very faint and also
luminous Type II-P exist (e.g. Spiro et al. 2014; Inserra et al. 2013). These
rare objects can allow us to better constrain the correlation between 56Ni
and progenitor mass, and to test the reliability of other tight relations among
physical parameters of Type II-P SNe, on the most and least energetic events.
An examples is SN 1997D (Turatto et al. 1998), which showed a small amount
of 56Ni and narrow P-Cygni profiles, suggesting a low explosion energy.
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1.3.2 Multi-Messenger Astronomy

The core-collapse of massive stars has been associated with SNe (and long GRBs,
>2 s). CC-SNe are canonical examples of multi-messenger astrophysical sources
since the gravitational energy driven by the CC-SN at the time of explosion is
released as ∼99% of neutrinos,∼1% is converted to ejecta kinetic energy,∼0.01%
becomes photons, and an uncertain, though likely smaller fraction is carried away
by gravitational waves (GW).

So far, we have focused this work on electromagnetic observation of core-
collapse supernovae. However, there are additional observational channels that
will provide in the future complementary information about the scenario in which
neutron stars are formed: cosmic rays, neutrinos and GWs. While electromagnetic
observations mainly carry information about the matter ejected during the explosion,
and on the central regions at late time, both neutrinos and GWs will allow us to infer
directly the properties of the compact remnant, and provide information about the
thermodynamics and dynamics of the SN engine. In the last decade a big effort has
been done to improve current neutrino and GW observatories to reach sensitivities
that would allow us to do multi-messenger astronomy of nearby SN explosions,
within ∼100 kpc.

1.3.2.1 Cosmic Rays

The shockwaves of CC-SNe accelerate charged particles such as protons, some of
which end up raining on Earth as cosmic rays. The importance in detecting cosmic
rays is that they are the only particles detected on Earth which have traversed a
considerable distance through the ISM and which were accelerated in events such
as SN in a relatively recent past. In fact, data from Fermi Large Area Telescope
(Atwood et al. 2009) have been interpreted as a fraction of primary cosmic rays
originate from a SN. However, the astrophysical source identification is complicated
without any other messenger information.

1.3.2.2 Neutrinos

CC-SNe emit low-energy neutrinos, as confirmed by the observations of the only
recent nearby supernova, SN 1987A (a few tens of MeV; e.g. see Hirata et al.
1987). The searches for neutrinos are based on three kind of analysis: searches for
significant neutrino excess with respect to the atmospheric neutrino background,
searches for anisotropies on the sky to identify point sources, and multi-messenger
searches in time and spatial coincidence with other messenger signals. Having
information from neutrino observations, we may constrain the exact time of the
CC bounce (with just EM information we have an uncertainty of many hours), and
establish a tight correlation with GWs. Moreover, with information from neutrinos,
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we will be able to set limits on neutrino mass, and if this signal is more copious
(for example a SN in the Milky Way) we will be able to make distinctions between
different theoretical models of CC-SNe explosion. Current neutrino detectors (e.g.
SuperKamiokande (Ikeda et al. 2007), IceCube (Karle 2009) and Antares (Ageron
et al. 2012)) are capable of measuring neutrinos from a supernova as far as in the
Large Magellanic Cloud.

1.3.2.3 Gravitational Waves

The last multi-messenger channel that has been opened are gravitational waves, with
the first detection of a binary black hole merger, GW150914 (Abbott et al. 2016a),
by the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO).
In order to be detectable by GW observatories, these waves should be produced
by a very dynamic and compact relativistic system, associated to high energy
processes. Sources of GWs can be classified according to their frequency (see e.g.
Cutler and Thorne 2002, for a review on GW sources). High frequency sources
(10–2000 Hz) include binary mergers of compact objects of stellar origin (NS
and BH), asymmetric core-collapse of massive stars, and rotating isolated neutron
stars. Low frequency sources (10−9–1 Hz) include the inspiral phase of binary NS,
BH and white dwarfs, as well as the merger of WD and supermassive BHs, at
cosmological distances. Observations in the high frequency range are accessible to
ground-based laser interferometers such as aLIGO (LIGO Scientific Collaboration
et al. 2015) and Virgo (Acernese et al. 2015), and the upcoming KAGRA (Aso et al.
2013) experiment, while low frequency observations will be performed by space-
based laser interferometers such as LISA (Amaro-Seoane et al. 2017) in the range
10−4–0.1 Hz, and by the pulsar timing array (PTA) at the lowest frequencies, 10−9–
10−8 Hz (Hobbs et al. 2010).

Differently from the binary black hole merger case, for which reliable and
accurate GW templates have been developed during the last decade, the GW signal
from the core collapse case still presents many theoretical uncertainties related to the
complexity in the numerical modelling of the scenario (see Sect. 1.2.3). The signal
can be divided in two parts. The core bounce is the part of the waveform which is
best understood (Dimmelmeier et al. 2002b). Its frequency (at about 800 Hz) can
be directly related to the rotational properties of the core (Dimmelmeier et al. 2008;
Abdikamalov et al. 2014; Richers et al. 2017). However, fast-rotating progenitors
are uncommon (see Sect. 1.2.4) and this bounce signal is not likely to be observed
in non-rotating galactic events. More interesting is the signal related to the post-
bounce evolution of the newly formed proto-neutron star, which is produced by
convection and the excitation of highly damped modes in the PNS (Murphy et al.
2009; Müller et al. 2013; Cerdá-Durán et al. 2013; Kuroda et al. 2016; Andresen
et al. 2017). Typical duration of this signal is of∼0.5 s in the case of successful SN
explosions (see e.g. Müller et al. 2013) but can last for seconds if the final outcome is
a BH (Cerdá-Durán et al. 2013). Typical frequencies raise monotonically with time
due to the contraction of the PNS, whose mass is steadily increasing. Characteristic
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frequencies of the PNS can be as low as ∼100 Hz, specially those related to g-
modes, which make them a perfect target for ground-based interferometers with
the highest sensitivity at those frequencies. In the future, it may be possible to
infer the properties of PNS based on the identification of mode frequencies in
their waveforms (see e.g. Sotani and Takiwaki 2016). Depending on their rotation
rate, supernovae could be detected as far as 1 Mpc for extreme events, but typical
distances are more likely 1–100 kpc (Abbott et al. 2016c). The rate of CC of massive
stars in the Milky Way is around 2 per century (e.g. see Ott 2009).

One of the main challenges is the difficulty of detecting an electromagnetic
counterpart inside the localisation error box of the GW signal. With only two
GW detectors (LIGO interferometers in Hanford and Livingston), typical sky
localisation is so far poor (hundreds of square degrees) (Abbott et al. 2016b).
However, this will change in the near future by the addition of new detectors
to the network (advanced Virgo, KAGRA and LIGO India), improving the sky
localisation to an error box of a few 10 deg2. The next challenge is then to detect
the electromagnetic counterparts inside the error box of GW signals. Finding these
counterparts is a proof of the veracity of the origin of the signal.

1.3.3 Challenges and Future Prospects from an Observational
Point of View

1.3.3.1 Progenitor Hunting

In previous sections we have reviewed the progenitor properties derived from the
SN observations and the direct observations of the SN site before the explosion.
This connection is crucial to test our understanding of stellar evolution. However, it
has not been found all what expected.

There is information of about 30 SN progenitors between detections and limits.
Still, none of these has an estimated luminosity above of log L/L� � 5.1, which
corresponds to an initial evolutionary mass of about 18 M� (except for interacting
SNe, whose progenitors seems to have high masses, but in some cases the nature of
that transients is still debated). This estimate is significantly lower than the stellar
evolution textbook value (about 25 M�, and Sect. 1.2.4), or than the red supergiants
found in the Local Universe, with luminosity up to log L/L� � 5.5 (approximately
initial mass of 30 M�; Levesque et al. 2009). What is more, according a typical
Salpeter initial mass function (of slope α = −2.35), a∼30% of stars between 8 and
100 M� have masses > 18 M�. Thus one would expect to have found some SN
progenitor stars with higher masses by now, which is not the case.

A good review exploring possible bias and explanations for this deficit can be
found in Smartt (2015). They discussed how the circumstellar dust or the systematic
errors in the analysis can affect the luminosity and mass estimates. However, they
also hold that these biases, although may affect our estimates, do not seem to explain
the missing mass progenitor stars.
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Furthermore, it is natural to think that depending on the stellar evolution code
used for estimating the progenitor star mass, more uncertainties could be added to
the measure. Still, Smartt (2015) compare the end points of three stellar evolution
models (STARS models (Eldridge and Tout 2004), rotating Geneva models (Hirschi
et al. 2004); and KEPLER models (Woosley and Heger 2007)) and show that while
the use of one model or another could affect the lower mass limit to produce a CC-
SN (masses between 7 and 10 M�), the high mass upper limit appears be secure.

It has been proposed as a possible explanation that massive stars above 18 M�
evolve into WR stars and evade the detection because they are too hot and faint at
the point of core-collapse. In this case they would produce Ib/c SNe, although this
disagrees with the growing evidence that the majority of Ib/c SNe comes from lower
mass stars in interacting binaries.

Another plausible explanation could be that these missed massive stars may
have collapsed without producing a detectable SN. Such events may happen when
the shock wave dies out before reaching the stellar surface, or because the stellar
mantle fallback onto the nucleus. These failed explosions generate a black hole
and eject negligible amounts of radioactive isotopes (see also Sect. 1.2.4.2). While
these events cannot be directly observed, it is possible to detect the disappearance of
massive stars through the comparison (subtraction) of reference “template” images
(Kochanek et al. 2008; Reynolds et al. 2015; Adams et al. 2016).

Advances in this field could be achieved from the collection of deep, multi-
wavelength, wide-field imaging of nearby galaxies for future SN progenitor char-
acterization. This feat is plausible by using high resolution images from HST, or
from the next generation of ground-based and space telescopes. In the near future,
key information will be obtain thanks to the wide field of the 8-m Large Synoptic
Survey Telescope (expected to start operations on 2021–2022), the fully adaptive
and diffraction-limited optics of the 39-m European Extremely Large Telescope
(planned first light for 2024), or the infrared domain of the 6.5 m mirror of the
James Webb Space Telescope (scheduled to launch in October 2018).

1.3.3.2 Pre-SN Outbursts in SN Impostors/IIn SNe

In the last years there has been some success in detecting the progenitors of
interacting transients, including Type IIn SNe (Sects. 1.2.2 and 1.3.1). The nature
of these transients remains debated: some are undoubtedly genuine core-collapse
SNe, while others may be giant non-terminal outbursts from LBVs. Observational
constraints on their progenitors can help light on their true nature. We note that
classical LBVs are not expected to explode directly as CC-SNe, and so these results
are challenging models of massive stellar evolution.

A lot of work still needs to be done to improve our knowledge on the mechanisms
triggering luminous stellar outbursts and major eruptions. Observational time is
needed to trace the photometric history of a these transients and to keep relaxed
monitoring of SN impostors to pinpoint any possible re-brightening of the object. In
short, only the discovery of a large number of similar transients, extensive follow-up
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campaigns in a wide wavelength range, and the availability of rich archives with
deep images at different domains will allow us to give more robust conclusions on
the variety of properties of SN impostors, and how this heterogeneity is connected
to stellar parameters (mass, radius, chemical composition, rotation, binarity).

1.3.3.3 Flash Spectroscopy

The SNe require rapid and intense follow-up to characterize their explosions.
Thanks to the current high-cadence optical surveys dedicated to the observations of
transients, it has been possible to discover new SNe only few hours after explosion.
This technique is called flash spectroscopy (Gal-Yam 2014). Some Type II SNe,
like 2014G (Terreran et al. 2016), have shown narrow emission lines superimposed
to a hot blue continuum, which disappears in few days after the explosion. These
emissions arise from the photoionized surrounding CSM distributed around the
exploding star, which was previously originated through winds or violent eruption.
The analysis of these early spectra can provide unique information about the
physical distribution of gas around each event, and therefore from the stellar
evolution during the final phases before the explosion.

Some current surveys such as ePESSTO (extension of the Public ESO Spectro-
scopic Survey of Transient Objects—PESSTO; Smartt et al. 2015) are dedicating
part of their observational time to the classification and intensive early monitoring
of Type II SNe discovered after 2–3 days (at most) from the explosion.

1.3.4 Future Prospects in Numerical Modelling

1.3.4.1 Advances in High Performance Computing

The main challenge in the numerical modelling of core collapse supernovae is
associated with the huge amount of computational resources needed for the com-
pletion of realistic simulations. Current three-dimensional state-of-the-art numerical
simulations use millions of CPU hours distributed among a few 1000 to 10,000 cores
and may take months to finish. This kind of simulations can only be performed in
high performance computing (HPC) facilities, and CPU time has to be requested in
a similar fashion as observational time in observatories. The number of simulations
and the numerical resolution affordable by dedicated groups is limited by the
availability of CPU time and the size and number of such HPC facilities. Best
supercomputers have a few 100 thousands of cores, a few petaflops (1015 operations
per second) of computing power and are distributed all around the world in USA
(e.g. Titan, Sequoia), Japan (e.g. K Computer), China (e.g. Tiahne2) and Europe
(e.g. FZJ, SuperMUC, Marconi).

Next generation of supercomputers will be available during the next decade
and will reach the exaflop scale, improving by a factor 1000 previous machines.
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In these facilities, it will be possible to perform numerical 3D simulations with
unprecedented numerical resolution, which will allow us to study in detail the
impact of turbulence in the explosion mechanism and its role in the amplification
of the magnetic field due to dynamos. It will also help to increase the realism in
the neutrino transport by getting closer to solve the full 6-dimensional Boltzmann
equations. Additionally, these detailed simulations will allow to settle down the
issue of whether our current understanding of the core-collapse mechanism is
sufficient to explain typical SN events without practically any numerical uncertainty,
or if there is some unknown physical ingredient missing. Furthermore, it will allow
us to explore the connection between progenitor stars and explosion properties by
performing parametric studies involving hundreds to thousands of 3D simulations.
The challenge here consist in developing numerical algorithms and codes that are
capable to scale in parallel to a few 105 cores. This will involve an even closer
collaboration with applied mathematicians and computer scientists.

1.3.4.2 Subgrid Modelling

For the high Reynolds number conditions present in PNSs (see e.g. Thompson
and Duncan 1993), fluid motions can break up into smaller scales in a turbulent
cascade that goes down to the dissipative scale. Resolving turbulence numerically
in global numerical simulations is a challenge, due to the smallness of the dissipative
scale. In the presence of magnetic fields, the problem is even harder, because, under
the right conditions, small scale turbulence can develop an inverse cascade giving
raise to large scale magnetic field (see e.g. Brandenburg and Subramanian 2005).
Next generation of supercomputers, will help us to understand better magneto-
hydrodynamic (MHD) turbulence and dynamos by means of local simulations, but
it may not allow us to resolve MHD turbulence properly in global simulations
of core-collapse supernovae. A possibility would be to do subgrid modelling, i.e.
incorporate the effect of the small scales (e.g. turbulence) in a phenomenological
way to the equations for the large scales (bulk fluid motions). Subgrid modelling of
non-magnetized turbulence is common in other fields of science (e.g. meteorology)
and engineering (e.g. aerodynamics). Although the case of MHD turbulence is
comparably harder to model, there have been some attempts along this line. The
most well know cases are the alpha-viscosity model (Shakura and Sunyaev 1973)
describing angular transport in disks by MRI-driven turbulence, and the mean field
dynamo formalism (Moffatt 1978), popular in the study of solar dynamos (see e.g.
Charbonneau 2013) and accretion disks (e.g. Bugli et al. 2014; Sa̧dowski et al.
2015). There has been some recent progress in this respect in the context of binary
neutron stars (Giacomazzo et al. 2015; Shibata et al. 2017). However, applications
in the core-collapse scenario are yet to come. The challenge in subgrid modelling is
to find the proper closure relations that link small and large scales. In this respect,
local simulations may be crucial to fix the parameters and dependencies appearing
in such closures.
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1.3.4.3 Multidimensional Stellar Evolution

To a great extent, the link between supernova progenitors and explosion properties
depends on the accuracy of the stellar evolution models. Nowadays, pre-supernova
models are the result of 1D calculations (see Sect. 1.2.4), where multidimensional
effects, such as convection and dynamos, are incorporated in a phenomenological
way. However, the increase in computing power will allow in the future to perform
3D simulations of the evolution of stars, or at least of the relevant phases and
regions, where multidimensional effects are most important (see Viallet et al. 2011
and examples therein). This has lead to an increasing interest in the numerical study
of the last stages of the star before collapsing (see e.g. Müller et al. 2016 and
references therein). In fact, the asymmetries at the pre-supernova stage, e.g. induced
by convection, have been suggested to help the shock revival after bounce (Couch
and Ott 2013; Couch et al. 2015; Müller and Janka 2015).

Multidimensional effects also play a role in interacting binaries. They can induce
mass transfer, go through common envelope phases, or strip down the envelope of
stars. This influences the evolution of stars and can lead to completely different
evolutionary paths, e.g. to rapidly rotating cores (see Sect. 1.2.4.6). There has been
some work in recent years trying to address the problem using multidimensional
simulations of the scenario (see e.g. Motl et al. 2002; Lajoie and Sills 2011;
Lombardi et al. 2011) and in the future we foresee a great advances in the field.
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Chapter 2
Strongly Magnetized Pulsars: Explosive
Events and Evolution

Konstantinos N. Gourgouliatos and Paolo Esposito

Abstract Well before the radio discovery of pulsars offered the first observational
confirmation for their existence (Hewish et al., Nature 217:709–713, 1968), it had
been suggested that neutron stars might be endowed with very strong magnetic
fields of 1010–1014 G (Hoyle et al., Nature 203:914–916, 1964; Pacini, Nature
216:567–568, 1967). It is because of their magnetic fields that these otherwise
small ed inert, cooling dead stars emit radio pulses and shine in various part of
the electromagnetic spectrum. But the presence of a strong magnetic field has more
subtle and sometimes dramatic consequences: In the last decades of observations
indeed, evidence mounted that it is likely the magnetic field that makes of an
isolated neutron star what it is among the different observational manifestations
in which they come. The contribution of the magnetic field to the energy budget
of the neutron star can be comparable or even exceed the available kinetic energy.
The most magnetised neutron stars in particular, the magnetars, exhibit an amazing
assortment of explosive events, underlining the importance of their magnetic field
in their lives. In this chapter we review the recent observational and theoretical
achievements, which not only confirmed the importance of the magnetic field in
the evolution of neutron stars, but also provide a promising unification scheme for
the different observational manifestations in which they appear. We focus on the
role of their magnetic field as an energy source behind their persistent emission, but
also its critical role in explosive events.
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2.1 Introduction

While the vast majority of the known pulsars exhibits an exceptionally predictable
behaviour, with minimal variations in their observable quantities (Hewish et al.
1968), a subset of pulsars have rapid changes in their timing properties and radiative
behaviour. These pulsars have stronger magnetic fields than most radio pulsars
and have been historically identified as Anomalous X-Ray Pulsars (AXPs) and
Soft Gamma-ray Repeaters (SGRs). They are collectively referred to as magnetars,
as it is generally believed that their strong magnetic field causes this behaviour.
The magnetic field drives changes in the magnetosphere and crust, which are then
reflected in their observable quantities as variations in their thermal and high energy
emission and timing irregularities. Apart from explosive events, strongly magnetised
pulsars have higher temperatures compared to rotation powered pulsars and are
generally observable in X-rays.

The first event that has been associated to a magnetar was a burst of gamma-
rays observed in 1979 and originated in an X-ray bright pulsar (Mazets et al. 1979).
This flare was attributed to changes in the magnetic field structure in the neutron
star causing the rapid release of energy in the form of gamma-rays (Duncan and
Thompson 1992; Paczynski 1992). Historically, SGRs were discovered as hard
X- and gamma-ray transients, while AXPs emerged as a class of persistent X-ray
pulsars with X-ray luminosity exceeding that available from spin-down (whence
the name ‘anomalous’; Mereghetti and Stella 1995). Once the spin-down dipole
magnetic fields of SGRs and AXPs were determined through timing measurements
and deep observations excluded stellar companions, it was realised that such
sources hosted exceptionally strong magnetic fields (Kouveliotou et al. 1998). The
magnetic fields were recognised to be responsible for the pulsar’s variations in X-ray
luminosity and timing behaviour, and the magnetar model started to become more
and more popular. Subsequent detections of bursting and flaring events originating
from AXPs (Gavriil et al. 2002) unified the SGR and AXP classes, and enriched the
available data. Over the course of the last 15 years, and following in particular the
launches of Swift (2004) and Fermi (2008), the population of magnetars has more
than doubled, with more than 20 confirmed sources (Olausen and Kaspi 2014).

There are a few examples of neutron stars, which, despite being observed as
SGRs, have relatively weak magnetic fields inferred from timing measurements
overlapping with normal rotational powered pulsars (Rea et al. 2010, 2012, 2014).
On the other hand, there are some neutron stars whose magnetic field is comparable
with that of magnetars, but their behaviour is that of rotation powered pulsars
(Camilo et al. 2000; Gonzalez et al. 2004), with some occasional magnetar-like
outbursts (Archibald et al. 2016). Thus, while the magnetic field is the key parameter
behind explosive events in neutron stars, it is not the only parameter. The overlap
between normal pulsars and magnetars is illustrated in Fig. 2.1, which shows the
distribution of magnetic field values inferred in neutron stars from their timing
parameters.
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Fig. 2.1 Histogram showing the magnetic field distribution of all neutrons stars inferred from
timing measurements. The insert on the top left zooms in the magnetar area. Neutron stars with
magnetic fields B > 1014 G are all magnetars. However, there is a significant overlap between
normal pulsars, X-ray dim isolated neutron stars (XDINSs) and magnetars for B � 1013 G. Figure
from Olausen and Kaspi (2014)

This observational diversity has motivated theoretical endeavours for the inter-
pretation of the data. Several studies have focused on the role of the magnetic field
in triggering outbursts and flares, either through internal magnetic field evolution
or via a major reconfiguration of the external magnetospheric field (Thompson
and Duncan 1995). Furthermore, the long-term evolution of the magnetic field has
attracted the attention of theoretical modelling with reference to magnetar quiescent
behaviour (Turolla et al. 2015; Kaspi and Beloborodov 2017).

The plan of the chapter is as follows: in Sect. 2.2, we discuss the generation of
the magnetic field in strongly magnetised neutron stars; in Sect. 2.3, we focus on
its evolution; we discuss the explosive events and their impact on pulsar radiative
and timing profile in Sect. 2.4; in Sect. 2.5, we discuss the radiation mechanisms;
in Sect. 2.6 we place strongly magnetised neutron stars in the context of the global
neutron star population and we summarise and discuss the open questions and future
prospects in Sect. 2.7.

2.2 Origin of the Magnetic Field

Even under the assumption that most of the magnetic flux in a strongly magnetised
massive star is conserved during the process of the formation of a neutron star, it is
unlikely that a newborn neutron star will have a magnetic field higher than 1014 G
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(Spruit 2008). Magnetars typically host magnetic fields that exceed this value (but
it is interesting to notice that it may be enough to give rise to magnetar-like activity
in other neutron stars, see Sect. 2.6). Furthermore, the number of massive stars with
high enough magnetic field (�1 kG) seems too small to account for the magnetar
birth rate in the Galaxy (Spruit 2008).

Thus, more complicated processes amplifying the progenitor’s seed field prob-
ably take place during the formation of a strongly magnetised neutron star.
Suggestions to resolve this puzzle have focused on two main directions: either
strongly magnetised neutron stars are the offspring of coalescing neutron stars or
white dwarfs, or their progenitors are massive stars, which during their collapse
underwent strong dynamo that amplified their magnetic field to magnetar levels.

Price and Rosswog (2006) have examined the coalescence scenario in which
a double neutron star binary merges into a single neutron star producing a short
gamma-ray burst (Rosswog et al. 2003). During the merger process, Kelvin–
Helmholtz instability, occurring in the shear layer between the neutron stars,
amplifies the field to 1017 G. Provided that the remnant does not collapse to a
black hole, it has sufficiently strong magnetic field to power a magnetar. It is
also feasible that magnetar level fields could be generated through the magneto-
rotational instability in such mergers (Giacomazzo and Perna 2013).

Should magnetars form in a core-collapse supernova explosion, an amplification
mechanism is required to generate such strong magnetic fields. Duncan and
Thompson (1992) proposed that efficient helical dynamo action can operate if the
rotation period of the proto-neutron star is ∼1 ms, while the system may experience
an ultra-long gamma-ray burst (Greiner et al. 2015). The effect of a dynamo
operating during a core collapse supernova has been explored in detail by Mösta
et al. (2015), who found that it can generate a mixed poloidal and toroidal field
with strength of 1016 G. In general, a combination of toroidal and poloidal fields
is favoured by simulations based on stability arguments, Fig. 2.2 (Braithwaite and
Spruit 2004, 2006; Lasky et al. 2011; Ciolfi and Rezzolla 2012, 2013).

Observations of young supernova remnants associated with magnetars (Gaensler
et al. 2005; Davies et al. 2009; Olausen and Kaspi 2014), support that their
progenitors are massive stars. Vink and Kuiper (2006) and Martin et al. (2014)
studied three X-ray supernova remnants associated with magnetars but did not
find any evidence for a particularly energetic supernova. This would be expected
in the case of a rapidly spinning proto-neutron star, which should transfer a large
fraction of its rotational energy Erot ∼ 3 × 1052(P/ms)−2 erg to the ejecta (Allen
and Horvath 2004; Bucciantini et al. 2007). A possible explanation for the lack of
any particular signature has been provided by Dall’Osso et al. (2009), who noted
that if the internal toroidal field of the proto-neutron star is ≈1016 G, most of its
rotational energy is released through gravitational waves and therefore does not
supply additional energy to the ejecta.

Both the fossil-field and the dynamo-amplification hypotheses require the pro-
genitors to be particularly massive stars, with masses greater than ∼20 M�. For
the fossil field, this is due to the positive correlation of magnetic field strength in
main sequence stars with mass (Ferrario and Wickramasinghe 2008 and references
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Fig. 2.2 Magnetic field structure of a neutron star in the twisted torus configuration. Stereographic
view of the twisted torus configuration, when the torus is confined inside the star, panel a; and
once it reaches the surface and develops non-axisymmetric modes, panel b. Schematic view of the
magnetic field structure with the open field lines (red) and the ones in the torus confined inside the
star (blue), panel c. Azimuthal average of the toroidal field (blue) and the poloidal field lines (red),
panel d. Figure from Braithwaite and Spruit (2004)

therein). In the dynamo scenario, this is because a star of more than∼20–35 M� star
is required to produce neutron stars with rotation period sufficiently short to generate
a magnetar field (Heger et al. 2005). The link between magnetars and massive stars
is supported by observations of the spatial distribution of magnetars with respect to
Galactic plane: their scale height is in fact smaller than that of OB stars, suggesting
that magnetars originate from the most massive O stars (Olausen and Kaspi 2014).
Furthermore, there are some possible associations between magnetars and clusters
of massive stars. The most compelling case is that of CXOU J164710.2–455216 in
the young cluster Westerlund 1 (Muno et al. 2006). Since the age of the cluster is
(4± 1) Myr, the minimum mass for the progenitor is around 40 M�.

Such massive progenitors in standard evolutionary models are expected to pro-
duce black holes instead of neutron stars. A viable mechanism has been suggested
by Clark et al. (2014), who considered a compact binary system consisting of two
massive stars. The interaction strips away the hydrogen-rich outer layers of the
primary, which is driven to a Wolf–Rayet phase. In this way, the star reduces its mass
through powerful stellar winds to the point where the formation of a neutron star is
possible and skips the supergiant phase during which the core could lose angular
momentum because of the core–envelope coupling. Clark et al. (2014) identified
the possible pre-supernova companion of CXOU J164710.2–455216’s progenitor in
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Wd1–5, a ∼9-M� runaway star that is escaping Westerlund 1 at high velocity and
has an enhanced carbon abundance that may have resulted from binary evolution.
They modelled the precursor binary as a system of 41 M� + 35 M� stars with period
shorter than 8 days. Although a lower mass of ∼17 M� has been inferred for the
progenitor of SGR 1900+14 (Clark et al. 2008; Davies et al. 2009), suggesting that
magnetars may form from stars with a wide spectrum of initial masses, binarity
may nonetheless be an important ingredient for the birth of a magnetar as it helps
the stellar core to maintain the angular momentum necessary for the dynamo
mechanisms.

2.3 Magnetic Field Evolution

There are two main types of behaviour associated to magnetic field evolution
in strongly magnetised neutron stars: Firstly, there are events caused by changes
occurring in short timescales, ranging from a fraction of a second up to a few
months, seen as variations in their radiative and timing properties. Secondly, there
are observations that hint towards a longer-term evolution of the magnetic field on
time-scales comparable to the life of a neutron star.

Short term variations of strongly magnetised neutron stars indicate that the
magnetic field evolves in an impulsive manner. Magnetars are notorious for the
bursting and flaring activity which is often accompanied by changes in their timing
behaviour. Such changes have the characteristics of torque variations indicating
alterations in the structure and strength of their magnetic field which most likely
is ultimately the main responsible for their spin-down (Archibald et al. 2015).
Outbursts, bursts and flares are sudden events where the luminosity of the neutron
star rises suddenly in the high energy part of the spectrum (X-rays and soft
gamma-rays). These events are likely to be triggered by sudden reordering of the
magnetic field structure, which either deforms drastically the crust or leads to a
major reconfiguration of the magnetosphere and consequently to the rapid release
of energy (Thompson and Duncan 2001).

Regarding the long term evolution, there is a strong correlation between the X-
ray luminosity of magnetars and the strength of their magnetic field, with the ones
that host stronger magnetic fields having higher thermal LX (Fig. 2.3). In particular,
it is possible to fit their keV part of the electromagnetic spectrum with a black body
radiation model implying that part of their X-ray luminosity has a thermal origin.
The rapid cooling that should take place during the first few 100 years in a hot
newly formed neutron star, according to thermal evolution models (Yakovlev and
Pethick 2004), suggests that an extra source of energy must be present to maintain
temperatures above than 5 × 106 K for several kyr. The reservoir of this energy
can be the magnetic field that provides thermal energy through Ohmic dissipation
(Pons et al. 2009). Finally, studies of pulsar populations suggest that there is a
trend towards a magnetic field decay (Popov et al. 2010; Gullón et al. 2014, 2015);
however, the multitude of parameters that appear in the population problem allows



2 Strongly Magnetized Pulsars: Explosive Events and Evolution 63

Fig. 2.3 Quiescent bolometric thermal luminosity versus the magnetic dipole strength for all X-
ray pulsars with clear thermal emission. Except for central compact objects (see Sect. 2.6), there
is a clear trend for X-ray pulsars with stronger dipole magnetic fields to have a higher quiescent
bolometric thermal luminosity. Figure from Coti Zelati et al. (2018)

also the reproduction of the observed population without magnetic field evolution
(Faucher-Giguère and Kaspi 2006).

2.3.1 Hall and Ohmic Evolution

The question of magnetic field evolution in neutron stars was theorised in the
seminal work by Goldreich and Reisenegger (1992). They proposed that three basic
processes drive the magnetic field evolution in the interior of a neutron star. In the
crust, the magnetic field evolves because of the Hall effect, essentially the field is
advected by the moving charges. In the deeper part of the crust and the core, where
neutrons are abundant, ambipolar diffusion takes place, where the magnetic field
and charged particles drift with respect to neutrons. Finally, Ohmic dissipation, due
to finite conductivity, leads to the decay of the field in the crust.

Following the birth of a neutron star, its outer part freezes in what becomes
shortly afterwards the crust. The crust consists of a highly conducting ion lattice.
Free electrons carry the electric current and the magnetic field is coupled to the
electron fluid. That way, the electric current is directly linked to the electron velocity
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which is also the fluid velocity. As long as the crust is strong enough to absorb
any stresses developed by the magnetic field (Horowitz and Kadau 2009), the
system remains in dynamical equilibrium. Despite the crust being in dynamical
equilibrium, the magnetic field does evolve due to the advection of magnetic flux by
the electron fluid. This evolution is also referred to in the literature as the electron-
magnetohydrodynamics (E-MHD). Translating these into mathematical language,
we obtain:

j = −eneve , (2.1)

where j is the electric current density, e the electron charge, ne the electron number
density and ve the electron velocity. We then write Ohm’s law, assuming a finite
conductivity σ :

E = −ve

c
× B + j

σ
, (2.2)

where E is the electric field, c the speed of light, and B the magnetic field. As the
electron velocities inside the neutron star are non-relativistic, the electric current is

j = c

4π
∇ × B . (2.3)

Combining Eqs. (2.1)–(2.3) and substituting into the magnetic induction equation,
we obtain the equation that describes the evolution of the magnetic field under the
Hall effect and Ohmic dissipation:

∂B

∂t
= − c

4π
∇ ×

[∇ × B

ene
×B + c

σ
∇ ×B

]
. (2.4)

The first term in the right-hand-side describes the evolution of the magnetic field
due to the Hall effect. The second term in the-right-hand-side of this equation is
due to Ohmic dissipation. The time-scale of the Hall effect depends on the strength
of the magnetic field, the density of the crust and the magnetic field scale height.
A reasonable approximation for this length scale is the crust thickness ∼1 km and
for electron number density ne ∼ 1035 cm−3, leading to a Hall time-scale τH ∼
60
B14

kyr, where B14 is the strength of the magnetic field divided by 1014G. Assuming

a conductivity σ ∼ 1024 s−1 the Ohmic time-scale is τO ∼ 4 Myrs. Thus, for
these choices of magnetic field strength Ohmic evolution is two orders of magnitude
slower than Hall.

While Hall evolution can become rather fast and depends directly on the strength
of the magnetic field, it conserves magnetic field energy and merely redistributes the
magnetic field. On the other hand, the Ohmic term that can lead to magnetic field
decay and generation of heat, only depends on the crust physical characteristic and
not on the magnetic field strength. Nevertheless, the Hall effect can lead to faster
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Ohmic decay. This happens through the generation of smaller scale magnetic fields.
There, stronger currents develop and decay faster.

Studies of the magnetic field evolution have focused on three main avenues for
the magnetic field decay under the Hall effect and Ohmic dissipation: instability,
turbulent cascades and secular evolution.

2.3.1.1 Instabilities

A magnetic field satisfying the relation

∇ ×
[∇ × B

ne
× B

]
= 0 (2.5)

is in equilibrium under the Hall effect (Gourgouliatos et al. 2013). However, such a
field may be susceptible to instabilities should a small perturbation be induced. Two
main types of instabilities have been identified: ideal and resistive. An example of
an ideal instability is the E-MHD density shear instability (Rheinhardt et al. 2004;
Wood et al. 2014; Gourgouliatos et al. 2015). This instability requires a covarying
electron number density and magnetic field, whose direction is perpendicular to
the electron number density gradient. Following the instability, the magnetic field
structure gets severely deformed. A neutron star crust can provide appropriate
conditions should the field have a strong tangential component, given that the
electron number density decreases radially.

Resistive instabilities operate under the combined effect of the Hall and the
Ohmic term. In this case, the instability is more likely to appear in regions where
strong currents exist, especially where natural discontinuities form (Rheinhardt
and Geppert 2002; Pons and Geppert 2010). This could be the inner and outer
surface of the crust, where conductivity changes drastically. Moreover, simulations
of magnetic field evolution show that the magnetic field may form current sheets
(Vainshtein et al. 2000; Reisenegger et al. 2007). The result of this type of instability
is the generation of the characteristic islands of magnetic reconnection, in a manner
similar to that of the tearing instability (Gourgouliatos and Hollerbach 2016), and
subsequent magnetic field decay.

2.3.1.2 Cascades

The presence of the non-linear term in Eq. (2.4) and its resemblance to the vorticity
equation from fluid dynamics, has motivated studies of turbulent cascades. In
this scenario, the magnetic field develops small-scale structures and the energy
dissipates rapidly due to the Ohmic term. The efficiency of this mechanism depends
on the shape of the power spectrum of the cascade: if the spectrum is steep, more
energy will be concentrated in large scales that dissipate slower, whereas in the
opposite case, it could provide a viable path for magnetic field decay. Wareing
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and Hollerbach (2009) reported a power-law Ek ∝ k−2 for the energy spectrum
as suggested analytically in Goldreich and Reisenegger (1992), with other works
reporting values of this index close to 7/3 (Biskamp et al. 1996; Cho and Lazarian
2004). Compared to normal fluid turbulence, the resulting magnetic field forms
structures that remain unchanged with time (Wareing and Hollerbach 2010). This
may decrease the efficiency of turbulent cascades with respect to magnetic field
decay at later times.

2.3.1.3 Secular Evolution

The above mentioned approaches focus on specific characteristics of magnetic field
evolution and make little use of the known properties of neutron stars. Over the
past 15 years, it has been possible to simulate the magnetic field evolution making
realistic assumptions for the density and conductivity of the crust in the appropriate
spherical geometry. Moreover, compared to the studies of instabilities, which require
the simulations to start from a state of equilibrium, studies of secular evolution are
not subject to this constraint. After all, there is no reason to expect that the magnetic
field of a newborn neutron star satisfies Eq. (2.5). Given the complicated processes
taking place during the formation of a neutron star, a wide range of initial conditions
has been explored.

Several works have explored the evolution of the magnetic field using axially
symmetric simulations. Hollerbach and Rüdiger (2002) demonstrated that the field
undergoes helicoidal oscillations with the energy being transferred between the
various modes and also found that the magnetic field can develop current sheets
because of the Hall evolution (Hollerbach and Rüdiger 2004). Pons and Geppert
(2007) found that the magnetic field undergoes a rapid decay over the first 104 year
in a strongly magnetized neutron star, and later it adopts a quasi-equilibrium state.
This result was confirmed by other various simulations (Kojima and Kisaka 2012;
Gourgouliatos and Cumming 2014b). This quasi-equilibrium corresponds to a Hall-
attractor, a state where the electrons isorotate with the magnetic field, and is
independent of the initial choice of the magnetic field (Gourgouliatos and Cumming
2014a; Marchant et al. 2014; Igoshev and Popov 2015).

Three-dimensional simulations showed that the magnetic field is susceptible to
instabilities. A predominantly poloidal magnetic field remains axisymmetric (Wood
and Hollerbach 2015), however, if a toroidal field is included, instabilities are
induced and non-axisymmetric structure appears, see Fig. 2.4. This leads to an even
faster magnetic field decay, especially during the first few 104 years of the life
of a neutron star. During this stage, the structure of the magnetic field changes
drastically. If a very strong toroidal field is included then spots of very strong
magnetic field form, as it has been noted in the axisymmetric case (Geppert and
Viganò 2014), with the additional feature that that magnetic dipole axis drifting
with respect to the surface of the neutron star in the three dimensional study of this
setup (Gourgouliatos and Hollerbach 2017).
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Fig. 2.4 The magnetic field structure from a 3-D simulation of the Hall drift in a neutron star
15 kyr after its birth. The initial conditions contained an axisymmetric poloidal dipole and
toroidal quadrupole field. Left: Magnetic field lines in red, and magnetic energy density on
the surface in colour. Right: The radial, azimuthal and meridional components of the magnetic
field (top to bottom) at r = 0.995R∗ , where R∗ is the neutron star radius. The development
of non-axisymmetric structures and patches of strong magnetic field is evident. Figure from
Gourgouliatos et al. (2016)

2.3.2 Magnetothermal Evolution

As high temperatures correlate with strong magnetic fields in magnetars, it is crucial
to quantify their relation. Temperature and magnetic field evolution are interweaved
in the following ways. Magnetic field is supported by electric current whose decay
provides Joule heating increasing the temperature of the star. Moreover, it affects
the transport of heat. Heat can be mainly transferred either through electrons
or phonons. While phonons propagate isotropically in the crust, electrons can
move predominantly along the direction of the magnetic field, thus in strongly
magnetised neutron stars heat will be mostly transferred along magnetic field lines.
Finally, electric and thermal conductivity are functions of temperature, therefore,
as temperature changes these parameters evolve as well. Consequently, magnetic
field evolution is affected, too. Essentially, the process described above can be
summarised in the following equation for temperature (T ) evolution:

cV
∂T

∂t
− ∇ · [κ̂ · ∇T ] = Qν + Qh , (2.6)

where cV is the volumetric heat capacity, κ̂ is the thermal conductivity tensor, Qν

is the energy emitted by neutrinos per unit volume and Qh is the Joule heating,
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resulting from the magnetic field evolution (Pons et al. 2009). The equation above
describes the evolution of the system in a flat space-time, the general relativistic
modification of the equations can be found in Viganò et al. (2013).

In general, the thermal conductivity tensor has the following components κ̂ =
κ̂e + κ̂n + κ̂p + κ̂ph, which are due to conduction by electrons, neutrons, protons
and phonons, respectively. In the strong magnetic field regime, the dominant
contribution is that of electrons, which flow along magnetic field lines (Yakovlev
and Urpin 1981; Aguilera et al. 2008a). The expression for this term is

κ̂e = κ⊥e

⎛
⎝Î + (ωBτ)

2

⎛
⎝ brr brθ brφ

brθ bθθ bθφ

brφ bθφ bφφ

⎞
⎠+ ωBτ

⎛
⎝ 0 bφ −bθ
−bφ 0 br

bθ −br 0

⎞
⎠
⎞
⎠ , (2.7)

where Î is the identity matrix, br , bθ , bφ are the components of the unit vector
projected on the magnetic field, and bij = bibj , ωB = eB/(m∗ec) with m∗e is the
effective mass of the electron and τ is the electron relaxation time. The values of κ⊥e
depends on the density and temperature of the crust, see figure 5 in Aguilera et al.
(2008a).

Given the complexity of this problem, it has been tackled in stages. First, the
question of heat transport in a magnetised neutron star was addressed by Geppert
et al. (2004). They found that an axially symmetric poloidal magnetic field reaching
the core leads to a practically isotropic surface temperature, provided its strength
is below 1015 G. If the field does not reach the core however, the surface will be
significantly hotter at the poles compared to the equator. The inclusion of a toroidal
field (Geppert et al. 2006), effectively blankets the heat from escaping towards the
equator and channels it even more efficiently towards the poles. When Joule heating
is taken into account (Aguilera et al. 2008a,b), the dissipated magnetic field keeps
the star warm for a longer time and affects the cooling history of the star both in the
early neutrino phase and later on. In the work by Pons et al. (2009), comparisons
against individual strongly magnetised neutron stars were made favouring the
hypothesis that energy stored in the magnetic field is sufficient to heat the neutron
star.

Viganò et al. (2013) addressed the full problem taking into account all three
channels of magnetothermal interaction (heat transport, Joule heating and thermal
feedback), assuming axial symmetry, see Fig. 2.5. In that work, Eqs. (2.4) and (2.6)
are solved simultaneously with electric conductivity being a function of temperature
and thermal conductivity depending on the magnetic field and evolving in time.
Their work further supported the unification between magnetars and X-ray dim
isolated neutron stars. Evolutionary models were provided, which could account
for the diversity of magnetars, high magnetic field radio pulsars, and isolated
nearby neutron stars varying only their initial magnetic field, mass and envelope
composition.

From a different perspective, temperature gradients can lead to the generation
or amplification of magnetic fields in neutron stars through thermoelectric effects
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Fig. 2.5 Temperature profile (left side) and magnetic field structure (right side) of a neutron star at
1, 10 and 100 kyr. The initial poloidal field generates a strong toroidal field, leading to non-linear
evolution and concentration of the poloidal field towards the equator. Evidently the temperature is
higher near the equator compared to the poles. Figure from Viganò et al. (2013)

(Urpin and Yakovlev 1980). This could take place within the first few thousand
years of the neutron star life and the magnetic field could reach strengths of
1014 G (Blandford et al. 1983; Urpin et al. 1986). However, it has been argued
that thermoelectric amplification of the magnetic field saturates at strengths of
1011 G, due to non-linear effects (Wiebicke and Geppert 1992). Nevertheless, a
strong temperature gradient, which could plausibly appear near the polar cap of a
pulsar, may perpetuate a strong toroidal field in this region (Geppert 2017).

2.3.3 Core Magnetic Field

Moving deeper into the star, the abundance of neutrons increases and the mate-
rial becomes superconductive and superfluid. This difference in composition and
physical properties determines the evolutionary mechanism of the magnetic field.
A detailed discussion of the processes taking place in the core regarding super-
conductivity and superfluidity can be found in Chap. 8 of this volume. Here, we
briefly discuss the effects in the core that have an impact in the magnetic field
global evolution. The magnetic field in this part of the star evolves due to ambipolar
diffusion (Goldreich and Reisenegger 1992; Shalybkov and Urpin 1995; Hoyos
et al. 2010; Glampedakis et al. 2011; Passamonti et al. 2017; Castillo et al. 2017),
which can be visualised as the interaction of the charged particles with the neutral
ones. Timescales for ambipolar diffusion compare with magnetar ages (∼104 year)
for strong magnetic solenoidal fields, thus they affect the magnetic field evolution
in strongly magnetized neutron stars, whereas they become much longer for the
irrotational component, reaching or even exceeding the Hubble time even for
strongly magnetised neutron star (Goldreich and Reisenegger 1992).

The expulsion of magnetic flux from the core (Elfritz et al. 2016) suggests that
strong magnetic fields residing at the core of neutron stars may lead to much longer
survival of the magnetic field of a neutron star. Recently, Bransgrove et al. (2017)
studied the axially symmetric evolution of the crustal magnetic field allowing it to
exchange twist with the core and accounting for the elastic deformation in the crust.
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Their results agree with the established picture of the crustal magnetic field from
axially symmetric simulations, with much longer timescales though. In addition to
that, they found that the superfluid flux drift along with Ohmic decay may deplete
the neutron star from its magnetic field within 150 Myr, if it is hot (T ∼ 2× 108 K),
but at a much slower pace for cold neutron stars. Finally, the outward motion of
superfluid vortices in a young rapidly rotating highly magnetised pulsar may expel
the flux from the core, provided the magnetic field is �1013G. Consequently, the
timescales quoted at the magneto-thermal models considering only the evolution of
the crustal magnetic field need to be revised.

2.3.4 Magnetospheric Field

The magnetosphere of strongly magnetised neutron stars is the site of much of
the observed activity. In normal pulsars the magnetospheric field may range from
a rapidly rotating dipole in vacuum (Deutsch 1955), to a plasma-rich corotating
magnetosphere (Goldreich and Julian 1969).

Strongly magnetized neutron stars, however, have some critical differences.
Firstly, they are typically slow rotators, consequently the effects of corotation are
secondary to the overall evolution. Secondly, their magnetic fields are most-likely
non dipolar and highly twisted, thus in the inner part of the magnetosphere evolution
would be dominated by the multipoles and twisted flux ropes. Finally, strong
magnetic fields along with their complex structure give rise to substantially distinct
behaviour compared to normal pulsars: Magnetohydrodynamical instabilities of
twisted fields can be related to giant flares. Indeed, in the case of the giant-flare in
magnetar SGR 1806–20, the initial rising time is in the scale of milliseconds (Palmer
et al. 2005), thus the evolution is in the range of relativistic magnetohydrodynamics.
Gradual untwisting of the magnetic field lines and formation of j -bundles (bundles
of magnetic field lines with j = (4π/c)∇ × B 
= 0) and cavities, where no current
forms (∇×B = 0), impact the non-thermal emission of strongly magnetised neutron
star (Beloborodov 2009).

We will see in more detail the role of the magnetospheric field in Sect. 2.4, where
explosive phenomena are discussed.

2.3.5 Overview of Magnetic Field Evolution

Studies of magnetic field evolution have focused into the different paths outlined
above. This approach reflects more a mathematical and computation convenience in
modelling methods rather than a physical reality. The evolution of the magnetic field
in a neutron star can be due to a combination of instabilities and cascades, interac-
tion of magnetic field from different parts of the star and changes in temperature.
While it has been possible to provide estimations of magnetic field, temperature
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and physical parameters of the neutron star and identify which processes will be
dominant in each area of the parameter space, a detailed quantification is still
missing. It is one of the key challenges of the community to provide a global study
of the magnetic field evolution in the neutron star by combining the evolution in
the different parts of the star, while accounting for as many as possible different
physical processes (Andersson et al. 2017; Gusakov et al. 2017).

2.4 Explosive Events

Magnetars show variations of their radiative emission on almost all intensity and
time scales, but their behaviour is generally outlined in three main categories:
bursts, outbursts, and giant flares. The signature ‘short’ or ‘SGR-like’ bursts of
hard-X/soft-γ ray photons have duration from a few milliseconds to a few seconds,
and luminosity spanning from≈1036 to 1043 erg s−1 (Aptekar et al. 2001; Götz et al.
2006; Israel et al. 2008; van der Horst et al. 2012). Their spectra are generally well
described in the 1–100 keV range by a double-blackbody model with temperatures
between kT ∼ 2 and ∼12 keV, with a bimodal distribution behaviour in the
kT –R2 plane, suggesting two emitting regions: a cold and larger one and a hot
and smaller one (Israel et al. 2008); physical interpretations of this behaviour are
however unsatisfactory (see e.g. Turolla et al. 2015 and references therein). Short
bursts, in particular the brightest ones (sometimes called ‘intermediate flares’), can
be followed by long-lived tails (seconds to minutes or hours) that may arise from
a burst-induced heating of a region on the surface of the neutron star or, at least
in some instances, from dust-scattering of the burst emission (Lenters et al. 2003;
Esposito et al. 2007; Göǧüş et al. 2011; Pintore et al. 2017). Even in the same source,
bursts can occur sporadically and sparsely or come in ‘storms’, with hundreds or
thousands of events clustered in days or weeks. Since they are bright enough to be
detectable almost anywhere in the Galaxy by large field-of-view, sensitive X-ray
monitors such as those onboard CGRO, Swift, INTEGRAL and Fermi, short bursts
have been instrumental in the discovery of most of the known magnetars (see e.g.
Olausen and Kaspi 2014).

The short bursts most often announce that a source has entered an active phase
commonly referred to as an outburst. During these events, the luminosity suddenly
increases up to a factor ∼103, generally showing a spectral hardening, and then
decays and softens over a time scale from several weeks to months/years (e.g.
Rea and Esposito 2011). Outbursts are usually accompanied also by changes in
the spin-down rate, in the pulse profile/pulsed fraction and other timing anomalies
such as higher-than-usual timing noise level and glitches; outbursts often affect
also the radiative properties at wavelengths other than soft X-ray with enhanced
hard emission and changes in the infrared/optical counterparts; remarkably, all the
magnetars that have shown pulsed radio emission were detected at radio frequencies
during an outburst (Camilo et al. 2006, 2007a; Anderson et al. 2012; Eatough
et al. 2013; Rea et al. 2013a). Some magnetars have not displayed an outburst over
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decades, while others have undergone multiple episodes; some sources have low
flux when in quiescence and were noticed or detected for the first time only after
the onset of an outburst that broke their hibernation: they are often referred to as
‘transient’ magnetars. This behaviour makes it very difficult to estimate the total
Galactic magnetar population.

The pinnacle of the magnetar activity is represented by the giant flares, in which
≈1044–1046 erg can be released in a fraction of a second. They are so bright to
have detectable effects on the Earth’s magnetic field (Mandea and Balasis 2006)
and ionosphere (Inan et al. 1999, 2007), and possible extragalactic giant flares
could appear at Earth as short gamma-ray bursts (Hurley et al. 2005). The extreme
properties of the giant flares were what prompted the idea of neutron stars endowed
with an ultra-strong magnetic field and then the magnetar model (Paczynski 1992;
Thompson and Duncan 1995) and they still both provide some of the strongest
evidences for the existence of such objects and represent the benchmark against
which alternative models need to be tested. Only three such events have been
observed so far, all from different sources and—curiously—each from one of the
‘historical’ SGRs: on 1979 March 5 from SGR 0526–66 in the Large Magellanic
Cloud (Mazets et al. 1979), on 1998 August 27 from SGR 1900+14 (Hurley et al.
1999), and on 2004 December 27 from SGR 1806–20 (Hurley et al. 2005). All three
events started with a ∼0.1–0.2-s flash that reached a luminosity of �1045–1047 erg
s−1, followed by a long-lived (few minutes) tail modulated at the spin period of
the neutron star. The spectra of the initial spikes were very hard, an optically-thin
thermal bremsstrahlung with characteristic temperatures of several hundreds of keV,
while the tails had typical temperatures of a few tens of keV, further softening as the
flux decayed. This behaviour is very broadly interpreted in terms of a fraction of the
realised energy that escapes directly in the spike, while the remaining energy slowly
leaks from a pair–plasma fireball trapped by the neutron star magnetic field. In this
respect, it is interesting to note that while the peak luminosity of the giant flare of
SGR 1806–20 was ≈100 time higher than in the first two, the energy emitted in the
pulsating afterglows was approximately the same (≈1044 erg), suggesting a similar
magnetic field (of≈1014 G in the magnetosphere) in the three SGRs. Quasi-periodic
oscillations (QPOs) of various main frequencies and durations were also detected in
the tails of the SGR 1900+14 and SGR 1806–20’s giant flares (and possibly also in
the event from SGR 0526–66); although the details remain to be worked out, they
were likely associated to ‘seismic’ oscillations in the stars produced by the flare,
potentially offering glimpses into the structure of the neutron star and its magnetic
field (see Turolla et al. 2015 and references therein), but also providing another piece
of evidence in favour of the presence of a super-strong magnetic field. In fact, Vietri
et al. (2007) observed that the fastest QPOs imply a luminosity variation well above
the Cavallo–Fabian–Rees luminosity variability limit for a compact source (Fabian
1979), and that only a ≈1015 G magnetic field at the star surface could make this
possible.
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2.4.1 Bursts and Outbursts

The amounts of energy released in bursts and outbursts imply that a sudden, but
not global, change takes place in the neutron star. The prevailing explanation
behind such events is that a rapid change in the magnetic field structure allows
the release of large amounts of the previously stored energy. The main challenges
of theoretical modelling in bursts and outbursts are the process behind the efficient
conversion of magnetic energy into heat, the triggering mechanism, and, eventually,
the transportation of heat to the surface.

Let us assume that a burst is powered by magnetic energy stored inside the star.
The energy of the magnetic field in the volume of star V participating in the event is

Emag = B2

8π
V . (2.8)

If part of this magnetic energy is channeled to the burst with an energy efficiency
factor η, we obtain the following expression for the energy of the burst:

Eb = 4× 1040 ηB2
15S

3
4 erg, (2.9)

where B15 is the magnetic field scaled to 1015 G and S4 is the size of the region
where the burst takes place scaled to 104 cm. In the starquake model, Thompson
and Duncan (1995) suggested that the crust fails once the shear stress exceeds a
critical value (Thompson et al. 2017). Molecular simulations of the crystal lattice
of the crust found that the breaking strain of the crust is 0.1 (Horowitz and Kadau
2009; Chugunov and Horowitz 2010). This implies that a local magnetic field of
2.4× 1015 G will be sufficient to break the crust (Lander et al. 2015). Closer to the
surface of the crust, magnetic fields as low as ∼1014 G can lead to crust breaking
due to the smaller density (Gourgouliatos and Cumming 2015). The formation of
faults, as in terrestrial materials, is unlikely, given the extreme pressure of the crust
(Jones 2003). Moreover, the anisotropy induced by the magnetic field disfavours
a deformation normal to the magnetic field lines (Levin and Lyutikov 2012), but
allows it to be parallel to them. Given these constraints, a likely mechanism for the
development of the burst is that of thermoplastic instability (Beloborodov and Levin
2014). In this model, the stressed material forms a wavefront that flows plastically,
similarly to the deflagration of a burning material. The plastic flows may transport
magnetic flux accelerating the magnetic field evolution (Lander 2016).

The models discussed above describe the initiation of the bursting event once
the magnetic field stresses have led to strains close to the breaking one. In the
long run, magnetic field should reach this stage at some point during its evolution.
This scenario has been explored by axially symmetric simulations of magnetic field
evolution (Perna and Pons 2011; Pons and Perna 2011). Tracing the building up
of magnetic stresses while the field evolves, one can identify when a critical value
is reached. At this instance a burst will occur, releasing the magnetic energy in the
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affected area. It was found that bursts are expected to be more frequent and energetic
in young magnetars, whereas older neutron stars, even if they sustained a strong
magnetic field, were less active. Li et al. (2016) explored the interaction between
Hall waves and crust failures through a 1-D model, considering thermal evolution,
plastic flow and neutrino cooling. They found that this formation of crust failures
leads to avalanches: Hall waves originating in the failure accelerate the dynamics.

Next, the propagation of the burst energy to the surface and its eventual radiation
need to be considered. To model that, it is assumed that a sudden deposition of
thermal energy occurs inside the crust, which then thermally relaxes. It then appears
as a flux enhancement event accompanying the outburst (Brown and Cumming
2009; Scholz et al. 2012; Rea et al. 2012; Scholz et al. 2014). The process followed
in these models is similar to the one outlined in Sect. 2.3.2; however, due to the very
short timescales involved (∼102 days), the magnetic field does not evolve and only
thermal evolution is accounted for. These models can reproduce the observed light
curves with good accuracy for few hundred days following the event.

The sudden crustal motions taking place during a starquake also affect the
structure of the magnetosphere. The magnetic field lines that are anchored to the
displaced region will become twisted with currents flowing along them. These
currents will form j-bundles (Beloborodov 2009), surrounded by a cavity region
where the magnetic field is potential. In this picture, a hotspot forms at the footprints
of the j-bundle, where particles are accelerated and bombard the surface of the star
(Beloborodov and Thompson 2007). Eventually, as the electric current of the bundle
gets dissipated, the hotspot shrinks and its luminosity gradually fades out.

2.4.2 Giant Flares

While bursts and outbursts are common in all magnetars, there have been three
cataclysmic events that clearly stand out from any other form of magnetar activity.
The enormous amount of energy emitted in magnetar giant flares implies that
a global event takes place, involving a major reconfiguration of the magnetic
field. Two main mechanisms for giant flare triggering have been proposed, one
internal and one external. In the internal scenario, magnetic energy is stored inside
the neutron stars, most likely in the form of stresses in the crust-core boundary
(Thompson and Duncan 1995, 2001). Once the crust fails, there is nothing to balance
these stresses. The stored energy is then released to the outer parts of the star. This
energy mainly powers the original spike of the giant flare. In the external trigger
scenario, the magnetospheric field is slowly twisted because of the evolution of the
internal magnetic field, while this twist is supported by strong currents. Provided
that the dissipation rate of the electric current is slower than the twist rate, energy
will be stored in the magnetosphere. Strongly twisted magnetic fields are likely to
become unstable, either through ideal or resistive MHD instabilities, accompanied
by rapid release of magnetic energy. This scenario is based on the process leading to
the eruption of a solar flare (Uzdensky 2002; Lyutikov 2003; Gill and Heyl 2010).
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Fig. 2.6 The formation of a current sheet and onset of reconnection. A polar cap of θ = 0.15π is
sheared at a rate 2.5 × c/R∗, where R∗ is the neutron star radius. The toroidal current is plotted in
colour and the poloidal field lines are shown in black. As the polar cap is sheared a strong toroidal
current builds up, panels (a), (b) and (c). The system then becomes unstable and reconnection
occurs at the equator, panel (d). Once the current sheet forms plasmoids appear (e) and eventually
the field relaxes to the untwisted stage (f). Figure from Parfrey et al. (2013)

In the external scenario, the magnetospheric field, prior to the flare, is modelled as
a series of equilibria corresponding to force-free configurations subject to the slowly
changing boundary conditions. A force-free magnetic field satisfies the condition
(∇ × B) × B = 0 implying that the current flows along magnetic field lines. The
forces due to the thermal pressure are negligible compared to the Lorentz force,
given the strength of the magnetic field. As the field is getting twisted, timing
changes can be anticipated: a twisted magnetic field will exert a stronger torque
to the magnetar leading to a more efficient spin-down shortly before the flare, see
Fig. 2.6 (Thompson et al. 2002; Parfrey et al. 2012, 2013; Akgün et al. 2016).
Analytical and semi-analytical studies have demonstrated that the field cannot be
twisted indefinitely, due to the strong current that will develop. These currents are
prone to ideal or resistive instabilities initiating a flare (Priest et al. 1989; Lynden-
Bell and Boily 1994; Gourgouliatos and Vlahakis 2010; Lynden-Bell and Moffatt
2015; Akgün et al. 2017). At this stage, explosive reconnection, driven by the tearing
instability (Komissarov et al. 2007), is a possible avenue for the rapid conversion of
the magnetic energy into thermal energy powering the flare. In the mean time, hot
plasma is concentrated in the closed magnetic field lines, which form a “trapped
fireball”. The energy from the trapped fireball then gets released within a few tens
of seconds which is seen as a tail in the light curve. This fireball corotates with
the magnetar, and its luminosity is modulated by the period of the star. As the
external magnetic field changes its topology rapidly, it launches Alfvén waves that
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propagate throughout the magnetosphere. The waves, once reflected onto the star,
transfer energy back to the crust. This leads to the excitation of modes, which give
rise to the quasi periodic oscillations (Israel et al. 2005). Depending on whether
the crust or the core participates in this oscillatory motion, the structure of the
external magnetic field different profiles and frequencies are expected to be excited
and information on the internal structure of the magnetar can be extracted (Duncan
1998; Watts and Strohmayer 2007; Levin 2007; Steiner and Watts 2009; Cerdá-
Durán et al. 2009; Colaiuda et al. 2009; van Hoven and Levin 2011; Gabler et al.
2011, 2013; Passamonti and Lander 2013; Li and Beloborodov 2015).

2.4.3 Timing Behaviour

Similar to normal pulsars, strongly magnetised ones exhibit timing irregularities.
These irregularities may appear as sudden changes in frequency, the so-called
glitches (Kaspi et al. 2000, 2003; Kaspi and Gavriil 2003; Dib et al. 2008; Dib
and Kaspi 2014; Şaşmaz Muş et al. 2014; Antonopoulou et al. 2015), which are also
present in normal rotating powered radio pulsars (Anderson and Itoh 1975; Hobbs
et al. 2004). Magnetars also exhibit slower torque variations (Gavriil and Kaspi
2004; Camilo et al. 2007b; Archibald et al. 2015). In this case, the torque changes
within a factor of a few, usually in conjunction with an outburst, in timescales of 100
days. In general the population of strongly magnetised neutron stars exhibit higher
levels of timing noise compared to normal pulsars (Hobbs et al. 2010; Esposito et al.
2011a; Tsang and Gourgouliatos 2013).

Glitches in magnetars can be either radiatively loud or silent (Dib and Kaspi
2014). However, since except for the changes in radiative properties, both silent
and loud glitches are otherwise similar, the same mechanism is expected to operate
and most likely it is related to the evolution of the superfluid material (Haskell and
Melatos 2015). Rare anti-glitch events have been observed in magnetars (Archibald
et al. 2013; Şaşmaz Muş et al. 2014). Unlike normal glitches, an anti-glitch is a
sudden spin-down which is not compatible with the established theory of pulsar
glitches. Most probably, the evolution of the internal magnetic field creates spinning
slower than the rest of the star (Mastrano et al. 2015). Sudden exchange of angular
momentum can lead to this type of event.

Torque variations are more likely to be related to the external magnetic field
twisting. As discussed in the giant-flare external model, twist can slowly build up
in the magnetosphere (Beloborodov 2009). The twisted magnetic field lines are
capable of exerting stronger torque, as they reach greater altitudes, increasing the
number of the ones crossing the light cylinder (Parfrey et al. 2013). In this scenario,
prior to some radiative event, a long term increase on the torque occurs.
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2.5 Persistent Emission and Spectral Features

The persistent emission of magnetars across the electromagnetic spectrum is
discussed in depth in the recent review by Turolla et al. (2015). In general, in X-rays
below 10 keV, where the largest amount of data is available, good phenomenological
fits are provided by a blackbody with kT ≈ 0.5 keV and a power law with
photon index � ≈ 2–4; sometimes a second blackbody is preferable to the
power law (e.g. Tiengo et al. 2008). A non thermal-like component seems to be
always present when the sources are detected at hard X-rays (up to ∼150–200
kev).

The soft X-ray spectral shape is broadly interpreted in the context of a twisted
magnetosphere that supports electric currents. The (first) blackbody arises from the
thermal emission from the surface of the neutron star, which also provides seed
photons for resonant cyclotron scattering involving the magnetospheric charges,
producing in this way the second, harder component (since the charged particles
populate vast regions of the magnetosphere, with different magnetic field intensities,
the scattering produces a hard tail instead than a narrow line). This basic idea is
also successful in explaining the correlation in magnetars between spectral hardness
and intensity of the spin down first noticed by Marsden and White (2001): the
stronger the twist, the larger the spin down rate and the density of charges in the
magnetosphere. Starting from this interpretation of the X-ray emission, many efforts
to provide more physically motivated models for the spectra of magnetars have been
undertaken; we refer again to Turolla et al. (2015) for a comprehensive overview of
the situation.

As we have seen, several pieces of evidence point to a twisted magnetic field
in magnetars, including the above mentioned power-law-like tail, when interpreted
in terms of resonant cyclotron scattering of thermal photons from the neutron-star
surface, and periods of enhanced torque, and even more observations indicate the
presence of particularly strong magnetic fields. The most direct probes of magnetic
fields in neutron stars, however, are the spectral features that arise from resonant
cyclotron scattering by magnetospheric particles. For magnetic fields above 1014 G,
proton cyclotron lines are in the classic soft X-ray range (0.1–10 keV): the cyclotron
energy for a particle of mass m and charge e is

Ecycl = 11.6

1+ z

(
me

m

)
B12 keV,

where z ≈ 0.8 is the gravitational redshift, me is the mass of the electron, and
B12 is the magnetic field in units of 1012 G. Despite several claims of possible
detection in both quiescent and burst spectra, no clear spectral feature was observed
in a magnetar until recently, when Tiengo et al. (2013) reported the discovery of
a phase-dependent absorption feature in the ‘low-magnetic-field magnetar’ (see
Sect. 2.6) SGR 0418+5729. At the time, the source was particularly bright after a
short burst-active episode (Esposito et al. 2010). The feature was more noticeable in
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Fig. 2.7 The absorption feature in the XMM–Newton data of SGR 0418+5729 (from Tiengo et al.
2013). The normalised energy versus phase image was obtained by binning the source photons into
100 phase bins and 100-eV width energy channels and normalising the counts first by the phase-
averaged energy spectrum and then by the pulse profile (normalised to the average count rate). The
V-shaped absorption feature is apparent. For one of the two displayed cycles, the red line shows
the results from the proton cyclotron model in Tiengo et al. (2013)

a deep XMM–Newton observation, but was confirmed also by data collected with
RossiXTE and Swift in the first months after the outset of the outburst (Tiengo et al.
2013).

The phase-resolved spectroscopy and analysis of the XMM–Newton data showed
that the energy of the line changes between∼1 and 5 keV or more, in approximately
one-fifth of the rotation cycle (Fig. 2.7). The dependence of the line energy on the
phase rules out atomic transitions as the origin of the source, while an electron
cyclotron feature seems unlikely because, considered the dipolar field of the source
derived from the rotational parameters (B ∼ 6 × 1012 G), the electrons should
be somehow trapped in a small volume at a few stellar radii from the neutron
star. Tiengo et al. (2013) proposed that the absorption feature is a cyclotron line
from thermal photons crossing protons localised close to the surface of the star,
in a magnetic loop with field of the order of 1014–1015 G. If this interpretation is
correct, the feature brings evidence of the presence of strong nondipolar magnetic
field components in magnetars, as expected in the magnetar model (Thompson and
Duncan 1995, 2001).

A similar, albeit less conspicuous, feature was reported for another magnetar
with a relatively low dipole magnetic field [(1–3) × 1013 G], Swift J1822.3–1606
(Rodríguez Castillo et al. 2016). It is interesting to note that SGR 0418+5729 and
Swift J1822.3–1606 are the two magnetars with the smallest inferred dipole fields
(Olausen and Kaspi 2014): if their spectral features are indeed proton cyclotron
lines, it may be the great disparity between the large-scale dipole field and the
stronger localised components that makes the lines to stand out in these sources.
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2.6 Magnetars and the Other NSs: The Top–Right Part
of the P –Ṗ Diagram

When only a dozen or so magnetars were known, they all could be found tightly
packed and aloof in the upper right part of the P–Ṗ diagram for the population of
non-accreting pulsars (Fig. 2.8). Since the magnetic field is held to be the ultimate
responsible of the activity of magnetars, it was perhaps natural at that time to
identify magnetars as the pulsars with the highest inferred dipole magnetic fields.
Traditionally, the magnetic field threshold was set at the electron quantum magnetic
field BQ = m2

ec
2/(h̄e) � 4.4 × 1013 G—even though this value has no direct

physical implications for pulsars.
The first clue that things might be more complicated was the discovery of

a handful of ‘high-magnetic-field’ (high-B, B � BQ) pulsars overlapping with
magnetars in the P–Ṗ diagram (e.g. Kaspi and McLaughlin 2005; Kaspi 2010). No
additional source of power other than rotational energy loss was required to explain
their properties, which where similar to those of lower-magnetic-field ‘ordinary’
pulsars of comparable age, apart from a somewhat higher-than-expected blackbody
temperature in some objects (e.g. Olausen et al. 2013), and they did not show

Fig. 2.8 P –Ṗ diagram for non-accreting pulsars (from Tauris et al. 2015 and using data from
Manchester et al. 2005). Lines of constant characteristic age (dotted), P/(2Ṗ ), and dipole spin-
down luminosity, are drawn in grey, while the main observational manifestations of pulsars are
plotted with different symbols
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any bursting/outbursting activity over the ∼25 year during which they had been
observed. The possibility of a connection was strengthened by the discovery of
pulsed radio emission from magnetars (Camilo et al. 2006, 2007a; Levin et al. 2010),
but the divides between the apparently different classes of isolated neutron stars
really started to get blurrer and blurrer when magnetar-like activity began to trickle
down in the diagram from the canonical magnetar area.

Firstly, the young, high-B, radio-quiet X-ray pulsar PSR J1846–0258 (period:
0.3 s, B � 5× 1013 G) in the supernova remnant Kes 75 exhibited a few-week-long
X-ray outburst with several short (SGR-like) bursts in 2006 (Gavriil et al. 2008).
Then, in 2009, the first of the so-called ‘low-B magnetars’ (Turolla and Esposito
2013) was discovered: SGR 0418+5729 (Esposito et al. 2010; Rea et al. 2010;
Turolla et al. 2011; Rea et al. 2013b). This source, in spite of having an inferred
dipole magnetic field as low as ∼6× 1012 G (Rea et al. 2013b, but see also Tiengo
et al. 2013 and Sect. 2.5) has showed all the hallmarks of magnetars, demonstrating
that an ultra-strong surface dipolar magnetic field is not necessary for magnetar-
like activity. In 2016, another young pulsar PSR J1119–6127 (period of 0.4 s and
B � 4 × 1013 G) underwent a magnetar-like outburst, and this time it was a radio
pulsar (Göğüş et al. 2016; Archibald et al. 2016). Interestingly, the radio emission
was temporary off during the event (Burgay et al. 2016a,b; Majid et al. 2017). Very
recently, Archibald et al. (2017), using simultaneous X-ray (with XMM–Newton
and NuSTAR) and radio (at the Parkes radio telescope) of PSR J1119–6127, found
that the coherent radio emission was off in coincidence with the short X-ray bursts
and recovered on a time scale of ∼1 min. They tentatively explain this behaviour
suggesting that the positron-electron plasma produced in bursts can engulf the gap
region where the radio-emitting particles are accelerated, disrupt the acceleration
mechanism and, as a consequence, switch off the coherent radio emission.

The 2016 also saw the detection of an SGR-like burst accompanied by an X-ray
outburst from the central neutron star in the 2-kyr-old supernova remnant RCW 103,
1E 161348–5055 (D’Aì et al. 2016; Rea et al. 2016). This source was already known
to produce X-ray outbursts, but it defied assignment to magnetars (or any other
class of X-ray sources), mainly because of its unusual 6.67-h spin period with a
variable pulse profile (De Luca et al. 2006). No period derivative has been measured
in 1E 161348–5055 yet, so we have no idea of the strength of its external dipole
magnetic field (Esposito et al. 2011b). However, it is interesting to notice that while
the slow rotation is unlikely to be due to simple magnetic braking alone (which
would require an astonishing field of B ≈ 1018 G), almost all the explanations put
forward for the long spin period involve accretion from fall-back disk material on
an ultra-magnetised neutron star born with a normal initial period (e.g. De Luca
et al. 2006; Esposito et al. 2011b; Ho and Andersson 2017). Since apart from the
abnormal period, 1E 161348–5055 has now shown all the distinguishing features of
magnetars (Rea et al. 2016), it is tempting to associate it to these sources.

Interestingly, 1E 161348–5055 was one of the prototypes of the central compact
objects in supernova remnants (CCOs), but later the discovery of its unusual
properties set it apart from the other objects of the class. CCOs are steady X-ray
sources with seemingly thermal spectra which are observed close to centres of
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young non-plerionic supernova remnants; they have no counterparts in radio and
gamma wavebands and their periods—when known—are in the 0.1–0.5 s range. An
emerging, but still incomplete in detail, unifying scenario for CCOs is that of ‘anti-
magnetars’: NSs either born with weak magnetic fields (B < 1011 G) or with a
normal field ‘buried’ beneath the surface by a post-supernova hypercritical accretion
stage of debris matter (Ho 2011; Viganò and Pons 2012; Gotthelf et al. 2013). In the
latter case, even sources with magnetar-like magnetic field could in principle be
present in CCOs (Viganò and Pons 2012).

Other sources bordering the magnetar cloud in the P–Ṗ diagram are the so-called
X-ray dim isolated neutron stars (XDINSs; e.g. Turolla 2009): They have similar
periods and inferred surface magnetic fields of ≈1013 G, at the lower end of the
distribution of those of SGRs/AXPs, but have different properties (in particular, a
thermal-like emission with blackbody spectra with kT ≈ 50–100 eV, which is larger
than the spin-down power, and relatively low timing noise) and have not shown any
bursting activity in the ∼20 years during which they have been known. Because
of their properties, it has been often suggested that XDINSs are aged magnetars
that have drained most of their magnetic energy. In particular, the magneto-thermal
evolutionary tracks computed by Viganò et al. (2013) show that their observational
characteristics are compatible with those expected from neutron stars born with
dipolar field of a few 1014 G after a few millions of years, a timespan consistent
with the characteristic ages of XDINSs. Borghese et al. (2015, 2017) inspected the
phase resolved spectra of all XDINSs and found in two of them narrow phase-
dependent absorption features that, if interpreted as proton cyclotron lines, akin
in SGR 0418+5729, indicate the presence close to the star surface of nondipolar
magnetic field components ≈10 times stronger than the values derived from the
timing parameters, tightening the links between XDINSs and magnetars.

2.7 Summary and Final Remarks

Over the last decade, great progress has been made in our understanding of strongly
magnetised neutron stars, thanks to the synergy of observation and theory. The
number of confirmed magnetars has more than doubled and different types of
behaviour have been studied in detail: from bursts and outbursts to flares and
glitches.

While the magnetic field has always been considered a constituent element of
neutron stars (Hoyle et al. 1964; Pacini 1967), it has now been established that it
is the motive force behind major events in the lives of magnetars. Various aspects
of these events have been modelled in detail by the use of numerical simulations
through high-performance computing, testing and refining previous analytical and
semi-analytical models. At this stage, the structure of the magnetic field in the core,
crust and magnetosphere has been explored, improving our physical understanding
of the available observational data. Viable scenarios for explosive events have been
proposed, involving physical mechanisms active in the interior and the exterior
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of the neutron stars. Finally, the role of the magnetic field in the generation and
transport of heat within the star has been assessed; this proved to be a major step
towards the unification of the population of neutron stars and the understanding of
their evolutionary links.

Despite these achievements there is still space for progress. A global model for
the magnetic field structure and evolution is still missing. Such a model will be
taking into account the feedback of the magnetic evolution in different parts of the
star by coupling appropriately the magnetospheric, crustal and core field. This task
is highly demanding as, even under gross simplifications, the timescales involved
in the various parts of the neutron star differ by several orders of magnitude as we
explore the core, crust and the magnetosphere, severely challenging the prospect of
a single numerical model to simulate global evolution. This is not unique to neutron
stars: several systems in nature have a slow built up of energy which is then released
in a cataclysmic event and techniques have already been developed to tackle this
type of problems.

Unification schemes of neutron stars have explored in detail the role of the
initial magnetic field of the star and its evolution. It has been appreciated that it
is not only the dipole component that rules the phenomena linked to the magnetic
field, but also the presence—or the lack—of strong nondipolar and higher multipole
components is crucial. In addition to that, the role of further parameters is worth
exploring. First and foremost, the mass of the star, which relates directly to the star’s
radius, crust thickness, and gravitational potential, leading to different timescales
for the evolution of the magnetic field but also affecting the value of the moment
of inertia, which is critical for the estimation of the dipole component of the
magnetic field. Given that the mass–radius relation is one of the most active areas of
research in neutron stars, it is essential to incorporate the latest results in the current
studies. Moreover, the chemical composition and the temperature of the crust are
critical for the observable properties of the star. While part of this vast parameter
space has been explored so far, it is important to quantify this in further detail.
From the observational point of view, many of the numerous paradigm-changing
discoveries of the recent years were possible thanks to large surveys, systematic
analysis of public data archives and, perhaps most importantly, through all-sky
monitors coupled to fast-response observing strategies. It is fundamental to continue
these efforts, also in view of forthcoming facilities such as eROSITA, Athena and
SKA. New hybrid or transitional objects, as well as unexpected events from known
sources, are bound to be observed in the future.

The word “magnetar” has been showing up more and more in many branches
of astrophysics since a few years, and in particular in researches about ultralumi-
nous X-ray sources, high-mass X-ray binaries, gamma-ray bursts, superluminous
supernovae, fast radio bursts, and sources of gravitational waves, but magnetars
cannot longer be identified simply with dipolar magnetic fields stronger than a
certain value. It is now proved that magnetar-like activity occurs in pulsars with
a range of magnetic fields much wider than previously thought. Magnetars can
behave like ‘normal’ pulsars and pulsars can behave like magnetars; moreover,
strong nondipolar magnetic field components are probably more diffuse in neutron
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star than generally acknowledged (some examples are discussed in Sect. 2.6, but
see also Mereghetti et al. 2016 and references therein for a possible explanation of
the correlated radio and X-ray changes in the mode-switching pulsar PSR B0943+10
involving thermal emission form a small polar cap with a∼1014 G nondipolar field).

Some authors view this proliferation of bursting activity in isolated neutron stars
as evidence that many of them are ‘dormant’ magnetars. We prefer to see the
things from a slightly different angle and observe that the magnetar activity and the
frequency with which it manifests are most likely related to the amount of magnetic
energy stored in the internal field (Rea et al. 2010; Turolla and Esposito 2013;
Tiengo et al. 2013; Turolla et al. 2015); while a huge reservoir is naturally associated
with the ultra-magnetised pulsars in the P–Ṗ diagram, it is not necessary well traced
by the external dipolar field—the only one that can be measured directly from
the timing properties of the source; therefore, magnetar behaviour may manifest
sporadically also in sources that do not boast an exceptionally intense external field.
Perhaps, adapting what E. H. Gombrich said about art (“There really is no such thing
as art. There are only artists.”; Gombrich 1995), we may conclude that magnetars
do not exist, only magnetar activity does.
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Golenetskii, S., Swank, J.: An extended burst tail from SGR 1900+14 with a thermal X-ray
spectrum. Astrophys. J. 587, 761–770 (2003)

Levin, Y.: On the theory of magnetar QPOs. Mon. Not. Roy. Astron. Soc. 377, 159–167 (2007)
Levin, Y., Lyutikov, M.: On the dynamics of mechanical failures in magnetized neutron star crusts.

Mon. Not. Roy. Astron. Soc. 427, 1574–1579 (2012)
Levin, L., Bailes, M., Bates, S., Bhat, N.D.R., Burgay, M., Burke-Spolaor, S., D’Amico, N.,

Johnston, S., Keith, M., Kramer, M., Milia, S., Possenti, A., Rea, N., Stappers, B., van Straten,
W.: A radio-loud magnetar in X-ray quiescence. Astrophys. J. Lett. 721, L33–L37 (2010)

Li, X., Beloborodov, A.M.: Plastic damping of Alfvén waves in magnetar flares and delayed
afterglow emission. Astrophys. J. 815, 25 (2015)

Li, X., Levin, Y., Beloborodov, A.M.: Magnetar outbursts from avalanches of Hall Waves and
crustal failures. Astrophys. J. 833, 189 (2016)

Lynden-Bell, D., Boily, C.: Self-similar solutions up to flashpoint in highly wound magnetostatics.
Mon. Not. Roy. Astron. Soc. 267, 146 (1994)

Lynden-Bell, D., Moffatt, H.K.: Flashpoint. Mon. Not. Roy. Astron. Soc. 452, 902–909 (2015)
Lyutikov, M.: Explosive reconnection in magnetars. Mon. Not. Roy. Astron. Soc. 346, 540–554

(2003)
Majid, W.A., Pearlman, A.B., Dobreva, T., Horiuchi, S., Kocz, J., Lippuner, J., Prince, T.A.: Post-

outburst radio observations of the high magnetic field pulsar PSR J1119–6127. Astrophys. J.
Lett. 834, L2 (2017)

Manchester, R.N., Hobbs, G.B., Teoh, A., Hobbs, M.: The Australia telescope national facility
pulsar catalogue. Astron. J. 129, 1993–2006 (2005)

Mandea, M., Balasis, G.: FAST TRACK PAPER: The SGR 1806–20 magnetar signature on the
Earth’s magnetic field. Geophys. J. Int. 167, 586–591 (2006)

Marchant, P., Reisenegger, A., Alejandro Valdivia, J., Hoyos, J.H.: Stability of hall equilibria in
neutron star crusts. Astrophys. J. 796, 94 (2014)

Marsden, D., White, N.E.: Correlations between spectral properties and spin-down rate in soft
gamma-ray repeaters and anomalous X-ray pulsars. Astrophys. J. Lett. 551, L155–L158 (2001)

Martin, J., Rea, N., Torres, D.F., Papitto, A.: Comparing supernova remnants around strongly
magnetized and canonical pulsars. Mon. Not. Roy. Astron. Soc. 444, 2910–2924 (2014)

Mastrano, A., Suvorov, A.G., Melatos, A.: Interpreting the AXP 1E 2259+586 antiglitch as a
change in internal magnetization. Mon. Not. Roy. Astron. Soc. 453, 522–530 (2015)

Mazets, E.P., Golentskii, S.V., Ilinskii, V.N., Aptekar, R.L., Guryan, I.A.: Observations of a flaring
X-ray pulsar in Dorado. Nature 282, 587–589 (1979)

Mereghetti, S., Stella, L.: The very low mass X-ray binary pulsars: a new class of sources?
Astrophys. J. Lett. 442, L17–L20 (1995)



90 K. N. Gourgouliatos and P. Esposito

Mereghetti, S., Kuiper, L., Tiengo, A., Hessels, J., Hermsen, W., Stovall, K., Possenti, A., Rankin,
J., Esposito, P., Turolla, R., Mitra, D., Wright, G., Stappers, B., Horneffer, A., Oslowski, S.,
Serylak, M., Grießmeier, J.-M.: A deep campaign to characterize the synchronous radio/X-ray
mode switching of PSR B0943+10. Astrophys. J. 831, 21 (2016)

Mösta, P., Ott, C.D., Radice, D., Roberts, L.F., Schnetter, E., and Haas, R.: A large-scale dynamo
and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376–379
(2015)

Muno, M.P., Clark, J.S., Crowther, P.A., Dougherty, S.M., de Grijs, R., Law, C., McMillan, S.L.W.,
Morris, M.R., Negueruela, I., Pooley, D., Portegies Zwart, S., Yusef-Zadeh, F.: A neutron star
with a massive progenitor in Westerlund 1. Astrophys. J. Lett. 636, L41–L44 (2006)

Olausen, S.A., Kaspi, V.M.: The McGill magnetar catalog. {Astrophys. J. Supp. Ser. 212, 6 (2014)
Olausen, S.A., Zhu, W.W., Vogel, J.K., Kaspi, V.M., Lyne, A.G., Espinoza, C.M., Stappers, B.W.,

Manchester, R.N., McLaughlin, M.A.: X-Ray observations of high-B radio pulsars. Astrophys.
J. 764, 1 (2013)

Pacini, F.: Energy emission from a neutron star. Nature 216, 567–568 (1967)
Paczynski, B.: GB 790305 as a very strongly magnetized neutron star. Acta Astron. 42, 145–153

(1992)
Palmer, D.M., Barthelmy, S., Gehrels, N., Kippen, R.M., Cayton, T., Kouveliotou, C., Eichler,

D., Wijers, R.A.M.J., Woods, P.M., Granot, J., Lyubarsky, Y.E., Ramirez-Ruiz, E., Barbier,
L., Chester, M., Cummings, J., Fenimore, E.E., Finger, M.H., Gaensler, B.M., Hullinger, D.,
Krimm, H., Markwardt, C.B., Nousek, J.A., Parsons, A., Patel, S., Sakamoto, T., Sato, G.,
Suzuki, M., Tueller, J.: A giant γ -ray flare from the magnetar SGR 1806–20. Nature 434,
1107–1109 (2005)

Parfrey, K., Beloborodov, A.M., Hui, L.: Twisting, reconnecting magnetospheres and magnetar
spindown. Astrophys. J. Lett. 754, L12 (2012)

Parfrey, K., Beloborodov, A.M., Hui, L.: Dynamics of strongly twisted relativistic magnetospheres.
Astrophys. J. 774, 92 (2013)

Passamonti, A., Lander, S.K.: Stratification, superfluidity and magnetar QPOs. Mon. Not. Roy.
Astron. Soc. 429, 767–774 (2013)

Passamonti, A., Akgün, T., Pons, J.A., Miralles, J.A.: The relevance of ambipolar diffusion for
neutron star evolution. Mon. Not. Roy. Astron. Soc. 465, 3416–3428 (2017)

Perna, R., Pons, J.A.: A unified model of the magnetar and radio pulsar bursting phenomenology.
Astrophys. J. Lett. 727, L51 (2011)

Pintore, F., Mereghetti, S., Tiengo, A., Vianello, G., Costantini, E., Esposito, P.: The effect of X-ray
dust scattering on a bright burst from the magnetar 1E 1547.0–5408. Mon. Not. Roy. Astron.
Soc. 467, 3467–3474 (2017)

Pons, J.A., Geppert, U.: Magnetic field dissipation in neutron star crusts: from magnetars to isolated
neutron stars. Astron. Astrophys. 470, 303–315 (2007)

Pons, J.A., Geppert, U.: Confirmation of the occurrence of the Hall instability in the non-linear
regime. Astron. Astrophys. 513, L12 (2010)

Pons, J.A., Perna, R.: Magnetars versus high magnetic field pulsars: a theoretical interpretation of
the apparent dichotomy. Astrophys. J. 741, 123 (2011)

Pons, J.A., Miralles, J.A., Geppert, U.: Magneto-thermal evolution of neutron stars. Astron.
Astrophys. 496, 207–216 (2009)

Popov, S.B., Pons, J.A., Miralles, J.A., Boldin, P.A., Posselt, B.: Population synthesis studies of
isolated neutron stars with magnetic field decay. Mon. Not. Roy. Astron. Soc. 401, 2675–2686
(2010)

Price, D.J., Rosswog, S.: Producing ultrastrong magnetic fields in neutron star mergers. Science
312, 719–722 (2006)

Priest, E.R., Hood, A.W., Anzer, U.: A twisted flux-tube model for solar prominences. I - General
properties. Astrophys. J. 344, 1010–1025 (1989)

Rea, N., Esposito, P.: Magnetar outbursts: an observational review. In: Torres, D.F., Rea, N. (eds.)
High-energy emission from pulsars and their systems. In: Astrophysics and Space Science
Proceedings, pp. 247–273. Springer, Heidelberg (2011)



2 Strongly Magnetized Pulsars: Explosive Events and Evolution 91

Rea, N., Esposito, P., Turolla, R., Israel, G.L., Zane, S., Stella, L., Mereghetti, S., Tiengo, A., Götz,
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Chapter 3
Radio Pulsars: Testing Gravity
and Detecting Gravitational Waves

Delphine Perrodin and Alberto Sesana

Abstract Pulsars are the most stable macroscopic clocks found in nature. Spinning
with periods as short as a few milliseconds, their stability can supersede that of
the best atomic clocks on Earth over timescales of a few years. Stable clocks
are synonymous with precise measurements, which is why pulsars play a role
of paramount importance in testing fundamental physics. As a pulsar rotates, the
radio beam emitted along its magnetic axis appears to us as pulses because of the
lighthouse effect. Thanks to the extreme regularity of the emitted pulses, minuscule
disturbances leave particular fingerprints in the times-of-arrival (TOAs) measured
on Earth with the technique of pulsar timing. Tiny deviations from the expected
TOAs, predicted according to a theoretical timing model based on known physics,
can therefore reveal a plethora of interesting new physical effects. Pulsar timing
can be used to measure the dynamics of pulsars in compact binaries, thus probing
the post-Newtonian expansion of general relativity beyond the weak field regime,
while offering unique possibilities of constraining alternative theories of gravity.
Additionally, the correlation of TOAs from an ensemble of millisecond pulsars
can be exploited to detect low-frequency gravitational waves of astrophysical and
cosmological origins. We present a comprehensive review of the many applications
of pulsar timing as a probe of gravity, describing in detail the general principles,
current applications and results, as well as future prospects.
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3.1 Introduction to Pulsar Timing

Pulsars are highly-magnetized and fast-rotating neutron stars. In particular, radio
pulsars emit beams of radio waves, which, thanks to the lighthouse effect, appear
to distant observers as pulses for every rotation of the pulsar. So far we have
discovered more than 2000 pulsars in our own Galaxy and the neighbouring
Magellanic Clouds (Manchester et al. 2005). Of particular interest, millisecond
pulsars (MSPs) are pulsars with very short rotation periods (1–30 ms) and are often
found in binaries. It is now understood (Bhattacharya and van den Heuvel 1991) that
these pulsars have been spun-up during the recycling process in which a companion
star transfers angular momentum to the neutron star. Their very regular pulsations
make them extremely stable clocks. Indeed, through the process of pulsar timing,
which consists in monitoring the times-of-arrival (TOAs) of the pulsars’ observed
pulses over several years of observations, the rotation period of these pulsars can
be estimated to 15 significant figures. The monitoring of MSPs therefore allows us
to perform high-precision pulsar timing, with which we can precisely determine
the properties of pulsars and their environment, and study the composition of the
interstellar medium between Earth and each pulsar (Lorimer and Kramer 2012).

A newly-discovered pulsar is initially determined by its approximate rotation
period P , dispersion measure DM (representing the integrated column density of
free electrons along the line of sight between pulsar and Earth) and its position in
the sky. Through pulsar timing, additional parameters characterizing the pulsar and
its environment can be determined. A typical pulsar timing campaign consists of
the regular monitoring of TOAs from a known pulsar over several years and with
a weekly to monthly cadence. Each pulsar observation is divided into a number of
time intervals (sub-integrations) and frequency channels (sub-bands). Since radio
pulsars are faint and single pulses are rarely directly observable, it is necessary to
integrate (fold) the radio pulses over many rotations of the pulsar to obtain integrated
pulse profiles for each sub-integration and each sub-band. In addition, since the
dispersion of the radio signal in the interstellar medium means that the higher-
frequency signals arrive at the telescope before the lower-frequency signals, it is
necessary to perform the process of de-dispersion of the radio signals within each
sub-band. After folding and de-dedispersing the radio signals, topocentric TOAs
are obtained by comparing the observed pulse profiles with high signal-to-noise
standard profiles obtained from observations of the same pulsar over a time span of
several years. The precision of our pulsar timing observations is characterized by the
precision of the obtained TOAs (TOA error). Meanwhile, we can calculate expected
TOAs based on our best-known models for the pulsar parameters. By subtracting
the observed TOAs from the expected TOAs, we obtain timing residuals that are
expected to be scattered around a zero mean, and which are characterized by a
root-mean-square (rms) value. An excellent match between timing observations and
timing model corresponds to a small rms residual.
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Studying the pulsar timing residuals and improving the fitting of pulsar parame-
ters enable us to refine our pulsar models. These models include parameters related
to the pulsar’s rotation (e.g. the period derivative Ṗ ) and orbit (when the pulsar
is in a binary), which allow us to test gravity in the strong-field regime. Other
parameters describe the dispersion of the radio signal in the interstellar medium
as well as its time variations. Finally, and of great interest to Pulsar Timing Arrays
(PTAs), we could also find, in the resulting timing residuals, the signature for low-
frequency gravitational waves (GWs), such as those emitted by supermassive black
hole binaries. In particular, in order to detect a background of low-frequency GWs,
PTAs study the correlation of timing residuals for an array of pulsars, which are
used as cosmic clocks. It is therefore crucial for PTAs to use pulsars with very high
precision, or equivalently low rms residuals. In order to extract a low-frequency GW
signal from the timing residuals, we also need to properly account for both pulsar
timing noise, which is most likely related to instabilities in pulsar magnetospheres
(Lyne et al. 2010), and time variations of the dispersion measure.

We note that topocentric TOAs, which are measured with Earth’s telescopes,
are not in an inertial frame. They need to be converted to barycentric TOAs, as if
they were observed at the Solar System Barycentre (SSB). To transform topocentric
TOAs to SSB TOAs, that is to perform the process of barycentric correction, we
need to take several time delays related to Earth’s orbit within the Solar System into
account. There are also delays due to the pulsar’s orbit if the pulsar is in a binary.
The SSB TOAs tSSB are related to the topocentric TOAs ttopo in this way:

tSSB = ttopo + tclock − k × DM/f 2 (3.1)

+ (�R,� +�S,� +�E,�)+ (�R,bin +�S,bin +�E,bin), (3.2)

where tclock refers to clock correction terms, k is a constant, DM is the dispersion
measure and f is the observing frequency. The dominant term in the barycentric
correction is the Roemer delay �R,�, which is the time delay due to light travel
across the Earth’s orbit. Second, we have the Shapiro delay �S,�, which is due to
the curved gravitational field of the Sun and planets such as Jupiter. Finally, we have
the Einstein relativistic time delay �E,�, which is due to the time dilation from the
motion of the Earth, as well as the gravitational redshift from to the Sun and planets
in the Solar System. Additionally, if the pulsar is in a binary, there are equivalent
time delays due to the orbit of the pulsar and its companion: �R,bin, �S,bin, and
�E,bin. In fact, because of their strong-field dynamics, binary pulsars are extremely
interesting for performing tests of strong-field gravity.

In Sect. 3.2, we will review the science and main results in the use of radio
pulsars (and pulsar timing techniques) in testing gravity in the strong-field regime. In
particular, relativistic binaries such as double neutron star (DNS) binaries provide
great laboratories for testing General Relativity (GR), while neutron star—white
dwarf (NS-WD) binaries are particularly suitable for tests of alternative theories
of gravity. In Sect. 3.3, we discuss the science and main results in the use of
radio pulsars as ‘cosmic clocks’ for detecting gravitational waves from distant
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supermassive black hole binaries and the limits already placed on such a background
of gravitational waves. In Sect. 3.4, we discuss future prospects for both tests of
strong gravity and gravitational wave detection, especially in light of the Square
Kilometre Array (SKA). Finally we summarize our results in Sect. 3.5.

3.2 Tests of Gravity with Radio Pulsars

One hundred years have passed since Einstein presented his theory of gravity known
as General Relativity (GR) in 1915. Much progress has been made since then to test
the validity of GR. The most stunning confirmations of Einstein’s theory include the
indirect detection of gravitational waves (GWs) through timing observations of the
Hulse-Taylor pulsar (Hulse and Taylor 1975), and the recent, direct detections of
GWs from black hole binaries by the advanced Laser Interferometer Gravitational
Observatory (LIGO), as predicted by Einstein (Abbott et al. 2016). Most of the
earlier astrophysical tests of GR were done in the Solar System, which corresponds
to the weak-field limit of gravity (Will 1993), that is a regime where the gravitational
potential ε = GM/(Rc2) around a test body of mass M and radius R (where G is
the gravitational constant and c is the speed of light) is small. GR has thus far passed
all tests with flying colours in the weak-field limit (Will 2010, 2014). However, the
strong-field limit of gravity (where the gravitational potential ε is close to unity)
has not been extensively tested, and gravity could possibly deviate from GR in this
regime, such as in the environments around compact objects like neutron stars and
black holes. We note that while the “strength” of gravity is usually characterized by
the gravitational potential ε, a more thorough approach also includes the spacetime
curvature ξ ≡ GM/(R3c2) (Psaltis 2008). GR has also passed all tests conducted so
far in the strong-field regime, including the recent LIGO observations of black hole
binaries (Abbott et al. 2016). A number of alternative theories of gravity, which
deviate from GR in the strong-field limit, but not in the weak-field limit which has
been extensively tested, have been proposed (Damour and Esposito-Farèse 1996).
Current tests of gravity seek to better constrain GR and alternative theories of gravity
(ruling out some theories in the process), in the absence of any GR violation; or
to potentially find deviations from GR in the strong-field limit. Why look for a
breakdown of GR if it has thus far passed all tests with flying colours? As we
know, GR is not compatible with quantum mechanics and could break down at
small scales, such as in the interior of black holes where the concept of a black
hole singularity is not physical. In addition, the evolution of the universe cannot be
properly described by GR unless one adds the concept of dark energy, which could
be modelled as a cosmological constant in Einstein’s equations. The idea is then that
GR is not a complete theory and that by testing gravity in the strong-field limit, we
might find deviations from it.

Pulsars are ideal laboratories for testing GR and alternative theories of gravity.
Their environments involve strong gravitational fields (ε ∼ 0.2 at the surface
of a neutron star), and they provide us with much information in the form of
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extremely regular radio pulses. Pulsar binaries, which involve strong gravitational
fields in the vicinity of the neutron star as well as high orbital velocities, are
especially interesting for testing gravity, since the orbital dynamics depend on the
underlying theory of gravity. Through the fitting of post—Keplerian parameters (see
Sect. 3.2.1 below) in the pulsar TOAs, the orbital dynamics can be determined and
the deformation of spacetime around the pulsar can be constrained (Weisberg and
Taylor 1981; Damour and Taylor 1992; Edwards et al. 2006). Pulsars that are in orbit
with a compact object provide even more constraining tests of gravity, especially
when the two compact objects are in a close orbit. Therefore, by finding systems
with companions in closer orbits, we are able to test the limits of GR. In GR, the
self-energy of the neutron star does not affect the orbital dynamics. This is not the
case in most alternative theories of gravity, where additional scalar, vector or tensor
fields affect the spacetime curvature (Will 1993, 2010, 2014). We could therefore
observe a breakdown of the predictions of GR in these systems.

Recent and comprehensive reviews have been published on the topics of:
experimental gravity (Will 2014); astrophysical tests of gravity (Berti et al. 2015);
tests of gravity with radio pulsars (Wex 2014). Recent reviews on tests of gravity
with radio pulsars also include Possenti and Burgay (2016), Kramer (2016), and
(Shao et al. 2015) discusses in particular all of the ways in which the Square
Kilometre Array (SKA) will improve current gravity tests with pulsars. In this
section, we outline the methods used to constrain GR and alternative theories of
gravity with radio pulsars and present the most important results (best constraints)
achieved thus far. Future prospects, in particular with the SKA, will be discussed in
Sect. 3.4. The main methods with which radio pulsars can probe gravity involve:
the Parametrized Post-Keplerian (PPK) formalism in pulsar binaries, including
relativistic spin effects, as discussed in Sect. 3.2.1, and the Parametrized Post-
Newtonian (PPN) formalism which quantifies deviations from GR (Sect. 3.2.2). We
outline the best constraints on GR using the Double Pulsar in Sect. 3.2.1.3 and the
best constraints on scalar-tensor theories of gravity (using mostly pulsar—white
dwarf binaries) in Sect. 3.2.3.

3.2.1 Testing Gravity with the PPK Formalism

In the context of Newtonian physics, binary systems can be described by five
Keplerian parameters: the orbital period Pb, the orbital eccentricity e, the projected
semi-major axis x ≡ a sin i, the longitude of periastronω, and the time of periastron
passage T0. The mass function depends on the Keplerian parameters Pb and x:

f (M) ≡ (Mc sin i)3

(MP +Mc)2
= 4π2x3

GP 2
b

, (3.3)
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where MP is the mass of the pulsar, Mc is the mass of the companion, and G is the
gravitational constant. In the context of GR however, we will see below that we also
need to include Post-Keplerian (PK) parameters that describe the relativistic effects
beyond keplerian orbits, and which constitute excellent tools for testing gravity in
binary pulsars.

Since GR is highly non-linear, it does not provide an exact, analytic description
of the motion of two bodies. When compact objects move at less than relativistic
speeds (the orbital velocity v/c is small), the dynamics of the system can be
described by the Post-Newtonian (PN) approximation. In this formalism, the
equations of motion are described by a series expansion based on powers of the
small parameter (v/c)2n, where n is the order of the PN expansion and the 0-th term
corresponds to Newtonian dynamics. In fact, the motion of relativistic binaries is
adequately described by the PN approximation for most of the binary’s inspiral
(the orbital velocity is high enough that PN terms are necessary to account for
relativistic corrections; however when the velocity is too close to the speed of
light right before the merger, the PN expansion breaks down). The 1PN dynamics
in binaries—first order in the PN expansion, which corresponds to terms up
to (v/c)2—is described by the quasi-Keplerian parametrization of Damour and
Deruelle (1985, 1986). Furthermore, Damour and Taylor proposed the Parametrized
Post-Keplerian (PPK) formalism, which is a phenomenological parametrization
based on the quasi-Keplerian parametrization (Damour 1988; Damour and Taylor
1992): it parametrizes the effects observed in both pulsar timing and pulse structure
data. It is theory-independent, which allows us to test both GR and alternative
theories of gravity, and consists of a Post-Keplerian (PK) set of parameters that
describe the dynamics of relativistic binaries.

PK parameters are a function of known Keplerian parameters (supposedly
already known to high precision), leaving only the two masses as unknowns: the
pulsar’s mass Mp and the companion’s mass Mc. Therefore the measurement of
two PK parameters leads to the determination of the two masses. By constraining
more PK parameters, we can also constrain (or exclude) theories of gravity. N
PK parameters will yield N − 2 tests for any chosen gravity theory. These PK
parameters, which are included in pulsar timing models and therefore determined
with years of pulsar data (always gaining higher precision with longer data spans),
are best plotted in a Mp–Mc diagram. If PK constraints overlap in a mass-mass plot
for a particular gravity theory, the particular theory of gravity is still considered a
possible valid theory of gravity. If the PK constraints do not overlap, that theory is
excluded (Possenti and Burgay 2016; Wex 2014).

In GR, the most important PK parameters are: the variations of two Keplerian
parametersω and Pb defined in Sect. 3.1, i.e. the relativistic precession of periastron
ω̇ and the change in the orbital period due to the back-reaction of gravitational
wave emission on the binary motion Ṗb . Additionally, we have the time delays
such as the Einstein delay related to the changing time dilation of the pulsar clock
(due to variations in orbital velocity) and gravitational redshift γ , and the range r
and shape s of the Shapiro delay related to a changing gravitational redshift in the
gravitational field of the companion (Shapiro 1964). Their expressions as a function
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of the Keplerian parameters Pb, x, e and the two masses Mp and Mc are shown
below (Damour and Deruelle 1986; Taylor and Weisberg 1989; Damour and Taylor
1992):

ω̇ = 3 T 2/3
�

(
Pb

2π

)−5/3 1

1− e2
(Mp +Mc)

2/3, (3.4)

γ = T
2/3
�

(
Pb

2π

)1/3

e
Mc(Mp + 2Mc)

(Mp +Mc)4/3 , (3.5)

r = T�Mc, (3.6)

s ≡ sin i = T
−1/3
�

(
Pb

2π

)−2/3

x
(Mp +Mc)

2/3

Mc

, (3.7)

Ṗb = −192π

5
T

5/3
�

(
Pb

2π

)−5/3
(

1+ 73
24e

2 + 37
96e

4
)

(1− e2)7/2

MpMc

(Mp +Mc)1/3 , (3.8)

where masses are expressed in solar units, T� ≡ GM�/c3 = 4.925490947 μs,
G is Newton’s gravitational constant and c is the speed of light. Additional PK
parameters of interest include the change in orbital eccentricity ė and the change
in the projected semi-major axis ẋ. The relativistic precession of periastron ω̇ is
easiest to measure in eccentric orbits, while the Shapiro parameters r and s are
measurable in nearly edge-on binary systems. In alternative theories of gravity,
the expressions for the PK parameters are slightly different and include theory-
dependent parameters that can be constrained (Will 1993, 2014).

3.2.1.1 Double Neutron Star Binaries

The first real test of gravity in the strong-field regime was accomplished by Hulse
and Taylor in 1974 with the discovery of PSR B1913+16 (dubbed the Hulse-Taylor
pulsar), which was the first binary pulsar ever discovered in the radio band. It
consists of a pulsar in a double neutron star (DNS) binary (Hulse and Taylor
1975). The measurement of two PK parameters (ω̇ and γ ) enabled the precise
determination of the two neutron star masses (assuming GR was correct) (Weisberg
et al. 2010). Having fully determined the binary system, any additional test would
constitute a test of GR. In fact, the measurement of the decrease in the orbital period
Ṗ , associated with a loss of orbital energy, was found to be consistent with GR’s
predictions (Taylor et al. 1979). Specifically, it is consistent with GR’s quadrupole
formula that describes the backreaction of GW emission on the binary motion
(Peters and Mathews 1963). This confirmed GR’s predictions and provided the first
indirect detection of GWs as predicted by Einstein. The agreement between the
measured Ṗb and the predicted GR value is currently at the 0.2% level (Weisberg
et al. 2010).
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The pulsar PSR J0737–3039, discovered at Parkes in 2003 (Burgay et al. 2003;
Lyne et al. 2004) is, like the Hulse-Taylor pulsar, composed of a DNS binary. In
addition, the second neutron star has been observed as a pulsar; this system is
therefore dubbed the Double Pulsar with two pulsars: PSR J0737–3039A (psr A
with a period of 22 ms) and PSR J0737–3039B (psr B with a period of 2.7 s). The
Double Pulsar is a profoundly unique system for testing gravity, since the radio
pulses from both stars provide two clocks that can be monitored with pulsar timing.
It is also characterized by large orbital velocities and a closeness of the orbit, which
both amplify the importance of relativistic effects, and the high orbital inclination
makes its timing easier. In this system, five PK parameters have been determined:
ω̇, γ , r and s and Ṗb (Burgay et al. 2003). Additionally, the sizes of both pulsars’
orbits were estimated and the mass ratio R, which is independent of the theory of
gravity, was measured for the first time in a DNS system (Lyne et al. 2004).

DNS binaries are ideal systems for testing GR. In recent years, an increasing
number of DNS systems have been discovered: so far, more than 15 DNS systems
are known (Tauris et al. 2017). In the next few years, more pulsar surveys (in
particular with the SKA, see Sect. 3.4) will discover new DNS binaries and further
constrain GR.

3.2.1.2 Relativistic Spin Effects

Not all relativistic effects can be described at the 1PN level with the PK parameters.
For example, tests of relativistic gravity can be done at 2PN (Damour and Esposito-
Farèse 1996) or 2.5PN (Mirshekari and Will 2013). In addition, binary pulsars can
have spin. The spin terms appear at higher orders in the Post-Newtonian expansion
(Barker and O’Connell 1975; Damour 1987; Porto 2006; Brumberg 1991). In
particular, the presence of spin-orbit coupling terms (the coupling of the spin of one
pulsar with the binary’s angular momentum) in the binary’s equations of motion
leads to the Lense-Thirring precession of the orbit or frame-dragging, as well as a
change in the projected semi-major axis ẋ (Barker and O’Connell 1975; Damour and
Schafer 1988; Stella and Possenti 2009). Additionally, time-dependent spin terms
in the equations of motion lead to changes in the orientations of the pulsar spins
(which we refer to as relativistic spin precession or geodetic precession) (Damour
and Ruffini 1974; Barker and O’Connell 1975; Boerner et al. 1975). The precession
of the pulsar’s rotation axis is essentially being caused by the curvature of spacetime
from the companion star. This effect can be seen in changes in the pulsar emission:
changes in the spin axis of the pulsar makes different regions of the magnetosphere
visible to the observer, thus affecting the observed pulse profile.

In the Double Pulsar, the contribution to the Lense-Thirring precession is
dominated by the fast-rotating psr A. However, ẋ is difficult to measure because of
the near alignment of pulsar spin and orbital angular momentum (Ferdman et al.
2013). Future measurements of the Lense-Thirring precession with the Double
Pulsar is discussed in Kehl et al. (2016). The Double Pulsar is however the
best system we know so far for testing relativistic spin precession (Stella and
Possenti 2009). Indeed, the relativistic precession of psr B’s spin axis can be
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determined thanks to the eclipses of psr A (that is when psr A passes behind psr
B). Its precession rate was measured and found to be compatible with GR with
an uncertainty of 13%: �B = (4.77±0.66

0.65)
◦ year−1 (Breton et al. 2008; Perera

et al. 2010). Relativistic spin precession has also been observed in the following
binary pulsars: PSR B1913+16 (Kramer 1998; Weisberg and Taylor 2002; Clifton
and Weisberg 2008), PSR B1534+12 (Stairs et al. 2004; Fonseca et al. 2014),
J1141–6545 (Manchester et al. 2010) and J1906+0746 (Lorimer et al. 2006). J0737–
3039B and PSR B1534+12 are the only two pulsars for which we have a direct
measurement of the precession rate (and which matches GR predictions) (Stairs
et al. 2004; Fonseca et al. 2014; Breton et al. 2008; Perera et al. 2010).

3.2.1.3 Best Test of GR: The Double Pulsar

In the Double Pulsar, we have a total of seven mass constraints, thanks to the
determination of five PK parameters, the mass ratio R (see Sect. 3.2.1.1), and the
precession rate �B (Kramer and Stairs 2008) (see Sect. 3.2.1.2). In addition, there
are constraints related to the Newtonian mass function, one for each pulsar (see
Eq. (3.3)). The masses of both pulsars are determined with high precision, leaving us
with an additional five tests of GR, as shown in Fig. 3.1. The Double Pulsar provides

Fig. 3.1 Mass-mass diagram for the Double Pulsar J0737–3039. Shaded regions are excluded by
the Newtonian mass functions (one for each pulsar). The five PK parameters (Ṗb, ω̇, γ , r and s),
the mass ratio R and the precession rate of psr B (�SO) constrain the remaining parameter space,
providing multiple tests of GR. So far GR is verified with an uncertainty of 0.05% (figure courtesy
of Michael Kramer)
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thus far the most stringent test of GR, with an uncertainty of 0.05% (Kramer et al.
2006). The longer we continue to monitor this system, the more precise the TOAs,
and the better the GR constraints we will obtain. In particular, ω̇ could be determined
up to the 2PN order, and the spin of psr A could be determined. With an even
better determination of Ṗb (such as that expected thanks to the interferometric
determination of the parallax Deller et al. 2009), the Double Pulsar will also provide
stringent constraints on alternative theories of gravity that predict the presence of
dipolar gravitational radiation. Through a measurement of its moment of inertia
(Damour and Schafer 1988), the Double Pulsar could also constrain the equation of
state of nuclear matter in neutron star interiors (Watts et al. 2015).

3.2.2 Testing Gravity Using the PPN Formalism

As we have seen in the previous sections, the fitting of PK parameters in the timing
data of pulsar binaries allows us to determine the masses of the binary companions
(if at least two PK parameters are measured) and to constrain gravity theories (if
more than two PK parameters are measured). In addition, the study of the variations
in pulse profiles allows us to determine changes in the spin precession of pulsars.
These tools can also be applied to test the Strong Equivalence Principle (SEP),
Lorentz invariance or conservation of momentum. The SEP is unique to GR: any
violation of the SEP is a violation of GR (Will 1993). The SEP has been tested
extensively in the Solar System, that is in the weak-field limit, using the PPN
formalism (Will 2010; Will and Nordtvedt 1972; Will 1993, 2014). We refer the
reader to Will (2014) for a full description of the formalism. The main idea is that in
any metric theory of gravity, the dynamics (i.e. the equations of motion) of objects
in a gravitational field depends exclusively on the structure of the metric. Therefore,
any measurable departure from GR for a given theory has to be characterized by
some difference in its metric compared to the GR one. In the weak-field limit, the
most general metric can be written as an expansion of the Minkowski spacetime
with the addition of ten (small) PPN parameters. Pulsars can test the SEP using the
same formalism, providing in this way complementary tests to Solar System tests,
since they can test gravity (GR and alternative theories of gravity) in the strong-
field limit (Stairs 2003). This however requires a modification of the original ten
PPN parameters to account for strong-field effects (Damour and Esposito-Farèse
1996; Damour and Esposito-Farese 1992) (the original PPN expansion is valid in the
weak-field limit). The information we collect from pulsars with the determination
of PK parameters can be translated into constraints on PPN parameters (PK
parameters describe small variations in the motion of compact binaries, which can
be mapped into small variations of the underlying metric). The ten (modified) PPN
parameters describe the existence of preferred frames, preferred locations, the non-
conservation of momentum, the non-linear superposition of gravitational effects, or
the space-time curvature produced by a unit mass (for a full definition and physical
interpretation of each individual parameter, see Will (2014); Possenti and Burgay
(2016)).
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3.2.2.1 SEP Violation and Orbital Dynamics

The SEP includes both the Weak Equivalence Principle (WEP) and the Einstein
Equivalence Principle (EEP). The WEP tests the universality of free fall, stating that
the trajectory of a free-falling body in a gravitational field should be independent
of its internal structure. A first test of the SEP can therefore be accomplished
by comparing the trajectories of two massive objects in a gravitational field, for
example by looking for a polarization in the direction of the gravitational potential
(this is the Nordtvedt effect or gravitational Stark effect, Nordtvedt (1968). Lunar
Laser Ranging (LLR) experiments have tested the Nordtvedt effect by comparing
the Earth and the Moon’s free falls in the Sun’s gravitational potential, and have
imposed strong constraints on PPN parameters for the Solar System (Hofmann et al.
2010). Similarly, we can look at the two companions of a pulsar binary and how they
fall in the gravitational potential of the Galaxy. It works best if the two companions
are different in mass and composition, therefore double neutron star binaries (DNS)
are not ideal laboratories for testing SEP violations. Instead, a sample of pulsars
with white dwarf companions (PSR-WD) can impose strong constraints on SEP
violations (Stairs et al. 2005; Gonzalez et al. 2011; Freire et al. 2012), in particular
on the following parameter:

� =
(

Mgrav

Minertial

)
1
−
(

Mgrav

Minertial

)
2
, (3.9)

where Mgrav is the gravitational mass and Minertial is the inertial mass of each body.
So far the best constraint on � is from a study of 27 PSR-WD binaries (Gonzalez
et al. 2011): � < 4.6× 10−3 (see Table 3.1).

The discovery of an MSP (PSR J0337+1715) in a triple system with two white
dwarf companions (Ransom et al. 2014) will allow us to greatly improve the
constraint on the SEP. The masses of the three bodies have all been determined. The
two inner masses (the pulsar and inner WD), of different masses and composition,
are moving in the gravitational field of the outer WD, which is larger than that of
the Galaxy by at least six orders of magnitude, therefore the SEP violation would
be greatly magnified. This system could therefore be the best laboratory we have
so far to constrain the SEP, with an estimated constraint on the parameter � of four
orders of magnitude better than current constraints, most likely with the use of future
telescopes (Ransom et al. 2014; Shao et al. 2015; Berti et al. 2015; Shao 2016).

3.2.2.2 SEP Violation: Violation of LLI and LPI

The EEP states that local, non-gravitational experiments are independent of the
frame. The EEP consists of the Local Lorentz Invariance (LLI) and Local Position
Invariance (LPI). Violations of LLI correspond to the observation of a preferred
frame, while violations of LPI correspond to the observation of preferred positions,
and may also lead to variations in fundamental constants such as the gravitational
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Table 3.1 Best constraints on PPN parameters characterizing deviations from the Strong Equiv-
alence Principle (SEP); on the spatial anisotropy |�G/G| and time variation |Ġ/G| of the
gravitational constant; on dipolar radiation via the parametrization |αP − α0|
Parameter Upper limit Method

� 5.6× 10−3 (95% CL) PSR-WD binaries (Stairs et al. 2005)

4.6× 10−3 (95% CL) PSR-WD binaries (Gonzalez et al.
2011) (see Wex (2014) for discussion)

α̂1

(
−0.4+3.7

−3.1

)
× 10−5 (95% CL) Timing analysis of PSR J1738+0333

better than solar system (Shao and
Wex 2012; Antoniadis et al. 2012;
Freire et al. 2012)

α̂2 1.6× 10−9 (95% CL) Timing analysis of PSR J1738+0333

+ pulse profile data of
B1937+21/J1744–1134

better than solar system (Antoniadis
et al. 2012; Freire et al. 2012; Shao
et al. 2013)

α̂3 4× 10−20 (95% CL) PSR-WD binaries (better than solar
system) (Stairs et al. 2005)

ξ̂ 3.9× 10−9 (95% CL) Pulse profile data of
B1937+21/J1744–1134

better than solar system (Shao and
Wex 2013)

|�G
G
|anis. 4× 10−16 Derived from ξ̂ constraint (Shao and

Wex 2013)

ζ̂2 4× 10−5 Non-conservation of momentum from
B1913+16 (Will 1992)

| Ġ
G
| [(−0.6 ± 1.1)] × 10−12 year−1 (95%

CL)
J1713+0747 (Zhu et al. 2015)

dipolar 0.002 (95% CL) J1738+0333 (Freire et al. 2012)

|αP − α0| 0.005 (95% CL) J0348+0432 (Antoniadis et al. 2013)
interesting because of massive NS

constant G. Violations of LLI and LPI both involve changes in the orbital dynamics
of binary pulsars and the spin precession of solitary pulsars, which are characterized
by PK parameters such as the changes in orbit eccentricity ė, inclination ẋ, and
the periastron advance rate ω̇. Testing of LPI can in particular be done by looking
at the spin precession of pulsars: a violation of LPI could be seen if we observe
changes in the expected pulsar spin precession around the acceleration toward the
galactic centre. This would be evident by studying the stability of the pulse profiles
of solitary pulsars.

The violations of LLI and LPI, which, for binary pulsars, are determined by
changes in the aforementioned PK parameters, are characterized by the following
PPN parameters: α̂1, α̂2 and α̂3, where the ˆ refers to the strong-field generalization
of the associated PPN parameter. The parameters α̂1 and α̂2 involve the existence
of a preferred frame (i.e. non-zero values would imply a violation of LLI). α̂2 also
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includes the spin precession of the pulsar, which can be seen from changes in pulse
profiles. A non-zero value of the PPN parameter α̂3 involves both the existence of a
preferred frame (a violation of LLI) and a violation of conservation of momentum
(Will 1993). The parameter ξ̂ , which is the strong-field equivalent of the Whitehead
PPN parameter ξ , characterizes LPI violation through measurements of the spin
precession; a limit on ξ̂ can be converted into a constraint on the spatial anisotropy of
the gravitational constant G (Shao and Wex 2013). The parameter ζ̂2 characterizes
non-conservation of momentum through the measurements of the polarization of
the orbit and the spin precession. Additionally, if gravitational dipole radiation were
to be observed, the SEP would be automatically violated, and thus GR would be
violated. This would also lead to stringent constraints on alternative theories of
gravity.

We find that the timing analysis of the PSR-WD binary PSR J1738+0333 leads
to some of the best constraints on PPN parameters. Additionally, it is also the best
pulsar so far to constrain scalar-tensor gravity (see Sect. 3.2.3). Other interesting and
complementary constraints are obtained from the pulse profile analysis of isolated
MSPs PSR B1937+21 and PSR J1744–1134. The best constraints on α̂1, α̂2, α̂3, ξ̂
and ζ̂2 are listed in Table 3.1.

3.2.2.3 Varying Gravitational Constant

Violation of LPI can lead to variations in fundamental constants such as the gravi-
tational constant G. PSR J0437–4715 is one of the best pulsars for high precision
timing because of its closeness to Earth and its brightness (Johnston et al. 1993;
Deller et al. 2009; Kopeikin 1995, 1996; van Straten et al. 2001). The inclination
angle can be determined independently of the theory of gravity and compared to the
expected Shapiro delay (s = sin i). They are in good agreement. Until recently, this
pulsar provided the best test of Ġ (using pulsar binaries): | Ġ

G
| < 23× 10−12 year−1

(Verbiest et al. 2008). Recent measurements of the pulsar PSR J1713+0747 however
show a tighter constraint: | Ġ

G
| < (−0.6±1.1)×10−12 year−1 at 95% CL (Zhu et al.

2015). This is the best limit on Ġ/G using pulsar binaries, which are now close to
competing with Solar System tests. Indeed, Lunar Laser Ranging currently provides
the most stringent constraint with | Ġ

G
| < (−0.7 ± 3.8) × 10−13 year−1 (Hofmann

et al. 2010).

3.2.3 Tests of Alternative Theories of Gravity

Pulsars allow us to test both GR and alternative theories of gravity: we may either
detect a breakdown of GR; or we could confirm GR and place limits on alternative
theories of gravity, such as scalar-tensor theories. These theories involve additional
degrees of freedom (in the form of scalar fields) in the Einstein-Hilbert action,
which describes how gravity is mediated. In the particular case of tensor-mono-
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scalar theories Damour and Esposito-Farese (1993); Damour and Esposito-Farèse
(1996), gravity is mediated by the Einstein metric field g∗μν as well as a scalar field
φ, while matter is coupled to the physical metric gμν . The physical metric gμν and
Einstein metric g∗μν are related through the coupling function a(φ) between matter
and scalar field, such that gμν = g∗μν a2(φ). In these theories, the coupling function
a(φ) takes the form:

a(φ) = α0φ + 1/2β0φ
2 (3.10)

This formalism includes GR in the case where α0 = β0 = 0. It also includes the
Jordan-Fierz-Brans-Dicke theory (Brans and Dicke 1961; Will and Zaglauer 1989)
in the case where β0 = 0 and α0 = √1/(2ωBD + 3), whereωBD is the Brans-Dicke
parameter. Variations in the scalar field φ could produce observable effects such as
a gravitational constant varying with space and time (non-zero Ġ) (Damour and
Esposito-Farese 1992; Will 1993) or the detection of gravitational dipole radiation
in a pulsar binary, either of which would constitute a violation of the SEP and
a breakdown of GR. The existence of a varying gravitational constant or dipole
gravitational radiation would affect the PK parameters, most particularly the orbital
decay Ṗb (Damour 1988; Wex 2014). In the absence of an obvious breakdown
of GR (no detection of Ġ or GW dipole radiation), the (α0, β0) parameter space
can be constrained by binary pulsar observations (Freire et al. 2012). We note
that non-perturbative effects such as spontaneous scalarization could also affect
the dynamics of the binary system (Damour and Esposito-Farese 1993). While the
DNS systems such as B1913+16, B1534+12 and J0737–3039 provide constraints on
scalar-tensor theories, they are not the best sources for testing alternative theories
of gravity such as scalar-tensor gravity. Indeed, in the case of two identical neutron
stars, the dipolar gravitational radiation term essentially vanishes. Pulsars with WD
companions, with different masses and compositions, can better constrain these
theories. In most PSR-WD binaries, only two PK parameters can be determined
(the Shapiro delay parameters r and s), allowing a determination of the two binary
masses, however that is not enough for constraining gravity theories (Antoniadis
et al. 2012, 2013; Wex 2014). Interestingly, the following PSR-WD binaries allow
for the determination of more than 2PK parameters: J1141–6545, J1738+0333,
J0437–4715 and J0348+0432. They provide tests that are complementary to the
GR tests using DNS J0737–3039 and B1913+16 (Possenti and Burgay 2016).

• In PSR J1141–6545, three PK parameters can be determined: ω̇, γ , and Ṗb (Kaspi
et al. 2000). This has led to the determination of both masses and one test of GR
at the 10% level (Bhat et al. 2008). The pulsar’s relativistic spin precession can
also be observed (Manchester et al. 2010), but is not as well measured as for the
Double Pulsar or B1913+16. It is however useful for constraining scalar-tensor
theories and possibly detecting dipolar gravitational radiation.

• PSR 1738+0333 is so far the most useful pulsar for constraining scalar tensor
theories (Jacoby 2005; Freire et al. 2012; Wex 2014), as it provides a precise
determination of Ṗb (in good agreement with GR), as well as proper motion and
parallax, giving the best upper limit on dipolar GW (see Table 3.1).
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• PSR J0348+0432, discovered in 2013 (Boyles et al. 2013; Lynch et al. 2013),
has the highest mass of any pulsar observed so far: 2.01 ± 0.04M�. It provides
a stringent constraint on Ṗb, which is currently at the 82% agreement with GR,
leading to a constraint on dipolar GW radiation, though its upper limit is not
as high as J1738+0333 (see Table 3.1). Spontaneous scalarization in such a
massive system creates an important amount of gravitational dipolar radiation,
which rules out an important part of the parameter space in alternative theories;
this pulsar also places constraints on a long-range field (Antoniadis et al. 2013).
Finally, thanks to its high mass, J0348+0432 constrains the equation of state of
nuclear matter, favouring a stiff equation of state (Watts et al. 2015).

So far, PSR J1738+0333 and PSR J0348+0432 provide the best constraints
on scalar-tensor gravity theories (including Jordan-Brans-Dicke theory for which
β0 = 0); their constraints are comparable to solar system tests such as the Cassini
probe (see Fig. 3.2) (Freire et al. 2012). They also provide the best constraints
on quadratic scalar-tensor gravity (for for β0 < −3 and β0 > 0 (Freire et al.
2012; Berti et al. 2015; Kramer 2016; Wex 2014). J1738+0333 also excludes

Fig. 3.2 Constraints on the coupling parameters α0 and β0 in tensor-mono-scalar theories with
coupling α(φ) = α0φ+1/2β0φ

2 (figure courtesy of Norbert Wex). GR is located at the intersection
of α0 = 0 and β0 = 0, while Jordan-Brans-Dicke theories, for which β0 = 0, are along the y-axis.
The allowed parameter space is constrained to the area below all of the solid lines. The PSR-
WD binaries J1738+0333 (purple solid line) and PSR J0348+0342 (blue solid line) provide the
best constraints so far, and are comparable to Solar System constraints such as with the Cassini
spacecraft (grey solid line) and the future GAIA astrometric satellite (grey dashed line). The triple
system PSR J0337+1715 (red dashed line) will likely impose stronger constraints in the near future,
especially as observed with the SKA. In addition, we show the expected constraints (black dashed
lines) from two hypothetical PSR-BH systems we expect to find with the SKA (with orbital periods
Pb = 2d and Pb = 0.5d, respectively). We see that the pulsar timing of PSR-WD systems (such as
the triple system PSR J0373+1715) and PSR-BH systems are complementary: the former imposes
strong constraints at positive β0’s, while the latter imposes strong constraints at negative β0’s.
These estimates are based on a stiff NS equation of state (MPA1), making the constraints rather
conservative (Kramer 2016; Shao et al. 2017)
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TeVeS-like theories (Freire et al. 2012). Massive Brans-Dicke theories are best
constrained by PSR J1141–6545 (Alsing et al. 2012), while Einstein-Aether theories
are best constrained by a combination of pulsars: the PSR-WD binaries J1141–6545,
J1738+0333, J0348+0432 together with the Double Pulsar J0737–3039 (Yagi et al.
2014). We note that the triple system PSR J0337+1715 will likely impose even
stronger constraints in the near future (Ransom et al. 2014; Shao 2016; Berti et al.
2015). The discovery of a pulsar—black hole (PSR-BH) system would also further
constrain the parameter space of scalar-tensor theories (Liu et al. 2012, 2014; Wex
et al. 2013).

3.3 Gravitational Wave Detection with Radio Pulsars

Because of the exquisite stability of MSPs, pulse TOAs are extremely sensitive to
any type of perturbation affecting the photon path from the source to Earth, such
as variations in the interstellar medium (ISM), solar wind, etc. (see Sect. 3.3.3.1
below). This makes MSPs formidable tools for detecting GWs. In fact, the passage
of a GW between a pulsar and the Earth modifies the null geodesic along which
the photons propagate, resulting in small alterations of the pulse TOAs. This was
realized even before the discovery of the first MSP (Sazhin 1978; Detweiler 1979),
by applying the mathematical formalism developed by Estabrook and Wahlquist
(1975) for detecting GWs using Doppler spacecraft tracking to pulsars. Early work
based on a handful of regular pulsars made use of the technique to constrain
a putative low-frequency GW background (GWB) of cosmic origin to the level
of about �gw ≈ 10−4 times the critical density of the Universe (Hellings and
Downs 1983; Bertotti et al. 1983; Romani and Taylor 1983). In particular, Hellings
and Downs (1983) proposed that the effect of a GWB is encoded in the peculiar
correlation of TOAs collected from pairs of pulsars at different sky locations, and
worked out the analytical form of the pattern, which is now known as the Hellings
and Downs curve and is at the heart of current GWB searches with PTAs. The idea
was elaborated by Foster and Backer (1990), who proposed the concept of a Pulsar
Timing Array (PTA), consisting in the regular monitoring of a number of the newly-
discovered MSPs (Backer et al. 1982). By just monitoring two MSPs, Kaspi et al.
(1994) improved the limit on a stochastic GWB to �gw = 6 × 10−8. In the early
2000 s, three major collaborations formed with the goal of providing systematic
timing residuals on a sizable ensemble of MSPs: the European Pulsar Timing Array
(EPTA Desvignes et al. 2016), the Parkes Pulsar Timing Array (PPTA Reardon
et al. 2016) and the North American Nanohertz Observatory for Gravitational Waves
(NANOGrav, Arzoumanian et al. 2015). The three collaborations also share data
under the aegis of the International Pulsar Timing Array (IPTA, Verbiest et al.
2016), with the goal of obtaining a combined, more sensitive dataset. Altogether, the
three PTAs are timing approximately fifty of the best MSPs with a weekly cadence
(�t) and for a timespan T of several years (more than 20 in some cases), with a
timing precision ranging from a few microseconds to a few tens of nanoseconds.
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PTAs are therefore sensitive to GWs in the frequency range 1/T < f < 1/(2�t),
corresponding to a few to a few hundred nanohertz. Putative GW signals in this
frequency range include those from cosmological stochastic backgrounds from
inflation, phase transitions or cosmic strings (Lasky et al. 2016), but the loudest GW
source is expected to be the cosmic population of inspiralling supermassive black
hole binaries (SMBHBs), formed following galaxy mergers (Sesana et al. 2008).

3.3.1 Detection Principle

To elucidate the detection principle of PTAs, we follow the derivation in Maggiore
(2018). Let us consider a pulsar p pulsating regularly as a perfect clock. A
modification in the photon path will result in the pulses arriving slightly earlier or
later. The net result is therefore a change in the pulsation frequency ν(t) observed
on Earth, i.e. a redshift (or Doppler shift):

z(t) = ν(t)− ν0

ν0
= δν(t)

ν0
, (3.11)

where ν0 is the intrinsic pulsar frequency. To establish the potential of PTAs as
GW detectors, we need to compute the redshift that is induced by a GW crossing
the line of sight to the pulsar. In analogy with spacecraft Doppler tracking studied
by Estabrook and Wahlquist (1975), it can be demonstrated that in a conformal flat
spacetime, for a wave hij (t) incident on a pulsar located in direction p̂, the observed
redshift at time t is

z(t) = 1

2
pipj

∫ t

tp

dt ′
∂

∂t ′
hij [t ′, (t − tp)p̂]. (3.12)

Equation (3.12) is obtained by integrating the time component of the photon null
geodesic equation in the weak field limit (see Lee et al. (2010) and referenceses
therein). Let us now take, without any loss of generality, the case of a wave incident
in the z direction �̂ = (0, 0,−1), and a pulsar located in the (x, z) plane in direction
p̂ = (sin θp, 0, cos θp), so that π − θp is the angle between the direction to the
pulsar and the propagation direction of the incoming wave (thus θp is the angle
subtended by the pulsar and the GW source, located at −�̂ = (0, 0, 1)). We restrict
our discussion to GR, so that the wave only has tensor components identified by
hxx = −hyy , hxy = hyx . In this case, we have pipjhij = sin2 θphxx and, after
some manipulations, Eq. (3.12) gives

z(t) = 1

2
(1+ cos θp)[hxx(tp)− hxx(t)]. (3.13)
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Here t − tp ≡ τ = (L/c)(1+ �̂ · p̂) is the difference in TOAs of the incident wave
at the pulsar and at the Earth, where L is the Earth-pulsar distance. We note that the
redshift z is given by the difference between the metric perturbations at the pulsar at
the time of radio emission tp and the metric perturbations at the Earth at the time of
observation t . Equation (3.13) provides some insight about the response of a pulsar
to an incoming wave. If the GW source and the pulsar are located on opposite sides
(as seen from Earth), then θp = π and the resulting redshift vanishes. If, on the
other hand, the GW source is located right behind the pulsar, then t = tp and the
two metric perturbation components cancel exactly, again giving zero redshift. This
is consistent with the transverse nature of GWs.

The actual quantity measured in PTA experiments is the timing residual r(t).
This is simply given by the integral over observing time of the redshift induced by
the incident GW:

r(t) =
∫ t

0
dt ′z(t ′, �̂), (3.14)

where t is the time of a given pulsar observation, and the integral starts from the
beginning of the timing experiment.

3.3.1.1 Generalization of the Residual Formula

Equation (3.13) describes the response of the pulsar-Earth detector to an incoming
wave in the z direction. It is useful to generalize the formula in two ways. First,
although for any given source-pulsar pair we can always define a frame in which
the source is in the z direction and the pulsar lies in the (x, z) plane, PTAs combine
observations of an ensemble of pulsars Foster and Backer 1990. It is therefore useful
to write the pulsar response in a generic fixed frame which does not have a specific
alignment with respect to the source-Earth-pulsar reference. Second, Eq. (3.13)
is expressed in terms of the GW component along the direction defined by the
projection of the pulsar location into a plane perpendicular to the incident wavefront
(direction x in this case). It is however useful to write the response in terms of the
two tensor polarizations of the GW wave h+ and h×.

We consider a Cartesian reference frame (x, y, z) centred at the solar system
barycentre.1 The source �̂ and pulsar p̂ locations are therefore defined in terms of
the standard angles (θ, φ):

�̂ = −(sin θ cosφ) x̂ − (sin θ sin φ) ŷ − cos θ ẑ (3.15a)

1As discussed in Sect. 3.1, TOAs are computed by converting the pulse arrival time at the
observatory to the pulse arrival time at the solar system barycentre. In fact, when we refer to
‘TOAs measured on Earth’, ‘GW Earth term’ etc., those have to be intended ‘at the solar system
barycentre’.
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p̂ = (sin θp cosφp) x̂ + (sin θp sin φp) ŷ + cos θpẑ. (3.15b)

Note the minus sign in �̂, which is defined as the direction of the incoming wave.
The wave propagating from the �̂ direction consists of two polarization states

h+ and h×. The relation between those and the metric perturbation along a specific
direction is given by

hij (t, �̂) = e+ij (�̂)h+(t, �̂)+ e×ij (�̂)h×(t, �̂), (3.16)

where the polarization tensors eAij (�̂) (with A = +,×) are defined as

e+ij (�̂) = m̂im̂j − n̂i n̂j , (3.17a)

e×ij (�̂) = m̂i n̂j + n̂im̂j . (3.17b)

Here m̂, n̂ are the GW principal axes and define, together with the direction of
the wave propagation �̂, an orthonormal basis. Note that m̂ is aligned with the
plus wave polarization. We therefore have two Cartesian coordinate systems: one
is the ‘detector frame’ defined by (x̂, ŷ, ẑ), and one is the ‘wave propagation frame’
defined by (m̂, n̂, �̂). To compute the response in the detector frame, one needs
to project onto it the metric perturbation defined along the principal axes m̂, n̂ of
the wave propagation frame. The principal axis �m defines an angle ψ (counter-
clockwise about the wave propagation) with the line of nodes of the detector frame.
We can thus perform a rotation by an angle ψ to express m̂, n̂ in the detector frame
coordinates (Anderson et al. 2001):

m̂ = (sin φ cosψ − sinψ cos φ cos θ)x̂ − (cos φ cosψ + sinψ sinφ cos θ)ŷ + (sinψ sin θ)ẑ ,

(3.18a)

n̂ = (− sin φ sinψ − cosψ cos φ cos θ)x̂ + (cos φ sinψ − cosψ sinφ cos θ)ŷ + (cosψ sin θ)ẑ.

(3.18b)

Now that we have defined all of the relevant quantities with respect to the detector
frame, Eq. (3.13) can be generalized to

z(t, �̂) = 1

2

p̂i p̂j

1+ p̂i �̂i

{
e+ij (�̂)

[
h+(tp, �̂)− h+(t, �̂)

]
− e×ij (�̂)

[
h×(tp, �̂)− h×(t, �̂)

]}
,

(3.19)
which can be written in compact form as

z(t, �̂) =
∑
A

FA(�̂)[hA(tp, �̂)− hA(t, �̂)] (3.20)
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where

FA(�̂) = 1

2

p̂i p̂j

1+ p̂i �̂i

eAij (�̂). (3.21)

In practice, this notation separates the physics of GW emission, enclosed in the hA
terms, from all of the geometric factors arising from the transformation between the
radiation and the detector frames, which are absorbed in the FA response functions.
Note that the latter are universal, i.e. they do not depend on the nature of the GW
signal.2 The explicit form of the response functions (or antenna beam patterns) is
given by

F+(�̂) = 1

2

(m̂ · p̂)2 − (n̂ · p̂)2
1+ �̂ · p̂ , (3.22a)

F×(�̂) = (m̂ · p̂) (n̂ · p̂)
1+ �̂ · p̂ . (3.22b)

Note that the response functions depend only upon the three direction cosines m̂ · p̂,
n̂·p̂ and �̂·p̂ and are independent of the specific choice of Cartesian detector frame,
as expected.

3.3.1.2 Stochastic Background

The set of equations presented in Sect. 3.3.1.1 forms a useful method for computing
the redshift (and the associated residual through Eq. (3.14)) induced by an incident
deterministic GW with a generic form h(t). We now generalize the derivation for a
stochastic GWB generated by the incoherent superposition of uncorrelated sources
randomly distributed in the sky. In this case, Eq. (3.20) is generalized to represent the
incoming GWs in the Fourier domain as h̃A(f ) and by integrating over all possible
frequencies and incoming directions to obtain

z(t) =
∑

A=+,×

∫ ∞
−∞

df

∫
d2�̂ FA(�̂)h̃A(f, �̂)e

−2πif t
[
1− e−2πif τ

]
, (3.23)

where τ = t−tp has been defined in Sect. 3.3.1. The interesting quantity for a GWB
is the ensemble average over the stochastic variable h̃A(f ). Under the assumption
of an isotropic stationary and unpolarized background, this ensemble average takes

2This is true so long as only GR tensor polarizations are considered. In alternative theories of
gravity, scalar and vector polarizations might also arise, and require different response functions F
(Yunes and Siemens 2013).
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the form Maggiore (2000)

〈h̃∗A(f, �̂)h̃′A(f i, �̂′)〉 = δ(f − f ′) δ
2(�̂, �̂′)

4π
δAA′

1

2
Sh(f ), (3.24)

where Sh(f ) is the power spectral density of the GWB, and the 1/2 factor comes
from considering only positive frequencies, i.e. 0 < f <∞. The ensemble average
of the timing residuals observed in a pair of MSPs denoted as a and b then becomes

〈za(t)zb(t)〉 = 1

2

∫ ∞
−∞

df Sh(f )

∫
d2�̂

1

4π

∑
A=+,×

FA
a (�̂)F

A
b (�̂). (3.25)

The above result comes from substituting Eq. (3.24) into Eq. (3.23) and by noticing
that all of the terms involving e−2πif τ can be neglected in the short wavelength
limit, which is appropriate for PTAs. PTAs are in fact sensitive to nHz GWs,
corresponding to parsec wavelengths, which is much shorter than the distance to the
closest known MSP of about 150 pc (typical MSP distances are in the kpc range).

The integral over sky orientations in Eq. (3.25) was first computed by Hellings
and Downs (1983) and takes the form

C(ζab) = 1

4

[
1+ cos ζab

3
+ 4(1− cos ζab) ln

(
sin

ζab

2

)]
. (3.26)

where ζab is the angle between the pulsars a and b on the sky. Finally, the observable
quantity in PTA observations is the ensemble average cross correlation in the
timing residuals between two pulsars rab = 〈ra(t)rb(t)〉, where rx(t) is defined
by Eq. (3.14). We can therefore integrate Eq. (3.25) over time to get the final form
of the correlation in the timing residuals

rab = C(ζab)

∫ ∞
0

df
Sh(f )

4π2f 2 (3.27)

Elaborating on Eq. (3.24), one can define a dimensionless characteristic strain hc(f )
satisfying the relation (Maggiore 2000)

h2
c(f ) = 2f S(f ). (3.28)

Note that with this definition, hc is connected to the energy density ρGW of the GWB
via

2π2

3H 2
0

f 2h2
c(f ) =

1

ρc

dρgw

d ln f
≡ �gw(f ), (3.29)
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where ρc = 3H 2
0 /8π is the critical energy density of a flat Universe, and H0 =

100 h km s−1 Mpc−1 is the Hubble expansion rate. Substituting Eq. (3.28) into
Eq. (3.27), we finally get

rab = �(ζab)

∫ ∞
0

dfPh(f ), (3.30)

where we defined

Ph(f ) = h2
c(f )

12π2f 3 , (3.31)

and we re-defined the Hellings and Downs (HD) correlation coefficients as

�(ζab) = 3

2
C(ζab)(1+ δab). (3.32)

Note that Ph(f ) has dimensions of [s−3], which is appropriate for a spectral
density of a time series. The 3/2 renormalization and the δab term ensure that the
new correlation coefficient �(ζab) = 1 when a = b (i.e., the GWB has perfect
autocorrelation). Note that when a 
= b and ζab = 0, �ab = 1/2; this is because
for pulsars in the same direction, but at different distances, only the Earth terms are
phase correlated, whereas the pulsar terms act as an additional source of noise. We
will see below that this has important implications for GWB detection with PTAs.

3.3.2 GW Sources Relevant to PTAs and Their Signals

In Sect. 3.3.1 we demonstrated that both deterministic and stochastic GW sources
affect the pulse TOAs. Deterministic sources leave a distinctive fingerprint of the
form r(t) (cf Eq. (3.14)) that can be exactly determined once the waveform h(t)

is known. On the other hand, stochastic GWBs induce a correlated signal rab (cf
Eq. (3.30)) that can be determined if the characteristic strain spectrum hc(f ) of the
GWB is known. We now discuss the GW sources relevant to PTAs and their signals.

3.3.2.1 Deterministic GW Signals

A signal is deterministic when its waveform can be univocally specified at any given
time, pending the knowledge of the signal dependence on the physical parameters
of its source. Expected deterministic signals in the PTA band are produced by
individual SMBHBs (Begelman et al. 1980) inspiralling and merging along the
cosmic history (see e.g., Volonteri et al. 2003), although more exotic sources have
been proposed, such as (super)strings cusps and kinks (Damour and Vilenkin
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2001). Deterministic GW signals can be either continuous or transient; we will see
below that SMBHBs can produce either type of signals depending on their physical
properties and in which stage of their evolution they are observed.

I: Inspiralling Supermassive Black Hole Binaries
The archetypal continuous deterministic GW source is a SMBHB adiabatically
inspiralling in a quasi-circular orbit. PTAs are sensitive to systems with M >

108M� at centi-parsec orbital separations (Sesana et al. 2009, 2012). For those
systems, the inspiral time is typically much longer than the observation time T . In
the circular orbit approximation, the system emits a monochromatic wave at twice
its orbital frequency (i.e. ω = 2ωK ) of the form Sesana and Vecchio (2010):

h+(t) = (1+ cos2 ι)A cos(ωt +�0) , (3.33a)

h×(t) = −2 cos ι A sin(ωt +�0) , (3.33b)

where ι is the inclination of the SMBHB orbital plane with respect to the line-of-
sight, �0 is the initial GW phase, and

A = 2
M5/3

Dl
(πf )2/3 ≈ 1.3× 10−15

(
f

10−7Hz

)2/3 ( M
109M�

)5/3 (
Dl

1Gpc

)−1

(3.34)

is the GW amplitude. In Eq. (3.34), the luminosity distance Dl is related to the
standard comoving distance Dc as Dl = (1 + z)Dc, the chirp mass M is related
to the masses M1 and M2 of the two as M = (M1M2)

3/5/(M1 + M2)
1/5, and

f = ω/(2π) is the GW frequency, which is related to the phase as �(t) =
2π
∫ t

f (t ′)dt ′. Note that Eq. (3.34) is written in terms of redshifted quantities.
Those are related to their binary-rest frame counterparts via M = (1 + z)Mrf,
f = frf/(1 + z), where z is the redshift of the GW source.3 In general, the GW
community prefers redshifted quantities because they are the direct observables
of GW experiments, and because they absorb all (1 + z) factors, simplifying the
equation when dealing with sources at cosmological distances.

The associated redshift z(t)4 can be computed by plugging Eqs. (3.33a), (3.33b)
into Eq. (3.20). By integrating the redshift according to Eq. (3.14), the residual is
found to be composed of a pulsar term and an Earth term:

r(t) = rp(t)− re(t), (3.35)

3Unless otherwise specified, we always use redshifted masses and frequencies to describe the GW
signals.
4Note that here z(t) is the induced redshift in the timing residual, not to be confused with the
redshift of the source introduced above.
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where

re(t) = A

ω

{
(1+ cos2 ι)F+ [sin(ωt +�0)− sin�0]+

2 cos ιF× [cos(ωt +�0)− cos�0]
}
,

rp(t) = Ap

ωp

{
(1+ cos2 ι)F+

[
sin(ωpt +�p +�0)− sin(�p +�0)

]+
2 cos ιF×

[
cos(ωpt +�p +�0)− cos(�p +�0)

]}
.

(3.36)

We specify ω and ωp = ω(t − τ ), because the two angular frequencies might
be different in the pulsar and Earth terms. Note that this also implies different
amplitudes A and Ap, since those depend on f = ω/2π as per Eq. (3.34). In fact,
in the quadrupole approximation, the evolution of the binary orbital frequency and
GW phase can be written as

ωK(t) = ωK

(
1− 256

5
M5/3ω

8/3
K t

)−3/8

, (3.37)

�(t) = �0 + 1

16M5/3

(
ω
−5/3
K − ωK(t)

−5/3
)
. (3.38)

Over the typical PTA experiment duration (decades),ω and ωp can be approximated
as constants, and we drop the time dependence accordingly. However, the delay
τ between the pulsar and the Earth term—which is the pulsar-Earth light travel
time multiplied by a geometric factor—is thousands of years, comparable with the
evolution timescale of typical SMBHBs (Sesana and Vecchio 2010).ωp depends on
the pulsar distance and relative orientation with respect to the incoming GW source;
it is therefore different among observed pulsars and is smaller than ω.

The nominal frequency resolution of a PTA experiment is �f ≈ 1/T , where T
is the duration of the experiment:

• If (ωp − ω)/(2π) > �f for most MSPs, then there is no interference between
the pulsar and the Earth terms; the latter can be added coherently and the former
can be considered either as separate components of the signal or as an extra
incoherent source of noise.

• Conversely, if (ωa − ω)/(2π) < �f for the majority of MSPs, then the pulsar
terms add up to the respective Earth terms, affecting their phase coherency.

This distinction has an impact on the detection strategy; different techniques are
better suited to either situation, and many different detection algorithms have been
developed accordingly, as we will see in Sect. 3.3.4.1. Examples of timing residuals
from a circular SMBHB are shown in the upper left panel of Fig. 3.3; note that the
signals are not perfect sinusoids because of the effect of the lower frequency pulsar
term.
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Fig. 3.3 Examples of timing residuals in three pulsars at different sky locations induced by
selected GW signals plus noise. Top left: a continuous GW source generated by a circular SMBHB;
Top right: a generic Gaussian burst; Bottom left: a burst with memory; Bottom right: a stochastic
GWB from SMBHBs. In each panel top (bottom) plots show residuals before (after) fitting for the
MSP spin and spindown. The fitting absorbs a large fraction of the signals with red spectra (from
Burke-Spolaor (2015), courtesy of S. Burke-Spolaor)

II: Generic Bursts
Bursts are generally defined as signals that are well localized in time, i.e., lasting
much shorter than the observation time T . Note that PTAs are sensitive to nHz-μHz
frequencies, so that observable bursts will nevertheless last from weeks to several
months. At such low frequencies and among the less exotic burst sources, we can
expect defects to appear in a network of cosmic (super)strings when strings bend
and reconnect, and which are known as cusps and kinks (Damour and Vilenkin
2001). For example, cusps have an extremely simple, linearly polarized waveform
(Siemens and Olum 2003; Key and Cornish 2009)

h(t) = 2πA|t − t∗|1/3 A ≈ GμL2/3

Dc

(3.39)
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where Gμ is the string tension, Dc is the (comoving) distance to the cusp and L is
its characteristic scale.

Another possible source of GW bursts consists of close encounters of SMBHs
either on bound (elliptical) or unbound (parabolic, hyperbolic) orbits. Although the
latter is extremely unlikely, the former might be a relatively common occurrence.
It has, in fact, been shown that both three body scattering of ambient stars and
torque exerted by a counter-rotating circumbinary disk can significantly increase the
SMBHB eccentricity (see Dotti et al. (2012) and references therein). Another way to
excite binary eccentricities is through the formation of a hierarchical SMBH triplet
following two subsequent mergers (Hoffman and Loeb 2007; Bonetti et al. 2016).
Bursts of GWs can therefore be emitted by highly eccentric SMBHBs with orbital
frequencies� 1/T at periastron passage (Amaro-Seoane et al. 2010). Eccentricity
causes a ‘split’ of each polarization amplitude h+(t) and h×(t) into harmonics
according to (see, e.g., equations (5–6) in Willems et al. (2008) and references
therein):

h+n (t) = A
{
− (1+ cos2 ι)un(e) cos

[n
2
�(t) + 2γ (t)

]
−(1+ cos2 ι)vn(e) cos

[n
2
�(t)− 2γ (t)

]
+ sin2 ι wn(e) cos

[n
2
�(t)

] }
,

h×n (t) = 2A cos ι
{
un(e) sin

[n
2
�(t) + 2γ (t)

]
+ vn(e) sin

[n
2
�(t) − 2γ (t)

] }
.

(3.40)

The coefficients un(e), vn(e), andwn(e) are linear combinations of Bessel functions
of the first kind Jn(ne), Jn±1(ne) and Jn±2(ne), and γ (t) is an additional precession
term in the phase given by e. For e � 1, |un(e)| � |vn(e)| , |wn(e)| and the
expressions above reduce to the circular case of Eq. (3.33a), (3.33b). Waveforms for
parabolic SMBHB encounters are given in Finn and Lommen (2010). In general,
a GW burst is detected as a short duration distortion in the timing residuals. In the
upper right panel of Fig. 3.3, we show an example of a burst with a generic Gaussian
waveform.

III: Bursts with Memory
Besides the standard strain oscillation, GW bursts are also predicted to contain non-
oscillatory components that result in a permanent deformation of spacetime. The
final deformation depends on the radiation history of the source, and is therefore
referred to as memory (Christodoulou 1991; Blanchet and Damour 1992; Favata
2009). Bursts displaying these features are known as bursts with memory (BWM).
When the bursting source is a gravitationally-bound system, the memory arises from
the fact that the radiated GW energy causes permanently non-vanishing second
time derivatives in the source mass-energy quadrupole moments. Because of this,
the spacetime metric relaxes to a configuration that differs from the pre-burst one.
The merger of SMBHBs provides the most promising source of BWM for PTAs.
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The permanent displacement in the spacetime metric for SMBHBs inspiralling
in a quasi-circular orbit up to the merger was computed in Favata (2009). For
the standard choice of polarization tensors—Eqs. (3.17a) and (3.17b)—, the h×
component of the strain vanishes and the remaining h+ component takes the
approximate form Madison et al. (2014)

h+ ≈ 1−√8/3

24

μ

Dl

sin2 ι(17 + cos2 ι)
[
1+O(μ2/M2)

]
≈ 1.5 × 10−15 μ

109M�

(
Dl

1Gpc

)−1

,

(3.41)

where μ is the redshifted reduced mass, ι is the inclination angle just prior to the
final merger, and the rightmost approximation has been obtained by averaging over
source inclinations. This displacement quickly arises as a few % of the binary mass
is radiated into GWs in the very last phase of the merger. The characteristic growth
timescale is tr ≈ 2πRS/c ≈ 1 dayM9, where M9 is the mass of the merger remnant
in units of 109M� and Rs its Schwarzschild radius. After quickly ramping up, the
perturbation simply settles to a constant value h. So for any practical purpose, the
waveform is described by h(t) = h+�(t − t0), where �(t − t0) is the heaviside
step function. The perturbation is therefore null until time t0, and quickly jumps to
the value given by Eq. (3.41), when the wave generated at the merger propagates
through the detector. We can use Eq. (3.20) to get the associated redshift z(t, �̂) and
integrate over time according to Eq. (3.14) to get the residual in the form

r(t) = 1

2
cos(2ψ)(1− cos θ)h+[(t − te)�(t − te)− (t − tp)�(t − tp)]. (3.42)

and te − tp ≡ τ defined above. Since it is the integral of a constant, the residuals
simply show a linear increase. Note that in this case we have a pulsar term, which
is triggered at the time tp at which the wave ‘hits the pulsar’, and an Earth term,
which is triggered at the time te at which the wave ‘hits the Earth’. As in the
SMBHB case seen before, in a PTA, the Earth term will be correlated among all
pulsars in the array, while the pulsar term will not. Contrary to the monochromatic
waves, however, the two terms in general do not contribute to the detected signal
at the same time. This is because te − tp is typically � T , the duration of the
PTA experiment (unless the source is almost aligned with the considered pulsar).
To imprint a signature onto the detected residuals, the ‘trigger’ time must occur
within the duration T of the experiment. If this is not the case, then the signature
is a continuous linear drift which is inevitably absorbed in a small correction to the
pulsar frequency ν0. Examples of BWM are shown in the lower left panel of Fig. 3.3.
Contrary to the continuous wave case, the burst effect is largely absorbed by fitting
for pulsar spin and spin derivative, which subtracts a quadratic function from the
TOAs.
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3.3.2.2 Stochastic Backgrounds

Stochastic GWBs in the PTA band can arise from a number of cosmological
and astrophysical sources. As a first approximation, many calculations predict a
characteristic strain spectrum with a single power-law shape

hc = A

(
f

year−1

)−α
, (3.43)

where A is the strain amplitude at a reference frequency of 1 year−1. The slope α
differs depending on the specific background. On the cosmological side, cosmic
string networks generate spectra with α = −5/3,−7/6,−1 depending on several
parameters defining the nature of the network (Damour and Vilenkin 2001; Ölmez
et al. 2010). Standard inflation predicts α = −1 with a signal amplitude that is
well below foreseeable detection possibilities, even though several mechanisms can
enhance the signal to detectable levels (see reviews in Chiara Guzzetti et al. 2016,
Bartolo et al. 2016). Other inflationary relics can produce stronger GWBs, with
0.5 < α < 2 (Grishchuk 2005). Further cosmological GWBs include primordial
BHs (Bugaev and Klimai 2011) or QCD phase transitions, and may have more
complicated spectra (Caprini et al. 2010). The most promising signal for PTAs is,
however, of astrophysical origin and stems from the cosmic population of SMBHBs
(Rajagopal and Romani 1995; Jaffe and Backer 2003; Sesana et al. 2004).

Since galaxy mergers are common (Lacey and Cole 1993), we expect a large
population of SMBHB to emit GWs in the PTA band at any time (Sesana et al.
2008). The superposition of many incoherent signals results in a GWB that is
described by Eq. (3.43), with α = −2/3 (Phinney 2001). The normalization A is
affected by the poorly known SMBHB cosmic merger rate, but is predicted to be
in the range of 10−16 < A <few×10−15 (Sesana 2013; McWilliams et al. 2014;
Kulier et al. 2015; Ravi et al. 2015; Sesana et al. 2016). Following (Sesana et al.
2008) and assuming circular binaries, this stochastic GWB can be written in the
form

h2
c(f ) =

∫ ∞
0

dz

∫ ∞
0

dM d3N

dzdMdlnf
h2(f ). (3.44)

where h is the sky and polarisation averaged strain amplitude given by Thorne
(1987)

h = 8π2/3

101/2

M5/3

DL

f 2/3 , (3.45)

and the number of SMBHBs emitting per unit mass, redshift and log frequency is
given by

d3N

dzdMdlnf
= d2n

dzdM
dtrf

dlnfrf

dz

dtrf

dVc

dz
. (3.46)
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In Eq. (3.46), d2n/dzdM is the cosmic merger rate density of SMBHBs, dtrf/dlnfrf
is the time each binary spends in a given log frequency bin, and the other terms are
standard cosmological relations. The level of the stochastic GWB therefore depends
on the cosmic merger rate and on the mechanism driving the binary evolution
through the dtrf/dlnfrf term. For GW driven binaries, dtrf/dlnfrf ∝ f−8/3 and
one recovers the hc ∝ f−2/3 spectrum. However, since the GW emission efficiency
has a steep f dependence, at the relatively large separations relevant to PTA (centi-
parsec), binaries might be still driven by the interaction with their stellar and gaseous
environments (Kocsis and Sesana 2011; Ravi et al. 2014; Kelley et al. 2017).
For typical astrophysical systems (see derivation in Sesana 2013), the transition
frequency between gas/star and GW dominated evolution is:

fstar/GW ≈ 5× 10−9M
−7/10
8 q−3/10Hz

fgas/GW ≈ 5× 10−9M
−37/49
8 q−69/98Hz, (3.47)

which is potentially within the PTA range. If binaries are eccentric, things are
further complicated by the fact that each system emits a series of harmonics. A full
mathematical derivation including stellar coupling and eccentricity can be found in
Rasskazov and Merritt (2016). The general effect of coupling with the environment
is thus to produce a turnover of the spectrum at low frequencies, as shown in Fig. 3.4

Fig. 3.4 Effect of the environment on hc. Left panel: SMBHBs driven by stellar scattering;
each blue line represents a population with a specific initial eccentricity, according to the model
presented in Sesana (2010); Right panel: SMBHBs driven by interaction with a circumbinary disk
modelled as in Ivanov et al. (1999). Green lines are for circular binaries, blue lines allow for a
self-consistent eccentricity evolution (models from Kocsis and Sesana 2011). The upper and lower
pairs of curves are for populations in which SMBHs accrete at 10% and 30% of the maximum
allowed Eddington rate respectively, labelled in figure as 0.1LEdd and 0.3LEdd. In both panels,
the solid black lines represent the GW driven case hc ∝ f−2/3, dashed lines mark residual levels
according to r = h/(2πf ) to guide the eye, and the excluded region at f < 3 × 10−9 highlights
the signal modification relevant to a PTA observation of T ∼ 10 years. From Sesana (2015)
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for selected models. Future detailed measurement of the GWB spectral shape and
normalization with PTAs can therefore in principle constrain the cosmic merger rate
of SMBHBs, their dynamical interaction with the environment and their eccentricity
distribution (Chen et al. 2017).

3.3.3 PTA Sensitivity to Gravitational Waves

The major challenge of PTAs is to dig out a possible GW signal (whether
deterministic or stochastic) from a plethora of noise sources, many of which are
poorly understood. The output of a detector can in fact be written as

d(t) = s(t)+ n(t), (3.48)

where d(t) is the recorded data, s(t) is the putative GW signal and n(t) is the
detector noise. In Fourier space, for a Gaussian stationary noise, n(t) satisfies the
ensemble average condition (Maggiore 2000)

〈ñ∗(f )ñ(f ′)〉 = δ(f − f ′)1

2
Pn(f ) , 〈n2(t)〉 =

∫ ∞
0

df Pn(f ), (3.49)

where Pn(f ) is the, noise spectral density5 which has been defined for positive
frequencies 0 < f < ∞. In practice, the detectability of a signal depends on the
noise spectral density Pn(f ) and on how it compares with the GW signal.

3.3.3.1 Sources of Noise in Pulsar Timing Arrays

An excellent review of the main noise sources relevant to PTAs is given in Cordes
(2013). In practice, we can write

Pn(f ) = Pwn(f )+ Prn,ac(f )+ Prn,c(f ), (3.50)

where Pwn(f ) is white noise, Prn,ac(f ) is achromatic red noise and Prn,c(f ) is
chromatic red noise.

The power contributed by white noise takes the form

Pwn(f ) = 2σ 2
wn�t, (3.51)

5Note that the spectral density is usually referred to as S(f ). In our notation, S(f )[s] is used in
relation to the dimensionless GW strain. PTAs, however, measure TOAs and the associated power
spectral density, denoted here as P (f ), has dimension of [s3]. The relation between the two is
P (f ) = S(f )/(12π2f 2).
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where �t is the cadence of observations (typically weeks) and σwn is the rms
uncertainty in the TOA. The main sources of white noise in PTA observations
are radiometer noise and jitter. Radiometer noise defines the maximum theoretical
precision in measuring TOAs, and arises from the fact that folded pulses with finite
S/N are matched to a theoretical template. Jitter is due to the intrinsic stochasticity
of the phasing of individual pulses. Detail scaling for these noise sources is given in
Cordes (2013); Wang (2015); typical figures of σwn are hundreds of ns (radiometer)
and tens of ns (jitter).

Chromatic red noise, by definition, depends on the frequency of the observed
radio photons and arises from frequency-dependent propagation effects in the ISM,
in particular dispersion and scattering. Interaction of radio photons with the ISM’s
cold magnetized plasma yields a frequency-dependent delay in their group velocity.
This causes a delay in TOAs that is proportional to the electron column density
(referred to as dispersion measure, DM) travelled by the radio photons with a ν−2

γ

dependence, where νγ is the frequency of the observed photons (not to be mistaken
with the spinning frequency of the MSP, ν). Scattering is the pulse broadening due
to multiple paths travelled along the ISM and has a ν−4

γ dependence. Note that, as
both the Earth and the observed MSPs move in the Galaxy potential, the DM is
typically time-dependent. Because of their frequency dependence, chromatic noise
sources can be dealt with by using wideband receivers and fitting for the frequency
dependence of the TOAs.6

Conversely, achromatic red noise is the same at all received radio frequencies and
cannot be mitigated by means of wideband observations. This noise is intrinsic to
the pulsar and is due to the complex torques arising by crust-superfluid interactions.
Spin noise has been detected in several MSPs and has a very steep red spectrum
Psn(f ) ∝ f−5±0.4 (Shannon and Cordes 2010). For comparison, a GWB with hc ∝
f−2/3 results in Ph(f ) ∝ f−13/3 according to Eq. (3.31). Spin noise can therefore
be the most serious limiting factor for the detection of a stochastic GWB.

The noise sources that were considered thus far are supposedly uncorrelated
among MSPs. There are however additional sources of noise that show specific
correlation patterns. Clock offsets have the same effect on all pulsars, and therefore
induce a monopole correlated signal. Errors in the solar system ephemeris (which
are necessary for computing TOAs at the solar system barycentre) result in a
dipole correlation pattern (Tiburzi et al. 2016). Fortunately, those are different from
the quadrupole �ab correlation diagnostic for a stochastic GWB, and advanced
analysis methods can distinguish between them (Taylor et al. 2017). Note, however,
that disentangling correlations with different patterns requires a sufficiently large
number of high quality pulsars in the array. This is particularly problematic in
current PTAs, which are dominated by a handful of good MSPs. In fact, the latest
NANOGrav analysis (Arzoumanian et al. 2018), suggests that the current PTA

6Note that wideband observations entail other issues related to frequency dependence of the pulse
profile. This can be dealt with, for example, by developing 2D (time-frequency) profile templates
(Liu et al. 2014; Pennucci et al. 2014).
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sensitivity to a stochastic GWB is limited by uncertainties in the solar system
ephemeris measurements.

3.3.3.2 S/N Calculation and Scaling Relations

With an understanding of the GW signature imprinted on timing residuals and of
the relevant sources of noise, we can estimate typical signal-to-noise ratio (S/N, ρ)
of different GW signals as a function of the structural array parameters and assess
prospects for their detectability. In the following, we make the distinction between
deterministic signals and stochastic GWBs.

I: Deterministic Signals
For deterministic signals, the data can be matched-filtered with a template for s(t).
It can be shown (e.g. Sesana and Vecchio 2010) that in this case, the S/N of the GW
signal is given by

ρ2 = (r(t)|r(t)) (3.52)

where (·|·) is the weighted inner product defined as

(x|y) = 2
∫ +∞

0

x̃∗(f )ỹ(f )+ x̃(f )ỹ∗(f )
Pn(f )

df � 2

P0

∫ T

0
x(t)y(t)dt . (3.53)

and

x̃(f ) =
∫ +∞
−∞

x(t)e−2πif t . (3.54)

Note that in the last step of Eq. (3.53), we implicitly assumed that the signal is
monochromatic, and P0 is the noise spectral density at the frequency of the signal.
For an array with M pulsars identified by index a, we have

ρ2
a =

2

P0,a

∫ Ta

0
r2
a (t)dt, ρ2 =

∑
a

ρ2
a . (3.55)

The equation above also applies to a burst generated by very eccentric binaries by
summing over all harmonics and considering the appropriate P(f ) at the observed
frequency of each harmonic.

The integral in Eq. (3.55) can be easily computed using the residual formula
for a circular SMBHB given in Eq. (3.36). For simplicity, we only consider the
Earth term, and an array of M identical MSPs, dropping the a index. Individually-
resolvable sources are usually expected to be observed at f ≡ ω/(2π)� 1/T ; we
therefore assume white noise, P0 = 2σ 2�t . Averaging over the antenna response
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functions F+, F× and orbital inclinations ι, and summing over all MSPs, we get

ρ2 ≈ M

15π2

T

�t

A2

σ 2f 2 . (3.56)

Noticing that N = T/�t is the number of observations and taking the square root
we finally get

ρ ≈ 1√
15π

A

σf
(NM)1/2. (3.57)

The S/N of a circular SMBHB is therefore proportional to the square root of
the number of pulsars in the array and of the number of observations (i.e. the
total observation time T , for a uniform observation cadence), and is inversely
proportional to the rms residual σ . Equation (3.57) can be inverted to obtain the
minimum amplitude A observable at a given S/N threshold:

A ≈ √15πρσf (NM)−1/2 = 9× 10−15 ρ

5

σ

100 ns

f

10−7Hz

(
N

250

)−1/2 (M
20

)−1/2

.

(3.58)

Although SMBHBs are abundant in the Universe (see figure 1 in Sesana et al.
2012), comparison between the above estimate and Eq. (3.34) shows that current
PTAs are only sensitive to extremely massive SMBHBs, which are extremely rare.
Equation (3.58) can be compared with the limits shown in Fig. 3.6. At 10−7 Hz,
the EPTA upper limit is ≈3 × 10−14, which is in line with the equation above,
considering that the EPTA dataset is dominated by one pulsar with σ = 130 ns
(Desvignes et al. 2016). We also note that the frequency dependence is somewhat
flatter than f , indicating some red noise contribution. The turnover at f < 10−8 is
instead due to a combination of red noise and MSP spin and spindown fitting.

A similar derivation for BWM can be found in van Haasteren and Levin (2010),
yielding

hmin ≈ 12
√

3ρσT −1(NM)−1/2F(χ) = 4.5× 10−16F(χ)
ρ

5

σ

100 ns

(
T

10years

)−1 (
N

250

)−1/2 (
M

20

)−1/2

,

(3.59)

where F(χ), given in van Haasteren and Levin (2010), is a function of χ = t0/T

(being t0 the BWM arrival time) and has a minimum value of≈1.4. When compared
to Eq. (3.41), the above estimate suggests that PTAs can be sensitive to BWM
out to much larger distances than inspiralling SMBHBs. Note however that while
inspiralling SMBHBs are rather abundant, coalescences are extremely rare events.
In fact the coalescence rate of SMBHBs with M > 109M� throughout the Universe
is <10−2 years (Blecha et al. 2016).
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II: Stochastic Backgrounds
For stochastic signals, the strategy is to detect cross-correlated power in several
detectors (i.e. in several pulsars). The S/N imprinted by a stochastic GWB in a PTA
can be written as (Allen and Romano 1999; Maggiore 2000; Rosado et al. 2015)

ρ2 = 2
∑

a=1,M

∑
b>a

Tab

∫
�2
abP

2
h

P 2
n,ab

df, (3.60)

where the sums run over all pulsar pairs, Tab is the timespan for which both pulsars
a and b are observed (note that, in general, MSPs have different time coverage,
depending on when they were discovered, the schedule requirement at observatories,
etc.) and �ab is the HD correlation function defined by Eq. (3.32). The correlated
noise term is given by

P 2
n,ab = PaPb + Ph[Pa + Pb] + P 2

h (1+ �ab)
2, (3.61)

where

Pa,b = 2σ 2
a,b�t + Prn,a,b, (3.62)

and Ph is related to the GWB characteristic strain via Eq. (3.31). In the following,
we ignore the red noise component Prn,a,b for simplicity. Note that Pn,ab has two
distinct asymptotic trends. For Ph � Pa,b, i.e. in the weak signal limit, it reduces
to P 2

n,ab ≈ PaPb. However, when Ph > Pa,b, i.e. in the strong signal limit, P 2
n,ab ≈

P 2
h (1+�ab)2, meaning that the power of the noise is always comparable to the power

of the signal, regardless of how strong the latter is. This has a profound impact for
GWB observability with PTAs, as we now detail.

Let us again drop the a, b indexes by considering equal MSPs in the array. We
further assume M � 1, so that we can substitute �ab with the average value � =
1/(4
√

3) to get

ρ2 ≈ T �2M2
∫

P 2
h

P 2
n

df. (3.63)

In the limit Ph � Pn and writing hc according to Eq. (3.43), after some algebra and
integrating in the range 1/T < f <∞ we get

ρ ≈ 2× 10−13NMσ−2A2T 10/3. (3.64)

The array sensitivity therefore increases quickly by improving timing precision and
by extending the time baseline of the experiment (see Fig. 3.5). Observing more
pulsars also help, but only linearly in S/N. The minimum detectable GWB therefore
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Fig. 3.5 S/N scaling with observation time of the loudest resolvable circular SMBHBs (red) and of
the collective stochastic GWB (green) for 105 realizations of the cosmic SMBHB population. The
coloured band shows the 90% confidence intervals, while the solid lines represent the median of all
realizations. An IPTA-type array with 49 MSPs with σ between 500 ns and 9 μs was assumed. Note
the two distinct scalings of the GWB S/N in the weak and strong signal regimes. We also note that
the resolvable SMBHB S/N does not follow a simple T 1/2 scaling in this figure. This is because
we do not plot the S/N of a specific source, but of the loudest source, which might change as lower
frequencies (and better frequency resolution) are accessible with increasing T (from Rosado et al.
2015)

has a characteristic strain A given by

A ≈ 7× 106ρ1/2σT −5/3(NM)−1/2

≈ 10−16 ρ1/2 σ

100 ns

(
T

10year

)−5/3(
N

250

)−1/2 (
M

20

)−1/2

. (3.65)

Note that although this lies at the lower end of the strain range predicted by
cosmological models of SMBH assembly (Sesana 2013; McWilliams et al. 2014;
Kulier et al. 2015; Ravi et al. 2015; Sesana et al. 2016), there are strong caveats.
First, we ignored both red noise and MSP spin and spin-down fitting. The latter
generally compromises the PTA sensitivity at f < 2/T (see e.g. figure 1 in Cordes
2013) thus degrading the above estimate by a factor of a few. Second, when ρ = 1
we are already departing from the weak signal regime.

When Ph > Pn, things are drastically different. The integral in Eq. (3.63) reduces
to
∫
df giving

ρ ≈ T 1/2�M(fmax − fmin)
1/2 ≈ �M�1/2. (3.66)

Here fmin = 1/T and fmax is the maximum frequency for which the condition
Ph > Pn is satisfied. To get the rightmost expression in Eq. (3.66), we divided the
frequency domain in resolution bins �f = 1/T , and � is the number of frequency
bins for which Ph > Pn (usually a few). We now see that the S/N increases linearly
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with the number of pulsars in the array M and, as shown in Fig. 3.5, only with
the square root of the observation time. Timing precision only plays a minor role
by weakly affecting the fmax limit (or alternatively �). In practice, to make a
confident detection of a stochastic GWB, it is absolutely necessary to include a large
number of quality MSPs in the array. Note that, although we assumed hc ∝ f−2/3,
the derived scalings usually hold for any GWB shape, as shown in Vigeland and
Siemens (2016) for broken power-law spectra approximating the GW signals from
SMBHBs interacting with gas or stars.

3.3.4 Current Status of Gravitational Wave Searches

3.3.4.1 Analysis Methods

Whether the signal is deterministic or stochastic, the challenge of data analysis is
to determine what the chances are that it is present in the data. The problem can
be tackled either using a frequentist or a Bayesian philosophy. Reviewing principles
and differences of those approaches is well beyond the scope of this contribution; we
summarize here the main ideas and point the reader to the relevant PTA literature.
The core aspect of all modern GW searches is the evaluation of the likelihood that
some signal is present in the time series of the pulsar TOAs. Deferring technical
details to e.g. van Haasteren and Levin (2013); Lentati et al. (2015), the likelihood
function, marginalised over the timing parameters, can be written as

L(�θ, �λ, �η| �δt) = 1√
(2π)n−mdet (GT C(�η, �θ)G)

×

exp

(
−1

2
( �δt − �r(�λ))T G(GT C(�η, �θ)G)−1GT ( �δt − �r(�λ))

)
. (3.67)

Here n is the length of the vector �δt = ∪δta obtained by concatenating the
individual pulsar TOA series δta , m is the number of parameters in the timing
model, and the matrix G is related to the design matrix (see van Haasteren and
Levin (2013) for details). �θ, �λ, �η are vectors of parameters describing the noise (�θ),
a deterministic GW signal (�λ) or the spectral shape of a stochastic GWB (�η). In
general, the variance-covariance matrix C contains contributions from the putative
GWB and from white and red noise: C = Cgw(�η)+Cwn(�θ)+Crn(�θ). The detailed
form of all the contributions to the variance-covariance matrix can be found in
Lentati et al. (2015).

In frequentist searches, a detection statistic is constructed based on the likelihood
function both in the null hypothesis and in the presence of a signal. Extensive
Monte-Carlo simulations on synthetic data with injected signals are then performed
to construct the detection probability as a function of the false alarm rate. Com-
parison with the value of the statistic obtained from the real dataset is then used to
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either claim a detection (with associated confidence) or to obtain an upper limit in
case of no detection. This procedure has been detailed in Ellis et al. (2012) and has
been used in several deterministic source searches (e.g. Zhu et al. 2014; Babak et al.
2016).

In Bayesian searches, the likelihood function is used to compute the odds ratio of
the Bayesian evidence for the hypothesis that a signal is present in the data (model
H1, with signal described by parameters �λ and/or �η) versus the null hypothesis (H0).
In the case of no prior preference of either model, the odds ratio reduces to the Bayes
factor, B:

B =
∫
L(�θ, �λ| �δt)π(�θ, �λ)d �θ d�λ∫

L(�θ | �δt)π(�θ)d �θ , (3.68)

which is technically the ratio of the evidences for the hypothesis H1 and H0. The
value of B is the statistic used to assess the presence of the signal (Kass and Raftery
1995). In the case of a detection, the shape of the likelihood function can be used to
infer the parameters of the signal and their uncertainties, otherwise upper limits can
be placed. Bayesian searches have been recently extensively applied to the search
for both deterministic signals and stochastic GWBs.

3.3.4.2 Overview of Current Results

The search for deterministic signals in real data have so far focused on circular
SMBHBs and BWM. In modern algorithms, a deterministic signal r(�λ, t) is added
to the model and a search is performed over the parameter space defined by �λ.
For individual SMBHBs, �λ includes the source amplitude, frequency, sky location,
inclination phase and polarization (plus other parameters related to the pulsar term,
when included in the search); for BWM, parameters include burst amplitude and
trigger time t0, sky location, and source inclination.

Yardley et al. (2010) obtained the first frequentist individual SMBHB upper limit
on early PPTA data by looking for excess power as a function of frequency, placing
a sky averaged upper limit on the source amplitude (cf Eq. (3.34)) of A ≈ 10−13 at
10 nHz. More recently, detection statistics for single SMBHBs have been calculated
for circular systems either including the Earth term only (Babak and Sesana 2012),
or adding the pulsar term (Ellis et al. 2012), as well as for eccentric binaries (Taylor
et al. 2016). Alternative frequentist methods based on the construction of null
streams have also been proposed (Zhu et al. 2015). In parallel, Taylor et al. (2014)
developed a Bayesian pipeline that can handle generic circular SMBHBs. Searches
on real data have been performed by the three major PTAs (Arzoumanian et al. 2014;
Zhu et al. 2014; Babak et al. 2016), yielding null results. The EPTA placed the most
stringent limit to date, shown in Fig. 3.6 (from Babak et al. 2016). Around 10 nHz,
sources with A > 10−14 can be confidently excluded. Compared to Eq. (3.34) this
rules out the presence of centi-parsec SMBHBs of a few billion solar masses out
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Fig. 3.6 Sky averaged 95% upper limit on the gravitational wave amplitude A of a circular
SMBHB as a function of frequency, placed by three different searches (labelled in figure)
performed on the EPTA dataset (from Babak et al. (2016), where the detailed descriptions of each
method can be found)

to the distance of the Coma cluster. Note that those limits are consistent with our
current understanding of SMBH assembly, as state-of-the-art models predict a mere
1% chance of making a detection at this sensitivity level (Babak et al. 2016).

Searches for BWM have been performed both with the PPTA (Wang et al.
2015) and NANOGrav (Arzoumanian et al. 2015) datasets. Both searches yielded
comparable results, constraining the BWM rate to be less than ≈1 year−1 at h =
10−13. To produce a strain of comparable amplitude, a 109M� SMBHB should
merge in the Virgo cluster, which is an extremely unlikely event. In fact, Cordes and
Jenet (2012), Ravi et al. (2015) estimated that the event rate for such a strong burst
is <10−6 year−1, which makes these null results unsurprising.

All PTAs (including the IPTA) performed extensive searches for a stochastic
GWB from SMBHBs, which is the most likely GW signal to be first detected
by PTAs (Rosado et al. 2015). In isotropic GWB searches, the smoking gun of
a detection is provided by the HD correlation pattern given by Eq. (3.32). The
correlation can be used to construct an optimal correlation statistics based on the
maximum likelihood estimator (Anholm et al. 2009; Chamberlin et al. 2015), which
can be employed to obtain frequentist upper limits (Lentati et al. 2015). In advanced
algorithms, the HD correlation is included in the analysis via the correlation matrix
Cgw(�η), which, in the often used Fourier representation, takes the form (e.g. Lentati
et al. 2015)

�a,b,i,j = �(ζab)ϕ
GWB
i δij , (3.69)

where indices i, j run over the difference frequency bins of the Fourier decompo-
sition and ϕi is the power in the GW signal given by Eq. (3.31), which is evaluated
at the central frequency fi of the i-th bin. The matrix (3.69) is included in the
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appropriate Fourier representation of the likelihood function (3.67). Note that in the
case of anisotropic GWB, the signal can be decomposed into spherical harmonics,
and the power in different harmonics has different correlation patterns (since the
HD curve is the correlation of the monopole component) that can also be included
in the analysis (Gair et al. 2014; Taylor et al. 2015).

In the simplest searches, the hc(f ) responsible for Ph(f ) is described by a
single power law defined by the two parameters �η = A,α (cf Eq. (3.43)), however
additional parameters can be (and have been) included in the search to describe a low
frequency turnover. In the following, we always refer to the upper limit placed on
A assuming an f−2/3 GWB, appropriate for circular, GW-driven SMBHBs. Note
that those can be easily converted into limits on �gw by combining Eqs. (3.29)
and (3.43). Systematic searches for GWBs in PTA data have been ongoing for more
than a decade (Jenet et al. 2006; van Haasteren et al. 2011; Demorest et al. 2013),
with early upper limits on A in the range 6 × 10−15 − 1.1 × 10−14, which is still
higher than the range predicted by theoretical models. In recent years, improvements
in the data quality and in the search algorithms made possible to push the sensitivity
down to A ≈ 10−15, yielding null results. Using the first EPTA legacy data release,
Lentati et al. (2015) placed an upper limit of A = 3× 10−15 for a SMBHB GWB,
while also providing upper limits on the cosmic string tension of Gμ = 1.1×10−7,
which is competitive with CMB constraints (Planck Collaboration et al. 2016).
Figure 3.7 (from Lentati et al. 2015) shows the measured correlation pattern of
the six best EPTA MSPs as a function of their angular separation. It is clear that

Fig. 3.7 The recovered correlation between pulsars as a function of angular separation on the sky
in the EPTA analysis. The red and blue lines represent the 68% and 95% confidence intervals of
the recovered correlation. Individual points represent the mean correlation coefficients with a 1σ
uncertainty for each pulsar pair. The dashed line represents the HD correlation (from Lentati et al.
2015)
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the measurement is still uninformative, and no detection can be claimed. Using the
same dataset (Taylor et al. 2015) also performed the first search for an anisotropic
GWB, constraining any amplitude in the higher multiples of the spherical harmonic
decomposition to be less then 40% of the one in the monopole component (i.e. the
isotropic part of the signal). Arzoumanian et al. (2016) used the NANOGrav 9 year
dataset to place an upper limit of A = 1.5× 10−15 and to further improve on EPTA
limits on the string tension. They also studied spectra with a turnover and placed the
first (weak) constraints on the astrophysical properties of the SMBHB population.
The best upper limit to date was set to A = 10−15 by Shannon et al. (2015) using
Parkes data. The IPTA (Verbiest et al. 2016) also published its first upper limit at
A = 1.7×10−15 using its first data release. This is not the most stringent limit, but it
has been obtained by combining older individual PTA datasets. In fact, compared to
the individual dataset used, the IPTA limit is a factor of≈2 better, demonstrating the
great potential of adding together more quality pulsars in a worldwide collaborative
effort. Figure 3.8 shows a comparison of the individual PTA upper limits to current
theoretical predictions from Sesana et al. (2016) assuming circular GW-driven
SMBHBs, highlighting their uncertainty. In each panel, shaded areas represent the
spread (larger than an order of magnitude) due to our poor knowledge of the cosmic

Fig. 3.8 Current upper limits on stochastic GWBs as a function of frequency for EPTA (dot-
dashed green), NANOGrav (long-dashed blue), and PPTA (short-dashed red). For each curve,
stars represent the integrated limits to an f−2/3 background, and horizontal ticks represent their
extrapolation at f = 1 year−1, i.e. the upper limit on A defined by Eq. (3.43). Shaded areas
represent the 68% 95% and 99.7% confidence intervals of hc(f ) for selected SMBHB population
models. The two panels show how uncertainties in the SMBH mass-host galaxy relation severely
impact the expected signal level. See Sesana et al. (2016) for full details of the employed models
(from Sesana et al. 2016)



3 Radio Pulsars: Testing Gravity and Detecting Gravitational Waves 135

galaxy merger rate. The difference between panels stems from different SMBH-
galaxy relations (see Sesana et al. (2016) for model details), highlighting that even a
single ingredient entering the computation can have a strong effect on the predicted
signal. Moreover, note that possible SMBHB stalling (Simon and Burke-Spolaor
2016; Kelley et al. 2017), coupling with the environment (Kocsis and Sesana 2011;
Ravi et al. 2014) and eccentricity (Enoki and Nagashima 2007; Sesana 2013; Huerta
et al. 2015; Rasskazov and Merritt 2016) can all contribute to suppressing the signal
at low frequencies, which makes any strong inference from GWB non-detection at
a A = 10−15 level problematic.

3.4 Future Prospects

In Sects. 3.2 and 3.3, we extensively described the state of the art in using pulsars as
gravity probes. Precise timing of MSPs in particular, has already provided precise
tests of GR and alternative theories of gravity in the strong-field regime, and the
current PTA efforts are starting to place constraints on the cosmic population of
SMBHBs, although no detection has yet been made. We now take a look at the
near future, touching on several subjects that are relevant to improving the use of
pulsars as tools for the study of gravity. With pulsars (at least for those that are
not dominated by red timing noise, which is the case for most MSPs), the longer
the data span, the more precise the TOAs. Therefore simply continuing to monitor
them using the same radio telescopes will lead to more precise TOAs. This will
in turn lead to more precise estimations of PK and PPN parameters for known
pulsar binaries, and therefore more stringent tests of GR and alternative gravity
theories. However the number of compact binaries that are useful for gravity tests
(for which more than two PK parameters are determined) is limited. More precise
TOAs will also naturally improve the constraints on a background of nanohertz
GWs (see scaling relations in Sect. 3.3.3.2). However, to make a confident detection
of a stochastic GWB, more pulsars with high precision are needed. The search for
new pulsars is therefore critical to both tests of strong gravity and the search for
nanohertz GWs.

Next-generation instruments such as the Large European Array for Pulsars
(LEAP) (which is equivalent to a 200-m dish and has the sensitivity of SKA phase
1) (Bassa et al. 2016) already play a major role in improving the timing precision
of known pulsars and the search for new ones. New instruments such as the South
African MeerKAT (Booth et al. 2009) radio telescope are especially promising. With
the Five hundred meter Aperture Spherical Telescope (FAST) (Nan et al. 2011) and
the Square Kilometre Array (SKA) (Dewdney et al. 2009) telescopes, we will take
a giant leap in sensitivity, providing both higher precision pulsar timing and surveys
that will be able to find thousands of new pulsars (Smits et al. 2009,a). In particular,
with its higher sensitivity, we expect major new scientific accomplishments with the
arrival of the SKA.
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3.4.1 High Precision Timing

The SKA (SKA1-MID and SKA2) will greatly improve the timing precision of
known MSPs, including the Double Pulsar J0737–3039 (Burgay et al. 2003; Lyne
et al. 2004) and triple systems such as PSR J0337+1715 (Ransom et al. 2014). The
sensitivity of SKA1-MID should be comparable to that of both Arecibo (with an
illuminated surface of about 200 m) and LEAP, but Arecibo has a limited range
of observable declinations. For pulsars not visible with Arecibo, the increase in
sensitivity will be remarkable. We expect SKA1-MID to improve the pulsar timing
precision by one order of magnitude, while SKA2 should improve it by two orders
of magnitude (Shao et al. 2015). This will provide PTAs with better TOAs and better
constraints on a background of GWs, or better, the direct detection of a background
or continuous source of GWs. This will also allow us to probe gravity in the strong-
field regime, especially with the Double Pulsar PSR J0737–3039, which is visible
from the southern sky and is particularly important for SKA. The TOA precision
on the Double Pulsar is expected to reach 5 microseconds with SKA1-MID, while
reaching sub-microsecond levels with SKA2, which will provide much tighter GR
constraints. The eclipse of psr B (with its rapidly-changing flux density) will also
be better measured by the SKA. Finally, the moment of inertia of psr A could also
be measured and help constrain the equation of state of nuclear matter (Watts et al.
2015).

3.4.2 Finding More MSPs

The SKA Galactic Census will enable a search for new pulsars, with which we
expect to expand the current pulsar population by a factor of three (Keane et al.
2015). In its first phase (SKA phase 1 or SKA1, which includes SKA1 LOW and
SKA1 MID), it will have half of the total collecting area expected for SKA2. With
its higher sensitivity, the telescope will take less time to achieve a particular S/N,
therefore smearing due to varying accelerations will be less of an issue. We expect
to find 10,000 normal pulsars with SKA2, including 1800 MSPs (Shao et al. 2015).
The discovery of new, high-precision MSPs (whether solitary pulsars or binaries)
will improve the PTAs’ chances of detecting a background of nanohertz GWs or
single continuous sources.

3.4.3 Finding More Highly-Relativistic Pulsars

The discovery of new compact binaries such as DNS binaries will lead to more
stringent tests of GR (Kramer et al. 2006, 2004), while the discovery of new PSR—
WD binaries will lead to more stringent tests of alternative theories of gravity, which
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usually predict the existence of gravitational dipole radiation, a varying gravitational
constant and SEP violations (Ransom et al. 2014). In particular, we expect to find
100 DNS from SKA1 and 180 DNS from SKA2 (Keane et al. 2015). The SKA could
also discover new triple systems (a pulsar with two compact objects) that can better
constrain the SEP (specifically the � parameter). With a (NS-WD) inner binary and
a NS as the outer star, the constraint on � would be many orders of magnitude
tighter than with PSR J0337+1715 (Ransom et al. 2014) whose outer star is a WD.
Additionally, the improved constraints on PK parameters thanks to the long-term
monitoring of known pulsars such as the Double Pulsar, or to new pulsar discoveries
could lead us to measure effects at 2PN, which could help constrain the equation of
state of neutron stars (Watts et al. 2015). The SKA will also improve constraints
on the Lense-Thirring effect. Discoveries with the SKA of new DNS binaries could
enable a direct measurement of ẋ as well as the Lense-Thirring contribution to ω̇

and their time derivatives ω̈ and ẍ. This is especially true for DNS with good timing
precision, a close orbit, and a large angle between angular orbital momentum and
pulsar spin (Shao et al. 2015).

3.4.4 Pulsar: Black Hole Systems

The discovery of pulsar—black hole (PSR-BH) binaries will open a completely
new window on tests of strong gravity (Damour and Esposito-Farèse 1998; Wex
and Kopeikin 1999). Indeed, possible PSR-BH systems are considered to be the
holy grail for testing gravity in the strong-field regime, and better understanding
the nature of black holes and their environments: the gravitational potential, the
spacetime curvature, the compactness of the black hole. Pulsar timing allows for
unique, high precision tests on the nature of black holes, including measuring the
mass MBH, angular momentum SBH and charge QBH of the black hole. This in
turn allows us to test of the cosmic censorship conjecture (which states that there
cannot exist naked singularities) and the no hair theorem (stating that black holes
are completely determined by MBH, SBH and QBH), which is violated in some
alternative theories of gravity (Hawking and Penrose 1970; Kramer et al. 2004; Liu
et al. 2012, 2014; Wex et al. 2013).

We expect to find the first PSR-BH binaries with SKA2 (Shao et al. 2015;
Liu et al. 2014). There are three types of black hole environments that can be
tested: pulsars could be found orbiting a stellar mass BH (Pfahl et al. 2005); an
Intermediate Mass Black Hole (IMBH) in globular clusters (Devecchi et al. 2007;
Clausen et al. 2014; Hessels et al. 2015); a supermassive BH such as SgrA* (Deneva
2010). In fact, dozens of radio pulsars are expected to be found in the Galactic
Centre orbiting SgrA*. If the pulsars are close enough to the Galactic centre, the
spacetime around the supermassive black hole (SgrA*) could be tested (Pfahl and
Loeb 2004). The magnetar J1745–2900, detected in both X-rays and radio, was
found to be near SgrA* (Mori et al. 2013; Kennea et al. 2013; Eatough et al. 2013).
However it is not close enough to it to perform strong gravity tests. If pulsars can be
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found close enough to SgrA*, the determination of PK parameters through pulsar
timing can help find a precise mass of SgrA* (through a measurement of ω̇, r , s
and γ ). Additionally, the determination of the spin-orbit coupling could help place
an upper limit on the BH spin. We note that a recent paper suggested that, after
analysing decades of pulsar timing data, a known MSP (PSR B1820–30A) is found
to be orbiting an IMBH in the globular cluster NGC6624 (Perera et al. 2017).
While a great result in demonstrating the existence of IMBHs, the orbital period
of the system is too long to allow for tests of the spacetime around the black hole.
Finally, it will be possible to probe the spacetime around black holes by combining
pulsar timing data with the study of relativistic stellar orbits and the high-resolution
imaging of the black hole horizon at sub-mm wavelengths, in particular with the
Event Horizon Telescope. This will provide a highly-precise test of the no-hair
theorem (Psaltis et al. 2016; Benkevitch et al. 2013).

3.4.5 Multi-Messenger Astronomy

The LIGO-Virgo detections of GWs from pairs of black holes and from a DNS
(GW170817 Abbott et al. 2017) were truly historic and provide a new window on
tests of strong gravity (Abbott et al. 2016). In the near future, we expect LIGO
and Virgo to find other sources of GW, including more neutron stars in binary
systems (DNS binaries or NS-BH systems) (Abadie et al. 2010), while we expect the
space interferometer LISA (The LISA Consortium 2017) to find DNS and NS-BH
systems with orbital periods of hours to minutes (see, e.g. Nelemans et al. 2001).
The spectacular observational campaign following the GW detection of GW170817
opened the era of multi-messenger astronomy (Abbott et al. 2017): if the neutron
star in the binary system is visible as a radio pulsar, the information from GW
ground detectors can be combined with the electromagnetic radiation from the
pulsar (through pulsar timing and the determination of PK parameters). This will
enable us to learn about the environment of GW sources such as neutron stars in
binary systems, which emit both radio waves (if the neutron star is visible as a radio
pulsar) and GW waves. We might discover new physics, or at the very least, we will
better constrain alternative theories of gravity Shao et al. (2017).

3.4.6 Detecting Nanohertz GWs

As already mentioned, in the FAST and SKA era, better timing together with the
addition of new MSPs to PTAs will greatly increase the sensitivity of PTAs to a
background of nanohertz GWs. The use of wideband receivers will help greatly in
mitigating all chromatic effects related to pulse propagation in the ISM, allowing a
better identification and removal of scattering and dispersion effects. Conversely,
achromatic noise sources such as jitter and spin noise cannot be mitigated by



3 Radio Pulsars: Testing Gravity and Detecting Gravitational Waves 139

extending the receiver band and might eventually dominate the rms uncertainty
of the best timed MSPs (Cordes 2013). A promising avenue for improving PTA
capabilities is to abandon the idea of analysing pre-determined TOAs, constructed
by matching the profiles of individual measurements to a template, and instead
directly use the pulse profiles of each individual observation. This type of profile
domain analysis has been shown to potentially provide significant improvements in
identifying scattering (Lentati et al. 2017) and spin noise (Shannon et al. 2016), and
thanks to continuously improving algorithms, it can be also applied to wideband
data (Lentati et al. 2017).

Despite the promise of great improvements, it is extremely difficult to forecast
when PTAs will detect GWs. Theoretical exercises (Siemens et al. 2013; Taylor et al.
2016; Vigeland and Siemens 2016; Kelley et al. 2017) tend to predict a first detection
within a decade. This depends on many unknowns, such as how many pulsars will be
discovered and added to the PTAs each year, their intrinsic properties and stability,
an optimization of the observing schedule (see e.g. Lee et al. 2012), and on the very
uncertain GW predictions (cf Fig. 3.8). It is likely that the first glimpse of GWs
in the data will come from the stochastic GWB rather than a deterministic source
(Rosado et al. 2015). Given that current PTA sensitivities are dominated by a few,
very stable systems, it is likely that this will not significantly change in the near
future. The GWB will then show as additional red noise in the best timed pulsars,
which will cause a saturation of PTA upper limits before any confident claim can be
made through the detection of the HD correlation pattern.

Looking further ahead well within the SKA era, GW detection with PTAs will
enable a series of scientific breakthrough including: (1) proving the existence
of sub-pc SMBHBs, (2) understanding of the dynamics and cosmic history of
SMBHBs, (3) identification and sky localization of individual sources, thus enabling
multimessenger astronomy of massive objects in the low frequency regime, (4)
tests of the existence of extra GW polarizations, (5) unprecedented constraints (or
detection) on cosmic (super)string theories and other cosmological sources of GWs,
such as first order phase transitions. A useful summary of the GW science enabled
by future PTA detections can be found in Janssen et al. (2015).

3.5 Summary

MSPs are extremely precise clocks. Monitoring the TOAs of their radio pulses
over many years (through the process of “pulsar timing”) makes them rival atomic
clocks on Earth. This process allows us to determine pulsar parameters with
extremely high precision, including their rotation period, period derivative or the
dispersion measure due to the interstellar medium. Through this process, we can
learn about the strong-gravity environment around the neutron star, the interstellar
medium, and possibly detect GWs from distant SMBHBs. For pulsars in binaries,
we can constrain the strong-gravity environment around the neutron star through
the fitting of PK parameters. The Double Pulsar PSR J0737–3039 provides the
best test so far of GR, confirming GR within 0.05%. Constraints on violations
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of the Strong Equivalence Principle (SEP)—which would signal a breakdown of
GR—as well as constraints on alternative theories of gravity, are however better
achieved with pulsar—white dwarf (PSR-WD) binaries such PSR J1738+0333 and
PSR J0348+0432. We also expect the triple system PSR J0337+1715 (one PSR
with two WD) and future PSR-BH binaries to impose even stronger constraints.
TOA precision naturally improves with longer datasets, therefore the long-term
monitoring of known pulsars will yield better gravity constraints. However the
timing precision of known pulsars such as the Double Pulsar will be largely
improved with newer telescopes such as FAST or the SKA, which have much greater
sensitivity. The number of interesting pulsar binaries that can constrain gravity
theories is small (more than two PK parameters need to be determined in order
to provide an extra consistency check on the theory of gravity). Therefore gravity
constraints will be much improved with new pulsar searches such as with the SKA:
an additional 1800 MSPs are expected to be found, and 10% of these could be
pulsar binaries. In particular, we hope to find dozens of new DNS, which would
lead to tighter constraints on GR, while PSR-WD binaries would provide interesting
tests on alternative theories of gravity. Additionally, triple systems such as (PSR-
WD-WD) systems but also (PSR-WD-NS) would be particularly interesting for
constraining the SEP and alternative theories of gravity. The holy grail however
would be a PSR-BH system, which would not only provide very tight constraints on
gravity theories, but also uniquely probe the spacetime around black holes. Pulsar
timing techniques can also be combined with other techniques to provide even
more stringent tests: the no-hair theorem can be better constrained by combining
data from pulsar timing with the imaging of the BH event horizon using the Event
Horizon Telescope (Psaltis et al. 2016). In addition, pulsar timing data from pulsar
binaries can be combined with future LIGO or LISA GW detections of neutron stars
in binary systems, which may lead to the discovery of new physics or impose strong
constraints on alternative theories of gravity (Shao et al. 2017). Cross-correlating the
TOAs from an ensemble of MSPs thus forming a PTA, offers the unique possibility
of detecting GWs in the nanohertz frequency range, which is inaccessible to both
current ground and future space-based interferometers. The most promising GW
sources in this frequency range are a cosmic population of SMBHBs, and the
incoherent superposition of their signals will most likely be detected as a stochastic
GWB with a red spectrum. Current PTAs already placed stringent limits on the
amplitude of such a GWB, skimming the level at which theoretical predictions
place the signal. The discovery of new MSPs with the SKA will greatly improve
the sensitivity of current PTAs, most likely leading to a confident detection by the
end of next decade. Together with LIGO/Virgo/Kagra in the kilohertz and LISA in
the millihertz frequency range, PTAs will contribute to making gravitational wave
astronomy possible across twelve orders of magnitude in frequency, which will
allow us to probe the astrophysics of compact objects and strong gravity across ten
orders of magnitudes in mass scale. With the prospects of great improvements ahead
and the enormous potential for new discoveries that come with it, pulsar timing
stands as a unique tool in the quest to understand the nature of gravity and the
Cosmos.
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Chapter 4
Accreting Pulsars: Mixing-up Accretion
Phases in Transitional Systems

Sergio Campana and Tiziana Di Salvo

Abstract In the last 20 years our understanding of the millisecond pulsar pop-
ulation changed dramatically. Thanks to the large effective area and good time
resolution of the NASA X-ray observatory Rossi X-ray Timing Explorer, we discov-
ered that neutron stars in Low Mass X-ray Binaries (LMXBs) spins at frequencies
between 200 and 750 Hz, and indirectly confirmed the recycling scenario, according
to which neutron stars are spun up to millisecond periods during the LMXB-
phase. In the meantime, the continuous discovery of rotation-powered millisecond
pulsars in binary systems in the radio and gamma-ray band (mainly with the Fermi
Large Area Telescope) allowed us to classify these sources into two “spiders”
populations, depending on the mass of their companion stars: Black Widow pulsars,
with very low-mass companion stars, and Redbacks, with larger mass companion
stars possibly filling their Roche lobes without accretion of matter onto the neutron
star. It was soon regained that millisecond pulsars in short orbital period LMXBs are
the progenitors of the spider populations of rotation-powered millisecond pulsars,
although a direct link between accretion-powered and rotation-powered millisecond
pulsars was still missing. In 2013 the ESA X-ray observatory XMM-Newton spotted
the X-ray outburst of a new accreting millisecond pulsar (IGR J18245−2452) in a
source that was previously classified as a radio millisecond pulsar, probably of the
Redback type. Follow up observations of the source when it went back to X-ray
quiescence showed that it was able to swing between accretion-powered to rotation-
powered pulsations in a relatively short timescale (few days), promoting this source
as the direct link between the LMXB and the radio millisecond pulsar phases.
Following discoveries showed that there exists a bunch of sources which alternates
X-ray activity phases, showing X-ray coherent pulsations, to radio-loud phases,
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showing radio pulsations, establishing a new class of millisecond pulsars, the so-
called transitional millisecond pulsars. In this review we describe these exciting
discoveries and the properties of accreting and transitional millisecond pulsars,
highlighting what we know and what we have still to learn about in order to fully
understand the (sometime puzzling) behaviour of these systems and their evolutive
connection.

4.1 The Links in the Chain: How a Neutron Star Becomes
a Millisecond Pulsar

4.1.1 The Recycling Scenario: The Evolutionary Path Leading
to the Formation of Millisecond Pulsars

A millisecond pulsar (hereafter MSP) is a fast rotating, weakly magnetised neutron
star. A weak magnetic field for a neutron star means a magnetic field of∼107–108 G,
that is several orders of magnitude higher than the strongest magnetic fields that can
be produced on Earth laboratories (the highest magnetic field strength created on
Earth is ∼9× 105 G1), but weak with respect to the magnetic field of a newly born
neutron star (which is �1011–1012 G). MSPs have spin periods in the range 1–10 ms,
corresponding to spin frequencies above 100 Hz. MSPs were first discovered in the
radio band, with the detection of periodic radio pulses. The first discovered MSP is
PSR B1937+21 (Backer et al. 1982), spinning roughly 641 times a second; this is
to date the second fastest-spinning MSP among the∼300 that have been discovered
so far. PSR J1748−2446ad, discovered in 2005 (Hessels et al. 2006), is the fastest-
spinning pulsar currently known, spinning at 716 Hz. These millisecond spinning
neutron stars are extreme physical objects: general and special relativity are fully
in action, since their surfaces, attaining speeds close to one fifth of the speed of
light, are located extremely close to their Schwarzschild radius. In addition electro-
dynamical forces, caused by the presence of huge surface magnetic fields of several
hundred million Gauss, display their spectacular properties accelerating electrons
up to such energies to promote pair creation in a cascade process responsible for the
emission in the radio and γ -ray bands. The rotational energy is swiftly converted
and released into electromagnetic power which, in some cases, causes the neutron
star to outshine with a luminosity of hundreds Suns.

Standard radio pulsars are usually isolated objects, with relatively high magnetic
field strengths (�1011 G) and relatively long spin periods (�0.1 s). Neutron star
magnetic fields are probably the relic magnetic field of the progenitor star that is
enhanced by “flux freezing”, or conservation of the original magnetic flux, when
the core of the progenitor star collapses to form a neutron star. Moreover, as the
core of a massive star (≥8M�) is compressed and collapses into a neutron star, it

1https://phys.org/news/2011-06-world-strongest-magnetic-fields.html.

https://phys.org/news/2011-06-world-strongest-magnetic-fields.html


4 Accreting Pulsars: Mixing-up Accretion Phases in Transitional Systems 151

retains most of its angular momentum. But, because it has only a tiny fraction of the
radius of its progenitor star, a neutron star is formed with very high rotation speed.
An interesting example of a recently formed pulsar is the Crab pulsar, the central
star in the Crab Nebula, a remnant of the supernova SN 1054, which exploded in the
year 1054, less than a thousand years ago, that shows a spin period of 33 ms and a
magnetic field strength of B � 4× 1012 G.

The strong magnetic field of the newly born neutron star and the high rotational
velocity at its surface generate a strong Lorentz force resulting in the acceleration of
protons and electrons on the star surface and the creation of an electromagnetic
beam emanating from the poles of the magnetic field, which is responsible for
the observed pulsed emission. In rotation-powered pulsars, the energy of the beam
comes from the rotational energy of the pulsar, which therefore starts to spin-down.
At zero-order the pulsar behaves as a rotating magnetic dipole which emits energy
according to the Larmor formula (see Jackson’s Classical Electrodynamics):

Prad = 2

3

(m̈⊥)2

c3 = 2

3

m2⊥Ω4

c3 = 2

3c3 (BR
3 sinα)2

(
2π

P

)4

, (4.1)

where m⊥ = BR3 sin α is the component of the magnetic dipole moment
perpendicular to the rotation axis, B and R are the surface magnetic field and the
neutron star radius, respectively, α is the angle between the rotation axis and the
magnetic dipole axis, Ω is the spin angular frequency of the neutron star and P

its spin period. The pulsar, therefore, gradually slows down at a rate that is higher
for stronger magnetic fields and faster spins. If the magnetic field strength does not
change significantly with time, we can estimate a pulsar’s age from its spin period
and the spin-down rate, by assuming that the pulsar’s initial period P0 was much
shorter than the current period:

τ ≡ P

2Ṗ
. (4.2)

This is the timescale necessary to bring the pulsar from its initial spin period P0 to
its actual period at the observed spin-down rate, and is called characteristic age of
the pulsar. Indeed the characteristic age of the Crab is ∼2.5 kyr.

Soon after their discovery it became clear that MSPs are old neutron stars, with
relatively weak magnetic fields, of characteristic ages comparable to the age of the
Universe; these were therefore recognised as a different class of objects, called
recycled pulsars. Binary systems that can host an old neutron star and may be
responsible for the recycling are the so-called Low Mass X-ray Binaries (hereafter
LMXBs), in which an old, weakly magnetised, neutron star accretes matter from
a low-mass (less that 1M�) companion star. In these systems, matter transferred
from the companion star enters the Roche lobe of the neutron star through the inner
Lagrangian point and releases a large amount of gravitational energy before falling
onto the neutron star. These systems may be up to five orders of magnitude more
luminous than the Sun, and the temperature matter reaches close to the neutron



152 S. Campana and T. Di Salvo

star ranges from few keV up to a hundred keV, making these systems the brightest
Galactic sources in the X-ray band. Because of the small size of the companion
star, these systems are also quite compact, with orbital periods ranging from several
minutes up to one day. For this reason, matter leaving the companion star, has a high
specific angular momentum and cannot fall directly onto the neutron star. Besides an
accretion disc is formed, where matter rotates with Keplerian velocities and looses
energy until it reaches the innermost part of the system, close to the neutron star.
When this matter accretes onto the neutron star surface it has relativistic velocities
(up to half the velocity of light), and is able to efficiently accelerate the neutron star
up to millisecond periods. Depending on the Equation of State (EoS) of ultra-dense
matter, 0.1–0.2M� are sufficient to spin up a weakly magnetised neutron star to
millisecond periods (Burderi et al. 1999). During this phase, because of the accretion
of matter and angular momentum, the neutron star accumulates an extraordinary
amount of mechanical rotational energy, up to 1% of its whole rest-mass energy.

4.1.2 Problems and Confirmation of the Recycling Scenario

The recycling scenario described above (see e.g. Bhattacharya and van den Heuvel
1991) establishes therefore a clear evolutive link between LMXBs and radio MSPs,
with the former being the progenitors of the latter. However, till the end of nineties,
there was no observational evidence confirming this evolutive scenario, since there
was no evidence that LMXBs could host fast rotating neutron stars. In fact, despite
thoroughly searched, no LMXB was found to show coherent pulsations, therefore
unveiling its spin frequency. The fact that the large majority of LMXBs does
not show coherent pulsations is still a problem. Several explanations have been
invoked to interpret this fact, but none of them is fully satisfactory (see also Patruno
and Watts 2012, and references therein, for further discussion of this issue). One
possibility is that the magnetic axis is aligned with the rotation axis (e.g. Ruderman
1991), but this is excluded by the fact that MSPs, the descendants, show pulsations
and therefore the magnetic and rotational axes are not aligned in these systems.
Another possibility is that the magnetic field is not strong enough to channel the
accreting matter to the neutron star magnetic poles or that optically thick matter
around the neutron star may smear the coherent pulsations (e.g. Brainerd and Lamb
1987). However, the large majority of LMXBs are transient systems, showing large
variation in luminosity, and going through soft (optically thick) X-ray spectra at
high luminosity and hard (optically thin) X-ray spectra at low luminosity. During
these stages the accretion rate decreases, the accreting matter becoming optically
thin, allowing in principle the detection of X-ray pulsations at millisecond periods
(e.g. Göǧüş et al. 2007). Other two possibilities are that the neutron star magnetic
field is buried by long phases of accretion (e.g. Romani 1990; Cumming et al. 2001)
or that the coherent pulsations are very weak, beyond the sensitivity of current X-ray
observatories.
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Another problem of the recycling scenario was the lack of the observational
link between LMXBs and MSPs, i.e. the lack of a system behaving like a LMXB
during X-ray active phases and like a radio MSP during X-ray quiescence, when
presumably the accretion rate goes down and the radio pulsar mechanism can
switch on. However, lack of evidence does not mean evidence of lack, and both
these problems were recently solved. In particular, in 1998 coherent pulsations were
discovered for the first time in a transient LMXB (SAX J1808.4−3658, Wijnands
and van der Klis 1998), and in 2013 the long-sought-for missing link between
LMXBs and MSPs was finally found (IGR J18245−2452, a.k.a. M28I, Papitto et al.
2013a). In the next section we describe these discoveries and the related ones, and
give the basic observational characteristics of these new classes of systems (see
Table 4.1 for a summary of the main properties of these systems).

4.2 Millisecond Pulsars in LMXBs and Their Properties

4.2.1 The Discovery of a New Class of Fast Spinning Neutron
Star

The situation dramatically changed in 1996, when the NASA observatory Rossi X-
ray Timing Explorer (RXTE) was launched. RXTE was the first X-ray observatory
coupling a large effective area (the Proportional Counter Array, PCA, had a total
collecting area of∼6500 cm2) and good time resolution (up to 1 μs), hence suitable
for the search of fast time variability. In 1996 quasi-coherent pulsations were
detected in RXTE observations of the LMXB 4U 1728−34 at a frequency of
∼363 Hz, with amplitudes (rms) of 2.5–10% during six of the eight type-I bursts
present in the observation (Strohmayer et al. 1996). The pulsations during these
bursts showed frequency drifts of 1.5 Hz during the first few seconds but became
effectively coherent during the burst decay. The 363 Hz pulsations were interpreted
as rotationally induced modulations of inhomogeneous burst emission, and were
considered the first compelling evidence for a millisecond spin period in a LMXB.

The direct evidence for the presence of a fast-spinning neutron star in a LMXB
arrived 2 years later, in 1998, when observations performed with RXTE led to the
discovery of the first millisecond pulsar in a LMXB, SAX J1808.4−3658. This
transient LMXB, first observed by the Wide Field Camera (WFC) on board the
X-ray satellite BeppoSAX, shows coherent pulsations with a period of 2.5 ms and
an orbital period of 2.01 h (Wijnands and van der Klis 1998; Chakrabarty and
Morgan 1998). For almost 4 years, SAX J1808.4−3658 was considered as a rare
object in which some peculiarity of the system allowed for the detection of the
neutron star spin. However, in the last 20 years, other 19 accreting millisecond
pulsars have been discovered, the two most recent ones discovered in 2017 (Sanna
et al. 2017a; Strohmayer and Keek 2017). All of them show coherent pulsations
with periods in the range 1.7–6.0 ms (up to 60 ms if we also include the enigmatic
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Table 4.1 Accreting X-ray pulsars in low mass X-ray binaries

νs/P Porb fx Mc,min Companion

Source (Hz)/(ms) (h) (M�) (M�) type Ref.

Accreting millisecond pulsars

XSS J12270−4859 593 (1.7) 6.91 3.9 × 10−3 0.27 MS Roy et al. (2015) and de
Martino et al. (2014)

PSR J1023+0038 592 (1.7) 4.75 1.1 × 10−3 0.20 MS Archibald et al. (2009) and
Coti Zelati et al. (2014)

Aql X-1 550 (1.8) 18.95 1.4 × 10−2 0.56 MS Casella et al. (2008) and
Mata Sánchez et al. (2017)

Swift J1749.4−2807 518 (1.9) 8.82 5.5 × 10−2 0.59 MS Altamirano et al. (2011)
and D’Avanzo et al. (2011)

SAX J1748.9−2021 442 (2.3) 8.77 4.8 × 10−4 0.1 MS Altamirano et al. (2008)
and Cadelano et al. (2017)

IGR J17498−2921 401 (2.5) 3.84 2.0 × 10−3 0.17 MS Papitto et al. (2011b)

XTE J1814−338 314 (3.2) 4.27 2.0 × 10−3 0.17 MS Markwardt and Swank
(2003) and Wang et al.
(2017)

IGR J18245−2452 254 (3.9) 11.03 2.3 × 10−3 0.17 MS Papitto et al. (2013a)

IGR J17511−3057 245 (4.1) 3.47 1.1 × 10−3 0.13 MS Papitto et al. (2010)

IGR J00291+5934 599 (1.7) 2.46 2.8 × 10−5 0.039 BD Galloway et al. (2005)

SAX J1808.4−3658 401 (2.5) 2.01 3.8 × 10−5 0.043 BD Wijnands and van der Klis
(1998) and Wang et al.
(2013)

HETE J1900.1−2455 377 (2.7) 1.39 2.0 × 10−6 0.016 BD Kaaret et al. (2006) and
Elebert et al. (2008)

XTE J1751−305 435 (2.3) 0.71 1.3 × 10−6 0.014 He WD Markwardt et al. (2002)
and D’Avanzo et al. (2009)

MAXI J0911−655 340 (2.9) 0.74 6.2 × 10−6 0.024 He WD? Sanna et al. (2017a)

NGC6440 X−2 206 (4.8) 0.95 1.6 × 10−7 0.0067 He WD Altamirano et al. (2010)

Swift J1756.9−2508 182 (5.5) 0.91 1.6 × 10−7 0.007 He WD Krimm et al. (2007)

IGR J16597−3704 105 (9.5) 0.77 1.2×10−7 0.006 He WD Sanna et al. (2018)

XTE J0929−314 185 (5.4) 0.73 2.9 × 10−7 0.0083 C/O WD Galloway et al. (2002) and
Giles et al. (2005)

XTE J1807−294 190 (5.3) 0.67 1.5 × 10−7 0.0066 C/O WD Campana et al. (2003) and
D’Avanzo et al. (2009)

IGR J17062−6143 164 (6.1) > 0.28 – – – Strohmayer and Keek
(2017)

νs is the spin frequency, Pb the orbital period, fx is the X-ray mass function, Mc,min is the minimum companion
mass for an assumed NS mass of 1.4 M� . The companion types are: WD White Dwarf, BD Brown Dwarf, MS
Main Sequence, He Core Helium Star
Adapted and updated from Patruno and Watts (2012)
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LMXB IGR J17480−2446 recently discovered in the Globular Cluster Terzan 5;
Papitto et al. 2011a), and all of them are found in compact systems, with orbital
periods in the range 40 min to ∼10 h (with the exception is Aql X-1, one of the so-
called intermittent millisecond pulsars, which has an orbital period of 19 h). Hence,
very low mass donors, ≤0.2M�, are usually preferred. Another common feature
of these systems is that all of them are transients, spending most of the time in a
quiescent X-ray state; on occasions they show X-ray outbursts with moderate peak
luminosities in the range 1036–1037 erg s−1. It was clear that we were facing a new
class of astronomical objects, the so-called Accreting Millisecond X-ray Pulsars
(hereafter AMSPs) that could constitute the bridge between the accretion-powered
(LMXBs) and the rotation-powered (MSPs) neutron star sources.

4.2.2 Peculiar Behaviours and Intermittent Pulsations

Most (if not all) of the AMSPs are transient, as the vast majority of LMXBs in
general. They spend most of time in quiescence with very low X-ray luminosity
(�1031–1033 erg s−1) and sometimes they show X-ray outbursts (reaching lumi-
nosities of ∼1036–1037 erg s−1) usually lasting from few days to ≤3 months. The
shortest outburst recurrence time is 1 month for the globular cluster source NGC
6440 X-2, with an outburst duration of less than 4–5 days, whereas the longest
outburst, from HETE J1900.1−2455, has lasted for ∼10 years (up to late 2015
when the source returned to quiescence, Degenaar et al. 2017). However, most of
these systems have shown just one X-ray outburst during the last 20 years. The most
regular among recurrent AMSPs, and therefore the best studied of these sources, is
the first discovered AMSP, SAX J1808.4−3658, which has shown an X-ray outburst
every 1.6–3.5 years, the latest one occurred in 2015 (Patruno et al. 2017; Sanna et al.
2017b). The outburst light curve is characterised by a fast rise (on a couple of days
timescale), a slow exponential decay (with a timescale of ∼10 days) followed by a
fast decay (with a timescale of∼2 days). After the end of the main outburst, usually
a flaring activity, called reflares, is observed, with a quasi-oscillatory behaviour and
a variation in luminosity of up to three orders of magnitude on timescales ∼1–2
days. Moreover a strong ∼1 Hz oscillation is observed to modulate the reflares. A
similar behaviour was also observed in the AMSP NGC 6440 X-2 (see e.g. Patruno
and D’Angelo 2013). The reflaring behaviour has no clear explanation. Patruno et al.
(2016) proposed a possible explanation in terms of either a strong propeller with a
large amount of matter being expelled from the system or a trapped (dead) disc
truncated at the co-rotation radius.

Another peculiar behaviour is the intermittency of the pulsations, important
because it could bridge the gap between non-pulsating LMXBs and AMSPs.
In 2005, the seventh discovered AMSP, HETE J1900.1−2455, went into X-ray
outburst and showed X-ray pulsations at 377 Hz, with an orbital period of 1.39 h
(Kaaret et al. 2006). Contrary to the usual behaviour of AMSPs, this outburst
lasted for about 10 years. After the first 20 days of the outburst, the pulsations
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became intermittent for about 2.5 years. After that the pulsed fraction weakened
with stringent upper limits (≤ 0.07%, Patruno 2012). The most puzzling behaviour
in this sense, was observed in the LMXB Aql X-1, which showed coherent X-
ray pulsations, discovered in 1998 RXTE archival data, that appeared in only
one ∼150 s data segment out of a total exposure time of 1.5 Ms from more than
10 years of observations (Casella et al. 2008). The third intermittent pulsar is
SAX J1748.9−2021, where pulsations were detected sporadically in several data
segments and in three out of four outbursts observed by the source (Patruno et al.
2009a, see also Sanna et al. 2016 reporting on the 2015 outburst of the source).
Interestingly, these AMSPs may have a long term average mass accretion rate higher
with respect to the other AMSPs. To explain this behaviour, it has been proposed
that a screening of the neutron star magnetic field by the accreting matter weakens
its strength by orders of magnitude on timescale of few hundred days, so that it is
less effective in truncating the accretion disc and channel matter to the magnetic
poles (Patruno 2012). However, it is not clear if this hypothesis can explain all the
phenomenology and more observations and theoretical efforts are needed to reach a
satisfactory explanation.

A detailed review of most of the phenomenology of AMSPs can be found in
Patruno and Watts (2012). In the following we will give an overview of the most
debated issues on these systems, with particular attention to aspect regarding their
evolution and their connection to rotation-powered MSPs.

4.2.3 Accretion Torques and Short-Term Spin Variations

Accretion torque theories can be tested studying the spin variations of AMSPs
during accretion states. These studies can provide valuable information on the mass
accretion rate and magnetic field of the neutron star in these systems, as well as their
spin evolution. An open question is whether these accreting pulsars are spinning up
during an outburst and spinning down in quiescence as predicted by the recycling
scenario. Coherent timing has been performed on several sources of the sample, with
controversial results. Although some AMSPs show pulse phase delays distributed
along a second order polynomial, indicating an almost constant spin frequency
derivative, other sources show strong timing noise which can hamper any clear
measurement of the spin derivative. In fact, the phase delays behaviour as a function
of time in these sources is sometimes quite complex and difficult to interpret, since
phase shifts, most probably related to variations of the X-ray flux, are sometimes
present.

The first AMSP for which a spin derivative has been measured is the fastest
spinning (∼599 Hz, in a 2.46 h orbit) among these sources, IGR J00291+5934. It
is now generally accepted that this source shows spin up at a rate of ∼(5–8) ×
10−13 Hz s−1 (Falanga et al. 2005; Patruno 2010). Burderi et al. (2006) have
attempted to fit the phase delays vs. time with physical models taking into account
the observed decrease of the X-ray flux as a function of time during the X-ray
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outburst, with the aim to get a reliable estimate of the mass accretion rate onto
the compact object. In the hypothesis that the spin-up of the source is caused by
the accretion of matter and angular momentum from a Keplerian accretion disc,
the mass accretion rate, Ṁ , onto the neutron star can be calculated by the simple
relation: 2πI ν̇ = Ṁ(GMNSR)

1/2, where I is the moment of inertia of the neutron
star, ν̇ the spin frequency derivative, G the gravitational constant, MNS the neutron
star mass, R the accretion radius, and (GMNSR)

1/2 the Keplerian specific angular
momentum at the accretion radius. Because the X-ray flux, which is assumed to be
a good tracer of the mass accretion rate, is observed to decrease along the outburst,
this has to be included in the relation above in order to obtain the correct value of the
mass accretion rate at the beginning of the outburst as well as its temporal evolution.
Note that the accretion radius also depends on the mass accretion rate, R ∝ Ṁ−α ,
where α is usually assumed to be 2/7 (e.g. Ghosh and Lamb 1978), and therefore
varies with time. Fitting the phase delays in this way, the spin frequency derivative
at the beginning of the outburst results to be ν̇ ∼ 1.2(2) × 10−12 Hz s−1, and the
lower limit to the mass accretion rate at the beginning of the outburst, corresponding
to α = 0, is Ṁ−10 = 5.9ν̇−13I45m

−2/3 = 70 ± 10, where Ṁ−10 is the mass
accretion rate in units of 10−10 M� year−1, ν̇−13 is the spin frequency derivative
in units of 10−13 Hz s−1, I45 the moment of inertia of the neutron star in units of
1045 g cm2, and m is the neutron star mass in units of M�. This would correspond
to a bolometric luminosity of∼7×1037 erg s−1, that is about an order of magnitude
higher than the X-ray luminosity inferred from the observed X-ray flux, assuming a
distance of 5 kpc. Once we will have a direct, independent, estimate of the distance
to the source, we will have the possibility to test the Ṁ vs. X-ray luminosity relation,
torque theories and/or the physical parameters of the neutron star.

Other AMSPs show clear parabolic trend of the pulse phase delays as a
function of time during X-ray outburst, some of them showing spin-up (e.g. XTE
J1807−294, ν̇ = 2.5(7) × 10−14 Hz s−1, Riggio et al. 2008; XTE J1751−305,
ν̇ = 3.7(1.0) × 10−13 Hz s−1, Papitto et al. 2008; IGR J17511−3057, ν̇ =
1.6(2) × 10−13 Hz s−1, Riggio et al. 2011a) while others showing spin-down (e.g.
XTE J0929−314, ν̇ = −9.2(4) × 10−14 Hz s−1, Galloway et al. 2002; XTE
J1814−338, ν̇ = −6.7(7)× 10−14 Hz s−1, Papitto et al. 2007; IGR J17498−2921,
ν̇ = −6.3(1.9) × 10−14 Hz s−1, Papitto et al. 2011b). Those sources showing
spin-down suggest the possibility of an interaction of the neutron star magnetic
field with the accretion disc outside the co-rotation radius (the radius in the disc
where the Keplerian frequency equals the neutron star spin frequency). In fact the
magnetic field lines can be threaded into the accretion disc and dragged by the
high conductivity plasma so that an extra torque due to magnetic stresses has to
be expected (see e.g. Wang 1987). In this case, an estimate of the magnetic field
strength can be derived from the measured spin-down rate (see e.g. Di Salvo et al.
2007). However, there is not a general consensus on the interpretation of these phase
residuals. Another possibility is that these are due to a timing noise caused by
a pulse phase offset that varies in correlation with X-ray flux, such that noise in
flux translates into timing noise (Patruno et al. 2009b). In this case, much stringent
limits result on the spin derivatives in these sources (see Patruno and Watts 2012,
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and references therein). Although for some sources clear correlations are observed
between abrupt jumps in the pulse phases and sharp variations in the X-ray flux, it
is not clear yet how much of the phase variations can be ascribed to an accretion-
rate-dependent hot spot location.

Certainly, the most debated case is SAX J1808.4−3658 whose phase variations
are strongly dominated by timing noise. The pulse phase delays show a very
puzzling behaviour, since a rather fast phase shift, by approximately 0.2 in phase,
is present at day 14 from the beginning of the 2002 outburst (Burderi et al. 2006)
(see Fig. 4.1, left panel). Interestingly, day 14 corresponds to a steepening of the
exponential decay with time of the X-ray flux. However, analysing separately the
phase delays of the fundamental and second harmonic of the pulse profile, Burderi
et al. (2006) noted that the phase delays of the harmonic did not show any evidence
of phase jumps (see Fig. 4.1, right panel). This is not an effect of the worse statistics
of the phase delays derived from the harmonic, which of course show larger error
bars.

This means that the phase jump in the fundamental is not related to an intrinsic
spin variation (which would have affected the whole pulse profile), but is instead
caused by a change of the shape of the pulse profile (perhaps related to the
mechanism causing the increase of the steepness of the exponential decay of the
X-ray flux). On the other hand, from the fitting of the phase delays of the second
harmonic, under the hypothesis that these are a better trace of the spin of the
neutron star, Burderi et al. (2006) find that the source shows a spin-up at the
beginning of the outburst with ν̇0 = 4.4(8) × 10−13 Hz s−1, corresponding to a
mass accretion rate of Ṁ ∼ 1.8 × 10−9 M� year−1, and a constant spin-down,
with ν̇sd = 7.6(1.5)× 10−14 Hz s−1, dominating the phase delays at the end of the
outburst. In this case, the mass accretion rate inferred from timing is only a factor
of 2 larger than the observed X-ray luminosity at the beginning of the outburst,
that is ∼1037 erg s−1. The spin-down observed at the end of the outburst can be
interpreted as due to a threading of the accretion disc by the neutron star magnetic
field outside the co-rotation radius. Of course, in agreement with the expectation,
the threading effect appears to be more relevant at the end of the outburst, when the
mass accretion rate significantly decreases. In this case the magnetic moment, μ,
of SAX J1808.43658 can be evaluated from the measured value of the spin-down,
using the relation (see Rappaport et al. 2004):

2πI ν̇sd ≡ μ2

9r3
cor

(4.3)

where rcor is the co-rotation radius. The magnetic field found in this way is B =
(3.5 ± 0.5) × 108 G, perfectly in agreement with other, independent, constraints
(e.g. Burderi et al. 2006).

The fact that the second harmonic shows more regular phase residuals with
respect to the fundamental has also been observed in other AMSPs (e.g. Riggio
et al. 2008, 2011a; Papitto et al. 2012) and may indicate that the second harmonic
is a good tracer of the neutron star spin frequency. A simple model proposed by
Riggio et al. (2011b) (see also Papitto et al. 2012) may explain a similar behavior
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Fig. 4.1 Left: Phase vs. time for the fundamental of the pulse frequency of SAX J1808.4−3658.
Right: Phase vs. time for the first harmonic of the pulse frequency of SAX J1808.4−3658. On top
of the data, the best-fit function (including both the spin-up due to accretion and the spin-down at
the end of the outburst) is plotted as a solid line (from Burderi et al. 2006)

in terms of modest variations of the relative intensity received by the two polar caps
on to the neutron star surface, in the hypothesis that the two spots emit a signal of
similar amplitude and with a similar harmonic content. The sum of the two signals
(the total profile) will be the result of a destructive interference for what concerns
the fundamental frequency, since it is the sum of two signals with a phase difference
of ∼π . A constructive interference develops instead for the second harmonic of the
total profile, since it is the sum of two signals with the same phase. The destructive
interference regarding the fundamental frequency leads to large swings of the phase
of the fundamental of the total profile due to modest variations of the relative
intensity of the signals emitted by the two caps. In this case swings up to 0.5 phase
cycles can be shown by the phase computed over the fundamental frequency of
the observed profile, without correspondingly large variations of the phase of the
second harmonic. Interestingly, IGR J00291+5934, showing a much more regular
behaviour of the fundamental, shows a nearly sinusoidal pulse profile, with very
little harmonic content (e.g. Galloway et al. 2005; Burderi et al. 2007).
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4.2.4 Long-Term Spin Evolution

For AMSPs for which more than one outburst has been observed, it is possible
to derive their long term spin evolution comparing the averaged spin frequency
measured in each outburst. To date only six AMSPs have been monitored with
high time resolution instruments in different outbursts: SAX J1808.4−3658, IGR
J00291+5934, XTE J1751−305, Swift J1756.9−2508, NGC6440 X-2 and SAX
J1748.9−2021 (although, with relatively low S/N and short outburst duration in the
latter two sources). The best constrained is SAXJ1808.4−3658, for which secular
spin evolution have now been measured over a 13 year baseline and shows a constant
long-term spin-down at a rate of ∼−1× 10−15 Hz s−1 (Hartman et al. 2008, 2009;
Patruno et al. 2012; Sanna et al. 2017b). Because of the stability of the spin-
down rate over the years, the most likely explanation appears to be loss of angular
momentum via magnetic-dipole radiation, which is expected for a rapidly rotating
neutron star with a magnetic field. The measured spin-down is consistent with a
polar magnetic field of (1.5–2.5) × 108 G. This is in agreement with the estimate
above.

A spin down has also been measured for IGR J00291+5934 between the 2004
and 2008 outburst, at a rate of −4.1(1.2) × 10−15 Hz s−1 (Patruno 2010; Papitto
et al. 2011c; Hartman et al. 2011), larger than that observed in SAX J1808.43658,
as expected given that IGR J00291+5934 spins at a higher frequency. If interpreted
in terms of magneto-dipole emission, the measured spin down translates into an
estimate of the neutron star magnetic field of (1.5–2) × 108 G. For the period
between the 2008 and 2015 outbursts only an upper limit to the frequency evolution
could be derived, |ν̇| ≤ 6× 10−15 Hz s−1 (3σ c.l., Sanna et al. 2017c), compatible
with the previous estimate. Comparing the spin frequencies from 2002, 2005, 2007
and 2009 outbursts of XTE J1751−305, Riggio et al. (2011c) report a spin down
at a rate of ∼(1.2) × 10−15 Hz s−1 and an inferred magnetic field of ∼4 × 108 G.
Whereas for Swift J1756.9−2508 only an upper limit (|ν̇sd | ≤ 2 × 10−15 Hz s−1),
corresponding to a magnetic field ≤ 109 G, has been reported (Patruno et al. 2010).

The fact that the spin-down during quiescent periods is probably due to magnetic-
dipole radiation rises the interesting possibility that AMSPs may switch on as a
radio pulsar during quiescence and ablate their donor. This is the so-called hidden
black widow scenario proposed by Di Salvo et al. (2008) (see also Stella et al. 1994;
Campana et al. 1998) to explain the long-term orbital evolution (see next section).

4.2.5 Orbital Evolution

The study of the orbital evolution in these systems is important to constrain the
evolutionary path leading to the formation of radio MSPs. These studies, however,
require a large timespan of data in order to constraint the orbital period derivative.
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Hence, the main difficulty is given by the fact that most of the AMSPs rarely turn
into X-ray outburst. For this reason, the best constraints on the orbital evolution in
these systems come again from SAX J1808.4−3658, which has shown seven X-ray
outburst to date, allowing to follow its orbital period over 17 years.

In the case of SAX J1808.4−3658 it is possible to see a clear parabolic trend
of the time of passage to the ascending node versus time over the last 17 years (Di
Salvo et al. 2008; Hartman et al. 2008; Burderi et al. 2009; Patruno et al. 2016;
Sanna et al. 2017b). Interpreting this parabolic term as the orbital period derivative,
gives orbital expansion at a quite high rate of Ṗorb = (3.4–3.9) × 10−12 s s−1

(see also Sanna et al. 2016 who report a marginally significant, strong orbital
expansion in the AMSP SAX J1748.9−2021). The observed orbital expansion
implies a mass-radius index for the secondary n < 1/3 (see Di Salvo et al. 2008).
In the reasonable hypothesis that the secondary star is a fully convective star out of
thermal equilibrium and responds adiabatically to the mass transfer, a mass-radius
index of n = −1/3 can be assumed for the secondary. However, this derivative
is a factor ∼70 higher that the orbital derivative expected for conservative mass
transfer, given the low averaged mass accretion rate onto the neutron star; since
SAX J1808.4−3658 accretes for about 30 d every 2–4 year, the averaged X-ray
luminosity from the source results to be Lobs ∼ 4× 1034 erg s−1.

A non-conservative mass transfer can explain the large orbital period derivative
if we assume a mass transfer rate of Ṁ ∼ 10−9 M� year−1, and that this matter
is expelled from the system with the specific angular momentum at the inner
Lagrangian point (see Di Salvo et al. 2008; Burderi et al. 2009). In this case,
the non-conservative mass transfer may be a consequence of the so-called radio-
ejection model extensively discussed by Burderi et al. (2001). The basic idea is
that a fraction of the transferred matter in the disc could be swept out by radiative
pressure of the pulsar. In this case, the fast spinning neutron star may ablate the
companion during quiescent periods (the so-called hidden black widow scenario
proposed by Di Salvo et al. 2008). Alternatively, the large orbital period derivative
observed in SAX J1808.4−3658 can be interpreted as the effect of short-term
angular momentum exchange between the mass donor and the orbit (Hartman et al.
2009; Patruno et al. 2012), resulting from variations in the spin of the companion star
(holding the star out of synchronous rotation) caused by intense magnetic activity
driven by the pulsar irradiation. This mechanism has been invoked by Applegate and
Shaham (1994) (hereafter A&S) to explain oscillating orbital residuals observed in
some radio MSPs (see e.g. Arzoumanian et al. 1994). In this case, the energy flow
in the companion needed to power the orbital period change mechanism can be
supplied by tidal dissipation. However, the A&S mechanism envisages alternating
epochs of orbital period increase and decrease, which is not yet observed from SAX
J1808.4−3658. It also predicts that the system will evolve to longer orbital periods
by mass and angular momentum loss on a timescale of 108 year (for a 2-h orbital
period and a companion mass of 0.1–0.2M�), and thus requires a strong orbital
period derivative, similar to that inferred from the quadratic trend observed in SAX
J1808.4−3658. Therefore, also in the framework of the A&S mechanism, most of
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the orbital period variation observed in SAX J1808.4−3658 is probably caused by
loss of matter and angular momentum, i.e. by a non-conservative mass transfer (see
Sanna et al. 2017b for further discussions). The next outbursts from this source will
tell us whether the orbital period increase will turn into a decrease or, instead, the
orbital expansion will continue, and this will be crucial in order to discriminate
between the two possibilities sketched above.

Another puzzling result comes from IGR J0029+5934, which has orbital param-
eters very similar to those of SAX J1808.4−3658, and is considered its orbital twin.
IGR J0029+5934 has shown only four outbursts since its discovery, but tight upper
limits could be derived on its orbital period derivative, |Ṗorb| < 5 × 10−13 s s−1

(90% confidence level Patruno 2017, see also Sanna et al. 2017c). This implies a
much slower orbital evolution, on a timescale longer than ∼0.5 Gyr, as compared
to the fast orbital evolution of its twin, ∼70 Myr. The orbital evolution observed
in IGR J0029+5934 is compatible with the expected timescale of mass transfer
driven by angular momentum loss via gravitational radiation, with no need of A&S
mechanism or non-conservative mass transfer. In this case, it would be interesting to
constrain the sign of the orbital period derivative in order to get information on the
mass-radius index of the donor star and to infer whether it is in thermal equilibrium
(implying orbital contraction) or not (implying orbital expansion).

4.2.6 Searches at Other Wavelengths

AMSPs are transient systems with inferred variations in the mass accretion rate onto
the central source by a factor of ∼105 between outbursts and quiescence. Since the
magnetospheric radius expands as the mass accretion rate decreases, it is easy to
see that, while during an X-ray outburst the magnetospheric radius is expected to be
very close to the neutron star surface, during X-ray quiescence the magnetospheric
radius may expand beyond the light-cylinder radius (where an object co-rotating
with the neutron star attains the speed of light). In this case, it is expected that
any residual accretion is inhibited by the radiation pressure and, consequently, it is
plausible to expect that the neutron star turns-on as a radio MSP until a new outburst
episode pushes the magnetospheric radius back again, quenching radio emission
and initiating a new accretion phase. The compelling possibility that these systems
could swiftly switch from accretion-powered to rotation-powered magneto-dipole
emitters during quiescence gives the opportunity to study a phase that could shed
new light on the not yet cleared up radio pulsar emission mechanism. However,
such a behaviour has been observed only recently, in the so-called transitional
MSPs (see next sections), and in particular in the unique source IGR J18245−2452
(Papitto et al. 2013a), the long-sought-for “missing link” between LMXBs and
radio MSPs; a binary system containing a neutron star alternating accretion-powered
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phases, in which it behaves like an AMSP, to rotation-powered phases, in which it
behaves like a radio MSP. However, despite the huge observational effort made to
catch, in a transient LMXB, the transition between the accretion-powered regime
and the rotation-powered regime during quiescence, no pulsed radio emission has
been found in other AMSPs. The most embarrassing problem is certainly the lack
of pulsed radio emission from these systems during quiescence: many transient
LMXBs and AMSPs have been thoroughly searched in radio during quiescence
with disappointing negative results (Burgay et al. 2003; Iacolina et al. 2009, 2010;
Patruno et al. 2017).

Burderi et al. (2001) (see also Burderi et al. 2002) have proposed a model, that
naturally explains this non-detection, assuming that the radio pulsar mechanism
switches on when a temporary significant reduction of the mass-transfer rate occurs.
In some cases, even if the original mass transfer rate is restored, the accretion of
matter onto the neutron star can be inhibited by the radiation pressure from the
radio pulsar, which may be capable of ejecting out of the system most of the matter
overflowing from the companion-star Roche lobe. In particular, Burderi et al. (2001)
showed that in “wide systems”, i.e. systems with orbital periods longer than a few
hours, and with a sufficiently fast spinning neutron star, the switch-on of the radio
pulsar can prevent any further accretion, even if the original mass transfer rate is
restored. On the other hand, “compact” systems (orbital periods below a few hours)
should show a cyclic behaviour since, once the temporary reduction of the accretion
rate ends, the radiation pressure of the pulsar is unable to keep the matter outside
the light cylinder radius and accretion resumes.

One of the strongest predictions of this model is the presence, during the radio-
ejection phase, of a strong wind of matter emanating from the system: the mass
released by the companion star swept away by the radiation pressure of the pulsar.
This matter could cause strong free-free absorption in the radio band, hampering
the detection of pulsed signals. A possible solution is then to observe at high radio
frequencies (above 5–6 GHz, see Campana et al. 1998; Di Salvo and Burderi 2003),
thus reducing the cross-section of free-free absorption which depends on ν−2. Note
that the pulsed radio flux also decreases with increasing frequency, although it is
easy to see that this decrease is less steep with respect to the decrease of the effects
caused by free-free absorption (see e.g. Burderi and King 1994). This may explain
why some AMSPs indeed have radio counterparts (see Patruno and Watts 2012 for
a review), although not pulsating. Interestingly, Iacolina et al. (2010) report a peak
at 4σ significance for XTE J1751−305, obtained folding a radio observation of
this source performed at Parkes radio telescope. This peak has a 40% probability
of not being randomly generated over the 40,755 trial foldings of the dataset
corresponding to one of the two observations performed at 8.5 GHz. This result
is not confirmed in the other observation (at the same frequency) and thus deserves
additional investigation in the future. Alternatively, pulsating radio emission should
be searched in systems with long orbital periods, in which the matter transferred by
the companion star is spread over a wider orbit.
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Strong (indirect) evidences that a rotating magneto-dipole powers the quiescent
emission of AMSPs, comes from observations of the quiescent emission from
their identified optical counterpart. In the case of SAX J1808.4−3658, measures
in the optical band show an unexpectedly large optical luminosity (Homer et al.
2001), inconsistent with both intrinsic emission from the companion star and X-
ray reprocessing. The most probable explanation for the over-luminous optical
counterpart of SAX J1808.4−3658 in quiescence, proposed by Burderi et al. (2003)
and Campana et al. (2004), is that the magnetic dipole rotator is active during
quiescence and its bolometric luminosity, given by the Larmor’s formula (Eq. (4.1)),
powers the reprocessed optical emission. Indeed, the optical luminosity and colours
predicted by this model are perfectly in agreement with the observed values.

Similar results have been obtained for other AMSPs for which optical obser-
vations in quiescence have been performed. For XTE J0929−314 and XTE
J1814−338, optical photometry in quiescence showed that the donor was irradiated
by a source emitting in excess of the X-ray quiescent luminosity of these sources,
requiring an energy source compatible with the spin-down luminosity of a MSP
(D’Avanzo et al. 2009). IGR J00291+5934 showed evidences for a strongly
irradiated companion in quiescence too (D’Avanzo et al. 2007).

The precise spin and orbital ephemerides of AMSPs are of fundamental impor-
tance to allow deep searches of their counterparts in the gamma-ray band, which
has the advantage of not suffering the free-free absorption as in the radio band, but
the disadvantage of the paucity of photons, which requires folding over years in
order to reach the statistics needed for detecting a pulsed signal. Indeed, AMSPs,
in analogy with MSPs (such as the so-called Black Widows and Red-Backs,
detected in radio and most of them also in the gamma band; see Roberts 2013 as
a review) are expected to show coherent pulsations in the gamma band during X-
ray quiescence. The detection of a possible gamma-ray counterpart of the AMSP
SAX J1808.4−3658 from 6 years of data from the Fermi/Large Area Telescope has
been recently reported (de Oña Wilhelmi et al. 2016). The authors also searched for
modulations of the flux at the known spin frequency or orbital period of the pulsar,
but, taking into account all the trials, the modulation was not significant, preventing
a firm identification via time variability. We expect that this result may be improved
increasing the time span of the gamma-ray data.

4.3 The Missing Link

As we described in the previous sections a clear path has been delineated bringing
an old, slowly spinning neutron star to become a millisecond radio pulsar. The last
link of the chain was supposed to be disclosed with the discovery of the (transient)
accreting millisecond X-ray pulsar SAX J1808.4−3658 (Wijnands and van der Klis
1998). But this source, as well as all the other of this class, do not show a radio pulsar
soul during their quiescence (even if indirect hints for a turn on of the relativistic
pulsar wind have been gathered, Burderi et al. 2003; Campana et al. 2004).
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A new way was paved by radio surveys. The Faint Images of the Radio Sky
at Twenty-cm (FIRST) radio survey carried out at the Very Large Array (VLA)
covered ∼10,000 square degrees discovering nearly one million of radio sources.
Matching radio sources with optical surveys Bond et al. (2002) reported the
discovery of a new magnetic cataclysmic variable with radio emission: FIRST
J102347.6+003841 (hereafter J1023). Optical spectroscopic studies revealed the
presence of an accretion disc in 2001 through the presence of double-horned
emission lines (Szkody et al. 2003), which led Thorstensen and Armstrong (2005)
to suggest that J1023 could be a neutron star low-mass X-ray binary. A bright
millisecond radio pulsar (1.69 ms) was discovered in 2007 coincident with J1023
(Archibald et al. 2009). No signs of an accretion disc are discernible any more but
the pulsed radio signal was eclipsed sporadically along the 4.8 h orbit. This was
the first system testifying for the alternating presence of an accretion disc and of a
millisecond radio pulsar, thus providing the first indirect evidence that the two souls
can live within the same object.

Nature did even better. IGR J18245−2452 (J18245 hereafter) was discovered
as a new X-ray transient in the globular cluster M28. XMM-Newton pointed
observations revealed a pulsed signal at 3.93 ms making of J18245 an accretion
X-ray pulsar, modulated at 11 h orbital period (Papitto et al. 2013a). Coincidentally,
a radio pulsar was detected during a radio survey of M28 with the same spin period
and binary orbital period (PSR 18245−2452I). J18245 closed definitely the chain:
it is the first pulsar ever detected in X-rays and at radio wavelengths. Twenty days
after the end of the outburst J18245 was detected again as a radio pulsar, closing
the loop and demonstrating that the transition between the rotation-powered and the
accretion-powered regime can occur on short timescales.

Incidentally, in mid 2013 the radio monitoring of J1023 failed to detect the radio
pulsar any more. Simultaneously the optical, X-ray and gamma-ray flux increased
by a factor of ∼70 and ∼5, respectively, even if the source did not enter in a proper
outburst state (Patruno et al. 2014; Stappers et al. 2014). During this active state
J1023 displayed a very peculiar behaviour with three different states: a high state
during which X-ray pulsations are detected, a low state (a factor of ∼7 dimmer)
during which no pulsations were detected (and the upper limit on the pulsed
fraction is lower than what observed during the high state) and a flaring state (with
no pulsations too), outshining both states during which the source wildly varies.
Transitions occur on a ∼10 s timescale in X-rays (Archibald et al. 2015; Bogdanov
et al. 2015). More details will be provided in the next section (see also Fig. 4.2).
Another source distinctly showed this behaviour was XSS J12270−4859 (Papitto
et al. 2015) (J12270 in the following), so that this puzzling X-ray light curve has
become the archetypal way to identify a “transitional” X-ray pulsar.
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Fig. 4.2 Background-subtracted and exposure-corrected light curves of J1023 obtained with the
XMM-Newton EPIC cameras (0.3–10 keV; black data), NuSTAR FPMA + FPMB (3–79 keV; red
data) and Swift UVOT (UVM2 filter; blue data) during the time interval covered by XMM-Newton.
For plotting purpose, light curves are shown with a binning time of 50 s and the vertical axis is
plotted in logarithmic scale (from Coti Zelati et al. 2018)

4.4 Madamina, il catalogo è questo (“Don Giovanni”,
Mozart)

There are four transitional pulsars and a few candidates. At the moment of writing
(October 2017) J1023 is in an active state. J18245 and J12270 are in quiescence,
shining as radio pulsars. We summarise their main characteristics in Table 4.2.
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Table 4.2 Parameters of transitional millisecond pulsars

Spin Orbital Distance Companion DM Fermi X-ray Radio

Source period (ms) period (h) (kpc) mass (M�) (pc cm−3) detection pulsations pulsations

J1023 1.69 4.75 1.37 ∼0.24 14.3 Y Y Y

J12270 1.69 6.91 1.4 ∼0.25 43.4 Y Y Y

J18245 3.93 11.03 5.5 (M28) ∼0.2 119 N Y Y

J154439 – ∼ 5.3 – – – Y N N

4.4.1 PSR J1023+0038

J1023 was discovered as a peculiar magnetic cataclysmic variable with radio
emission (Bond et al. 2002). Optical studies revealed signs for the presence of
an accretion disc through double horned emission lines in 2001 (Szkody et al.
2003; Wang et al. 2009). Thorstensen and Armstrong (2005) performed photometric
and spectroscopic optical observations campaign. The spectrum showed mid-G
star features and the disappearance of the accretion disc signatures. Photometry
showed a smooth orbital modulation at 4.75 h, with colour changes consistent with
irradiation (but with no emission lines). Radial velocity studies and modelling of
the light curves led them to show that the primary should be more massive than the
Chandrasekhar mass, thus pointing to a LMXB, rather than a cataclysmic variable.
Homer et al. (2006) used XMM-Newton data, lack of optical circular polarisation,
and optical spectroscopic data to confirm this picture.

This changed with the discovery of a radio pulsar coincident with J1023.
Archibald et al. (2009) discovered a bright, fast spinning (1.69 ms) MSP during
a low-frequency pulsar survey carried out with Green Bank Telescope in 2007. The
pulsar is eclipsed during a large fraction of the orbital period (at orbital phases
0.10–0.35). Due to its proximity and radio brightness it was possible to derive a
very precise distance of 1.37 ± 0.04 kpc based on its radio parallax (Deller et al.
2012). XMM-Newton observations then revealed a ∼9× 1031 erg s−1 (0.5–10 keV)
source showing pulsed emission at the radio period. The root-mean-squared pulsed
fraction in the 0.25–2.5 keV energy range is 11± 2%, whereas a 3 σ upper limit of
20% is obtained at higher energies (Archibald et al. 2010; Bogdanov et al. 2011).
The neutron star’s parameters were determined thanks to the radio pulsar signal,
with a spin period of 1.69 ms and a dipolar magnetic field of 9.7×107 G (Archibald
et al. 2009; Deller et al. 2012).

Surprisingly, J1023 started not being detected in the radio band around June 2013
(Patruno et al. 2014; Stappers et al. 2014). Contemporaneously, the weak γ -ray
flux detected by Fermi increased by a factor of ∼5 (Stappers et al. 2014; Takata
et al. 2014; Torres et al. 2017). This new state persisted in time and J1023 is still
in this active state now (October 2017) with no signs of change. Together with the
disappearance of the radio signal, J1023 brightened at all the other wavelengths. In
the X-rays (0.5–10 keV) it brightened by a factor of∼30, with some flaring activity
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Fig. 4.3 Count rate distribution in the 0.3–10 keV XRT light curves of J1023 (left) and J12270
(right). The disc state (solid black histogram) and pulsar state (dashed green histogram) are shown
separately on the same scale. The horizontal dotted line at 0.1 c s−1 for both sources marks the
boundary between disc-active and disc-passive states (labeled in black and red, respectively, from
Linares 2014)

reaching 1034 erg s−1 (Patruno et al. 2014; Takata et al. 2014; Coti Zelati et al.
2014; Bogdanov et al. 2015). In the optical, J1023 brightened too by ∼1 mag and
showed again the presence of several broad, double-horned emission lines typical
of an accretion disc (Halpern et al. 2013; Coti Zelati et al. 2014).

At variance with any other LMXBs, J1023 shows a highly variable active state. A
simple histogram of the observed count rates shows a bimodal distribution (Linares
2014) (see Fig. 4.3). A closer look (thanks to XMM-Newton observations) revealed
the existence of three distinct states (Bogdanov et al. 2015; Archibald et al. 2015).
These can be characterised as:

• a high state with a 0.3–80 keV luminosityLX ∼ 7×1033 erg s−1 (Tendulkar et al.
2014) occurring for ∼80% of the time and during which X-ray pulsations at the
neutron star spin period are detected with a r.m.s. pulsed fraction of 8.1± 0.2%
(0.3–10 keV) (Archibald et al. 2015);

• a low state with a 0.3–80 keV luminosityLX ∼ 1033 erg s−1 occurring for∼20%
of the time and during which pulsations are not detected with a 95% r.m.s. upper
limit <∼ 2.4% (0.3–10 keV), much smaller than the detection during the high
state;

• a flaring state during which sporadic bright flares occur reaching luminosities as
high as of ∼1035 erg s−1, with no pulsation too.

The transition between the high and the low states is very rapid, on a ∼10 s
timescale and looks symmetric (ingress time equals to the egress time). It is not clear
if similar variability has also been detected in the optical band, superimposed to the
orbital modulation (Shahbaz et al. 2015; Jaodand et al. 2016). A phase-connected
timing solution shows that the neutron star is spinning down at a rate ∼30% faster
than the spin down due to rotational energy losses (Jaodand et al. 2016).
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The 0.1–300 GeV flux of increased by a factor of ∼5 after the transition to the
active state with a steep power law photon index of 2.5–3 (Stappers et al. 2014;
Takata et al. 2014; Deller et al. 2015). Above 300 GeV VERITAS put instead an
95% upper limit of 7× 10−13 erg cm−2 s−1 on the flux (Aliu et al. 2016).

Radio monitoring observations during the active state revealed a rapidly variable,
flat spectrum persistent source. This emission is likely suggesting synchrotron
emission as the origin. If this is in form of a jet or more generally of a propeller
outflow is unknown (Deller et al. 2015). In addition, based on existing correlation
in neutron star LMXBs between the radio luminosity and the X-ray luminosity,
J1023 is brighter in radio, possibly suggesting a less efficient X-ray emission (Deller
et al. 2015). Baglio et al. (2016) measured a linear polarisation of 0.90 ± 0.17%
in the R band. In addition, the phase-resolved R-band curve shows a hint for a
sinusoidal modulation. Lacking the Spectral Energy Distribution a red/nIR excess
(characteristic of jet emission), the polarised emission likely comes from Thomson
scattering with electrons in the disc.

Simultaneous X-ray (Chandra) and radio (VLA) monitoring showed a strong
anti-correlated variability pattern, with radio emission strongly rising during X-
ray low states (Bogdanov et al. 2018). A more articulated observing campaign
involving XMM-Newton, NuSTAR, and Swift showed that X-rays al soft and hard
(up to 80 keV) are strongly corrected with no lag, whereas X-rays and UV are not
correlated (Coti Zelati et al. 2018).

Surprisingly, Ambrosino et al. (2017) discovered optical pulsations in J1023
during the active X-ray state. The pulsed fraction is at a level of ∼1%. Optical
pulsation is present only in the high mode as X-ray pulsations (A. Papitto, private
communication). This optical pulsed emission is puzzling. Ambrosino et al. (2017)
convincingly showed that this emission cannot be explained by the cyclotron
mechanism and cautiously favour a rotation-powered regime mechanism.

4.4.2 IGR J18245−2452

IGR J18245−2452 (J18245 in the following) was discovered by INTEGRAL/ISGRI
during observations of the Galactic centre region (Eckert et al. 2013). J18245 lies in
the globular cluster M28 at a distance of∼5.5 kpc (Heinke et al. 2013; Romano et al.
2013; Homan and Pooley 2013). At this distance the peak outburst luminosity is
∼1037 erg s−1 (0.5–100 keV, e.g. De Falco et al. 2017). This luminosity led J18245
to be classified as a classical X-ray transient (i.e. not faint). A thermonuclear (type I)
X-ray burst from J18245 was detected by Swift/XRT (Papitto et al. 2013b; Linares
2013). This marked the presence of a neutron star in the system. Further type I
bursts were observed during the same outburst by MAXI (Serino et al. 2013) and
INTEGRAL (De Falco et al. 2017). During an XMM-Newton observation, Papitto
et al. (2013a) discovered a coherent periodicity in the X-ray flux at 3.9 ms. The
pulsed signal is also modulated through Doppler shifts at the binary orbital period
of 11.0 h, induced by a ∼0.2M� companion star. Papitto et al. (2013a) were also
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able to associate the X-ray pulsar to a known radio pulsar previously discovered in
M28, PSR J1824−2452I (Manchester et al. 2005), with the same spin and orbital
periods. This provides the first direct evidence for a switch between an accretion-
powered neutron star and a rotation-powered radio pulsar. The reactivation of the
radio pulsar was very fast, with the detection of a pulsed signal less than 2 weeks
after the end of the outburst.

A very peculiar state was observed when the source luminosity reached a mean
level of a few 1036 erg s−1. Rapid variation by a factor up to ∼100 were observed
during two XMM-Newton observations (Ferrigno et al. 2014). In a hardness-
intensity diagram two branches can be identified (see Fig. 4.4; Ferrigno et al. 2014).
The brighter branch (blue branch) showed a tight correlation between hardness and
intensity (as well as pulsed fraction). Below a threshold of ∼30 c s−1 in the pn
instrument in addition to this branch a new one (magenta branch), appeared with
scattered points at higher hardness. J18245 varied by a factor of∼100 on a timescale
as short as a few seconds. A spectral analysis at different spectral hardness shows a
clear decrease in the power law spectral index from Γ ∼ 1.7 to Γ ∼ 0.9 and the
disappearance of a black body component. The hardest spectrum is better described
by partially covering power law model and it is achieved only occasionally at low
count rates. A pulsed signal is always detected and the pulsed fraction is tightly
correlated with the source count rate. In the magenta branch there is however no
correlation of the hardness with the pulsed fraction, which is always at a level of
5–10% (Ferrigno et al. 2014).

M28 has been observed several times, however only thanks to the spatial
resolution of the Chandra optics it is possible to gain information on the quiescence
of J18245. Chandra observed M28 in 2002 finding J18245 in a quiescent state.
The X-ray spectrum is well described by a simple power law model with a hard

Fig. 4.4 Hardness-intensity diagram built by using two XMM-Newton observations with time
bin of 200 s. The black solid line separates the different intensity states: the points represented in
magenta and blue have a count rate lower and higher than 30 c s−1, respectively (from Ferrigno
et al. 2014)
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photon index Γ ∼ 1.2. The 0.5–10 keV unabsorbed luminosity is∼2×1032 erg s−1

(Linares et al. 2014). No room for a soft component is left with an upper limit on
the 0.1–10 keV luminosity of <∼ 7 × 1031 erg s−1. In a way similar to J1023 (but
before J1023), also J18245 shows two different low-luminosity active states. They
are readily apparent in a long Chandra observation taken in 2008 (Linares et al.
2014). The high and low state 0.5–10 keV luminosities are ∼4 × 1033 erg s−1 and
∼6× 1032 erg s−1, respectively, with a factor of∼7 luminosity change. The spectra
in the two states are fully compatible with a power law with photon index Γ ∼ 1.5.
Given the lower Chandra count rate, mode switching has been measure to occur on
a timescale of <∼ 200 s.

The optical counterpart has been identified thanks to HST images (Pallanca et al.
2013). The companion star has been detected during both quiescence and outburst,
showing a two magnitude increase and the presence of the Hα line, indicating that
accretion is taking place.

PSR J18242452I is known as a radio pulsar in M28 (detected during the quiescent
period), but its observations were only sporadic and with large eclipses, variable
from orbit to another as often happens in redbacks. In addition, the acceleration
induced by the motion in the globular cluster prevents us from a firm measurement
of the magnetic field.

4.4.3 XSS J12270−4859

XSS J12270−4859 (J12270 in the following) was discovered by the Rossi X-ray
Timing Explorer during the high latitude slew survey (Sazonov and Revnivtsev
2004). Based on the presence of optical emission lines J12270 was initially
classified as a cataclysmic variable hosting a magnetic white dwarf (Masetti et al.
2006; Butters et al. 2008), as for J1023. Unusual dipping and flaring behaviour
led several authors to suggest a different classification involving a neutron star in
a LMXB (Pretorius 2009; Saitou et al. 2009; de Martino et al. 2010, 2013; Hill
et al. 2011; Papitto et al. 2015). de Martino et al. (2010) (see also Hill et al. 2011)
were the first to associate J12270 to a relatively bright gamma-ray source detected
by Fermi-LAT and emitting up to 10 GeV (3FGL J1227.9−4854). The source was
puzzling and has been observed during this active state by XMM-Newton. An erratic
behaviour typical of TMSP has been observed (de Martino et al. 2010). Despite
flaring and dips, J12270 was stable at least over a 7 year period (de Martino et al.
2013). Dips correspond to the low state of J1023. A detailed analysis of the dips
in J12270 disclosed three different types of dips: soft dips, dips with no spectral
changes with respect to the active state and hard dips following flares. The pn
spectrum can be modelled with a simple power law resulting in spectral indexes of:
1.64± 0.01 (active state); 1.65± 0.03 (flares); 1.71± 0.04 (dips), and 0.74± 0.08
(post-flare dips; de Martino et al. 2013). The 0.2–100 keV mean luminosity is
1034 erg s−1 at a distance of 1.4 kpc. The ratio between the active and dip 0.2–10 keV
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luminosity is ∼5, with the active 0.2–10 keV luminosity being 4× 1033 erg s−1 (de
Martino et al. 2013).

The XMM-Newton Optical Monitor (OM) was operated in fast timing mode (U
and UVM2 filters) allowing for a strict comparison with X-ray data. The mean U

magnitude was 16.6. Orbital modulation is readily apparent in the OM data. On
top of this dips and flares are also present in the OM data, with a drop in the UV
count rate by a factor of ∼1.4 (de Martino et al. 2013). A lag analysis was also
possible, showing no lag among soft (0.3–2 keV) and hard (2–10 keV) X-ray flux.
The cross-correlation between U -band and X-rays show no lag, but indications that
flares last longer in the optical-UV bands. A cross-correlation analysis on selected
dips shows that UV and X-ray dips occur almost simultaneously, but the shape of
UV dips is shallower, with a smoother decay and rise (de Martino et al. 2013). The
optical spectrum shows prominent Hα, Hβ, He I, He II, and Bowen-blend N III/C
III lines, as well as signs of irradiation (de Martino et al. 2014).

As J1023 during its active state also J12270 has been detected by Fermi in the
0.1–300 GeV, with a 0.1–10 GeV flux of 4× 10−11 erg cm−2 s−1 and a steep power
law spectrum with Γ ∼ 2.2 and a cut-off energy of 8 GeV (Johnson et al. 2015; de
Martino et al. 2010). Faint non-thermal radio emission was also detected with a flat
spectral index (Masetti et al. 2006; Hill et al. 2011).

J12270 remained stable at all wavelengths for about a decade up to 2012
November/December, when a decline in flux at all bands was reported (Bassa et al.
2014; Bogdanov et al. 2014). This is in all respects similar to the transition of
J1023 in the opposite sense: J12770 changed from an active state to a quiescent
state, whereas the opposite transition was observed in J1023 in June 2013. J12270
decreased its optical brightness by 2 magnitudes, with all the optical emission
lines disappearing. The X-ray spectrum hardened considerably with the spectrum
described by power law with a photon index of Γ = 1.1 and a 0.3–10 keV
unabsorbed luminosity of ∼2 × 1032 erg s−1, resulting in a factor of ∼20 decrease
with respect to the high state and ∼4 with respect to the low state (de Martino et al.
2015; Bogdanov et al. 2014). At GeV energies the 0.1–100 GeV flux decreased by a
factor of ∼2 and the spectrum hardened to a power law with photon index 1.7 with
a cut-off at 3 GeV (Johnson et al. 2015).

Radio observations revealed the presence of a millisecond radio pulsar at the
position of J12270. The neutron star is spinning at 1.69 ms and has a magnetic field
of 1.4×108 G (for a rotational energy of 9×1034 erg s−1; Roy et al. 2015). The radio
signal is absorbed for a large fraction of the orbit. After this discovery pulsations
were searched at other frequencies and in older data. Pulsed emission was observed
at GeV energies with a single peak emission nearly aligned with the radio main
peak (Johnson et al. 2015). The pulsed signal was not detected in the X-ray band
with a 3 σ upper limit on the rms pulsed fraction of∼7% (full band) or∼10% (0.5–
2.5 keV; Papitto et al. 2015). Papitto et al. (2015) reanalysed XMM-Newton data
during the high state and, knowing the pulse period, successfully detected a coherent
pulsation. Pulsations were detected at an rms amplitude of ∼8%, with a second
harmonic stronger than the fundamental frequency. The amplitude is similar in the
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soft and hard X-ray bands. Polarimetric optical observation during the quiescent
radio pulsar state, failed to detect any signal with a 3 σ upper limit of 1.4% in the R
band (Baglio et al. 2016).

4.4.4 1RXS J154439.4−112820

After the recognition of a peculiar variability pattern during the active state of
J1023 and J12270, searches for new members of the transitional MSPs started,
searching for rapid variability in the X-ray light curve of unidentified sources or
cataclysmic variables and association with Fermi sources. With these characteristics
Bogdanov and Halpern (2015) identified the forth member of the TMSP class in
1RXS J154439.4−112820 (J154439 in the following). J154439 is the only X-ray
source within the 95% error circle of the Fermi source 3FL J1544.6−1125 (Stephen
et al. 2010). J154439 has also been detected during the XMM Slew survey and by
Swift/XRT, with flux variations by a factor of ∼3. Masetti et al. (2013) provided
evidence for the presence of prominent emission lines (H and He) in the R ∼ 18.4
optical counterpart, suggesting its identification as a cataclysmic variable.

During an XMM-Newton observation, J154439 showed characteristic rapid
variations on a timescale of ∼10 s, passing randomly from ∼2 to ∼0.2 c s−1 and
back. The overall spectrum is well fit with an absorbed power law model with
Γ = 1.7 (NH = 1.4 × 1021 cm−2, consistent with the Galactic value). Spectral
variations are only marginally evident with indexes of 1.67± 0.04 and 1.97± 0.28
(90% confidence level) for the high and low states, respectively (Bogdanov and
Halpern 2015). Even if pn data were taken in timing mode, no X-ray periodicity
was reported. A NuSTAR observation confirmed the spectral parameters over the
0.3–79 keV energy band, leading to a luminosity of 1033 erg s−1 at a scale distance
of 1 kpc (Bogdanov 2016). Fast photometric data taken at the MDM Observatory
showed fast variability also in the optical counterpart. MDM data and XMM-
Newton/OM data revealed hints for an orbital modulation at a period of∼5.2–5.4 h.

4.5 Once Upon a Time There Were a Magnetic Neutron Star
Interacting with an Accretion Disc

The transition from and to the radio pulsar regime observed in the three well
studied TMPS J1023, J18245, and J12270 with a good degree of certainty involves
the presence of an accretion disc. In addition to an enhanced emission at all
wavelengths, double horned emission lines were observed. This testifies that the
switch on and off of the radio pulsar mechanism in binary systems can occur, at
least, on timescales of tens of days and it is not a single occurrence in the neutron
star lifetime.
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Fig. 4.5 Average spectral energy distribution (SED) observed from PSR J1023+0038 in X-rays
(orange strip, from Tendulkar et al. 2014), and gamma-rays (cyan points, from Takata et al. 2014),
evaluated for a distance of 1.37 kpc. The total SED evaluated with Papitto and Torres (2015)
modelling is plotted as a black solid line. Synchrotron, Synchrotron-Self-Compton, and accretion
flow (i.e. the sum of disc and neutron star emission) components are plotted as red, blue and green
lines, respectively

The inference of the root cause of the sub-luminous disc state is more compli-
cated. This sub-luminous state is dominated (∼80% of the time) by the high mode
during which X-ray pulsations are observed (e.g. in J1023). For this high mode
Papitto and Torres (2015) (see also Bednarek 2015) showed that a scenario based
on the propeller can explain the observed features at all wavelengths. The spectral
energy distribution is characterised a broad emission from X-rays to gamma-rays
(see Fig. 4.5). Papitto and Torres (2015) interpreted the gamma-ray part as due to
the self-synchrotron Compton emission that originates at the turbulent boundary
between the neutron star magnetosphere propelling the disc inflow at super-
Keplerian speed. The X-ray emission is instead due to the sum of the synchrotron
emission that originated from the same magnetospheric region and the luminosity
emitted by the accretion flow, which however must be inefficient ( <∼ 20% of the
conversion of gravitational energy) not to exceed the observed one.

Different suggestions have been put forward to explain the transitions among
high and low mode (and flaring) and, more importantly, why only the three known
TMSPs show this puzzling behaviour (and stability). The flux drops that bring the
sources to the low mode are extremely peculiar and are very different from the dips
currently observed in LMXBs, since there are no associated spectral changes and/or
reduction of the soft X-ray flux, excluding absorption from intervening matter.
Apparently, there is also no evidence for an X-ray luminosity dependence on the
duration and frequency of flares and low flux mode intervals or any correlation
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between the separation between (and duration of) dips or flares (Bogdanov et al.
2015).

The fate of matter falling onto a magnetic neutron star is determined by the
position of three different radii. Two are fixed and depends on the neutron star spin
period: the corotation radius rcor = (GMNS P

2/(4π2))1/3 (where magnetic field
lines reach the Keplerian speed) and the light cylinder radius rlc = c P/(2π) (with c
the light velocity, where the magnetic field lines open, being unable to corotate with
the neutron star). The truncation of the accretion disc by the magnetosphere occurs
at the magnetospheric radius rm = ξ (μ2/(2GM Ṁ2))1/7, with ξ ∼ 0.5 (Campana
et al. 2018) accounting for the disc geometry, μ = B R3

NS the dipole magnetic
moment, and Ṁ the mass accretion rate at the magnetospheric boundary. If the mag-
netospheric radius lies within the corotation radius, accretion proceeds unimpeded,
however if rm > rcor the incoming matter experiments a centrifugal force larger
than gravity when it gets attached to the fields lines at the magnetospheric radius and
(ideally) gets propelled out. If the mass accretion rate decreases further, rm expands
further, reaching at some point the light cylinder radius. At this point the magnetic
field becomes radiative and matter is expelled further out by radiation pressure and
relativistic particle wind (Campana et al. 1998; Burderi et al. 2001). A radio pulsar
can in principle start working again. The observed luminosity in the sub-luminous
state of J1023 and J12270 is relatively low and at the corresponding mass accretion
rate (assuming that all the accreting material arrives at the neutron star surface)
implies a magnetospheric radius well outside the corotation radius (Archibald et al.
2015; Bogdanov et al. 2015; Campana et al. 2016), so that the sources should be in
the propeller regime. This poses a problem and suggests intriguing new insights for
accretion physics at low luminosities.

The best and well studied example of propeller accretion is probably the
accreting white dwarf AE Aquarii. In this system only ∼0.3% of the incoming
material is able to reach the star surface. In AE Aqr most of the soft X-ray luminosity
is produced in the inflow before ejection or accretion onto the surface (Oruru
and Meintjes 2012). Correlation and lag analysis can shed light on the emission
mechanisms in TMPS. J1023 has been well characterised. Hard (NuSTAR) and soft
(XMM-Newton) X-ray emission appear well correlated (Coti Zelati et al. 2018). X-
rays (XMM-Newton) instead do not correlate with UV (Swift/UVOT, Coti Zelati
et al. 2018) nor with optical (B) emission (XMM-Newton/OM, Bogdanov et al.
2015), unless during the flaring state. This suggests that at least in J1023, as for AE
Aqr, UV-optical emission comes from the accretion disc and the companion star.

Jaodand et al. (2016) were able to measure the overall period evolution of J1023.
They found that J1023 is spinning down at a rate that is ∼30% larger than the pure
dipole spin-down rate. This is consistent with the modelling of Parfrey et al. (2017)
of AMSP magnetospheres in which the spin-down during propeller has the same
functional form of the pulsar spin down and depends on how the disc inside the
light cylinder opens some of the closed field lines, leading to an enhancement of the
power extracted by the pulsar wind and the spin-down torque applied to the pulsar.
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One class of scenarios involves a trapped disc. A propeller may not be able to
eject matter so that the inflaming matter stays confined in the innermost part of the
flow, trapping the magnetospheric radius close to the corotation radius (D’Angelo
and Spruit 2010, 2012). Pure trapped disc models will not work being the oscillation
timescale much shorter than what observed (Bogdanov et al. 2015). The switching
between low and high mode might be the result of transitions between a non-
accreting pure propeller mode and an accreting trapped-disc mode (Archibald et al.
2015; Bogdanov et al. 2015).

Alternatively, Campana et al. (2016) (see also Linares et al. 2014) proposed
that high mode is connected to the propeller regime, whereas the low mode to the
expulsion of the infalling matter by the neutron star pressure, with the neutron star
in the radio pulsar state. During the high mode in the propeller regime, some matter
leaks through the centrifugal barrier and accretes onto the neutron star, as shown
in magnetohydrodynamical simulations (Romanova et al. 2005), and generates
the observed X-ray pulsations. Detailed spectral modelling is consistent with a
radiatively inefficient accretion disc close to the corotation radius during the high
mode and receding beyond the light cylinder during the low mode. Contemporarily
a shock emission sets in. Pulsed emission at a lower amplitude (∼2–3%) and in
the soft band only is predicted to occur. This scenario is in agreement with the
broadband modelling by Papitto and Torres (2015) and by the observed optical
polarisation coming from the disc (Baglio et al. 2016) and flat radio spectrum
(Deller et al. 2015). The strong anti-correlation among X-ray and radio emission
(Bogdanov et al. 2018) fits perfectly within this scenario: during the low state matter
is expelled from the system by the relativistic pulsar wind generating in the shock
strong radio emission. Parfrey and Tchekhovskoy (2018) showed through general-
relativistic MHD simulations that this scenario is plausible.

A completely different scenario (Jaodand et al. 2016) is motivated by the
observation of mode switching in radio pulsars, in which the pulse profile switches
between two stable profiles. PSR B0943+10 showed that the mode switching in
radio is accompanied by simultaneous switches in the X-ray band (profile and
intensity; Mereghetti et al. 2013; Hermsen et al. 2013). Mode switching has never
been observed in any X-ray pulsar so for the moment this might remain an intriguing
suggestion.

Optical pulsations in the active X-ray state are puzzling. Ambrosino et al. (2017)
showed that cyclotron emission can be ruled out and a rotation-powered mechanism
might work. A pure (engulfed) radio pulsar however encounters problems in
explaining the full phenomenology of J1023 (Campana et al. 2016). As noted
in Bogdanov et al. (2018) J1023 and the other transitional ms pulsars are the
only systems for which the neutron star rotational energy is comparable to the
accretion energy. It might be that the neutron star always looses rotational energy,
independently of the fate of the accreting matter. Accretion of matter is able to
quench pulsed radio emission but pulsed optical emission might be generated. In
this case we would expect pulsed optical emission to be present independently on
the X-ray mode.
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4.6 Open Questions

Among all the open questions that we described above, the most puzzling problem
still regards the connection between LMXBs and AMSPs, or MSPs in general. It
is still a mystery the reason why LMXBs usually do not show X-ray pulsations,
not even at low mass accretion rates when presumably the magnetospheric radius
is outside the neutron star surface and inside the co-rotation radius, thus allowing
matter to be channelled by the magnetic field. Does it have to do with the
magnetic field, that can be buried inside the neutron star surface by prolonged
accretion phases? Another mystery is why AMSPs, although fast spinning and
with a misaligned magnetic field do not show pulsed radio or gamma emission (as
instead do other not accreting MSPs, including transitional MSPs) in quiescence,
when accretion onto the neutron star decreases by orders of magnitude presumably
pushing the magnetospheric radius outside the light cylinder radius. Does it have to
do with the presence of matter around the system that is swept away by the radiation
pressure of the pulsar? Is this enough to justify also non detections in the gamma-ray
band? In other words, it would be important to understand why a system like J18245
(a.k.a. M28I), swinging between the rotation-powered and the accretion-powered
phase in such short timescales is so rare. Is it because of its relatively large (∼11 h)
orbital period so that the matter outflowing the system is spread in a relatively wide
orbit?

On the TMSP side, we have a number of open questions that will likely be
answered in the next following years. Why do some sources (J1023 and XSS12270)
showed a long (years) accretion-dominated state whereas J18245 showed a proper
X-ray outburst? Why do the accretion-dominated state of these systems so stable
(e.g. in J1023)? What is the root cause of the mode switching observed during the
accretion-dominated state? Are X-ray pulsations detectable at a lower level (and/or
in a softer energy band) also in the low mode of the active X-ray state? These are
the basic questions that make these systems particularly attractive.

Recently optical pulsations detected in J1023 added a number of additional
questions. What is the mechanism responsible for optical pulsation? Is the accretion-
dominated state really powered by accretion? Can a rotation-powered mechanism
remain active (i.e. not inhibited) during an accretion state?

Answering these questions will give important information on the still elusive
radio pulsar and accretion emission mechanisms and on the evolutive path producing
the different types of MSPs known today.
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Chapter 5
Testing the Equation of State with
Electromagnetic Observations

Nathalie Degenaar and Valery F. Suleimanov

Abstract Neutron stars are the densest, directly observable stellar objects in the
universe and serve as unique astrophysical laboratories to study the behavior
of matter under extreme physical conditions. This book chapter is devoted to
describing how electromagnetic observations, particularly at X-ray, optical and
radio wavelengths, can be used to measure the mass and radius of neutron stars
and how this leads to constraints on the equation of state of ultra-dense matter.
Having accurate theoretical models to describe the astrophysical data is essential in
this effort. We will review different methods to constrain neutron star masses and
radii, discuss the main observational results and theoretical developments achieved
over the past decade, and provide an outlook of how further progress can be made
with new and upcoming ground-based and space-based observatories.

5.1 Introduction to This Book Chapter

It is probably not an exaggeration to state that there are more reviews and book
chapters written on the equation of state of neutron stars than there are actual
constraining measurements (e.g. Lattimer 2012; Lattimer and Prakash 2016; Özel
2013; Özel and Freire 2016; Watts et al. 2015, 2016; Bogdanov 2016; Miller and
Lamb 2016, to name a few in just the past 5 years). This is not surprising, however,
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as it merely underlines the immense interest in understanding the physics of ultra-
dense matter that is not encountered on Earth. Such constraints can be obtained
through electromagnetic observations of neutron stars, and this is therefore one of
the prime pursuits in modern astrophysics.

Everything around us is constructed of atoms, which themselves consist of
electrons and nucleons (i.e. protons and neutrons). This familiar structure of matter
is, however, disrupted when matter is compressed to densities that reach beyond
the nuclear saturation density of ρ0 ∼ 2.8 × 1014 g cm−3. One of the main open
questions in modern physics is how matter behaves at supra-nuclear densities, where
particle interactions are governed by the strong force. For instance, does matter
remain nucleonic or does it rather transition into more exotic forms of particles?
What are the superfluid properties of matter compressed beyond the nuclear density?
The detailed microphysics and particle interactions of dense matter result in a
specific relation between the pressure and density of the bulk matter, which is called
the equation of state (EOS) . Elucidating the behavior of matter at high densities
thus implies understanding the dense-matter EOS (e.g. Lattimer 2012).

Mathematically, it is inherently difficult to describe multiple-particle interactions
at high densities and therefore there are no unique theoretical predictions for the
dense-matter EOS. Fortunately, the behavior of matter at supra-nuclear densities
can be probed through different kinds of experiments. In Earth-based laboratories,
particle acceleration experiments are conducted to probe matter near the nuclear
saturation density at very high temperatures. However, probing the properties of
matter beyond the nuclear density at (relatively) low temperatures solely relies on
astrophysical observations of neutron stars.

Neutron stars are the remnants of once massive stars that ended their life in
a supernova explosion. A defining property of neutron stars is that these objects
are very compact; while being roughly a factor of 1.5 more massive than our
Sun, their radius is almost a factor of ∼105 smaller (∼10 km; Baade and Zwicky
1934; Wheeler 1966; Hewish et al. 1968). This extreme compactness implies that
the density of neutron stars is incredibly high and must, in fact, reach beyond the
nuclear density. Being the densest, directly observable stellar objects in our universe,
neutron stars thus serve as natural laboratories to study the behavior of matter at
supra-nuclear densities. Neutron stars come in different classes, which provides
various angles to test and constrain the dense-matter EOS (Sect. 5.2.1).

Here, we aim to provide a student-level introduction into the many different ways
in which we can obtain constraints on the neutron star EOS using observations
of their electromagnetic radiation. This book chapter is organized as follows:
after introducing some general concepts and background context in Sect. 5.2, we
review the various ways in which the dense-matter EOS of neutron stars can be
constrained from electromagnetic observations in Sect. 5.3, including a discussion
on the uncertainties and systematic biases that the different techniques are subject
to. In Sect. 5.4 we lay out what progress can be made in the future using new and
upcoming facilities. A summary is provided in Sect. 5.5.
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5.2 Basic Concepts: Neutron Stars and the Dense Matter
Equation of State

5.2.1 The Plethora of Observable Neutron Stars

As is clear from the diverse content of this book, there are several different
observational manifestations of neutron stars (e.g. Kaspi 2010, for a review). At the
very basic level, we can distinguish neutron stars that are isolated and those that are
part of a binary star system. Furthermore, neutron stars are often characterized by
their magnetic field strength (B) and rotation period (Ps ), which is often connected
to their age and their environment.

Many neutron stars are located in a binary where they are accompanied by a main
sequence or evolved star with a mass Mc � 1 M�. In such a configuration, neutron
stars can manifest themselves as a low-mass X-ray binary (LMXB) , when accreting
gas from their companion star, or as a non-accreting radio pulsar. In the former
class of objects, the energy emitted by the neutron star (at X-ray wavelengths) is
powered by the accretion process, whereas in the latter the rotational energy of the
pulsar is tapped (producing mostly radio emission). Both types of neutron stars are
typically spinning rapidly, at millisecond periods, and are assumed to be spun up
to such high speeds by gaining angular momentum via accretion (e.g. Cook et al.
1994; Strohmayer et al. 1996; Wijnands and van der Klis 1998; Burderi et al. 1999;
Archibald et al. 2009; Papitto et al. 2013a). These two classes of binary neutron
stars are thus thought to be evolutionary linked, with millisecond radio pulsars
descending from LMXBs (Alpar et al. 1982; Bhattacharya and van den Heuvel
1991). The magnetic field of these neutron stars is typically low (B � 109 G),
and is thought to have degraded by accretion (e.g. Radhakrishnan and Srinivasan
1982; Romani 1990; Bhattacharya and Srinivasan 1995; Cumming et al. 2001).
Nevertheless, some neutron stars in LMXBs display coherent X-ray pulsations,
which indicates that their magnetic field is strong enough to channel the accreted
gas towards the magnetic poles (Wijnands and van der Klis 1998). This sub-class of
pulsating LMXBs, of which 19 are known at the time of writing, are referred to as
accreting millisecond X-ray pulsars (AMXPs; see Patruno et al. 2017, for a list).

Whereas accretion in LMXBs typically proceeds via an accretion disk that is
fed by the Roche-lobe overflowing donor star, a modest number of neutron stars is
known to accrete from the stellar wind of their low-mass companion star (Symbiotic
X-ray binaries, SyXRBs; e.g. Chakrabarty and Roche 1997; Masetti et al. 2006;
Lü et al. 2012). Neutron stars are also found to accrete from much more massive
companions (Mc � 10 M�), and are then referred to as high-mass X-ray binaries
(HMXBs). Depending on the type of the companion and the particular process
of mass transfer, neutron star HMXBs can be further divided into different sub-
classes (e.g. Reig 2011, for a review). A small number of intermediate-mass X-ray
binaries (IMXBs, companion mass Mc ∼ 1–10 M�) are also known, but these
are thought to be short-lived and quickly evolve into LMXBs (e.g. van den Heuvel
1975; Podsiadlowski et al. 2002; Pfahl et al. 2003; Tauris and van den Heuvel 2006).
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The neutron stars in SyXRBs, HMXBs and IMXBs are typically spinning much
more slowly (seconds) than those in LMXBs and also have stronger magnetic fields
(B ∼ 1011–1013 G). A few slowly spinning radio pulsars with massive companion
stars are known; these apparently have not been spun up yet by accretion (possibly
due to their highly eccentric orbits) and might be the progenitors of HXMBs or
IMXBs (e.g. Johnston et al. 1992; Kaspi et al. 1994; Stairs et al. 2001).

Isolated neutron stars also come in various flavors (e.g. Kaspi and Kramer 2016,
for a recent review). For instance, one can distinguish young slowly spinning radio
pulsars (including Rotating RAdio Transients, RRATs) and old millisecond radio
pulsars (which likely originate from binaries but ablated their companion star).
Furthermore, there are young and X-ray emitting (sometimes pulsating) neutron
stars in the centers of supernova remnants (central compact objects, CCOs), nearby
Dim Isolated Neutron Stars (DINS), and magnetars (originally further classified as
Anomalous X-ray Pulsars, AXPs, and Soft Gamma Repeaters, SGRs). Several of
these different classes of isolated neutron stars may be linked, possibly representing
different stages in an overall thermal and magnetic field evolution (e.g. Faucher-
Giguère and Kaspi 2006; Viganò et al. 2013; Mereghetti et al. 2015).

5.2.2 The Dense-Matter EOS and the Connection
with Neutron Stars

The macroscopic properties of neutron stars, such as their maximum mass and
corresponding radius, are determined by the details of the dense-matter EOS . Due
to the complexity of the calculations and the inability to probe high densities via
laboratory experiments, numerous EOSs with a wide range of different parameters
have been constructed (e.g. Lattimer 2012, see also Fig. 5.1 left).
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Fig. 5.1 Direct mapping between the EOS (left) and mass-radius relation for neutron stars (right).
Shown are illustrative examples of different EOSs. Data for the following EOSs were taken from
the compilation of Özel et al. (2016b): WFF1=Wiringa et al. (1988), MS1=Müller and Serot
(1996), BSK19= Potekhin et al. (2013), SQM2= Prakash et al. (1995), GNH3=Glendenning
(1985), and GS2=Glendenning and Schaffner-Bielich (1999). Added to this are two unified EOSs,
SLY9 and GM1, from Fortin et al. (2016)
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For each theoretical model describing the microphysics and strong-force inter-
actions, i.e. for a given EOS of the bulk matter, the general relativistic structure
equations (the Tolman-Oppenheimer-Volkoff equations) can be solved for an
assumed central density, leading to a predicted mass (M) and radius (R) for the
neutron star. Using a range of different central densities, the M–R relation can be
constructed for any given EOS, which is illustrated in Fig. 5.1. This unique mapping
between the EOS and the basic properties of neutron stars implies that measuring a
wide range of mass-radius pairs, with an accuracy of a few percent, can constrain
the properties of ultra-dense matter through revise-engineering (Lindblom 1992).
However, it is very challenging to determine both the mass and radius for a sizable
sample of neutron stars with high accuracy. Some of the most constraining results
have therefore instead come from measuring extrema.

For each EOS there is a maximum central density beyond which no stable
configuration is possible, hence every EOS is characterized by a maximum neutron
star mass (the Tolman-Oppenheimer-Volkoff limit). This is illustrated by Fig. 5.1,
which displays the M–R relation (right) for a selection of different EOSs (left). The
EOS is effectively a measure for the compressibility of the matter, which is also
referred to as its softness: The shallower the rise in pressure with increasing density,
the more compressible the matter is, i.e. the softer the EOS. Since for soft EOSs
the matter is more compressible, these generally predict neutron stars with smaller
maximum masses than harder EOSs.

Looking at Fig. 5.1 (right), we can see that finding a neutron star with a high
mass of M � 2 M� can put tight constraints on the EOS by eliminating entire
families of soft EOS models. On the other hand, for many EOSs there is a regime
in which the radius remains relatively constant over a fairly large range of mass
(see Fig. 5.1), which implies that an accurate radius measurement can also provide
important constraints. If in addition to the mass or the radius also the compactness
(i.e. the ratio of mass and radius) can be determined, degeneracies can be broken
so that valuable constraints on the EOS can be obtained. The quest of probing
the dense-matter EOS through neutron stars can be approached in several different
ways, exploiting electromagnetic observations of both isolated neutron stars and
neutrons stars that are located in binaries (Sect. 5.3).

5.2.3 General Structure of a Neutron Star

Figure 5.2 shows a schematic drawing of the general structure of a neutron star. The
density and pressure rise with increasing depth. The dense, liquid core lies beneath
the solid crust, which is covered by a thin ocean/envelop and a very thin atmosphere.
When a neutron star accretes, its structure and composition change (see Sect. 5.2.5).
Below we describe the structure in a bit more detail.

The core makes up the largest part of the neutron star, containing approximately
99% of the total mass, and may be subdivided into an outer and an inner part. The
outer core occupies the density range ρ ∼ (1–2)ρ0, where matter consists mainly
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Fig. 5.2 Schematic drawing of the structure of a neutron star (not to scale). Some indicative
numbers for the size and density are given, and the main particle constituents are indicated.
H stands for hydrogen, N for nuclei, n for neutrons, e− for electrons and p for protons. The
dashed lines indicate dividing lines between the inner/outer crust and core. When a neutron star
is accreting, nuclear burning (of the accreted gas) occurs on the surface of the neutron star and
the bottom of the crust is severely heated due to density-driven fusion reactions. These zones are
indicated with red text and arrows

of degenerate neutrons and merely a few percent of protons and electrons. Both
protons and neutrons are expected to be superfluid in the outer core. In the inner core
of the neutron star, the density may become as high as ρ ∼ (10–15)ρ0, depending
on the EOS model. Due to the growing Fermi energies it may become energetically
favorable for more exotic particles, rather than the standard composition of p, e−
and n, to occur at these high densities. For instance, neutrons may be replaced by
hyperons, electrons may be replaced by pions or kaons and form a (superfluid)
Boson-Einstein condensate, and perhaps the density becomes even so high that
the attractive force between quarks can be neglected so that the quarks become
unconfined. The occurrence of exotica in the core leads to a softer EOS, since it
relaxes the Fermi surface and degeneracy pressure.

The crust typically covers about one tenth of the neutron star radius and can be
subdivided into an inner and an outer part. The outer crust extends from the bottom
of the atmosphere to the neutron drip density, ρdrip ∼ 4.3×1011 g cm−3, and matter
consists of electrons and ions. Due to the rise in electron Fermi energy, the nuclei
suffer inverse β-decay and become more neutron-rich with increasing density. The
inner crust covers the region from the neutron drip density, where neutrons start
to drip out of the nuclei, to the nuclear density and is composed of electrons, free
superfluid neutrons and neutron-rich nuclei. With increasing density the nuclei grow
heavier and the number of neutrons residing in the free neutron fluid (rather than in
nuclei) increases. Nuclei begin to dissolve and merge together around the crust-core
interface.
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The envelop or ocean refers to a ∼100-m thick layer that lies on top of the
crust and extends to a density of ρ ∼ 1010 g cm−3. If one wants to study the
interior temperature of neutron stars, which gives additional information on the
EOS (see Sect. 5.3.8), it is essential to understand the properties of this layer: The
envelop/ocean couples the sought-after temperature of the (isothermal) interior, TB,
to the observable effective surface temperature, Teff (e.g. Gudmundsson et al. 1982,
1983; Potekhin et al. 1997; Heyl and Hernquist 1998; Geppert et al. 2004), which is
then further modified by the atmosphere.

The atmosphere covers the neutron star and is very thin (∼ cm). It is expected to
be composed of pure H, since heavier elements should sink on very short timescales
(e.g. Romani 1987; Bildsten et al. 1992; Özel et al. 2012b). However, for some
isolated or quiescent neutron stars, observations suggest atmospheres composed of
He or C (see Sects. 5.3.4.1 and 5.3.6.1). Moreover, when a neutron star is actively
accreting, the atmosphere composition should be more complex (see Sect. 5.3.3.1).
The atmosphere accounts for a negligible fraction of the total mass, but shapes the
thermal photon spectrum emerging from the neutron star and is therefore a crucial
ingredient in modeling their surface emission, which provides means to constraint
their mass and radius (Sect. 5.2.6).

Due to the very steep temperature gradient in the atmosphere of a neutron star,
its spectrum looks very different from a black body. Since the atmosphere consists
of ions and free electrons, the opacity will be dominated by free-free absorption
(absorption of a photon by a free electron in the Coulomb field of an ion) and
is therefore proportional to ν−3, where ν is the photon frequency. As a result of
this strong dependence and the steep temperature gradient, high-energetic photons
escape from deeper atmospheric layers (where the temperature is much higher),
than low-energetic photons (e.g. Rajagopal and Romani 1996; Zavlin et al. 1996).
For a particular temperature, the spectrum from a neutron star is thus expected to be
harder than a pure black body spectrum. One important implication is that fitting
black body models to such modified spectra results in an overestimation of the
effective temperature and hence the size of the emission region is underestimated
(e.g. Rutledge et al. 1999). Other parameters that shape the emerging spectrum are
the chemical composition of the atmosphere, the surface magnetic field and the
surface gravity (see e.g. Zavlin et al. 1996; Ho et al. 2008; Ho and Heinke 2009;
Servillat et al. 2012; Potekhin et al. 2016, and references therein).

5.2.4 The Thermal Evolution of Neutron Stars: Cooling
and Re-heating

Neutron stars are born in a supernova explosions, exhibiting very high temperatures
of TB ∼ 1012 K. In absence of an internal furnace, however, the neutron star will
rapidly cool via neutrino emissions from its dense core and photon emissions from
its surface (e.g. Yakovlev and Pethick 2004; Page et al. 2006, for reviews). Initially
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the core cools faster and is thermally decoupled from the hotter crust, but after
∼1–100 year (depending on the neutron star structure), the crust has thermally
relaxed. The crust and core of the neutron star will then be in thermal equilibrium,
having a uniform temperature (e.g. Lattimer et al. 1994). In the ocean/envelop and
atmosphere, there always continues to be a steep temperature gradient.

There are two factors that can alter the thermal evolution of a neutron star. Firstly,
when a neutron star accretes gas from its surroundings, its composition changes and
this provides a site for nuclear reactions that release energy and (temporarily) disrupt
the thermal balance between the core and the crust (see Sect. 5.2.5). Secondly, in
extreme cases the neutron star magnetic field can be a powerful source of energy
that can alter the thermal balance. For instance, the decay of their magnetic field
and fracturing of the crust by magnetic stresses can release significant amounts of
energy that heat the outer layers of the neutron star (e.g. Arras et al. 2004; Pons
et al. 2007, 2009; Aguilera et al. 2008; Cooper and Kaplan 2010). These processes
are effective only for very strong magnetic fields (B � 1014 G), i.e. only relevant
for magnetars. Indeed, the temperature of several magnetars have been observed to
change in response to periods of magnetic activity (see Sect. 5.3.8).

5.2.5 Accretion: Effect on the Composition and Thermal
Structure of Neutron Stars

When located in a binary, a neutron star may be able to accrete matter from a
companion star. The transferred matter typically consists of H (or He), but as this
gas accumulates on the surface of the neutron star, thermonuclear nuclear burning
will transform it into heavier elements (e.g. Schatz et al. 1999). Under the weight
of freshly accreted material, the burning ashes get pushed into the neutron star and
eventually the original crust is fully replaced by an accreted one (e.g. Sato 1979;
Haensel and Zdunik 1990). The temperatures involved are typically much lower
(TB ∼ 107–108 K) than in a newborn neutron star (TB ∼ 1012 K), and do not
allow to overcome the nucleon Coulomb-barrier so thermonuclear fusion reactions
cannot take place. As a result, an accreted crust is constructed of smaller nuclei
and a larger number of free neutrons than a non-accreted crust (e.g. Haensel and
Zdunik 1990). Due to the larger number of free neutrons, at a given density (at
ρ > ρdrip = 4.3×1011 g cm−3) the pressure in an accreted crust will be higher than
for a crust made of cold catalyzed matter. This implies that the EOS of the inner
crust will be harder when a neutron star has experienced accretion, i.e. the crust will
be slightly thicker (e.g. Zdunik et al. 2017).

A non-equilibrium crust provides a site for nuclear reactions and hence a
potential source of energy. An accreted matter element passes through a chain of
non-equilibrium nuclear reactions as it is pushed deeper within the neutron star
crust. This results in the release of a considerable amount of heat energy (∼2 MeV
per accreted baryon). Most of this energy is released in the pycnonuclear reaction
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chains that occur deep in the inner crust at densities of ρ ∼ 1012–1013 g cm−3 (see
Fig. 5.2). The total energy deposited in the crustal reactions is rather similar for
different initial compositions of the burning ashes (Haensel and Zdunik 2003).

The nuclear reactions induced in the crust due to accretion can reheat a neutron
star and make it much hotter than an isolated neutron star of the same age. Indeed,
Brown et al. (1998) showed that deep crustal heating can efficiently maintain the
core of an accreting neutron star at a temperature TB ∼ 5 × 107–108 K. Thermal
surface radiation from accreting neutron stars is normally overwhelmed by X-ray
emission from the hot accretion disk (except during X-ray bursts), but transient
LMXBs exhibit periods of quiescence during which little or no accretion takes place
and the thermal glow of the neutron star can be observed (see Sect. 5.3.4; e.g. Brown
et al. 1998; Campana et al. 1998; Wijnands et al. 2013, 2017).

5.2.6 Surface Emission from Neutron Stars

Several techniques that are employed to constrain the neutron star EOS rely on
detecting radiation directly from the stellar surface. The thermal radiation emitted by
a stellar body depends on its temperature and radius. Therefore, if thermal radiation
can be detected from (part of) the surface of a neutron star, this provides means to
measure its radius. However, as gravitational effects come into play, the mass of
the neutron star also enters the equations. Whereas in principle this complicates a
simple measurement of the stellar radius, there may be ways to break degeneracies
so that in fact both the mass and the radius can be determined.

The surface of a neutron star may not necessarily be emitting isotropically. Under
certain circumstances, hotspots may be observable: regions that are hotter than the
bulk of the surface and are offset from the rotational pole of the neutron star. As the
hotter region rotates around the star, the observer will see its emission modulated
(i.e. pulsed) at or near the stellar spin frequency. As we will see in this book
chapter, both isotropic surface emission and hotspot emission can be employed to
put constraints on the neutron star radius (and mass).

Typically, neutron stars have a temperature of TB ∼ 105 K (for radio pulsars)
to TB ∼ 108 K (for LMXBs), which implies that the thermal surface radiation is
emitted in the X-ray, (extreme) UV, or optical band. It is not obvious, however,
that surface emission from a neutron star is detectable. In isolated neutron stars, for
instance, the surface emission can be overpowered by non-thermal magnetospheric
processes and in an X-ray binaries the gravitational energy released in the accretion
process usually completely overwhelms the surface radiation from the neutron
star. Fortunately there are situations in which thermal emission from the neutron
star surface is directly observable. Firstly, during thermonuclear X-ray bursts,
the neutron star surface briefly becomes brighter than the accretion flow due to
the enormous amount of thermal energy liberated (Sect. 5.3.3). Secondly, many
neutron star LMXBs are transient and the neutron star surface may be visible
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during their quiescent episodes (Sect. 5.3.4). Thirdly, in AMXPs the accretion
flow is concentrated onto the magnetic poles, which creates observable hotspots
(Sect. 5.3.5). Finally, thermal surface emission has also been detected for a number
of (nearby) radio pulsars (Sect. 5.3.5), isolated neutron stars (Sect. 5.3.6), and
magnetars (Sect. 5.3.8.8).

If the distance,D, is well known, the observed thermal flux density of the neutron
star, Fν , can be fitted to a model flux density Fν,∞:

Fν = Fν,∞K = Fν,∞
R2∞
D2 =

Fν(1+z)
1+ z

R2

D2 , (5.1)

where K = (R∞/D)2 is a normalization factor. Due to their extreme compact-
ness, neutron stars gravitationally bend their own surface emission (e.g. Pechenick
et al. 1983; Psaltis et al. 2000). Moreover, the emission is gravitationally lensed.
The combined effect causes the observed angular size R∞ to be related to the true
physical radius of the neutron star as R∞ = R(1 + z), where z is the gravitational
redshift defined as:

1+ z = (1− 2GM/c2R)−1/2, (5.2)

with G the gravitational constant and c the speed of light. The modelled flux
density is thus related to the intrinsic flux density of the neutron star, Fν(1+z), as:

Fν,∞ = Fν(1+z)
(1+ z)3

. (5.3)

Since z is significant for neutron stars, the stellar radius cannot be determined
independently of its mass such that the outcome of the measurement is actually a
strip along the mass-radius plane. Formally, further corrections need to be applied to
account for the fast spin rates of neutron stars. For instance, due to Doppler boosting
the approaching side of the neutron star will be brighter than the receding side. This
asymmetry is further enhanced by frame dragging, as the space time differs from the
simple Schwarzschild metric. Rapid rotation also causes oblateness (i.e. the radius at
the equator is larger than at the poles). The combined effect implies that the surface
emission is non-uniform (e.g. Miller et al. 1998a; Braje et al. 2000; Muno et al.
2003; Poutanen and Gierliński 2003; Cadeau et al. 2007; Morsink et al. 2007), and
that any possible atomic lines from the atmosphere will be broadened (Özel and
Psaltis 2003; Bhattacharyya et al. 2006; Chang et al. 2006; Bauböck et al. 2012).
Nevertheless, even for the highest spin measured for neutron stars to date, the effects
of rapid rotation are smaller than the typical systematic uncertainties involved in the
EOS determinations (e.g. Steiner et al. 2013). Spin effects are often not taken into
account.

If the neutron star magnetic field is sufficiently strong, the surface tempera-
ture may be inhomogeneous and this hampers inferring the true physical radius
(Elshamouty et al. 2016a). Moreover, other emission processes (e.g. from magneto-
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spheric processes, shocks from a pulsar wind, or an accretion flow; Campana et al.
1998) may contaminate the observed emission. This complicates inferring physical
radii and introduces systematic effects.

Finally, and perhaps most importantly, the thermal radiation from the neutron
star surface is shaped by the atmosphere. Using the observed surface emission as
a tool to measure neutron star parameters and infer information about its interior
properties thus requires a careful consideration of the atmospheric properties.
Various classes of neutron stars are subject to different physical circumstances
and therefore require their own mapping of the surface emission to the observed
spectrum. Atmosphere models have thus been developed to cover a wide range of
temperatures, ionization states, magnetic fields strengths, and compositions. This
includes models for hydrogen atmospheres of cool, non-magnetic neutron stars
(B � 108 G and Teff ∼ 105–107 K, applicable to quiescent LMXBs; e.g. Zavlin
et al. 1996; Heinke et al. 2006; Haakonsen et al. 2012, Sect. 5.3.4.1), cool neutron
stars with moderate magnetic field strengths (B ∼ 1011–1013 G, applicable to dim
isolated neutron stars; e.g. Shibanov et al. 1992; Ho et al. 2008, Sect. 5.3.6.1),
strongly magnetic neutron stars (i.e. magnetars; e.g. Özel 2003; van Adelsberg
and Lai 2006, Sect. 5.3.8.8), C and He atmospheres (e.g. Ho and Heinke 2009,
Sects. 5.3.4.1 and 5.3.6.1), hot bursting neutron stars with different metallicities (e.g.
Suleimanov et al. 2011b, 2012a; Nättilä et al. 2015; Medin et al. 2016, Sect. 5.3.3.1),
and weakly accreting neutron stars (Zampieri et al. 1995). Over the years, a large
number of various grids of neutron star atmospheres and corresponding model
spectra have been computed by many authors. Several of these are implemented
into the X-ray spectral fitting package XSPEC, for instance nsa and nsgrav (Zavlin
et al. 1996), nsatmos (Heinke et al. 2006), nsx (Ho and Heinke 2009), carbatm and
hatm (Suleimanov et al. 2014, 2017b).

5.3 EOS Constraints from Electromagnetic Observations
of Neutron Stars

As explained in Sect. 5.2.2, the observable properties that directly constrain the EOS
are the neutron star mass and radius. Significant constraints on the EOS at supra-
nuclear densities could be realized when both the mass and radius of a single neutron
star are deduced from observations, but this is very challenging in practice. In the
next Sections we review the many different approaches that can be taken to constrain
the neutron star EOS using radio, optical and X-ray observations (Sects. 5.3.1–
5.3.8), and how various methods can be combined for increased accuracy and checks
for systematic biases (Sect. 5.3.9).

There are several radio pulsars in binaries for which very accurate mass
estimates are available from measuring gravitational effects through radio pulsar
timing (Sect. 5.3.1), combined with dynamical information on the donor star from
optical observations (Sect. 5.3.2). However, so far there exists no accurate radius
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measurement for a radio pulsars that has its mass measured with high accuracy.
Measuring neutron star radii relies on measuring radiation that comes directly
from (part of) the neutron star surface (see Sect. 5.2.6). This can be achieved with
observations of accreting neutron stars through modeling thermonuclear explosions
that occur on their surface (Sect. 5.3.3) and studying their thermal glow during
quiescent episodes (Sect. 5.3.4), or by modeling the pulse profiles of hotspots on
the stellar surface (Sect. 5.3.5). Such hotspots may also occur on non-accreting
binary radio pulsars, which allows to apply similar techniques to measure their radii.
Furthermore, dim isolated neutron stars also emit thermal radiation that can be used
to constrain their emission radii (Sect. 5.3.6).

Apart from putting direct constraints on the EOS through measuring M and
R, a very high spin frequency can also provide stringent constraints on the dense
matter EOS (Sect. 5.3.7). We also review a number of other approaches to obtain
constraints on the neutron star core properties and EOS that are less developed
at present (Sect. 5.3.8), but can perhaps in the future lead to better constraints,
especially when combined with other methods (Sect. 5.3.9).

5.3.1 Mass Measurements of Radio Pulsars in Binaries

Radio observations can be used to detect every rotation of a neutron star, a
technique that is known as pulsar timing. Such measurements provide very accurate
constraints not only on the rotation period of the neutron star itself, but also on
the orbital parameters of the binary. For dedicated reviews on neutron star masses
obtained through pulsar timing techniques, and what advances will be brought by
future instrumentation (see also Sect. 5.4.1.1), we refer to Kramer (2008); Watts
et al. (2015), Özel and Freire (2016). Here, we briefly summarize the basic concepts
and results that are most relevant for constraining the neutron star EOS.

By accurately timing every rotation of a radio pulsar, the binary mass function
can be determined from the Keplerian orbital parameters:

fns =
(

2π

Porb

)2
(ans sin i)3

G
= (Mc sin i)3

M2
T

, (5.4)

where Porb is the binary orbital period and ans sin i the projection of the pulsar
semi-major axis on the line of sight. This mass function has three unknown
parameters: the angle i between the line of sight and the direction orthogonal to the
orbital plane, the mass of the companion star Mc, and the total mass of the binary
MT = Mc+M . The neutron star mass M can therefore not be obtained from timing
its pulsations alone. However, in some occasions the projected semi-major axis of
the companion’s orbit (ac sin i) can be measured: via radio pulsar timing in case of
double pulsar binaries, or via phase-resolved optical spectroscopy if the companion
is a white dwarf or main-sequence star. This provides a measurement of the mass
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ratio q of the two binary components:

q = M

Mc
= (ac sin i)3

(ans sin i)3
. (5.5)

Nevertheless, further information is required still to pinpoint the mass of the
neutron star. For instance, some binaries that are viewed nearly edge-on allow to
constrain the inclination from eclipses (where one of the binary components is peri-
odically obscured by the other). Furthermore, optical studies can occasionally yield
an independent measurement of the mass of the companion star (see Sect. 5.3.2).
Finally, for some radio pulsars relativistic effects are measurable that allow to close
the set of equations and obtain the masses of the binary components (e.g. Shao
et al. 2015; Watts et al. 2015; Özel and Freire 2016, for details). For instance, for
very eccentric binaries one can observe changes in the argument of periapsis, while
for very compact binaries the orbital decay due to gravitational wave radiation can
be measurable. In exceptional cases, when the binary is viewed nearly edge-on,
it has been possible to measure a Shapiro delay arising from the pulses traveling
through the gravitational potential of the companion star. If these various pieces of
information are available, the masses of radio pulsars can be measured to very high
precision (e.g. Thorsett et al. 1993; Thorsett and Chakrabarty 1999; Stairs 2004;
Kiziltan et al. 2013).

Accurate mass measurements have so far been obtained for∼40 radio pulsars and
span a range of M ∼ 1.2–2.0 M� (see Özel and Freire 2016, for a recent overview).
Assembling a firm statistical sample of mass measurements is of high interest for a
variety of astrophysics questions, e.g. the dynamics of mass transfer and its role in
binary evolution, the detailed physics of supernova explosions, and the birth-mass
distribution of neutron stars (e.g. Özel et al. 2012b; Kiziltan et al. 2013). However,
without radius determinations, these accurate mass determinations generally do not
put any stringent constraints on the neutron star EOS. It is only the most extreme
mass measurements that can provide interesting constraints by ruling out EOSs that
predict lower maximum masses (see Sect. 5.2.2).

There are currently two radio pulsars with reliable mass measurements of M ∼
2 M� that have allowed to put some interesting constraints on the neutron star
EOS. The first is the millisecond radio pulsar PSR J1614−2230, for which the
Shapiro delay can be measured and has led to a mass determination of M =
1.928 ± 0.017 M� (Demorest et al. 2010; Fonseca et al. 2016). The second is the
millisecond radio pulsar PSR J0348+0432 for which the combination of radio pulse
timing and optical studies of its white dwarf companion yielded a reliable mass
estimate for both binary components, with M = 2.01±0.03 M� for the neutron star
(Antoniadis et al. 2013). A single extreme measurement can already provide very
strong constraints on the neutron star EOS, primarily by constraining the nucleon
interactions (Hebeler et al. 2013). However, the current extremes of M ∼ 2 M� do
not necessarily rule out the occurrence of any exotic particles the core (e.g. Oertel
et al. 2015; Fortin et al. 2016, 2017).



198 N. Degenaar and V. F. Suleimanov

The above approach of measuring neutron star masses require the radio pulsars
to be located in binaries and hence cannot be applied to isolated radio pulsars.
However, some young (isolated) pulsars display sudden and temporary increases
in the neutron star’s spin. These glitches can be used to put some constraints on the
superfluid properties and the masses of these neutron stars (see Sect. 5.3.8.1).

5.3.2 Optical Dynamical Mass Measurements of Neutron Stars
in Binaries

If a neutron star is in a binary and periodic changes in the line-of-sight velocity of
the companion star (K2) can be measured from its optical emission, then the mass
function f (M,Mc) can be constructed from Newton’s laws of Keplerian motion,
which provides a lower limit on the mass of the neutron star:

M ≥ f (M,Mc) ≡ M3 sin3 i

(MT)2
= K3

2Porb

2πG
(5.6)

where MT = Mc + M is again the total binary mass. Furthermore, i is the
inclination angle at which we view the binary orbit (with i = 0◦ implying face-
on and i = 90◦ edge-on) and Porb is the orbital period. When the orbital period can
be measured along with the companion star’s velocity variations, the mass function
provides a lower limit on the neutron star mass; Mc = 0 and i = 90◦ would yield
M = f , but since Mc > 0, we have M > f for any inclination angle.

Additional constraints from other types of measurements can turn this lower
limit into an actual mass measurement. So far, this has been most successful in
combination with accurate timing of radio pulsars (Sect. 5.3.1). For instance, for
PSR J1614−2230 the Shapiro delay yielded i and Mc and hence allowed for
measuring the pulsar mass of M = 1.928 ± 0.017 M� via Eq. (5.6) since K2
(from optical observations of the companion) and Porb (from pulsar timing) can
also be determined. Another way to remove degeneracies is through the detection
of atmospheric lines of the companion star, which allowed for the accurate and
constraining M = 2.01 ± 0.03 M� mass measurement of PSR J0348+0432
(Antoniadis et al. 2013). The atmospheric lines detected from its white dwarf
companion provide a second mass function, through the periodic variations in the
central wavelength of these lines, and a mass measurement of the white dwarf via
the gravitational redshift of the lines, hence allowing a determination of the mass of
the pulsar.

Some binary radio pulsars are eclipsed, so-called black widow pulsars, which
allows for a constraint on the inclination and can thus lead to a measurement of
the neutron star. Some of these have similar or even higher mass estimates as PSR
J1614−2230 and PSR J0348+0432, albeit with larger systematic uncertainties. For
instance, for the black widow pulsar PSR B1757+20 a mass ofM ∼ 2.40±0.12 M�
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was estimated, but the binary inclination is highly uncertain and in fact allows for a
mass as low as M ∼ 1.66 M� (van Kerkwijk et al. 2011). Furthermore, light curve
fitting yielded an estimated mass of M ∼ 2.68 ± 0.14 M� for the black widow
PSR J1311−3430 (Romani et al. 2012), but the poor quality of the fit suggests
the presence of un-modelled obscuration or emission; attempts to account for that
result in a lower pulsar mass, down to M ∼ 1.8 M� (Romani et al. 2015). Whereas
systematic uncertainties currently preclude from drawing firm conclusions, these
methods can potentially be refined (e.g. Romani et al. 2015). Difficulties currently
lie in the fact that the companions are oblated and even when irradiation is taken
into account in the light curve modelling there is residual short time scale variability.
Moreover, the surface is unevenly heated, and there is asymmetry in the light curves.
All this significantly hinders a reliable determination of the binary inclination, which
thus directly translates into uncertainties in the neutron star mass. Nevertheless
the high mass estimates for these black widow pulsars are tantalising and foster
the idea that neutron stars with M > 2 M� may exist and will be found one
day. If such high masses were to be confirmed that would firmly rule out several
classes of EOSs. Note that in these studies timing of the radio pulses provides
the binary parameters, but the mass measurements are obtained from modeling the
companion’s optical light curves (to constrain the orbital inclination) and optical
spectroscopy (to measure the mass ratio).

Similar studies can be performed for X-ray binaries. So far, neutron star masses
have been obtained from optical observations (combined with other techniques) for
∼10 HMXBs and∼7 LMXBs. Together these span a range ofM ∼ 1.1–1.9 M�, but
these measurements are much less accurate than those of millisecond radio pulsars
(see Özel and Freire 2016, for an overview). The additional constraints required
to obtain mass measurements for these objects can be obtained in different ways.
For instance, eclipses are also observed for some high-inclination X-ray binaries,
causing the X-ray emission near the neutron star to be periodically blocked by the
donor star, in which case i can be accurately determined from the duration of X-ray
eclipses (Horne 1985). Furthermore, X-ray pulse timing can directly constrain the
orbit of the neutron star and hence its radial velocity semi-amplitudeK1. If the radial
velocity semi-amplitude of the donor star (K2) can also be measured from optical
(or near-infrared) observations in quiescence, the mass ratio q = Mc/M is obtained.
Alternatively, this ratio can be determined from the broadening of absorption lines
(v sin i) from the companion star (e.g. Horne et al. 1986). A promising source to
obtain this combined information is the only eclipsing millisecond X-ray pulsar,
Swift J1749.4−2807, but crowding has so far prevented to identify the quiescent
near-infrared counterpart (Jonker et al. 2013). In the future, X-ray polarization may
be employed to constrain the inclination of some neutron star X-ray binaries via
studies of their hotspot emission (see Sect. 5.4.3.5).



200 N. Degenaar and V. F. Suleimanov

5.3.3 Radius Constraints from Thermonuclear X-ray Bursts

The X-ray luminosities of neutron star LMXBs in outburst vary in a wide range of
LX ∼ 1035–1038 erg s−1. This suggests that Ṁ = LaccR/GM ∼ 1015–1018 g s−1

of mass is accreted (where Lacc ∼ 2 × LX is the bolometric accretion flux; e.g.
in ’t Zand et al. 2007). This gas accumulates on the neutron star surface where
it undergoes thermonuclear burning. Under certain conditions, mainly determined
by the local mass-accretion rate and thermal properties of the ocean/envelop,
the nuclear burning is unstable and results in runaway energy production that is
observable as a thermonuclear X-ray burst (also called Type-I X-ray bursts; shortly
X-ray bursts from here on). Currently,∼110 X-ray bursting neutron star LMXBs are
known. The majority of X-ray bursts have a duration of ten to hundreds of seconds
and their spectra are generally well fitted with a black body model (Galloway
et al. 2008), of which the temperature TBB and normalization KBB evolve in a
characteristic way (see Fig. 5.3). We refer to Lewin et al. (1993) and Strohmayer and
Bildsten (2006) for extensive reviews on X-ray bursts. Here, we focus on exploiting
these events to constrain the neutron star properties.

Fig. 5.3 Results of fitting of
a PRE burst of the LMXB
SAX J1810.08−2609 with a
black-body model, showing
the evolution of the
black-body flux (top),
temperature (middle) and
normalization (bottom) along
the X-ray burst. The
touchdown point where the
expanding atmosphere rejoins
the neutron star surface, is
thought to occur at t = 0
(marked with the vertical
dashed line). The part of the
X-ray burst where the
temperature is gradually and
steadily decreasing (i.e. after
the touchdown point), is
referred to as the cooling tail
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The X-ray bursting neutron stars are attractive candidates to constrain the
EOS because during the X-ray bursts the neutron star surface becomes visible
(Sect. 5.2.6). In the following, we assume that the stellar surface is uniformly
emitting and that there is no other emission process that can alter the observed
spectral flux distribution. It may seem that this last assumption cannot be fulfilled
since the accretion flow is a prominent source of radiation, but we show below that
for several X-ray bursting neutron stars the accretion rates are low enough to ignore
its contribution to the burst spectrum.

There are two additional advantages that make X-ray bursts very suitable for
constraining the neutron star parameters. Firstly, some X-ray bursts are so powerful
that the radiation pressure causes the outer layers of the neutron star to expand,
which is referred to as photospheric radius expansion (PRE). This implies that
in these layers the radiation pressure force grad = c−1

∫∞
0 κνFν dν is larger

than the local gravity g = GM(1 + z)/R2 and that the luminosity exceeds
the Eddington limit during the PRE burst phases. For every specific neutron star
photosphere the value of this critical luminosity is unique, owing to the specific
chemical composition and the difference in the opacities κν . Usually, the Eddington
luminosity is determined using the Thomson electron scattering opacity:

κe ≈ 0.2 (1+X) cm2 g−1, (5.7)

where X is the hydrogen mass fraction. The expression for the observed
Eddington luminosity is then:

LEdd,∞ = LEdd

(1+ z)2
= 4πGMc

κe
(1+ z)−1, (5.8)

which corresponds to an observed bolometric Eddington flux of:

FEdd = LEdd,∞
4πD2 . (5.9)

The Eddington flux is linked to the observable critical effective temperature
TEdd,∞, via:

FEdd = σSBT
4

Edd,∞, (5.10)

where σSB is the Stefan Boltzmann constant. We note that the parameters defined
by Eqs. (5.8)–(5.10) are the prerequisite for measuring the neutron star radius and
mass. Unfortunately, however, it is not possible to determine exactly at which burst
phase the observed flux equals the Eddington flux. The flux at the touchdown
point, where the black-body temperature TBB reaches a maximum and the black-
body normalization has a local minimum (see Fig. 5.3), is generally believed to be
close to the Eddington flux. In one approach, the neutron star mass and radius are
constrained by attempting to identify the Eddington flux of PRE bursts: this is often
referred to as the touchdown method.
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The spectral evolution of X-ray bursts allows us to obtain an additional con-
straints on the neutron star mass and radius. Since these parameters cannot change,
an acceptable model must be able to describe the X-ray burst spectrum at every
phase, from the Eddington flux near to peak down to the much lower fluxes in the
X-ray burst tail, with constant values of M and R. Constraining the neutron star
parameters via the spectral evolution of the X-ray burst is usually referred to as the
cooling-tail method.

During X-ray bursts, in principle both the apparent surface area and the Edding-
ton limit of the neutron star can be measured, hence the degeneracy between M

and R can be broken using the equations laid out above. Although the approach
is very promising, various systematic uncertainties (e.g. varying accretion emission
during a burst, the emission radius, the detailed spectral properties, and emission
anisotropies) need to be resolved before orthogonal constraints can reliably be
obtained with high accuracy (e.g. Steiner et al. 2010; Galloway and Lampe 2012;
Zamfir et al. 2012; in ’t Zand et al. 2013; Degenaar et al. 2018, see Sect. 5.3.3.4).

5.3.3.1 Model Atmospheres for X-ray Bursts

The black-body fits give important initial information about an X-ray bursting
neutron star, but this kind of fitting is not accurate enough to obtain reliable mass
and radius measurements. Accurate model atmospheres of X-ray bursting neutron
stars have to be computed for this aim to obtain model flux spectral distributions Fν

(hereafter spectra). The model atmosphere parameters are the effective temperature
Teff, the surface gravity g, and the chemical composition of the atmosphere. The
very first models of hot neutron star atmospheres (London et al. 1984, 1986; Lapidus
et al. 1986; Ebisuzaki 1987; Madej 1991; Pavlov et al. 1991) demonstrated that
Compton scattering is the main source of opacity and that the energy exchange
between high energy photons escaping from the deep and hot atmospheric layers
with the relatively cold surface electrons establishes the equilibrium spectra. These
are close to the diluted black-body spectra (Fig. 5.4). Therefore, there are two
parameters describing every model spectrum, the dilution factor w and the color
correction factor fc:

Fν ≈ w πBν(fc Teff), (5.11)

where Bν is the Planck function. The color correction factor links the color
temperature Tc, obtained from fitting a spectrum distorted by atmospheric effects
to a Planck spectrum, to the effective temperature Teff (i.e. fc = Tc/Teff). We note
that in first approximation, w ≈ f

−1/4
c . However, approximation (5.11) actually

doesn’t conserve the bolometric flux∫ ∞
0

wπ Bν(fc Teff) dν = wf 4
c σSBT

4
eff, (5.12)
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Fig. 5.4 Fits to model spectra (solid curve) with a diluted black body (dashed curve). Black-body
spectra with temperatures Teff (dotted curve) and fc Teff (dot-dashed curve) are also shown. The
model spectrum of a pure helium atmosphere with log g = 14.3 and # = 1.0 is used. The fitting
parameters are fc = 1.61 and w = 0.148

and therefore the bolometric flux obtained from the black-body fit has to be
multiplied by the bolometric correction wf 4

c .
At present, extended grids of hot neutron star atmospheres have been computed

using the Kompaneets equation for the Compton scattering description (Suleimanov
et al. 2011b), and the fully relativistic angle-depended redistribution function
(Suleimanov et al. 2012a). The latest grids have been computed for different chem-
ical compositions: pure hydrogen, pure helium and mixed H/He with a solar H/He
ratio with different fractions of solar metallicities (i.e. heavy element abundances).
The models are computed for nine surface gravities, with log g from 13.7 to
14.9 in steps of δ log g = 0.15. The relative luminosity # is used instead of the
effective temperature as a model parameter, # = L/LEdd, or Teff = #1/4TEdd. Here
LEdd = LEdd,∞(1+z)2 = 4πR2 gc/κe and TEdd = TEdd,∞(1+z) = (gc/σSBκe)

1/4

are the intrinsic Eddington luminosity and the intrinsic critical effective temperature,
respectively. For every chemical composition and surface gravity, about 20 models
with # varying from 1.1. to 0.1 were computed. For three log g values (14.0, 14.3,
and 14.6) the grids were extended down to # = 0.001. Some examples of the
emergent model spectra are shown in Fig. 5.5.

To provide an anchor point to compare the theoretical behavior of X-ray bursts
to actual data, the model atmosphere spectrum can be fitted by a diluted black
body. Examples of the dependence on the relative luminosities are shown in Fig. 5.6.
The values of the fit parameters depend significantly on the relative luminosity and
the chemical composition, whereas the dependence on the surface gravity is less
significant. The color correction factor fc and the dilution factor w both evolve
rapidly when the relative luminosity # decreases from 1 to 0.5. Formally super-
Eddington model atmospheres can occur because the effective electron scattering
cross-section decreases with increasing temperature (Klein-Nishina reduction; see
Paczynski 1983; Suleimanov et al. 2012a; Poutanen 2017).
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Fig. 5.5 Model spectra of pure helium (left) and solar H/He mix (right) atmospheres for log g =
14.3 and relative luminosities # = 0.1, 0.5, and 1.0. The right panel shows the model spectra for
solar (solid curves) and hundred times less heavy element abundances (dashed curves)

Fig. 5.6 The model dependences of color correction factors fc (left) and dilution factors w (right),
computed for pure hydrogen (red curves), pure helium (blue curves) and solar H/He mix (dark-
yellow curves) atmospheres. The model curves for solar H/He mix are presented for two heavy
element abundances: solar (solid curves) and reduced solar abundance (dashed curves). All these
model curves were computed for log g = 14.3

5.3.3.2 Methods for Obtaining Mass and Radius Measurements
from X-ray Bursts

The potential of using X-ray bursts to obtain mass and radius measurements of
neutron stars was recognized many years ago (Ebisuzaki 1987; van Paradijs et al.
1990; Damen et al. 1990; Lewin et al. 1993). However, the low quality of the early
data and lack of sufficiently extended model atmosphere grids prevented to obtain
meaningful results. With the availability of much better data (mainly from RXTE),
the touchdown method has been applied to six different LMXBs in recent years
(Table 5.1; see e.g. Özel 2006; Özel et al. 2009; Güver et al. 2010b). The results
obtained via this approach were recently reviewed by Özel and Freire (2016), and
yield a combined radius preference ofR = 9.8–11.0 km for a mass of M = 1.4 M�.
This method does not take into account the spectral evolution of X-ray bursts. The
cooling-tail method has been laid out by Suleimanov et al. (2011a), Poutanen et al.
(2014), Suleimanov et al. (2017c) and has been applied to 5 sources to date. Since
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Table 5.1 Sources that have so far yielded the most constraining mass and/or radius limits

Approach Sources References

X-ray bursters SAX J1748.9−2021 Güver and Özel (2013); Özel et al. (2016b)

EXO 1745−248 Özel et al. (2009), Özel et al. (2016b)

KS 1731−260 Özel et al. (2012a), Özel et al. (2016b)

4U 1608−52 Güver et al. (2010a), Özel et al. (2016b),

Poutanen et al. (2014)

4U 1820−30 Güver et al. (2010b), Özel et al. (2016b),

Suleimanov et al. (2017a)

4U 1724−307 Suleimanov et al. (2011b), Nättilä et al. (2016),

Özel et al. (2016b)

4U 1702−429 Nättilä et al. (2016), Nättilä et al. (2017)

SAX J1810.8−260 Nättilä et al. (2016), Suleimanov et al. (2017c)

GS 1826−24 Zamfir et al. (2012)

Quiescent LMXBs NGC 6397 U24 Guillot et al. (2011), Heinke et al. (2014),

Özel et al. (2016b)

47 Tuc X5 Heinke et al. (2003), Heinke et al. (2006),

Bogdanov et al. (2016)

47 Tuc X7 Heinke et al. (2003), Heinke et al. (2006),

Bogdanov et al. (2016)

M28 source 26 Becker et al. (2003), Servillat et al. (2012),

Özel et al. (2016b)

NGC 2808 Webb and Barret (2007), Servillat et al. (2008)

M13 Gendre et al. (2003a), Webb and Barret (2007),

Catuneanu et al. (2013), Özel et al. (2016b)

ω Cen Rutledge et al. (2002b), Gendre et al. (2003b),

Heinke et al. (2014), Özel et al. (2016b)

M30 Lugger et al. (2007), Guillot and Rutledge (2014),

Özel et al. (2016b)

NGC 6304 Özel et al. (2016b)

Radio pulsars PSR J1614−2230 Demorest et al. (2010), Fonseca et al. (2016)

PSR J0348+0432 Antoniadis et al. (2013)

this method is very promising but has not been described in a book review yet, we
here focus on that method.

Before continuing to describe the cooling-tail method and its application in
detail, we point out that there is a third approach where observable properties such
as the recurrence time, peak flux and decay time of X-ray bursts are compared with
theoretical light curve models to infer the surface redshift of the neutron star (e.g.
Heger et al. 2007a). However, the only neutron star LMXB (out of ∼110 known X-
ray bursters) that shows X-ray bursts with light curves that match the theoretical
calculations, is GS 1826−24 (also called “the clocked burster”). Therefore, this
method has only been applied to this particular source, yielding R < 6.8–11.3 km
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Fig. 5.7 The observed KBB − FBB dependence (circles with error bars) for the cooling tail (after
touchdown) of a PRE burst from SAX J1810.8−2609 (see Nättilä et al. 2016; Suleimanov et al.
2017c). The red solid curve is the best-fitting theoretical dependence w−wf 4

c # for solar H/He mix
(Z = 0.01Z�) and log g = 14.3, corresponding to the bright data points. The fitting parameters
are Ω = 1261 (km/10 kpc)2 and FEdd = 0.776 × 10−7 erg cm−2 s−1

for M < 1.2–1.7 M� (Zamfir et al. 2012). This is consistent with results obtained
from the other X-ray burst analysis types as well as those obtained for quiescent
neutron star LMXBs (see Sect. 5.3.4.2). For this approach the X-ray bursts do not
have to show PRE (i.e. reach Eddington).

In the cooling-tail method, a black-body model is used to fit both the observed
spectra and the model atmosphere spectra. This shows that the observed normaliza-
tion KBB depends only on the dilution factor when the late burst phases (after the
touchdown point) are considered:

KBB = w
R2(1+ z)2

D2 = wΩ. (5.13)

This means that all changes in the black-body normalization occurring after the
touchdown point, which we can see in Fig. 5.3 (bottom), are connected to changes
in the dilution factor. It is more convenient to demonstrate the evolution of the
normalization as an observedKBB−FBB dependence (see Fig. 5.7) and approximate
it with the model curves w − wf 4

c # with two fit parameters1: FEdd and the solid
angle occupied by the neutron star on the sky Ω . Both fit parameters depend on
the (poorly known) distance to the neutron star but their combination, the apparent

1Initially the suggested method was using the assumption w = f
−1/4
c and the observed curves

K
−1/4
BB − FBB were fitted with the model fc − # ones.
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critical surface temperature TEdd,∞, is independent of distance:

TEdd,∞ =
(

FEdd

(σSBΩ

)1/4

=
(

GMc

σSB 0.2(1+X)R2(1+ z)3

)1/4

. (5.14)

The curve of equal TEdd,∞ on the neutron star M–R plane gives the possible
values of the neutron star mass and radius, as shown in Fig. 5.8. However, this
depends on the surface gravity of the model curves used and the assumed chemical
composition. It is clear that for a given neutron star mass, the pure helium models
(X = 0) will give a larger neutron star radius than pure hydrogen models (X = 1).
Formally, the curve of constant TEdd,∞ gives the correct M and R at the point were
log g is equal to the value used for the model curve computation. Therefore, we
have to assume some chemical composition of the neutron star atmosphere and
interpolate the model curvesw−wf 4

c # computed for nine surface gravities for every
M–R pair. Then we can fit the observed curve KBB − FBB by this specific model
curve and obtain the χ2 map on the M–R plane, allowing to define confidence
regions (68, 90 and 99%). The distance to the source is the only free parameter
for a fixed chemical composition, and its value is unique for every M–R pair. In
Fig. 5.7 we also illustrate the importance of the chemical composition. The observed
curve KBB − FBB was fitted with the model curves w − wf 4

c # computed for pure

Fig. 5.8 The χ2 confidence regions (68, 90 and 99% probabilities) in the M–R plane for
SAX J1810.8−2609, obtained using the cooling-tail method for solar-mix H/He with reduced
heavy element abundance (Z = 0.01Z�; Suleimanov et al. 2017c). The black dashed-dotted curves
correspond to distances of 4.0, 4.5 and 5.0 kpc. The solid curves correspond to the best-fitting
TEdd,∞ obtained for log g = 14.3 and three chemical compositions: pure hydrogen (red curve),
solar H/He mix with the reduced heavy element abundance (dark-yellow curve), and pure helium
(blue curve). The fit parameters are Ω = 1310 (km/10 kpc)2, FEdd = 0.774 × 10−7 erg cm−2 s−1

for the pure hydrogen models, and Ω = 1088 (km/10 kpc)2, FEdd = 0.757 × 10−7 erg cm−2 s−1

for the pure helium models. The fit parameters for the solar H/He mix are the same as in Fig. 5.7
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hydrogen and pure helium model atmospheres, and the corresponding curves of
constant TEdd,∞ are drawn. The pure hydrogen atmospheres are hard to sustain
because of the significant mass accretion rate of bursting neutron stars. Realistically
only two possibilities exist: solar H/He mix for normal LMXBs and pure helium
atmospheres for ultracompact LMXBs in which the secondary star is a He white
dwarf (such as 4U 1820−30). The derived neutron star radii are so different in these
two cases that this allows us to distinguish helium-rich and solar-mix atmospheres
using the cooling-tail method.

5.3.3.3 Obtained Results from the Cooling-Tail Method

Just like other approaches, the described cooling-tail method is only correct for an
isolated, passively cooling neutron star. Of course, the X-ray bursting neutron stars
accrete matter and the influence of the accretion flow could muddy with the neutron
star mass and radius measurements. To reduce any bias from the presence of the
accretion flow, the X-ray bursts for the analysis have to be carefully chosen and ide-
ally should occur at low accretion rate. A detailed discussion of this issue was given
by Poutanen et al. (2014); Kajava et al. (2014); Suleimanov et al. (2016). A careful
inspection of the X-ray bursts detected by RXTE resulted in three LMXBs that show
X-ray bursts at low mass-accretion rates: SAX J1810.8−260, 4U 1702−429, and
4U 1724−307. These were therefore selected to apply the cooling-tail method (Nät-
tilä et al. 2016). In addition to the results from the burst analysis itself, limits from
the nuclear physics were imposed (Steiner et al. 2015), and two different approx-
imations for the model equation of state were applied (see Nättilä et al. 2016, for
details). Moreover, the results from the three sources were combined by assuming
that all these neutron stars have the same equation of state and hence lie on the same
theoretical M–R curve. This resulted in a predicted radius of R = 10.5–12.8 km for
M = 1.4 M�, with some dependence on the assumed composition. Interestingly,
the cooling-tail analysis of Nättilä et al. (2016) showed that SAX J1810.8−260 and
4U 1724−307 require atmospheres with solar mixed H/He abundances, whereas
4U 1702−429 needs to accrete helium-rich matter. Applying the same method to the
UCXB 4U 1820−30 yielded R = 10–12 km for M < 1.7 M� and R = 8–12 km
for M = 1.7–2.0 M� (using a pure-He atmosphere; Suleimanov et al. 2017a). The
constraints obtained for this source are not very strict because the cooling tail phases
that can be described by the theoretical atmosphere models is only very short (about
a second). Finally, applying the cooling tail method to 4U 1608−52 yielded a lower
limit on the radius of R > 12 km for M = 1.0–2.4 M� and a constraint of R = 13–
16 km for M = 1.2–1.6 M� (Poutanen et al. 2014). The rather wide range for this
source is mainly caused by the large distance uncertainty.

The most recent development regarding the cooling-tail method is that rather
than fitting a diluted black body to the observed X-ray burst spectra and comparing
that with similar fits to the model spectra, the model spectra are fitted directly to
the observational data (Nättilä et al. 2017). This was applied for 4U 1702−429 and
resulted in a preferred radius and mass of R = 12.4±0.4 km and M = 1.9±0.3 M�
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for 5.1 < D < 6.2 kpc and a hydrogen mass fraction of X < 0.09 (confirming
previous suggestions of a H-poor atmosphere; Nättilä et al. 2016). An interesting
aspect of this application is that it allows to put strong constraints on the atmosphere
composition, due to the strong dependence of the spectral evolution on the element
abundances. This first application is promising and the method can be further
developed (Nättilä et al. 2017).

Comparing results from the cooling-tail and touchdown method suggests that
the latter yields systematically lower radii (cf. Özel et al. 2016b). Indeed, both
techniques have been applied to 4U 1608−52 (Güver et al. 2010a; Poutanen
et al. 2014), 4U 1728−34 (Suleimanov et al. 2011b; Özel et al. 2016b), and 4U
1820−30 (Özel et al. 2016b; Suleimanov et al. 2017a) with inconsistent results.
A concern for the X-ray bursts sample used in the touchdown analysis is that the
accretion luminosity may be a significant source of contamination (Degenaar et al.
2018), which may be the reason that the spectral evolution of these bursts deviates
significantly from the theoretically expected cooling tails (e.g. Poutanen et al. 2014;
Kajava et al. 2014). On the other hand, the cooling-tail method received criticism
for the poor quality of the black-body fits for some sources (Güver et al. 2012; Özel
and Psaltis 2015).

In the past few years, results from X-ray burst studies have also been combined
with those obtained from quiescent LMXBs in a Bayesian formalism. We further
discuss that in Sect. 5.3.4.2.

5.3.3.4 Biases and Uncertainties in X-ray Burst Studies

Apart from the influence of the accretion flow mentioned in the previous section,
there are other systematic uncertainties in the X-ray burst analysis that can bias the
results.2 For instance, the rapid rotation of the neutron star is typically neglected.
We know that many neutron stars in LMBXs rotate at frequencies of several hundred
Hz (Patruno et al. 2017). The resulting oblateness causes the equatorial radius to
be larger than that of a non-rotating neutron star with the same mass (AlGendy and
Morsink 2014). As a result the apparent area of the neutron star surface increases
so that we obtain a larger neutron star radius. We refer to Bauböck et al. (2015a) for
a discussion on this topic. Poutanen et al. (2014) applied the cooling-tail method
to the fastest spinning neutron star LMXB 4U 1608−52 (620 Hz) and argued that
the obtained radius limit would be ∼10% lower if its rapid rotation was taken into
account.

Another important factor is the heavy element abundance in the atmospheres
of X-ray bursters. Thermonuclear ashes could appear at the neutron star surface
during early stages of the burst due to convection, and due to ejection of the surface
layers during a strong PRE phase (e.g. Paczynski and Proszynski 1986; Weinberg
et al. 2006; in’t Zand and Weinberg 2010). Model atmospheres of hot neutron

2We note that the cooling-tail method is independent of distance: see Eq. (5.14).
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Fig. 5.9 Black-body normalization versus flux for X-ray bursts from HETE J1900.1−2455,
together with the model curves fc−#. The models were computed for M = 1.4 M� and R = 12 km
neutron star atmospheres with metal enhancement factors ζ = 0.01 (blue curve), 1 (purple curve),
10 (red curve) and 40 (green curve). The track with the largest deviations is highlighted in black
(see Kajava et al. 2017)

stars enriched with heavy elements were computed by Nättilä et al. (2015). This
work showed that for increasing heavy element abundances, the color correction
factor decreases and the dilution factor increases (see Fig. 5.9). Interestingly, a burst
from HETE J1900.1−2455 showed a highly unusual cooling tail (Fig. 5.9). This
odd behavior can be explained if an almost pure heavy metal atmosphere just after
touchdown was covered by solar H/He mix matter at the later cooling phase, perhaps
due to accretion (Kajava et al. 2017). The heavy metal enrichment could be less
apparent if the heavy element abundance is lower, e.g. ten solar abundances, but this
cannot change the result significantly (cf. the results of Suleimanov et al. (2011a)
and Nättilä et al. (2016)).

Important and unsolved questions in X-ray burst analysis are whether the
emitting radii measured during a single or during multiple bursts are identical and
equal to the neutron star radius (e.g. Güver et al. 2012; Galloway and Lampe
2012), whether the bursts consistency reach the Eddington limit (e.g. Boutloukos
et al. 2010; Güver et al. 2012), if the burst emission is by approximation isotropic
(e.g. Zamfir et al. 2012), and whether the chemical composition varies (e.g.
Bhattacharyya et al. 2010).

5.3.4 Radius Constrains from Thermally-Emitting Quiescent
LMXBs

Using sensitive X-ray satellites, thermal surface radiation can also be detected from
neutron star LMXBs during their quiescent episodes. If the neutron star is radiating
uniformly, one can derive constraints on the mass and radius by fitting the thermal
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surface radiation (Sect. 5.2.6) with an appropriate neutron star atmosphere model
(see Sect. 5.3.4.1). Neutron stars in LMXBs generally have low magnetic fields,
and these are not expected to cause surface temperature inhomogeneities. However,
even if their magnetic field may not cause temperature anisotropies in itself, when
residual accretion takes place even a weak magnetic field may channel the accreted
matter onto a fraction of the stellar surface and hence heating it non-uniformly
(see Sect. 5.3.4.4). We know that at least in some LMXBs gas is still accreting
onto the neutron star in quiescence. Evidence for such low-level accretion comes
from irregular X-ray variability on a time scale of hours to days (e.g. Cackett et al.
2010; Degenaar and Wijnands 2012; Bernardini et al. 2013; Wijnands and Degenaar
2013; Coti Zelati et al. 2014). Moreover, the presence of a non-thermal emission
component in the quiescent spectrum can be evidence for continued accretion (e.g.
Fridriksson et al. 2011; Chakrabarty et al. 2014; D’Angelo et al. 2015).

A few dozen neutron star LMXBs have been observed in quiescence (e.g.
Wijnands et al. 2017, for a recent overview). Most of these show a distinctive soft
spectral component that is ascribed to thermal surface emission of the neutron star
that was heated during previous accretion episodes (see Sect. 5.2.4). When fitted
with a black body, temperatures of kTBB ∼ 0.1–0.2 keV are typically obtained,
whereas neutron star atmosphere models yield kT ∼ 50–150 eV. Many neutron star
LMXBs also show a hard emission tail in their quiescent spectra that is typically
modeled as a simple power-law with a photon index of ∼1–2 (see Fig. 5.10).

The fractional contribution of the power-law component to the 0.5–10 keV flux
varies widely between different sources (with some being fully dominated by the
non-thermal emission, whereas it is absent in others; e.g. Jonker et al. 2004),
but can also vary for a single source (e.g. Cackett et al. 2011; Fridriksson et al.
2011, see also Fig. 5.10). Although this non-thermal emission is often taken as
evidence of ongoing accretion, it could perhaps also be associated with processes
that involve the magnetic field of the neutron star (e.g. a pulsar wind or a shock
from where the gas runs into the magnetosphere). This idea springs from the fact
that the AMXPs, which show X-ray pulsations and hence a dynamically important
magnetic field during outburst episodes, are often fully dominated by the non-
thermal emission component (e.g. Degenaar et al. 2012, and references therein).
A non-thermal component in the quiescent spectrum could thus imply that the
surface temperature is not homogeneous, which is a problem for measuring the mass
and radius. Moreover, such a high-energy tail increases the uncertainties on the fit
parameters of the thermal component (Marino et al. 2018).

Since uncertainties in the distance translate directly into uncertainties in the
measured masses and radii (see Sect. 5.3.4.4), neutron star LMXBs in globular
clusters are often exploited for studying their quiescent thermal emission. There are
numerous thermally-emitting quiescent neutron star LMXBs in globular clusters
(e.g. Heinke et al. 2003; Guillot et al. 2009; Maxwell et al. 2012) and some of
these are sufficiently bright to obtain good-quality spectra that allow for M and
R constraints from detailed spectral fitting (see Sect. 5.3.4.2). Moreover opposed to
neutron star LMXBs in the field, the quiescent X-rays of globular cluster sources are
often strikingly non-variable and have strong constraints on the absence of any hard
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Fig. 5.10 Unfolded X-ray spectra of the quiescent neutron star LMXB EXO 0748−676. Shown
are two observations taken ∼2 months (black, top) and ∼5 year (red, bottom) after the end of
its ∼24-year long accretion outburst (Degenaar et al. 2014b). Whereas the 2013 spectrum only
consisted of thermal emission (dotted line, fitted here with a neutron star atmosphere model
NSATMOS; Heinke et al. 2006), the 2008 spectrum exhibited an additional hard power-law tail
(dashed curve) that contributed ∼20% to the total unabsorbed 0.5–10 keV flux. A decrease in the
thermal emission component is apparent and is thought to result from the thermal relaxation of the
accretion-heated crust (see also Sect. 5.3.8.7)

X-ray emission component (e.g. Guillot et al. 2011; Heinke et al. 2014; Bahramian
et al. 2015; Walsh et al. 2015; Bogdanov et al. 2016).

5.3.4.1 Model Atmospheres for Quiescent Neutron Stars

Since a strong stellar magnetic field can alter the ionization energies and opacities
of the atmosphere, it is easier to study neutron stars that are expected to have a
relatively low surface magnetic field (i.e. to reduce the number of free parameters
involved in shaping the spectrum), like those in LMXBs (see Sect. 5.2.1). The
atmosphere models usually applied to quiescent neutron star LMXBs assume a
uniform and isotropic surface temperature, a negligible magnetic field strength
(B � 109 G), and ignore the effect of rotation (see Sect. 5.2.6). Rutledge et al. (1999,
2001a,b) presented the first studies where a non-magnetic neutron star atmosphere
model (Zavlin et al. 1996) was applied to thermal spectra of quiescent neutron star
LMXBs. This delivered the first broad constraints on the stellar radii.

Due to the rapid gravitational settling of heavy elements (Romani 1987), for
accretion rates of Ṁ � 1014 g s−1 (�10−12 M� yr−1), the atmosphere of quiescent
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neutron stars is thought to consist of light elements (Bildsten et al. 1992). However,
if mass is still supplied to the neutron star at a sufficiently high rate of Ṁ �
1014 g s−1, heavy elements may be dumped into the atmosphere fast enough not
to stratify and hence a (potentially measurable) metal abundance may exist (e.g.
Bildsten et al. 1992, see also Sect. 5.3.8). Moreover, some neutron star LMXBs are
known to accrete from H-poor companions (e.g. Bildsten and Deloye 2004; Ivanova
et al. 2008). In particular in globular clusters a significant fraction of the neutron
star LMXBs have small orbits that can only fit small, H-deficit donor stars (e.g.
Bahramian et al. 2014, for a recent list).

The impact of He-rich atmospheres on radius determinations has been inves-
tigated in a number of works (e.g. Servillat et al. 2012; Catuneanu et al. 2013;
Heinke et al. 2014). This revealed that He-atmosphere models for low magnetic
field neutron stars resulted in significantly larger masses and radii than fits with H
atmospheres (see also Lattimer and Steiner 2014). This can be ascribed to the larger
difference between the effective and color temperatures for He atmospheres, and
underlines again the importance of the atmosphere composition in these studies.
Nevertheless, as shown by Bogdanov et al. (2016), even minute traces of H in a
He-rich donor can still lead to a H-dominated atmosphere. Furthermore, if residual
accretion occurs and spallation is effective, H could also be produced in the
atmosphere (Bildsten et al. 1992, 1993).

5.3.4.2 Observational Constraints from Globular Cluster Sources

Individual mass-radius measurements of quiescent LMXBs typically have uncer-
tainties that are too large to provide meaningful constraints on the EOS (e.g. Heinke
et al. 2006; Webb and Barret 2007; Marino et al. 2018). However, fairly tight
constraints can be obtained when statistical techniques are applied to an ensemble
of sources under the assumptions that these neutron stars exhibit the same radius.
This approach is motivated by the fact that for many of the most plausible EOSs,
the radius remains constant for different masses (Lattimer and Prakash 2001, see
Fig. 5.1 right). A statistical Bayesian analysis technique was applied by Guillot
et al. (2013) to a sample of five quiescent neutron star LMXBs in globular clusters.
This resulted in a joint radius of R = 9.1+1.3

−1.5 km for a M = 1.4 M� neutron
star. This work was extended by Guillot and Rutledge (2014) after adding one
more globular cluster source and including new data for a previously analysed
cluster, arriving at a similar measurement of R = 9.4 ± 1.2 km, which would
reject several EOSs. However, not all statistical uncertainties were explored in
full (see Sect. 5.3.4.4; Heinke et al. 2014; Lattimer and Steiner 2014). Perhaps
the most important source of bias in this work is the assumption that all neutron
stars have pure-H atmospheres. As discussed in Sect. 5.3.4.1, it is likely that some
globular cluster sources accrete from H-poor companions, which may have a big
impact on the resulting radius measurements. Most recently, Steiner et al. (2018)
analysed a sample of 8 globular cluster sources applying a Bayesian formalism
and scrutinizing several uncertainties such as distances, atmosphere composition
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and surface temperature inhomogeneities (see Sect. 5.3.4.4). With this conservative
treatment, it was found that a M = 1.4 M� neutron star most likely has a radius
of R = 10–14 km . Furthermore, this work showed that tighter constraints are only
possible when stronger assumptions are made about the atmosphere composition of
the neutron stars, the systematics of the observations, or the nature of dense matter
(Steiner et al. 2018).

Statistical approaches have also been applied to obtain mass-radius constraints
from combining samples of quiescent globular cluster sources with X-ray bursters.
Steiner et al. (2010) used a Bayesian framework to combine the mass-radius
results of three globular clusters with that of three X-ray bursters obtained from
the touchdown method (see Sect. 5.3.3). Additional constraints implied by for
instance causality and a theoretical minimum neutron star mass were included in this
analysis, which led to preferred radii of R = 11–12 km for a M = 1.4 M� neutron
star. This analysis was followed-up by using an extended sample of six globular
cluster sources (from Guillot and Rutledge 2014), accounting for the discovery of a
M = 2 M� neutron star (Demorest et al. 2010), and allowing for the possibility of
He atmospheres. This led to a preferred radius of R = 10.5–12.7 km, ruling out a
number of hard EOSs (Steiner et al. 2013).

An alternative Bayesian formalism was developed in which measured masses
and radii are mapped to pressures at three fiducial radii (e.g. Read et al. 2009;
Özel et al. 2009). This approach makes use of the fact that the radii of neutron
stars are only sensitive to the EOS in a fairly narrow range of densities (ρ ∼ 2–
7.5 ρ0), so that the relevant equations can be mathematically described by only
sampling a small number of points in this density range. This method was applied
to a combined sample of globular cluster sources (the same as in Guillot and
Rutledge 2014) and five X-ray bursters (touchdown method) by Özel et al. (2016b).
Additional constraints from other types of analysis were also imposed, including
the requirement to allow for a M = 2 M� neutron star, and results of laboratory
experiments in the vicinity of the nuclear saturation density (Tsang et al. 2012;
Lattimer and Lim 2013, and references therein). Taken together, this led to a
narrow preferred radius range of R = 10–11 km (assuming pure H atmospheres
for all globular cluster sources). This approach was further extended by Bogdanov
et al. (2016), who increased the globular cluster sample with new data from two
more sources. The empirical EOS that is inferred from this most recent analysis is
consistent with relatively small radii of R = 9.9–11.2 km around M = 1.5 M�.
This would suggest a fairly soft EOS, with a lower pressure above ρ = 2ρ0 than
predicted by a number of hard, nucleonic EOSs (Bogdanov et al. 2016).

5.3.4.3 Observational Constraints from Field LMXBs

There have also been a few attempts to constrain masses and radii of neutron stars in
field LMXBs. These efforts have concentrated on sources that are relatively bright
in quiescence. One of such sources is EXO 0748−676 (shown in Fig. 5.10), which
was recently studied by Cheng et al. (2017) in an attempt to constrain its mass
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and radius. However, this analysis exposed a worrisome dependence on the energy
range over which the fits were performed with a best-fitting mass and radius of
M ∼ 2 M� and R ∼ 11 km for 0.3–10 keV and M ∼ 1.5 M� and R ∼ 12 km
for 0.3–10 keV. This was ascribed to the strong energy-dependence of the applied
neutron star atmosphere model (Cheng et al. 2017). A similar type of analysis
was recently attempted for the well-studied transient LMXB Aql X-1, leading to
M ∼ 1.2 M� and R ∼ 10.5 km (Li et al. 2017). However, these measurements
were only marginally consistent with those obtained from analysing its X-ray bursts
(via both the touchdown and the cooling-tail method; Li et al. 2017). This is possibly
related to the large number of systematic biases that come into play for the quiescent
method, as described in Sect. 5.3.4.4. For instance, Aql X-1 exhibits a power-law
emission component in its quiescent spectra (e.g. Cackett et al. 2011) and the
neutron star likely continues to accrete at a low level (e.g. Coti Zelati et al. 2014).

5.3.4.4 Biases and Uncertainties in Studies of Quiescent LMXBs

Several works have discussed the different sources of systematic uncertainties for
inferring masses and radii of quiescent LMXBs in detail (e.g. Heinke et al. 2014;
Özel and Psaltis 2015; Bogdanov et al. 2016). We summarize these here:

Distance Since to first order we constrain the quantity R/D, uncertainties in the
distance directly translate into uncertainties in R. For transient LMXBs in the
field, distances are usually inferred from X-ray burst analysis (by assuming that
the peak of an X-ray burst reaches the Eddington limit). However, the Eddington
limit depends strongly on the atmosphere composition (see Sect. 5.3.3.1) and
uncertainties can easily be as large as ∼20–50% (e.g. Kuulkers et al. 2003). For
globular clusters distances can be more reliably measured through a number of
techniques, yielding smaller uncertainties of ∼5–10%.

Atmosphere Composition The thermal emission observed from neutron stars
is shaped by the atmosphere. In case of quiescent neutron star LMXBs, it was
demonstrated that a different composition (H versus He) has a strong effect on the
inferred masses and radii (see Sect. 5.3.4.4; e.g. Servillat et al. 2012; Catuneanu
et al. 2013; Heinke et al. 2014). For neutron star LMXBs that display accretion
outbursts, information on the chemical composition of the accreted matter can
be obtained e.g. from their X-ray burst properties or from their optical spectra.
However, the quiescent LMXBs in globular cluster typically have never shown an
accretion outburst (e.g. Wijnands et al. 2013, for a discussion) and hence the exact
composition of their atmospheres is unknown. The exceptions are ωCen, which has
strong H features in its spectrum, and 47 Tuc X5, which has a long orbital period
measured from X-ray eclipses and must thus contain a H-rich donor.

Modeling of the Interstellar Absorption The soft, thermal X-ray emission
received from LMXBs is altered by interstellar extinction and a reliable estimate
of the absorption column is therefore required for accurate M–R determinations.
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Particularly if the absorption column is high, absorption edges due to metals become
prominent and modeling the X-ray spectrum is then sensitive to the assumed
abundances for the ISM (e.g. Juett et al. 2004; Pinto et al. 2013; Schulz et al. 2016).
The latter issue (explored by Heinke et al. 2014) can be circumvented by targeting
objects with low interstellar absorption. Bogdanov et al. (2016) studied the effect
of the changing absorption column in the high-inclination source 47 Tuc X5. It
was found that the inclusion of episodes of strong absorption lowered the inferred
neutron star radius.

CCD Pile-Up Even for dim quiescent LMXBs, the received count rate might be
higher than the readout time of the CCD, causing multiple events to be recorded as
single events with an artificially high energy. In general, pile-up causes a hardening
of the X-ray spectrum. Spectra that suffer from pile-up can be corrected at the
expense of loss of counts by ignoring the piled-up pixels in the data extraction, or
by modeling the pile-up with a dedicated spectral model. The effect of CCD pile-up
on mass and radius measurements of quiescent LMXBs was addressed specifically
by Bogdanov et al. (2016). This analysis showed that even a pile-up fraction as
low as ∼1% can have a huge impact; not only are the confidence contours enlarged
due to the statistical uncertainty in the pile-up model parameter, but there is also a
displacement to lower M and R values if pile-up is not accounted for (caused by
the artificial hardening of the spectrum). Some older works typically left a pile-up
fraction up to a few percent uncorrected for, and hence may need to be revisited.

Instrument Calibration Uncertainties Since inferring the mass and radius
requires an absolute determination of the thermal flux from the neutron star, it
directly relies on the calibration of the instrument that is used for the measurement.
To account for this, a systematic error of a few percent is often included in the
analysis (e.g. Guillot et al. 2013).

Energy Range Considered for Spectral Fitting A study of the quiescent neutron
star LMXB EXO 0748−676 recently highlighted that the energy range over which
the thermal fits are performed (0.3–10 or 0.5–10 keV) can have a profound impact
on the resulting mass and radius measurement (Cheng et al. 2017; Marino et al.
2018).

The Occurrence of Residual Accretion If accretion continues in quiescence,
the assumptions of a steady state and passively cooling atmosphere, a purely
thermal flux, or a uniform surface temperature may no longer be valid. Elshamouty
et al. (2016a) performed a dedicated study of the impact of surface temperature
inhomogeneities on radius measurements for quiescent LMXBs. For this study
the sources X5 and X7 in the globular cluster 47 Tuc were used, as well as
the field LMXB Cen X-4. Assuming that residual accretion would cause pulsed
X-ray emission, current limits on the pulsed fraction of these quiescent neutron
stars (on the order of ∼10%) allow the radii to be underestimated by ∼10%–30%
(Elshamouty et al. 2016b). Based on this result, it has been argued that improving
constraints on the presence of pulsations from quiescent LMXBs may be essential
for progress in constraining their radii.
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The Presence of a Hard Spectral Component The presence of a non-thermal
emission component, even if it cannot be detected, can potentially bias the mass
and radius measurements. In particular, the presence of a power-law emission tail
would harden the spectrum and thus lead to a higher temperature measurement and
underestimated radius. This issue was specifically addressed by Bogdanov et al.
(2016) for X5 and X7 sources in 47 Tuc. It was found that for these two particular
objects not accounting for the presence of an undetectable power-law emission
component (with contributions to the total unabsorbed 0.5–10 keV flux constrained
to be �0.2% and �1.6% for X7 and X5, respectively) would result in a ∼0.5%
change in the neutron star radius confidence limits.

5.3.5 X-ray Pulse Profile Modeling

In Sects. 5.3.3 and 5.3.4, we presented different ways to obtain radius (and mass)
measurements by modeling the X-ray spectra of neutron star LMXBs during X-ray
bursts and quiescent episodes. A critical assumption in those approaches is that it
the neutron star is spherically symmetric and homogeneously emitting. However,
there is a sizable number of neutron stars that display pulsed X-ray emission,
modulated at their spin period, from surface hotspots (see Sect. 5.2.6). The exact
shape of these pulse profiles (or waveforms) is affected by relativistic Doppler shifts,
aberration, and light bending and hence depends on the compactness of the neutron
star. Accurate modeling of the pulse profiles can thus provide M and R constraints
(e.g. Lo et al. 2013; Miller and Lamb 2015).

There are different circumstances in which surface hotspots are produced. For
instance, the radio pulsar mechanism is thought to produce energetic electrons and
positrons that collide with the polar caps (e.g. Ruderman and Sutherland 1975;
Arons 1981; Harding and Muslimov 2001) and thereby create hot spots that give rise
to pulsed thermal emission. For accreting neutron stars, hotspots may occur when
the stellar magnetic field concentrates the accretion flow onto the polar caps (e.g.
Pringle and Rees 1972; Rappaport et al. 1977; Finger et al. 1996; Wijnands and van
der Klis 1998). In addition, unstable thermonuclear burning is sometimes confined
to specific parts of the neutron star and produces so-called burst oscillations at/near
the spin of the neutron star (Strohmayer et al. 1996).3 The temperatures of these
various types of hotspots are such that these can be observed at X-ray wavelengths.

Pulsed X-ray emission is also observed for some isolated (slowly rotating)
neutron stars, where the hotspots are possibly due to preferential leakage of heat
from the crust/core along paths with a certain magnetic field orientation (e.g.

3The oscillations seen during the rise are thought to come from spreading of the burning front
that is modulated by the neutron star spin period (e.g. Strohmayer et al. 1997), whereas the rapid
variability seen during the cooling tails are thought to be associated with oscillatory behavior of
the surface (“surface modes”; e.g. Muno et al. 2002; Piro and Bildsten 2005).
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Fig. 5.11 Left: Geometry of a hotspot on the neutron star surface and relevant angles. B and Ω

indicate the magnetic and rotational axis, respectively, i is the inclination angle of the rotation axis
to the line of sight, θB is the hotspot co-latitude, and ϕ is the rotational phase angle. Right: The
emitted α and the observed ψ angles of a light ray from the neutron star normal

Potekhin and Yakovlev 2001). However, the most accurate constraints from X-ray
pulse timing can be obtained for neutron stars that spin rapidly, because Doppler
boosting becomes more pronounced with increasing spin and this helps to reduce
degeneracies in the data. Therefore, the technique of X-ray pulse profile modeling
has mainly focussed on LMXBs and millisecond radio pulsars. The basic model and
methodology of this technique was recently reviewed by Bogdanov et al. (2016).
Here, we briefly discuss the concept, main results and its challenges.

There is a large number of parameters that shape the pulse profile. Some of these
are geometrical factors, such as the angle between the rotation axis and our line of
sight, the angle between the rotation axis and the center of the hotspots, as well as
the geometry of the hotspots (see Fig. 5.11, left). Another important parameter is
the angular distribution of the emergent radiation. While this is not important for a
homogeneously emitting spherical star, hotspots are observed at different angles for
different rotational phases. These parameters together set the observed pulse profile
of slowly rotating stars in Newtonian gravity, where their influence scales with the
stellar radius and does not depend on the mass. However, due the compactness
and rapid spin of neutron stars, relativistic effects can become important and this
introduces a mass dependence. The masses and radii of rapidly rotating neutron
stars can thus be inferred from their X-ray pulse profiles. We consider the main
relativistic effects separately.

5.3.5.1 Relativistic Effects: Light Bending

In general relativity, light rays do not travel in straight lines but rather along geodesic
curves. The shape of these light trajectories depends on the geometry of space-time.
We start with considering light bending in the Schwarzschild geometry (i.e. ignoring
spin). In this case the light trajectory lies in one plane and only two angles need to be
connected to the surface normal: the emitted angle α and the observed angle ψ (see
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Fig. 5.11, right). The correct connection is given by the integral (Pechenick et al.
1983):

ψ =
∫ ∞
R

dr

r2

[
1

b2
− 1

r2

(
1− RS

r

)]−1/2

, (5.15)

where

b = R(1+ z) sinα (5.16)

is the impact parameter, and RS = 2GM/c2 is the Schwarzschild radius. This
integral allows us to compute the angle between the light ray and the surface
normal at every distance r from the neutron star. A simple and useful analytical
approximation of this integral was made by Beloborodov (2002):

1− cosψ ≈ (1− cosα)(1+ z)2. (5.17)

This relation is sufficiently accurate for R > 2RS and is widely used for light
bending computations.

5.3.5.2 Rapidly Rotating Spherical Neutron Stars

There are three principal effects caused by the rapid rotation of neutron stars: the
Doppler effect, the time delay and the oblateness of a neutron star. The first two
effects can be taken into account even assuming a spherical form of a rapidly
rotating neutron star. In what follows, we use the description of Poutanen and
Beloborodov (2006). The equation for the spectrum of the unit surface dS′ is:

dFE = δ4

1+ z
I ′E′(α

′) cosα
d cosα

d cosψ

dS′

D2
, (5.18)

where D is the distance to the neutron star and δ is the Doppler factor, given by:

δ = 1

γ (1− β cos ξ)
. (5.19)

Here γ = 1/
√

1− β2, β = v/c, and ξ is the angle between the direction of the
velocity vector v and the line of sight. The velocity is determined as

v = 2πνrot R sin θ (1+ z), (5.20)

where νrot is the neutron star spin frequency, and θ is co-latitude of the given point.
The observed photon energy E is shifted relative to the emitted energy E′ both due
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to the gravitational redshift and the Doppler effect:

E = δ

1+ z
E′. (5.21)

The aberration, which changes the observed inclination of the surface unit to the
line of sight, is taken into account using the Doppler factor:

cosα′ = δ cosα. (5.22)

The transformation factor is d cosα/d cosψ ≈ (1 + z)−2, if Beloborodov’s
approximation (5.17) is used. The bolometric flux of the surface unit is:

dF = δ5

(1+ z)2
I ′(α′) cosα

d cosα

d cosψ

dS′

D2 , (5.23)

where I ′(α′) is the emergent radiation intensity. Equations (5.18) and (5.23)
allow us to compute the light trajectory of a small hotspot on a rapidly rotating
spherical neutron star, if the connection between its spherical coordinates, θ and φ,
and the angle ψ can be established:

cosψ = cos i cos θ + sin i sin θ cosφ, (5.24)

where i is the inclination angle of the rotation axis to the line of sight. The angle ξ
can be also computed:

cos ξ = − sin α

sinψ
sin i sin φ, (5.25)

where the coordinate φ is a rotational phase as well. The travel time of the spot
emission to the observer depends on the spot position on the neutron star surface.
The difference is small, but it could be significant if the neutron star rapidly rotates
and turns to a large angle during a tiny time step. Therefore, the observed phase will
differ from the intrinsic neutron star rotational phase

φ ≈ φobs −Δφobs, (5.26)

where the phase delay depends on the time delay Δt

Δφobs = 2πνrot Δt. (5.27)

This delay time depends on the impact parameter (5.16)

cΔt(b) =
∫ ∞
R

dr

1− RS/r

{[
1− b2

r2

(
1− RS

r

)]−1/2

− 1

}
, (5.28)
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Fig. 5.12 The observed bolometric flux versus phase computed for a small hotspot on the surface
of a rotating (νrot= 400 Hz) neutron star with M = 1.4 M�, R = 2.5 RS, and angles i = θB = 45◦
(solid curve). Also shown are the light curves computed without any relativistic effects (dotted
curve), with the light bending only (dashed curve), and without the time delay taken into account
(dash-dotted curve). We created these curves using the same methods and parameters that produced
figure 2 of Poutanen and Beloborodov (2006)

and there is a sufficiently accurate approximation for this expression:

cΔt = (1− cosψ)R. (5.29)

The influence of all described effects on the bolometric light curve of the rapidly
rotating neutron star is shown in Fig. 5.12.

5.3.5.3 Rapidly Rotating Oblate Neutron Stars

Rapidly rotating neutron stars are oblate, i.e. their shape is not perfectly spherical.
The theoretical models of rapidly rotating neutron stars were computed by many
authors (see, e.g. Cook et al. 1994, and references therein). Their shape weakly
depends on the details of their inner structure, and can be fitted using a few basic
parameters only (see, e.g. Morsink et al. 2007). The most simple fit was suggested
by AlGendy and Morsink (2014):

R(θ) = Reqv

(
1− Ω̄2(0.788− 1.03x) cos2 θ)

)
, (5.30)

where x = GM/(c2Reqv) and Ω̄ = 2πνrot (R
3
eqv/GM)1/2. Here Reqv is the

equatorial radius. These authors suggested approximate formulae for the neutron
star moment of inertia, the quadruple momentum, and the surface gravity distribu-
tion with the centrifugal force taken into account.
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The space-time in the vicinity of a rapidly rotating neutron star differs from
the Schwarzschild metric, and is usually considered in the form suggested by
Butterworth and Ipser (1976):

ds2 = −e2νc2dt2 + r̄2 sin2 θ B2 e−2ν(dφ −$cdt)2 (5.31)

+e2(ζ−ν)(dr̄2 + r̄2 dθ2),

where$ is an angular velocity of a local inertial frame at the neutron star surface.
The radial coordinate r̄ is connected with the circumferential coordinate r as r =
B e−ν r̄ (Friedman et al. 1986). AlGendy and Morsink (2014) have also suggested
approximate formulae for the coordinate function B, ν and ζ , which depend on M ,
Reqv, and νrot only. Another approach was taken by Bauböck et al. (2012), using the
Kerr metric with a quadrupole correction. A correct consideration of the light travel
paths in such complicate metrics is not easy. It can be done directly by applying a
ray tracing method (see, e.g. Bauböck et al. 2012), which can be used to consider
spectral changes (Bauböck et al. 2015a). For light curve computations a different,
simplified approach was used in which the shape of the rapidly rotated neutron star
is treated correctly, but the Schwarzschild metric is used to account for light bending
(see, e.g. Morsink et al. 2007; Miller and Lamb 2015). Whereas this is much simpler
than the ray tracing method, it gives acceptable results (Morsink et al. 2007). In this
approach the main effect gives the angle between the radius-vector and the normal
to the surface. Figure 5.13 shows a comparison of the light curves obtained by this
method and those computed for spherical neutron stars. The effects of finite hotspot
size were considered by Bauböck et al. (2015b).

Fig. 5.13 The observed bolometric flux versus phase computed for one small hotspot on the
surface of a rotating (νrot = 600 Hz) oblate neutron star with M = 1.4 M�, an equatorial radius
Reqv = 16.4 km, and angles i = 70◦, θB = 49◦ (left), and i = 20◦, θB = 41◦ (right). The profiles
for spherical neutron stars with radii equal to the neutron star radius at the hotspot colatitudes (15.1
and 14.8 km) are also shown by dashed curves. We created these plots using the same methods and
parameters that produced figures 3 and 4 of Morsink et al. (2007)
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5.3.5.4 Angular Distribution of the Emergent Radiation

A hotspot on a neutron star surface is seen by a distant observer at different angles
for different rotational phases. This implies that the angular distribution of the
emergent radiation determines the observed flux variation of a rotating neutron
star with a surface hotspot. It is not possible to observationally resolve the angular
distribution of the surface radiation, hence theoretical models need to be employed
to describe it. Existing neutron star atmosphere models give the required angular
distributions of the emergent radiation.

The model angular distribution depends mainly on the temperature structure
of the atmosphere and the dominant opacity sources at a given photon energy.
The angular distribution of the emergent radiation computed for hot neutron star
atmospheres (kTeff>1 keV), where the dominant source of electron scattering is
close (Suleimanov et al. 2012a) to the Sobolev-Chandrasekhar angular distribution
derived for a pure electron scattering atmosphere (Chandrasekhar 1960; Sobolev
1963). We note that this is correct only for sufficiently high photon energies, because
the angular distribution at low photon energies, where free-free opacity dominates,
becomes close to an isotropic distribution.

The angular distribution of the radiation emerging from relatively cold neutron
stars is more complicated and cannot be described by any analytical relations. In
this case only numerical distributions given by the model atmospheres have to
be used (see, e.g. Bogdanov 2016, and references therein). Recently, the angular
distributions for pure hydrogen model atmospheres in an effective temperature
range of Teff = 0.5–10 MK and for nine surface gravity values were computed
and implemented into the X-ray spectral fitting package XSPEC (model HATM;
Suleimanov et al. 2017b). The same was done for pure carbon atmospheres using
an effective temperature range of Teff = 1–4 MK (CARBATM in XSPEC).

The radiation angular distributions emerging from non-magnetized neutron star
atmospheres are peaked relative to the atmosphere normal (pencil beam). This is
not true for highly magnetized neutron star atmospheres. In that case the emergent
radiation has a relatively narrow (a few degrees, depending on the magnetic field
strength) peak near the normal, and a second broad smoothed peak at inclinations of
α ≈ 40–60◦ (Pavlov et al. 1994). The total amount of energy radiated in the normal
peak is relatively low, and the magnetized model atmospheres produce instead fan-
beamed radiation. Examples of the angular distributions of non-magnetized and
strongly-magnetized neutron star hydrogen atmospheres, as well as corresponding
light curves, are shown in Fig. 5.14.

5.3.5.5 Application to Millisecond Pulsars

Millisecond radio pulsars with thermally emitting X-ray hotspots at their polar
caps are attractive objects for constraining neutron star radii and masses via the
pulse profile modeling technique. So far this has been attempted for three radio
pulsars: PSR J0437−4715, PSR J0030+0451 and PSR J2124−3358. The procedure
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Fig. 5.14 Left: The model angular distributions computed at a photon energy of E = 1 keV for a
pure hydrogen non-magnetized atmosphere (Teff = 2 MK, solid curve; Suleimanov et al. 2017b)
and a highly magnetized atmosphere (Teff = 1.2 MK, B = 1.2×1013 G, dashed curve; Suleimanov
et al. 2010a). The angular distribution for a pure electron scattering atmosphere is also shown
by the dotted curve. Right: The observed flux at an energy of E = 1 keV versus the observed
phase computed for a small bright spot on the surface of a rotating (νrot=600 Hz) oblate neutron
star with a mass M = 1.4 M�, equatorial radius R = 16.4 km, and angles i = 45◦ and θB =
45◦. The light curves computed using the model angular distributions for a pure hydrogen non-
magnetized atmosphere (solid curve), pure hydrogen magnetized atmosphere (dashed curve), and
for an isotropic angular distribution (dotted curve) are shown

was applied for the nearest (156.3±1.3 pc; Deller et al. 2008) millisecond radio
pulsar PSR J0437−4715 by Pavlov and Zavlin (1997). This pulsar has a relatively
low spin period 5.75 ms (νrot = 174 Hz), so that the effects of oblateness and
Doppler boosting can be ignored. Pavlov and Zavlin (1997) evaluated the neutron
star compactness M/M� ≈ 1.4–1.6 R/10 km using ROSAT observations and fixed
angles i = 40◦ and θB = 35◦ (Manchester and Johnston 1995). The obtained
neutron star radius is R ≈ 10–15 km taking into account the mass measured for this
neutron star from radio pulse timing (M = 1.76 ± 0.2 M�; Verbiest et al. 2008).
Studies of PSR J0437−4715 were continued by using new observations performed
with XMM-Newton and applying hydrogen model atmospheres (Bogdanov et al.
2007; Bogdanov 2013). In these studies no angles were fixed and the resulting
constraint on the neutron star radius is not very strict (R>11 km). Similar studies
were also performed for the next nearest radius pulsar, PSR J0030+0451, and
another radio pulsar PSR J2124−3358 (Bogdanov et al. 2008; Bogdanov and
Grindlay 2009). Unfortunately no mass measurement is available for these objects
and only lower limits on their radii have been obtained so far (R>10.7 and>7.8 km
for PSR J0030+0451 and PSR J2124−3358, respectively).

The X-ray pulse profile modeling technique was also applied to three AMXPs:
SAX J1808.4−3658, XTE J1814−338 and XTE J1807−294. Since these have
higher spin frequencies (up to 600 Hz; e.g. Patruno et al. 2017), the relativistic
Doppler effect has to be taken into account. Poutanen and Gierliński (2003)
modeled the soft and hard X-ray pulse profiles of the first discovered and frequently
active AMXP SAX J1808.4−3658 (νrot≈400 Hz) assuming a spherical shape
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and Schwarzschild spacetime, which led to a relatively small neutron star radius
(R ≈ 8–11 km for M = 1.4–1.6 M�). The main source of uncertainties in these
studies is the applied approximations for the angular distributions of the emergent
radiation. Leahy et al. (2008) and Morsink and Leahy (2011) took into account
the time delay effect as well as the neutron star oblateness in analysing the X-
ray pulse profiles of this source. The obtained mass and radius limitations remain
rather wide, R≈5–13 km for M = 0.8–1.7 M�. Using the same technique, the
masses and the radii of two other AMXPs were also constrained: XTE J1814−338
(νrot ≈ 314 Hz; Leahy et al. 2009) and XTE J1807−294 (νrot ≈ 191 Hz;
Leahy et al. 2011). The derived confidence regions in the M–R plane are also
large for these objects, with radii in the range of R≈8–24 km and masses of
M ≈ 1 − 2.8 M� for XTE J1807−294, and R ≈ 11–20 km and M ≈ 1 − 2.6 M�
for XTE J1814−338. We note that neutron star radii of R≈12 km are compatible
for all three found confidence regions. Finally, pulse profile modeling has been
performed for two sources with burst oscillations, 4U 1636−536 (Nath et al.
2002) and XTE J1814−338 (Bhattacharyya et al. 2005), but these have not yielded
strong constraints (e.g. Weinberg et al. 2001; Muno et al. 2002, 2003). Although
current mass-radius constraints from X-ray pulse profile studies of different types
of neutron stars are rather loose, there are very good prospects for improving this
(Sects. 5.3.5.6 and 5.4).

5.3.5.6 Challenges of X-ray Pulse Profile Modeling

The reason why this modeling has so far not yielded stringent constraints is clear.
Apart from the mass and radius, the pulse profiles depend on geometrical factors
such as the size and location of the hotspots as well as the inclination angle
between the observer’s line of sight and the rotation axis of the neutron star. These
geometrical parameters are difficult to determine and also introduce degeneracies
with M and R. Modeling of AMXPs in particular is complicated due to the
contaminating emission from the accretion disk, variations in their pulse profiles and
Comptonization in the accretion column (e.g. Özel 2013; Miller and Lamb 2016).
It is expected, however, that these dependencies can be resolved and M and R can
be recovered from detailed modeling of the pulse profile (e.g. Psaltis et al. 2014; Lo
et al. 2013; Miller and Lamb 2015).

Another important factor is the beaming pattern of the hotspot radiation, as
high beaming can to some extent mimic the effects of decreased gravitational
light bending and Doppler boosting. For X-ray bursts this is well understood
from theoretical modeling (e.g. Madej 1991; Suleimanov et al. 2012a) and not
a significant source of uncertainty (Miller 2013). The beaming pattern of the
hotspots of accreting pulsars, however, is much less understood and diminishes the
constraints on M and R that can be obtained through this method (e.g. Poutanen and
Gierliński 2003; Leahy et al. 2009, 2011; Morsink and Leahy 2011). This is less
an issue for the magnetic hotspots of rotation-powered pulsars, although there are
some uncertainties about the beaming patterns from hydrogen atmospheres heated
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by the bombardment of relativistic particles in the magnetosphere (e.g. Bogdanov
et al. 2008). Another complication of pulse profile modeling for accreting pulsars
is the presence of an accretion disk that may block part of the hotspot radiation and
introduce harmonic structure in the pulse profile (Poutanen 2008; Poutanen et al.
2009; Ibragimov and Poutanen 2009; Kajava et al. 2011).

Despite the existing challenges, the technique of X-ray pulse profile modeling is
very promising and there are good prospects for obtaining much better constraints in
the (near) future. Firstly, the recently launched NICER mission is expected to allow
for detailed X-ray pulse profile modeling (see Sect. 5.4) and accurate methods of
constraining neutron star masses and radii using NICER data have been developed
(see, e.g. Miller and Lamb 2015; Miller 2016; Stevens et al. 2016; Özel et al. 2016a;
Watts et al. 2016). Secondly, the relevant geometrical angles may be constrained
using X-ray polarization, which could be achieved with several concept missions
currently under investigation (Sect. 5.4). For resolving the problem with the angular
distributions, extended theoretical computations have to be performed that allow to
include the radiation-dominated shock and the radiation transport through it self-
consistently, taking the energy balance into account as well.

As discussed in Sects. 5.3.3.4 and 5.3.4.4, X-ray spectroscopic measurements
of accreting neutron stars are subject to a number of systematic uncertainties and
biases. This does not appear to be the case, however, for X-ray pulse profile
modeling. How to apply the pulse profile method in practice and what is required
to obtain meaningful constraints on M and R was investigated by Lo et al. (2013);
Psaltis et al. (2014); Miller and Lamb (2015). By calculating synthetic pulse profiles
under various assumptions, e.g. for the hotspot size, stellar rotation frequency,
inclination, the effect of the key pulse profile parameters onM , R, and other relevant
parameters was studied. This showed that the uncertainties in M and R are most
sensitive to the stellar rotation (with more rapid rotation resulting in smaller errors),
spot inclination and observer inclination, and to a much lesser extent to various
background components (instrumental, astrophysical, other emission components
in the system). A key result of the parameter estimation studies of Lo et al. (2013);
Miller and Lamb (2015) is that the mass and radius can be reliably obtained without
any strong systematic errors. Currently this is the only method for determining radii
for which this is the case.

5.3.6 Radius Constraints from Thermally-Emitting Isolated
Neutron Stars

Part of the neutron stars located in the centers of SNRs are magnetars (e.g.
Mereghetti et al. 2015, for a review), whereas others form the separate, small class
of CCOs (e.g. Pavlov et al. 2002, 2004). These objects have thermal X-ray spectra
that can be roughly described by black bodies with temperatures less than a few
MK, or kTBB ∼ 0.2–0.6 keV. CCOs have typical X-ray luminosities of LX ∼ 1033–
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1034 erg s−1 and are not detected at other wavelengths. These slowly spinning
neutron stars show no sign of radio pulsar activity (e.g. no radio pulsations, no pulsar
wind nebula or no non-thermal X-ray emission; see short reviews of Gotthelf and
Halpern 2007; de Luca 2008; Halpern and Gotthelf 2010a).

Individual CCOs are not completely identical (see e.g. table 1 of Gotthelf et al.
2013, for a list of currently known properties). For instance, three CCOs display
X-ray pulsations with periods P ∼ 0.1–0.5 s and their measured period derivatives
Ṗ suggest dipole magnetic field strengths B � 1011 G (e.g. Gotthelf et al. 2013,
and references therein). The X-ray spectrum of 1E 1207.4−5209 shows absorption
features associated with the cyclotron line and harmonics (Sanwal et al. 2002;
Bignami et al. 2003; Suleimanov et al. 2010b, 2012b). The lowest absorption
feature (∼0.7 keV) is consistent with the magnetic field estimation B ∼ 1011 G
if gravitational redshift is taken into account (Gotthelf et al. 2013).

Many of the CCOs have relatively good distance estimates from their associated
SNRs, which make them attractive candidates for measuring the neutron star radii
from their thermal X-ray emission (see Pavlov et al. 2002, 2004; Gotthelf et al.
2013, for reviews). The apparent radii obtained by fitting black bodies to the
observed spectra are only a few km (Pavlov et al. 2004). For the pulsating CCOs the
small sizes of the emitting area can be easily explained by the existence of relatively
small hotspots on the neutron star surface. However, fitting the spectra with pure-
hydrogen atmosphere models yields reasonable neutron star sizes in some cases.
For example, the radius of 1E 1207.4−5209 obtained with a black-body fit is R≈1–
3 km, while the radius derived from hydrogen atmosphere models is R≈10 km
(Zavlin et al. 1996). This underlines the importance of considering appropriate
neutron star model atmospheres for inferring stellar radii.

In this section we focus on the results of neutron star radii determinations of
two CCOs, located in the SNRs Cas A and HESS J1731−347. These are interesting
cases because there are indications that their atmospheres may be carbon rich, and
their observed surface temperatures and thermal history give additional interesting
information on the properties of the dense matter in their cores.

5.3.6.1 Model Atmospheres of CCOs

The technique of determining neutron star radii from the thermal X-ray spectra of
CCOs again uses relation (5.1) of Sect. 5.2.6. The key uncertainty of distance is
less an issue for nearby neutron stars (allowing for parallax measurements) and
those associated with SNRs as their distance can usually be determined reliably
and accurately (see, e.g. Pavlov et al. 2000; Rutledge et al. 2002a). However, the
applied model spectrum also plays a significant role. Fortunately, the atmospheres of
non-accreting neutron stars should be chemically homogeneous due to gravitational
separation (Alcock and Illarionov 1980). As a result, the lightest chemical element
of the neutron star envelop dominates the atmosphere chemical composition.



228 N. Degenaar and V. F. Suleimanov

Fig. 5.15 Model spectra (left) of neutron star atmospheres with various chemical compositions
and their temperature structures (right), all computed for Teff = 2 MK and log g = 14.3. The
corresponding black-body spectrum is also shown in the left panel (red dotted curve)

As mentioned before, model spectra of fully ionized H and He atmospheres with
relatively low effective temperatures (a few MK and less) are harder than black-body
spectra of the same effective temperatures (see reviews by Zavlin and Pavlov 2002;
Zavlin 2009, and Fig. 5.15). Moreover, neutron star atmosphere spectra are wider
than black-body spectra; when high quality data are available, applying a simple
black-body model often requires two temperature components (Fig. 5.15). When
fitting H-atmosphere models instead of black bodies, this leads to larger neutron
star radii (see details in Zavlin 2009). Helium model spectra are even harder and
slightly more diluted than hydrogen model spectra (Fig. 5.15), and therefore result
in larger radii still (e.g. Heinke et al. 2014). This is because the bremsstrahlung
helium opacity is larger due to its Z2 dependence, and in addition the temperature
of the atmosphere is higher because of the increased opacity. Both factors lead to
harder spectra than that of H-atmospheres.

The above mentioned effects are even stronger if an atmosphere dominated
by C is considered. Carbon is not completely ionized at the neutron star typical
temperatures, and the photo-ionization opacity is very strong near the photo-
absorption edge of the hydrogen-like carbon ion (∼0.49 keV). The presence of this
edge leads to a lower flux at the blue side of the edge, and energy prefers to escape
even at higher photon energies than in H or He atmospheres (Ho and Heinke 2009).
As shown in Fig. 5.15, the C-atmosphere spectra are harder and more diluted than
the H ones. This leads to larger neutron star radii obtained from the spectral fit for a
given distance (Ho and Heinke 2009).

5.3.6.2 Cooling of Isolated Neutron Stars

As mentioned in Sect. 5.2.4, neutron stars gradually cool down after being formed
in a supernova explosion. The cooling trajectory after birth can be divided into
two main stages. During the first ∼105–106 year a neutron star cools mainly due
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to neutrino emission from its dense core. Once the core temperature drops below
TB ∼ 108 K, the neutrino emission processes become inefficient and in this second
stage a neutron star cools mainly due to radiative losses from its surface. Young
neutron stars, which are still in the neutrino cooling stage, are of particular interest
because their surface temperatures are high enough (on the order of 1 MK) to be
detected with sensitive X-ray satellites. There are a number of excellent works that
detail neutron star cooling theory (e.g. Yakovlev and Pethick 2004; Page et al. 2006;
Weisskopf et al. 2011). Here we briefly summarize the key elements of the thermal
evolution of neutron stars.

Neutrinos can be produced in a variety of particle interactions in the dense neu-
tron star core. The efficiency at which neutrinos are produced depends sensitively
on its interior density and composition. In general, the more massive a neutron
star is, the more rapidly it cools (e.g. Lattimer and Prakash 2001). Neutrons and
protons in the core are likely in a superfluid state, which affects the efficiency of
neutrino cooling (e.g. Gusakov et al. 2004; Yakovlev and Pethick 2004; Page et al.
2009; Wijnands et al. 2013). On the one hand, the pairing of nucleons in Cooper
pairs decreases the primary neutrino emission process, but on the other hand the
forming and breaking of Cooper pairs itself can generate a strong splash of neutrino
emission. This can lead to short-lived, fast cooling episodes in the thermal history of
neutron stars, which possibly have been observed in the CCO Cas A (e.g. Shternin
et al. 2011, and references therein).

The temperature of neutron star cores cannot be directly measured, but need
to be inferred from the observable surface temperature. This is not an easy task.
For instance, during the first ∼100 year, neutron stars are not isothermal because
the core cools faster than the crust. As a result the surface temperature stays
relatively constant, tracing the temperature of the hot crust, and then drops fast
when the crust starts to cool and reaches thermal equilibrium with the core. This
phase is called the initial thermal relaxation (e.g. Lattimer et al. 1994). During the
following neutrino cooling stage, the connection between the core temperature and
the surface temperature is governed by the electron thermal conductivity in the
neutron star ocean/envelop (see e.g. Potekhin et al. 1997). The efficiency of the
thermal conductivity depends particularly on the envelop chemical composition: for
the same interior temperature, a light element envelop will yield a higher surface
temperature than a metal-rich envelop due to their different thermal conductivities.
Figure 5.16 (left) displays examples of neutron star thermal evolution curves for
different interior properties, illustrating the different stages of cooling.

Although the core temperature of neutron stars does not provide direct constraints
on the EOS, the efficiency of neutrino cooling gives some insight into its density.
Furthermore, studying neutron star cooling can give interesting additional infor-
mation about the behavior of ultra-dense matter, particularly the superfluidity of
neutrons and protons. Very strong magnetic fields such as encountered in magnetars
can change the thermal evolution significantly, but this is not relevant for the
moderate magnetic field strengths of CCOs (e.g. Pons et al. 2009).
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Fig. 5.16 Left: Surface temperatures for a number of cooling isolated neutron stars, including
the CCOs in Cas A and HESS J1731−347 (XMMU J1731), versus their ages compared with
theoretical cooling curves for a M = 1.5 M� neutron star. Here, MU refers to a non-superfluid
star with slow core cooling via modified Urca processes and an envelop of iron, SF is for strong
proton superfluidity in the core and a similar envelop, while MUac and SFac refer to the same
models as MU and SF but with a pure-C envelop. Right: M and R constraints for the CCO in
HESS J1731−247 from fitting the observed spectra and applying cooling theory. It was assumed
that the C envelop extents to ρ = 3·109 g cm−3 and that the suppression factor for the superfluidity
of protons is f#p = 1/60. The dark shaded area is the resulting confidence M–R region. For further
details we refer to Ofengeim et al. (2015)

5.3.6.3 The Neutron Star in Cas A

The CCO in Cas A was discovered by Chandra during its first-light observations
(Tananbaum 1999). Black-body fits to its featureless X-ray spectrum yielded a high
temperature (TBB = 6–8 MK) and a small emitting radius (RBB = 0.2–0.5 km) for
a distance of 3.4 kpc (Pavlov et al. 2000). A one-component black-body fit did not
provided a statistically acceptable description of a later obtained Chandra spectrum.
The higher-quality data required at least two thermal components, both fitted with
H atmospheres, with significantly different temperatures and sizes (T1 ≈ 4.5 MK,
R1 ≈ 0.4 km and T2 ≈ 1.6 MK, R2 ≈ 12 km; Pavlov and Luna 2009). Interpreting
the smallest and hottest of the two components as a hotspot may not be consistent
with the lack of pulsed X-ray emission. The 3σ upper limit on the pulsed fraction is
∼16%, assuming a sinusoidal pulse shape, and a homogeneous H atmosphere model
gives an emitting size of R ∼ 4–5.5 km.4 A possible solution for this discrepancy
was provided by Ho and Heinke (2009), who found that a pure-C atmosphere model
provides a good fit to the data and yields a reasonable neutron star size of R ∼ 10–

4For reference, the pulsed fractions of other CCOs are∼11% for RX J0822.0−4300 in SNR Puppis
A,∼9% for 1E 1207.4−5209 in SNR PKS 1209−51/52, and∼64% for CXOU J185238.6+004020
in SNR Kes 79 (Gotthelf et al. 2013).
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Fig. 5.17 Left: Spectra of the CCO in Cas A along with fits to a C-atmosphere model (log g =
14.45 and z = 0.375) for the Chandra observations of 2006 (black) and 2012 (red). It is assumed
that the entire neutron star surface is emitting and that D =3.4 kpc (from Posselt et al. 2013).
Right: M–R confidence contours (68%, 90%, 99%) for the CCO in Cas A obtained using the
C-atmosphere model fit. The two black curves indicate the range of the considered log g values,
while the dashed blue lines indicate different gravitational redshift parameters. The over-plotted
curves are the M–R relations for three possible EOSs according to Hebeler et al. (2013). The best-
fit model is marked with a red cross and the best-fit model obtained by Heinke and Ho (2010) is
marked with a blue cross. This plot was kindly provided by B. Posselt as adapted from Posselt
et al. (2013)

14 km. The observed X-ray spectra of the CCO in Cas A are shown in Fig. 5.17
(left) together with the C-atmosphere model fits. The resulting confidence contours
on the M–R plane are shown in Fig. 5.17 (right).

What also makes Cas A interesting is that it was found to display a significant
temperature decrease over ∼10 year time, which would point to unusually fast
cooling of the neutron star (Heinke and Ho 2010). The presence of a significant
temperature evolution was confirmed in subsequent studies (Shternin et al. 2011;
Elshamouty et al. 2013), but has been questioned by Posselt et al. (2013). If the
observed rapid cooling in Cas A is real, it provides very important insight into
the physics of neutron star cores. In particular, such a fast cooling stage can be
accounted for by a neutrino emission splash that results from the transition to a
neutron superfluidity phase (Page et al. 2011; Shternin et al. 2011), and would be
direct evidence that the neutrons in the core are superfluid.

5.3.6.4 The Neutron Star in HESS J1731−347

The CCO at the center of the TeV-emitting supernova remnant HESS J1731−347,
also known as G 353.6−0.7, was discovered with XMM-Newton in 2007 (Acero
et al. 2009; Tian et al. 2010; Abramowski et al. 2011). This neutron star emits a
black-body-like X-ray spectrum with kT ∼ 0.5 keV and is strongly absorbed at
low energies (hydrogen column density of NH ∼ 1.5 × 1022 cm−2; Acero et al.
2009; Halpern and Gotthelf 2010b; Bamba et al. 2012). X-ray timing studies yield
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an upper limit on the pulsed fraction of∼7–8% (for sinusoidal pulsations; Klochkov
et al. 2015). The host SNR is most likely located either in the Scutum-Crux arm at
D ∼3 kpc or in the Norma-Cygnus arm at D ∼ 4.5 kpc, whereas the measured X-
ray absorption and 12CO emission suggest D > 3.2 kpc (Abramowski et al. 2011).

Fitting the X-ray spectrum of the CCO in HESS J1731−347 with an absorbed
black-body model for D = 3.2 kpc leads to an unrealistic neutron star radius
of R ∼0.5 km (Klochkov et al. 2013, 2015). Fitting the spectra with H-model
atmospheres yield too small radii for this distance as well, but C atmospheres give
acceptable radii (Suleimanov et al. 2014). This results in M = 1.55+0.28

−0.24 M� and

R = 12.4+0.9
−2.2 km for D = 3.2 kpc (see Fig. 5.16; Klochkov et al. 2015).

The neutron star in HESS J1731−347 also stands out in its thermal properties.
The inferred temperature is much higher than that of other CCOs (Teff,∞ =
1.78+0.04

−0.02 MK), and unusual for its estimated age of ∼27 kyr (see Fig. 5.16; Tian
et al. 2008). Modern neutron star cooling theory (e.g. Weisskopf et al. 2011) limits
the radius to R > 12 km, because smaller radii cannot produce the observed neutron
star temperature for this age (Klochkov et al. 2015). We note that agreement between
the observed temperature and measured age of the CCO can only be achieved if the
neutron star is covered by a thick C envelop (ΔM ∼ 10−8 M�) and if the protons
in the core are superfluid. Detailed consideration of neutron star cooling theory
leads to even stronger constraints of the neutron star parameters (see Fig. 5.16 right;
Ofengeim et al. 2015).

5.3.7 EOS Constraints from Measuring Fast Spin Rates

Apart from mass and radius measurements, the spin of neutron stars can potentially
also provide interesting constraints on the EOS. This is because very fast spin
rates constrain the maximum neutron star radius (e.g. Cook et al. 1994). The spin
frequency of the neutron star must be lower than the Keplerian frequency, otherwise
it would shed mass at its equator due to centrifugal forces. The mass-shredding limit
depends on the EOS, M and R (Haensel et al. 2009):

fmax = Cdev

(
M

M�

)1/2 (
R

10 km

)−3/2

kHz. (5.32)

Since the deviation factor Cdev depends on the EOS, the above equation can
provide a limit on R. The more compact the neutron star (i.e. the smaller R for a
given M), the higher the supported rotation can be. Therefore, softer EOSs allow
for a higher spin rate (Haensel et al. 2009).

The fastest spinning radio pulsar currently known is MSP J1748−2446ad, which
has a rotation frequency of 716 Hz (1.396 ms; Hessels et al. 2006). The fastest
known AMXP in an LMXB is IGR J00291+5938, which spins at 599 Hz (Galloway
et al. 2005), whereas the highest rotation rate for a neutron star LMXB inferred
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from X-ray burst oscillations is 620 Hz for 4U 1608−52 (Galloway et al. 2008).
The centrifugal break-up frequency predicted by most EOSs is fmax ∼ 1.5–2 kHz
(e.g. Lattimer 2011). Rotation speeds <1 ms would rule out certain families of hard
EOSs, and would be particularly constraining in combination with a large mass.

The lack of more rapidly spinning neutron stars has been taken as evidence
that there is some mechanism that limits their spin-up (e.g. spin-equilibrium, spin-
down by magnetic dipole radiation, gravitational wave emission; Papaloizou and
Pringle 1978; Wagoner 1984; Bildsten 1998; Melatos and Payne 2005; di Salvo
et al. 2008; Burderi et al. 2009; Haskell and Patruno 2011; Patruno et al. 2012,
2017). However, there are also physical reasons that might make it difficult to find
very rapidly spinning neutron stars, even if they exist. For instance, since accretion
is though to spin up neutron stars, high spin may be naively expected in sources
that accrete at high rates. However, high accretion rates are also thought to suppress
the magnetic field and in absence of channeled accretion no pulsations are expected
to be produced (e.g. Cumming et al. 2001; Romanova et al. 2008). Moreover, it has
been suggested that strong accretion promotes spin alignment, which would weaken
the pulsations (e.g. Ruderman 1991; Lamb et al. 2009). Furthermore, in case of X-
ray bursters, very rapid spin may suppress flame spreading and make bursts shorter
and weaker (e.g. Spitkovsky et al. 2002; Cavecchi et al. 2013).

5.3.8 Constraints from Other Types of Electromagnetic
Observations

The radio, optical, X-ray observations and analysis techniques discussed in
Sects. 5.3.1–5.3.7 provide the most direct constraints on neutron star masses and
radii to date. However, there are several other observational phenomena that can
also put some interesting constraints on the dense matter EOS, particularly with
upcoming facilities (see Sect. 5.4). These are briefly discussed below.

5.3.8.1 Mass Measurements from Glitches in Young Radio Pulsars

The most accurate mass measurements have been obtained for rapidly spinning
radio pulsars in binary systems (Sect. 5.3.1). However, some constraints on the
masses of young, slowly spinning radio pulsars can be obtained from observing
glitches . These are a sudden increase in the spin period of young, slowly spinning
radio pulsars (e.g. Espinoza et al. 2011, for a review). This is thought to be caused
by the fact that unlike the normal matter in the neutron star crust, the superfluid
component does not slow down due to the electromagnetic energy losses (Anderson
and Itoh 1975). Superfluids rotate by forming vortices that are usually “pinned” to
the normal matter and the area density of these vortices determines the spin rate of
the superfluid. The superfluid therefore acts as a reservoir of angular momentum. As
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the neutron star spins down, an increasing lag develops between the normal matter
in the crust (rotating at the stellar spin rate) and the superfluid (rotating faster);
once it reaches a critical value, the superfluid vortices will suddenly “unpin” and
transfer angular momentum to the normal matter, explaining the observed jump in
spin frequency that is referred to as a glitch.

Recently, two different approaches have been developed to measure neutron star
masses from the angular momentum reservoir inferred from glitches (e.g. Ho et al.
2015; Pizzochero et al. 2017). Firstly, Ho et al. (2015) uses observable quantities
inferred from X-ray and radio data such as the pulsar spin and its time derivative,
the glitching activity and the temperature of the neutron star, and couples these to
theoretical models for (temperature sensitive) superfluidity and the EOS to infer
neutron star masses for about a dozen glitching radio pulsars. Secondly, Pizzochero
et al. (2017) show how the maximum observed amplitude and recurrence time
of glitches can constrain the mass of nearly two dozen glitching radio pulsars
when combined with microphysical models of the interactions between the normal
and superfluid matter. This analysis showed that lower-mass neutron stars produce
larger-amplitude glitches.

The mass measurements obtained via these means depend on the assumed EOS
and are subject to a number of systematic uncertainties. However, future advances
in theoretical modeling and radio/X-ray observing (see Sect. 5.4) allow to further
develop these methods. In particular, if an independent mass measurement for a
glitching pulsar can be obtained, that can be used to tightly constrain the EOS even
if the neutron star mass is not extreme. This seems particular promising with the
discovery of young radio pulsars in binaries (e.g. Lyne et al. 2015). For neutron
stars that have a smaller mass, the moment of inertia in the crust will be larger and
hence stronger amplitude glitches can be produced.

5.3.8.2 Gravitationally Redshifted Lines and Edges During X-ray Bursts

As discussed in Sect. 5.3.3, the neutron star surface is visible during X-ray bursts.
As the radiation from the X-ray burst, ignited in the accreted ocean/envelop,
passes through a metal-rich atmosphere, this can potentially create absorption lines
or edges (e.g. Rajagopal and Romani 1996; Brown et al. 2002). The rotational
broadening of such a line depends on R, whereas its centroid energy depends on
the ratio M/R. If the inclination is known, this leads to an independent measure of
M and R (e.g. Özel and Psaltis 2003; Özel 2006).

Narrow atomic features can be detected with high-resolution X-ray spectrographs
such as e.g. the gratings aboard the currently active missions Chandra and XMM-
Newton (see Sect. 5.4.3.3 for prospects with future missions). Since rapid rotation
will further broaden narrow spectral features through Doppler smearing, this would
be most promising for slowly spinning neutron stars. Several attempts in this
direction have been made (e.g. Kong et al. 2007; Galloway et al. 2010b; in ’t Zand
et al. 2013, 2017), but only in one case narrow spectral features were claimed to be
seen (Cottam et al. 2002). However, the later discovery of a high spin rate for this
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particular neutron star (552 Hz; Galloway et al. 2010a) rules out that the putative
lines originated from the stellar atmosphere (Lin et al. 2010). Moreover, attempts
to solidify the result by performing new observations failed to detect the features
claimed in the initial study (Cottam et al. 2008).

5.3.8.3 Radius Lower Limits from mHz QPOs

Quasi-Periodic Oscillations (QPOs) at mHz frequencies are detected for a handful of
LMXBs and are thought to be associated with quasi-stable burning on the neutron
star surface (e.g. Revnivtsev et al. 2001; Yu and van der Klis 2002; Heger et al.
2007b; Altamirano et al. 2008; Linares et al. 2012; Keek et al. 2014; Lyu et al.
2014, 2016). As recently argued by Stiele et al. (2016), the maximum black-body
emitting radius measured during a QPO cycle provides a lower limit on the radius
of the neutron star (it is uncertain whether the entire surface should be emitting).
Applying this approach to 4U 1636−536 using RXTE data resulted in a lower limit
of R>11 km, after accounting for various uncertainties. Better constraints could
be obtained using data from new missions such as NICER and HXMT (Sect. 5.4).
A possible advantage is that the mHz QPOs are not expected to cause significant
changes in the accretion flow that can complicate the radius measurements, which is
the case for X-ray bursts (e.g. van Paradijs and Lewin 1986; Ballantyne and Everett
2005; in ’t Zand et al. 2013; Ji et al. 2014; Worpel et al. 2015; Degenaar et al. 2018).

5.3.8.4 Radius Upper Limits from Accretion Disk Reflection

The X-ray spectra of many neutron star LMXBs show broad emission lines near
6.5 keV that are interpreted as radiation that is reflected off the inner edge of
the accretion disk (e.g. George and Fabian 1991; Matt et al. 1991; Fabian and
Ross 2010). Accurate modeling of this Fe-K line, as well as the corresponding
Compton hump near 20–30 keV, is widely used to infer the location of the inner
edge of the accretion disk. In principle this provides an upper limit on the radius
of the neutron star, since the disk must truncate at the stellar surface if not before
(e.g. Bhattacharyya and Strohmayer 2007; Cackett et al. 2008). In several LMXBs
the inner disk radii measured from reflection analysis appear to be significantly
truncated away from the neutron star, which is attributed for instance to the presence
of a geometrically thick boundary layer where the accretion flow impacts the stellar
surface (e.g. D’Aí et al. 2014; Ludlam et al. 2017a), the magnetic field of the neutron
star (e.g. Degenaar et al. 2014a; van den Eijnden et al. 2017), or evaporation of the
inner accretion disk at low mass-accretion rates (e.g. Papitto et al. 2013b). However,
in about a dozen sources the inferred inner disk radii are small and may suggest that
the disk is running into the neutron star surface, hence providing an upper limit on
the stellar radius (e.g. Miller et al. 2013; Degenaar et al. 2015; Chiang et al. 2016;
Ludlam et al. 2016, 2017b). This information can be useful when combined results
obtained from other techniques (see Sect. 5.3.9).
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5.3.8.5 Radius and Mass Upper Limits from kHz QPOs

Like disk reflection, another way to obtain an upper limit on the neutron star radius
from studying the accretion flow properties are kHz QPOs, which are detected for
about two dozen neutron star LMXBs. Although the origin of this rapid variability
(which can be as fast as∼103 Hz) is not well understood, it is typically linked to the
very inner accretion disk. Requiring an observed kHz QPO frequency to be lower
than the Keplerian frequency at the neutron star surface places an upper limit on the
neutron star radius (Miller et al. 1998b). For most EOSs, however, the neutron star
radii lie within the innermost stable circular orbit (ISCO); the Keplerian frequency
at the ISCO is set by the neutron star mass, and therefore requiring that the kHz QPO
frequency is lower than that at the ISCO (i.e. assuming that the QPO is produced
at or outside the ISCO) places an upper bound on the neutron star mass as well
(Kluzniak et al. 1990; Miller et al. 1998b). However, the limits obtained in this way
are not particularly constraining (e.g. van Straaten et al. 2000). More precise mass
measurements would in principle be possible (e.g. Stella et al. 1999; Psaltis et al.
1999; Barret et al. 2006), but heavily relies on the specific interpretation of the kHz
QPO, of which there is no consensus.

5.3.8.6 Core Cooling of Transiently Accreting Neutron Stars

As discussed in Sect. 5.3.6 in the context of thermally-emitting isolated neutron
stars, the temperature of the neutron star core is set by the rate at which it is cooling
through neutrino emissions. This is related to its mass since more massive neutron
stars should have higher interior densities that lead to more efficient neutrino cooling
(rendering more massive neutron stars colder; e.g. Yakovlev and Pethick 2004; Page
et al. 2006). Comparing the inferred temperatures and ages of a number of isolated
neutron stars with theoretical calculations of their thermal evolution shows that their
cores are likely not dense enough to allow for very efficient cooling mechanisms
and hence does not point to particularly massive neutron stars (e.g. Yakovlev and
Pethick 2004; Page et al. 2009, see also Fig. 5.16). This is in sharp contrast with
neutron stars in LMXBs for which similar types of tests (see below) suggest that
efficient core cooling is taking place and would thus point to more massive neutron
stars. It is possible that the lack of very cool objects among the isolated neutron
stars is a selection effect, since relatively high temperatures are required to detect
and identify them as neutron stars.

When located in LMXBs, neutron stars can be reheated through the nuclear
reactions that are induced in the crust during accretion episodes (Sect. 5.2.5) and
can heat the core on a thermal timescale of ∼104 year (Brown et al. 1998; Colpi
et al. 2001; Wijnands et al. 2013). In such systems, knowledge or estimates of
the accretion history can then be compared to their core temperature (e.g. Potekhin
et al. 1997; Brown et al. 2002; Yakovlev and Pethick 2004), to determine the rate
of neutrino cooling. This suggests that enhanced cooling mechanisms should be
operating in several neutron stars and hence that these objects should be relatively
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massive (e.g. Yakovlev and Pethick 2004; Heinke et al. 2009; Wijnands et al. 2013;
Han and Steiner 2017). Although this approach does not allow for accurate mass
measurements and there are many systematic uncertainties both in the observations
and the models (see Wijnands et al. 2013; Han and Steiner 2017, for discussions),
it does provide means to pick out potentially massive neutron stars that could
be interesting objects for other types of studies (e.g. optical dynamical mass
measurements; see Sect. 5.4.2.2).

5.3.8.7 The Potential of Crust Cooling of Transiently Accreting Neutron
Stars

As discussed in Sect. 5.2.5, the crust of a neutron star is heated during accretion
phases due to nuclear reactions. Dedicated X-ray monitoring of ∼10 transient
LMXBs in quiescence following accretion outbursts have revealed a steady decrease
in the thermal X-ray flux and inferred neutron star temperature over the course of
about a decade. This has been ascribed to the thermal relaxation of the accretion-
heated crust (e.g. Wijnands et al. 2013, 2017, for reviews). Such a cooling trajectory
depends on the properties of the outburst (which determines how long and intense
the crust was heated), the microphysics of the crust such as its structure and
composition (which set the thermal conductivity and the nuclear reactions), and
the thickness of the crust. The latter is of particular interest, since it is determined
by the surface gravity. Therefore, if all the microphysics of neutron star crusts were
understood, and the outburst is closely monitored (as is often the case nowadays),
the only free parameter determining the cooling trajectory is the compactness of the
neutron star (e.g. Wijnands et al. 2013; Deibel et al. 2015).

Although there are still many uncertainties about the thermal and transport
properties of neutron star crusts (e.g. Page and Reddy 2013, for a review), studies to
improve this are well under way and are alongside providing interesting constraints
on other physical properties of neutron stars. For instance, these studies can also
reveal the presence of non-spherical shapes for the nuclei at the bottom of the crust
(referred to as nuclear pasta; e.g. Horowitz et al. 2015; Deibel et al. 2017). Moreover,
some interesting constraints on the core heat capacity have recently been obtained:
this approach can potentially lead to more stringent constraints in the future and
limit the number of baryons in the core that can be bound in a superfluid (Cumming
et al. 2017; Degenaar et al. 2017). Crust cooling studies are thus also interesting
avenue to learn more about neutron star crusts as well as their cores, and in principle
also have the potential to lead to constraints on the compactness of these neutron
stars as well as the dense matter EOS.

5.3.8.8 Constraints fromMagnetars

Although the heating mechanism is likely different, it appears that crust cooling is
also observed in transient magnetars (of which about two dozen are known; e.g. Coti
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Zelati et al. 2017, for a recent overview). Such studies may provide similar prospects
as the crust cooling studies of transiently accreting neutron stars (Sect. 5.3.8.7).
Furthermore, magnetars show glitches (e.g. Dib et al. 2008; Dib and Kaspi 2014),
which can potentially be used to measure their masses in a similar fashion as
done for young radio pulsars (Sect. 5.3.8.1). Finally, on rare occasions QPOs have
been detected during active flaring episodes of magnetars and ascribed to seismic
vibrations (e.g. Israel et al. 2005; Watts and Strohmayer 2006; Huppenkothen et al.
2013). It has been proposed that these magnetar QPOs offer a view into the neutron
star M and R (e.g. Strohmayer and Watts 2005; Watts and Reddy 2007; Steiner
and Watts 2009; Gabler et al. 2012), but the mode frequencies also depend on
unknown factors such as the magnetic field strength, superfluid properties, and
crust composition. Moreover, there is some controversy over the interpretation of
magnetar QPOs (see e.g. Watts et al. 2016, for a discussion).

5.3.9 Combining Different Methods for Improved Constraints

Radio pulsar timing has been combined with optical observations to obtain very
accurate mass constraints for a number of radio pulsars (see Sect. 5.3.2). Moreover,
constraints from samples of X-ray bursters and quiescent LMXBs have been
combined in statistical frameworks to obtain accurate radius constraints (see
Sect. 5.3.4.2). This underlines the power of combining different, complementary
techniques for mass and radius measurements. In this section we briefly explore
which other methods can be combined to obtain improved EOS constraints. A
cross-comparison between techniques is also very important to identify and better
understand the systematic uncertainties subject to each approach.

It would be valuable to obtain M and R for a single neutron star both from its
quiescent thermal emission and its X-ray bursts. However, for the quiescent method
mostly globular cluster sources have been used that have never been seen to exhibit
an accretion outburst (and hence X-ray bursts). Conversely, the quiescent emission
of X-ray bursters is often either contaminated by a hard spectral component, or
so dim that no accurate constraints can be obtained. Nevertheless, a few attempts
have been made. For instance for the prolific transiently accreting neutron star
Aql X-1, which has been observed in quiescence numerous times (e.g. Cackett
et al. 2011; Campana et al. 2014) and is fairly bright. Analysis of its quiescent
spectra were compared to that of a number of PRE bursts (Li et al. 2017). Both
methods led to reasonably constrained M–R confidence intervals, but these overlap
only marginally: the constraints from the quiescent analysis are shifted to lower
radius and mass compared to the constraints inferred from the burst analysis. This
can likely be attributed to systematic effects (see Sect. 5.3.4.4). Another source for
which quiescent and X-ray burst measurements can potentially be combined is 4U
1608−52. It is relatively bright in quiescence (albeit exhibiting a power-law spectral
component) and displays an accretion outburst every few years during which it
shows (PRE) X-ray bursts (e.g. Poutanen et al. 2014). Moreover, 4U 1608−52
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also exhibits a number of other phenomena that can potentially lead to M and R

constraints such as disk reflection and mHz QPOs (see below).
It can also be interesting to combine lower limits on the neutron star radius

obtained from the mHz QPOs (Sect. 5.3.8.3) with upper limits inferred from
disk reflection modeling (Sect. 5.3.8.4) or kHz QPOs (Sect. 5.3.8.5). For instance,
reflection studies constrain the radius of the neutron star in 4U 1636−536 to
R �11 km (e.g. Ludlam et al. 2017b), whereas the lower limit inferred from its
mHz QPOs is R �11 km (Stiele et al. 2016). Without scrutinizing the systematic
errors and assumptions of both methods, it is striking that these two independent
approaches come together at the same value for the radius. It is conceivable
that during the mHz QPO the entire surface was radiating and that the disk in
4U 1636−536 is truly truncating at the neutron star surface, hence that the stellar
radius is R ∼11 km. Another example of a neutron star that displays mHz QPOs
(Yu and van der Klis 2002) and possibly has the disk running in the neutron star
surface (Degenaar et al. 2015) is 4U 1608−52. Combining these different X-ray
techniques can thus possibly bracket the radius measurement for this neutron star.
It is also X-ray bright in quiescence, displays PRE bursts (Poutanen et al. 2014)
and burst oscillations (at 620 Hz; Galloway et al. 2008). It could thus also be a
good target for pulse profile modeling with the new mission NICER (Sect. 5.4.3.4)
and X-ray polarization studies (Sect. 5.4.3.5). Finally, the companion stars of some
transient neutron star LMXBs may also be bright enough to be studied in quiescence
at optical wavelengths with the future generation of instruments (Sect. 5.4.2.2). This
can provide independent and complimentary constraints on the neutron star mass.

For accreting neutron stars, X-ray pulse profile modeling can be performed in two
different ways. For the AMXPs, we observe emission from hotspots at the magnetic
poles (in addition to emission from a shock that forms just above the surface as
the rapidly in-falling material is abruptly decelerated). For burst oscillations, on
the other hand, hotspots arise due to unstable thermonuclear burning zones on
the stellar surface (i.e. not confined to the magnetic poles). Several neutron stars
show both coherent X-ray pulsations and burst oscillations; ideally, one would
want to use both types of hotspots to model the resulting pulse profile and obtain
M–R constraints, to check for consistency and to calibrate both methods (Watts
et al. 2016). An important breakthrough could also be provided by the detection
of surface atomic lines (Sect. 5.3.8.2) in the hotspot emission of a neutron star for
which the pulse profile (Sect. 5.3.5) can also be accurately modeled (e.g. Rauch
et al. 2008). Combining these two pieces of information yields complementary and
independent measurements of M and R. Lastly, some radio pulsars with accurate M
measurements show thermal emission that may allow for a R measurement through
X-ray pulse profile modeling with NICER (see Sect. 5.4.3.4).
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5.4 Future Prospects with New and Upcoming
Instrumentation

Over the past decade we have witnessed significant developments in inferring
the dense matter EOS from electromagnetic observations of neutron stars. We
have started to gain significant constraints on the pressure-density relation and
our knowledge of the superfluid properties of their interiors is steadily growing.
However, it is at present not yet possible to infer the composition of the dense core of
neutron stars (i.e. nuclear versus exotic matter). The most important challenges that
presently limit tighter constraints are systematic uncertainties, limited data quality,
and small number statistics. Below we give an overview of the exciting prospects of
new and future instrumentation to continue and improve determinations of neutron
star masses and radii in the next decade and beyond.

5.4.1 The Future Generation of Radio Telescopes

5.4.1.1 Significantly Increasing the Number of Mass Measurements
of Radio Pulsars

The Square Kilometre Array (SKA) will be the world’s largest radio telescope and
is expected to begin science operations in the early 2020s. The SKA can provide
major breakthroughs in neutron star research, including EOS constrains (Watts et al.
2015). In particular, it is expected to discover significant numbers of radio pulsars.
This allows for an increased number of mass measurements, including those with
extreme properties that put the most stringent constraints on the EOS (e.g. Keane
et al. 2015; Hessels et al. 2015, see also Sect. 5.4.4). Furthermore, the precise timing
techniques that are being developed for pulsar timing arrays (PTAs) have started to
yield accurate masses for more pulsars and may eventually lead to finding more
extreme ones (e.g. Reardon et al. 2016; Fonseca et al. 2016).

5.4.1.2 Measuring the Moment of Inertia of Radio Pulsars

Radio and gamma-ray observations of radio pulsars have the potential to measure
their moment of inertia . Since this is a function of both M and R, it allows the
radius to be measured if the mass can be determined independently (e.g. via radio
pulsar timing and/or optical studies of the companion star). Attempts have been
made for PSR J1614−2230, one of the two radio pulsars with an accurate high
mass measurement of M ∼ 2 M� (Demorest et al. 2010; Fonseca et al. 2016).
Unfortunately, the spin-down luminosity inferred from its gamma-ray emission
does not provide very tight constraints and this is not likely to improve with new
instrumentation (Watts et al. 2015). However, long-term observations of the double
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pulsar system PSR J0737−3039 will eventually lead to measurement of the moment
of inertia of one of the pulsars, resulting in a radius constraint with ∼5% accuracy
(Lyne et al. 2004; Lattimer and Schutz 2005; Kramer and Wex 2009). As mentioned
by Watts et al. (2015), the SKA (Sect. 5.4.1.1) can possibly discover more pulsar
systems for which the moment of inertia will be measurable, but this is likely
challenging due to the highly restrictive requirements for the system geometry.

5.4.2 The New and Future Generation of Optical Telescopes

5.4.2.1 Accurate Distance Determinations with Gaia

As discussed in Sect. 5.3.4.4, one of the most important systematic uncertainties
in inferring radii from neutron stars in LMXBs, is that their distance is usually
not accurately known. Gaia, launched in 2013, is an astrometry mission dedicated
to measure the parallaxes of stars with unprecedented precision. In a few years,
this may provide accurate distances for a number of neutron star LMXBs, either
located in the field or in globular clusters. This will strongly reduce the systematic
uncertainties in the radii determined for these objects from X-ray observations.

5.4.2.2 Dynamical Mass Measurements with the Next Generation Optical
Telescopes

The highly improved sensitivity of upcoming optical facilities such as the European
Extremely Large Telescope (E-ELT), the Thirty Meter Telescope (TMT) and
the Large Synoptic Survey Telescope (LSST) will be transformable in obtaining
dynamical mass measurements for neutron stars in binary systems. Synergies with
the SKA are expected to be particularly promising (e.g. Antoniadis et al. 2015).

5.4.3 Advances from X-ray Astronomy

5.4.3.1 Radius Measurements from X-ray Bursts with New X-ray
Telescopes

Radius constraints from X-ray bursting neutron star LMXBs have all been obtained
with the wealth of data provided by NASA’s RXTE, which was decommissioned
in 2012. However, in 2015 the Indian satellite ASTROSAT was launched (Singh
et al. 2014) and in 2017 the Chinese Hard X-ray Modulation Telescope (HXMT)
was brought into orbit (Zhang et al. 2014). Their X-ray detectors have similar
capabilities to those of RXTE, and both missions thus provide continued oppor-
tunities to measure neutron star radii from X-ray bursts In addition, the NICER
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mission installed in 2017 is a very promising tool for X-ray burst studies (e.g. Keek
et al. 2016), and can potentially also lead to more accurate radius constraints from
bursting neutron stars.

5.4.3.2 Radius Constraints of dim Thermally-Emitting Neutron Stars
with Athena

Further in the future, currently planned for launch in the late 2020s, we will have
access to the ESA mission Athena (Barcons et al. 2017). Although dense matter
is not a core science goal of Athena, its very high collective area, soft X-ray
coverage and good spectral resolution does allow for more accurate modeling of
the thermal spectra of quiescent neutron stars, studying the cooling tails of X-ray
bursts,5 modeling the pulse profiles of different kinds of pulsars, and searching
for gravitationally redshifted lines in the surface emission of neutron stars (Motch
et al. 2013). Furthermore, Athena might provide more stringent limits on the pulsed
fraction of quiescent neutron star LMXBs, which is of high importance to assess the
possible presence of temperature inhomogeneities (Elshamouty et al. 2016b).

5.4.3.3 High-Resolution X-ray Spectroscopy to Search for Atomic
Spectral Features

Detecting gravitationally redshifted atomic features during X-ray bursts or low-
level accretion activity, which would constrain the compactness of a neutron star
(Sect. 5.3.8.2), requires high-resolution X-ray spectrographs. This is incorporated
in the design of Athena (the X-ray Integral Field Unit, X-IFU) and was provided by
short-lived mission Hitomi, which may find follow-up with the X-ray Astronomy
Recovery Mission (XARM). There are thus some future prospects for searching for
narrow, gravitationally redshifted features from neutron star atmospheres.

5.4.3.4 Accurate X-ray Pulse Profile Modeling with NICER

The Neutron Star Interior Composition ExploreR (NICER) is a NASA mission
that was successfully installed on the International Space Station in 2017 June
(Gendreau et al. 2012; Arzoumanian et al. 2014). It covers the energy range from
0.2–12 keV, has a very high effective area and unprecedented timing precision
(absolute time-tagging of <300 ns). NICER is dedicated to achieve precise (∼5%)
mass and radius measurements for a few selected neutron stars through highly
accurate pulse-profile modeling of pulsars (e.g. Bogdanov 2016; Miller 2016;
Özel et al. 2016a, see also Sect. 5.3.5). Moreover, neutron stars that display rapid

5Although pile-up can be an issue when studying bursts with Athena (e.g. Keek et al. 2016).
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oscillations during the rise of an X-ray burst are very promising targets to obtain
EOS constraints with NICER (e.g. Watts et al. 2016). Obtaining independent
constraints on geometrical factors significantly improves the constraints obtained
from such pulse profile modeling. This can uniquely be achieved from X-ray
polarization studies, of which several concepts are currently being investigated
(Sect. 5.4.3.5).

5.4.3.5 Geometrical Constraints from X-ray Polarization

As discussed in Sect. 5.3.5, pulse profile modeling is a very promising technique
to obtain mass and radius constraints without systematic errors, if a number of
geometrical factors can be determined. Fortunately, the hotspot emission that is
used by this technique is expected to be polarized (e.g. Rees 1975; Meszaros et al.
1988; Viironen and Poutanen 2004). Phase-resolved measurements of the angle
and degree of polarization can then constrain both the inclination angle of the
observer and the hotspot, thereby breaking degeneracies that current limit pulse
profile modeling. AMXPs and X-ray burst oscillation sources are prime targets for
such polarimetry studies. The concept missions eXTP (China/Europe; Zhang et al.
2016), IXPE (NASA; Weisskopf et al. 2016), and XIPE (ESA; Soffitta et al. 2016)
have X-ray polarimeters in their design concepts that would facilitate such studies.

5.4.4 Searching for the Most Rapidly Spinning Radio
and X-ray Pulsars

As discussed in Sect. 5.3.7, very high spin rates also have the potential to put
interesting constraints on the neutron star EOS. The future holds great prospects
for continuing and enhancing searches for rapidly spinning neutron stars. At radio
wavelengths, such advances will be brought through timing studies with SKA and
pulsar timing arrays, whereas at X-ray wavelengths such studies are currently
facilitated by searching for coherent X-ray pulsations and X-ray burst oscillations
with ASTROSAT, HXMT and NICER. Several mission concepts currently under
investigation would also facilitate such studies (e.g. eXTP and STROBE-X; for both
the current design has a higher effective area than RXTE, which allows for detecting
weaker pulsations; e.g. Zhang et al. 2016; Wilson-Hodge et al. 2016).

5.5 Conclusions

Neutron stars are unique, natural laboratories to constrain the EOS of ultra-dense
matter. In particular, measuring the mass and radius of several neutron stars with
<10% errors can place strong constraints on the EOS (e.g. Özel et al. 2010; Steiner
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et al. 2010). Such measurements are facilitated by observations at radio, optical and
X-ray wavelengths. Precise and reliable mass measurements have so far only been
obtained for radio pulsars (∼40 objects with masses ranging between M ∼ 1.2–
2.0 M�), whereas radius measurements have only been obtained for about two
dozen neutron stars in LMXBs (∼15 objects leading to an overall estimate of
R ∼10–12 km for an assumed mass of M ∼ 1.4–1.5 M�).

Whereas the masses of radio pulsars are determined with high accuracy, the
radius measurements of neutron star LMXBs are more strongly model dependent
and subject to a number of systematic uncertainties. Nevertheless, over the past
decade much progress was made in obtaining masses and radii from the thermal
X-ray emission of neutron star LMXBs. Alongside, there have been important
theoretical developments, including a detailed assessment of spin effects (e.g.
Bauböck et al. 2012, 2015a), advanced calculations of atmosphere models (e.g.
Ho and Heinke 2009; Suleimanov et al. 2011b, 2012a; Nättilä et al. 2015) and the
development of statistical analysis methods (e.g. Özel et al. 2010; Özel and Psaltis
2015; Steiner et al. 2010, 2013). Moreover, there are many different techniques that
can ultimately lead to constraints on the neutron star EOS. Several approaches are
still under development and can be improved with new and upcoming observatories.
There lies great power in applying different techniques to individual neutron stars:
orthogonal constraints can be obtained or cross-checks can be performed that allows
us to address the systematic uncertainties of different methods.

Finally, it is important to note that although probing the behavior of ultra-dense
matter is typically the main scientific driver to try and constrain the neutron star
EOS, there are much wider implications. The behavior of matter near and beyond the
nuclear density is governed through the strong interactions and understanding this
fundamental force is important for several other areas of astrophysics. For instance,
it plays an important role in core-collapse supernova explosions, the dynamics of
compact object mergers that involve a neutron star and the formation timescale of
black holes, as well as the precise gravitational wave and neutrino signals produced
in these processes, the resulting mass loss and nucleosynthesis, and associated γ -
ray bursts and hypernovae. The recent discovery of gravitational wave signals and
electromagnetic counterparts of the merger of two neutron stars has ever more
increased interest in constraining the neutron star EOS.
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Chapter 6
Nuclear Equation of State for Compact
Stars and Supernovae

G. Fiorella Burgio and Anthea F. Fantina

Abstract The equation of state (EoS) of hot and dense matter is a fundamental
input to describe static and dynamical properties of neutron stars, core-collapse
supernovae and binary compact-star mergers. We review the current status of the
EoS for compact objects, that have been studied with both ab-initio many-body
approaches and phenomenological models. We limit ourselves to the description
of EoSs with purely nucleonic degrees of freedom, disregarding the appearance of
strange baryonic matter and/or quark matter. We compare the theoretical predictions
with different data coming from both nuclear physics experiments and astrophysical
observations. Combining the complementary information thus obtained greatly
enriches our insight into the dense nuclear matter properties. Current challenges
in the description of the EoS are also discussed, mainly focusing on the model
dependence of the constraints extracted from either experimental or observational
data, the lack of a consistent and rigorous many-body treatment at zero and finite
temperature of the matter encountered in compact stars (e.g. problem of cluster
formation and extension of the EoS to very high temperatures), the role of nucleonic
three-body forces, and the dependence of the direct URCA processes on the EoS.

6.1 Introduction

An equation of state (EoS) is a relation between thermodynamic variables describing
the state of matter under given physical conditions. Independent variables are
usually the particle numbersNi , the temperature T , and the volume V ; alternatively,
one can use the particle number densities ni = Ni/V , the corresponding particle
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number fractions being Yi = ni/nB = Ni/NB (e.g. Ye = Ne/NB for the
electron fraction,NB andNe being the baryon and electron number, respectively). In
addition, conservation laws hold, so that there are conserved quantities such as the
total baryon number, the total electric charge number, and the total lepton number.

In astrophysics, EoSs are usually implemented in hydrodynamic (or hydrostatic)
models that describe the evolution (or the static structure) of the macroscopic sys-
tem. An EoS can be determined if the system is in thermodynamic equilibrium, i.e. if
thermal, mechanical, and chemical equilibrium are achieved. In particular, the latter
generally is not attained in main sequence stars or in explosive nucleosynthesis. In
these scenarios, a full reaction network that takes into account the reaction cross
sections of the species present in the medium has to be considered. Otherwise, if
the timescale of the nuclear reactions is much shorter than the dynamic evolution
timescales, nuclear statistical equilibrium (NSE) can be assumed. This situation is
typically achieved for temperatures T � 0.5 MeV (Iliadis 2007). On the other hand,
weak interactions are not generally in equilibrium. Specifically, in core-collapse
supernovae (CCSNe), the electron-capture reaction, p + e− → n + νe, is not in
equilibrium for baryon densities below nB ≈ 10−3−10−4 fm−3 (or equivalently, for
mass-energy densities below ρB ≈ few 1011 g cm−3). In the first stages of CCSNe,
neutrinos are not in equilibrium and are not included in the EoS, but treated in
transport schemes. In later stages of CCSNe, and in (proto-) neutron stars ((P)NSs),
neutrinos are trapped and weak interactions are in equilibrium. They can thus be
included in the EoS, and a lepton (or neutrino) fraction can be introduced. For
(mature) cold NSs, beta equilibrium without neutrinos is usually achieved since
neutrinos become untrapped, and the electron fraction is fixed by charge neutrality
together with the beta-equilibrium condition.

The determination of an EoS for compact objects is one of the main challenges
in nuclear astrophysics, because of the wide range of densities, temperatures, and
isospin asymmetries encountered in these astrophysical objects. Moreover, current
nuclear physics experiments cannot probe all the physical conditions found in
compact stars, thus theoretical models are required to extrapolate to unknown
regions. The set of independent thermodynamic variables for the most general EoS
are usually the baryon density nB , the temperature T , and the charge fraction,
e.g. the electron fraction Ye, or alternatively the charge density (see also the
CompOSE manual (Typel et al. 2015) for an explanation of the thermodynamic
variables and potentials). However, for cold NSs, the temperature (below 1 MeV) is
lower than typical nuclear energies and the zero-temperature approximation can be
adopted, thus making, together with the beta-equilibrium condition, the independent
variables of the EoS reduced to the density only. On the other hand, in CCSNe, in
compact-star mergers, and in black-hole (BH) formation, the temperature can rise
to a few tens or even above a hundred MeV. Therefore, the approximate range of
thermodynamic variables over which the most general EoS has to be computed is:
10−11 � nB � few fm−3, 0 ≤ T � 150 MeV, and 0 < Ye < 0.6 (see, e.g., Figs. 1–2
in Oertel et al. 2017 and O’Connor and Ott 2011).
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In this Chapter, we aim to give an overview of the present status of the EoSs
for compact-star modelling, with particular focus on the underlying many-body
methods, and to discuss some of the current challenges in the field. After a brief
introduction on the nucleon-nucleon interaction in Sect. 6.2.1, we will review the
theoretical many-body methods in Sect. 6.2.2, both microscopic (Sect. 6.2.2.1) and
phenomenological (Sect. 6.2.2.2). In Sect. 6.2.3 we will discuss the constraints on
the EoS obtained in both nuclear physics experiments (Sect. 6.2.3.1) and astrophys-
ical observations (Sect. 6.2.3.2). We will present in Sect. 6.2.4 the application of
the EoSs in compact-object modelling: we will first discuss the zero-temperature
NS case (Sect. 6.2.4.1), then we will introduce some widely used general purpose
EoSs and discuss their impact in CCSNe, BH formation, and in binary mergers
(Sect. 6.2.4.2). A brief description of the available online databases on the EoSs
is given in Sect. 6.2.5. Finally, in Sect. 6.3, we will discuss some of the current
challenges for the EoS modelling and in Sect. 6.4 we will draw our conclusions.

6.2 Current Status of Many-Body Methods and Equation
of State

6.2.1 The Nucleon-Nucleon Interaction: A Brief Survey

The properties of the nuclear medium are strongly determined by the features of
the nucleon-nucleon (NN) interaction, in particular the presence of a hard repulsive
core. The nuclear Hamiltonian should in principle be derived from the quantum
chromodynamics (QCD), but this is a very difficult task which presently cannot be
realised. There are three basic classes of bare nucleonic interactions:

- Phenomenological interactions mediated by meson exchanges;
- Chiral expansion approach;
- Models that include explicitly the quark-gluon degrees of freedom.

In the phenomenological approaches, quark degrees of freedom are not treated
explicitly but are replaced by hadrons—baryons and mesons—in which quarks
are confined. Very refined and complete phenomenological models have been
constructed for the NN interactions, e.g. the Paris potential (Lacombe et al. 1980),
the Bonn potential (Machleidt and Slaus 2001), the Nijmegen potentials (Nagels
et al. 1977, 1978) also with hyperon-nucleon (YN) (Maessen et al. 1989) and
hyperon-hyperon (YY) potentials (Rijken et al. 1999). Those phenomenological
models have been tested using thousands of experimental data on NN scattering
cross sections, from which the phase shifts in different two-body channels are
extracted with high precision up to an energy of about 300 MeV in the laboratory,
even if discrepancies between the results of different groups still persist (Machleidt
and Slaus 2001).
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The most widely known potential models are the Urbana (Lagaris and Pand-
haripande 1981) and Argonne potentials, the latest version called the v18 potential
(Wiringa et al. 1995). The structure of the NN potential is very complex and depends
on many quantities characterising a two-nucleon system. These quantities enter
via operator invariants consistent with the symmetries of the strong interactions,
and involve spin, isospin, and orbital angular momentum. The NN potential acting
between a nucleon pair ij is a Hermitian operator v̂ij in coordinate, spin, and isospin
spaces. A sufficiently generic form of v̂ij able to reproduce the abundance of NN
scattering data is

v̂ij =
18∑
u=1

vu(rij )Ô
u
ij , (6.1)

where the first fourteen operators are charge-independent, i.e., invariant with respect
to rotation in the isospin space:

Ô
u=1,...14
ij = 1, τ i · τ j , σ i · σ j , (σ i · σ j )(τ i · τ j ), Ŝij , Ŝij (τ i · τ j ),

L̂ · Ŝ, L̂ · Ŝ (τ i · τ j ), L̂2, L̂2(τ i · τ j ), L̂2(σ i · σ j ),

L̂2(σ i · σ j )(τ i · τ j ), (L̂ · Ŝ)2, (L̂ · Ŝ)2(τ i · τ j ). (6.2)

The notation rij = ri − rj indicates the relative position vector, whereas σ i and σ j

are spins (in units of h̄/2), and τ i and τ j are isospins (in units of h̄/2). The relative
momentum is denoted by p̂ij = p̂i − p̂j ; L̂ = rij × p̂ij is the total orbital angular
momentum, and L̂2 its square in the centre-of-mass system. The spin-orbit coupling
enters via L̂·Ŝ, being Ŝ = (σ i+σ j )/2 the total spin (in units of h̄). Analogously, we
define the total isospin T̂ = (τ i + τ j )/2. The tensor coupling enters via the tensor
operator

Ŝij = 3(σ i · nij )(σ j · nij )− σ i · σ j , (6.3)

where nij = rij /rij . Both the spin-orbit and tensor couplings are necessary for
explaining experimental data. The terms with Ôu=15,...18

ij are small and break charge
independence, and they correspond to vnp(T = 1) = vnn = vpp , while the
charge symmetry implies only that vnn = vpp . Modern fits to very precise nucleon
scattering data indicate the existence of charge-independence breaking. However,
the effect of such forces on the energy of nucleonic matter is much smaller than
the uncertainties of many-body calculations and therefore can be neglected while
constructing the EoS.

A different approach to the study of the NN interaction is the one based on
quark and gluon degrees of freedom, thus connecting the low energy nuclear
physics phenomena with the underlying QCD structure of the nucleons. This is
quite difficult because the whole hadron sector is in the non-perturbative regime,
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due to confinement. A possible strategy is based on the systematic use of the
symmetries embodied in the hadronic QCD structure. The main symmetry which
is explicitly broken in the confined matter is the chiral symmetry, since the bare
u and d quark masses in non-strange matter are just a few MeV. According to the
general Goldstone theorem, this results in the physical mass of the pion, which
suggests to treat the pion degrees of freedom explicitly and to describe the short
range part by structureless contact terms. Along this line, Weinberg (1990, 1991)
proposed a scheme for including in the interaction a series of operators which reflect
the partially broken chiral symmetry of QCD. The strength parameters associated to
each operator are then determined by fitting the NN phase shifts, the properties of
deuteron and of few-body nuclear systems. The method is then implemented in the
framework of the Effective Field Theory (EFT), i.e. by ordering the terms according
to their dependence on the physical parameter q/m, where m is the nucleon mass
and q a generic momentum that appears in the Feynman diagram for the considered
process. This parameter is assumed to be small and each term is dependent on a
given power of this parameter thus fixing its relevance. In this way a hierarchy of
the different terms of the forces is established. In particular, the pion exchange term
is treated explicitly and is considered the lowest order (LO) term of the expansion.
Moreover, it is found that the three-body forces (TBFs) so introduced are of higher
order than the simplest two-body forces and they are treated on an equal footing.
They arise first at next-to-next leading order (N2LO) and, as a consequence, because
of the hierarchy intrinsic in the chiral expansion, TBFs are expected to be smaller
than two-body forces, at least within the range of validity of the expansion, whereas
four-body forces appear only at next-to-next-to-next leading order (N3LO) level,
and so on. It has to be stressed that in the TBFs the same couplings that fix the
two-body forces have to be used and, in general, only a few additional parameters
must be introduced as the order increases. Therefore the TBFs are automatically
consistent with the two-body forces, and so on for the higher order many-nucleon
forces. At present the nucleonic interaction has been calculated up to N4LO (Hu
et al. 2017). An exhaustive list of higher order diagrams up to N3LO can be found
in review papers (Meißner 2005; Epelbaum et al. 2009). This Chiral Perturbation
Expansion (ChPE) can be used to construct NN interactions that are of reasonably
good quality in reproducing the two-body data (Entem and Machleidt 2002; Holt
et al. 2010). The assumption of a small q/m parameter in principle restricts the
applications of these forces to not too large momenta, and therefore to a not too
large density of nuclear matter. It turns out that the safe maximum density is around
the saturation value, n0. This method has been refined along the years and many
applications can be found in the literature.

Another approach inspired by the QCD theory of strong interaction has been
developed in Fujiwara et al. (2007), Oka et al. (1987), Oka and Yazaki (1980),
Shimizu (1989), Valcarce et al. (2005). In this approach, based on the resonating-
group method (RGM), the quark degree of freedom is explicitly introduced and the
NN interaction is constructed from gluon and meson exchange between quarks, the
latters being confined inside the nucleons. The resulting interaction is highly non-
local due to the RGM formalism and contains a natural cut-off in momentum. The
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most recent model, named fss2 (Fujiwara et al. 2001, 2007), reproduces closely the
experimental phase shifts, and fairly well the data on the few-body systems, e.g. the
triton binding energy is reproduced within 300 keV. Recently, it has been shown that
the fss2 interaction is able to reproduce correctly the nuclear matter saturation point
without the TBF contribution (Baldo and Fukukawa 2014).

Recently, a further possibility of constructing the NN interaction based on lattice
QCD has been explored, see Aoki et al. (2012), Beane et al. (2011) for a review. This
tool, from which one should be able in principle to calculate the hadron properties
directly from the QCD Lagrangian, is extremely expensive from the numerical point
of view and current simulations can be performed only with large quark masses. In
fact, an accurate simulation has to be made on a fine grid spacing and large volumes,
thus requiring high performance computers. Hopefully in the next few years high
precision calculations will be possible, especially for those channels where scarce
experimental data are available, e.g. the nucleon-hyperon interaction.

A further class of NN interactions is based on renormalization group (RG)
methods (see, e.g., Entem and Machleidt (2002), Bogner et al. (2010) for a complete
review). The main effect of the hard core in the NN interaction is to produce
scattering to high momenta of the interacting particles. A possible way to soften
the hard core from the beginning is by integrating out all the momenta larger than
a certain cut-off Λ and “renormalize” the interaction to an effective interaction
Vlow in such a way that it is equivalent to the original interaction for momenta
q < Λ. The Vlow interaction turns out to be much softer, since no high momentum
components are present and, as a consequence, three- and many-body forces emerge
automatically from a pure two-body force. The short range repulsion is replaced by
the non local structure of the interaction. The cut-off Λ is taken above 300 MeV
in the laboratory, corresponding to relative momentum q ≈ 2.1 fm−1, that is the
largest energy where the experimental data are established. The fact that Vlow is
soft has the advantage to be much more manageable than a hard core interaction,
in particular it can be used in perturbation expansion and in nuclear structure
calculations in a more efficient way (Bogner et al. 2010; Furnstahl and Hebeler
2013).

6.2.2 Theoretical Many-Body Methods

The theoretical description of matter in extreme conditions is a very challenging
task. Moreover, current nuclear physics experiments cannot probe all the physical
conditions encountered in compact stars. Therefore, theoretical models are required
to extrapolate to unknown regions. The undertaken theoretical approaches also
depend on the relevant degrees of freedom of the problem, from nuclei and nucleons
at lower densities and temperature, to additional particles, such as hyperons and
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quarks, at high densities and temperature. The current theoretical many-body
approaches to describe a nuclear system can be divided into two main categories:

1. Ab-initio (microscopic) approaches, that start from “realistic” two-body inter-
actions fitted to experimental NN scattering data and to the properties of
bound few-nucleon systems. Examples of these kinds of models are Green’s
function methods, (Dirac-)Brueckner Hartree-Fock, variational, coupled cluster,
and Monte Carlo methods. Despite the tremendous progress that has been done in
the last years, these methods cannot yet be applied to large finite nuclear systems.
Nevertheless, recent developments allow ab-initio methods to reach medium to
“heavy” nuclei, see e.g. Cipollone et al. (2013), Somà et al. (2013), Binder et al.
(2014), Cipollone et al. (2015). Therefore, in the description of dense matter, the
ab-initio models are usually restricted to homogeneous matter; thus, they are not
applied to describe clustered matter (like in SN cores or NS crusts).

2. Phenomenological approaches, that rely on effective interactions which depend
on a certain number of parameters fitted to reproduce properties of finite nuclei
and nuclear matter. This class of methods are widely used in nuclear structure
and astrophysical applications. Among them, there are self-consistent mean-
field models and shell-model approaches. In astrophysics, the latters have been
employed, for example, to study electron-capture rates on nuclei relevant for
SN simulations (see e.g. Langanke and Martínez-Pinedo (2014) and references
therein). Alternatively, models based on self-consistent mean-field approaches
are widely used, in particular, to build EoSs of dense matter. These methods,
based on the nuclear energy-density functional (EDF) theory, can be either non-
relativistic (e.g. using Skyrme or Gogny interactions) or relativistic (based on
an effective Lagrangian with baryon and meson fields). A more macroscopic
approach to treat the many-body system is the (finite-range) liquid-drop model,
which parameterizes the energy of the system in terms of global properties such
as volume energy, asymmetry energy, surface energy, etc. and whose parameters
are fitted phenomenologically. The liquid-drop model usually describes well the
trend of nuclear binding energies and has been largely applied to construct EoSs
for compact stars.

In the following, we will not aim at giving a complete review on the different
theoretical many-body approaches (see, e.g., Ring and Schuck 2004; Müther and
Polls 2000; Bender et al. 2003; Baldo and Burgio 2012; Duguet 2014; Carlson et al.
2015), but we will give an overview of the two kinds of approaches, focusing on the
latest advances.

6.2.2.1 Ab-Initio Approaches

A microscopic many-body method is characterised mainly by two basic elements:
the realistic bare interaction among nucleons and the many-body scheme fol-
lowed in the calculation of the EoS. The many-body methods can be enumerated
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as follows:

- The Bethe-Brueckner-Goldstone (BBG) diagrammatic method and the corre-
sponding hole-line expansion,

- The relativistic Dirac-Brueckner Hartree-Fock (DBHF) approach,
- The variational method,
- The coupled cluster expansion,
- The self-consistent Green’s function (SCGF),
- The renormalization group (RG) method,
- Different methods based on Monte Carlo (MC) techniques.

A brief survey of all those methods is given below. For further details the reader
is left to the quoted references.

• The Bethe-Brueckner-Goldstone expansion.
The BBG many-body theory is based on the re-summation of the perturbation
expansion of the ground-state energy of nuclear matter (Baldo 1999; Baldo and
Maieron 2007). The original bare NN interaction is systematically replaced by
an effective interaction that describes the in-medium scattering processes, the
so-called G-matrix, that takes into account the effect of the Pauli principle on
the scattered particles, and the in-medium potential U(k) felt by each nucleon, k
being the momentum. The corresponding integral equation for the G-matrix can
be written as

〈k1k2|G(ω)|k3k4〉 = 〈k1k2|v|k3k4〉 +
∑
k′3k′4

〈k1k2|v|k′3k′4〉

×
(
1−ΘF (k

′
3)
) (

1−ΘF (k
′
4)
)

ω − ek′3 + ek′4 + iη
〈k′3k′4|G(ω)|k3k4〉 , (6.4)

where v is the bare NN interaction, ω is the starting energy, the two factors
(1 −ΘF (k)) force the intermediate momenta to be above the Fermi momentum
(“particle states”), the single-particle energy being ek = h̄2k2/2m + U(k),
with m the particle mass, and the summation includes spin-isospin variables. The
main feature of the G-matrix is that it is defined even for bare interactions with an
infinite hard core, thus making the perturbation expansion more manageable. The
introduction and choice of the in-medium single-particle potential are essential
to make the re-summed expansion convergent. The resulting nuclear EoS can
be calculated with good accuracy in the Brueckner two hole-line approximation
with the continuous choice for the single-particle potential, the results in this
scheme being quite close to the calculations which include also the three hole-
line contribution (Song et al. 1998).

One of the well known results of all non-relativistic many-body approaches
is the need of introducing TBFs in order to reproduce correctly the saturation
point in symmetric nuclear matter. For this purpose, TBFs are reduced to a
density dependent two-body force by averaging over the generalised coordinates
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(position, spin, and isospin) of the third particle, assuming that the probability
of having two particles at a given distance is reduced according to the two-body
correlation function. In the BBG calculations for nuclear matter, a phenomeno-
logical approach to the TBF was adopted, based on the so-called Urbana model
for finite nuclei, which consists of an attractive two-pion exchange contribution
between two nucleons via the excitation of a third nucleon, e.g. a Δ-baryon
(Fujita and Miyazawa 1957), supplemented by a parameterized repulsive part
(Carlson et al. 1983; Pieper 2008; Pieper et al. 2001; Pudliner et al. 1995),
adjusted to the properties of light nuclei. In the nuclear matter case, the two
parameters contained in the Urbana TBF (Baldo et al. 1997; Zhou et al. 2004;
Li et al. 2006) were accurately tuned in order to get an optimal nuclear matter
saturation point. In symmetric nuclear matter, this TBF produces a shift in the
binding energy of about +1 MeV and of −0.01 fm−3 in density. The problem
of such a procedure is that the TBF is dependent on the two-body force. The
connection between two-body and TBFs within the meson-nucleon theory of
nuclear interaction is extensively discussed and developed in Zuo et al. (2002a,b).
At present the theoretical status of microscopically derived TBFs is still quite
rudimentary; however, a tentative approach has been proposed using the same
meson-exchange parameters as the underlying NN potential. Results have been
obtained with the Argonne v18 (Wiringa et al. 1995), the Bonn B (Brockmann
and Machleidt 1990), and the Nijmegen 93 potentials (Li et al. 2008; Li and
Schulze 2008). Alternatively, latest nuclear matter calculations (Logoteta et al.
2015) used a new class of chiral inspired TBF, showing that the considered TBF
models are not able to reproduce simultaneously the correct saturation point and
the properties of three- and four-nucleon systems.

Recently, it has been shown that the role of TBF is greatly reduced if the NN
potential is based on a realistic constituent quark model (Baldo and Fukukawa
2014) which can explain at the same time few-nucleon systems and nuclear
matter, including the observational data on NSs and the experimental data on
heavy-ion collisions (HICs) (Fukukawa et al. 2015). An extensive comparison
among several EoSs obtained using different two-body and TBFs is illustrated
afterwards.

• The Dirac-Brueckner Hartree-Fock approach.
The relativistic approach is the framework on which the nuclear EoS should be
ultimately based. The best relativistic treatment developed so far is the Dirac-
Brueckner approach, about which excellent review papers can be found in the
literature (see, e.g., Machleidt 1989). In the relativistic context, the only two-
body forces that have been used are the ones based on meson exchange models.
The DBHF method has been developed in analogy with the non-relativistic case,
where the two-body correlations are described by introducing the in-medium
relativistic G-matrix. This is a difficult task, and in general one keeps the
interaction as instantaneous (static limit) and a reduction to a three-dimensional
formulation from a four-dimensional one. The main relativistic effect is due to
the use of the spinor formalism which has been shown (Brown et al. 1987) to
be equivalent to introducing a particular TBF, the so-called Z-diagram. This TBF
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turns out to be repulsive and consequently produces a saturating effect. In fact the
DBHF gives a better saturation point than the BHF. In this way, a definite link
between DBHF and BHF + TBF is established. Indeed, including in BHF only
these particular TBFs, one gets results close to DBHF calculations, see e.g. Li
et al. (2006). Generally speaking, the EoS calculated within the DBHF method
turns out to be stiffer above saturation than the ones calculated from the BHF
+ TBF method. Currently, some features of this method are still controversial
and the results depend strongly on the method used to determine the covariant
structure of the in-medium G-matrix.

• The variational method.
In the variational method one assumes that the ground-state trial wave function
Ψ can be written as

Ψtrial(r1, r2, . . . . . .) =
∏
i<j

f (rij )Φ(r1, r2, . . . ..) , (6.5)

where Φ is the unperturbed ground-state wave function, properly antisym-
metrised, and the product runs over all possible distinct pairs of particles. The
correlation factors f are determined by the Ritz-Raleigh variational principle,
i.e. by imposing that the mean value of the Hamiltonian gets a minimum

δ

δf

〈Ψtrial|H |Ψtrial〉
〈Ψtrial|Ψtrial〉 = 0 . (6.6)

In principle this is a functional equation for f and it is intended to transform
the uncorrelated wave function Φ(r1, r2, . . . ..) to the correlated one, and can be
written explicitly in a closed form only if additional suitable approximations are
introduced. Once the trial wave function is determined, all the expectation values
of other operators can be calculated. Therefore the main task in the variational
method is to find a suitable ansatz for the correlation factors f . Several different
methods exist for the calculation of f , e.g. in the nuclear context the Fermi-
Hyper-Netted-Chain (FHNC) (Fantoni and Rosati 1975; Pandharipande and
Wiringa 1979) calculations have been proved to be efficient.

For nuclear matter at low densities, two-body correlations play an essential
role, and this justifies the assumption that f is actually a two-body operator
F̂ij . Generally one assumes that F̂ can be expanded in the same spin-isospin,
spin-orbit, and tensor operators appearing in the NN interaction (Fantoni and
Fabrocini 1998; Carlson et al. 2015). Due to the formal structure of the Argonne
NN forces, most variational calculations have been performed with this class
of NN interactions, often supplemented by the Urbana TBFs. Many excellent
review papers exist in the literature on the variational method and its extensive
use for the determination of nuclear matter EoS, e.g. Pandharipande and Wiringa
(1979), Navarro et al. (2002). The best known and most used variational nuclear
matter EoS is the Akmal-Pandharipande-Ravenhall (APR) (Akmal et al. 1998).
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A detailed discussion on the connection between variational method and BBG
expansion can be found in Baldo and Maieron (2007).

Other methods based on the variational principle are widely used in nuclear
physics to evaluate expectation values. Among those, we mention the coupled-
cluster theory, proposed in Coester (1958), Coester and Kümmel (1960), in
which the correlation operator is represented in terms of the cluster operator. The
method has been proved to be successful in recent nuclear matter calculations
with chiral NN interactions (Hagen et al. 2007, 2014) and also in nuclear
structure calculations (Hagen et al. 2012, 2010). The variational Monte Carlo
(VMC) approach is also widely used in nuclear physics to evaluate expectation
values. Several calculations have been performed for light nuclei, including two
and three-body correlations (Wiringa et al. 2014), but the EoS of homogeneous
nuclear matter is hard to obtain, due to the increasingly large computational effort
with the number of nucleons (see Navarro et al. (2002), Carlson et al. (2015) for
complete reviews).

• Chiral effective field theory (χEFT) approach.
High-precision nuclear potentials based on chiral perturbation theory (ChPT)
(Entem and Machleidt 2003; Machleidt and Entem 2011) are nowadays widely
employed to link QCD, the fundamental theory of strong interactions, to nuclear
many-body phenomena. In particular, for nuclear matter, many-nucleon forces
are of course relevant. In this case another scale appears, kF /m, kF being the
Fermi momentum, which is of the same order of the pion mass mπ at saturation
and it is smaller than a typical hadron scale. In the chiral limit it is then natural
to expand in kF /m, and this expansion can be obtained from the vacuum ChPT
expansion (Kaiser et al. 2002). For nuclear matter the correction thus obtained
with respect to the vacuum diagrams gives a direct contribution to the EoS of
nuclear matter, and this correction is clearly proportional to a power of kF /m.
Also in this case a cut-off must be introduced, and its tuning allows to obtain
a saturation point and compressibility in fair agreement with phenomenology.
Along the same lines more sophisticated expansions can be developed, including
a power counting modified for finite density systems, where the small scale is
fixed by both kF andmπ/m. The results thus obtained are in good agreement with
the most advanced non-relativistic many-body calculations (Lacour et al. 2011).
A different approach can be developed, where the many-nucleon interactions
built in vacuum are directly used in nuclear matter calculations. In this case
the ChPT is used in conjunction with the EFT scheme. In recent years, χEFT
has been used for studying nuclear matter within various theoretical frameworks
like many-body perturbation theory (Hebeler et al. 2011; Wellenhofer et al.
2014; Coraggio et al. 2014; Drischler et al. 2016), SCGF framework (Carbone
et al. 2013b), in-medium chiral perturbation theory (Holt et al. 2013), the
BHF approach (Kohno 2013; Li and Schulze 2012), and quantum Monte Carlo
methods (Gezerlis et al. 2013; Roggero et al. 2014; Lynn et al. 2016). Several
reliable calculations have been performed up to twice the saturation density
n0, beyond which uncertainties were estimated by analysing the order-by-order
convergence in the chiral expansion and the many-body perturbation theory
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(Coraggio et al. 2014; Holt and Kaiser 2017). Variations in the resolution scale
(Bogner et al. 2005) and low-energy constants appearing in the two-nucleon and
three-nucleon forces were systematically explored (Hebeler and Schwenk 2010).
It has been found that the theoretical uncertainty band grows rapidly with the
density beyond n0, due to the missing third-order terms at low densities and
higher-order contributions in the chiral expansion. This has consequences not
only for the EoS, but also for the symmetry energy at saturation density, S0, and
the slope parameter L, as discussed in Baldo and Burgio (2016).

• Self-consistent Green’s function.
Another way to approach the many-body problem is through the many-body
Green’s functions formalism (Dickhoff and Van Neck 2008). In this approach
one performs a diagrammatic analysis of the many-body propagators in terms
of free one-body Green’s functions and two-body interactions. The perturbative
expansion results in an infinite series of diagrams, among which one has to
choose those which are relevant for the considered physical problem. Depending
on the approximation, one can either choose a given number of diagrams or sum
an infinite series of them, in analogy with the BHF approach. In the description of
nuclear matter, the method is conventionally applied at the ladder approximation
level, which encompasses at once particle-particle and hole-hole propagation,
and this represents the main difference with respect to the G-matrix, where
only particle-particle propagators are included. At a formal level, the comparison
between the BHF and the SCGF approaches is not straightforward. Even though
both approaches arise from a diagrammatic expansion, the infinite subsets of
diagrams considered in the two approaches are not the same, and the summation
procedures are also somewhat different. Whereas the BHF formalism in the
continuous choice can be derived from the ladder SCGF formalism after a series
of approximations, this is not the case for the full BBG expansion. In principle,
if both BBG and SCGF were carried out to all orders, they should yield identical
results. BBG theory, however, is an expansion in powers of density (or hole-
lines), and the three-hole line results seem to indicate that it converges quickly.
The error in the SCGF expansion is more difficult to quantify, as one cannot
directly compute (or even estimate) which diagrams have to be included in the
expansion. Reviews on the applications of the method to nuclear problems can
be found in Müther and Polls (2000), Dickhoff and Barbieri (2004).

Also for the SCGF method the inclusion of TBFs is essential. So far TBFs
were not included in the ladder approximation, however a method has been
developed recently in Carbone et al. (2013b), and applied to symmetric nuclear
matter using chiral nuclear interactions. TBFs are included via effective one-body
and two-body interactions, and are found to improve substantially the saturation
point (Carbone et al. 2013a).

One has to notice that because of the well-known Cooper instability (Cooper
1956), through which a fermionic many-body system with an attractive interac-
tion tends to form pairs at the Fermi surface, low-temperature nuclear matter is
unstable with respect to the formation of a superfluid or superconducting state.
The Cooper instability shows up as a pole in the T -matrix when the temperature
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falls below the critical temperature for the transition to the superfluid/supercon-
ducting state. Therefore current calculations are often performed at temperatures
above the critical temperature and extrapolated to zero temperature, see Frick
(2004) for details.

• Quantum Monte Carlo methods.
Quantum Monte Carlo (QMC) methods are very successful in describing the
ground state of fermionic systems, like liquid 3He, or bosons, like atomic
liquid 4He. Modern computer technology has allowed the extension of the
QMC method to nuclear systems, which have more complicated interactions and
correlation structures. The mostly used versions are the auxiliary field diffusion
Monte Carlo (AFDMC) (Gandolfi et al. 2009) and the Green’s function Monte
Carlo (GFMC) (Carlson et al. 2003) methods, which differ in the treatment of
the spin and isospin degrees of freedom. It has to be noticed that the computing
time increases exponentially with the number of particles, which limits the
number of nucleons considered by GFMC up to 16 neutrons. The largest nucleus
considered is 12C. The AFDMC strategy allows to efficiently sample spin-isospin
correlations in systems with a sufficient number of nucleons (N = 114). A recent
comparison has demonstrated that both methods give very close results for
neutron drops with N ≤ 16 (Gandolfi et al. 2011). However, the accuracy of
the different QMC versions is limited by the fermion sign problem (Schmidt and
Kalos 1987), for which different approximations are adopted (Carlson et al. 2012,
2015). This seriously limits the potentiality of the QMC approach.

In spite of its recent progress, it is not yet possible to perform GFMC and
AFDMC calculations with the Argonne v18 potential, mainly due to technical
problems associated with the spin-orbit structure of the interaction and the trial
wave function, which induce very large statistical errors. In order to overcome
this problem, the full operatorial structure of current high-quality NN potentials
has been simplified and more manageable NN potentials have been developed
containing less operators with readjusted parameters. In particular, we mention
the V8’, V6’, and V4’ potentials (Pudliner et al. 1997; Wiringa and Pieper
2002), eventually supplemented with the Urbana TBFs. Recently, a local chiral
potential has been developed (Gezerlis et al. 2013) which is well suited for QMC
techniques.

Finite-Temperature Equation of State

In the latest stage of the SN collapse the EoS of asymmetric nuclear matter at
finite temperature plays a major role in determining the final evolution. Microscopic
calculations of the nuclear EoS at finite temperature are quite few. The variational
calculation by Friedman and Pandharipande (1981) was one of the first few semi-
microscopic investigations. In the resulting EoS for symmetric nuclear matter, one
recognizes the familiar Van der Waals shape, which entails a liquid-gas phase
transition, with a definite critical temperature Tc, i.e. the temperature at which the
minimum in the Van der Waals isotherm disappears. In the Friedman and Pandhari-
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pande work, the critical temperature turns out to be around Tc = 18 − 20 MeV.
The values of the critical temperature, however, depend on the theoretical scheme,
as well as on the particular NN interaction adopted. In particular, non-relativistic
Brueckner-like calculations at finite temperature (Baldo and Ferreira 1999), where
the formalism by Bloch and De Dominicis (1958, 1959a,b) was followed, confirmed
the Friedman and Pandharipande findings with very similar values of Tc. The main
difficulty in this approach is the lack of thermodynamic consistency. In fact the
thermodynamic relation P = −F + μn, which connects the pressure P with
the free energy density F , the chemical potential μ, and the number density n and
usually referred to as the Hughenoltz-Van Hove theorem, is not satisfied. In other
words, the pressure calculated in such a way does not coincide with the pressure
calculated from P = −Ω/V (Ω being the grand potential and V the volume).
In Baldo and Ferreira (1999), a procedure was proposed in order to overcome
this problem: the pressure is calculated from the derivative of the free energy per
particle so that the Hughenoltz-Van Hove theorem is automatically satisfied. The
difficulty is that the chemical potential determined by fixing the density in the Fermi
distribution is not strictly the one extracted from the derivative of F , as it should
be. In any case, the procedure looks most reliable within the Brueckner scheme
(see Baldo and Ferreira (1999) for details). For completeness, we remind the reader
that the Brueckner approximation, both at zero and finite temperature, violates the
Hugenoltz-Van Hove theorem. On the contrary, the Hughenoltz-Van Hove theorem
is strictly fulfilled within the SCGF method (Baym 1962; Rios et al. 2006, 2008).
The results at the two-body correlation level, when only two-body forces are used, in
some cases are similar to the Brueckner ones, in some others they differ appreciably
according to the forces used. The main difference with the Brueckner scheme is the
introduction in the ladder summation of the hole-hole propagation, which gives a
repulsive contribution. As a result, the critical temperature in the SCGF approach
with Argonne v18 potential is found to be about Tc ≈ 11.6 MeV, whereas in the
BHF approach Tc ≈ 18.1 MeV (Rios et al. 2008), depending on the adopted NN
interaction. As far as the DBHF is concerned, it turns out that the critical temperature
within this scheme is definitely smaller than in the non-relativistic scheme, about
10 MeV against 18–20 MeV (Ter Haar and Malfliet 1986; Haar and Malfliet 1987;
Huber et al. 1998). This cannot be due to relativistic effects, since the critical
density is about 1/3 of the saturation density, but to a different behaviour of the
Dirac-Brueckner EoS at low density. This point remains to be clarified. Indeed,
there are experimental data from heavy-ion reactions that point towards a value of
Tc > 15 MeV (Borderie and Rivet 2008; Karnaukhov et al. 2008).

Results and Discussion

We will discuss here the results obtained with some of the widely used many-
body methods illustrated above. The simplest constraint that has to be considered
is the reproduction of the phenomenological saturation point; we will see that this
condition is not trivially fulfilled. Other constraints will be analysed afterwards.
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Fig. 6.1 Left panel: Symmetric and pure neutron matter EoS from BHF (black circles), SCGF (red
squares), and APR (blue triangles) schemes including only two-body forces. Right panel: Energy
per nucleon of symmetric nuclear matter obtained with different NN and TBF interactions, for
different theoretical approaches; courtesy of H.-J. Schulze. See text for details

We begin by discussing a comparison between the BHF, SCGF, and APR EoS
with only two-body forces. Results are displayed for the binding energy per nucleon,
E/A, of symmetric nuclear matter (SNM) and pure neutron matter (PNM) in
Fig. 6.1, left panel, where the Argonne v18 NN potential is adopted. We notice
a substantial agreement between all methods for PNM calculations, whereas for
SNM some differences show up. It is well known that the discrepancies between
SCGF and BHF result in an overall repulsive effect in the binding energy (Dewulf
et al. 2003), which is mainly due to the inclusion in the SCGF expansion of the
hole-hole propagation. Those effects are quite sizeable in SNM. For instance, the
saturation point shifts from n0 = 0.25 fm−3, E(n0)/A = −16.8 MeV for BHF to
n0 = 0.17 fm−3, E(n0)/A = −11.9 MeV for SCGF. While the shift seems to go
towards the right saturation density, the value of the SCGF saturation energy is quite
high.

In the right panel of Fig. 6.1, we display the energy per particle in SNM obtained
with a set of NN potentials and with different TBFs (TNF in the legend). On the
standard BHF level (black curves) one obtains in general too strong binding, varying
between the results with the Paris (Lacombe et al. 1980), v18 (Wiringa et al. 1995),
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and Bonn C potentials (Machleidt 1989; Brockmann and Machleidt 1990) (less
binding), and those with the Bonn A (Machleidt and Slaus 2001), N3LO (Entem
and Machleidt 2002, 2003), and IS (Doleschall et al. 2003) potentials (very strong
binding). Including TBFs, with the Paris, Bonn B, v18, and Njimegen 93 (Stoks
et al. 1994) potentials, adds considerable repulsion and yields results slightly less
repulsive than the DBHF ones with the Bonn potentials (green curves). This is not
surprising, because it is well known that the major effect of the DBHF approach
amounts to include the TBF corresponding to nucleon-antinucleon excitation by 2σ
exchange within the BHF calculation. In those BHF calculations microscopic TBFs
have been included and those turn out to be more repulsive at high density than
the phenomenological TBF, i.e. the one derived from the Urbana UIX model (full
red symbols). This is a clear sign of uncertainty in the role of TBF at large density.
The blue curve with asterisks represents the results of the APR EoS obtained with
the Urbana UIX TBF, which was adjusted to reproduce the saturation point, by
varying mainly one parameter, as it has been done in the BHF approach. We notice
that the effect of the TBF is quite moderate around saturation (δn = −0.01 fm−3,
δE = +1 MeV), but they are essential to get the correct saturation point.

The contribution of the TBF to the saturation mechanism is quite relevant when
chiral forces are used. In fact, as illustrated in Fig. 6.2 (left panel), without TBF
the EoS does not display an apparent saturation, and anyhow close to saturation
density the TBF contribution is quite large, of several MeV, in contrast to the case
of meson exchange interactions, where the TBF contribution around saturation is of
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the order of 1 MeV. These calculations are perturbative in character, as indicated in
the labels, but this feature holds true also in more refined calculations. We notice the
relevance of the momentum cut-offΛ, that is introduced in order to control the point
interaction forces, that otherwise would produce a divergent contribution. In general
the chiral two-body forces are evolved according to the RG method before they are
employed in the many-body calculations, as in Hebeler et al. (2011). The same
procedure has been followed in the BHF calculations of Sammarruca et al. (2015),
where a similar relevance of the TBF was found. The most sophisticated many-body
calculation with chiral forces is probably the one of Hagen et al. (2014), where the
coupled cluster method was employed up to a selected set of three-body clusters.
In the latter paper it was also found that it is difficult with the same chiral forces
to fit both the binding energy of few nucleon systems (H, 3He) and the saturation
point. This feature is common to the meson exchange forces discussed above, for
which the same difficulty was found. A similar conclusion was found in the BHF
calculations of Logoteta et al. (2016), where it is suggested to fit simultaneously the
few-body binding energy and the saturation point.

More recently it has been shown (Baldo and Fukukawa 2014) that the fss2
interaction is able to reproduce also the correct nuclear matter saturation point
without any additional parameter or need to introduce TBFs. This is illustrated
in Fig. 6.2 (right panel), where the EoS for symmetric matter is reported. The
open symbols correspond to the EoS calculated at the BHF level of approximation
with the gap (GC, squares) and the continuous (CC, circles) choices, while the
full symbols correspond to the EoS calculated by including the three hole-line
contribution. One can see that also in this case the final EoS is insensitive to the
choice of the single-particle potential. The main result of this calculation is that the
saturation point is reproduced without the introduction of TBFs. Note that this is
the only two-body interaction that is able to reproduce with a fair accuracy both the
binding energy of few nucleon systems and the saturation point of nuclear matter,
without the need of TBFs.

The conclusion one can draw from this rapid review of results with different
forces is that the relevance of the TBFs is model dependent and that the explicit
introduction of the quark degrees of freedom reduces strongly the relevance of the
TBFs and allows to connect few-body systems to nuclear matter.

In the following, we will only consider microscopic EoSs which fit correctly the
saturation point. The considered set of EoS includes variational calculations (APR)
(Akmal et al. 1998), BHF calculations with TBFs, both phenomenological (Baldo
et al. 1997; Taranto et al. 2013) and microscopically derived (Grangé et al. 1989;
Zhou et al. 2004), and relativistic Dirac-Brueckner calculations (Fuchs 2006). A
comparison among these EoSs, along with some phenomenological EoSs, will be
discussed in Sect. 6.2.2.2.
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6.2.2.2 Phenomenological Approaches

Phenomenological approaches make use of effective interactions instead of bare
ones to treat dense matter, either homogeneous or clustered. Most of these
approaches rely on the (nuclear) EDF theory, that has proved to be successful in
reproducing the properties of medium-mass and heavy nuclei (Bender et al. 2003;
Stone and Reinhard 2007) but can also be applied to describe infinite systems,
either inhomogeneous (like SN cores ot NS crusts) or homogeneous (like NS
cores). Indeed, nuclear EDFs presently provide a complete and accurate description
of ground-state properties and collective excitations over the whole nuclear chart
(e.g. Bender et al. 2003; Lalazissis et al. 2004). Non-uniform (nucleonic) clustered
matter, that is present at subsaturation density at relatively low temperatures, can
be treated using various models, like the NSE model, liquid-drop type models,
(semi-classical) Thomas-Fermi models, etc. On the other hand, a different approach
to construct the (phenomenological) EoS is to use purely parameterized EoSs,
that do not rely on any description of the NN interaction. An example is given
by the piecewise polytropic EoS for nuclear matter of Read et al. (2009), while
a metamodel for the nucleonic EoS inspired from a Taylor expansion around the
saturation density of symmetric nuclear matter is proposed and parameterized in
terms of the empirical parameters in Margueron et al. (2018a) and employed to
analyse global properties of NSs in Margueron et al. (2018b).

Nuclear EDF/Mean-Field Approaches

The density functional theory has been very successfully applied in various fields of
physics and chemistry. The advantage of this method is to recast the complex many-
body problem of interacting particles (like nucleons) into an effective independent
particle approach (see, e.g., Bender et al. (2003), Lacroix (2010), Duguet (2014)
for a review). The total energy of the system is thus expressed as a functional of
the nucleon number densities, the kinetic energy densities, and the spin-current
densities, which are functions of the three spatial coordinates. It has been proved that
the exact ground state of the system can be obtained from an energy minimisation
procedure (see Hohenberg and Kohn (1964), Kohn and Sham (1965) for the case of
electron systems). The issue lies in the fact that the exact form of the functional
itself is not known a priori. Therefore, one has to rely on phenomenological
functionals, either relativistic, usually derived from a Lagrangian, or non-relativistic,
traditionally derived from effective forces of Skyrme or Gogny type. In the nuclear
context, this approach has been often referred to as the self-consistent (relativistic)
mean-field Hartree-Fock method, or the Hartree-Fock+BCS and Hartree-Fock-
Bogoliubov (HFB) methods if pairing is included (see, e.g., Ring and Schuck
(2004), Brink and Broglia (2005), and Chap. 8 in this book for details on pairing).
The EDFs depend on a certain number of parameters fitted to reproduce some
properties of known nuclei and nuclear matter, as well as ab-initio calculations of
infinite nuclear matter. The non-uniqueness of the fitting procedure and the choice
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of the experimental data used to fit the parameters have led to several different
functionals, that may give very different predictions when applied outside the
domain where they were fitted (see, e.g., Goriely and Capote 2014). The situation is
particularly critical for astrophysical applications, where extrapolations of nuclear
masses are required for the description of the deepest regions of the NS crust, in
SN cores, and in nucleosynthesis calculations. However, the reliability of these
EDFs for very neutron-rich systems can be partially tested by comparing their
predictions for the properties of pure neutron matter with results obtained from
microscopic ab-initio calculations. Moreover, another question arises as whether
the EDF parameters determined by fitting nuclear data at zero temperature can be
reliably used when applying the EDFs at finite temperature. Different studies have
shown that the temperature dependence of the couplings is rather weak up to a few
tens of MeV (e.g., Moustakidis and Panos 2009; Fantina et al. 2012b; Fedoseew and
Lenske 2015), but it remains to be clarified whether these conclusions still hold at
higher temperatures (�100 MeV) that can be reached in CCSNe or NS mergers (see
Sect. 6.3.2).

• Non-relativistic EDFs.
Non-relativistic approaches usually start from an Hamiltonian Ĥ for the many-
body system, Ĥ = T̂ + V̂ , where T̂ = ∑i p̂

2/2mi is the kinetic term (p̂ being
the momentum operator and mi the mass of the species i) and V̂ is the potential
term. The latter accounts for the two-body (pseudo)potential, that allows one
to incorporate physical properties like effective masses. Three-body interactions
were included explicitly in the seminal work by Vautherin and Brink (1972),
while most recent EDFs rather employ density-dependent terms that include in
an effective way higher-order correlations. However, these terms can generate
some issues when implemented beyond mean field (e.g., Bender et al. 2003). The
total energy of the system E can also be written in terms of only the EDF without
knowing explicitly the underlying Hamiltonian, E = ∫ d3r EEDF+ECoul, where
EEDF is the energy functional that includes the kinetic energy density and the
interaction term modelling the effective interaction among particles, and ECoul
is the Coulomb energy. In calculations including pairing, the pair energy, Epair,
has to be accounted for, and in finite nuclei the corrections for spurious motion,
Ecorr, have to be subtracted (e.g., Bender et al. 2003).

The Skyrme-type effective interactions are zero-range density-dependent
interactions and they are widely used in nuclear structure and in astrophys-
ical applications since they allow for fast numerical computations. Since the
pioneer work of Skyrme (1956), several extensions have been proposed (see,
e.g., Lesinski et al. 2007; Bender et al. 2009; Chamel et al. 2009; Margueron et al.
2009; Margueron and Sagawa 2009; Zalewski et al. 2010; Fantina et al. 2011;
Hellemans et al. 2012; Margueron et al. 2012; Davesne et al. 2015), allowing
to include and study, for example, the tensor part of the EDF, the spin-density-
dependent terms, as well as a surface-peaked effective-mass term. The accuracy
in reproducing experimentally measured properties of finite nuclei has been
greatly increased in recent well-calibrated Skyrme-type EDFs (see, e.g., Goriely
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et al. (2010, 2013a,b, 2016a), Chamel et al. (2015), and Washiyama et al. 2012;
Kortelainen et al. 2014). Even though in some cases Skyrme forces may exhibit
some instabilities and self-interaction errors (see, e.g., the discussions in Cao
et al. 2010; Chamel 2010; Chamel and Goriely 2010; Hellemans et al. 2013;
Navarro and Polls 2013; Pastore et al. 2014, 2015), these can be cured with
appropriate modifications of the EDF. In Skyrme forces, usually the pairing
interaction is specified separately, even if attempts to construct the pairing force
starting from the same Skyrme interaction exist (e.g., Dobaczewski et al. 1984),
although this results in more involving calculations. Many Skyrme models have
been recently compared against several nuclear matter constraints in Dutra et al.
(2012). However, most of the criteria chosen by the authors to discriminate
among the different parameterizations are still matter of debate, particularly
regarding the symmetry energy coefficients (see e.g. Li et al. 2014), and most of
the constraints are known with large error bars (see also Sects. 6.2.3.1 and 6.3.1).
Therefore, it might be premature to rule out some models on those basis (see e.g.
Stevenson et al. 2013).

On the other hand, finite-range (density-dependent) interactions are generally
derived from the Gogny interaction (Dechargé and Gogny 1980). For these
EDFs, the same finite-range interaction has been generally employed for the
pairing term. However, this kind of EDFs are less widely used in astrophysics
with respect to the Skyrme ones, because of the more involving numerical
computations (see, e.g., Goriely et al. (2009, 2016b), Hilaire et al. (2016); see
also Sellahewa and Rios (2014) for an analysis of different Gogny interactions
and their predictions of the homogeneous-matter properties).

In addition to the Skyrme and Gogny effective interactions, other non-
relativistic approaches have been developed. The two-body separable monopole
(SMO) interaction has been designed to be an effective interaction whose terms
are separable in the space (and isospin) coordinates with parameters fitted to the
properties of finite nuclei (Stevenson et al. 2001; Rikovska Stone et al. 2002).
Other approaches include the three-range Yukawa (M3Y) type interactions
(Nakada 2003) and the local EDF developed, e.g., in Fayans et al. (2000),
Fayans et al. (2001) in which the self-consistent Gor’kov equations are solved
to study nuclear ground-state properties. More recently, new EDFs have been
constructed within an approach inspired by the Kohn-Sham density functional
theory (Baldo et al. 2010, 2013). These Barcelona-Catania-Paris(-Madrid) (BCP
and BCPM) EDFs have been derived by introducing in the functional results
from microscopic nuclear and neutron-matter BHF calculations, and by adding
appropriate surface, Coulomb, and spin-orbit contributions. With a reduced
number of parameters, these EDFs yield a very good description of properties
of finite nuclei.

Nevertheless, a particular attention has to be paid when applying non-
relativistic EDFs at high densities, where the EoSs based on these EDFs may
become superluminal.
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• Relativistic mean-field (RMF) and relativistic Hartree-Fock (RHF) models.
RMF models have been successfully employed in nuclear structure, to describe
both nuclei close to the valley of stability and exotic nuclei (see, e.g., Nikšić et al.
(2011) for a review, and Dutra et al. (2014, 2016a,b) for a recent comparison
of different RMF parameterizations). RMF models have been constructed based
on the framework of quantum hadrodynamics (see, e.g., Fetter and Walecka
1971; Walecka 1974; Serot 1992). The basic idea of these models is the
same as for non-relativistic mean-field approaches: the many-body state is built
up as an independent particle or quasiparticle state from the single-particle
wave functions, which are, in this framework, four-component Dirac spinors.
A nucleus is thus described as a system of Dirac nucleons whose motion is
governed by the Dirac equation. The NN interaction can be described as zero-
range (point coupling), where the single-particle potentials entering the Dirac
equations are functions of the various relativistic densities, or as finite-range
interaction, in terms of an exchange of mesons through an effective Lagrangian
L = Lnuc+Lmes+Lint, where the different terms account for the nucleon, the
free meson, and the interaction contribution, respectively. The isoscalar scalar
σ meson and the isoscalar vector ω meson mediate the long and short-range
part of the interaction, respectively, in symmetric nuclear matter, while isovector
mesons (like the isovector vector ρ meson and the isovector scalar δ meson)
need to be included as well to treat isospin-asymmetric matter. It is also possible
to reformulate the model in terms of the corresponding EDF. The RMF total
energy is then given by E = ∫

d3r ERMF + ECoul, where ERMF includes the
nucleon, meson, and interaction contributions. As in non-relativistic EDFs, Epair
has to be included when accounting for pairing and the centre-of-mass correction
has to be subtracted (Bender et al. 2003) in finite nuclei. The interaction term
depends on the nucleon-meson coupling constants that are usually determined
by fitting nuclei or nuclear-matter properties. In particular, coupling to scalar
mesons is needed to obtain a correct spin-orbit interaction in finite nuclei.
However, in the RMF, spin-orbit splitting occurs without the recourse to an
assumed spin-orbit interaction. The Klein-Gordon equations for the meson fields,
coupled to the Dirac equations for the nucleons, are solved self-consistently
in the RMF approximation, where the meson-field operators are replaced by
their expectation values in the nuclear ground state. However, for a quantitative
description of nuclear matter and finite nuclei, one needs to include a medium
dependence of the effective mean-field interactions accounting for higher-order
many-body effects, analogously to non-relativistic EDFs. A medium dependence
can either be introduced by including non-linear (NL) meson self-interaction
terms in the Lagrangian, or by assuming an explicit density dependence (DD)
for the meson-nucleon couplings. The former approach has been employed
in constructing several phenomenological RMF interactions, like the popular
NL3 (Lalazissis et al. 1997), PK1, PK1R (Long et al. 2004), and FSUGold (Todd-
Rutel and Piekarewicz 2005) (see, e.g., Maslov et al. (2015) for a recent study
with a NL Walecka model, see Boguta and Bodmer 1977; Serot and Walecka
1986). In the second approach, the functional form of the density dependence
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of the coupling can be derived by comparing results with microscopic Dirac-
Brueckner calculations of symmetric and asymmetric nuclear matter or it can
be fully phenomenological, with parameters adjusted to experimental data (see,
e.g. the DD-RMF models of Nikšić et al. 2002; Long et al. 2004; Typel 2005;
Gögelein et al. 2008; Roca-Maza et al. 2011; Antić and Typel 2015). The density
dependence gives rise to the so-called rearrangement contributions which are
essential for the thermodynamic consistency of the model. Generalised (g)RMF
models, which are an extension of the DD-RMF models, where the degrees of
freedom of nucleons and (light) clusters are included in the Lagrangian, have
been also formulated (see Sect. 6.2.2.3).

On the other hand, point-coupling models have been developed (see, e.g.,
Nikolaus et al. 1992; Rusnak and Furnstahl 1997; Bürvenich et al. 2002; Nikšić
et al. 2008; Zhao et al. 2010), recently reaching a level of accuracy comparable
to that of standard meson-exchange effective interactions when applied for the
description of finite nuclei. Parameters of these models can also be constrained
by χEFTs (Finelli et al. 2003, 2004, 2006).

However, these models do not explicitly take into account the antisymmetrisa-
tion of the many-body wave function. Despite the computational more involving
character of the finite-range interaction mediated by meson exchange, relativistic
Hartree-Fock including exchange terms and relativistic HFB accounting for
pairing have also been implemented (see, e.g., Meng et al. (2006) for a review
and the more recent Long et al. 2007, 2010).

A RMF model incorporating the internal quark structure of baryons is the
quark-meson coupling model. This approach treats nucleons as bound states of
three quarks and interacting via meson exchange. In addition to standard mesons,
pions are also included. This model has been applied to study NS properties, e.g.,
in Thomas et al. (2013), Whittenbury et al. (2014).

As an illustrative example, in Fig. 6.3, the energy per particle for symmetric
(SNM, upper panels) and pure neutron matter (PNM, lower panels) is plotted
as a function of baryon density, both for microscopic models (left panels) and
for different phenomenological functionals (right panels). Among the latters, we
show the non-relativistic SLy4 (Chabanat et al. 1998) and BSk21 (Goriely et al.
2010) Skyrme-type EDFs, the D1M (Goriely et al. 2009) Gogny EDF, and the
BCPM (Baldo et al. 2010, 2013) functional, and the RMF NL3 (Lalazissis et al.
1997) and DD-MEδ (Roca-Maza et al. 2011) models. In both SNM and PNM,
up to about twice the saturation density, all approaches, except very stiff EoSs,
yield similar results. Microscopic EoSs diverge at higher densities because of
the different treatment of TBFs and three-body correlations. Since microscopic
calculations of PNM are very accurate, they can serve as benchmark calculations
to constrain more phenomenological models. The spread in these results can thus
provide an estimate of the current theoretical uncertainties (see also Gandolfi et al.
2015). For phenomenological approaches, a similar spread at high density can be
noticed. Indeed, these models have parameters that are fitted on experimental data
known with some uncertainties around saturation (see also Sect. 6.2.3.1), thus their
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Fig. 6.3 Energy per particle in symmetric (upper panels) and pure neutron matter (lower panels)
as a function of baryon number density for different models, both microscopic (left panels) and
phenomenological (right panels). See text for details

behaviour at larger densities where no experimental data are available can be very
different. It has to be mentioned that, at low density, the appearance of clusters has
to be considered in the EoS (Röpke et al. 2013); the treatment of clustered matter
will be discussed in the next Section.

6.2.2.3 Approaches to Treat Non-uniformMatter

Non-uniform nuclear matter (either nuclei or clusters) is expected to be present at
low densities (below saturation) and relatively low temperatures, thus in the crust of
NSs and in SN cores. At present, the best ab-initio many-body calculations employ-
ing realistic interactions are not affordable to describe inhomogeneous matter.
Therefore, one has to rely on different approximations based on phenomenological
effective interactions. These approaches either (1) use the so-called single-nucleus
approximation, i.e. the composition of matter is assumed to be made of one rep-
resentative heavy nucleus (the one that is energetically favoured), possibly together
with light nuclei (often represented by alpha particles) and unbound nucleons, or (2)
consider the distribution of an ensemble of nuclei. It has been shown that employing
the single-nucleus approximation instead of considering a full distribution of nuclei
has a small impact on thermodynamic quantities (Burrows and Lattimer 1984).
However, differences might be significant if the composition is dominated by light
nuclei, or in the treatment of nuclear processes like electron captures in CCSNe.
Indeed, the nucleus that is energetically favoured from thermodynamic arguments
might not be the one with the highest reaction rate. There are different ways to
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identify the onset of instability with respect to cluster formation, thus the transition
from uniform to non-uniform matter (see, e.g., Landau and Liftshitz’s textbook
(Landau and Lifshitz 1980) and Chap. 7 of this book), although currently there
exists no rigorous treatment to describe cluster formation beyond the single-nucleus
approximation (see also Sect. 6.3.2).

As for electrons, in stellar environments like compact stars, they are usually
treated as a non-interacting degenerate background gas (see, e.g., Lattimer 1996;
Haensel et al. 2007). In cold NS crusts, electron-charge screening (spatial polarisa-
tion) effects are small and the electron density is essentially uniform (Haensel et al.
2007; Chamel and Fantina 2016); at densities ρB � 10 AZ g cm−3 (∼104 g cm−3

for iron, A and Z being the nucleus mass and proton number, respectively), the
electrons can be treated as a quasi-ideal Fermi gas (Chamel and Haensel 2008).
For temperatures T � 1 MeV and densities �106 g cm−3, leptons (electrons and
neutrinos) are relativistic, in particle-antiparticle pair equilibrium and in thermal
equilibrium with nuclear matter (see, e.g., Lattimer et al. 1985; Lattimer and
Douglas Swesty 1991).

Nucleons can be either treated as a uniform system of interacting particles, or
distributed within a defined shaped and sized cell. In the latter case, often the
Wigner-Seitz (WS) approximation is used: matter is divided in cells, each one
charged neutral. While at lower densities the cell is usually assumed spherical,
centred around the positive charged ion surrounded by an essentially uniform
electron and eventually free (unbound) nucleon (neutron and, at finite temperature,
free proton) gas, at higher densities nuclei can be non-spherical and other geometries
of the cell are considered. The standard way to calculate the EoS is then, for each
thermodynamic condition, to minimise the (free) energy of the system with respect
to the variational variables, e.g. the nucleus atomic and mass number, the volume
(or radius) of the cell, and the free nucleon densities, under baryon number and
charge conservation1 (see, e.g., the pioneer work of Baym et al. 1971a). If additional
structures, like the so-called “pasta” phases, are included, the minimisation is also
performed on the shape of the cell (see, e.g., the pioneer works of Ravenhall et al.
1983; Hashimoto et al. 1984).

Within the single-nucleus approximation, different models have been devel-
oped:

• (Compressible) Liquid-Drop Models.
Liquid-drop models parameterize the energy of the system in terms of global
properties such as volume, asymmetry, surface, and Coulomb energy; their

1Note that in the outer crust of cold catalysed NSs, the classical way to determine the EoS is to
use the so-called BPS model (Baym et al. 1971b). In this model, the outer crust is supposed to
be made of fully ionised atoms arranged in a body-centred cubic lattice at T = 0 and to contain
homogeneous crystalline structures made of one type of nuclides, coexisting with a degenerate
electron gas (no free nucleons are present). The EoS in each layer of pressure P is found by
minimising the Gibbs free energy per nucleon, the only microscopic input being nuclear masses
(see, e.g., Haensel et al. 2007).
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parameters are fitted phenomenologically. In these models, nucleons inside
neutron-proton clusters and free neutrons outside are assumed to be uniformly
distributed, and are treated separately. Moreover, clusters have a sharp surface,
and quantum shell effects, despite playing a critical role in determining the
equilibrium composition (particularly in the NS outer crust), are neglected. This
approach has been among the earliest to be used in astrophysical applications
to treat non-uniform matter at zero and finite temperature, because of its
applicability and reduced computational cost (see, e.g., Baym et al. 1971a;
Lattimer 1981; Lattimer et al. 1985; Lattimer and Douglas Swesty 1991; Lorenz
et al. 1993; Watanabe et al. 2000; Douchin and Haensel 2000, 2001; Oyamatsu
and Iida 2007; Nakazato et al. 2011).

• (Extended) Thomas-Fermi ((E)TF) models.
These models allow for a consistent treatment of nucleons “inside” and “outside”
clusters and are a computationally very fast approximation to the full Hartree-
Fock equations. The total energy of the system is written as a functional of the
density of each species and their gradients. Indeed, the (E)TF approximation
to the energy density derived from a given nuclear EDF consists in expressing
the kinetic-energy densities and the spin-current densities upon which the EDF
depends as a function of the nucleon number densities (and their derivatives). As
a consequence, shell effects in the energy density are lost, but can be restored
perturbatively using the Strutinski Integral (SI) theorem (Brack et al. 1985; Onsi
et al. 2008; Pearson et al. 2012, 2015). The density of nucleons in the cell
can be either parameterized (e.g. using a Fermi-like profile) or obtained self-
consistently. These approaches have been developed in both non-relativistic and
relativistic framework, at zero and finite temperature (see, e.g., Sumiyoshi et al.
1995; Cheng et al. 1997; Shen et al. 1998a; Onsi et al. 2008; Avancini et al.
2010; Shen et al. 2011c; Okamoto et al. 2012; Pearson et al. 2012; Zhang and
Shen 2014; Sharma et al. 2015).

• Self-consistent mean-field models.
Hartree-Fock models are fully quantum mechanical (see, e.g., Negele and
Vautherin 1973; Baldo et al. 2007; Grill et al. 2011). As a result, shell effects,
which are found to disappear at temperatures above 2–3 MeV, and pairing (in the
Hartree-Fock+BCS and in the HFB approaches), which needs to be considered
at temperatures below 1 MeV (Brack and Quentin 1974), are naturally included.
However, these models are computationally very expensive and their current
implementation is plagued by the occurrence of spurious neutron shell effects
(Chamel et al. 2007). Non-relativistic interactions are usually employed (e.g.,
Negele and Vautherin 1973; Bonche and Vautherin 1982; Magierski et al. 2003;
Gögelein and Müther 2007; Newton and Stone 2009; Pais and Stone 2012;
Papakonstantinou et al. 2013; Pais et al. 2014; Sagert et al. 2016), but RMF
models have been also used (Maruyama et al. 2005).

At finite temperature, different configurations are expected to be realised. A way
to find these configurations is to solve the equations of motion and eventually exploit
the ergodicity of the dynamics. This can be done using time-dependent Hartree-Fock
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models and dynamical extended time-dependent Hartree-Fock approaches based
on a wavelet representation (see, e.g., Schuetrumpf et al. (2013) for the former
models applied at finite temperature using Skyrme functionals—i.e. applicable to
SN matter, and Sébille et al. (2009, 2011) for the latter approach applied in the
zero-temperature approximation—i.e. for NSs). Another method is the classical
molecular dynamics, where nucleons are represented by point-like particles instead
of single-particle wave functions. So-called quantum molecular dynamics, where
nucleons are treated as wave packets, have also been developed. However, in both
cases particles move according to classical equations of motion and quantum effects
(like shell effects) are not taken into account (see, e.g. Watanabe et al. (2009),
Dorso et al. (2012), Maruyama et al. (2012), López et al. (2014), Schneider et al.
(2014), Caplan et al. (2015), Giménez Molinelli and Dorso (2015), Horowitz et al.
(2015), see also Chap. 7 in this book). However, these approaches are very time
consuming. On the other hand, one can assume that the system is in thermodynamic
equilibrium and use NSE (or “statistical”) models, where cluster degrees of freedom
are introduced explicitly. These models suppose that the system is composed of a
statistical ensemble of nuclei and nucleons in thermal, mechanical, and chemical
equilibrium. The NSE is achieved when the characteristic time for nuclear processes
is much shorter than the timescales associated to the hydrodynamic evolution of the
system, and typically above T � 0.5 MeV (Iliadis 2007). Approaches considering
an ensemble of nuclei are:

• (Extended) NSE.
In the simplest version, NSE approaches treat the matter constituents as a
mixture of non-interacting ideal gases governed by the Saha equation, where
a Maxwell-Boltzmann statistics is employed, although quantum statistics (e.g.
Fermi-Dirac for nucleons) can be incorporated. The nuclear binding energies
required as input of NSE calculations can be either experimental, whenever
available (Audi et al. 2003; Wang et al. 2012), or theoretical (e.g. obtained from
liquid-drop like models, or from more microscopic EDF-based mass models).
A limitation of standard NSE-based models is that they neglect interactions
and in-medium effects, that are known to be very important in nuclear matter,
especially at high densities. For this reason, homogeneous matter expected to
be present in NS cores, as well as the crust-core boundary in NSs, or matter
at densities close to saturation density, cannot be correctly described by this
kind of approaches, and microscopic or phenomenological models have to be
applied instead. Therefore, extended NSE models, where the distribution of
clusters is obtained self-consistently under conditions of statistical equilibrium
and interactions are taken into account, are developed. For example, in-medium
corrections of nuclear binding energies, either due to temperature or to the
presence of unbound nucleons, have been calculated for Skyrme interactions in
Papakonstantinou et al. (2013), Aymard et al. (2014) within a local-density and
ETF approximation, respectively. Some NSE models neglect the screening of
the Coulomb interaction due to the electron background, while it is accounted
for in other models, usually in the WS approximation (see, e.g., Raduta and
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Gulminelli 2009, 2010; Blinnikov et al. 2011). The interactions between the
cluster and the surrounding gas are often treated with an excluded-volume
method (e.g., Hempel and Schaffner-Bielich 2010; Raduta and Gulminelli 2010;
Hempel et al. 2012; Furusawa et al. 2013b; Raduta et al. 2014). However,
the difference between the excluded-volume approach and the quantal picture
proper of microscopic calculations leads to two different definitions of clusters in
dense matter which in turn give differences in the observables (Papakonstantinou
et al. 2013). Excited states, that are populated at finite temperature, can be
incorporated, either employing temperature-dependent degeneracy factors (as,
e.g., in Ishizuka et al. 2003; Raduta and Gulminelli 2010; Gulminelli and Raduta
2015), or using temperature-dependent coefficients in the mass formula (as, e.g.,
in Buyukcizmeci et al. 2014). Despite thermodynamic quantities are not very
much affected by the presence of the ensemble of nuclei with respect to the
single-nucleus approximation picture, quantitative differences arise in the matter
composition, in particular concerning the contribution of light and intermediate
mass nuclei (see, e.g., Gulminelli and Raduta 2015; Raduta et al. 2016). Among
the first applications of a NSE model for the EoS of SN cores at low densities
is that of Hillebrandt et al. (1984), Hillebrandt and Wolff (1985). NSE models
have been subsequently employed for conditions encountered in CCSN, e.g., in
Botvina and Mishustin (2010), Hempel and Schaffner-Bielich (2010), Raduta
and Gulminelli (2010), Blinnikov et al. (2011), Hempel et al. (2012), Furusawa
et al. (2013b), Buyukcizmeci et al. (2014), Raduta et al. (2014), Gulminelli and
Raduta (2015), Furusawa et al. (2017b) (see also Buyukcizmeci et al. (2013) for a
comparison of methods). As shown in Fig. 6.4 for a typical condition encountered
in the SN collapse, the NSE approach predicts a broad bi-modal distribution,
centred around magic numbers. This behaviour cannot be reproduced within
the single-nucleus approximation, widely employed in SN simulations (see also
Sect. 6.2.4).

Most of the aforementioned works make use of the excluded-volume approx-
imation, which is less reliable for light nuclei, thus other approaches to treat
interactions have been developed, as discussed below.

• Virial EoS.
The virial expansion, originally formulated by Uhlenbeck and Beth (1936), Beth
and Uhlenbeck (1937), is based on an expansion of the grand canonical potential
in powers of the particle fugacities zi = exp[(μi − mic

2)/T ], μi being the
chemical potential of the particle i and mi its mass. It can thus be seen as
an extension of NSE models to account for correlations between particles at
low density and finite temperature. This method relies on two assumptions:
(1) the system is in a gas phase and has not undergone phase transition with
decreasing temperature or increasing density, and (2) the fugacity is small, so
that the partition function can be expanded in powers of z. The virial coefficients
in the expansion are functions of temperature, and they are related to the
two-, three-, and N-body correlations (see, e.g., Bedaque and Rupak (2003),
Liu et al. (2009) for a discussion on coefficients beyond the second order).
In particular, the second virial coefficient is directly related to the two-body
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Fig. 6.4 Distribution of nuclei (blue to red: less to more abundant) for nB = 3.52 × 10−4 fm−3,
T = 1.4 MeV, Ye = 0.319, calculated within the NSE model of Gulminelli and Raduta (2015).
The star corresponds to the result obtained in the single-nucleus approximation. Courtesy of Ad.
R. Raduta

scattering phase shifts; thus, one can derive a model-independent approach up to
nB ≈ 10−5 − 10−4 fm−3. In the context of nuclear matter relevant for compact
stars, the virial EoS has been applied, e.g., in Horowitz and Schwenk (2006a,b)
to describe neutron matter and matter composed of nucleons and alpha particles,
and in Shen et al. (2010b, 2011a) to model non-uniform matter at low densities.
However, this treatment is limited to light particles.

• Models with in-medium mass shifts.
In-medium mass shifts are a way to account for correlation effects in the medium,
avoiding the use of an excluded volume. Nucleons and bound states (clusters)
are treated on the same footing, as different constituent particles. This approach
also points out the appearance of the Mott effect due to Pauli blocking that
prevents the formation of clusters at sufficiently high densities, and allows one to
obtain the medium (density- and temperature-dependent) modification of cluster
binding energies that enter into the EoS. This in-medium modification approach
has been included in different NSE-based models, like the quantum statistical
model, based on the thermodynamic Green’s function method and developed,
e.g., in Röpke et al. (1982, 1983); for recent applications of this approach to the
description of light nuclei in nuclear matter at subsaturation densities, see, e.g.,
Typel et al. (2010), Röpke (2011), Röpke et al. (2013), Röpke (2015). It has also
been incorporated in the generalised (g)RMF models, which are an extension
of the DD-RMF models where nucleon and (light) cluster degrees of freedom
are included in the Lagrangian (see, e.g. Typel et al. 2010; Voskresenskaya
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and Typel 2012; Typel 2013; Typel et al. 2014). It turns out that the gRMF
smoothly interpolates between the low-density virial EoS and the high-density
limit of nucleonic matter, while the precise form of the transition depends, among
other factors, on the choice of the coupling strength of the clusters to the meson
fields. A comparison of models using quantum statistical and gRMF models and
the excluded-volume approach shows a rather good agreement at temperatures
greater than a few MeV (Hempel et al. 2011). The effect of light clusters in RMF
models in nuclear matter and in the pasta phase has been also investigated, e.g.,
in Avancini et al. (2012), Pais et al. (2015).

6.2.3 Constraints on the Equation of State

Theoretical models for the EoS can be constrained by both nuclear physics and
astrophysical observations (see, e.g., Page and Reddy (2006), Klähn et al. (2006),
Lattimer and Prakash (2007), Trümper (2011), Tsang et al. (2012), Li and Han
(2013), Lattimer and Lim (2013), Lattimer and Steiner (2014), Stone et al. (2014),
Horowitz et al. (2014) for a discussion). However, in many cases, constraints on
the EoS are not directly obtained from the raw data, but theoretical modelling is
required to infer the constraints, or to extrapolate them in a region of the phase
diagram not accessible by experiments or observations, thus making the constraints
model dependent.

6.2.3.1 Constraints from Nuclear Physics Experiments

Valuable information on the many-body theories of nuclear matter is given by avail-
able data coming mainly from nuclear structure studies and heavy-ion collisions
(HICs). Nuclear matter is an idealised infinite uniform system of nucleons, where
the Coulomb interaction is switched off. Within the liquid-drop model of nuclei,
if we put ECoul = 0 and in the limit of A → ∞, the energy per nucleon, E/A,
depends only on the neutron and proton densities, and because of charge symmetry
of nuclear forces, it does not change if protons are replaced by neutrons and vice
versa. Symmetric nuclear matter, with an equal number of neutrons and protons, is
the simplest approximation to the bulk nuclear matter in heavy atomic nuclei. On
the other hand, pure neutron matter is the simplest approximation to the matter as
found in NS cores.

As in the droplet model functional (Myers and Swiatecki 1969), it is convenient
to express the binding energy in terms of the baryon density nB and the asymmetry
parameter δ = (N − Z)/A, N (Z) being the neutron (proton) number and A =
N + Z. Usually, this energy is written as

E(nB, δ) = E(nB, 0)+ S(nB)δ
2 , (6.7)
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E(nB, 0) being the energy of symmetric nuclear matter (δ = 0) and S(nB) the
symmetry energy. Both these terms can be expanded around the saturation density
for symmetric matter, n0, as

E(nB, 0) = E(n0) + 1

18
K0 ε

2 , (6.8)

S(nB) = S0 + 1

3
Lε + 1

18
Ksymε

2 . (6.9)

where E(n0) characterises the binding energy in symmetric nuclear matter at
saturation, ε = (nB − n0)/n0, K0 is the incompressibility at the saturation
point, S(n0) ≡ S0 is the symmetry energy coefficient at saturation, and the
parametersL andKsym characterise the density dependence of the symmetry energy
around saturation. The value of n0 and of the binding energy per nucleon for
symmetric nuclear matter at saturation, E(n0)/A ≡ E0/A, can be extracted from
experimentally measured nuclear masses, yielding n0 = 0.16 ± 0.01 fm−3 and
E0/A = −16.0 ± 1.0 MeV (Wang et al. 2012; Angeli and Marinova 2013). The
uncertainties in these parameters result from the uncertainties in the experimental
measurements and from the non-uniqueness of the fit of mass formulae used to
reproduce thousands of nuclear masses. The coefficient S0 determines the increase
in the energy per nucleon due to a small asymmetry δ, whereas the incompressibility
K0 gives the curvature of E(nB) at nB = n0 and the associated increase of the
energy per nucleon of symmetric nuclear matter due to a small compression or
rarefaction. These parameters are defined as :

K0 ≡ 9n2
0

(
∂2E

∂n2
B

)
nB=n0,δ=0

, S0 ≡ 1

2

(
∂2E

∂δ2

)
nB=n0,δ=0

, (6.10)

and the higher-order symmetry energy coefficients, L and Ksym, are defined as

L ≡ 3n0

(
∂S(nB)

∂nB

)
nB=n0

, Ksym ≡ 9n2
0

(
∂2S(nB)

∂n2
B

)
nB=n0

. (6.11)

The extraction of K0 from experimental data is complicated and not unambigu-
ous. Roughly speaking, RMF models predict larger values of K0 with respect to
non-relativistic EDFs (a large list of theoretical calculations of K0 is given, e.g.,
in Stone et al. 2014). Analysis of isoscalar giant monopole resonance in heavy
nuclei suggests K0 = 240 ± 10 MeV (Colò et al. 2004) (a tighter constraint
is reported in Piekarewicz (2004), K0 = 248 ± 8 MeV, while Blaizot (1980)
gives K0 = 210 ± 30 MeV). However, it has been argued that data actually give
information on the density dependence of the incompressibility around 0.1 fm−3

(Khan and Margueron 2013). HIC experiments (either flow experiments or kaon
production experiments) would point to a rather “soft” EoS (e.g., Fuchs et al.
2001; Sturm et al. 2001; Danielewicz et al. 2002; Hartnack et al. 2006; Le Fèvre
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Fig. 6.5 Pressure versus baryon density (in units of saturation density) of symmetric nuclear
matter for different microscopic (left panel) and phenomenological (right panel) models. The
shaded area at lower (higher) density corresponds to constraints inferred from KaoS (flow)
experiment (Danielewicz et al. 2002; Lynch et al. 2009)

et al. 2016). However, the inferred constraints remain model dependent since the
data interpretation requires complex theoretical simulations (see also Sect. 6.3.1).
A discussion on the HIC constraints in relation with compact stars has been
done, e.g., in Sagert et al. (2012), Hempel et al. (2015). A comparison of the
pressure versus density predicted by microscopic and phenomenological models
with the results of the analysis on the flow and the kaon-production experiments
(Danielewicz et al. 2002; Lynch et al. 2009) is shown in Fig. 6.5. Although not
obvious, one can see that most of the EoSs, except very stiff ones, agree with these
constraints (shaded area); only marginal deviations occur at the highest densities
where the analysis is less reliable due to the possible presence of additional degrees
of freedom or a phase transition. A refinement of the boundary could in principle
put a more stringent constraint on the EoS, or even rule out some of them.

Of particular importance for compact-star physics is the symmetry energy and its
density dependence, which has been shown to affect the composition of NS crusts,
the crust-core transition, and the neutron drip (see, e.g., Li et al. (2014), Baldo
and Burgio (2016) and references therein).2 The value of the symmetry energy at

2It has also to be mentioned that not only the density dependence but also the temperature
dependence of the symmetry energy, although not discussed here, can be important and may
potentially have an impact in the CCSN dynamics (e.g., Donati et al. 1994; Dean et al. 2002;
Fantina et al. 2012a; Agrawal et al. 2014).
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Fig. 6.6 Symmetry energy as a function of baryon number density calculated with different
microscopic (left panel) and phenomenological (right panel) models. The smaller (larger) shaded
area corresponds to constraints inferred from the analysis of IAS (and corresponding extrapolation)
of Danielewicz and Lee (2014)

saturation, S0, can be extracted, e.g., from nuclear masses, isobaric analog state
(IAS) phenomenology, skin width data, and HICs; additional constraints come also
from the NS data analysis. Constraints on L can be obtained, e.g., from the study
of dipole resonances, electric dipole polarizability, and neutron skin thickness (see,
e.g., Lattimer (2012), Tsang et al. (2012), Paar et al. (2014) and Sect. 6.3.1). While
S0 is fairly well constrained to lie around 30 MeV, the values of the slope of the
symmetry energy, L, and of higher order coefficients like Ksym, at saturation, are
still very uncertain and poorly constrained. For example, combining different data,
Lattimer and Lim (2013) give 29.0 < S0 < 32.7 MeV, 40.5 < L < 61.9 MeV,
while a more recent work suggests 30.2 < S0 < 33.7 MeV, 35 < L < 70 MeV
(Danielewicz and Lee 2014). In Fig. 6.6, we display the symmetry energy versus
baryon number density for different microscopic (left panel) and phenomenological
(right panel) models. Note that for microscopic models, the curves ofEsym are given
by the difference between the energy of pure neutron matter and that of symmetric
matter, while for phenomenological models Esym is calculated from the definition
Esym(n) = 1/2(∂2E/∂δ2)|δ=0. Shaded areas represent constraints inferred from a
study of the IAS and its extrapolation at lower and higher densities (see Fig. 15
in Danielewicz and Lee 2014). All the considered models, except very soft or
very stiff ones, agree with these constraints. This means that the latters cannot be
used to extract a simple functional parameterization of the density dependence of
the symmetry energy. In particular, if one assumes a power law dependence, i.e.
Esym ≈ nα , the exponential index α cannot be constrained within a meaningful
accuracy. Additional constraints, not reported here, have also been inferred at higher
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Table 6.1 Nuclear parameters at saturation (saturation density n0, energy per baryon E0/A,
incompressibility K0, symmetry energy coefficient S0, and slope of the symmetry energy L), for
different microscopic and phenomenological models discussed in the text

EoS n0 [fm−3] E0/A [MeV] K0 [MeV] S0 [MeV] L [MeV]

fss2 (CC) 0.157 −16.3 219.0 31.8 52.0

Av18+ UVIX 0.16 −15.98 212.4 31.9 52.9

APR 0.16 −16.0 247.3 33.9 53.8

Av18+ micro TBF 0.17 −16.0 254.0 30.3 59.2

DBHF 0.18 −16.15 230.0 34.4 69.4

SLy4 0.16 −15.97 229.9 32.0 45.9

BSk21 0.158 −16.05 245.8 30.0 46.6

D1M 0.165 −16.03 225.0 28.55 24.83

BCPM 0.16 −16.0 213.75 31.92 52.96

NL3 0.148 −16.3 271.76 37.4 118.3

DD-MEδ 0.152 −16.12 219.1 32.35 52.85

Empirical values 0.16± 0.01 −16.0 ± 1.0 240 ± 10 30–34 35–70

Empirical values are taken from Wang et al. (2012), Angeli and Marinova (2013), Colò et al.
(2004), Danielewicz and Lee (2014)

density, around and even beyond twice saturation density, from ASY-EOS and
FOPI-LAND data (e.g., Russotto et al. 2016).

Finally, in Table 6.1, we list the nuclear parameters at saturation for the different
microscopic and phenomenological models considered in the text, showing that all
these models, except very stiff ones, agree reasonably well with the empirical values.

6.2.3.2 Constraints from Astrophysics

Astrophysical observations can provide complementary information on the region
of the dense-matter EoS which is not experimentally accessible in the laboratory.
These constraints mainly come from observations of NSs, either isolated or in binary
systems (see also Chap. 5 of this book).

• NSmasses and radii. The most precise and stringent astrophysical constraints on
the EoS come, at the present time, from the measurement of NS masses (see, e.g.,
Özel and Freire (2016) and the nsmasses website3 for a recent compilation).
Indeed, the maximum mass of a NS is a direct consequence of general relativity
and depends to a large extent on the high-density part of the EoS (above nuclear
saturation density), where the EoS remains at present very uncertain. According

3https://stellarcollapse.org/nsmasses.

https://stellarcollapse.org/nsmasses
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Fig. 6.7 Gravitational mass versus radius of non-rotating NSs for different nucleonic EoSs based
on both microscopic (left panel) and phenomenological (right panel) models (results for the latters
are taken from Fantina et al. 2013; Gonzalez-Boquera et al. 2017; Sharma et al. 2015; Fattoyev et al.
2010; Wang et al. 2014). Horizontal bands correspond to the measured masses of PSR J0348+0432
(Antoniadis et al. 2013) and PSR J1614 − 2230 (Fonseca et al. 2016). Shaded areas correspond to
the 68% and 95% confidences derived in Steiner et al. (2013b)

to different calculations, the maximum mass of spherical non-rotating NSs is
predicted to lie in the range 1.5M� � Mmax � 2.5M�, M� being the mass
of the Sun (see, e.g. Chamel et al. (2013b,c) for a review). Recently, the mass of
two NSs in binary systems have been precisely measured using the Shapiro delay:
PSR J1614−2230 (Demorest et al. 2010), with a mass M = 1.928± 0.017 M�
(Fonseca et al. 2016), and PSR J0348+0432, with a mass M = 2.01± 0.04 M�
(Antoniadis et al. 2013). The latter mass is sufficiently high to put quite strong
constraints on the EoS at densities four times larger than nuclear saturation, but
it still remains compatible with a large class of models (see Fig. 6.7). However,
this measured mass, which is about three times larger than the maximum mass
of a star made of an ideal neutron Fermi gas, is a clear observational indication
of the dominating role of strong interactions in NSs. There also exist several
less precise measurements of NS masses with values around and even above
2 M�. These measurements mainly refer to NSs in X-ray binaries or millisecond
pulsar systems, where accretion, stellar wind, possible filling of Roche lobe by
the companion, light-curve modelling, and other uncertainties could all play an
important role. For this reason, the error of these mass measurements is quite
large (see, e.g., Haensel et al. (2007), van Leeuwen (2013) for a discussion).
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On the other hand, constraints on the EoS have been proposed using low-
mass NSs. Podsiadlowski et al. (2005) suggested to probe the EoS using the
observations of J0737−3039, a double pulsar system whose pulsar B has a mass
M = 1.2489±0.0007M� (Kramer et al. 2006). The characteristics of the system
suggest that pulsar B was formed after the accretion-induced collapse of an
oxygen-neon-magnesium core that becomes unstable against electron capture.
Taking into account the uncertainties in the conditions of the pre-collapse core,
it has been estimated that the critical baryonic mass of pulsar B for the onset
of electron capture should be 1.366 < Mb < 1.375M� (Podsiadlowski et al.
2005). If this scenario is correct, the knowledge of both the gravitational and the
baryonic mass of pulsar B leads to a constraint on the EoS. However, there are
various caveats in this analysis (e.g. neglect of mass loss during the SN, variation
of the critical mass due to carbon flashes, formation history of this system), which
can considerably change the constraint on the EoS (Podsiadlowski et al. 2005;
Tauris et al. 2013). In particular, Kitaura et al. (2006) carried out hydrodynamical
simulations of stellar collapse taking mass loss into account and found Mb =
1.360 ± 0.002M�. A similar system has been observed recently, J1756-2251,
where the mass of the pulsar is 1.230 ± 0.007M� (one of the lowest NS mass
measured with high accuracy) (Ferdman et al. 2014). However, the constraint
inferred from the M versus Mb relation strongly depends on the assumptions of
the model and cannot therefore definitely rule out EoSs that do not satisfy it.

A definite and stringent constraint on the EoS via the mass-radius relation
would be the measurement of both mass and radius of the same object (see,
e.g., Read et al. 2009; Steiner et al. 2013b; Özel et al. 2016). However, precise
estimations of NS radii are very difficult because more model dependent than
those of masses, mostly because observations of NS radii are indirect and the
determination of the radius from observations is affected by large uncertainties
(e.g., composition of the atmosphere, distance of the source, magnetic field,
accretion; see, e.g., Potekhin 2014; Fortin et al. 2015). Observations of the
thermal emission from NSs can provide valuable constraints on their masses
and radii. The most reliable constraints are expected to be inferred from
observations of transient low-mass X-ray binaries (LMXBs) in globular clusters
because their distances can be accurately determined and their atmospheres, most
presumably weakly-magnetised and primarily composed of hydrogen, can be
reliably modelled. Constraints can also come from observations of type I X-ray
bursts, the manifestations of explosive thermonuclear fusion reactions triggered
by the accretion of matter onto the NS surface. Recently, Steiner et al. (2010,
2013b) determined a probability distribution of masses and radii by analysing
observations of type I X-ray bursters and transient LMXBs in globular clusters
(see Fig. 6.7). However, this kind of analysis is still a matter of debate (see, e.g.,
Lattimer 2012; Galloway and Lampe 2012; Guillot et al. 2013; Güver et al. 2013;
Poutanen et al. 2014). Additional information on radii could also be inferred from
X-ray pulsation in millisecond pulsars (see, e.g., Bogdanov 2016b).
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Table 6.2 Properties of
non-rotating NSs
(maximum mass Mmax and
corresponding radius R, and
central density ncen), for
different microscopic and
phenomenological models

EoS Mmax [M�] R [km] ncen [fm−3]

fss2 (CC) 1.94 9.9 1.87

Av18+ UVIX 2.03 9.8 1.24

APR 2.19 9.9 1.15

Av18+ micro TBF 2.34 10.6 1.01

DBHF 2.30 11.2 0.97

SLy4 2.05 10.0 1.21

BSk21 2.28 11.1 0.97

D1M 1.74 8.9 1.57

BCPM 1.98 10.0 1.25

NL3 2.78 13.4 0.67

DD-MEδ 1.97 10.2 1.20

Future high-precision telescopes and missions like NICER, ATHENA+, and
SKA are expected to improve our knowledge on the NS mass-radius relation (see,
e.g., Watts et al. 2015; Bogdanov 2016a).

In Fig. 6.7, we display the gravitational mass M versus radius R for non-
rotating NSs,4 obtained with different microscopic (left panel) and phenomeno-
logical (right panel) EoSs of asymmetric and beta-stable matter whose under-
lying models have been discussed in Sect. 6.2.2. Note that only the EoSs based
on the SLy4, BSk21, and BCPM EDFs are unified, while the others have been
supplemented with an EoS for the crust (the BPS EoS (Baym et al. 1971b),
except for the D1M model where the EoS of Douchin and Haensel (2001)
was used). Properties of NSs calculated with these EoSs are also reported in
Table 6.2. These calculations assume that only nucleonic and leptonic (electrons
and eventually muons) degrees of freedom are present inside the NS. Horizontal
bands correspond to the precise measurements of NS masses (Antoniadis et al.
2013; Fonseca et al. 2016), while shaded areas correspond to theM−R constraint
inferred in Steiner et al. (2013b) (see their Fig. 1). Except very “soft” or “stiff”
EoSs, the other considered EoSs are at least marginally compatible with the latter
(model-dependent) constraint. Instead, EoSs that predict a maximum NS mass
below the observed ones have to be ruled out.5 However, it would be premature
to discard the underlying nuclear interaction as well. Indeed, analyses of HIC
experiments (e.g., Fuchs et al. 2001; Sturm et al. 2001; Hartnack et al. 2006;
Xiao et al. 2009) seem to favour soft (hadronic) EoSs. This apparent discrepancy
could be resolved by considering the occurrence of a transition to an “exotic”
phase in NS cores (see, e.g., the discussion in Chamel et al. 2013a). On the
other hand, BHF microscopic calculations that include also hyperon degrees of
freedom (e.g., Baldo et al. 2000; Schulze and Rijken 2011; Vidaña et al. 2011)

4It will be explained in Sect. 6.2.4.1 how to construct a M − R relation for a given EoS.
5Although rotation can increase the predicted maximum mass, this increase amounts to a few %
only even for the fastest spinning pulsar known (e.g., Chamel et al. 2013b,c; Fantina et al. 2013).
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show that the NS EoS becomes softer, and the value of the NS maximum mass is
substantially reduced, well below the observational limit of 2 M�. This poses a
serious problem for the microscopic theory of NS interior (see the discussion in
Chap. 7 of this book).

Another possibility to get a constraint on the mass-radius relation is to use
observations of the gravitational redshift of photons emitted from the NS surface,
zsurf, a quantity related to the compactness ratio (proportional to M/R, see
Haensel et al. 2007). Spectroscopic study of the gamma-ray burst GRB 790305
from the soft gamma-ray repeater SGR 0526−066 (Higdon et al. 1990) suggested
a value zsurf = 0.23 ± 0.07 for this object. Cottam et al. (2002) also reported
the detection of absorption lines in the spectra of several X-ray bursts from the
LMXB EXO 0748−676, but this detection has not been confirmed by subsequent
observations (Cottam et al. 2008). Moreover, it has been argued that the widths of
these absorption lines are incompatible with the measured rotational frequency
of this NS (Lin and Özel 2010), but this point remains to be clarified (Bauböck
et al. 2013).

Finally, the detection of neutrinos from SN1987A allows an estimation of the
energy released during the SN core collapse. Indeed, since 99% of the energy of
the SN was carried away by neutrinos of all flavours, the energy of the neutrino
can be considered a measurement of the binding energy of the newly born NS.
Defining the binding energy as the mass defect with respect to a cloud of iron
dust (Douchin and Haensel 2001) leads to a constraint on the NS gravitational
mass. However, EoSs are usually found to be compatible with this constraint,
thus making hard to rule out an EoS from it.

• NS rotation. Rotation of pulsars can be accurately measured. The spin frequency
of a NS must be lower than the Keplerian frequency, i.e. the frequency beyond
which the star will be disrupted as a result of mass shedding. Since the value of
the Keplerian frequency obtained from numerical simulations of rotating NSs
depends on the EoS (see, e.g., Stergioulas (2003) for a review), an observed
frequency above the Keplerian one predicted for a given EoS would rule the
EoS out. Depending on the stiffness of the EoS, the highest possible rotational
frequency for the maximum mass configuration has been found to lie in the
range between ∼1.6 and ∼2 kHz (Krastev et al. 2008; Haensel et al. 2009;
Fantina et al. 2013). Even the observation of PSR J1748−2446ad, the fastest
spinning pulsar known (Hessels et al. 2006), with a frequency of 716 Hz, cannot
put stringent constraints on existing EoSs, because its rotational frequency still
remains small compared to the Keplerian frequency. Only observations of NSs
with spin frequencies larger than about 1 kHz (see, e.g., Bejger et al. 2007;
Krastev et al. 2008; Haensel et al. 2009), could change the picture.

• NS cooling. Cooling observations are a promising way to probe the NS interior.
Indeed, NS cooling depends on the composition and on the occurrence of
superfluidity that determine heat transport properties (see, e.g., Weber (1999),
Yakovlev and Pethick (2004), Page et al. (2006), Potekhin et al. (2015), and
Chaps. 8 and 9 in this book), thus potentially giving complementary information
on the EoS. For example, constraints on the mass-radius relation have been
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derived, using cooling models, from the observation of the central compact object
in the SN remnant HESS J1731−347, that appears to be the hottest observed
isolated cooling NS (Klochkov et al. 2015; Ofengeim et al. 2015). Recently, the
impact of the stiffness of the EoS and in-medium effects on the cooling have
also been studied (Grigorian et al. 2016). A prominent role in the NS cooling
is played by the neutrino emission due to the so-called direct URCA processes
(e.g. Taranto et al. 2016), which set in only if the proton fraction is larger than
a certain threshold value. The proton fraction depends on the nuclear symmetry
energy, and hence on the EoS. We will discuss this open question more in details
in Sect. 6.3.4.

• NS moment of inertia. The mass and radius of a rotating NS can be constrained
by measuring its moment of inertia I (see e.g. Lattimer and Schutz 2005; Worley
et al. 2008; Lattimer and Prakash 2016). Indeed, I can be expressed as a function
of the NS mass and radius (see e.g. the empirical formula for a slowly rotating
NS proposed in Lattimer and Schutz (2005) and that holds for a wide class of
EoSs, except for the very soft ones). Therefore, the radius could be determined if
the mass and the moment of inertia of the NS is known. However, the moment of
inertia of a rotating NS has not yet been measured. A lower bound can be inferred
from the timing observations of the Crab pulsar, assuming that the loss of the
pulsar spin energy goes mainly into accelerating the nebula (see, e.g., Bejger and
Haensel 2003; Haensel et al. 2007): only the EoSs predicting a value of I higher
than that estimated for Crab (I ≈ 1.4−3.1×1045 g cm2, see Haensel et al. 2007;
Fantina et al. 2013) are acceptable. However, the main uncertainty in this lower
limit lies in the mass of the nebula, thus this constraint remains approximate.

• Gravitational waves and oscillations. The merger of compact binary stars
is expected to be the main source of the gravitational-wave signals observed
with gravitational-wave detectors (see e.g. Baiotti and Rezzolla (2017) and
also Chaps. 3, 10, 12 in this book). It has been argued that the detection of
gravitational waves from the post-merger phase of binary NSs could discriminate
among a set of candidate EoSs (see e.g. Bauswein et al. 2012, 2014; Takami
et al. 2014, 2015; Bauswein et al. 2016; Rezzolla and Takami 2016). Also,
quasi-periodic oscillations in soft gamma-ray repeaters could be used to derive
constraints on the EoS (see e.g. Steiner and Watts 2009; Sotani et al. 2012; Gabler
et al. 2013). This research area thus might be a promising way for constraining
the EoS in the future (see e.g. Bose et al. (2018); Rezzolla et al. (2018) and
Chap. 10 for a discussion on the effect of the EoS on the gravitational-wave signal
from binary mergers).6

6During the refereeing process of this Chapter, the gravitational-wave signal from a binary
NS merger, GW170817, has been observed in the galaxy NGC 4993 (Abbott et al. 2017a),
in association with the detection of a gamma-ray burst (GRB 170817A) and electromagnetic
counterparts (Abbott et al. 2017a,b).
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6.2.4 Applications to Compact Objects

In this Section we discuss some applications of the EoSs for compact objects,
starting with the zero-temperature case relevant for NSs, then presenting some finite-
temperature general purpose EoSs and their impact in compact-object simulations.

6.2.4.1 Applications to Neutron Stars

The NS physics and EoS have been extensively discussed, e.g., in Haensel et al.
(2007), Chamel and Haensel (2008), Lattimer and Prakash (2016) (see also Chap. 7
in this book). Since the temperature in cold isolated NSs is below ∼1 MeV, lower
than characteristic nuclear Fermi energy, the zero-temperature approximation can
be used in constructing the EoS. The EoS is the necessary microphysics ingredient
to determine the NS macroscopic properties, e.g. the mass-radius relation. Indeed,
the structure of stationary, non-rotating, and unmagnetised NSs is determined
by integrating the Tolman-Oppenheimer-Volkoff (TOV) equations for hydrostatic
equilibrium in general relativity (Tolman 1939; Oppenheimer and Volkoff 1939)
(see Haensel et al. (2007) for details),

dP

dr
= −GρM

r2

(
1+ P

ρc2

)(
1+ 4πPr3

M c2

)(
1− 2GM

rc2

)−1

, (6.12)

where the function M (r) is defined by

dM

dr
= 4πr2ρ , (6.13)

with the boundary condition M (0) = 0. The gravitational mass of the NS is given
by M =M (R), R being the circumferential radius of the star where P(R) = 0. In
order to solve these equations, an EoS, P(ρ), must be specified. The latter depends
on the properties of dense matter which still remain very uncertain, especially
in the core of NSs. A number of EoSs for NSs are available, either with only
nucleonic degrees of freedom, or with hyperonic and quark matter. The majority
of them are non-unified, i.e. they are built piecewise, matching different models,
each one applied to a specific region of the NS. On the other hand, in unified
EoSs, all the regions of the NS (outer crust, inner crust, and the core) are calculated
using the same nuclear interaction (e.g., Douchin and Haensel 2001; Fantina et al.
2013; Miyatsu et al. 2013; Sharma et al. 2015). A unified and thermodynamically
consistent treatment is important to properly locate the NS boundaries (such as the
crust-core interface), that are important for the NS dynamics and which may leave
imprints on astrophysical observables. The use of non-unified EoSs may also lead
to considerable uncertainties in the NS radius determination (Fortin et al. 2016).
In Fig. 6.8, we show the NS pressure as a function of the baryon number density
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Fig. 6.8 Pressure versus baryon number density inside the NS (left panel) and NS gravitational
mass versus central baryon density (right panel), for different unified EoSs (data are taken from
Fantina et al. (2013), Sharma et al. (2015))

(left panel) and the NS mass versus the central density (right panel) resulting from
the resolution of the TOV equations, Eqs. (6.12)–(6.13), for some unified EoSs. For
those based on the SLy4 (Chabanat et al. 1998; Douchin and Haensel 2001), BSk21
(Goriely et al. 2010; Fantina et al. 2013), and BCPM (Baldo et al. 2010, 2013;
Sharma et al. 2015) EDFs, the EoS of the outer crust is calculated in the standard
BPS model (Baym et al. 1971b); for the former (SLy4), the outer-crust EoS is that
of Haensel and Pichon (1994), while for the latters nuclear masses are taken from
the experimental data in Wang et al. (2012) whenever available, complemented with
theoretical mass models from HFB calculations with the corresponding functional.
For the inner crust, clusters are described within the compressible liquid-drop model
in the EoS based on SLy4, thus no shell effects are included; however, different
shapes of the WS cells (spheres, cylinders) are considered. In the EoS based on the
BSk21 EDF, the EoS for the inner crust has been calculated within the ETF model
using a parameterized nucleon density distribution and with proton shell corrections
included using the Strutinski Integral method, while in the BCPM EoS the self-
consistent TF approach is employed and nuclear pasta is accounted for. For the
nucleonic liquid core, the EoSs are computed with the same functionals applied
in the inner crust; note that for the BCPM EoS, the core EoS is derived in the
framework of the BBG theory. One can also obtain a unified EoS from a general
purpose EoS, if applied at zero (or very small) temperature and in beta equilibrium.
For comparison, we display in Fig. 6.8 the results for two interactions of such EoSs,



6 Nuclear Equation of State for Compact Stars and Supernovae 295

that will be discussed in the next Section: the LS EoS in its SKa version7 and the
Shen EoS (Shen et al. 1998a) with the TM1 parameter set. All the considered EoSs
predict a maximum mass around or above 2 M�. However, significant differences
arise for the prediction of the central density and the radius of lower mass NSs.
Indeed, for a 1.5 M� NS, radii vary from ∼11.6 km for the EoS based on the SLy4
EDF to ∼14.4 km for the Shen-TM1 EoS (see, e.g., Fig. 16 in Sharma et al. 2015).

6.2.4.2 General Purpose Equations of State

Except for the case of “cold” (catalysed) NSs, for which the zero-temperature
approximation can be used (see Sect. 6.2.4.1), for PNSs, CCSNe, and binary
mergers, finite-temperature EoSs are crucially needed. A detailed analysis of the
finite-temperature properties of the bulk EoS relevant for CCSNe, PNSs, and binary
mergers, has been done, e.g., in Constantinou et al. (2014, 2015). A wide range of
densities, temperatures, and charge fractions, describing both clustered and homo-
geneous matter, is covered by the so-called “general purpose” EoSs. These EoSs
are therefore suitable for applications to SNe and mergers. However, at present,
only a few of them are available and direct applicable to simulations. Moreover,
for several of them, the underlying nuclear models are in disagreement with current
constraints from either astrophysics (e.g. measured mass of NSs) or nuclear physics
(experimental and/or theoretical constraints); see, e.g., the discussion in Oertel et al.
(2017) and Sect. 6.2.3. We list below the general purpose EoSs with only nucleonic
degrees of freedom currently used in astrophysical applications.

• H&W. The Hillebrandt and Wolff (H&W) EoS (Hillebrandt et al. 1984; Hille-
brandt and Wolff 1985) has been calculated using a NSE-network based on the
model of El Eid and Hillebrandt (1980), including 470 nuclei in the density
range 109–3 × 1012 g cm−3. At higher densities, the EoS is computed in the
single-nucleus approximation (Hillebrandt et al. 1984); the nuclear interaction
employed is the Skyrme interaction with the SKa parameter set (Köhler 1976).
This EoS is still used in recent numerical simulations (Janka 2012).

• LS. The Lattimer and Swesty (LS) EoS (Lattimer and Douglas Swesty 1991) is
a very widely used EoS in numerical simulations.8 It models matter as a mixture
of heavy nuclei (treated in the single-nucleus approximation), α particles, free
neutrons and protons, immersed in a uniform gas of leptons and photons. Nuclei
are described within a medium-dependent liquid-drop model, and a simplified
NN interaction of Skyrme type is employed for nucleons. Alpha particles are
described as hard spheres obeying an ideal Boltzmann gas statistics. Interactions

7http://www.astro.sunysb.edu/lattimer/EOS/main.html.
8The original EoS routine is available for three different parameterizations, according to the value
of the incompressibility of the underlying nuclear interaction (K0 = 180, 220, and 375 MeV), at
http://www.astro.sunysb.edu/dswesty/lseos.html. More recent tables are given at http://www.astro.
sunysb.edu/lattimer/EOS/main.html.

http://www.astro.sunysb.edu/lattimer/EOS/main.html
http://www.astro.sunysb.edu/dswesty/lseos.html
http://www.astro.sunysb.edu/lattimer/EOS/main.html
http://www.astro.sunysb.edu/lattimer/EOS/main.html
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between heavy nuclei and the gas of α particles and nucleons are treated
in an excluded-volume approach. With increasing density, shape deformations
of nuclei (non-spherical nuclei and bubble phases) are taken into account by
modifying the Coulomb and surface energies, and the transition to uniform matter
is described by a Maxwell construction.

• STOS. The Shen et al. (STOS) EoS (Shen et al. 1998a,b, 2011c) is another widely
used EoS. As the LS EoS, matter is described as a mixture of heavy nuclei
(treated in the single-nucleus approximation), α particles, and free neutrons and
protons, immersed in a homogeneous lepton gas. For nucleons, a RMF model
with the TM1 interaction (Sugahara and Toki 1994) is used; α particles are
described as an ideal Boltzmann gas with excluded-volume corrections. The
properties of the heavy nucleus are determined by WS-cell calculations within
the TF approach employing parameterized density distributions of nucleons and
α particles. The translational energy and entropy contribution of heavy nuclei,
as well as the presence of a bubble phase, are neglected (see Zhang and Shen
(2014) for a study of the effect of a possible bubble phase and a comparison
between self-consistent TF calculations and those using a parameterized density
distribution).

• FYSS. The EoS of Furusawa et al. (2011, 2013b, 2017b) is based on a NSE
model, including light and heavy nuclei up to Z ∼ 1000. For nuclei, the liquid-
drop model is employed, including temperature-dependent bulk energies and
shell effects (Furusawa et al. 2013b, 2017b). For light nuclei, Pauli- and self-
energy shifts (Typel et al. 2010) are incorporated (Furusawa et al. 2013b, 2017b).
The nuclear interaction used is the RMF parameterization TM1 (Sugahara and
Toki 1994). The pasta phases for heavy nuclei are also taken into account.
The FYSS EoS has been applied in CCSN simulations to study the effect of
light nuclei in Furusawa et al. (2013a), and to investigate the dependence of
weak-interaction rates on the nuclear composition during stellar core collapse
in Furusawa et al. (2017a).

• HS. The Hempel and Schaffner-Bielich (HS) (Hempel and Schaffner-Bielich
2010) EoS is based on the extended NSE model, taking into account an ensemble
of nuclei (several thousands, including light ones) and interacting nucleons.
Nuclei are described as classical Maxwell-Boltzmann particles, and nucleons are
described within the RMF model employing different parameterizations. Binding
energies are taken from experimental data whenever available (Audi et al. 2003),
or from theoretical nuclear mass tables. Coulomb energies and screening due to
the electron gas are calculated in the WS approximation, while excited states
of the nuclei are treated with an internal partition function, as in Ishizuka et al.
(2003). Excluded-volume effects are implemented in a thermodynamic consistent
way so that it is possible to describe the transition to uniform matter. At present,
EoS tables are available for the following parameterizations: TMA (Toki et al.
1995; Hempel and Schaffner-Bielich 2010; Hempel et al. 2012), TM1 (Sugahara
and Toki 1994; Hempel et al. 2012), FSUgold (Todd-Rutel and Piekarewicz
2005; Hempel et al. 2012), NL3 (Lalazissis et al. 1997; Fischer et al. 2014b),
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DD2 (Typel et al. 2010; Fischer et al. 2014b), and IU-FSU (Fattoyev et al. 2010;
Fischer et al. 2014b).

• SFHo, SFHx. The SFHo and the SFHx EoSs (Steiner et al. 2013a) are based
on the HS EoS, using two new RMF parameterizations fitted to some NS radius
determinations. These parameterizations have rather low values of the slope of
the symmetry energy, L, with respect to those used in the HS EoS.

• SHT, SHO. The EoSs of G. Shen et al., SHT (Shen et al. 2011b) and SHO
(Shen et al. 2011a), are computed using different methods in different density-
temperature domains.9 At high densities, uniform matter is described within
a RMF model. For non-uniform matter at intermediate densities, calculations
are performed in the (spherical) WS approximation, incorporating nuclear shell
effects (Shen et al. 2010a). The same RMF parameterization is employed. In this
regime, matter is modelled as a mixture of one average nucleus and nucleons, but
no α particles (Shen et al. 2010a). At lower densities, a virial EoS for a non-ideal
gas consisting of neutrons, protons, α particles, and 8980 heavy nuclei (A ≥ 12)
from a finite-range droplet model mass table is employed (Shen et al. 2010b).
Second-order virial corrections are included among nucleons and α particles,
Coulomb screening is included for heavy nuclei, and no excluded-volume
effects are considered. In the SHT (SHO) model, the RMF NL3 (FSUGold)
parameterization is used. Since the original FSUGold EoS has a maximum NS
mass of 1.7M�, a modification in the pressure has been introduced at high density
(above 0.2 fm−3), in order to increase the maximum NS mass to 2.1M�. In order
to produce a full table on a fine grid that is thermodynamically consistent, a
smoothing and interpolation scheme is used (Shen et al. 2011b,a).

Recently, EoSs at finite temperature incorporating additional degrees of freedom
have been also developed. Indeed, the appearance of additional particles such as
hyperons, pions, or even a transition to quark matter, cannot be excluded in the
density-temperature regime encountered during CCSNe or mergers.

• EoSs with hyperons and/or pions. In the RMF framework, Ishizuka et al. (2008)
extended the STOS EoS (Shen et al. 1998a), including hyperons and pions. Scalar
coupling constants of hyperons to nucleons are chosen to reproduce hyperonic
potential extracted from hypernuclear data, while vector couplings are fixed
based on symmetries. These authors also investigate the impact of the EoS in
NSs and in a spherical, adiabatic collapse of a 15M� star without neutrino
transfer: hyperon effects are found to be small for the density and temperature
encountered. Pions are treated as an ideal free Bose gas. Although, without
interactions, charged pions condensate below some critical temperature, Ishizuka
et al. (2008) mention that pion condensation is suppressed when considering a
πN repulsive interaction. Moreover, the effect of pions on the EoS is expected
to become non-negligible at high temperature, where the free gas approximation
should be valid. The EoS of Ishizuka et al. (2008) has been applied, e.g., in

9The SHT EoS is also available at the website http://cecelia.physics.indiana.edu/gang_shen_eos/.

http://cecelia.physics.indiana.edu/gang_shen_eos/
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Nakazato et al. (2012) to investigate hyperons in BH-forming failed SNe. An
extension of the STOS EoS including pions is discussed, e.g., in Nakazato et al.
(2008). In the non-relativistic framework, Oertel et al. (2012) added hyperons
extending the model of Balberg and Gal (1997), that is based on a non-relativistic
potential similar to that used in the LS EoS (Lattimer and Douglas Swesty 1991)
for nucleons. The hyperon couplings are chosen to be compatible with the single-
particle hyperonic potentials in nuclear matter and with the measured NS mass
of Demorest et al. (2010). Pions are also included in this model, as an ideal free
Bose gas. A version of this EoS, including only pions, has been employed to
study BH formation (Peres et al. 2013).

Other models, including only Λ hyperons, have been also developed, e.g.
extending the STOS EoS (Shen et al. 2011c), the LS EoS (Gulminelli et al.
2013; Peres et al. 2013), or the HS model (Banik et al. 2014) (an extended HS
model with the DD2 interaction including hyperons and quarks with a constant
speed of sound, c2

s = 1/3, has been considered in Heinimann et al. 2016). The
possibility of a phase transition at the onset of hyperons has been discussed, e.g.,
in Schaffner-Bielich et al. (2000, 2002), Gulminelli et al. (2012), Oertel et al.
(2016). At low temperatures, the onset of hyperons occurs between about 2 and 3
times the saturation density. The impact of additional particles on thermodynamic
quantities (especially on the pressure) may be important for high temperature and
densities (see, e.g., Oertel et al. 2017). The role of hyperons in the dynamical
collapse of a non-rotating massive star to a BH and in the formation and evolution
of a PNS has been studied in Banik (2014) using the hyperonic STOS EoS (Shen
et al. 2011c).

• EoSs with quarks. Some EoSs also consider a phase transition to quark matter.
The MIT bag model is applied, e.g., in Nakazato et al. (2008, 2013), Sagert et al.
(2009, 2010), Fischer et al. (2011, 2014a), and the transition from hadronic to
quark phase is modelled with a Gibbs construction. The parameters of the model,
the bag constantB and the strange quark mass, impact the onset of the appearance
of the quark matter. The inclusion of a gas of pions raises the density of the
transition to the quark phase due to the softening of the hadronic part of the EoS
(Nakazato et al. 2008). The possible impact of a quark phase in the core-collapse
dynamics will be briefly discussed below.

Applications to Core-Collapse Supernovae and Black-Hole Formation

The main microphysics ingredients playing a crucial role in the CCSN dynamics
are the EoS, the electro-weak processes (specifically, the electron capture on free
protons and nuclei), and the neutrino transport (see also Chap. 1 in this book).
It has been shown that these inputs can have an important effect on the collapse
dynamics and the shock propagation (see, e.g. Bethe (1990), Mezzacappa (2005),
Janka (2012), Janka et al. (2007, 2016), Burrows (2013) for a review). However,
their complex interplay and strong feedback with hydrodynamics make difficult
to predict a priori whether a small modification of one of these inputs can have a
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considerable effect on the explosion (usually, effects are expected to be moderated,
according to the Mazurek’s law; see Lattimer and Prakash 2000; Janka 2012). In
particular, the impact of the EoS is twofold: (1) it determines the thermodynamic
quantities acting on the hydrodynamics (e.g. the pressure and entropy) and (2)
it determines the composition of matter thus affecting the electron-capture rates.
Concerning the latters, it has been shown that the single-nucleus approximation is
not adequate to properly describe electron-capture rates during collapse. Indeed, the
most probable nucleus is not necessarily the one for which the rate is higher and
this may have an impact on the Ye evolution thus on the collapse dynamics (see,
e.g., Langanke and Martínez-Pinedo (2003, 2014) for a review, and Hix et al. 2003;
Sullivan et al. 2016; Raduta et al. 2016, 2017; Furusawa et al. 2017a).

Several studies have been carried out on the impact of the EoS on the infall
and post-bounce phase, most in spherical symmetry, employing either EoSs in the
single-nucleus approximation or based on a NSE approach (see, e.g. Sumiyoshi
et al. 2005; Hempel et al. 2012; Janka 2012; Steiner et al. 2013a; Fischer et al.
2014b; Togashi et al. 2014). Roughly speaking, a “softer” EoS would lead to a
more compact and faster contracting PNS producing higher neutrino luminosities
(Marek et al. 2009), and to larger shock radii (Janka 2012; Suwa et al. 2013)
in multi-dimensional simulations, resulting in a more favourable situation for
explosion. Different (“soft” versus “stiff”) EoSs may also potentially impact the
gravitational-wave signal from SN (see, e.g. Marek et al. 2009; Scheidegger et al.
2010; Richers et al. 2017). However, it is not straightforward to correlate single
nuclear parameters to the collapse dynamics, because different EoSs usually differ
in many properties predicted by the underlying nuclear model and because spurious
correlations between nuclear parameters can exist for a given model. Moreover,
other input parameters like the progenitor structure can impact the outcome of the
simulations (see also Chap. 1 in this book). Therefore, systematic investigations
are difficult to perform, also because of computational costs of multi-dimensional
simulations, and no strong conclusive statements can be drawn.

Since the EoS determines the maximum mass that the hot PNS can support, it
also impacts the time from bounce until BH formation (tBH). The sensitivity of
tBH to the EoS has been investigated, e.g., in Sumiyoshi et al. (2007), Sumiyoshi
(2007), Fischer et al. (2009), O’Connor and Ott (2011), Ott et al. (2011), using
the LS and the STOS EoSs, and in Nakazato et al. (2012), Peres et al. (2013),
Banik (2014), Char et al. (2015), where EoSs with additional degrees of freedom
(hyperons, quarks, or pions) have been employed. Especially in failed CCSNe,
high temperatures and densities can be reached, so additional particles are expected
to be more abundant. It is generally found that the softening of the EoS thus
induced reduces tBH, because the EoS supports less massive PNS with respect to
the nucleonic EoS (see, e.g. Nakazato et al. 2008; Sumiyoshi et al. 2009; Nakazato
et al. 2012; Peres et al. 2013; Banik 2014; Char et al. 2015).

Some works have also claimed that a transition to a quark phase could have a
non-negligible impact on the core-collapse dynamics (see, e.g., Gentile et al. 1993;
Drago and Tambini 1999; Sagert et al. 2009; Fischer et al. 2011). In particular, it
has been found that this phase transition can lead to a second shock wave triggering
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the explosion (Sagert et al. 2009). Conditions for heavy-element nucleosynthesis in
the explosion of massive stars triggered by a quark-hadron phase transition have also
been investigated (e.g., Fischer et al. 2011; Nishimura et al. 2012). However, the EoS
applied by Sagert et al. (2009), based on the MIT bag model for the quark phase,
was found to be in disagreement with the 2M� maximum mass constraint, and
subsequent works could not systematically confirm the aforementioned scenario,
leaving the question still open (see, e.g. Sagert et al. 2010, 2012; Nakazato et al.
2013; Fischer et al. 2014a).

Applications to Binary Mergers

Binary compact objects, either NSs or BHs, may also provide valuable information
on the EoS of dense matter. Indeed, they are promising sources of gravitational
waves, they may produce short gamma-ray bursts (GRBs), and they are thought
to be one of the main astrophysical scenarios for r-process nucleosynthesis (see,
e.g., Shibata and Taniguchi (2011), Faber and Rasio (2012); Rosswog (2015) for a
review); all these scenarios are sensitive to the EoS.10

Several studies show that the gravitational-wave frequency is related to the tidal
deformability during the late inspiral phase of compact binary systems, and thus
depends on the EoS (see, e.g., Shibata and Taniguchi 2011; Faber and Rasio 2012;
Read et al. 2013; Maselli et al. 2013; Kumar et al. 2017). Moreover, the frequencies
of the gravitational waves emitted during the post-merger phase are also sensitive
to the NS EoS (see, e.g., Sekiguchi (2011), Bauswein et al. (2014), Takami et al.
(2014), Bauswein and Stergioulas (2015), Palenzuela et al. (2015), Takami et al.
(2015), Rezzolla and Takami (2016), Baiotti and Rezzolla (2017); see also Chap. 10
in this book).

It has also been proposed to probe the EoS using the analysis of short GRBs
that are thought to be associated to binary-merger events (see, e.g., Fan et al. 2013;
Lasky et al. 2014; Fryer et al. 2015; Lawrence et al. 2015).

Finally, the conditions and characteristics of r-process nucleosynthesis and the
amount of ejected material depend on the thermodynamic conditions and matter
composition of the ejecta thus on the EoS (see, e.g., Goriely et al. (2011), Bauswein
et al. (2013), Wanajo et al. (2014); see also Chap. 11 in this book).

10Several such studies have been conducted very recently, after the detection of the GW170817
event (Abbott et al. 2017a). The associated observations of the gamma-ray burst GRB 170817A
and electromagnetic counterparts for this event suggest indeed that GW170817 was produced by
the coalescence of two NSs followed by a short gamma-ray burst and a kilonova powered by the
radioactive decay of r-process nuclei synthesised in the ejecta (Abbott et al. 2017a,b).
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6.2.5 CompOSE and Other Online EoS Databases

CompOSE is an online database that has been developed within the European Sci-
ence Foundation (ESF) funded “CompStar” network and the European Cooperation
in Science and Technology (COST) Action MP1304 “NewCompStar”. The database
is hosted at the website http://compose.obspm.fr. A manual describing how to use
the database and how to include one’s own EoS into it is also provided. As stated on
the main page of the website, “The online service CompOSE provides data tables
for different state of the art equations of state (EoS) ready for further usage in
astrophysical applications, nuclear physics and beyond.” It is not only a repository of
EoS tables, but also provides a set of tools to manage the tables, such as interpolation
schemes and data handling softwares. At the time being, CompOSE hosts several
one-parameter EoSs, suitable for application to NSs, and general purpose EoSs,
applicable to SN matter. More details and extensive explanations are given in Typel
et al. (2015).

Other online EoS databases that collect different available EoSs exist. STEL-
LARCOLLAPSE.ORG,11 provides tabulated EoSs, as well as other resources for
stellar collapse applications. EOSBD12 aims “to summarize and share the current
information on nuclear EoS which is available today from theoretical/experimen-
tal/observational studies of nuclei and dense matter”. The Ioffe website13 provides
EoSs of fully ionised electron-ion plasma, EoSs and opacities for partially ionised
hydrogen in strong magnetic fields, unified EoSs for NS crust and core, and some
hyperonic EoSs; references to the original works are also given. Relativistic EoS
tables for SN are also provided online.14

6.3 Challenges and Future Prospects

6.3.1 Model Dependence of Data Extrapolations

One of the big issues of obtaining constraints on the EoS from experimental or
observational data resides in the extrapolation of the raw data. Indeed, the majority
of the constraints result from combining raw data with theoretical models, thus
making the constraints model dependent. A typical example among astrophysical
observations is the determination of NS radii (see Sect. 6.2.3.2 and Chap. 5 in this
book). Concerning constraints coming from nuclear physics experiments, issues
arise since the state of matter in SNe and NSs is different compared to that

11http://www.stellarcollapse.org.
12http://aspht1.ph.noda.tus.ac.jp/eos/index.html.
13http://www.ioffe.ru/astro/NSG/nseoslist.html.
14http://user.numazu-ct.ac.jp/~sumi/eos/; http://phys-merger.physik.unibas.ch/~hempel/eos.html.

http://compose.obspm.fr
http://www.stellarcollapse.org
http://aspht1.ph.noda.tus.ac.jp/eos/index.html
http://www.ioffe.ru/astro/NSG/nseoslist.html
http://user.numazu-ct.ac.jp/~sumi/eos/
http://phys-merger.physik.unibas.ch/~hempel/eos.html
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Fig. 6.9 Slope of the symmetry energy L versus the symmetry energy coefficient S0. Shaded
areas correspond to different experimental constraints. Symbols correspond to S0 and L predicted
by different microscopic and phenomenological models. See the text for details

in HICs: matter in SNe can be more isospin asymmetric and has to be charge
neutral, while there is a net charge in HICs. For example, the extraction of the
pressure versus density constraint in symmetric nuclear matter shown in Fig. 6.5
is subject to uncertainties of the transport models, which depend on a number
of parameters that are not fully constrained. Another important example is given
by the inferred constraints on the symmetry energy. The latters are abundant at
saturation density (see, e.g., Tsang et al. 2012; Lattimer and Lim 2013; Lattimer and
Steiner 2014). A (non complete) compilation of different experimental constraints
is collected in Fig. 6.9, together with the values of (S0, L) predicted by different
theoretical models, both microscopic (empty symbols) and phenomenological (filled
symbols).

1. The green shaded area marked as “HIC” corresponds to the constraints inferred
from study of isospin diffusion in HICs (Tsang et al. 2009);

2. The turquoise shaded area labelled “Sn neutron skin” reports the constraints
inferred from the analysis of neutron skin thickness in Sn isotopes (Chen et al.
2010);

3. The blue shaded area labelled “polarizability” represents the constraints on the
electric dipole polarizability deduced in Roca-Maza et al. (2015). In the latter
work, available experimental data on the electric dipole polarizability, αD , of
68Ni, 120Sn, and 208Pb are compared with the predictions of random-phase
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approximation calculations, using a representative set of nuclear EDFs. From
the correlation between the neutron skin thickness of a neutron-rich nucleus and
L, and between αDS0 and the neutron skin thickness, Roca Maza et al. extracted
a relation between S0 and L for the three nuclei under study (see Eqs. (12)–(14)
in Roca-Maza et al. (2015), and their Fig. 5). The overlap of these constraints is
shown in Fig. 6.9;

4. The “FRDM” rectangle corresponds to the values of S0 and L inferred from
finite-range droplet mass model calculations (Möller et al. 2012). These bound-
aries were derived by varying the considered sets of data along with different
refinements of the model. Therefore, they can be biased by the uncertainties of
the approach, and probably the constraints turn out to be too severe;

5. The isobaric analog state (IAS) phenomenology and the skin width data can
put tight constraints on the density dependence of the symmetry energy up
to saturation. These constraints give a range of possible values for S0 and L,
which are displayed in the “IAS +Δrnp” diagonal region, which represents
simultaneous constraints of Skyrme-Hartree-Fock calculations of IAS and the
208Pb neutron-skin thickness (Danielewicz and Lee 2014).

Finally, the horizontal band labelled “neutron stars” is obtained by considering the
68% confidence values for L obtained from a Bayesian analysis of mass and radius
measurements of NSs (Steiner et al. 2013b), while the dashed curve is the unitary
gas bound on symmetry energy parameters of Tews et al. (2017) (see their Eqs. (24)–
(25) with Qn = 0): values of (S0, L) to the right of the curve are permitted.
Constraints have also been derived from measurements of collective excitations,
like giant dipole resonances (see, e.g., Trippa et al. 2008; Lattimer and Lim 2013;
Lattimer and Steiner 2014) and pigmy dipole resonances (see, e.g., the discussion
in Daoutidis and Goriely 2011; Reinhard and Nazarewicz 2013). However, we do
not display the former constraint, whose band would largely superpose with the
other constraints for S0 > 30 MeV, and the latter, because of the large theoretical
and experimental uncertainties. Note that there is no area of the parameter space
where all the considered constraints are simultaneously fulfilled. This is likely to
be due to the current uncertainties in the experimental measurements and to the
model dependencies that plague the extraction of the constraints from the raw
data. Although combining different constraints reduces the uncertainties in the
(S0, L) parameter space, no definitive conclusion can be drawn and, except for
models predicting a too high (or low) value of the symmetry energy parameters,
no theoretical models can be ruled out a priori on this basis. Finally, it has also
to be clarified whether the derived correlations among different parameters and
observables have a physical origin or are due to spurious correlations between the
model parameters.
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6.3.2 Many-Body Treatment at Finite Temperature, Cluster
Formation

A unified and consistent treatment of the different phases of matter, both at
zero and finite temperature, is extremely challenging (see also Chap. 7 in this
book). While either microscopic or phenomenological approaches are suitable to
describe homogeneous matter, the correct description of cluster formation, and more
generally of phase transitions, both at low and high densities and temperatures, is far
from being a trivial task. Indeed, at present, there exist no consistent and rigorous
treatment at zero and finite temperature of cluster formation beyond the single-
nucleus approximation. In extended NSE models, interactions between a cluster
and the surrounding gas are often treated in the excluded-volume approach, but
from virial and quantal approaches it is found that cluster properties themselves
are modified by the presence of a gas (e.g., Horowitz and Schwenk 2006a; Typel
et al. 2010; Hempel et al. 2011) and interactions among clusters should be also
considered (e.g., Typel 2014). Moreover, (1) these in-medium effects are density
and temperature dependent and (2) with increasing temperature, excited states of
nuclei become populated and need to be incorporated in the model. The way of
implementing them is not unique, and the different treatments lead to a considerable
spread in the predictions of extended NSE models (see, e.g., Buyukcizmeci et al.
2013).

Another issue concerns the extension of the many-body methods and the
extrapolation of their predictions, particularly at high density and temperature. For
example, the non-uniqueness of the fitting procedure of the EDF parameters and
the choice of the experimental data used to fit the parameters have led to different
EDFs, thus yielding a large spread in their predictions outside of the domain where
the EDFs were fitted (e.g., Goriely and Capote 2014). Especially for compact-
object applications, this question can be critical, since extrapolations of nuclear
masses are needed to describe the deepest regions of the NS crust and SN cores.
On the other hand, the nuclear interaction itself can be temperature dependent. The
temperature dependence of the EoS is very important for the physics of CCSNe,
PNSs, and compact-star mergers, where densities larger than the saturation density
and temperatures up to hundreds of MeV can be reached. In particular, the stiffness
of the EoS and the temperature dependence of the pressure can be crucial in
determining the final fate of the CCSNe. Therefore, efforts should be devoted on
the study of the EoS in the high-temperature regime. In Sect. 6.2.2.1, the current
state of the art of microscopic calculations of the finite-temperature EoS has been
already discussed. The extension of those calculations at large temperatures is not a
trivial task. For instance, in the Bloch-De Dominicis theoretical framework (Bloch
and De Dominicis 1959b), on which the finite-temperature BHF approach is based,
several higher order diagrams have to be included in the expansion, both at two
and three hole-line level. These additional contributions could have sizeable effects
that are not straightforward to predict a priori. For phenomenological models, the
question arises as whether the EDF parameters determined by fitting nuclear data at
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zero temperature can be reliably used when applying the EDFs at finite temperature.
Thermal properties of asymmetric nuclear matter have been investigated within a
relativistic model, showing that the couplings are weakly dependent on temperature,
up to a few tens of MeV (Fedoseew and Lenske 2015). Similar conclusions can be
deduced, e.g., from Moustakidis and Panos (2009), Fantina et al. (2012b). In the
former work, where an extra term has been added to a Skyrme-type interaction, it
has been shown that the temperature dependence of the couplings is weak up to
about 30 MeV. Also, a good agreement is obtained when comparing the free energy
and pressure of nuclear matter for Brussels-Montreal Skyrme models with ab-initio
calculations at finite temperature, up to 20 MeV (see Fig. 1 in Fantina et al. 2012b).
It remains to be determined whether these conclusions still hold at the highest
temperatures (�100 MeV) that can be reached in CCSNe or binary mergers.

6.3.3 Role of Three-Body Forces

In Sect. 6.2.2.1 we have shown that a NN interaction based on quark degrees of
freedom (Baldo and Fukukawa 2014; Fukukawa et al. 2015) is able to reproduce at
the same time the three-body properties, and the saturation point of nuclear matter
without introducing TBFs, just using some parameters fitted on the NN phase shifts
and deuteron properties. These results were obtained by including in the many-
body calculation the three-body correlations within the hole-line expansion of the
BBG formalism, indicating that the explicit introduction of the quark structure of
the nucleons is relevant for the NN interaction. Additional interactions based on
quark degrees of freedom should be considered, in order to understand if they have
similar properties and eventually to pinpoint the key reasons of their performance,
which is comparable with that of the best NN interaction based on meson exchange
processes or on the chiral symmetry of QCD.

6.3.4 Composition and URCA Process

During the first 105–106 year, a NS cools down mainly via neutrino emission. In the
absence of superfluidity, three main processes are usually taken into account: the
direct URCA (DU), the modified URCA (MU), and the NN bremsstrahlung (BNN)
processes. The most efficient neutrino emission is the DU process, a sequence of
neutron decays, n→ p+ e−+νe, and electron captures, p+ e− → n+νe. For this
process and for npe NS matter, the neutrino emissivity is given by Yakovlev et al.
(2001)

Q(DU) ≈ 4.0× 1027
(
Ye nB

n0

)1/3 m+
nm

+
p

m2
n

T 6
9 Θ(kFp + kFe − kFn) erg cm−2 s−1 ,

(6.14)
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Fig. 6.10 Proton fraction versus baryon number density for different microscopic (left panel) and
phenomenological (right panel) models. The dashed black lines labelled “DU” mark the threshold
for the DU process to occur (Klähn et al. 2006)

where mn is the neutron mass, m+
n (m+

p) is the neutron (proton) effective mass,

T9 is the temperature in units of 109 K, Θ is the Fermi function, and kF,p, kF,e,
and kF,n are the proton, electron, and neutron Fermi momenta, respectively. It thus
considerably depends on the temperature and on the nucleon effective masses. If
muons are present, then the corresponding DU process may also become possible,
in which case the neutrino emissivity is increased by a factor of 2. If it takes place,
the DU process enhances neutrino emission and NS cooling rates by a large factor
compared to MU and BNN processes. The role of the DU processes has been long
questioned in the past years, since it depends on the adopted EoS and the values of
the superfluidity gaps, on which, at present, there is no consensus. Concerning the
EoS, the energy and momentum conservation imposes a proton fraction threshold
for this process to occur (Lattimer et al. 1991; Klähn et al. 2006), Xp ≈ 11–15%,
that is mainly determined by the symmetry energy. In Fig. 6.10, we display the
proton fraction versus the baryon density in NS matter for different microscopic
(left panel) and phenomenological (right panel) models. For the former models,
we observe that, except fss2 (CC), all the considered microscopic approaches are
characterised by a quite low value of the threshold density. For instance, for the BHF
with Av18+UIX, the DU process sets in at 0.44 fm−3, thus the DU process operates
in NS with massesM > 1.10 M�, while for the APR EoS the onset of DU is shifted
to larger density, 0.82 fm−3, due to the lower values of the symmetry energy, hence
Xp. Among the phenomenological models considered here, only the EoS based on
the SLy4 EDF forbids the DU process, while the EoS based on NL3 (DD-MEδ)
has the lowest (Cavagnoli et al. 2011) and highest (Wang et al. 2014) threshold
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density. For the EoS based on the BSk21 (BCPM) EDF, the threshold density is
0.45 fm−3 (Fantina et al. 2013) and 0.53 fm−3 (Sharma et al. 2015), thus the DU
process occurs for NS with M > 1.59M� (M > 1.35M�). Incidentally, Klähn
et al. (2006) argued that no DU process should occur in NSs with typical masses
in the range M ∼ 1 − 1.5M�. From the observational point of view, the pulsar in
CTA1, the transiently accreting millisecond pulsar SAX J1808.4−3658, and the soft
X-ray transient 1H 1905+000 appear to be very cold, thus suggesting that these NSs
may cool very fast via the DU process (Jonker et al. 2007; Heinke et al. 2009; Page
et al. 2009; Abdo et al. 2012). Moreover, the low luminosity from several young SN
remnants likely to contain a still unobserved NS (Kaplan et al. 2004, 2006) could
suggest further evidence for a DU process (Shternin and Yakovlev 2008; Page et al.
2009). If DU processes actually occur in those objects and the NS masses were
known, they could put constraints on the EoSs unfavouring those that forbid DU
for those masses. In fact, a key parameter that could discriminate whether the DU
occurs in a NS is its mass. Unfortunately, the masses of these cooling objects are not
precisely measured, if not known at all. An object of particular interest is Cassiopeia
A (Heinke and Ho 2010), that can potentially give information on the interior of the
NS (see, e.g., Page et al. 2011; Shternin et al. 2011; Blaschke et al. 2012, 2013;
Sedrakian 2013; Taranto et al. 2016) and on the nuclear symmetry energy and the
nuclear pasta (Newton et al. 2013). Its fast cooling was claimed to be a direct proof
of superfluidity in NSs, even if more recent analyses put a word of caution on the
initial data (Posselt et al. 2013; Elshamouty et al. 2013; Ho et al. 2015).

A further critical point of most current cooling simulations is the fact that a
given EoS is combined with pairing gaps obtained within a different theoretical
framework and using different input interactions, thus resulting in an inconsistent
analysis. Recently, some progress has been made along this direction (Taranto et al.
2016), concluding that the possibility of strong DU processes cannot be excluded
from the cooling analysis.

The current results confirm the extreme difficulty to draw quantitative con-
clusions from the current NS cooling data. In particular, the present substantial
theoretical uncertainty regarding superfluidity gaps and thermal conductivity (see
also Chap. 8 in this book) calls for a renewed effort in the theoretical activity of the
next few years.

6.4 Conclusions

The EoS of hot and dense matter is a crucial input to describe static and dynamical
properties of compact objects. However, constructing such a (unified) EoS is a
very challenging task. The physical conditions prevailing in these astrophysical
objects are so extreme that it is currently impossible to reproduce them in terrestrial
laboratories. Therefore, theoretical models are required. Nevertheless, ab-initio
calculations cannot be at present applied to determine the EoS in all the regions of
NSs and SNe, mainly because of computational cost, thus more phenomenological
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models have to be employed. In this Chapter, we have reviewed the current status of
the EoS for compact objects. We have presented the different underlying many-
body methods, both microscopic and phenomenological, for homogeneous and
inhomogeneous matter, considering only nucleonic degrees of freedom. We have
discussed these models with respect to constraints coming from both nuclear physics
experiments and astrophysical observations: apart from the precise measurements
of the 2M� NSs, other constraints are less strict since often model dependent.
New terrestrial experiments and facilities such as RIKEN, FAIR, HIE-ISOLDE,
SPIRAL 2, FRIB, and TRIUMF, and new-generation telescopes and projects such as
ATHENA+, NICER, and SKA, and gravitational-wave detectors such as Advanced
Virgo and LIGO, and LISA promise to provide more and more precise data that
can significantly contribute to probe the internal structure of compact objects,
allowing unprecedented comparisons with theoretical predictions. Finally, we have
discussed some of the present challenges in the EoS modelling. Indeed, despite
many recent advances in the many-body treatment, still issues have to be faced in the
description of the EoS. These include (1) the model dependence of the constraints
inferred from experimental nuclear physics and astrophysical data, (2) the lack of a
consistent and rigorous many-body treatment both at zero and finite temperature
of cluster formation beyond the single-nucleus approximation, (3) the treatment
and role of nucleonic TBFs, and (4) the description of the cooling in NSs. The
current theoretical uncertainties require significant efforts to be undertaken in these
directions in the next few years.
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Chapter 7
Phases of Dense Matter in Compact Stars

David Blaschke and Nicolas Chamel

Abstract Formed in the aftermath of gravitational core-collapse supernova explo-
sions, neutron stars are unique cosmic laboratories for probing the properties of
matter under extreme conditions that cannot be reproduced in terrestrial labora-
tories. The interior of a neutron star, endowed with the highest magnetic fields
known and with densities spanning about ten orders of magnitude from the surface
to the centre, is predicted to exhibit various phases of dense strongly interacting
matter, whose physics is reviewed in this chapter. The outer layers of a neutron star
consist of a solid nuclear crust, permeated by a neutron ocean in its densest region,
possibly on top of a nuclear “pasta” mantle. The properties of these layers and of
the homogeneous isospin asymmetric nuclear matter beneath constituting the outer
core may still be constrained by terrestrial experiments. The inner core of highly
degenerate, strongly interacting matter poses a few puzzles and questions which
are reviewed here together with perspectives for their resolution. Consequences
of the dense-matter phases for observables such as the neutron-star mass-radius
relationship and the prospects to uncover their structure with modern observational
programmes are touched upon.
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7.1 Introduction

7.1.1 Cosmic Laboratories

Neutron stars are the stellar remnants of massive stars at the end point of their
evolution (see, e.g., Haensel et al. 2007). Neutron stars have a mass between one
and two times that of the Sun, but packed into a space only 20 km across (100,000
times smaller than the Sun’s diameter). The average density of a neutron star can
thus exceed a few hundred-thousand billion grams per cubic centimeter - a density
higher than that found inside the heaviest atomic nuclei. Neutron stars are not only
the most compact observed stars in the Universe, but they are also endowed with the
strongest magnetic fields known, which could reach millions of billions times that
of the Earth. Neutron-star observations thus offer the unique opportunity to explore
the properties of matter under extreme conditions, which cannot be reproduced in
the laboratory.

7.1.2 Cold Catalysed Matter Hypothesis

During the formation of a neutron star, the hot compressed matter in the collapsed
stellar core is assumed to undergo all kinds of nuclear and electroweak processes
such that the compact stellar remnant cools down by following a sequence of full
thermodynamic quasi equilibrium states. The resulting neutron star thus eventually
consists of “cold catalysed matter”, i.e., electrically charge neutral matter in its
absolute ground state, after all internal heat has been released (Harrison and Wheeler
1958; Harrison et al. 1965). This scenario supposes that the reaction rates are much
higher than the cooling rate. In reality, the composition of a neutron star may not
only depend on the particular internal conditions prevailing during its formation,
but also on its subsequent evolution, as well as on its environment. In particular,
the constitution of the collapsed core may become “frozen in” as it cools down
(see, e.g. Goriely et al. (2012) for a recent discussion). Moreover, the accretion of
matter from a companion star or a high enough magnetic field may notably change
the composition of the neutron star. These different situations will be separately
discussed.

7.2 Surface Layers of a Neutron Star

Neutron stars are expected to be surrounded by a very thin atmosphere consisting
of a plasma of electrons and light elements (mainly hydrogen and helium though
heavier elements like carbon may also be present (Heinke and Heinke 2009)). Its
properties such as the effective temperature, the composition, and the magnetic field
configuration, can be inferred by analyzing the thermal X-ray emission from neutron
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stars (see, e.g. Potekhin et al. 2015). The region beneath consists of a solid crust
(see, e.g., Chamel and Haensel 2008).

7.2.1 Nonaccreted Neutron-Star Crusts

The outermost region of a nonaccreting neutron star is expected to be made of
iron 56Fe, the end-product of stellar nucleosynthesis. The properties of compressed
iron can be probed in terrestrial laboratories up to pressures of order 1014 dyn cm−2

with nuclear explosions and laser-driven shock-wave experiments (see, e.g., Batani
et al. 2002; Fortov and Lomonosov 2010; Ping 2013). Under these conditions, iron
has an hexagonal close-packed structure (Ping 2013; Stixrude 2012). Transitions
to a face-centred cubic lattice and a body-centred cubic lattice are expected at
pressures of about 6 × 1013 dyn cm−2 and 4 × 1014 dyn cm−2 respectively for
temperatures below ∼104–105 K (Stixrude 2012). Although such pressures are
tremendous according to terrestrial standards, they still remain negligibly small
compared to those prevailing in a neutron star (note also that observed middle-aged
neutron stars have typical surface temperatures of order 106 K, see e.g. Potekhin
and Chabrier (2018)). In particular, the highest density of iron that has been
experimentally attained is only about three times the density at the surface of a cold
neutron star, and 14 orders of magnitude lower than the density at the stellar center.
This corresponds to a depth of about 0.1 mm for a star with a mass M = 1.4M�
and a radius R = 12 km.1 Deeper in the star, recourse must therefore be made to
theoretical models (see, e.g. Lai et al. (1991) and references therein). At a density
ρeip ≈ 2 × 104 g cm−3 (about 22 cm below the surface2), the interatomic spacing
aN = [3/(4πnN)]1/3 (with nN the number density of atomic nuclei) becomes
comparable with the atomic radius ∼ a0/Z

1/3 (with a0 the Bohr radius and Z

the atomic number - here Z = 26). At densities ρ � ρeip, atoms are crushed
into a dense plasma of nuclei and free electrons. This ionization is not triggered by
thermal excitations but by the prodigious gravitational pressure (see, e.g., Haensel
et al. (2007)). Beyond this point, electrons are very weakly perturbed by ions,
and thus behave as an essentially ideal Fermi gas. Because electrons are highly
degenerate, they provide the necessary pressure to counterbalance the weight of
the layers above. The attractive Coulomb interactions between electrons and ions
reduce the electron Fermi gas pressure, but their relative contribution is only of
order Z2/3e2/(h̄vF ) (Haensel et al. 2007) (with e the elementary electric charge, h̄

1The depth z0 below the surface of a cold and fully catalysed neutron star at a pressure P0 was

estimated as z0 ≈
∫ P0

0

dP

ρgs
, with gs = GM

R2

(
1− 2GM

Rc2

)−1/2

, see, e.g., Chamel and Haensel

(2008), and we have made use of an interpolation of the “QEOS” equation of state from More
et al. (1988), as tabulated in Lai et al. (1991).
2The depth was calculated combining the equations of state labeled “QEOS” from More et al.
(1988) and “TFD” in Table 5 of Lai et al. (1991).
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the Planck-Dirac constant, and vF the electron Fermi velocity). The (electric charge)
polarization of electrons around ions (also referred to as electron screening) leads to
a correction of order Z4/3e4/(h̄vF )

2 (Haensel et al. 2007). For the nuclides present
in the crust, the electron exchange correction of order e2/(h̄vF ) turns out be of
the same magnitude. For a discussion of higher-order corrections due to electron
correlations, finite size of nuclei, and quantum-zero point motion of nuclei, see e.g.
Guo et al. (2007), Pearson et al. (2011). Although electron-ion interactions are very
small, they still play a major role in the equilibrium structure of the crust. As the
density reaches about 7 × 106 g cm−3 (about 11 m below the surface3), electrons
become relativistic since the interelectron spacing ae = [3/(4πne)]1/3 (with ne
the electron number density) is comparable with the electron Compton wavelength
λe = h̄/(mec) (me is the electron mass, and c is the speed of light).

7.2.2 Accreted Neutron-Star Crusts

The composition of the surface layers of a neutron star may be changed by the
fallback of material from the envelope ejected during the supernova explosion,
and more importantly by the accretion of matter from a stellar companion (see,
e.g., Chamel and Haensel (2008)). The accreted material forms an hydrogen rich
envelope around the star. Stable hydrogen burning produces helium, which accu-
mulates in a layer beneath. These helium ashes ignite under specific conditions of
density (typically ∼106–107 g cm−3) and temperature. For some range of accretion
rates, helium burning is unstable, converting within seconds all the envelope into
nuclides in the nickel-cadmium range (Schatz et al. 2001). These thermonuclear
explosions are observed as X-ray bursts, with luminosity up to about 1038 erg s−1

(≈ Eddington limit for neutron stars), and with a typical decay lasting a few tens
of seconds. Multiplying the burst luminosity by its duration we get an estimate of
the total burst energy ∼1039–1040 erg. X-ray bursts are quasiperiodic, with typical
recurrence time of about hours to days. Less frequent but more energetic (∼1042 erg)
are superbursts lasting for a few hours, with recurrence times of several years. These
superbusts are presumably triggered by the unstable burning of carbon at densities
∼108–109 g cm−3, and their ashes are predicted to consist mainly of 66Ni, 64Ni,
60Fe, and 54Cr (Schatz et al. 2003).

Because the equilibrium structure of such multicomponent plasmas is highly
uncertain, various properties of accreted neutron-star crusts such as their breaking
strain remain poorly known. According to classical molecular dynamics simula-
tions, ashes tend to arrange on a regular body-centred cubic lattice as in catalysed
crusts (Horowitz and Berry 2009). However, the system may have not fully relaxed
to its true equilibrium state due to the very slow dynamics of crystal growth.

3The depth was calculated combining the equations of state labeled “QEOS” and “TFD” in Table 5
of Lai et al. (1991), and the equation of state calculated in Pearson et al. (2011).
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Alternatively, valuable insight can be gained from analyses of the dynamical
stability of given crystal structures (but with arbitrary composition) (Kozhberov and
Baiko 2015). The reduced computational cost allows to take into account quantum
effects, which can play a key role at low temperatures. Recently, a different approach
has been followed using genetic algorithms (Engstrom et al. 2016). Although
limited to a few ternary crystals, unconstrained global searches of the equilibrium
structure have revealed a very rich phase diagram with noncubic lattices. In view
of the importance of the crust structure, these theoretical studies should be pursued.
Astrophysical observations can provide complementary information. In particular,
the possibility of an amorphous crust has been ruled out by cooling simulations of
the observed thermal relaxation of transiently accreting neutron stars (Shternin et al.
2007). Gravitational-wave observations (or lack thereof) may provide additional
information on the structure of neutron-star crusts (Hoffman and Heyl 2012).

7.2.3 Highly Magnetised Neutron Stars

Neutron stars are not only the most compact observed stars in the universe, but
are also among the strongest magnets known, with typical surface magnetic fields
of order 1012 G (Seiradakis and Wielebinski 2004). A few radio pulsars have been
recently found to have significantly higher surface magnetic fields of order 1013–
1014 G (Ng and Kaspi 2011). Surface magnetic fields of order 1014–1015 G have
been inferred in soft-gamma ray repeaters (SGRs) and anomalous x-ray pulsars
(AXPs) from both spin-down and spectroscopic studies (Olausen and Kaspi 2014;
Tiengo et al. 2013; An et al. 2014). Various observations suggest that the interior
magnetic field may be even higher (Stella et al. 2005; Kaminker et al. 2007; Vietri
et al. 2007; Rea et al. 2010; Makishima et al. 2014). At the time of this writing, 11
SGRs and 12 AXPs have been already identified (Olausen and Kaspi 2014). It is
now widely believed that these objects belong to a different class of neutron stars
called magnetars (see e.g. Woods and Thompson (2006) for a review), as proposed
by Duncan and Thomson in 1992 (Thompson and Duncan 1992). Numerical
simulations confirmed that magnetic fields of order∼ 1015–1016 G can be produced
during supernovae explosions due to the magnetorotational instability (Ardeljan
et al. 2005). Theoretical considerations corroborated by numerical simulations
suggest that neutron stars may potentially possess internal magnetic fields as high
as 1018 G (see, e.g. Kiuchi and Yoshida 2008; Frieben and Rezzolla 2012; Pili et al.
2014; Chatterjee et al. 2015 and references therein).

The properties of the surface layers of a neutron star can be drastically different
in the presence of a high magnetic field. The electron motion perpendicular to the
magnetic field lines is quantised into Landau orbitals with a characteristic magnetic
length scale (see, e.g., Haensel et al. (2007)) am = a0

√
Bat/B, with

Bat = m2
ee

3c

h̄3 � 2.35× 109 G . (7.1)



342 D. Blaschke and N. Chamel

For magnetic fields B � Bat, atoms are expected to adopt a very elongated shape
along the magnetic field lines and to form linear chains. The attractive interaction
between these chains could lead to a phase transition into a magnetically condensed
phase with a surface density estimated as (Lai and Shapiro 1991)

ρs � 560AZ−3/5B
6/5
12 g cm−3, (7.2)

where B12 ≡ B/(1012)G (assuming B � 1018 G, see e.g. Chamel et al. (2012)).
For iron with B = 1015 G, we obtain ρs � 1.8 × 107 g cm−3, as compared to
7.86 g cm−3 in the absence of magnetic fields. In deeper regions of the crust, the
density ρ at pressure P is approximately given by (Chamel et al. 2012)

ρ ≈ ρs

(
1+

√
P

P0

)
, (7.3)

where

P0 � 1.45× 1020B
7/5
12

(
Z

A

)2

dyn cm−2 . (7.4)

The presence of a high magnetic field does not change the equilibrium structure of
a body-centred cubic crystal of ions embedded in a uniform charge neutralizing
electron background (Kozhberov 2016). However, it has been found that in the
strongly quantising regime, the long-range part of the ion-ion potential exhibits
Friedel oscillations that may lead to the formation of strongly coupled filaments
aligned with the magnetic field (Bedaque et al. 2013). This possibility should be
further examined.

The absence of spectral features in the thermal emission from seven radio-quiet
isolated neutron stars (usually referred to as the ‘Magnificent Seven’) could be the
consequence of the magnetic condensation of their surface (Turolla et al. 2004),
with magnetic fields of order 1013–1014 G as estimated from X-ray timing data.
The presence of high magnetic fields has recently found additional support from
optical polarimetry measurements (Mignani et al. 2017). Future X-ray polarimetry
measurements could potentially allow to discriminate between the case of a gaseous
atmosphere and a condensed magnetic surface.

7.3 General Considerations on Dense Stellar Plasmas

In this section, we consider fully ionised Coulomb plasmas at densities ρ above
107 g cm−3 and below the onset of neutron emission by nuclei.
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7.3.1 Gravitational Stratification

Because the pressure has to vary continuously throughout the star and the nucleon
number is conserved, the suitable thermodynamic potential for determining the
composition is the Gibbs free energy per nucleon g (Tondeur 1971; Baym et al.
1971). As shown in the appendix of Chamel and Fantina (2015), g remains the
suitable thermodynamic potential in the presence of a high magnetic field. At a given
pressure, hot dense matter in full thermodynamic equilibrium generally consists of
an admixture of various nuclear species (Hempel et al. 2012; Furusawa1 et al. 2013;
Buyukcizmeci et al. 2014; Gulminelli and Raduta 2015; Grams et al. 2018). As the
temperature decreases, the distribution of nuclei becomes very narrow. The crust of
a cold nonaccreted neutron star is thus expected to be stratified into different layers,
each of which consists of a body-centred cubic crystal made of a single nuclear
species. Substitutional binary ionic compounds with cesium chloride structure
can only possibly exist at the interface between two adjacent strata (Chamel and
Fantina 2016b). Multinary ionic compounds may however be present in the crust of
accreted neutron stars (Chamel 2017a). We shall not discuss this possibility here.
In the single-nucleus approximation, each layer is described as a one-component
crystal of pointlike nuclei in a uniform charge neutralizing electron background.
Retaining only the electrostatic correction to the ideal electron Fermi gas model,
and expanding g to first order in α = e2/(h̄c), the transition between two adjacent
strata made of nuclei (A1, Z1) and (A2, Z2) respectively, is determined by the
condition (Chamel and Fantina 2016b)

μe+C αh̄cn
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where μe is the electron Fermi energy, M ′(A1, Z1) and M ′(A2, Z2) are the nuclear
masses, C is a dimensionless structure constant (see discussion below).

According to the Bohr-van Leeuwen theorem (Van Vleck 1932), the electrostatic
correction is independent of the magnetic field apart from a negligibly small contri-
bution due to quantum fluctuations of ion motion (Baiko 2009). Equations (7.5)
and (7.6) thus remain valid for highly magnetised neutron stars (provided the
electrostatic correction remains small4), but nuclear masses hence μ1→2

e could
change substantially (especially if the magnetic field strength exceeds 1017 G)

4Because the electron chemical potential scales as μe ∼ 2pi2mec
2λ3

eneBrel/B with Brel � 4.4 ×
1013 G in strongly quantising magnetic fields, the expansion of g to first order in α eventually
breaks down in high enough magnetic fields. See also Sect. 7.4.2.
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compared to their values in the absence of a magnetic field (Peña Arteaga et al.
2011; Stein et al. 2016a). As shown in Sect. 7.3.2, mechanical stability requires
Z1/A1 > Z2/A2 so that Eqs. (7.5) and (7.6) are well defined. We adopt here the
convention to include the rest mass of Z electrons in M ′(A,Z). The reason is that
experimental atomic masses M(A,Z) are generally tabulated rather than nuclear
masses M ′(A,Z). The latter can be obtained from the former after subtracting out
the binding energy of the atomic electrons (see, e.g., Eq. (A4) of Lunney et al.
(2003)). The threshold condition (7.5) still holds in hot dense matter whether the
Coulomb plasma is in a solid or a liquid state, provided the temperature T is well
below the electron Fermi temperature defined by

TFe = μe −mec
2

kB
≈ 5.93× 109 μe

mec2 K . (7.7)

In principle, nuclei in hot dense matter may coexist with a gas of nucleons and
light particles, but their fraction is negligibly small at T � TFe (see, e.g., Haensel
et al. 2007). The structure constant is very-well approximated by the ion-sphere
model (Salpeter 1954)

C = − 9

10

(
4π

3

)1/3

, (7.8)

which also provides a lower bound (Lieb and Narnhofer 1975). The structure
constant of the solid phase (assuming a perfect body-centred cubic crystal) is
Cbcc � −1.4442, whereas in the liquid phase Cliq � −1.4621 (see, e.g., Haensel
et al. (2007)). Crystallization of a one-component plasma of ions with charge Z

occurs at the temperature given by (see, e.g., Haensel et al. 2007)

Tm = e2

aekBΓm
Z5/3 , (7.9)

where kB is Boltzmann’s constant, and Γm is the Coulomb coupling parameter
at melting. In the absence of magnetic fields, Γm � 175 (Haensel et al. 2007).
In the presence of a high magnetic field, Coulomb crystals are expected to be
more stable so that Γm � 175 (Potekhin and Chabrier 2013). Transitions between
multicomponent phases as in accreted neutron-star crusts have been addressed in
Chamel and Fantina (2016b).

Because the transition between two adjacent layers occurs at a fixed pressure, it
is accompanied by a density discontinuity given by (Chamel and Fantina 2016b)
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Fig. 7.1 Schematic representation of the pressure P versus mean baryon number density n̄ for
a transition between two pure body-centred cubic solid phases of nuclei (A1, Z1) and (A2, Z2)

accompanied by the formation of a substitutional binary compound. For comparison, the transition
leading to the coexistence of pure phases is indicated by the dotted line. The figure is not to scale.
Taken from Chamel and Fantina (2016b)

as schematically illustrated in Fig. 7.1. It is to be understood that the electron density
is obtained from Eq. (7.5). In principle, pure phases of nuclei (A1, Z1) and (A2, Z2)
can coexist at intermediate densities. However, since inside a self-gravitating body
in hydrostatic equilibrium the pressure must increase monotonically with depth (see,
e.g., Haensel et al. 2007), such coexisting phases cannot be present in the crust of a
neutron star. Instead, binary compounds could form at the boundary but only over
a small range of pressures (P1+2→2 − P1→1+2)/P1→2 � 1, and provided Z1 
=
Z2 (Chamel and Fantina 2016b). As a matter of fact, transitions from a pure phase
to a compound phase is still accompanied by density jumps. Very accurate analytical
expressions for the pressure at the transition between two adjacent strata as well as
the average baryon number densities of each layer in the absence of magnetic field
can be found in Chamel and Fantina (2016b). The errors were found to lie below
0.2% for the pressures, and below 0.07% for the densities. Approximate expressions
in the presence of a strongly quantising magnetic field are given in Chamel et al.
(2017a).

7.3.2 Matter Neutronization and Onset of Neutron Emission

As a consequence of Le Chatelier’s principle, the bulk modulus K = n̄dP/dn̄

of matter in equilibrium must be positive: the density must therefore increase
with pressure. Using Eq. (7.10) and ignoring the small electrostatic correction, we
conclude that nuclei become progressively more neutron rich with increasing depth
(Z2/A2 < Z1/A1) (see also De Blasio (2000) where the restoring force acting on
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displaced ions was explicitly calculated). This neutronization is achieved by electron
captures, and various nuclear processes (e.g. fissions, fusions) depending on the
local conditions. In turn, assuming that the electrostatic contribution in the left-hand
side of Eq. (7.5) is small,5 μ1→2

e must be positive implying that M ′(A2, Z2)/A2 >

M ′(A1, Z1)/A1. Combining these two inequalities, we find that as the composition
changes nucleons become less bound B(A2, Z2)/A2 < B(A1, Z1)/A1, where
B(A,Z) = Zmpc

2+ (A−Z)mnc
2−M ′(A,Z)c2 denotes the total binding energy

of the nucleus (A,Z). At some point, ΔN > 0 neutrons will become unbound and
start to drip out of nuclei. This transition marks the boundary between the outer
and inner regions of the crust. Due to baryon number conservation, the daughter
nuclei will be of the form (A − ΔN,Z − ΔZ), with Z ≥ ΔZ ≥ ΔN + Z − A

(this follows from the requirement that the daughter nuclei must contain positive
numbers of neutrons and protons). Assuming ΔZ 
= 0, and ignoring neutron band-
structure effects, the onset of this transition is determined by the condition (Chamel
et al. 2015a)

μe + Cαh̄cn
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drip
e ≡ M ′(A−ΔN,Z −ΔZ)c2 −M ′(A,Z)c2 +mnc

2ΔN

ΔZ
+mec

2 . (7.12)

In the case ΔZ = 0 and ΔN > 0, the threshold condition reads

M ′(A,Z)−M ′(A−ΔN,Z) = ΔNmn , (7.13)

independently of the electron background: this shows that a nucleus unstable against
neutron emission in vacuum is also unstable in a stellar environment at any density.
This means in particular that the neutron-drip transition in the crust of a neutron star
must be necessarily triggered by reactions such that ΔZ 
= 0. Since μdrip

e > mec
2,

the nucleus must satisfy the following constraint

M ′(A−ΔN,Z −ΔZ)−M ′(A,Z)+mnΔN > 0 . (7.14)

Equations (7.5), (7.10), and (7.11) are applicable to both weakly and highly
magnetised neutron stars (with suitable values for the nuclear masses), accreted
and nonaccreted (to the extent that the crust consists of pure layers). Very accurate
analytical expressions for the pressure and the density at the neutron-drip transition
can be found in Chamel et al. (2015a,c).

5This assumption may be violated in the presence of a very high magnetic field, as discussed in
Sect. 7.3.1.
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7.4 Outer Crust of a Neutron Star

7.4.1 Nonaccreted Neutron-Star Crusts

The internal constitution of the outermost layers of a nonaccreted (fully catal-
ysed) neutron star crust is completely determined by experimental atomic mass
measurements. In particular, the strata of iron 56Fe is predicted to extend up to a
density of about 8 × 106 g cm−3 (about 12 m below the surface6). Using the data
from the 2016 Atomic Mass Evaluation (AME) (Wang et al. 2017) and applying
the model of Pearson et al. (2011), the region beneath is found to consist of a
succession of layers made of 62Ni, 64Ni, 66Ni, 86Kr, 84Se, 82Ge, and 80Zn with
increasing depth. Although electron charge polarisation effects are very small,
they may change the composition (see, e.g., Chamel and Fantina 2016a). For
instance, ignoring this correction leads to the appearance of 58Fe (whose mass is
experimentally known) in between the layers of 62Ni and 64Ni. This nuclide is still
present if the electron polarisation is implemented using the interpolating formula
of Potekhin and Chabrier (2000) instead of the limiting Thomas-Fermi expression
for Z → +∞ (Salpeter 1961) employed in Pearson et al. (2011). The existence or
not of this nuclide in the crust is also found to depend on the precision of the nuclear
mass measurements: using the data from the 2012 AME (Audi et al. 2012), which
differs by less than 1 keV/c2 compared to the more recent value (Wang et al. 2017),
58Fe thus disappears independently on how the electron polarisation correction is
calculated.

The composition of the innermost regions is more uncertain due to the lack
of experimental data, and can only be explored using nuclear mass models (see,
e.g., Guo et al. 2007; Pearson et al. 2011; Rüster et al. 2006; Roca-Maza and
Piekarewicz 2008; Chamel et al. 2015b; Sharma et al. 2015; Utama et al. 2016;
Fantina et al. 2017; Chamel et al. 2017b for recent calculations). The most accurate
nuclear mass models achieve to fit all known experimental masses with a root-mean
square deviation of a few hundred keV/c2 (Pearson et al. 2013; Sobiczewski and
Litvinov 2014), whereas errors of the order of a keV/c2 can change the composition
as previously discussed. Therefore, the main sources of uncertainties are nuclear
masses. Because of nuclear pairing effects, nuclei with even numbers of neutrons
and protons are more tightly bound that neighboring nuclei in the nuclear chart.
For this reason, odd nuclei were generally not considered in earlier calculations
of neutron-star crusts, and the search for the equilibrium nuclides was limited to
a restricted set of even-even nuclei (130 even–even nuclei in the seminal work of
Baym et al. (1971)). However, the crustal composition is determined by the full
thermodynamic equilibrium with respect to all processes, not only strong nuclear
reactions. Therefore, there is no fundamental reason to rule out odd nuclei. As a

6The depth was calculated combining the equations of state labeled “QEOS” and “TFD” in Table 5
of Lai et al. (1991), and the equation of state calculated in Pearson et al. (2011).
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matter of fact, the microscopic nuclear mass model HFB-21 predicts the presence of
79Cu and 121Y in the outer crust (Pearson et al. 2011). The nuclear shell structure has
a profound influence on the crustal composition, with a predominance of nuclides
with neutron magic numbers N = 50 and N = 82. Because of the requirement of
β equilibrium and electric charge neutrality, the proton number Z is more tightly
constrained and for this reason, only a few crustal layers are made of nuclei with
proton magic number Z = 28, and the only doubly magic nucleus predicted by
various nuclear mass models to be present in the crust is 78Ni (Xu et al. 2014; Hagen
et al. 2016).

Progress in experimental techniques over the past decades have allowed to probe
deeper the interior of a neutron star crust, up to a density ∼ 6 × 1010 g cm−3. For
comparison, the most exotic experimentally measured nuclide predicted to exist in
the crust of a neutron star in 1971 was 84Se (Z/A � 0.405) at densities up to about
8.2 × 109 g cm−3 (Baym et al. 1971). More recently, the presence of the neutron-
rich zinc isotope 82Zn (Z/A � 0.366) that was predicted by some nuclear mass
models has been ruled out by experiments at the ISOLDE-CERN facility (Wolf
et al. 2013; Kreim et al. 2013). In contrast to the modeling of gravitational core-
collapse supernova explosions that require the knowledge of the properties of a very
large ensemble of nuclei, significant advances in the understanding of the crust of a
nonaccreted neutron star could thus be achieved in the near future by measurements
of a few exotic nuclei. Experiments could also provide crucial information on
the evolution of the nuclear-shell structure towards the neutron-drip line (see, e.g.
Steppenbeck et al. 2013 and references therein). As discussed in Sect. 7.3.2, the
nuclei (A,Z) that could possibly exist in the outer crust of a neutron star beneath
the layer of 80Zn must satisfy the experimental constraints

Z/A < 0.375, M ′(A,Z)/A > 930.848 MeV/c2 , (7.15)

where we have made use of the latest mass data from Wang et al. (2017). These
conditions apply to all regions of the outer crust below that containing 80Zn. The
conditions (7.15) rule out the doubly magic nuclei 48Ca, 48Ni, and 56Ni since
Z/A � 0.417, 0.583 and 0.5 respectively. On the other hand, the doubly magic
nucleus 78Ni (Z/A � 0.359) is not necessarily excluded.

Under the assumption of cold catalysed matter, the neutron drip transition is
determined considering all possible electron capture and neutron emission processes
with all possible values of ΔZ and ΔN . The lowest threshold pressure is reached
for ΔZ = Z and ΔN = A (see e.g. Chamel et al. 2015a). In this case, Eq. (7.14)
reduces to M ′(A,Z)/A < mn: this condition is satisfied by any nucleus and
therefore does not provide any additional constraint. Using microscopic nuclear
mass models, the neutron-drip density and pressure are predicted to lie in the
range ρdrip ∼ 4.2–4.5 × 1011 g cm−3, and Pdrip ∼ 7.7–8.0 × 1029 dyn cm−2

respectively (Chamel et al. 2015a; Fantina et al. 2016). As discussed in Sect. 7.3.2,
the equilibrium nucleus found by minimising the Gibbs free energy per nucleon
must be stable against neutron emission. Still, it may lie beyond the “neutron-drip
line” in the chart of nuclides. Let us recall that this line is generally defined at
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each value of the proton number Z by the lightest isotope for which the neutron
separation energy Sn, defined by Sn(A,Z) ≡ M ′(A−1, Z)c2−M ′(A,Z)c2+mnc

2

is negative, i.e., the lightest isotope that is unstable with respect to the emission of
one neutron. Because of pairing and shell effects, many nuclei beyond the neutron-
rich side of the neutron drip line are actually stable. The outer crust of a neutron star
may actually contain ultradrip nuclei. For instance, the HFB-21 mass model predicts
the presence of 124Sr with Sn = 0.83 MeV; the isotope at the neutron-drip line is
121Sr with Sn = −0.33 MeV (Pearson et al. 2011).

7.4.2 Highly Magnetised Neutron Stars

According to the magnetar theory, neutron stars are born with very high magnetic
fields of order B ∼ 1016–1017 G. The presence of such high magnetic fields may
alter the formation of the crust.

As discussed in Sect. 7.2.3, the motion of electrons is quantised into Landau
orbitals in the presence of a high magnetic field. If the magnetic field strength
exceeds the value

Brel = m2
ec

3

eh̄
� 4.41× 1013 G , (7.16)

the orbital size am is lower than the electron Compton wavelength λe, so that the
electron motion is relativistic. This situation is encountered in SGRs, AXPs, as well
as in some radio pulsars. The energy levels of a relativistic electron gas in a magnetic
field were first calculated by Rabi (1928). The quantising effects of the magnetic
field on the properties of the outer crust of a neutron star are most important when
only the first Rabi level is occupied. In such case, the magnetic field is usually
referred to as strongly quantising. This situation arises when ρ < ρB and T < TB
with

ρB = A

Z
m

B
3/2
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2π2λ3
e

� 2.07× 106A

Z
B

3/2
+ g cm−3 , (7.17)

TB = mec
2

kB
B+ � 5.93× 109B+ K , (7.18)

where B+ ≡ B/Brel and m = M ′(A,Z)/A is the mean mass per nucleon.
For the “low” magnetic fields B+ � 1 prevailing in most neutron stars, the

internal constitution of their outer crust is essentially the same as in the absence of
magnetic fields except possibly near the stellar surface, as discussed in Sect. 7.2.3.
For higher magnetic fields B+ � 1 as measured in SGRs, AXPs, and some radio
pulsars, the composition is found to depend on the magnetic field (Lai and Shapiro
1991; Chamel et al. 2012; Nandi and Bandyopadhyay 2011; Chamel et al. 2013b;
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Nandi and Bandyopadhyay 2013). In particular, the maximum baryon number
density n̄max up to which a nuclide (A1, Z1) is present exhibit typical quantum
oscillations as a function of the magnetic field strength (Chamel et al. 2017a,
2015c, 2016). Beyond some magnetic field strength B1→2

+ ≈ 1/2(μ1→2
e /(mec

2))2,
where μ1→2

e is defined by Eq. (7.6), electrons are confined to the lowest Rabi level
thus leading to an essentially linear increase of n̄max with B+ (small nonlinearities
are introduced by the electrostatic interactions). Since the electron Fermi energy
increases with density, the magnetic field is strongly quantising in any layer of the
outer crust if B+ > B

drip
+ ≈ 1/2(μdrip

e /(mec
2))2, where μdrip

e is the electron Fermi
energy at the neutron-drip transition defined by Eq. (7.12). Typical values for Bdrip

+

are around 1300 (Chamel et al. 2012, 2017a, 2015c, 2016). Depending on the value
of the magnetic field strength, some nuclides may disappear and others appear. For
example, the nickel isotopes 66Ni and 64Ni are no longer present in the crust for
B+ > 67 and B+ > 1668 respectively, whereas 88Sr and 132Sn appear at B+ = 859
and B+ = 1989 respectively (see, e.g. Chamel et al. (2017a) for the detailed
composition). All in all, the crust of a neutron star becomes less neutron-rich in the
presence of a high magnetic field. Moreover, the neutron-drip transition is shifted
to either higher or lower densities depending on the magnetic field strength. The
lowest density is reached for B+ = B

drip
+ and is given by ρmin

drip ≈ (3/4)ρdrip(B+ = 0)
(Chamel et al. 2015c). In the strongly quantising regime, the neutron-drip density
increases almost linearly with B+. In all these calculations, the same nuclear masses
as in the absence of magnetic fields were employed. However, high enough magnetic
fields can also influence the structure of nuclei (Peña Arteaga et al. 2011; Stein
et al. 2016a), inducing additional changes in the crustal composition (Basilico
et al. 2015). However, complete nuclear mass tables corrected for the presence of a
magnetic field are not yet available.

7.4.3 Accreted Neutron-Star Crusts

The composition of the outer crust of an accreting neutron star in a low-mass X-ray
binary can be very different from that of a nonaccreting neutron star depending on
the duration of accretion. In particular, the original outer crust, containing a mass
∼ 10−5 M� (withM� the mass of the Sun), is pushed down by the accreted material
and is molten into the liquid core in about 104 years assuming an accretion rate of
10−9 M� per year.

The constitution of the outer crust of an accreted neutron star depends on the
composition of the X-ray burst ashes, produced in the outermost region of the
star at densities ρ � 107 g cm−3. As this material sinks into deeper layers due to
accretion, it may undergo electroweak and nuclear reactions. The evolution of a
matter element was followed in Gupta et al. (2007, 2008), Schatz et al. (2014), Lau
et al. (2018) considering a reaction network of many nuclei. Such calculations are
computationally very expensive, and require the knowledge of a very large number
of nuclear inputs (e.g. nuclear masses, reaction rates), some of which have not been
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experimentally measured and must therefore be estimated using nuclear models.
For this reason, the composition of accreted crusts remains more uncertain than that
of catalysed crusts despite recent progress in nuclear mass measurements (Estradé
et al. 2011; Meisel et al. 2015, 2016). A numerically more tractable approach
consists of assuming that the rate of an energetically allowed reaction is much
faster than the accretion rate. At densities ρ > 108 g cm−3, matter is strongly
degenerate, and is “relatively cold” (T � 108 K), so that thermonuclear processes
are strongly suppressed. Under these conditions, the most important reactions are
single electron captures. Multiple electron captures are very rare and can thus be
ignored. For instance, the double electron capture by 56Fe occurs on a timescale of
about 1020 years (Blaes et al. 1990). The first electron capture by a nucleus (A,Z)

(A,Z)+ e− −→ (A,Z − 1)+ νe , (7.19)

proceeds in quasi-equilibrium: this reaction occurs as soon as the electron Fermi
energyμe exceeds some threshold valueμβ

e , as determined by Eqs. (7.11) and (7.12)
with ΔZ = 1 and ΔN = 0 (in the case of a transition to an excited state of the
daughter nucleus with energy Eex, the mass M ′(A,Z − 1) must be replaced by
M ′(A,Z − 1)+ Eex/c

2). In other words, this reaction is allowed if the Gibbs free
energy per nucleon is lowered. The daughter nucleus is generally highly unstable,
and captures a second electron off-equilibrium with an energy release Q:

(A,Z − 1)+ e− −→ (A,Z − 2)+ νe +Q. (7.20)

With these assumptions, the final composition of accreted neutron-star crusts is
independent of the details of the reaction rates. It is only determined by the initial
composition of X-ray bursts ashes and by nuclear masses (as well as the energies
Eex for transitions to excited states). Such calculations have been carried out in
Steiner (2012) using a liquid droplet model with empirical nuclear-shell corrections.
A further simplification consists of approximating the distribution of nuclides by a
single nucleus (Haensel and Zdunik 1990, 2003, 2008). This computationally very
fast treatment was shown to provide a fairly accurate estimate for the total heat
released as compared to reaction network calculations (Haensel and Zdunik 2008).
The composition of the outer crust of accreted neutron stars have been recently
determined using microscopic nuclear mass models (Fantina et al. 2018).

As the X-ray burst ashes sink into the crust, their proton number decreases due
to electron captures whereas their mass number remains unchanged. At some point,
the daughter nuclei will be so neutron rich that free neutrons will be emitted. This
transition, which marks the boundary between the outer and inner regions of the
crust, will occur when the threshold electron chemical potential μdrip

e for neutron
emission (i.e. ΔN > 0 and ΔZ = 1) will become lower than the threshold electron
chemical potential μβ

e for electron capture alone. This condition can be equivalently
expressed as (Chamel et al. 2015a)

M ′(A−ΔN,Z − 1)−M ′(A,Z − 1)+ΔNmn < 0 . (7.21)
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Depending on the composition of ashes, and employing microscopic nuclear mass
models, the neutron-drip density and pressure are expected to lie in the range ρdrip
∼ 2.6 − 6.5 × 1011 g cm−3, and Pdrip ∼ 4.4 − 13 × 1029 dyn cm−2 respectively
(Fantina et al. 2016).

7.5 Inner Crust

The neutron-saturated clusters constituting the inner crust of a neutron star owe their
existence to the presence of a highly degenerate surrounding neutron liquid: neutron
emission processes, which would lead to the immediate disintegration of these
clusters in vacuum, are energetically forbidden in a neutron star due to the Pauli
exclusion principle since neutron continuum states are already occupied. As a newly
formed neutron star cools down, free neutrons in the inner crust are expected to
become superfluid by forming Cooper pairs analogously to electrons in conventional
superconductors7 (see, e.g. Chamel and Haensel 2008; Sedrakian and Clark 2006;
Margueron et al. 2012; Page et al. 2014; Graber et al. 2017; Chamel 2017b for recent
reviews; see also Sedrakian and Haskell in this volume).

For all these reasons, the inner crust of a neutron star is a unique environment,
whose extreme conditions imposed by the huge gravitational field of the star
cannot be reproduced in terrestrial laboratories. The description of the inner crust
of a neutron star must therefore rely on theoretical models. Because clusters are
inseparable from their neutron environment, both should be consistently treated.
Despite considerable progress in the development of many-body methods for
the description of light and medium mass nuclei on the one hand, and infinite
homogeneous neutron matter on the other hand (see, e.g. Hagen et al. 2016;
Dickhoff and Barbieri 2004; Baldo and Biurgio 2012; Carlson et al. 2015; Hagen
et al. 2016; Holt et al. 2016; Hergert et al. 2016; Oertel et al. 2017), ab initio
calculations of the inner crust of a neutron star still remain out of reach. Various
phenomenological approaches have thus been followed (see, e.g. Haensel et al.
2007; Chamel and Haensel 2008 for comprehensive reviews), and will be briefly
discussed below.

7.5.1 Nonaccreted Neutron-Star Crusts

State-of-the-art calculations pioneered by Negele and Vautherin (1973) rely on the
self-consistent nuclear energy density functional theory, traditionally formulated in

7The high temperatures ∼107 K prevailing in neutron stars prevent the formation of electron
pairs recalling that the highest critical temperatures of terrestrial superconductors do not exceed
∼200 K (Drozdov et al. 2015). See also Ginzburg (1969).
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terms of effective nucleon-nucleon interactions in the “mean-field approximation”
(see, e.g. Duguet (2014) for a recent review). It should be stressed that in principle,
this theory could predict the exact ground state of any nuclear system. In practice,
however, this theory remains phenomenological because the exact nuclear energy
density functional is not known. Still, the accuracy of any given functional can
be tested against experimental nuclear data, as well as results from microscopic
calculations following different many-body approaches. The most accurate existing
functionals are able to fit essentially all measured nuclear masses and charge
radii with a root-mean square deviation of about 0.5–0.6 MeV/c2 and 0.03 fm
respectively, while reproducing at the same time properties of homogeneous infinite
nuclear matter (equation of state, pairing gaps, effective masses) obtained from
ab initio calculations (Pearson et al. 2013; Goriely et al. 2016). In the nuclear
energy density functional theory, the ground-state energy is obtained by solving the
self-consistent Hartree-Fock-Bogoliubov (HFB) equations describing independent
quasiparticles in an average field induced by the underlying particles (see, e.g.
Chamel et al. 2013a). In the absence of nuclear pairing, the HFB equations reduce
to the Hartree-Fock (HF) equations. As recently shown in Pastore et al. (2017), the
HFB energy can be estimated with an error of a few keV per nucleon by applying
the decoupling approximation, according to which the nuclear pairing phenomenon
is described by the Bardeen-Cooper-Schrieffer (BCS) equations (Bardeen et al.
1957). A relativistic version of the nuclear energy density functional theory has
been developed, whereby nucleons interact with various effective meson fields (see,
e.g., Bender et al. (2003) for a discussion of both relativistic and nonrelativistic
approaches). This theory has been usually referred to as relativistic “mean-field”
(RMF) model, although it can account for many-body correlations beyond the
mean-field approximation as its nonrelativistic version. In this approach, causality
is guaranteed at high density. It has thus been widely employed in studies of dense-
matter in the core of neutron stars (Glendenning 2000).

Nuclear-energy density functional calculations of neutron-star crusts (see, e.g.
Margueron et al. 2012) have been traditionally performed using an approximation
originally introduced by Eugene Wigner and Frederick Seitz in 1933 in solid-state
physics (Wigner and Seitz 1933), whereby clusters with their surrounding neutrons
are confined inside spherical cells independent from each other. The Wigner-
Seitz approximation allows for relatively fast numerical computations. The crustal
composition obtained in this way was found to be very sensitive to nuclear pairing
effects (Baldo et al. 2007; Grill et al. 2011), but also to the choice of boundary
conditions (Baldo et al. 2007, 2006). This stems from the artificial quantisation of
unbound neutron states (Chamel et al. 2007; Margueron et al. 2008; Pastore et al.
2016). Over the past years, a few three-dimensional calculations of the ground state
of cold dense matter have been undertaken in cubic cells with strictly periodic
boundary conditions (Magierski and Heenen 2002; Gögelein and Müther 2007).
However, the reliability of such calculations is still limited by the appearance of
spurious neutron shell effects (see, e.g. Newton and Stone 2009; Fattoyev et al.
2017) that can only be completely alleviated either by choosing a large enough cell
(much larger than the screening length) (Sébille et al. 2009, 2011) or by considering
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a single Wigner-cell of the crystal lattice (a truncated octahedron in case of a body-
centred cubic lattice) with Bloch boundary conditions (Chamel 2012; Schuetrumpf
and Nazarewicz 2015). In the former case, the results could also be biased by
the arbitrary choice of the shape of the “supercell” (see, e.g., Giménez Molinelli
and Dorso 2015). The latter approach is computationally more tractable due to the
reduced size of the cell and the smaller number of particles. On the other hand,
it requires the prior knowledge of the crystal structure. This, however, does not
appear as a serious limitation, except for describing the densest part of the crust
(see Sect. 7.6). Indeed, clusters are generally assumed to form a body-centred cubic
lattice (in some layers, however, a face-centred cubic lattice might be energetically
favoured, as found, e.g. in Okamoto et al. (2013)). Although the presence of the
neutron liquid leads to an induced interaction between clusters that could potentially
affect the structure of the inner crust (Kobyakov and Pethick 2014), refined estimates
of the induced interaction have dismissed this possibility (Kobyakov and Pethick
2016). Whether the crust is described by a supercell with periodic boundary
conditions or by a single Wigner-Seitz cell with Bloch boundary conditions, nuclear-
energy density functional calculations are computationally extremely costly.

For this reason, many studies of the inner crust of a neutron star rely on
compressible liquid drop models (see, e.g. Douchin and Haensel 2001; Newton
et al. 2013; Deibel et al. 2014; Gulminelli and Raduta 2015; Bao and Shen 2016;
Fortin et al. 2016; Tews 2017; Lim and Holt 2017 for recent calculations). In
this approach, the nuclear clusters and the neutron liquid are considered as two
distinct homogeneous phases. The bulk and surface properties of these two phases
can in principle be determined using the nuclear energy density functional theory.
However, empirical parametrisations of the surface properties are often employed.
Despite its simplicity, the liquid drop model has shed light on various aspects of
dense matter. In particular, the formation of neutron-proton clusters was shown to
arise from a detailed balance between Coulomb and surface effects (Baym et al.
1971), leading to the prediction of complex configurations commonly referred to
as “pastas” in the densest layers of the crust (see Sect. 7.6). Moreover, the liquid
drop model has been employed to study the role of nuclear parameters, such as the
symmetry energy, on the crustal composition and the crust-core boundary (see, e.g.,
Newton et al. 2013; Bao and Shen 2016).

A more realistic treatment of dense matter in neutron-star crusts is to employ
semi-classical methods such as the Thomas-Fermi (TF) approximation (see, e.g.
Sharma et al. 2015; Gögelein and Müther 2007; Okamoto et al. 2013; Fortin
et al. 2016; Lim and Holt 2017; Oyamatsu and Iida 2007; Avancini et al. 2008;
Miyatsu et al. 2013; Grill et al. 2014; Iida and Oyamatsu 2014), or its higher-order
extensions (Onsi et al. 1997; Goriely et al. 2008; Martin and Urban 2015). The
neutron liquid and the clusters are not treated separately, but are described in terms
of continuous neutron and proton distributions. This method is based on a systematic
expansion of the smooth part of the single-particle quantum density of states in
powers of h̄ (see, e.g., Brack et al. (1985) for a review; see Centelles et al. (1993) for
the relativistic version). The accuracy of this development has been recently studied
in Papakonstantinou et al. (2013), Aymard et al. (2014). The shell correction to the
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total energy of a Wigner-Seitz cell (responsible for the oscillatory part of the single-
particle quantum density of states) can be added perturbatively via the Strutinsky
integral (Dutta et al. 2004; Onsi et al. 2008; Pearson et al. 2012, 2015, 2018). This
so called ETFSI method is not only a computationally high-speed approximation to
the full HF+BCS equations, but it also avoids the pitfalls discussed above that plague
the current numerical implementations of the nuclear energy density functional
theory. These calculations show that proton-shell effects still play an important
role in determining the ground-state composition of the inner crust, with clusters
containing predominantly Z = 40 protons (Pearson et al. 2012). The appearance
of this magic number can be understood from the fact that the strength of the spin-
orbit coupling tends to decrease with the neutron excess, as measured in ordinary
nuclei (Schiffer et al. 2004). However, the importance of shell effects is mitigated
by pairing (Pearson et al. 2015). Depending on the symmetry energy, clusters with
Z = 20, 50, 58 or 92 can also be favored (Pearson et al. 2018). In the densest
region of the crust, configurations with different cluster sizes may differ by a few
keV per nucleon at most, suggesting that this region could be very heterogeneous.
Further studies beyond the mean-nucleus approximation should thus be pursued. At
high enough density, protons may drip out of clusters (see, e.g. Pearson et al. 2018;
Pethick et al. 1995), and are expected to become superconducting at low enough
temperatures.

With further compression, the crust dissolves into an homogeneous mixture
of nucleons and electrons. The crust-core transition appears to be essentially
continuous from the thermodynamic point of view, and occurs at a density between
about one third and one half of the nuclear saturation density depending on the
symmetry energy and on the nuclear model employed (see, e.g. Newton et al. 2013;
Bao and Shen 2016; Ducoin et al. 2011; Iida and Oyamatsu 2014; Sulaksono et al.
2014; Seif and Basu 2014; Gonzalez-Boquera et al. 2017; Fang et al. 2017 for recent
studies).

7.5.2 Highly Magnetised Neutron Stars

As discussed in Sects. 7.2.3 and 7.4.2, the presence of a high magnetic field may
have a profound influence on the composition and on the properties of dense matter.
However, few studies have been devoted so far to the role of a high magnetic field
on the inner crust of a neutron star. Rabi quantisation of electron motions was
studied in Nandi and Bandyopadhyay (2011, 2013), Nandi et al. (2011) within the
TF approximation. It was found that the inner crust of highly magnetised neutron
stars is more proton rich, similarly to the results obtained in the outer crust (see
Sect. 7.4.2). As a consequence, magnetised crusts contain larger clusters separated
by a smaller distance, whereas the neutron liquid is more dilute. However, these
effects were found to be negligible for magnetic field strengths below ∼1016–
1017 G. In addition to the modification of the electron motion, the effects of the
magnetic field on nucleons was studied in de Lima et al. (2013) within the TF



356 D. Blaschke and N. Chamel

approximation. The transition density between different cluster types was found to
exhibit typical oscillations as a function of the magnetic field strength, as also found
in the outer crust for the density at the interface between different layers. Studies
of spatial instabilities in highly magnetised homogeneous stellar matter within
the RMF approach and taking into account the anomalous magnetic moment of
nucleons suggest that the densest part of the crust could consist of alternating layers
of homogeneous and inhomogeneous regions (Fang et al. 2016, 2017; Chen 2017).
However, quantisation effects of the magnetic field on the crust-core transition are
washed out at temperatures of order 109 K (Fang et al. 2017). The spin polarisation
of matter adds to the complexity of these phases (see, e.g. Rabhi et al. (2015)
and references therein). Moreover, the formation of Cooper pairs in the spin-
singlet channel thus becomes disfavoured in the presence of a high magnetic field.
Calculations in pure neutron matter suggest that neutron superfluidity in the crust
of a neutron star is destroyed if the magnetic field strength exceeds 1017 G (Stein
et al. 2016b). However, calculations of inhomogeneous neutron superfluidity in
magnetised crusts are still lacking. This warrants further studies.

7.5.3 Accreted Neutron-Star Crusts

Comparatively very few studies have been devoted to the inner regions of accreted
neutron-star crusts. This stems from the fact that the rates of electroweak and strong
nuclear reactions that could possibly occur in this environment where neutron-
proton clusters coexist with free neutrons are poorly known. Moreover, a very large
number of different nuclear species are expected to exist in any given layer of the
accreted crust. Because these clusters owe their existence to the surrounding neu-
trons, their properties cannot be experimentally measured. A consistent treatment of
a distribution of clusters with free neutrons in the framework of the nuclear energy-
density functional theory is computationally extremely challenging as this would
require solving the HFB equations in considerably larger cells than in nonaccreted
crusts.

For all these reasons, the composition of the inner crust of accreted neutron stars
has been mainly studied so far using compressible liquid-drop models, in the single-
nucleus approximation (see, Haensel and Zdunik (1990, 2003, 2008) and references
therein) and taking into account the distribution of different clusters (Steiner 2012).
The composition was determined by following the sequence of electron captures,
neutron emissions, and pycnonuclear reactions that occur as the elements present
at the bottom of the outer crust sink into deeper layers. These calculations indicate
that the accretion of matter onto a neutron star can radically change the internal
constitution of the inner crust. Very recently, the role of nuclear shell effects on the
properties of accreted crusts has been studied in the framework of the nuclear energy
density functional theory using the ETFSI method (Fantina et al. 2018).
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7.6 Nuclear Pasta Mantle

In the outer crust of a neutron star, nucleons are bound inside nuclei, whose size
(typically 5–6 fm) is negligibly small compared to the ion spacing (aN varies from
about 105 fm at the surface to 102 fm at the neutron-drip point). Consequently, the
composition of the outer crust (determined by nuclear physics) and its structure
(determined by the physics of dense Coulomb plasmas) can be studied separately.
Whereas the spatial arrangement of nuclei in the outer crust is governed by the
long-range Coulomb interactions, the shape and size of an individual nucleus are
controlled by the short-range nuclear and Coulomb interactions. Nuclei expected to
be present in the outer crust of a neutron star are almost spherical. Considering
axially symmetric nuclei, the nuclear surface can be parametrised by the radius
RN(θ) = R0(1+β2Y

0
2 (θ)+β4Y

0
4 (θ)), where θ is the polar angle, Ym

# are spherical
harmonics, β2 and β4 are dimensionless parameters characterising quadrupole and
hexadecapole deformations. Positive (respectively negative) values for β2 lead to
prolate (respectively oblate) spheroid nuclei. Typical orders of magnitude for these
latter parameters are |β2| ∼ 10−1 and |β4| ∼ 10−2. In most regions of the
inner crust, nuclear clusters remain sufficiently far apart that their structure is not
influenced by the presence of neighbouring clusters. Therefore, clusters are expected
to be quasi spherical as in the outer crust. However, because the average distance
between clusters decreases with increasing density, clusters eventually fuse and
connect into herringbone structures (Watanabe et al. 2009) similarly to percolating
networks as speculated earlier by Ogasawara & Sato (Ogasawara and Sato 1982).

Matter in the densest layers of the crust is frustrated and various exotic
configurations collectively referred to as “nuclear pastas” might appear, as first
shown in Ravenhall et al. (1983), Hashimoto et al. (1984), Oyamatsu et al. (1984)
(see, e.g., Chamel and Haensel 2008; Watanabe and Maruyama 2012 for a review).
Frustrated nuclear systems are also encountered in heavy-ion collisions although
under different physical conditions (see, e.g. Botvina and Mishustin 2005). If they
exist, nuclear pastas would behave like liquid crystals and would thus form a liquid
mantle below the crust (Pethick and Potekhin 1998). Nuclear pastas have been
studied following the same treatments as described in Sect. 7.5 for the inner crust:
compressible liquid drop models (see, e.g. Newton et al. 2013; Lim and Holt 2017;
Nakazato et al. 2011; Gupta and Arumugam 2013; Viñas et al. 2017 for recent
calculations), semi-classical methods (see, e.g. Sharma et al. 2015; Gögelein and
Müther 2007; Okamoto et al. 2013; Fortin et al. 2016; Lim and Holt 2017; Oyamatsu
and Iida 2007; Avancini et al. 2008; Grill et al. 2014; Iida and Oyamatsu 2014;
Martin and Urban 2015; Viñas et al. 2017, and the nuclear energy density functional
theory (see, e.g. Magierski and Heenen 2002; Gögelein and Müther 2007; Newton
and Stone 2009; Fattoyev et al. 2017; Sébille et al. 2009, 2011; Schuetrumpf and
Nazarewicz 2015; Sagert et al. 2016; Pais and Stone 2012). The existence of nuclear
pastas have been also investigated using the quark-meson coupling model (Grams
et al. 2017), in which nucleons in dense matter are described by non-overlapping
static spherical “bags” of quarks interacting through the self-consistent exchange
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of mesons in the mean-field approximation. In all these approaches, a few specific
nuclear shapes are generally considered, or some symmetries are assumed.

The formation of nuclear pastas has been explored using molecular dynamics
(see, e.g. Dorso et al. 2012 for a review). By treating nucleons as classical pointlike
particles interacting through a two-body potential, classical molecular dynamics
allow for large-scale simulations with ∼103–105 particles in a box with periodic
boundary conditions (Dorso et al. 2012; Schneider et al. 2013, 2014; Horowitz et al.
2015; Schneider et al. 2016; Berry et al. 2016). Although no other constraints are
imposed, the nuclear pasta configurations obtained from these simulations could
still be influenced by the geometry of the box (Giménez Molinelli and Dorso 2015)
and the treatment of Coulomb interactions (Alcain et al. 2014). Quantum molecular
dynamics simulations (see, e.g. Watanabe and Maruyama 2012; Maruyama et al.
2012 for a review) rely on a semi-classical description in which the state of a
nucleon is represented by a Gaussian wave packet moving (classically) in a mean
field. The antisymmetrisation of the many-body wave function is implemented in
an effective way through a phenomenological repulsive potential, so called Pauli
potential. Calculations have been performed with ∼103 nucleons (Watanabe and
Maruyama 2012; Maruyama et al. 2012; Nandi and Schramm 2016). Fermi statistics
is properly taken into account in fermionic molecular dynamics, in which the many-
body wavefunction is expressed as a Slater determinant. However, such simulations
are computationally extremely costly (the computing time scales as N4 as compared
to N2 for classical and quantum molecular dynamics, where N is the number of
particles). For this reason, only a few fermionic molecular dynamics simulations
have been carried out so far (Vantournhout et al. 2011; Vantournhout and Feldmeier
2012). Finally, nuclear pastas have been studied using a nuclear analog of the Ising
model, in which the nucleon positions are discretized in a three-dimensional cubic
lattice, and assuming that each lattice site can be occupied by only one nucleon at
most (Hasnaoui and Piekarewicz 2013).

The presence of nuclear pastas in neutron stars remains uncertain and model-
dependent. Still, all models supporting their existence predict the following
sequence of configurations with increasing density: polpette/gnocchi (spherical
clusters), spaghetti (cylindrical clusters), lasagne (slabs), bucatini/penne/mac-
cheroni (cylindrical holes), Swiss cheese (spherical holes). Intermediate phases have
been found by some models such as “nuclear waffles” (slabs with holes) (Sébille
et al. 2011; Schneider et al. 2014; Williams and Koonin 1985), cross-rods (Pais
and Stone 2012; Schneider et al. 2014; Lassaut et al. 1987), or slabs connected by
helical ramps (Berry et al. 2016). Because the nuclear pasta mantle is very dense, it
may represent a sizable fraction of the crustal mass (Lorenz et al. 1993), and thus
may have important astrophysical consequences (see, e.g., Chamel and Haensel
(2008)).

As recently discussed in Fortin et al. (2016) (see also the contribution from
Fantina and Burgio in this volume), a thermodynamical inconsistent treatment of the
crust-core boundary can lead to significant errors on the predicted masses and radii
of neutron stars. Moreover, thermodynamical inconsistencies could trigger spurious
hydrodynamical instabilities. A unified description based on the same model is
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therefore of utmost importance. We shall come back to this issue when addressing
the quark-hadron phase transition in the core.

7.7 Nuclear and Hypernuclear Matter

A recent review about the equation of state (EoS) for supernovae, neutron stars and
their mergers has been given in Oertel et al. (2017), where also the very different
theoretical approaches to the nuclear matter problem are shortly reviewed (see also
Fantina and Burgio in this volume). Very roughly one can distinguish two classes
of systematic approaches to nuclear and hypernuclear matter: the ones based on
(realistic) baryon-baryon interactions that can describe also the phase shift data
as well as properties of nuclear and hypernuclear clusters on the one hand and
the approaches based on relativistic density functionals with elaborated (density-
dependent) couplings to mesonic mean fields that are fitted to describe observable
properties of large nuclei and predict the behaviour of the EoS at saturation densities
and beyond. While the nonrelativistic approaches based on potentials (Brueckner-
Hartree-Fock, Brueckner-Bethe-Goldstone, Variational approach) require three-
body forces in order to obtain acceptable ground state properties of nuclear matter
and the 2M� constraint, the relativistic Dirac-Brueckner-Hartree-Fock (DBHF)
approach fulfills constraints from compact star physics and heavy-ion collisions
without them (Klähn et al. 2006). A modern constraint for theories of nuclear
matter is provided by the ab-initio chiral effective field theory (χEFT) approach that
provides a link between QCD (in its low-energy limit as chiral perturbation theory)
and nuclear matter properties with nucleons, pions and a nucleon-nucleon contact
interaction as the elements of a systematic perturbation theory. The χEFT shall be
considered as a benchmark for the pure neutron matter case (no bound states) at
subnuclear densities where errors due to unaccounted higher orders are sufficiently
small. See Fig. 7.2 for a comparison of approaches.

We would like to note that the density-dependent relativistic mean-field theory
“DD2” lies perfectly within the bounds provided by the grey band of the χEFT
results. Unfortunately, this band broadens quickly with density so that at supersatu-
ration densities it does no longer provide reliable constraints.

In order to explore the nuclear EoS beyond the saturation density of n0 =
0.15 fm−3, it has therefore been suggested (Hebeler et al. 2013; Read et al. 2009;
Raithel et al. 2016) to consider sequences of polytropic EoS

P(n) = κi(n/n0)
Γi , ni < n < ni+1, i = 1 . . . N, (7.22)

and by varying the polytropic indices Γi (and eventually also the switch densities
ni) to obtain a most generic class of high-density EoS from which the one(s)
can be chosen that perform best with respect to constraints from compact star
observations. Such a multi-polytropic ansatz is also capable of describing a hadron-
to-quark matter phase transition, with a constraint pressure region (as in the Maxwell
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results of χEFT (grey band (Krüger et al. 2013)), from Fischer et al. (2014)

construction case) or with changing pressure as for the case of an extended mixed
(pasta) phase in the compact star (Alvarez-Castillo and Blaschke 2017; Alvarez-
Castillo et al. 2017; Zdunik et al. 2006). We shall come back to this in Sect. 7.10
below.

7.7.1 Hyperons and Hyperon Puzzle

At densities of two to three times saturation density the hyperon threshold is
expected to be crossed. It has been shown within Brueckner-Bethe-Goldstone
calculations (Baldo et al. 2000) that under conservative assumptions for the forces
involving hyperons the appearance of these additional degrees of freedom softens
the EoS and hence lowers the maximum mass of a neutron star so that even the well-
constrained binary radio pulsar masses of typically ∼1.4M� cannot be reached.
Without additional repulsive hyperon interactions this is exactly what all neutron
star calculations based on nuclear hyperon model EoSs predict. This is called
the “hyperon puzzle” (Zdunik and Haensel 2013). In general, the EoS beyond
saturation density is not well constrained (Oertel et al. 2017). For hyperons and
their interaction with nucleons and themselves the situation is even worse. However,
from the observed existence of hyperons and massive neutron stars it seems evident
that nucleon-hyperon and likely hyperon-hyperon repulsion (Rijken and Schulze
2016) plays an important role (unless hyperons themselves play no decisive role
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for neutron star structure). Meanwhile, different approaches have been successfully
applied which allow for stable neutron stars with up to two solar masses. Repulsion
stiffens the hyperon matter EoS sufficiently to account for massive neutron stars. At
the same time the stiffening results in an onset of hyperon degrees of freedom at
higher densities. Thus, the fraction of hyperons is reduced. In another scenario this
idea is taken to the limit where the hyperon onset density is larger than the densities
one would find in a neutron star. Generally, in RMF models for hypernuclear matter
(Hofmann et al. 2001) there is no severe hyperon puzzle, because the unknown
density dependent scaling of the meson masses and couplings of the can be defined
in the spirit of a relativistic density functional theory such that all known constraints
on the stiffness of the EoS from heavy-ion collisions and compact star observations
can be fulfilled (Maslov et al. 2015, 2016). A particular role plays the sufficiently
repulsive effect of the φ-meson mean field (Weissenborn et al. 2012). This solution
of the hyperon puzzle holds also for hypermatter stars with (color superconducting)
quark matter cores (Bonanno and Sedrakian 2012; Lastowiecki et al. 2012). A third
solution to the hyperon problem is a transition to sufficiently stiff quark matter
(Baldo et al. 2003) which can happen before or after the transition to hyperon matter.

7.7.2 Δ Isobars and Δ Puzzle

While a large amount of literature is devoted to the discussion of hyperons and
the hyperon puzzle, only little work has been done to discuss the presence of
Δ(1232) isobars which, once they appear in neutron star matter, have a similar
softening effect on the EoS as the hyperons. That Δ isobars have so far been largely
neglected may be due to the outcome of the seminal paper (Glendenning 1985)
which concluded that they may appear only at too high densities to be relevant for
the structure of compact star interiors. In Drago et al. (2014a,b) it has been shown
that the threshold density strictly correlates with the L parameter, the derivative
of the symmetry energy in nuclear matter, which according to the compilation of
constraints in Lattimer and Lim (2013) lies in the range of 40.5 MeV ≤ L ≤
61.9 MeV. For the relativistic mean field EoS SFHo (Steiner et al. 2013) in this
range the Δ− isobar occurs even at lower densities than the Λ hyperon in neutron
star matter and leads to a further softening of the EoS. Thus the Δ isobars too limit
the maximum mass of a hadronic compact star to∼1.5–1.6M� (Drago et al. 2014b)
and entail a Δ puzzle .

A solution of this puzzle may be similar in spirit to those possibilities discussed
as solutions of the hyperon puzzle, namely, that there could be stiffening effects in
the hadronic EoS at supernuclear densities (due to, e.g., multi-pomeron exchange
(Yamamoto et al. 2016) in the baryon-baryon interaction or the density dependence
of meson masses and their couplings in RMF models (Kolomeitsev et al. 2017))
or a sufficiently early phase transition to stiff quark matter could occur. As an
equilibrium phase transition, the latter possibility would require a rapid stiffening
of the quark matter EoS after the transition so that a maximum mass above the
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2M� constraint could be reached. This would entail the “reconfinement” problem
as in the case of the corresponding solution of the hyperon puzzle. In order to
circumvent problems with unphysical crossing of EoS an interpolation scheme has
been suggested which we discuss more in detail in Sect. 7.9.2 below. This scheme
realises a crossover transition between two phases which leads to an intermediate
phase that is stiffer than those it is bridging. The mass-radius relation obtained with
such a construction applied to several soft hadronic EoS shows a sufficiently large
maximum mass and an increase in radius at the transition.

Another solution of the Δ puzzle has been suggested within the scenario of
coexistence of two families of compact stars (Berezhiani et al. 2003; Drago et al.
2004; Bombaci et al. 2004), where the second family may belong to the class of
strange quark matter stars with a sufficiently large maximum mass to fulfill the
2M� constraint. The hadronic branch of compact star configurations would be
metastable against the “decay” to the strange quark matter branch by a nucleation
of strange quark matter droplets in the stars interior. The nucleation time scales
could be sufficiently long to populate the branches of both families of solutions.
The compact stars with smaller maximum mass would then be hadronic stars while
the more massive stars with larger radii would be strange quark matter stars. For
details, see Drago et al. (2014a) The main caveat of the two-family scenario is that
the timescale for the nucleation of a strange quark matter droplet in the metastable
hadronic phase by quantum tunneling (Iida and Sato 1998; Bombaci et al. 2007)
sensitively depends on the value of the bag constant employed in those models (and
also on other parameters, if present). This makes any predictions for the lifetime of
the metastable state rather arbitrary. Once a strange quark matter droplet is formed,
the conversion of the hadronic star to a strange quark star proceeds on a millisecond
timescale as has been demonstrated in simulations of the turbulent combustion
process (Herzog and Röpke 2011; Pagliara et al. 2013).

7.7.3 The Case of the d∗(2380) Dibaryon

The recent discovery of the d∗(2380) dibaryon (see (Clement 2017) for a recent
review) has triggered an investigation of its possible role in compact star interiors
(Vidaña et al. 2018). It has been found that the d∗(2380) would appear at densities
around three times nuclear saturation density and comprise about 20% of the matter
in the core of massive compact stars and even higher fractions possible in the course
of compact star merger events. The formation of the d∗(2380) dibaryon in compact
star matter can be understood as the conversion of pairs of neutrons and protons,
thus effectively reducing their number density and introducing a rather heavy degree
of freedom instead. This leads to a strong softening of the equation of state, an
effect like the occurrence of a mixed quark-hadron matter phase. The presence of
the dibaryon in the composition of a high-mass neutron star has an effect on the
cooling of the star since it adds fast direct Urca type cooling processes, similar to
the pair-breaking and pair-formation processes in superfluid neutron star matter.
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7.7.4 Chirally Symmetric Nuclear Matter Phase

There is evidence from recent finite-temperature lattice QCD simulations of the
FASTSUM collaboration that the restoration of chiral symmetry takes place already
within the hadronic phase by parity doubling (Aarts et al. 2017), which is then
signalled by a mass degeneracy of the baryonic chiral partner states (the nucleon
and the N∗(1535)) in such a way that the lower-mass state is almost independent
of the medium while the higher mass state comes down (as in the well-known case
of pion and the sigma meson described by the NJL model, see Klevansky (1992)
and references therein). A theoretical description can be based on the parity doublet
model (Detar and Kunihiro 1989; Jido et al. 2001a,b) which has been applied to
the phenomenology of hot dense matter, including neutron stars (Dexheimer et al.
2008; Mukherjee et al. 2017) A recent extension of the model to the quark level of
description can address a deconfinement transition (Benic et al. 2015a) and has been
applied to the discussion of compact star phenomenology (Marczenko et al. 2018)
In this work it was shown that the account for the quark substructure of the baryons
entails a stiffening of the asymmetric nuclear matter just above the saturation density
before the actual chiral restoration occurs which results in the doubling of nucleonic
degrees of freedom (parity doubling). This transition proceeds as a rather strong
first-order phase transition that entails an almost horizontal branch at ∼2M� in
the corresponding M − R diagram, still before quark deconfinement. A pattern
like this had been suggested earlier as the signature of a strong deconfinement
transition (Alvarez-Castillo et al. 2016) In view of this possible strong effect of
the combination of quark substructure and parity doubling on the hadronic EoS this
suggestion should be revisited. Another prediction of the parity doubling model is
a new formula for the threshold value of the proton fraction above which the fast
direct URCA cooling process would become operative in compact stars. Thus the
chiral symmetry restoration by parity doubling in the nuclear EoS should be taken
into the consideration of modern compact star cooling theories that are employed
when interpreting cooling data.

7.7.5 Stiffness from Quark Pauli Blocking

We have just discussed the importance of repulsive interactions for solving the
hyperon puzzle. But how generic is the presence of repulsive interactions in hadron-
hadron scattering and in dense hadronic matter and what is their origin? Is it just the
exchange of vector mesons (ω, φ, -, . . . )? There is also the concept of the excluded
volume, based on the fact that baryons (hadrons in general) are finite size objects
due to their quark substructure, that gives rise to an increase in the pressure of the
system, like a repulsive interaction. For standard excluded volume approaches the
pressure even diverges when the available volume goes to zero (closest packing of
hard-sphere hadrons). How to avoid such a divergence? In simple terms, a hadron
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can be seen as an MIT bag of quarks with a radius. When at high densities the
bags merge the individuality of hadrons gets lost and a big bag filled with quark
matter emerges, described by the thermodynamical bag model. This solution, the
phase transition to quark matter, was already suggested for the Hagedorn resonance
gas model by Hagedorn and Rafelski (Hagedorn and Rafelski 1980; Rafelski and
Hagedorn 1980).

Another solution has been suggested as a reformulation of the concept of the
excluded volume so that the available volume is a function of the density which
deviates from the system volume as a function of the density so that below a certain
density there is no effect, but for high densities it goes to zero asymptotically, for
instance as a Gaussian function. For details of the thermodynamically consistent
formulation of such an approach, see Typel (2016). This concept can be carried even
further by allowing the available volume to be a function not only of the density,
but also of the temperature and to exceed the system volume so that attractive
interactions can be modeled too. Recently, with this generalization of the concept
a QCD phase diagram has been obtained that resembles first order and crossover
transitions, separated by a critical endpoint (Typel and Blaschke 2018), as expected
for full QCD.

Despite this phenomenological success and its thermodynamic consistency,
the excluded volume model does not provide a microphysical understanding for
the origin of the repulsion between hadrons and its medium dependence which
determines the stiffness of high-density matter. A satisfactory explanation can be
given by accounting for the Pauli exclusion principle on the quark level which
leads to a repulsive quark exchange interaction between hadrons, very similar to
molecular systems where the apparent hard sphere behavior of atoms and molecules
originates from the Pauli blocking among electrons in the atomic orbitals. A
quantitative estimate for the Pauli blocking effect in nuclear matter has been given
on the basis of a simple string model for quark confinement and the baryon spectrum
in Röpke et al. (1986a), where it was found that the result very well corresponds to
the repulsive part of the density dependent repulsion in the Skyrme-type model by
Vautherin and Brink (Vautherin and Brink 1972). The Pauli quenching effect is not
only density- but also temperature and momentum dependent so that one can deduce
from it a temperature and density dependent effective nucleon mass (Röpke et al.
1986b). For the applications to compact star physics it is very important that the
Pauli blocking is flavor dependent. It gives a major contribution to the symmetry
energy and allows, in principle, to determine the contribution to the pressure of
hypernuclear matter.

Quark Pauli blocking leads to a positive energy shift of baryons, so that the
occurrence of hyperons and Δ isobars in dense matter may become inhibited as
for T = 0 matter the critical densities for the occurrence of these species are
shifted to higher values. Pauli blocking is due to an admixture of 6-quark or even
higher multiquark wave functions in dense baryonic matter. It may on the other hand
provide a mechanism for binding two Δ isobars in the d∗(2380) dibaryon by quark
exchange forces since a Δ−Δ molecule has overlap with a three-diquark state.
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As in the simple-minded picture of merging bags the quark exchange effect
between hadrons is a precursor of quark deconfinement! The additional pressure
drives the possible phase transition to lower densities, the effect of the antisymmetri-
sation among quarks of overlapping hadron wave functions generates multiquark
components of the many-particle wave function in dense nuclear matter. With
such a microphysical background an early calculation of stable hybrid stars with
interacting quark matter cores at high-mass could be presented (Blaschke et al.
1990). The effect of partial quark delocalisation leads to the emergence of a quark
Fermi sea. Such effects have been described as typical for quarkyonic matter (Kojo
et al. 2010a,b). The question arises how partial chiral symmetry restoration in
dense nuclear matter could modify the Pauli blocking effect. In a recent exploratory
calculation that used the Pauli quenching result of Röpke et al. (1986a), Blaschke
et al. (1990) with density-dependent quark masses, a strong enhancement of the
effect has been found with results for the equation of state (Blaschke et al. 2018)
that correspond to those from the modified excluded volume model by Typel (Typel
2016).

7.8 Quark Matter

Deconfined quark matter shall be described in terms of quarks and gluons, the
degrees of freedom of QCD, the gauge field theory of strong interactions. For
applications in neutron stars, i.e. at high densities and zero temperature, the ab initio
approach to solve QCD numerically by lattice QCD simulations , is not available
due to the sign problem. At zero baryon density the lattice QCD simulations
have reached a quality where they reproduce at low temperatures the hadron mass
spectrum and the hadron resonance gas thermodynamics which can be directly
compared with phenomenological approaches. It goes so far that up to temperatures
including the pseudocritical temperature of the hadron-to-quark matter crossover
transition the thermodynamics of QCD can be described as a hadron resonance gas.
The lesson for the T = 0 domain of neutron star physics therefore can be that it has
to develop effective field theory approaches which are nonperturbative so that they
can address the formation of hadronic (baryonic) bound states as well as collective
phenomena like dynamical chiral symmetry breaking and color superconductivity.
At the same time, the effective models shall try to capture as many aspects of QCD
as possible, like the (approximate) chiral symmetry of its Lagrangian in the light
quark sector and its dynamical breaking. See Fig. 7.3.

In this section we want to recapitulate a few challenging questions in this context
and discuss the progress which has been made in these directions, in particular with
the help of the COST Action “NewCompStar”.
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Fig. 7.3 Left panel: Schematic view of the speed of sound in the QCD phase diagram [This figure
was kindly provided by M.G. Alford and C.J. Horowitz who created it during the INT-16-2b
program on “The Phases of Dense Matter” at the INT Seattle (2016)]. Dark color stands for low
cs , for asymptotic values of temperature and chemical potential c2

s = 1/3. At low temperatures,
in-between nuclear saturation density and the perturbative QCD region, cs must come close to
1 (speed of light), for the EoS to fulfill the 2M� constraint on the pulsar mass. Right panel:
Multi-polytrope interpolations of the compact star EoS between the well established limits of pure
neutron matter (in red) and perturbative QCD (in yellow), from Kurkela et al. (2014). Compact star
phenomenology can constrain the EoS for energy densities up to about 2 GeV/fm3, see Hebeler
et al. (2013) (HLPS) and Alvarez-Castillo and Blaschke (2017)

7.8.1 Asymptotically High Densities

Although one can hope that perturbative results will constrain effective models
at large densities the perturbative domain does not overlap with the densities one
expects in a neutron star (Kurkela et al. 2014). Despite the progress that has been
made (Kurkela et al. 2010) in bringing perturbative calculations of the properties of
hot and dense QCD closer to the hadronic domain, the QCD phase transition from
confined quarks in dense hadronic matter to deconfined quarks in a quark-gluon
plasma is characterized by features which are not accessible at any finite order of
perturbative QCD. A standard example for this statement is the description of chiral
symmetry breaking which in the light quark sector is a distinctively non-perturbative
feature.

The most common approach to avoid these difficulties is to apply effective quark
matter models which are not derived from QCD but account for certain characteristic
features, most notably again the dynamical breaking of chiral symmetry. Prominent
examples for effective models are the thermodynamic bag model as the high
density limit of the MIT bag model, and effective relativistic mean field models,
typically of the Nambu–Jona-Lasinio type (Buballa 2005). A next approach which
is well developed for the study of hadrons is the non-perturbative Dyson-Schwinger
formalism which starts from the QCD action and derives gap equations to determine
QCD’s n-point Green-functions in a medium. As these typically couple to higher
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order Green-functions, truncation schemes are introduced which, if chosen wisely,
preserve key features of QCD (Cloet and Roberts 2014).

7.8.2 Dynamical Chiral Symmetry Breaking

As described for hyperon matter, quark matter would be too soft to account for
massive neutron stars if repulsive interactions would not be taken into account.
However, vector repulsion arises as naturally as the breaking of chiral symmetry
in relativistic effective models and in the Dyson-Schwinger approach as vector and
scalar part of the dressing (self-energy) of the fermion propagator.

The dynamical mass generation mechanism is common to all modern EoS
models for quark matter in neutron stars. It can be obtained already with the
simplest dynamical models that contain a 4-fermion interaction with sufficiently
strong coupling in the scalar channel, such as the celebrated Nambu–Jona-Lasinio
(NJL) model of low-energy QCD that became a “workhorse” for quark matter
phenomenology. There are a few excellent reviews on the NJL model and its
application to finite temperature and density, e.g., Klevansky (1992), Hatsuda and
Kunihiro (1994), Buballa (2005), Fukushima and Hatsuda (2011), Fukushima and
Sasaki (2013) to which we refer the reader for details.

For definiteness, we like to show the typical form of an NJL model Lagrangian
for applications to compact star physics as it is discussed in Baym et al. (2018),
Kojo et al. (2015). The Lagrangian of the three-flavor NJL model is

L = q(γ μpμ − m̂q + μqγ
0)q +L (4) +L (6), (7.23)

where q is the quark field operator with color, flavor, and Dirac indices, q̄ = q†γ 0,
m̂q the quark current mass matrix, μq the (flavor dependent) quark chemical

potential and L (4) = L (4)
σ + L (4)

d + L (4)
V and L (6) = L (6)

σ + L (6)
σd are four

and six-quark interaction terms, chosen to reflect the symmetries of QCD.
The first of the four-quark interactions, a contact interaction with coupling

constant G > 0,

L (4)
σ = G

8∑
j=0

[
(qτj q)

2 + (qiγ5τj q)
2
]
= 8Gtr(φ†φ), (7.24)

describes spontaneous chiral symmetry breaking, where τj (j = 0, . . . , 8) are the
generators of the flavor-U(3) symmetries, and in Eq. (7.24),

φij = (qR)
j
a(qL)

i
a (7.25)

is the chiral operator with flavor indices i, j (with summation over the color index
a); the right and left quark chirality components are defined by qR,L = 1

2 (1± γ5)q .
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The second of the four-quark terms describes the scattering of a pair of quarks in
the s-wave, spin-singlet, flavor- and color-antitriplet channel; this interaction leads
to BCS pairing of quarks:

L (4)
d = H

∑
A,A′=2,5,7

[ (
qiγ5τAλA′Cq

T
) (

qT Ciγ5τAλA′q
)

+
(
qτAλA′Cq

T
) (

qT CτAλA′q
) ]
,

= 2H tr(d†
LdL + d

†
RdR), (7.26)

with H > 0. Here τA and λA′ (A,A′ = 2, 5, 7) are the antisymmetric generators of
U(3) flavor and SU(3) color, respectively, and

(dL,R)ai = εabcεijk(qL,R)
j

bC (qL,R)
k
c (7.27)

are diquark operators of left- and right-handed chirality, with C = iγ 0γ 2 the charge
conjugation operator. The diquark pairing interaction leads as well to an attractive
correlation between two quarks inside confined hadrons and, in constituent quark
models, plays a role in the observed mass splittings of hadrons (De Rujula et al.
1975; Anselmino et al. 1993; Jaffe 2005). This interaction, in weak coupling, arises
from single gluon exchange; however at the densities of interest in neutron stars,
the non-linearities of QCD prevent direct calculation of this interaction, and so one
must treat it phenomenologically.

In addition

L (4)
V = −gV (qγ μq)2, (7.28)

with gV > 0, is the Lagrangian for the phenomenological vector interaction, which
produces universal repulsion between quarks (Kunihiro 1991).

The six-quark interactions represent the effects of the instanton-induced QCD
axial anomaly, which breaks the U(1)A axial symmetry of the QCD Lagrangian.
The resulting Kobayashi-Maskawa-’t Hooft (KMT) interaction leads to an effective
coupling between the chiral and diquark condensates of the form (Kobayashi and
Maskawa 1970; ’t Hooft 1986):

L (6)
σ = −8K(detφ + h.c.), (7.29)

L (6)
σd = K ′(tr[(d†

RdL)φ] + h.c.), (7.30)

where K and K ′ are positive constants. Provided that K ′ � K (which one expects
on the basis of the Fierz transformation connecting the corresponding interaction
vertices) the six-quark interactions encourage the coexistence of the chiral and
diquark condensates.
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Before discussing the hadron-to-quark matter phase transition under neutron star
constraints in Sect. 7.9 and the phenomenology of hybrid compact stars with quark
matter interior in Sect. 7.10 we briefly discuss some of the challenges in describing
deconfined quark matter in the nonperturbative domain of the QCD phase diagram
that borders the hadronic matter phases.

7.8.3 Color Superconductivity

Quark matter at finite densities and zero or small temperature can exhibit an
extremely rich phase structure due to different pairing mechanisms which arise from
the coupling of color, flavor and spin degrees of freedom and result in a variety of
different possible condensates (Alford 2001; Alford et al. 2008). The importance of
condensates is illustrated by the color-flavor locked phase which can appear in three
flavor (up, down, strange) matter and is shown to be the asymptotic ground state
of quark matter at low temperature (Schäfer and Wilczek 1999a). This zoo of color
superconducting phases bears a rich potential for the phenomenology, in particular
for the cooling of compact stars with color superconducting quark matter cores.
While for applications in hybrid star cooling it is the smallest diquark pairing gaps
that matter most (Grigorian et al. 2005), for direct effects on the EoS the largest
gaps are most important. Those are usually found in the scalar diquark channels
where they can be of the order of the dynamically generated quark masses and
thus result in effects on the EoS as important as chiral symmetry breaking. For the
discussion of the QCD phase diagram it is therefore crucial to solve the coupled gap
equations for masses and diquark gaps simultaneously. For the three-flavor case this
has been accomplished first in Ruester et al. (2005), Blaschke et al. (2005), Abuki
and Kunihiro (2006). For usual NJL model parametrisations critical temperatures for
onset of color superconductivity around 50 MeV arise. When quarks get coupled to
the Polyakov-loop and thus their excitation is strongly suppressed in the confined
phase and still moderately suppressed in the deconfined one, the critical temperature
for the two-flavor superconducting (2SC) phase can become as high as 150 MeV
and thus be of the order of the chiral restoration temperature and temperatures for
chemical freeze-out in heavy-ion collisions, see Blaschke et al. (2010), Abuki et al.
(2008). It is worth to highlight that the restoration of chiral symmetry is flavor
dependent. This results in a sequential appearance of quark flavors at different
densities (Blaschke et al. 2009; Alford and Sedrakian 2017), with the almost
simultaneous occurrence of the corresponding color superconducting phase - 2SC
for two-flavor quark matter and color-flavor-locking (CFL) for three-flavor quark
matter. With a neutralizing surrounding of positively charged hadrons even a single
flavor phase phase is possible due to an effect analogous to the neutron drip line - the
down-quark dripline occurs and these down quarks can obey a single flavor pairing
pattern resulting in the color-spin-locking (d-CSL) phase (Blaschke et al. 2009).

In the case of a strongly asymmetric occupation of the Fermi levels of different
quark flavors, as in the case of β-equilibrated compact star matter, an energetically
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Fig. 7.4 Schematic phase
diagram of dense nuclear
matter with two critical
endpoints of first order phase
transitions, from Kojo et al.
(2015). The crossover at low
temperatures is due to the
BEC-BCS crossover
(Hatsuda et al. 2006; Abuki
et al. 2010)

favorable ground state is found when the diquark Cooper pairs have finite momen-
tum. One speaks of crystalline phases of QCD or, in analogy to such a situation
in the electronic superconductors in a magnetic field, of the Larkin-Ovchinnikov-
Fulde-Ferrell (LOFF) state of matter. An example of (rotating) hybrid star sequence
with crystalline color superconducting quark matter cores fulfilling also the modern
maximum mass constraint has been presented in Ippolito et al. (2008). For a review
on crystalline phases of QCD, see Anglani et al. (2014).

Usually the quark mass gap and the diquark pairing gap repel each other, but
for strong coupling it is possible that a coexistence of chiral symmetry breaking
and color superconductivity occurs which changes the order of the chiral restoration
transition from first order to crossover. A particularly interesting scenario is the
crossover transition of this kind which results from the coupling of chiral and
diquark gaps via the six-quark interaction term (7.30) that stems from the Fierz
transformed KMT determinant interaction (Hatsuda et al. 2006; Abuki et al. 2010),
see Fig. 7.4 for an illustration of this case which is in accordance with the idea
of quark-hadron continuity (Schäfer and Wilczek 1999b) or more general parton-
hadron duality (Wetterich 1999).

The question arises whether such a picture of a crossover transition at zero
temperature in compact stars would exclude characteristic signatures of a strong
first order phase transition in the mass-radius diagram such as mass twin stars and a
third family sequence. We come back to this question in Sect. 7.10 below.

7.8.4 Stiffness

The stiffness of quark matter in NJL type models is determined by the coupling
of quarks to a vector mean-field which has a self-interaction resulting from the 4-
fermion coupling (7.28) in the model Lagrangian, analogous to the linear Walecka
model for nucleons. The inclusion of this coupling was essential for obtaining stable
branches of hybrid stars with masses reaching up to and above 2M� when a NJL
type model was used for the quark matter EoS, see Klähn et al. (2007) for a first
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paper fulfilling this constraint. While increasing the vector coupling gV raises the
maximum mass of the hybrid star sequence, increasing the scalar diquark coupling
H decreases it, together with a decrease in the onset mass for the deconfinement
transition. A systematic study of the parameter space has been performed in Klähn
et al. (2013) which showed that stable hybrid stars which reach up to 2M� could be
obtained with a NJL model quark matter core and a hadronic shell described by the
DBHF EoS with the Bonn-A interaction only when both, the vector coupling and
the diquark coupling were nonvanishing and sufficiently strong.

Recently, an eight-quark interaction term in the vector channel,

L (8)
V = −Gη4(q̄γμq)

4, (7.31)

has been introduced in Benic (2014) in order to describe a stiffening of quark matter
at high densities which improves the stability of compact hybrid star configurations
against gravitational collapse (Benic et al. 2015b). Such an interaction is indispens-
able when one wants to describe within a microscopically motivated EoS model the
occurrence of a third family of hybrid stars fulfilling the 2M� mass constraint. Such
a higher order quark interaction can be motivated by the existence of vector boson
couplings of fourth order. Such boson self-coupling terms occur in the nonlinear
Walecka model, but they are also important for explaining a sufficient repulsion
in the high-energy nucleon-nucleon scattering by multi-pomeron exchange (Rijken
and Schulze 2016).

7.8.5 Confinement

The NJL model finds wide application as a microscopic model for quark matter
in compact stars since in this case at T = 0 the dynamical chiral symmetry
breaking mechanism also mimics confinement (see, e.g., Klähn et al. 2013; Hell
and Weise 2014 and references therein). This is because at the mean field level
the value of the constituent quark mass is independent of the chemical potential
μ (as well as the pressure P ) so that the quark density n = ∂P/∂μ vanishes as
long as μ stays below its critical value μc. For μ > μc the quark mass jumps
down and the pressure evolves with μ so that there is a finite quark density.
However, the NJL model has no true confinement and this becomes apparent at
finite temperatures, where the partial pressure and density of the quarks becomes of
the same order as the hadronic one already for temperatures below the pseudocritical
temperature Tc = 154±9 MeV known from lattice QCD simulations. This problem
is severe when applications for finite temperature systems are to be considered like
protoneutron stars in supernova simulations or hot, hypermassive neutron stars in
neutron star merger events. Unfortunately, the minimal coupling of the Dirac quarks
to a homogeneous gluon background field within the Polyakov-loop improved NJL
(PNJL) model would not be an appropriate approach to account for confining effects
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in T = 0 quark matter since we have no possibility to calibrate a chemical potential
dependence of the Polyakov-loop potential8 with lattice QCD simulations, unlike
the case at vanishing baryon density and finite temperatures where the PNJL model
is an acceptable model for low-energy QCD matter (Ratti et al. 2006; Roessner et al.
2007).

A standard minimal way do account for quark confinement in a thermodynamic
description is the thermodynamic bag model which consists in adding to the pressure
of a relativistic Fermi gas of quarks (plus Bose gas of gluons, eventually improved
by perturbative corrections of O(αS)) a negative pressure contribution Pbag = −B,
with B > 0 being the bag constant. This makes sure that at low temperatures
and chemical potentials always the hadronic matter dominates the thermodynamics
because it has a nonnegative pressure. The nonperturbative bag pressure can be
understood to originate from quark and gluon condensates, B = Bq + Bg . The
NJL model allows to calculate the medium-dependent value of a chiral condensate
Bq ∝ 〈q̄q〉 (Buballa 2005) and fits for the μ-dependent quark bag function Bq(μ)

from a nonlocal color superconducting have been provided for hybrid neutron
star calculations (Grigorian et al. 2004). Qualitatively, the density dependent bag
function starts at a finite value and gets lowered with increasing density. Such
functions have been modelled on heuristic grounds also in Burgio et al. (2002a,b)
and may be regarded as a density functional. Since typical NJL-type models have
no gluon dynamics, an understanding of the gluonic contribution to the bag function
and its medium dependence is lacking. Again qualitatively, one can expect that
the gluon condensate should melt at increasing temperature and density such that
a positive pressure contribution should result. Such bag-like contributions to the
pressure of NJL-model quark matter have been introduced, e.g. in Pagliara and
Bielich (2008), Bonanno and Sedrakian (2012), Blaschke et al. (2010), where due
to this addition a stable hybrid star with a CFL quark matter core could be obtained.
In NJL quark matter models without such a contribution the hybrid stars turn
gravitationally unstable as soon as the strange quark flavor appears (Klähn et al.
2007; Alford et al. 2007; Klähn et al. 2013). Another argument to add a (medium
dependent) bag constant to an NJL-type model is to enforce coincidence of the chiral
restoration transition in the QCD phase diagram with the hadron-to-quark matter
transition, see Klähn and Fischer (2015). In these models an appropriately chosen
vector interaction (7.28) has to be added in order to achieve a sufficient stiffening of
the resulting hybrid star EoS in order to fulfill the 2 M� constraint.

However, since bag type models, even if improved by coupling to vector and
scalar mean fields, have no dynamical confinement we should therefore advance to
models that make use of a confining interquark potential, like the field correlator
method (FCM), see Logoteta and Bombaci (2013) and references therein. This
model constructs from color electric and magnetic correlators a mean vector field
that contributes an energy shift to the quark and gluon distribution functions and

8An ansatz for the Polyakov-loop potential which is applicable also at T = 0 has been suggested
by Dexheimer and Schramm (2010). For an application to hybrid stars, see Blaschke et al. (2010).
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strongly suppresses them at low densities. This model reproduces rather well a
constant speed of sound (CSS) model for quark matter with, however, a low squared
speed of sound c2

s ∼ 1/3 (Alford et al. 2015). This model has the strength that
at finite temperatures its input parameters (gluon condensate G2 and vector field
VI ) can be fixed with lattice QCD. However, when these values are used for the
construction of hybrid stars there is a problem to fulfill the 2M� constraint (Pereira
2011). Moreover, no absolutely stable strange quark matter is obtained (Pereira
2013).

Another possibility to include confining effects into a field-theoretic description
of quark matter is the color dielectric model (CDM) (Alberico et al. 2002). As
opposed to the FCM the color dielectric field χ is a scalar and determines the quark
masses. At low densities and thus low values of χ the quark masses diverge and this
suppresses the excitation of these degrees of freedom. Interestingly in the CDM,
like in the bag model, absolutely stable strange quark matter is possible. Maieron
et al. (2004) showed that for the CDM and a bag model with density-dependent B
the maximum masses of hybrid stars are never larger than 1.6 M�.

Very recently, a relativistic density functional approach to quark matter has been
developed (Kaltenborn et al. 2017) which implements a confining mechanism in the
spirit of the CDM in its density functional which in this case is motivated by the
string-flip model of quark matter (Röpke et al. 1986a) and is a generalization of
Li et al. (2015) and an earlier density functional approach developed for heavy-ion
collision applications (Khvorostukin et al. 2006). We will refer to this approach as
SFM below. Its density functional subsumes all aspects required for the definition
of a class of hybrid star EoS which may fulfill all known constraints from the
phenomenology of compact stars.

7.8.6 Strange Quark Matter in Neutron Star Cores

We first discuss the situation where normal nuclear or hyperon matter deconfines at
a critical density and forms a quark-gluon plasma. This problem is still far from
being solved consistently in a way where hadrons would be taken into account
as actually confined quarks which then deconfine dynamically. The standard way
to circumvent a detailed description of deconfinement is to choose a two phase
approach where nuclear and quark matter are modeled independently and the
transition is constructed thermodynamically consistently, viz. in terms of a Maxwell
(or similar) construction. In case of the Maxwell construction one simply determines
at which baryon-chemical potential the pressure of the nuclear and quark phase are
equal and thus defines the transition point. By construction, this implies a first order
phase transition which ‘switches’ from a given nuclear equation of state to a softer
quark matter equation of state. Therefore, this procedure requires a nuclear EoS
which is stiff enough to support at least a two solar mass neutron star, and a quark
matter EoS which is softer but stiff enough to do the same. How exactly this happens
can vary. The quark matter EoS can mimic the nuclear EoS, be generally softer
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or at some density can turn even stiffer than the underlying nuclear EoS so that a
second crossing of the pressure curves occurs (“reconfinement problem” (Zdunik
and Haensel 2013)). The latter scenario is justified if one assumes that at densities
far enough beyond the transition a comparison of both phases is meaningless as
the nuclear EoS does not describe any physical reality anymore. In any of these
scenarios, repulsion is a crucial feature to account for the existence of massive
neutron stars and, as stated earlier, a natural property of relativistic models. For
the onset density of hyperon matter we discussed how it is pushed to increasingly
high densities with increasing stiffness or repulsion. The same would be true for
quark matter if condensates are not taken into account. However, condensates couple
colors and flavors and can lower the transition density. Therefore, quark models can
account for transition densities far below the hyperon threshold.

For the appearance of strange matter in neutron stars, a couple of scenarios
emerge which we divide into two groups. First, nuclear matter can deconfine directly
into (three flavor) strange matter as one would find it for the thermodynamical
bag model, as described earlier. For a dynamical treatment of this transition as a
nucleation process see, e.g., Bombaci et al. (2016), Bhattacharyya et al. (2017)
and references therein. Second, a sequential transition from nuclear to two-flavor
followed by a transition to three-flavor matter takes place. Similar to this scenario,
there are two more cases which would not result in a strange matter core but are not
less realistic. The sequential transition results in neutron star configurations which
are stable at all densities below the strange quark threshold but unstable beyond due
to the softening of the EoS with this new degree of freedom. This situation has been
described for an NJL model with diquark couplings (Klähn et al. 2007). However,
choosing a finite constant as offset to the quark pressure can alter this result
(Bonanno and Sedrakian 2012) and render neutron stars with strange matter core
stable (the thermodynamic properties of matter are described in terms of pressure
derivatives, hence a constant offset keeps them intact). Another way to stabilize
strange core configurations is a strongly density dependent stiffening of the strange
matter EoS following the transition (Benic et al. 2015b; Kaltenborn et al. 2017).
This can result in situations where stable two flavor and three flavor quark core
neutron star configurations are separated by a population gap at intermediate central
neutron star densities. In extreme scenarios, this can generate separated mass twin
configurations, viz. two neutron star families with similar masses but very different
radii (Blaschke et al. 2013; Alvarez-Castillo and Blaschke 2017). If members of
both families could be observed, this would be a strong indicator for a first order
QCD-like phase transition where (the smaller) compact stars can carry a core made
of strange matter (Bastian et al. 2018). Note, however, that according to the two-
families scenario of Drago et al. (2014a) the smaller stars would be the hadronic
ones (with a maximum mass of 1.5–1.6M�) while the very massive ones would
be strange stars with a larger radius. They can coexist in this scenario because the
hadronic stars are metastable with respect to the nucleation of strange quark matter.

Another indicator for a first order phase transition in dense matter would be the
observation of a delayed second neutrino signal after a supernova. This has been
suggested based on simulations which applied a bag model (Sagert et al. 2009;
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Fischer et al. 2011). Although such a measurement would be very exciting it is
not clear how it would address the question whether the transition involved strange
matter, or quark matter at all.

7.8.7 Absolutely Stable Strange Matter?

The hypothesis that strange matter could be absolutely stable, bases on the
observation that the appearance of strange quarks lowers the energy per baryon. As
two flavor quark matter is evidently less stable than Fe (otherwise Fe would decay
into it’s quark components and so would we) this leaves a window where two-flavor
matter is less and strange matter more stable than iron (Bodmer 1971; Terazawa
1979; Witten 1984; Farhi and Jaffe 1984). This hypothesis has been supported by
certain parametrisations of the thermodynamic bag model. Choosing the proper
bag constant one can indeed find exactly the proposed situation. If this scenario
is reality it would have a number of interesting consequences. Therefore, the search
for stable strange matter inspired a multitude of experiments and has born many
new ideas. Strange matter could form strange nuggets of extreme density with rather
small atomic numbers and hence extremely low cross sections. It could form objects
very similar to a neutron star, almost entirely made of strange matter, see Bombaci
(2001), Weber (2005) for reviews of this and other scenarios involving strangeness
in compact stars. A seed of strange matter in a neutron star could destabilize the
surrounding matter and thus trigger a conversion of the neutron star interior into
strange matter. Recently, it has been proposed that muonic bundles that have been
observed at ALICE (CERN) are produced by strangelets (Kankiewicz et al. 2018).
Currently, other ways to detect strangelets are actively investigated (VanDevender
et al. 2017). The idea of absolutely stable strange matter is certainly appealing.

Theoretically, as mentioned before, the hypothesis has been based on the
thermodynamic bag model. It should be noticed, that this model lacks a key feature
of QCD, namely chiral symmetry breaking, viz. quarks in the thermodynamic bag
model are assumed to have bare masses and therefore extremely small threshold
densities (the critical chemical potential scales with the effective mass). NJL-type
models, which do generate dressed quark masses, do not confirm that strange
matter is absolutely stable. The reason for this is easily found: In the (low) density
domain where the bag model predicts absolutely stable strange matter, NJL type
models find chiral symmetry to be broken, hence significantly larger quark masses
and consequently a higher energy per particle, too high to render strange matter
absolutely stable, see Fig. 7.5. An appealing and sometimes confusing feature of the
thermodynamic bag model is that it originates from the MIT bag model which has
been developed to describe hadron properties. This evidently seems possible even
though the model assumes bare quark masses and makes it easier to believe that
massless quarks could form stable strangelets. This confusion can be cleared if one
realizes that the MIT bag model does not only assume bare quark masses but a bag
constant which is introduced as synonym for ‘all we don’t know about confinement
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Fig. 7.5 Energy per baryon vs. baryon chemical potential for the vBag quark matter model (Klähn
and Fischer 2015). Absolutely stable strange quark matter could be obtained if dynamical chiral
symmetry breaking (DχSB) is neglected. However: The vertical band marks the approximate
region where chiral symmetry is broken. For the shown curves DχSB is ignored for all (black)
or all but the s-quark (red). At densities below the s-quark threshold this allows to effectively
compare two(red)- and three-flavor(black) quark matter for different effective bag constants. In
none of the cases strange matter is more stable than iron (E/N < 931 MeV) in a density domain
where chiral symmetry is restored. See also Klähn and Blaschke (2018)

and further interactions’. The fathers of the MIT bag model stated this explicitly.
In Klähn and Fischer (2015) we illustrated how to translate a model with chiral
symmetry breaking into a bag type model and where this model would break, which
is when chiral symmetry is broken. For an earlier investigation of this kind, see
Buballa (2005) for the NJL model case and Gocke et al. (2001) for a nonlocal chiral
quark model. Effects of color superconductivity in this context have been studied
and parametrized in Grigorian et al. (2004).

The bag constant mostly originates from chiral symmetry breaking. It is sub-
tracted because the difference between the vacuum pressure of massive quarks
and effectively massless quarks is negative. The absolute value is reduced by
confinement. Thinking of the absolute value of the bag constant as the energy
of a hadron, this makes sense as confinement reduces the energy of the system
of chirally broken quarks by the binding energy. The MIT bag model is not
consistent in the sense that it ignores any relation between quark mass and bag
constant. In vacuum this is a reasonable approximation for two reasons: First, the
model describes hadrons and does not attempt to predict any dynamical property
of individual constituent quarks. Second, it can be fitted to observables and thus
repairs the inherent shortcomings. The thermodynamic bag model addresses both
effects, chiral symmetry breaking and confinement, in terms of one parameter - the
bag constant. Statements regarding quark matter based on the thermodynamic bag
model, in particular at low densities where the bag constant affects the total pressure
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significantly, should be considered with considerable caution as it is all but clear,
that the model actually describes deconfined matter.

It should be noticed, that effective quark models with density dependent quark
masses have been suggested which indeed would predict absolutely stable strange
matter (Dondi et al. 2017; N.-U. Bastian, 2017, private communication). A distinct
feature of these models is a steep concave decrease of the strange quark mass at
comparably low density opposing to the typically convex behavior. This reduces
the effective quark mass drastically already at low densities which makes it very
similar to to the thermodynamic bag model, evidently with similar results regarding
the stability of strange matter. It would be interesting to see, how a microscopic
approach which generates this kind of density behavior would perform describing
hadron properties.

7.9 Hadron-to-Quark Matter Phase Transition

7.9.1 Maxwell Construction and Beyond

When the hadronic and quark matter phases are described with EoS given by
relations between the pressure and chemical potential (for T = 0, which is relevant
for the NS modeling) PH(μ) and PQ(μ) correspondingly, one can find the critical
value of the baryochemical potential μc from the condition of equal pressures,

PQ (μc) = PH (μc) = Pc, (7.32)

for which the phases are in mechanical equilibrium with each other. The value Pc
defines the Maxwell construction. Quantities characterizing the quark-, hadron-, and
mixed phases are denoted by the subscripts Q, H , and M , respectively.

Assuming the surface tension to be smaller than the critical value σc, a mixed
phase could have an influence on the compact stars structure. The adequate descrip-
tion of the physics of pasta phases is a complicated problem which requires to take
into account sizes and shapes of structures as well as transitions between them. It
has been dealt with in the literature within different methods and approximations
(Voskresensky et al. 2003; Yasutake et al. 2014; Maruyama et al. 2008; Watanabe
et al. 2003; Horowitz et al. 2005, 2015; Newton and Stone 2009).

Here, instead of the full solution we would like to use a simple modification of the
Maxwell construction which mimics the result of pasta matter studies (Ayriyan and
Grigorian 2018). This means that the pressure as a function of the baryon density in
the mixed phase is not constant but rather a monotonously rising function. We are
assuming that close to the phase transition point (that would be obtained using the
Maxwell construction) the EoS of both phases are changing due to finite size and
Coulomb effects (see Fig. 7.6), so that the effective mixed phase EoS PM(μ) could
be described in the parabolic form

PM(μ) = a(μ− μc)
2 + b(μ− μc)+ Pc +ΔP. (7.33)
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Fig. 7.6 Maxwell construction of a first-order phase transition between a hadronic EoS PH (μ)

and a quark matter EoS PQ(μ) occurring at the critical pressure Pc = P (μc). The modification by
a parabolic function PM(μ) mimicks pasta phases. Adapted from Ayriyan et al. (2018)

Here we have introduced the pressure shift ΔP at μc as a free parameter of the
model which determines the mixed phase pressure at this point

PM (μc) = Pc +ΔP = PM. (7.34)

The parameter ΔP shall be related to the largely unknown surface tension between
the hadronic and quark matter phases of the strongly interacting system at the phase
transition. Infinite surface tension corresponds to the Maxwell construction and thus
to ΔP = 0, while a vanishing surface tension is the case of a Gibbs construction
under global charge conservation (also called Glendenning construction (Glenden-
ning 1992)) that for known examples looks similar to the results of our mixed phase
construction for the largest values considered here, ΔP ∼ 0.07 . . .0.10. A more
quantitative relation between ΔP and the surface tension would require a fit of the
mixed phase parameter to a pasta phase calculation for given surface tensions. Such
a calculation can be done along the lines of Yasutake et al. (2014).

According to the mixed phase construction shown in Fig. 7.6 we have two critical
chemical potentials, μcH for transition from H -phase to M-phase and μcQ for the
transition from the M-phase toQ-phase. Together with the coefficients a and b from
Eq. (7.33) this are four unknowns which shall be determined from the four equations
for the continuity of the pressure

PM(μcH ) = PH (μcH ) = PH , (7.35)

PM(μcQ) = PQ(μcQ) = PQ, (7.36)
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and of the baryon number density n(μ) = dP(μ)/dμ

nM(μcH ) = nH (μcH ), (7.37)

nM(μcQ) = nQ(μcQ). (7.38)

From the Eqs. (7.35) and (7.36) for the pressure a and b are found and can be
eliminated from the set of equations for the densities. By solving the remaining
Eqs. (7.37) and (7.38) for the densities numerically one can find the values for the
critical chemical potentials μcH and μcQ.

In Fig 7.7 we show results of this mixed phase construction for the example of
EoS investigated in Benic et al. (2015b) for different values of the parameter ΔP

(upper panel) and the corresponding solutions of the TOV equations (lower panel).
With this modification of the Maxwell construction one can examine the robustness
of the third family solutions against pasta phase effects. Further details and other
EoS combinations, see Ayriyan et al. (2018), Alvarez-Castillo et al. (2017), Ayriyan
and Grigorian (2018).

The procedure for “mimicking pasta phases” described in this subsection is
general and can be superimposed to any hybrid EoS which was obtained using
the Maxwell construction of a first-order phase transition from a low-density to a
high-density phase with their given EoS. A certain limitation occurs in the case of
sequential phase transitions (see, e.g., Blaschke et al. 2009; Alford and Sedrakian
2017) when the broadening of the phase transition region as shown in Fig. 7.6 would
affect the adjacent transition.

7.9.2 Interpolation

The method of interpolating hadron and quark matter EoS has been suggested for
the neutron star EoS by Masuda, Hatsuda and Takatsuka in Masuda et al. (2013a,b)
in analogy to an earlier developed technique for vanishing baryochemical potential
along the temperature axis of the QCD phase diagram (Asakawa and Hatsuda 1997).
While the first construction was flawed because it was not performed in natural
thermodynamic variables, the revised work corrected for this and the method has
found extensive use (Kojo et al. 2015; Blaschke et al. 2012) as a tool to bridge
the gap in our knowledge about the nonperturbative domain of the hadron-to-
quark matter transition before a reliable unified approach based on quark degrees
of freedom will be developed. The situation is illustrated in Fig. 7.8, taken from
Kojo et al. (2015).

This method can be contrasted to the Maxwell construction and its modification
which was described before. In applying the Maxwell construction we tacitly
assume that the two EoS to be matched have a common domain of validity in the
space of the thermodynamic variables so that their direct matching makes sense.
However, this may not be the case when, the low-density and high-density forms
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Fig. 7.7 Two-phase model for the hadron-to-quark matter transition obtained by a Maxwell
construction (ΔP = ΔP/Pc = 0) and its modifications (ΔP = 1, 2, 3, 5, 7 %) which mimic
mixed phases with pasta structures. Upper panel: P vs. ε for the EoS from Benic et al. (2015b)
where the nuclear matter phase is DD2 with excluded volume and the quark matter phase is a NJL
model with 8-quark interactions. Lower panel: Solutions of the TOV equations for this EoS show
that for ΔP > 1% the sequence of hybrid star solutions does not form a third family separated
from that of the neutron star ones. Adapted from Ayriyan et al. (2018)

of the equation of state become not trustworthy before they would meet in the
P − μ plane. For example when a soft nuclear matter EoS gets extrapolated to
densities where already quark exchange effects should play a role and a perturbative
QCD EoS is drawn into the low density region around the nuclear matter density
where it is lacking confinement, chiral symmetry breaking etc. This is illustrated
in Fig. 7.9. Note by comparing with the Maxwell construction case of Fig. 7.6 that
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Fig. 7.8 The idea of interpolating between known EoS of nuclear matter at low densities and
deconfined quark matter at high densities is to bridge the gap in our quantitative knowledge of
the physical mechanisms that govern quark deconfinement and its interplay with chiral symmetry
restoration, color superconductivity and other collective phenomena in the strongly coupled quark-
gluon plasma. Quark exchange processes between baryons are illustrated as well as the emergence
of dense quark matter with itinerant, delocalised quarks. From Kojo et al. (2015)

Fig. 7.9 Illustration of the interpolation scheme in the pressure vs. baryochemical potential
diagram. This method shall be applied when a Maxwell construction makes no sense because
the low-density and high-density forms of the equation of state loose their applicability before they
would meet. In this case the curves with the higher pressure which should be the physical ones are
the not trustable parts of the given EoS. From Kojo et al. (2015)

the interpolated part of the EoS lies now below the (unphysical) matching of the
asymptotic EoS.9

9If one would not pay attention and apply a Maxwell construction to this example one would have
to let the physical pressure go along the larger pressure, which would mean to join the two not
trustable parts of the model EoS. A recent example for matching unphysical EoS is Annala et al.
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For a systematic discussion of interpolation techniques in obtaining hybrid star
EoS from given hadronic and quark matter model inputs, see Alvarez-Castillo et al.
(2018).

7.9.3 Metastable Hadronic Stars Coexisting with Strange
Quark Stars

So far we have considered hadron-to-quark matter phase transitions in compact stars
in equilibrium for which the Gibbs conditions of phase equilibrium apply. However,
as it has been discussed above in Sect. 7.7.2, the nucleation of strange quark matter
from a metastable hadronic phase by quantum tunneling (Iida and Sato 1998;
Bombaci et al. 2007) could take sufficiently long time for the metastable hadronic
star branches of compact stars to become populated and observable, together with
the final state of the conversion process, the branch of stars consisting of absolutely
stable strange quark matter. This is called the two-family scenario (Berezhiani et al.
2003; Drago et al. 2004; Bombaci et al. 2004) the simultaneous existence of very
compact (R < 10 km) hadronic stars with a maximum mass of only 1.5–16M� with
less compact (R > 10.5 km) strange quark matter stars fulfilling the 2M� mass con-
straint could be explained. While the conversion of a hadronic star to a strange quark
star starting from a seed droplet of strange quark matter is completed within mil-
liseconds by turbulent combustion (Herzog and Röpke 2011; Pagliara et al. 2013),
the timescale for the seed formation by quantum tunneling varies between those
timescales and irrelevant periods beyond the age of the Universe. That such a huge
variation results from small changes in parameters of the model, like the bag con-
stant of the strange quark matter EoS limits the predictive power of such a scenario.

Nevertheless, the two-family scenario has recently been applied also in inter-
preting the merger event GW170817 that was first observed by the LIGO detectors
as a chirped gravitational wave signal and subsequently as a gamma-ray burst by
the FERMI and INTEGRAL satellites as well as in all other wavelengths of the
electromagnetic spectrum (Abbott et al. 2017b). In Drago and Pagliara (2018),
Drago et al. (2018) it has been suggested that between the one-family and two-
family scenarios could be discriminated once the gravitational wave signal at the
moment of the merger could be detected.

7.9.4 Towards a Unified Quark-Nuclear EoS

We have promised to come back to the issue of a unified EoS. This time not for
crust and core matter, but rather a unified description of quark and nuclear matter

(2017), where the authors in such grounds suggest a new type of holographic hybrid stars, with
nuclear matter core surrounded by a quark matter shell.
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on the basis of a microscopic quark model where nucleons appear as bound states
of quarks. As in the case of the unified EoS for nuclear matter and clustered
nuclear matter, the point is to describe strongly coupled deconfined quark matter
and the quark bound states in medium on the basis of the same model for the quark
interaction.

In an early, nonrelativistic potential model approach (Röpke et al. 1986a) this
problem has been solved in these steps: (i) solve the three-quark Schrödinger
equation for the nucleon ground state with a confining potential, (ii) determine
the density-dependent nucleon self-energy (Pauli blocking) shift from the quark
exchange interaction in the two-nucleon system (antisymmetrisation of the 6-quark
wave function) in the nucleonic matter phase, (iii) determine the self-consistent
Hartree shift in the quark matter phase when the confining interaction is saturated
within the range of the nearest neighbors (string-flip model), (iv) Maxwell con-
struction of the phase transition between the Fermi gas of nucleons with repulsive
(quark exchange) interactions and the self-consistent Hartree approximation for the
quark plasma with saturated confinement interaction. The result is a unified EoS for
quark-nuclear matter with a first-order deconfinement phase transition where the
description of both phases is based on the same confining interaction potential.

The main flaw of the old string-flip model is that it works with constituent quarks
and thus does not account for the chiral symmetry restoration which we expect to
occur in the vicinity of the deconfinement one.

An alternative route to the unified EoS is to start from the NJL model as a
paradigmatic field theoretic model for dynamical chiral symmetry breaking and its
restoration in a hot dense medium. This model must then be considered beyond
the mean-field level in order to describe baryons as bound states of three quarks.
Technically, a bosonization of the NJL model (7.23) in the meson and diquark
channels is performed and a Faddeev equation for the nucleon as a quark-diquark
bound state can be derived from a partial resummation of a subclass of diagrams
in the one-quark loop expansion, see Cahill (1989), Reinhardt (1990). This scheme
has been carried out for T = 0 and finite baryochemical potential in Bentz and
Thomas (2001) to arrive at an EoS for nuclear matter with composite nucleons
coupled to the scalar and vector meson mean fields, thus being reminiscent of a
Walecka model. The saturation was obtained at too high densities but could be
brought to the phenomenological value by adopting asd hoc an 8-quark interaction
or by imposing an infrared cutoff to the quark propagators which should mimic
confinement. Subsequently, the phase transition to NJL model quark matter was
obtained from a Maxwell construction (Bentz et al. 2003) thus fulfilling the aim
to obtain a unified quark-nuclear matter EoS within one microscopic model for the
quark interactions. This NJL model based approach was extended in Lawley et al.
(2006) to the case of isospin-asymmetric hybrid star matter in β-equilibrium with
a phase transition to color superconducting quark matter where also mass-radius
diagrams for hybrid compact star sequences have been obtained. Unfortunately,
Sarah Lawley left Physics and this promising development was discontinued.

Another promising step has been done in Wang et al. (2011) where in a
slightly simplified quark-diquark interaction scheme of the NJL model type the
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dissociation of the baryon in the QCD phase diagram with 2SC phase has been
described in terms of the baryon spectral function. Interestingly, the baryon in the
medium is a Borromean state: as a three-quark state it is bound while the two-
quark state (diquark) is unbound, see also the discussion in Blaschke et al. (2015).
Unfortunately, this development did not lead to an EoS of quark-nuclear matter
yet. This step can be expected from a cluster virial expansion for quark matter on
the basis of the Φ-derivable approach which is equivalent to a generalized Beth-
Uhlenbeck approach when the choice of diagrams in the Φ-functional is restricted
to all two-loop diagrams that can be drawn with quark cluster Green’s functions
(Blaschke 2015; Bastian et al. 2018).

As drawback of the NJL model based approach remains the lack of confinement.
This becomes particularly severe when the EoS is required not only at zero temper-
ature, as in the case of supernova collapse and neutron star merger simulations. In
these situations with temperatures of the order of the Fermi energy there are free
quarks contributing to the thermodynamics of the system in the hadronic phase. The
coupling to the Polyakov-loop suppresses quarks at finite temperatures and provides
an improvement but is not applicable at low and vanishing temperatures for high
baryon densities. In this situation a relativistic density functional approach to quark
matter can provide a solution which suppresses colored states in the confinement
domain at low densities by diverging scalar self-energies (masses). An EoS for
the finite-temperature applications of this concept to heavy-ion collisions has been
developed in Khvorostukin et al. (2006). The finite-temperature generalization of
the SFM EoS has been applied to supernova simulations in Fischer et al. (2017),
where it was demonstrated that with this EoS the QCD phase transition can trigger
a successful explosion for massive progenitors such as blue supergiant stars as
massive as 50 M�. These very promising developments at the mean-field level
(Kaltenborn et al. 2017; Khvorostukin et al. 2006) have now to be followed by
developing a relativistic cluster virial expansion on this basis (Bastian et al. 2018).

7.10 Hybrid Stars in the Mass-Radius Diagram

It is known that there is a one-to-one relationship between the mass-radius (M −R)
relationship of (cold) compact stars and their EoS given, e.g., as pressure-energy
density (P(ε)) relation via the Tolman–Oppenheimer–Volkoff (TOV) equations. On
this basis, measurements of mass and radius of pulsars can be used to determine
the EoS of strongly interacting matter in β-equilibrium in a domain of densities and
temperatures that is not accessible to terrestrial laboratory experiments. Naturally,
the question appeared whether neutron star observations could help to settle the
question whether there is at least one critical point in the QCD phase diagram.
To this end one would have to prove that the deconfinement phase transition that
eventually occurs in neutron star interiors is of first order. Exploiting the above
relation between EoS and M-R diagram the task can be rephrased: Is there a feature
in the possible M-R sequences of (hybrid) compact stars that would signal a first
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order phase transition in the corresponding EoS? If this question could be answered
affirmatively, what are then the prospects to identify such a feature by observations
of compact stars? The following subsections will discuss answers to these two
questions.

7.10.1 Phase Diagram of Hybrid Stars

In Alford et al. (2013) Alford et al. have introduced the notion of a phase diagram
for hybrid stars, i.e. stars where the core matter undergoes a phase transition of first
order with a jump in the energy density Δε (latent heat) occurring when a critical
pressure Ptrans is reached at a critical energy density εtranstrans. This phase diagram
is spanned by latent heat and critical pressure, both in units of the energy density at
the onset of the transition, see Fig. 7.10. It exhibits a universal dividing line (shown
as solid line in red color) which corresponds to the criterion for a gravitational
instability at the onset of the phase transition and is given by (Seidov 1971)

Δε

εcrit
≥ 1

2
+ 3

2

Pcrit

εcrit
, (7.39)

so that above this line stable hybrid stars are absent (A) or, if the high-density phase
of matter in the inner core is stiff enough, a disconnected (D) “third family” (Gerlach
1968) sequence of stable hybrid stars emerges. The position of the (almost vertical)

Fig. 7.10 Classification of mass-radius sequences in the so-called phase diagram for hybrid
compact stars, spanned by the latent heat Δε and the critical pressure ptrans of their underlying
equation of state, normalized to the critical energy density εtrans at the onset of the phase transition.
Adapted from Alford et al. (2013)
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dividing line is not universal, it depends on the EoS. Below the Seidov line, the onset
of the phase transition in the inner core is followed by a connected (C) branch of
stable hybrid stars. In this domain there is a special, triangular-shaped region where
after the connected branch of hybrid stars an instability occurs which divides it from
a third family sequence of compact hybrid stars, so that in this region the sequence
is characterized by both (B): a connected and a disconnected branch of stable hybrid
stars.

The existence of a disconnected hybrid star branch in theM−R diagram can thus
be identified as the distinctive and observationally accessible feature for detecting
a (strong) first-order phase transition in compact star interiors. Due to the mass
defect which accompanies the compactification because of the gain in gravitational
binding energy, there is a certain range in masses for which pairs of compact stars
exist that have the same mass but different radii and different internal composition,
the so-called “mass twins” (Glendenning and Kettner 2000). Their existence is
equivalent to the existence of a third family and therefore to the strong first order
phase transition in the stellar core.

7.10.2 The Story of the Twin Stars

The possibility of a third family of compact stars and its relation to a phase transition
in stellar matter was recognized by Gerlach (1968) already in 1968, and after a
while discussed by Kämpfer (1981) in the context of pion condensation and quark
matter in compact stars. After another 17 years, the phenomenon was reconsidered
by Glendenning and Kettner (2000) who coined the term “twins” for the effect
accompanying the third family. Schertler et al. (2000) and Bhattacharyya et al.
(2004) took up the idea that twin stars may signal a phase transition in a compact
star, but all these solutions predicted maximum masses which were well below
the 2.1 M� constraint (Nice et al. 2005) which was published in 2005 (and taken
back in 2007), so that mass twins were put aside, also under the impression of the
“masquerade” effect (Alford et al. 2005), to be discussed below. But the idea of
mass twins as an observable signature for a phase transition was too good to be
forgotten. In order to revive it one had to demonstrate that it could be reconciled
with the meanwhile discovered very precise constraints on the maximum mass of a
compact star EoS, i.e., 1.97±0.04M� (Demorest et al. 2010) for PSR J1614-223010

and 2.01 ± 0.04 M� (Antoniadis et al. 2013) for PSR J0438+432. Early in 2013,
it could be demonstrated that high-mass twins were theoretically possible, when a
realistic nuclear EoS model was combined with a constant speed of sound (CSS)
model for the high-density phase (Alvarez-Castillo and Blaschke 2013). With such
a hybrid star model EoS one could describe twin stars at any mass, while fulfilling

10Note that this mass for PSR J1614-2230 reported in 2010 was down-corrected in 2016 to 1.947±
0.018 M� (Fonseca et al. 2016) and most recently to 1.908±0.016 M� (Arzoumanian et al. 2018).
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the 2 M� mass constraint, see the recent work on the classification of twin star
solutions (Christian et al. 2018). Even a fourth family and mass triples of compact
stars are possible (Alford and Sedrakian 2017). What are the astrophysical chances
to discover twin stars, at high or low mass? We discuss two possibilities.

7.10.2.1 High-Mass Twin Stars: J1614-2230& J0438+432

Historically, as soon as the second 2 M� pulsar was discovered (Antoniadis et al.
2013) in 2013, it was suggested that radius measurements of these stars should
have the best chance to discover the case of high-mass twins (Blaschke et al.
2013) and thus to prove the existence of a critical endpoint in the QCD phase
diagram (Benic et al. 2015b; Alvarez-Castillo et al. 2016). Since the deconfinement
transition, if possible in compact star interiors at all, should have the best chances
to occur in the most massive stars, i.e., the stars with the highest possible densities
in their core.11 However, while PSR J1614-2230 is a millisecond pulsar for which
the neutron star interior composition explorer (NICER) (https://heasarc.gsfc.nasa.
gov/docs/nicer) in principle could provide a radius measurement (given a sufficient
duration of this experiment on board of the international space station (ISS)), such
a radius measurement is not possible for PSR J0438+432. Then one could hope
for the discovery of another high-mass pulsar, e.g., by the square kilometer array
(SKA) (http://www.ska.ac.za). The case is illustrated in the left panel of Fig. 7.11
for the hybrid star EoS of Kaltenborn et al. (2017) with the DD2 p40 hadronic EoS
and the SFM with screening parameter α = 0.2, where the radius difference of the
twins at 2 M� is about 3 km. In that figure we show also the most recent result
1.947 ± 0.018 M� for the mass measurement of PSR J1614-2230 (Arzoumanian
et al. 2018).

Note that the case of two compact star families with an overlapping range in
masses but different radii has also been considered in another context, namely for
the conversion of metastable hadronic stars to strange stars (Bombaci et al. 2016;
Bhattacharyya et al. 2017; Dondi et al. 2017), where the branch of strange stars can
reach or exceed the 2 M� mass constraint at larger radii than the smaller and less
massive hadronic stars have. The testable consequences of this two families scenario
in the context of gravitational wave signals from compact star merger events have
been recently discussed in Drago and Pagliara (2018), Drago et al. (2018).

11Note that the transition from a configuration at the endpoint of the neutron star branch in the
M−R diagram to the third family branch of hybrid stars (triggered, e.g., by mass accretion or spin-
down) occurs under simultaneous conservation of baryon mass and angular momentum, as has been
demonstrated in Bejger et al. (2017) for the case of the high-mass twin EoS (Benic et al. 2015b).
It could therefore occur at the free-fall timescale, accompanied by a burst-type phenomenon
(Alvarez-Castillo et al. 2015) (such as a fast radio burst (Falcke and Rezzolla 2014)) unlike the
case discussed earlier in Glendenning et al. (1997) where an angular momentum mismatch had to
be compensated by, e.g., dipole radiation an estimated timescale for the transition period of 105

years.

https://heasarc.gsfc.nasa.gov/docs/nicer
https://heasarc.gsfc.nasa.gov/docs/nicer
http://www.ska.ac.za
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Fig. 7.11 Left panel: M − R relations for a stiff (DD2 p40, blue line) and a soft (Sly4, red line)
hadronic EoS. The result for hybrid stars binaries with hybrid stars from the third family branch
obtained by a phase transition to quark core matter (SFM with screening parameters α = 0.2,
and 0.3, green lines) together with the mass ranges m1 and m2 of the stars in the binary merger
GW170817. The red horizontal lines indicate the the mass bands for the nearest millisecond pulsar
J0437-4715 (Reardon et al. 2016) and for the high-mass pulsar J1614-2230 (Arzoumanian et al.
2018). Both pulsars are target for the radius measurement by NICER (https://heasarc.gsfc.nasa.
gov/docs/nicer). Right panel: LVC constraint (Abbott et al. 2017b) on tidal deformabilities Λ2 vs.
Λ1 for the low-spin prior with a 50% (grey region, bordered by dashed line) and a 90% (just ashed
line) confidence level region from the binary compact star merger GW170817, compared to results
shown in the left panel. A merger of two hybrid stars from the third family branch is equivalent to
that of a soft hadronic EoS. From Bejger et al. (2018), see also Paschalidis et al. (2018)

7.10.2.2 Low-Mass Twin Stars: GW170817 and NICER

With the detection of gravitational waves from the inspiral phase of the neutron star
merger GW170817 by the LIGO Scientific and Virgo Collaboration (Abbott et al.
2017b) and the subsequent detection of the associated kilonova event in the galaxy
NGC4993 in all ranges of the electromagnetic spectrum (Abbott et al. 2017a),
the window for multi-messenger astronomy has been opened. It is possible that
already this merger event with stars from the mass ranges M1 = 1.36–1.60 M�
and M2 = 1.16–1.36 M� could have been a binary not of two regular neutron
stars but rather a neutron star and a hybrid star or even a pair two hybrid stars, see

https://heasarc.gsfc.nasa.gov/docs/nicer
https://heasarc.gsfc.nasa.gov/docs/nicer
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the right panel of Fig. 7.11. With the same hybrid EoS as for the high-mass twin
case we can obtain also typical mass (low-mass) twins, just by slightly varying the
unknown screening parameter to be α = 0.3. From examining the LIGO constraint
on tidal deformabilities in the right panel of Fig. 7.11, it is clear that a neutron star -
neutron star scenario for a soft hadronic EoS (SLy4) can not be distinguished from
a hybrid star - hybrid star scenario. A hybrid star - neutron star scenario is also
possible, but a neutron star - neutron star scenario with a stiff hadronic EoS is only
marginally compatible with GW170817, see Paschalidis et al. (2018). In Annala
et al. (2018) the constraint on tidal deformability has been translated to a limiting
radius for a 1.4 M� neutron star (within the neutron star - neutron star scenario) of
R1.4,max = 13.6 km.

In Fig. 7.11 we show also the mass range 1.44 ± 0.07 M� of PSR J0437-4715
(Reardon et al. 2016) which is the primary target of the radius measurement by
NICER (https://heasarc.gsfc.nasa.gov/docs/nicer). While at this moment the low-
mass twin case is only an option, competing with the case of an ordinary neutron
star merger with soft hadronic EoS, the soft hadronic EoS could be ruled out should
NICER (https://heasarc.gsfc.nasa.gov/docs/nicer) announce a radius for the nearest
millisecond pulsar PSR J0437-4715 in excess of ∼13 km (Paschalidis et al. 2018).

7.10.3 Masquerade?

It may well be that the deconfinement phase transition in the dense matter EoS does
not leave a recognizable imprint on the mass-radius diagram of compact stars. This
could have different reasons, for instance: (i) the critical density for the onset is too
high to be reached in compact star interiors, even at highest masses, (ii) the quark
matter EoS is too soft to carry a hadronic mantle so that the onset of quark matter
results in gravitational instability and thus determines the value of the maximum
mass of neutron stars, (iii) the transition is too weak (the latent heat Δε is too small)
to lead to a recognizable (D)isconnected third family branch but rather results in a
hybrid star branch (C)onnected to the neutron star one and not distinguishable from
the pure neutron star case.

This latter case has been dubbed “masquerade” in Alford et al. (2005). It would
require other methods of detecting the deconfinement transition in neutron star
interiors than to measure the mass-radius dependence. For instance the cooling
behaviour could be qualitatively different for stars above the threshold mass. The
best case, however, would be a galactic supernova event which would emit a
detectable second neutrino burst that has to be associated with the conversion of
nuclear matter to quark matter.

https://heasarc.gsfc.nasa.gov/docs/nicer
https://heasarc.gsfc.nasa.gov/docs/nicer
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7.11 Conclusions

With their tremendous gravity and their very high magnetic fields, the interior
of neutron stars exhibits novel phases that cannot be reproduced in terrestrial
laboratories. The atmosphere and the surface of a neutron star can be probed by
spectroscopic measurements, although the inferred composition may still depend
on the adopted atmospheric model. The interior of a neutron star is not directly
observable. The outer most region is predicted to consist of a solid crust made
of fully ionised nuclei embedded in a highly degenerate electron gas. Under the
assumption of cold catalysed matter, nuclei are arranged on a perfect body-centred
cubic lattice, and their composition is completely determined by experimental
atomic mass measurements, currently up to a density of about 6 × 1010 g cm−3.
Future measurements will allow us to drill deeper into the crust. However, the cold
catalysed matter hypothesis may not be very realistic. The composition of a newly
formed hot neutron star is likely to become frozen when the crust solidifies, or at
even earlier times. Which nuclides would thus be produced and how would they
arrange? Could the crust consist of a disordered solid? Following the composition of
a matter element as it cools down is very challenging as this requires the knowledge
of all the relevant reaction rates, in addition to the dense-matter properties that
govern the thermal evolution. Moreover, the presence of a high magnetic field or
the accretion of matter from a companion star may radically change the constitution
and the structure of the crust. Different neutron stars may thus have different crusts
depending on their history. With increasing pressure, nuclei become progressively
more neutron rich until some neutrons become unbound. The onset of neutron
emission by nuclei, at densities of order 1011 g cm−3 marks the transition to the inner
crust, where neutron-proton clusters are immersed in a neutron ocean (superfluid at
low enough temperatures). With further compression, clusters might fuse and form
a liquid mantle of nuclear “pastas” that eventually dissolve into a uniform mixture
of nucleons and electrons at a density of order 1014 g cm−3.

At supersaturation densities, heavier baryons such as hyperons and deltas may
be excited before the deconfined quark matter phases appear, most likely in a
superconducting state. The details of this transition are largely unknown because
no benchmark exist. So we describe the main challenging questions that our present
understanding faces and try some answers. What is the confinement/deconfinement
mechanism in cold degenerate matter? How is it intertwined with chiral symmetry
breaking/restoration in the presence of strong diquark correlations (color super-
conductivity)? Which mechanisms determine the stiffness of nuclear matter and
quark matter? How could eventually a unified description of quark and nuclear
matter be achieved? Do hyperons occur in neutron stars or does nature choose to
deconfine strongly interacting matter before heavy baryons would get excited? Can
hybrid stars with strange quark matter content be stable? Does strangeness occur in
compact star interiors at all? How far is the asymptotic perturbative QCD description
from the density range probed by the phenomenology of compact stars?
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We discussed the existence of strange matter in compact stars in hadronic
and quark matter phases. The appearance of hyperons leads to a hyperon puzzle
in approaches based on effective baryon-baryon potentials but is not a severe
problem in relativistic mean field models. The puzzle is resolved for a stiffening
of hadronic matter at supersaturation densities, an effect based on the quark Pauli
quenching between hadrons. We further outlined the conflict between the necessity
to implement dynamical chiral symmetry breaking for a realistic quark matter model
and the condition of undressed, approximate massless quarks for the appearance of
absolutely stable strange quark matter. The existence of absolutely stable strange
quark matter cannot be excluded on theoretical grounds only. However, we outlined
the problems of the reasoning that lead to this hypothesis. In general, the role
of strangeness in compact stars in hadronic or quark matter realizations remains
unsettled.

As a workhorse for the theory chiral quark models of the NJL type have
been discussed and their extension to a relativistic density-functional theory has
been advertised because it allows to implement features of quark confinement
simultaneously with dynamical chiral symmetry breaking, color superconductivity
and stiffening at high densities which all are required for the phenomenological
description of compact star physics. Further unknown white spots in the theory
of superdense neutron star matter can be circumvented with interpolating models
and Bayesian techniques. One of the modern questions with a chance to be
answered by next generations of observational campaigns is the nature of the
deconfinement transition. Is it a strong first order transition which would give rise
to the phenomenon of mass twin stars?
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Chapter 8
Superfluidity and Superconductivity
in Neutron Stars

Brynmor Haskell and Armen Sedrakian

Abstract This review focuses on applications of the ideas of superfluidity and
superconductivity in neutron stars in a broader context, ranging from the micro-
physics of pairing in nucleonic superfluids to macroscopic manifestations of
superfluidity in pulsars. The exposition of the basics of pairing, vorticity and mutual
friction can serve as an introduction to the subject. We also review some topics
of recent interest, including the various types of pinning of vortices, glitches, and
oscillations in neutron stars containing superfluid phases of baryonic matter.

8.1 Introduction

Neutron stars are one of the most extreme astrophysical laboratories in the universe.
They allow us to probe physics in strong gravitational fields in the regime where
general-relativistic corrections can be as large as 20%, the magnetic fields deduced
at their surfaces B ≤ 1015 G are the largest measured in Nature, and their interiors
are expected to contain the densest forms of matter. For typical neutron star masses
� 1.4 − 2.0 M� (M� being the solar mass) and radii R � 10–14 km, the central
densities of neutron stars can easily exceed the nuclear saturation density ns =
0.16 fm−3 by factors of a few up to ten.

At the same time neutron stars are extreme low-temperature laboratories: the
high densities of their interiors imply large Fermi energies of fermions εF �
10–100 MeV, which turn out to be much higher than the characteristic interior
temperatures of mature neutron stars T ∼ 108 K � 0.01 MeV. Because of the
attractive long-range component of the nuclear force and the high degeneracy εF �
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T the neutrons and protons (and presumably some hyperons) become superfluid and
superconducting at critical temperatures of the order of Tc � 109–1010 K.

Neutron superfluidity in a neutron star crust and its core, as well as proton
superconductivity in the core, profoundly alter its dynamics, just as the emergence of
these phenomena does in terrestrial experiments. For example, superfluid neutrons
can now flow relative to the ‘normal’ component of the star with little or no
viscosity, as standard reactions and scattering processes giving rise to bulk and shear
viscosity are strongly suppressed. An important factor in neutron star dynamics
is the appearance of an array of vortices in the neutron condensate. In analogy
to a laboratory superfluid in a rotating container, the neutron superfluid mimics
large scale rotation by creating an array of quantised vortices each carrying a
quantum of circulation. Interactions between vortices and the normal component
open a new dissipative channel, known as mutual friction. These interactions may
be strong enough to ‘pin’ the vortices and freeze the rotation rate of the superfluid
neutrons. The angular momentum thus stored is then released catastrophically
during discrete events, which are thought to be the cause of the observed ‘glitches’,
i.e., sudden spin-up episodes observed in pulsars. These phenomena reflect the
interior dynamics of neutron stars and thus can potentially provide an insight into
the physics of superfluids in their interiors.

This chapter provides an educational introduction and an overview of the field of
superfluidity and superconductivity in neutron stars. The first part of the chapter
reviews the microphysics of nuclear pairing in neutron stars by providing an
elementary introduction to the microscopic theory of nuclear pairing and a review
of current issues such as medium polarization corrections to the pairing, pairing
in higher partial waves and in strong magnetic fields (Sect. 8.2). The interaction
of vortices with the ambient fluid at the microphysical level, which leads to
the phenomenon of mutual friction between the superfluid and the normal fluid,
is reviewed in Sect. 8.3. This is followed by a discussion of hydrodynamics of
superfluids in neutron stars (Sect. 8.4). Section 8.5 is devoted to the interactions of
vortices with flux-tubes and nuclear clusters, i.e., their pinning to various structures.
This is followed by a discussion of the macrophysics of rotational anomalies in
neutron stars in Sect. 8.6. We provide our concluding remarks in Sect. 8.7.

8.2 Microscopic Pairing Patterns in Neutron Stars

8.2.1 General Ideas

The microscopic understanding of the pairing mechanism in nucleonic matter
in neutron stars is based on the theory advanced by Bardeen, Cooper, and
Schrieffer (BCS) in 1957 to explain the superconductivity of some metals at
low temperatures (Bardeen et al. 1957). The key ingredient of this theory is
the notion of an attractive interaction between two electrons which is mediated
by lattice phonon exchange. According to the Cooper theorem (Cooper 1956)
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low-temperature fermions which fill a Fermi sphere can bind to form Cooper pairs
if there is an attractive interaction between them. The bound states of electrons
(typically with total spin 0) form a coherent many-body state which carries an
electric current without any resistivity below a certain critical temperature Tc. The
overwhelming success of the BCS theory in explaining the wealth of experimental
data encouraged applications of the key ideas of this theory in other fields of
physics, including nuclear physics. In contrast to electronic materials, where the
direct interaction between the electrons is repulsive due to the Coulomb force
between same-charge particles, in nuclear systems the dominant long-range piece
of the interaction between the nucleons (neutrons and protons) is attractive. It is not
surprising then that superconductivity and superfluidity in nuclear systems - finite
nuclei and neutron stars - were conjectured shortly after the advent of the BCS
theory by Bohr et al. (1958), Migdal (1959) and others.

Fully microscopic calculations of the pairing properties of neutron and proton
matter in neutron stars were carried out following the discovery of pulsars in 1967
and their identification with neutron stars. Although at the time nuclear interactions
were not known as precisely as nowadays, the first computations of the pairing
gaps of about 1 MeV in neutron and proton matter are consistent with present day
calculations (see the reviews by Lombardo and Schulze (2001), Dean and Hjorth-
Jensen (2003), Sedrakian and Clark (2006), Page et al. (2013) and Gezerlis et al.
(2014) and references therein).

A useful reference for the understanding of the patterns of pairing in neutron
stars is the partial wave analysis of the nuclear interaction. In fact, the experimental
measurements of the nuclear scattering are given per partial wave. At low energies
the nucleon-nucleon (nn) scattering is dominated by two S-wave interactions,
specifically the 3S1–3D1 coupled partial wave and the 1S0 partial wave; here we use
the standard spectroscopic notations to specify the scattering channels, i.e., 2S+1LJ ,
with L = 0, 1, 2 mapped to S, P , D, where L is the orbital angular momentum,
S is the total spin and J is the total angular momentum, which is the sum of the
former two vectors. Thus, at low energies the L = 0 states, which have symmetrical
wave-function in the coordinate space, dominate. The total wave function contains
however spin and isospin components which must be selected in a manner to
satisfy the Pauli principle, which dictates that the total wave function must be anti-
symmetrical. As a consequence, the neutron-neutron and proton-proton scattering
which always has a total isospin T = 1 symmetrical component, cannot occur in
the spin symmetrical S = 1 and spatially symmetrical L = 0 state. Therefore,
the strongly attractive interaction in the 3S1–3D1 channel which binds the deuteron
(binding energy Ed = −2.2 MeV) does not lead to pairing in neutron dominated
matter, where neutrons and protons form vastly separate Fermi surfaces. Then, for
large differences in the numbers of protons and neutrons (isospin asymmetry) only
same isospin Cooper pairs can arise in the remaining 1S0 partial wave channel.

At laboratory energies of nn scattering larger that EL = 250 MeV the measured
scattering phase-shift in the 1S0-wave interaction channel becomes negative, i.e.,
the interaction becomes repulsive, see Fig. 8.1. However, already at EL � 160 MeV
the 3P2 −3 F2 tensor interaction becomes the most attractive channel for T = 1
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Fig. 8.1 The nucleon-nucleon scattering phase shifts as a function of laboratory energy for
the channels where pairing in neutron stars matter appears. The S and P wave scattering is
responsible for neutron-neutron and proton-proton pairing, whereas the 3D2 wave scattering can
occur only between neutrons and protons. The P and F waves are coupled by the non-central
tensor component of the nuclear interaction

(neutron-neutron and proton-proton) pairs. The corresponding density in neutron
star matter is obtained by noting that the center of mass energy of two scattering
nucleons is EL/2, which should be of the order of the Fermi energy of neutrons or
protons. (Here we specialize the discussion to the high-density and low-temperature
regime of interest to superfluidity in neutron stars). Neutron Fermi energies become
of the order of εFn � 60 MeV at the nuclear saturation density ns = 0.16 fm−3.
Thus, we anticipate that neutron pairing in the 1S0-wave vanishes at densities
slightly above the saturation density and that the core of the star contains superfluid
featuring neutron pairs in the 3P2–3F2 partial wave. The spatial component of the
wave-function of these Cooper pairs is anti-symmetrical whereas the spin (S = 1)
and isospin (T = 1) components are symmetrical. Clearly, the pairing in this so-
called triplet spin-1 channel is consistent with the Pauli principle for two neutrons.
Because the proton fraction in a neutron star core is small, about 5-10% of the net
number density, their Fermi energies, and consequently the center of mass scattering
energies, remain low. Therefore, proton pairs arise in the 1S0-wave up to quite high
densities. It is conceivable that, at densities higher than a few times the nuclear
saturation density, higher partial waves can contribute to the pairing in neutron star
matter. For example, if the partial densities of neutrons and protons are forced to
be close to each other by some mechanism, i.e., matter is isospin symmetrical, then
neutron-proton pairs can be formed in the most attractive 3D2 partial wave with a
wave function which is symmetrical in space, antisymmetrical in isospace (T = 0)
and symmetrical in spin (S = 1). A mechanism that can enforce equal numbers of
neutrons and protons is, e.g., meson condensation (Weber 1999).
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The BCS theory was originally formulated in terms of a variational wave function
of a coherent state which minimized the energy of an ensamble of electrons
interacting via contact (attractive) interaction (Bardeen et al. 1957). Here we will
outline an alternative formulation based on the method of canonical transformations
due to Bogoljubov (1958).

Consider a macroscopic number of N fermions which are described by the
pairing Hamiltonian

H − μN =
∑
p,σ

εpa
†
p,σ ap,σ −

∑
p1+p2=p3+p4

Veff(p1,p2;p3,p4)a
†
p3
a†
p4
ap1

ap2
. (8.1)

The first term is the kinetic energy, the second term is the attractive interaction
energy, where Veff(p1,p2;p3,p4) is an effective pairing interaction. Here a

†
p,σ

and ap,σ are the particle creation and annihilation operators for particles with spin
σ =↑↓ and momentum p. Note that we work in the grand-canonical ensemble, so
that instead of fixing the number of particles we assume that our system is connected
to a reservoir of particles; μ is the chemical potential - the energy needed to add
or remove a particle to the system. The application of the method of canonical
transformations to the Hamiltonian (8.1) requires new creation and annihilation
operators defined as

ap,↑ = upαp↑ + vpα
†
−p↓, (8.2)

ap,↓ = upαp↓ − vpα
†
−p↑. (8.3)

The requirement that the anti-commutation relations obeyed by the new operators
are the same as those obeyed by the original fermionic ones leads us to

{αp,σ , α
†
p′,σ ′ } = α†

p,σ αp′,σ ′ + αp′,σ ′α
†
p,σ = δpp′δσ,σ ′ . (8.4)

It follows then that the functions up and vp are not independent, but u2
p + v2

p = 1,
i.e., there is a single independent function, say vp . This parameter is found from the
minimization of the statistical average of the Hamiltonian (8.1)

E − μN = 〈H − μN〉, (8.5)

where 〈. . . 〉 stands for mean value with the occupation numbers defined as
〈α†

p,↓αp,↓〉 = np,↓ and 〈α†
p,↑αp,↑〉 = np,↑. The energy is then given by

E − μN =
∑
p

ε(p)
[
u2
p(np,↑ + np,↓)+ v2

p(2− np,↑ − np,↓)
]

−
∑
pp′

Veff(p,p
′)upvpup′vp′Q(p)Q(p′), (8.6)
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where Q(p) ≡ (1− np,↑ − np,↓). Eliminating up from (8.6) via u2
p = 1− v2

p and
performing variations with respect to vp we find then

2εp =
�(p)(1− 2v2

p)

upvp
, (8.7)

where

�(p) =
∑
p′

Veff(p,p
′)upvp(1− np,↓ − np,↑), (8.8)

is the so-called gap equation. From Eq. (8.7) we find for the Bogolyubov amplitudes

u2
p =

1

2

(
1+ εp

Ep

)
, v2

p =
1

2

(
1− εp

Ep

)
, (8.9)

where the quasiparticle spectrum in the superconductor is defined as

Ep =
√
ε2
p +�2

p. (8.10)

On substituting upvp = �(p)/2Ep in Eq. (8.8), we find a non-linear integral
equation for the gap function �(p) which can be solved for any given effective
interaction Veff(p,p

′). It is easy to verify that Ep is indeed the quasiparticle energy,
by taking the variation of the total energy with respect to the occupation numbers,
i.e., by computing the variation1

δ(E − μN)

δnp,↑
= εp(u

2
p − v2

p)+ 2upvp�(p) = Ep. (8.11)

Equation (8.10) demonstrates the fundamental property of the superconductors: the
spectrum of a superconductor contains an energy gap �. As a consequence the
excitations can be created in the system if a Cooper pair breaks, which means
that energy of the order of 2� must be supplied to the superconductor. The main
property of superconductors - the absence of dissipation of current - follows from the
existence of the gap in their spectrum. In the case of uncharged fermionic superfluids
(e.g. neutron matter) the same property is referred to as superfluidity (i.e., fluid
motions without dissipation). In equilibrium, the occupation numbers of fermions
are given by the Fermi function f (p) = (eEp/T +1)−1, where T is the temperature.
At low temperatures the fermionic momenta are restricted to the vicinity of the
Fermi surface; then, assuming an isotropic (S-wave) interaction, we can simplify the

1When computing the variation with respect to the occupation numbers one needs to assume that
the Bogolyubov coefficients are constant, because they are determined from the condition δ(E −
μN)/δvp = 0.
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gap equation by changing the integration measure
∑

p = m∗pF
∫
dεp

∫
d�/(2π)3

to find

1 = Gν

∫ 1

0

dεp

2
√
ε2
p +�2

tanh

⎛
⎝
√
ε2
p +�2

2T

⎞
⎠ , (8.12)

where ν = pFm
∗/π2 is the density of states, m∗ is the effective mass, pF is the

Fermi momentum, and for the sake of illustrations below we assume a momentum-
independent contact interaction Veff(p,p

′) = G, which in turn requires a cut-off
1 to regularize the integral in the ultraviolet. The latter cut-off is physically well-
motivated, as the effective pairing interactions are typically localized close to the
Fermi surface.2

Consider now analytical solutions of the gap equation in the limiting cases T →
Tc and T → 0, where Tc is the critical temperature of phase transition. For T = 0,
the tanh function is unity and a straightforward integration gives

1 = Gν

2
arcsinh

(
1

�(0)

)
� ln

(
21

�(0)

)
, (8.13)

where in the last step we assumed weak coupling, i.e., � � 1 to expand
lim
x→∞arcsinh x = ln(2x)+O(x2); this can be written in a more familiar form

�(0) = 21 exp

(
− 2

Gν

)
, (8.14)

which is the famous gap equation of the BCS theory. It demonstrates the exponential
sensitivity of the pairing gap to the effective attractive interaction G. In the limit
T → Tc, we can set in the integrand of the gap equation � = 0. An elementary
integration then gives Tc = (21γ/π) exp (−2/Gν) , where γ ≡ eC and C = 0.57
is the Euler constant. Combining the results for Tc and �(0) we obtain a relation
between them: �(0) = πTc/γ = 1.76 Tc.

The limiting expressions for the gap function can be easily extended to include
the next-to-leading order terms in the two limiting cases discussed above:

�(T ) = �(0)−√2π�(0)T exp

(
−�(0)

T

)
(8.15)

for T → 0 and

�(T ) = π

√
8

7ζ(3)
[Tc(Tc − T )]1/2 = 3.06 [Tc(Tc − T )]1/2 (8.16)

2The full nuclear interaction can be renormalized via resummations of infinite series such as to
contain only components close to the Fermi surface.
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for T → Tc, where ζ(x) is the Riemann’s ζ -function with ζ(3) = 1.20205. The
temperature dependence of the gap function in the whole temperature regime can
be obtained numerically. An analytical fit to the �(T ) function, useful for practical
applications, is given in Mühlschlegel (1959). Having the temperature dependence
of the gap one still needs fit formulae to the gap function at zero temperature
�(0) (or equivalently the critical temperature Tc) as a function of density or Fermi
momentum. We point out that accurate fits can be obtained with the functional form

�(kF ) = a exp(−k2
F )+

4∑
n=0

cnk
n
F , (8.17)

where kF is the Fermi wave-number. The fit coefficients to the S- and P -wave
neutron and S-wave proton gaps can be found in Sinha and Sedrakian (2015).

8.2.2 Effective Interactions

An important issue in computations of the gaps in neutron star matter is the
proper determination of the effective pairing interaction Veff(p,p

′). As a first
approximation one may use the bare nuclear interaction in the gap equation, which
provides us with a useful reference result. The most important correction to this
interaction arises from polarization effects or screening, which in diagrammatic
language can be understood as a summation of infinite series of particle-hole
diagrams. We will review these effects on the basis of the Landau Fermi liquid
theory and will compare to the alternatives thereafter. In our discussion we will
follow the original Landau approach; for computations which are based on this type
approach, but include more advanced diagrammatic treatments of the problem see
Wambach et al. (1993), Schulze et al. (1996), Schwenk et al. (2003), Lombardo
et al. (2004) and Shen et al. (2005).

We now suppose that the bare interaction depends only on the momentum
transfer in the collision q = p1 − p3 and write it in terms of all possible
combinations of the spin and isospin components:

Vbare(q) = 1

ν

{
Fq +Gq(σ · σ ′)+

[
F ′q +G′q(σ · σ ′)

]
(τ · τ ′)

}
, (8.18)

where σ and τ are the vectors formed from the Pauli matrices in the spin and isospin
spaces and Fq , F

′
q ,Gq and G′q are the so-called Landau parameters. For simplicity

the tensor and spin-orbit interactions are neglected as they are small in neutron
matter. The summation of geometrical series of particle-hole diagrams then gives
for the effective interaction

Veff = 1

ν

{
F̃q + G̃q(σ · σ ′)+

[
F̃ ′q + G̃′q(σ · σ ′)

]
(τ · τ ′)

}
, (8.19)
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where Ãq = Aq [1 + L(q)Aq]−1, A stands for any of the Landau parameters.
It is seen that the screening leads to a renormalization of the Landau parameters
A → Ã, where the function L(q), which represents the single particle-hole loop,
is the Lindhard function. In the low-temperature regime of interest the momenta of
fermions are restricted to lie on their Fermi surface, therefore the Landau parameters
will depend only on the relative orientation of the momenta of particles. Then, it is
useful to expand these into spherical harmonics

A(q) =
∑
l

AlPl(cos θ) , (8.20)

where Pl are the Legendre polynomials, A again stands for any of the Landau
parameters above, θ is the scattering angle which is related to the magnitude of
the momentum transfer via q = 2pF sin θ/2, where pF is the Fermi momentum.

In pure neutron matter τ · τ ′ = 1. Then, keeping the lowest-order harmonics
in the expansion (8.20) and for scattering with total S = 0 (i.e. σ · σ ′ = −3) the
effective pairing interaction is given by

ν(pF )Veff(q) = Fn
0

[
1− L(q)Fn

0

]− 3Gn
0

[
1−M(q)Gn

]
, (8.21)

where Fn = F + F ′ and Gn = G + G′ describe the effective interaction in the
density and spin channels respectively, L(q) = L(q)[1+ L(q)Fn

0 ]−1 and M(q) =
L(q)[1 + L(q)Gn

0]−1 are screening corrections to the direct part of the effective
interaction∝ 1. In general the Lindhard function is complex; in the low-temperature
regime of interest its imaginary part (which is related to the damping of particle-hole
excitations) can be neglected. It assumes a simple form for zero energy transfer at
fixed momentum: L(x) = −1 + (2x)−1(1 − x2) ln |(1 − x)/(1 + x)|, with x =
q/2pF (Fetter and Walecka 1971).

The Landau parameters and the effective interaction in Eq. (8.21) have been
computed extensively over the past several decades within various approximations.
There is a general agreement that the density fluctuations ∝ Fn

0 enhance, whereas
the spin-fluctuations ∝ Gn

0 reduce the attraction in the pairing interaction. The
overall effect of the spin fluctuations at subnuclear densities is numerically larger
and, consequently, these fluctuations reduce the pairing gap in neutron matter. As
can be seen from Eq. (8.14) the dimensionless quantity (coupling) determining the
magnitude of the gap involves, apart from the effective interaction, also the density
of states. In general the quasiparticle spectrum can be written as

ε(p) = p2

2m
+ U(p), (8.22)

where U(p) is the single particle potential felt by a particle in the nuclear
environment. The full momentum dependence in Eq. (8.22) can be approximated
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by introducing an effective quasiparticle mass. An expansion of the potential U(p)
around the Fermi momentum leads to

ε(p) = pF

m∗
(p − pF )− μ∗, m∗

m
=
(

1+ m

pF

∂U(p)

∂p

∣∣∣
p=pF

)−1

, (8.23)

whereμ∗ ≡ −ε(pF )+μ−U(pF ). Because the effective massm∗/m < 1 in neutron
matter, the modifications of the single-particle energies lead to a reduction of the
gap. The effective mass also plays a significant role in the multifluid hydrodynamics
of superfluids in neutron stars, as discussed in Sect. 8.4.

Correlations in neutron matter can be studied in a number of alternative theories,
for example, Monte Carlo sampling of systems with odd and even numbers of
neutrons, whereby the gap is defined as the energy difference between odd and
even states (Gandolfi et al. 2008; Gezerlis and Carlson 2010). Wave-function
based approaches minimize the energy of the BCS state using correlated basis
functions (CBF), which are built to account for the operator structure of the nuclear
interaction (Chen et al. 1993).

In Fig. 8.2 we show selected benchmark results for pairing gaps in different
theories of pairing. The BCS result with bare single particle energies was obtained
using a low-momentum interaction, which leads to slightly larger gaps compared

Fig. 8.2 The pairing gap in the low-density neutron matter relevant for neutron star crusts as
a function of Fermi momentum. The curves labeled “BCS” and “BHF” show the result for
low-momentum interaction using bare and medium modified single particle spectra, whereby
the renormalization of the particle spectrum is taken into account in the Bruckner-Hartree-Fock
theory (Sedrakian et al. 2003). The screening effects, which strongly suppress the gap, are shown
on the examples based on Fermi-liquid “FL” (Wambach et al. 1993) and correlated basis functions
“CBF” theories (Chen et al. 1993). We also show the results of auxiliary field Monte Carlo “MC”
simulations (Gandolfi et al. 2008), which are closer to the results without screening corrections
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to full (realistic) interaction which contains a hard core. The modifications of
the single particle spectrum, computed within the Bruckner-Hartree-Fock theory
(without invoking effective mass approximation) leads to a moderate reduction of
the gap (Sedrakian et al. 2003). If one includes the screening corrections in the
effective interaction, then the gap is reduced by a factor of three. There is consensus
among the Fermi-liquid (Wambach et al. 1993; Schulze et al. 1996; Schwenk et al.
2003; Lombardo et al. 2004; Shen et al. 2005) and CBF approaches (Chen et al.
1993; Pavlou et al. 2016) on the magnitude of the reduction. Auxiliary field and
Green’s functions Monte Carlo calculations on the other hand predict pairing gaps
at low densities which are closer to the BCS result (Gandolfi et al. 2008; Gezerlis
and Carlson 2010).

8.2.3 Higher Partial Wave Pairing

As seen from Fig. 8.1 at high densities (energies) the dominant pairing interaction
between neutrons is in the 3P2 −3 F2 partial wave. The pairing pattern for spin-1
condensates is more complex than for spin-0 S-wave condensates because of com-
petition between states with various projections of the orbital angular momentum
and complications due to the tensor coupling of the 3P2 partial wave to the 3F2 one,
see Baldo et al. (1998); Zverev et al. (2003); Schwenk and Friman (2004); Maurizio
et al. (2014). To solve the P -wave gap equation (8.8) one starts with an expansion
of the pairing interaction in partial waves

Veff.(p,p
′) = 4π

∑
L

(2L+ 1)PL(p̂ · p̂′)VL(p, p′), (8.24)

where PL are the Legendre polynomial, and an associated expansion of the gap
function in spherical harmonics YLM

�(p) =
∑
L,M

√
4π

2l + 1
YLM(p̂)�LM(p), (8.25)

where L and M are the total orbital momentum and its z-component. The non-
linearity of the gap equation prevents a straightforward solution for its components
�LM(p); a common approximation is to perform an angle average in the denomina-
tor of the kernel of the gap equation by replacing the factor

√
ε(p)2 + |�(p)|2 →√

ε(p)2 +D(p)2 where the angle averaged gap is given by

D(p)2 ≡
∫

d�

4π
|�(p)|2 =

∑
L,M

1

2L+ 1
|�LM(k)|2. (8.26)
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With this approximation the angular integrals are trivial and we obtain a one-
dimensional gap equation for the L-th component of the gap

�L(p) = −
∫ ∞

0

dp′p′

π

VL(p, p
′)√

ε(p′)2 + [∑L′ �L′(p′)2
]�L(p

′). (8.27)

Although the denominator contains a sum over gap components with different
values of L, the contributions from channels other than the 3P2 can be neglected
as they are numerically insignificant in the range of densities (energies) where P -
wave paring is dominant.

The non-central tensor part of the nuclear force couples the 3P2 wave to the
3F2 wave; this coupling affects the value of the gap. The modification of the gap
equation which takes into account this tensor coupling requires a simple doubling
of the components of the gap equation. The coupled channel gap equation reads

(
�L

�L′

)
=
∫ ∞

0

dp′p′2

πE(p′)

(−VLL VLL′
VL′L −VL′L′

)(
�L

�L′

)
, (8.28)

where now D(k)2 = �L(k)
2 +�L′(k)2.3

Note that the angle averaged approximation provides a numerically accurate
value of the angle averaged gap on the Fermi surface. However, in a number of
problems, such as neutrino and axion emission from P -wave superfluids the angle
dependence of the gap equation is an important factor and should be taken into
account by solving the gap equation without the angle averaged approximation.
Such solutions show that the angle dependence of the gap function can lead to
nodes on the Fermi surface, as for example in the case of solutions of the form
�(θ) = �0 sin θ . However, “stretched” solutions with fully gaped Fermi surface
�(θ) = �0(1 + cos2 θ) are viable candidates for angle dependence of the pairing
gap and it is difficult to distinguish between these options from energy minimization
arguments alone.

Figure 8.1 shows that the interaction is attractive among neutrons and protons in
the 3D2 channel and it is stronger than the attraction in the 3P2 channel. Thus,
in a hypothetical high-density isospin-symmetrical phase of nuclear matter one
would expect D-wave pairing instead of the P -wave pairing, which is the dominant
channel in the high density neutron matter. Consequently, there should be a transi-
tion from D- to P -wave pairing discussed above. Thus, as the imbalance between
neutrons and protons (isospin asymmetry) changes from zero to larger values one
would experience a transition from D- to P -wave pairing. Computations show that
already small asymmetries destroy the D-wave pairing in nuclear matter (Alm et al.

3Note that the tensor coupling arises also in the case of pairing in the 3S1-3D1 channel which acts
only between neutrons and protons and is relevant when the isospin asymmetry between neutrons
and protons in not too large (Lombardo et al. 2001).
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1996), therefore for its realization one needs nearly symmetrical nuclear matter.
Above nuclear saturation density such situations can arise in some special cases as,
for example, when a mesonic condensate forms (Weber 1999).

8.2.4 Effects of Strong Magnetic Fields on Pairing

Neutron stars are highly magnetized objects and the magnetic field in the stellar
interior is modified by the presence of superconductivity. The topology and
properties of the magnetic field depend strongly on the type of superconductivity,
which depends on the Ginzburg-Landau parameter κGL = λ/ξp, where ξp is the
proton coherence length, which roughly determines the size of the Cooper pairs,
and λ is the penetration depth of the magnetic field in superconducting matter. In
most of the neutron star core one has κGL > 1/

√
2 and type II superconductivity is

expected, in which case the magnetic field penetrates the superconductor by forming
an array of quantized flux tubes. In laboratory type II superconductors the field
can only penetrate the superconductor for field strengths between a lower critical
field Hc1 and an upper critical field Hc2. In neutron stars the situation is somewhat
different, as one still has the upper critical field Hc2 (essentially the field at which
flux tubes are so densely packed that their cores touch), but magnetic fields can
still penetrate the core below the lower critical field Hc1. This is the case because
the magnetic flux cannot be expelled effectively from the superconducting core due
to its high electric conductivity; the time-scale for such expulsion is of the order
of the secular timescales (Baym et al. 1969). In the deep core of the neutron star,
on the other hand, it is possible to have κGL < 1/

√
2, and in this case we expect

type I superconductivity, in which fluxtubes are not energetically favourable and
the field is arranged in domains of unpaired proton matter of much larger spatial
dimensions (Bruk 1973; Sedrakian et al. 1997; Link 2003; Buckley et al. 2004;
Sedrakian 2005).

A class of neutron stars known as magnetars have surface magnetic fields of
the order of 1015 G and it has been conjectured that their interior fields could be
significantly larger (Turolla et al. 2015). While modifications of the equation of state
of matter require fields which are close to the limiting fields 1018 G compatible with
gravitational stability, pairing phenomena which occur near the Fermi surface are
affected by much lower fields, of the order B ∼ 1016 − 1017 G. The interaction
energy of the magnetic field with the nucleon spin is μNB, where μN = eh̄/2mp is
the nuclear magneton. A numerical estimate gives μNB � π(B/1018 Gauss) MeV.
Therefore, fields of the order of 1016 G would substantially affect the pairing gaps of
the order of 1 MeV via the spin–B-field interaction. The interaction of the magnetic
field with the neutron or proton spin induces an imbalance in the number of spin-
up and spin-down particles, which implies that the Cooper pairing in the S wave
will be suppressed. Indeed in this case the number of Cooper pairs will be limited
by the number of spin-down particles, with the excess spin-up particles remaining
unpaired (Stein et al. 2016). This Pauli paramagnetic suppression acts for both
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proton and neutron condensates and the associated critical field is within the range
H Para
c ∼ 1016-1017 G. Note that similar suppression of the S-wave pairing arises

in the condensed matter context and the associated magnetic field is known as the
Chandrasekhar-Clogston limiting field.

In the case of the proton condensate the upper critical field Hc2 turns out to
be smaller than the field associated with the Pauli paramagnetic ordering (Sinha
and Sedrakian 2015), therefore the proton condensate is destroyed for even lower
magnetic fields Hc2 � 1015 G. We have seen that the S-wave gaps and in particular
the proton gap depends substantially on the density. If the magnetic field strength
can be assumed approximately constant in the core of a magnetar the size of the
superconducting region will depend on the magnitude of the field B and will be
limited by the condition B ≤ Hc2.

The role of the magnetic field in the P -wave pairing is not well understood
from the microscopic point of view. Because the Cooper pairs in this case form
spin-1 objects, the spin-magnetic field interaction will not be destructive. The
consequences of the suppression of the nucleonic pairing on the phenomenology
of magnetars are discussed elsewhere (Sedrakian et al. 2017).

8.3 Microphysics of Mutual Friction

In this section we concentrate on the interaction of vortex lines in neutron stars
with ambient components. The discussion includes both the neutron vortex lines
which are formed in response to the rotation of the star and the magnetic flux-
tubes which, as discussed above, form if the proton superconductor is type-II.
This interaction is known under the general name mutual friction and appears
naturally in the superfluid hydrodynamics including vortices, which we will discuss
in the following Sect. 8.4. The mutual friction is an important ingredient of the
description of superfluid dynamics as it determines the dynamical time-scales of
coupling of superfluid to normal (non-superfluid) matter and rotational anomalies
in neutron stars, such as glitches, time-noise, precession etc., which are in part
discussed in the subsequent Sect. 8.6. The mutual friction is quantified in terms of a
dimensionfull drag parameter η defined via the force exerted by ambient fluids on
the vortex f d = η(vv − ve), where vv is the vortex velocity, ve is the velocity
of the normal component. In superfluids it is balanced by the Magnus (lifting)
force fM = ρn[(vs − vv) × ν], acting on a vortex with circulation vector ν

placed in a superfluid flow with velocity vs . It is, therefore, convenient to use the
dimensionless drag-to-lift ratio R = η/ρnκ , where ρn is the mass density of the
(neutron) superfluid component and κ = πh̄/mn is the quantum of circulation, mn

being the neutron mass. For massless vortices fM + f d = 0, which is known as
the force balance equation. We shall discuss these quantities in more detail in the
context of superfluid hydrodynamics in Sect. 8.4.

The neutron vortices which carry the angular momentum of neutron star interiors
arise in the S and P wave superfluids where the Cooper pairs have total spin-0 and
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spin-1, as discussed in Sect. 8.2. A vortex in a neutral fermionic superfluid has a core
of the order of the coherence length ξ , where quasiparticle pairing is quenched and,
therefore, scattering centers are available for interactions. Consider first a vortex in
a neutron superfluid with an S-wave symmetry of the condensate. The core of the
vortex contains fermionic states which are given by Caroli and Matricon (1965)

(
uq‖,μ(r⊥)
vp‖,μ(r⊥)

)
= eip‖z

(
eiθ(μ−

1
2 ) eiθ(μ+

1
2 )
)(u′μ(r)

v′μ(r)

)
, (8.29)

where r, θ, z are cylindrical coordinates with the axis of symmetry along the vortex
circulation (here ‖ and ⊥ are the parallel and perpendicular to vortex components),
andμ is the azimuthal quantum number, which assumes half-integer positive values.
It is seen that the states are plain waves along the vortex circulation and are
quantized in the orthogonal direction. The radial part of the wave-function is given
by

(
u′μ(r)
v′μ(r)

)
= 2

(
2

πp⊥r

)1/2

e−K(r)

(
cos

(
p⊥r − πμ

2

)
sin
(
p⊥r − πμ

2

) ) , (8.30)

where p⊥ =
√
p2 − p2

F , pF being the neutron Fermi momentum, and the function
in the exponent is given by

K(r) = pF

πp⊥�n

∫ r

0
�(r ′)dr ′ � pF r

πp⊥ξ

(
1+ ξe−r/ξ

r

)
. (8.31)

The eigenstates of neutrons in the core of a vortex are given by

εμ(p) � πμ�2
n

2εFn

(
1+ p2

2p2
F

)
, (8.32)

where εFn is the Fermi energy of neutrons, �n is the asymptotic value of the gap
far from the vortex core and we used an expansion in the small quantity p/pF .

Electrons will couple to the core quasiparticles of the neutron vortex via the
interaction of the electron charge e with the magnetic moment of neutrons μn =
−1.913μN , where μN = eh̄/2mp is the nuclear magneton (Feibelman 1971).
The momentum relaxation time scale for electrons off neutron vortices is given
by Bildsten and Epstein (1989)

τeV [1S0] = 1.6× 103

�s

�n

T

(
εFe

εFn

)2 (
εFn

2mn

)1/2

exp

(
ε0

1/2

T

)
, (8.33)
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where εFe is the Fermi energy of electrons, �n is the S-wave neutron pairing gap,
ε0

1/2 is given by Eq. (8.32) with μ = 1/2 and �s is the superfluid’s angular velocity.
The relaxation time is strongly temperature dependent because of the Boltzmann
exponential factor involving the eigenstates of the vortex core quasiparticles.

The vortex structure of the P -wave superfluid was studied by Sauls et al. (1982)
using a tensor order parameter Aμν(r), μ, ν = 1, 2, 3 which is traceless and
symmetric. It can be decomposed in cylindrical coordinates (r, φ, z) as

Aμν = �√
2
eiφ
{
[f1r̂μr̂ν + f2φ̂μφ̂ν − (f1 + f2)ẑμẑν + ig(rμφ̂ν + rνφ̂μ)]

}
,

(8.34)

where g(r) and f1,2(r) are the radial functions describing the vortex profile and
� is the average value of the gap in the 3P2 channel. Vortices in a P -wave
superfluid are intrinsically magnetized, with the magnetization given by MV (r) =
(γnh̄)σ (r)/2 = gnμNσ (r)/2, where γn = gnμN h̄

−1 is the gyromagnetic ratio of
the neutron and gn = −3.826, h̄σ/2 is the spin density which can be estimated for
the P -wave vortex as (Sauls et al. 1982)

σ(r) = νn�
2
n

3
ln

(
1

Tc

)
g(r)[f1(r)− f2(r)], (8.35)

where 1 is the BCS cut-off, νn - the neutron density of states at the Fermi surface.
The magnitude of the vortex magnetization that follows from Eq. (8.35) is estimated
as (Sauls et al. 1982)

|MV (
3P2)| = gnμN

2
nn

(
�

εFn

)2

� 1011 G. (8.36)

Ambient electrons which coexist with the P -wave superfluid because of approx-
imate β-equilibrium among neutrons, protons and electrons, will scatter off the
magnetized vortices via the QED interaction term −eγ · A(r), where the vector
potential associated with the vortex is given by A(r) = A(r)φ̂

A(r) = 1

r

∫ r

0
|MV (r

′)|r ′dr ′. (8.37)

The relaxation time for the electron-vortex scattering is given by

τeV [3P2] � 7.91× 108

�s

(
kFn

fm

)(
MeV

�n

)(
ne

nn

)2/3

. (8.38)

An important feature of this relaxation time is its near independence of the
temperature (a weak temperature dependence arises because of the temperature
dependence of the gap). Therefore, it provides an asymptotic lower limit on the
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scattering rate at low temperatures (T � �n) where the relaxation time τeV [1S0]
given by Eq. (8.33) is exponentially suppressed. Numerically τeV [3P2] is of the
order of ten days for the period of the Vela pulsar and varies weakly with the density
within the core region where P -wave superfluid resides.

So far, for simplicity, we neglected the proton component of the core of a
neutron star. However, as we describe below, the proton fluid can dramatically
modify the mutual friction in the core of the star. Consider first a normal (non-
superconducting) fluid of protons. At high densities the proton energies can indeed
become large enough so that the 1S0-wave interaction becomes negative and pairing
vanishes. As described in Sect. 8.2.4, strong magnetic fields B ≥ Hc2 � 1015

G will also unpair the proton fluid. Non-superconducting protons will couple to
electrons on short plasma time-scale, the relevant scale being set by the plasma
frequency. Therefore, protons will compete with electrons in providing the most
efficient interaction with the neutron vortices and, eventually, the coupling between
the charged plasma component and the neutron superfluid. The key advantage
of protons over electrons is that they couple to neutrons via the strong nuclear
force, instead of much weaker electromagnetism. The relaxation time for the proton
scattering off the quasiparticles in the cores of S-wave neutron vortices is given
by Sedrakian (1998)

τpV [1S0] = 0.71

�s

m∗nm∗p
mnμ∗pn

(
εFp

εFn

)2 ε0
1/2

T
exp

(
ε0

1/2

T

)
ξ2
n

〈σnp〉 , (8.39)

where μ∗pn = m∗pm∗n/(m∗n + m∗p) is the reduced mass of the neutron-proton
system (entering the relation between the cross-section and the scattering amplitude
squared), ε0

1/2 is the lowest eigenstate of vortex core excitations Eq. (8.32), and
〈σnp〉 is an average neutron-proton cross-section (for a more precise definition see
Eq. (20) of Sedrakian (1998)). The bare neutron mass mn stems from the quantum
of circulation κ = πh̄/mn defining the number of vortices in terms of spin
frequency �s . Numerical evaluation of Eq. (8.39) shows that in the relevant range
of temperatures T � 107-108 K the relaxation time is of the order τpV [1S0] � 10−2

sec for the period of the Vela pulsar, which is much shorter than the time-scales
for electromagnetic coupling of electrons given by Eqs. (8.33) and (8.38). Only at
temperatures of the order of several 106 K the process (8.38) takes over; however
such low temperatures are unlikely to be achieved in neutron star cores. One
potentially important consequence of the shortness of the relaxation time (8.39) is
that the superfluid cores of magnetars will couple to the remaining stellar plasma
on short dynamical time-scales once proton superconductivity is suppressed by the
unpairing mechanisms discussed in Sect. 8.2.4. This will limit the possibilities of
explaining glitches and long-timescale variability in terms of superfluid dynamics
of magnetar cores (Sedrakian 2016).

Next let us turn to the case where protons are superconducting. A fundamentally
new aspect in this case is the entrainment of the proton condensate by the
neutron condensate which leads to magnetization of a neutron vortex by protonic
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entrainment currents (Vardanyan and Sedrakyan 1981; Alpar et al. 1984b). (The
entrainment effect was first proposed by Andreev and Bashkin (1976) for charge-
neutral mixtures of superfluid phases of helium, but they did not discuss vortices).
The effective flux of the neutron vortex is given by

φ∗ = kφ0, k = m∗p
mp

, (8.40)

where φ0 = πh̄c/e is the quantum of flux. Numerically, the magnitude of the field in
this case is by four orders larger than due to the spontaneous magnetization (Muzikar
et al. 1980), therefore much shorter relaxation times are expected. The calculation
of the electron relaxation on a neutron vortex discussed in the case of P -wave super-
fluid can be repeated in the case of the magnetization by entrainment currents (Alpar
et al. 1984b). It is convenient to define the zero-radius scattering rate as

τ−1
0 = 2cnv

keF

(
π2φ2∗
4φ2

0

)
, (8.41)

where the term separated in the bracket is an approximation to the exact Aharonov-
Bohm scattering result where sin2(π/2)(φ∗/φ0) appears instead. The full finite-
range scattering rate is then given by Alpar et al. (1984b)

τ−1
eφ =

3π

32

(
εFe

mpc2

)
τ−1

0

keF λ
, (8.42)

where λ is the penetration depth. As was the case with the relaxation time (8.38) the
scattering rate from magnetized neutron vortices is temperature independent in the
first approximation. Numerically, the relaxation time is within the range of seconds
and is about four order of magnitude shorter than the one given by (8.38), as a direct
consequence of the induced field being larger by the same amount.

As discussed in Sect. 8.2.4, the magnetic field of a neutron star will penetrate
the superconducting proton fluid by either forming quantized vortices (in the case
where the proton superconductor is type-II) or domains of unpaired proton matter
(in the case where it is type-I). Consider first a type-II superconductor. For fields
of the order of 1012 G and typical rotation frequencies of neutron stars (� � 100
Hz), the number of proton vortices (or flux tubes) per area of a single neutron vortex
(assuming for the sake of argument colinear neutron and proton vortex lines) is of
the order of 1013. Therefore, one may anticipate that proton vortices will strongly
affect neutron vortex dynamics. There exist several scenarios for how neutron and
proton vortex systems interact and we review them in turn.

One possible scenario assumes that the proton vortex network continues into
the crust via magnetic field lines and therefore is frozen into the crustal electron-
ion plasma. Neutron vortices might then become pinned on or between these
vortices because of the long-range hydrodynamical interaction between them on
characteristic scales of the order of λ. Microscopically, crossing the vortices may
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lead to an additional pinning force on the scale of ξ where the condensate is
quenched (Muslimov and Tsygan 1985b; Sauls 1989), but the long-range ∼ λ

hydrodynamical force is the dominant component. The pinning of neutron vortices
to proton flux tubes may thus substantially affect the dynamics of neutron vorticity
and to some extent can be viewed as mutual friction. The magnitude of the pinning
force strongly depends on the relative orientation of vortices and flux tubes, which
does not permit to draw model independent conclusions on the relative importance
of the pinning force. In some models there are flux tubes associated with the
different components of the magnetic fields (poloidal, toroidal, etc), therefore the
geometry of the flux tube network itself is a complicated problem. These models
will be discussed in more detail in Sect. 8.5 below.

In the vortex cluster model (Sedrakyan and Shakhabasyan 1991) a neutron vortex
carries a cluster of proton vortices colinear with the neutron vortex, which are
arranged within the region where the entrainment induced field exceeds the lower
critical field of the proton superconductor Hc1. Such a cluster may substantially
enhance the scattering rate estimate given in Alpar et al. (1984b). Larger scattering
rate and large forces on the neutron vortex from the electron fluid can lead (counter-
intuitively) to longer relaxation times for the neutron superfluid than predicted
in Alpar et al. (1984b); as a consequence post-glich relaxation time-scales are
compatible with the vortex cluster model (Sedrakian and Sedrakian 1995).

Understanding of mutual friction in the case of type-I superconducting protons
is difficult because of the lack of model-independent predictions for the domain
structure and size of type-I superconductors. A tractable case is where a neutron
vortex carries a colinear normal proton domain; in this case it can be shown that the
neutron vortex motion induces an electric current within the domain which leads in
turn to Ohmic dissipation of electron current (Sedrakian 2005). The dimensionless
drag to lift ratio for this process was found to be of the order of 10−4, which
makes precession in neutron stars compatible with the type-I superconductivity of
protons (Link 2003).

We now turn to the discussion of the mutual friction in the S-wave superfluid
within the neutron star’s crust. Here the lattice of crustal nuclei is the physically
distinct new component which was absent in our discussion of the core physics.
Because in the crust the protons are confined to the nuclei and the superfluid is S-
wave, the only process that can be carried over from the discussion above is the one
give by Eq. (8.33). However, according to our current understanding it is not the
dominant process of mutual friction in the crust.

The stationary state of a neutron vortex might require its pinning on a nucleus
or in the space between nuclei. As we shall see in Sect. 8.5 there are substantial
differences in the estimates of the pinning force in the crust, however the most
advanced treatments of pinning based on the density functional theory of superfluid
matter indicate that the pinning occurs between the nuclei (Wlazłowski et al. 2016).
The sign of the pinning force makes, however, little difference; if the pinning of
vortices is strong, then these can respond to the changes in the rotation rate of the
crust via thermally activate creep (see Link (2014) and references therein). Vortex
creep theory postulates a form of the radial velocity of a vortex which depends
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exponentially on the ratio of the pinning potential to the temperature. If pinning
is strong the associated drag-to-lift ratio could be large and in the range that can
account for long time-scale relaxations of glitches (Link 2014).

The strong pinning regime may not arise when the vortex lattice is oriented
randomly with respect to the basis vectors of the nuclear lattice. A neutron vortex
moving in the crust will couple to the phonon modes of the nuclear lattice (Jones
1990). The one-phonon processes lead to a weak coupling of the superfluid to
the crust with η � 10 g cm−1 s−1 which implies small dimensionless drag-to-
lift ratio η/ρnκ � 1. The interaction of a neutron vortex moving relative to the
nuclei in the crust will generate oscillation modes (Kelvin modes or kelvons) on
the vortex and will thus dissipate the kinetic energy of vortex motion into the
energy of oscillations (Epstein and Baym 1992). This dissipation can be viewed
as mutual friction, because energy and momentum is transferred between the
superfluid and the crust. Epstein and Baym (1992) express the drag-to-lift ratio in
terms of a dissipation angle η/ρnκ = tan θd and find an upper limit on this angle
θd ≤ 0.7. This implies that throughout the crust this dissipation mechanism leads
to dissipation angles and spin-up time-scales which are close to the maximal one
ts,max ≈ (2�)−1. It has been argued that the randomness of nuclear potentials may
suppress the kelvon-excitation mechanism (Jones 1992) with two-phonon processes
being important in a certain range of parameters.

Because the relative orientation of the circulation vector of the vortex lattice
and the crustal lattice basis vectors may be random or dependent on the history
of solidification of the crust and nucleation of the superfluid phase, it remains an
open question whether the pinned regime is realized in the crust of a neutron stars.
Numerical simulations (Wlazłowski et al. 2016) and/or astrophysical constraints
coming from glitch observations may eventually distinguish between the various
models. The problem of pinning in the crust of a neutron star is discussed in more
detail in Sect. 8.5 below.

8.4 Superfluid Hydrodynamics

Let us now discuss how to model a superfluid neutron star on the macroscopic,
hydrodynamical scale. In order to do hydrodynamics it is necessary to average over
length-scales that are large enough for the constituents to be considered as fluids. In
the case of superfluids this means coarse graining not only over length-scales much
larger than the mean free path of the particles, but also over length scales much
larger than the characteristic scale of vortices or flux tubes.

A superfluid forms a macroscopic coherent state, therefore it can be described
by a macroscopic wave function ψ(r) = |ψ(r)| exp[iχ(r)], which implies that the
number density of the superfluid is given by |ψ(r)|2 and the momentum is just the
gradient of the phase p = h̄∇ψ(r). This implies immediately that

∇ × p = ∇ ×∇χ(r) = 0, (8.43)
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i.e., the superfluid is irrotational. However, rotating superfluids support rotation by
forming quantized vortices, above a certain critical angular velocity �c1. Indeed,
the minimization of the free energy of the fluid in the rotating frame (Khalatnikov
1989), i.e.,

Fr = F −� · J , (8.44)

where J the angular momentum of the fluid and F is its free energy in the laboratory
frame, leads to a solution predicting rigid rotation, which is supported by the
condensate through the formation of an array of superfluid vortices. The circulation
of a single vortex is quantised as

∮
p · d l = mn n κ, n = 1, 2, . . . (8.45)

where κ = πh̄/mn ≈ 2× 10−3 cm2 s−1 is the quantum of circulation and mn is the
neutron mass.

In neutron stars the hydrodynamical description of the neutron fluid requires
thus averaging over length-scales larger than the inter-vortex separation, in order to
define the rotation rate by averaging over many vortices. This means that in general
a fluid element must be small compared to the radius of the star (R � 10 km),
but large compared to the inter-vortex separation dn � 10−3 (P /10 ms)1/2 cm, with
P = 2π/� being the spin period of the star.

In a realistic neutron star one has to account for multiple superfluid/super-
conducting fluids, and a minimal model, such as the one we now present, must
account at least for a neutron-proton conglomerate with the background of electrons.
Consider first the simpler Newtonian case (Vardanyan and Sedrakyan 1981; Mendell
and Lindblom 1991; Mendell 1991; Sedrakian and Sedrakian 1995; Mendell 1998;
Glampedakis et al. 2011; Graber et al. 2015; Passamonti et al. 2017b; Antonelli
and Pizzochero 2017). In the case of interest to us, the indices x, y label either
protons (p) or neutrons (n) and electrons are assumed to form a charge neutralizing
background moving with proton fluid on timescales much shorter than those of
interest here, such as dynamical and oscillation timescales of milliseconds, or glitch
timescales of minutes or more (Mendell 1991).

We will not list the complete set of magneto-hydrodynamics equations here and
will concentrate on the ingredients that are needed in the modeling the dynamics
of a rotating and magnetized neutron star following Andersson and Comer (2006).
Corrections due to coupling of the superfluid to its excitations are ignored. These can
be accounted for by including an additional fluid of excitations to the analysis, which
also allows to recover the standard hydrodynamical equations used for superfluid
helium (Prix 2004; Haskell et al. 2012c). Each constituent x conserves its mass
density ρx (in the following a summation over latin indices is assumed)

∂tρx +∇i (ρxv
i
x) = 0, (8.46)
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and Euler equations for their velocities vix are given by

(∂t+vjx∇j )(vx
i +εxw

yx
i )+∇i (μ̃x+�)+εxw

j
yx∇ivx

j = (f
x,mf
i +f x,pin

i +f x,mag
i )/ρx,

(8.47)

where wyx
i = v

y
i −vx

i , μ̃x = μx/mx is the chemical potential per unit mass. The key
new aspect of these treatments is the entrainment effect which causes the momentum
and the velocities of the components to not be parallel, but rather related by

px
i = mx(v

x
i + εxw

yx
i ). (8.48)

This observation was first made by Andreev and Bashkin in the context of charge
neutral 3He-4He mixtures (Andreev and Bashkin 1976) as mentioned above. Here
εx = 1 − m∗x/mx is the entrainment coefficient which accounts for the non-
dissipative coupling between the components. (It is related to quantity k defined
in (8.40) by εx = 1 − k). Note that the microphysical calculations predict for the
effective masses m∗x � mx in the core, in which case the entrainment coefficient is
positive. The opposite relation holds in the crust of a neutron stars, i.e. m∗x � mx,
due to the band structure of the nuclear lattice and Bragg scattering (Chamel 2012).

The gravitational potential � in Eq. (8.47) obeys the Poisson equation

∇2� = 4πG
∑

x

ρx. (8.49)

On the right-hand side of Eq. (8.47) the forces are as follows. The first term f
x,pin
i

is the force due to pinned vortices, f x,mf
i is the mutual friction force mediated by

free vortices, and f x,mag
i is the force due to the magnetic field, which as we shall see

depends strongly on whether the protons are superconducting or not. We will discuss
the contributions from the mutual friction and magnetic forces in detail below in this
section, whereas the pinning force is discussed in Sect. 8.5.

For laminar flows and straight vortices, the mutual friction force has the standard
Hall-Vienen-Bekarevich-Khalatnikov form (Hall and Vinen 1956; Khalatnikov
1989)

f
x,mf
i = κnvρnB

′
εijk�̂

i
nw

k
xy + κnvρnBεijk�̂j

nε
klm�̂n

l w
xy
m , (8.50)

where �
j
n is the angular velocity of the neutrons (a hat represents a unit vector)

and B and B′ are the mutual friction coefficients. The neutron vortex density per
unit area is nv, and is linked to the rotation rate (at a cylindrical radius $ ) by the
relations

κnv($) = 2�̃+$
∂

∂$
�̃, �̃ ≡ �n + εn(�p −�n), (8.51)
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obtained by imposing that the circulation derived by integrating over a contour the
smoothed average momentum is the sum of the quantised circulations of the N ($)

vortices enclosed, i.e.∮
εijk∇j pn

k = 2π
∫ $

0
mn�̃rdr = N ($)mnκ, (8.52)

and we assume here and below singly quantized vortices. The parameters B and
B′ depend on the microphysical processes giving rise to the mutual friction, as
described in Sect. 8.3, and can be expressed in terms of a dimensionless drag-to-lift
ratio parameter R (see also Sect. 8.3) related to the dimensionfull drag parameter η
[g cm−1 s−1] as

R = η

κρn
, (8.53)

according to

B = R
1+R2

, B′ = R2

1+R2
. (8.54)

To connect to the discussion of the relaxation times computed in Sect. 8.3, we now
express η, or equivalently B and B′ in terms of these microscopic time-scales. We
distinguish two cases of non-relativistic and ultra-relativistic unpaired excitations,
which we assume to be protons (p) or electrons (e). The force exerted by non-
superconducting quasiparticles per single vortex is given in general by: (Bildsten
and Epstein 1989)

f d =
2

τnv

∫
f (p, vv)p

d3p

(2πh̄)3
= −ηvv, (8.55)

where vv is the velocity of the vortex in a frame co-moving with the normal
component and f (p, vv) is the non-equilibrium distribution function, which we
expand assuming small perturbation about the equilibrium distribution function f0,
that is, f (p, vv) = f0(p)+(∂f0/∂ε)(p ·vv). In the low-temperature limit ∂f0/∂ε �
−δ(ε−εF ), where εF is the corresponding Fermi energy. After integration one finds

ηp = m∗p
np

τpnv
, ηe = h̄ke

c

ne

τenv
, (8.56)

where np,e are the proton/electron number densities. Note that if both electron and
proton quasiparticles are present then the contributions from ηe and ηp need to be
summed, just as in the case of the ordinary transport coefficients.
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The parametersB or R can be extracted from the timescales obtained in Sect. 8.3,
using

τmf = 1

2�s(0)B
, (8.57)

where �s(0) is the spin frequency of the superfluid at t = 0.
From the equations in (8.47) we can also see that in the case of two constant-

density rigidly rotating fluids, with moments of inertia Ip and In and frequencies
�n and �p, an initial difference in rotation rate �� = �p − �n will be erased by
mutual friction according to ��(t) = ��(0) exp(−t/τsu) (Bildsten and Epstein
1989; Andersson et al. 2006), with

τsu ≈
(

Ip

In + Ip

)
1

2�n(0)B
, (8.58)

where �n(0) is the spin frequency of the neutron fluid at t = 0. Here for the sake of
argument we neglected the external torques and the entrainment.

The expression for the mutual friction in Eq. (8.51) is appropriate for straight
vortices in a triangular array which corresponds to the minimum of the free energy
of a rotating superfluid. However, vortices are likely to bend due to their finite
rigidity and this effect can easily be included in the expression for the mutual
friction, see Khalatnikov (1989) for a discussion in single component fluids and its
extension to multi-component fluids in Mendell (1991); Sedrakian and Sedrakian
(1995); Andersson et al. (2007). Furthermore, it is well known from laboratory
experiments with superfluid 4He that a counterflow along the vortex axis can trigger
the Glaberson-Donnelly instability (Glaberson et al. 1974; Donnelly 1991) and
destabilise the vortex lattice, creating a turbulent tangle. In the case of an isotropic
tangle a phenomenological form for the mutual friction, due to Gorter and Mellink
(1949), is

f GM
i = 8π2ρn

3κ

(
ξ1

ξ2

)2

B3w2
pnw

pn
i , (8.59)

where the phenomenological parameters are set to ξ1 ≈ 0.3 and ξ2 ≈ 1. In neutron
star interiors the presence of large relative flows between the ‘normal’ and superfluid
components and large Reynolds numbers, of the order of Re≥ 107 are likely to lead
to superfluid turbulence and the presence of a vortex tangle. According to Peralta
et al. (2006); Melatos and Peralta (2007); Andersson et al. (2007) a polarized tangle
is expected in a rotating pulsar.

Let us shift our attention to the magnetic force. The equations of magneto-
hydrodynamics for a superfluid and superconducting neutron star have been initially
considered by Vardanyan and Sedrakyan (1981); Mendell and Lindblom (1991);
Mendell (1991); Sedrakian and Sedrakian (1995); Mendell (1998). More recently
detailed studies were carried out by Glampedakis et al. (2011); Graber et al. (2015);
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Passamonti et al. (2017b) which to various degree also include discussion of the
evolution of the magnetic field in a superconducting neutron star. For the current
discussion let us restrict out attention to the simplified case of a two component
neutron star, in which the electrons are assumed to move with the protons. In this
case one finds

f i
p,mag =

1

4π

[
Bj∇j (Hc1B̂

i )− B∇iHc1

]
− ρp

4π
∇i
(
B
∂Hc1

∂ρp

)
, (8.60)

f i
n,mag =

1

4π

[
Wj

n∇j (HvnŴ i
n)−Wn∇iHvn

]
− ρn

4π
∇i
(
B
∂Hc1

∂ρn

)
, (8.61)

where a hat indicates a unit vector and we have defined

W i
p = εijk∇j (vp

k + εpw
np
k )+ apB

i = nvpk
i
p (8.62)

with ki = κk̂i pointing along the local vortex direction, ap = e/mc � 9.6 × 103

G−1 s−1 and nvp the surface density of proton vortices. The total magnetic induction
Bi is the sum of three terms

Bi = Bi
p + Bi

n + biL, (8.63)

where Bi
p is the contribution due to the proton vortices, Bi

n is the contribution due

to the neutron vortices and biL is the London filed. The modulus of the induction is

B = √BiBi . Generally |Bp| � |Bn| ≈ |bL|, i.e., the strengths of both the average
field due to neutron vortices and the London field is negligible compared to neutron
star interior magnetic fields (|Bn| ≈ |bL| ≈ 10−2 G). The termHvn = 4πapεvn/κ ≈
10×Hc1 plays the role of an effective magnetic field (Glampedakis et al. 2011) and
depends on the energy per unit length of a neutron vortex

εvn ≈ κ2

4π

ρn

1− εn
log

(
lv

ξn

)
, (8.64)

where ξn is the coherence length of the vortex and lv the inter-vortex separation,
and we can approximate log(lv/ξn) ≈ 20− 1/2 log(�/100 rad/s) (Andersson et al.
2007). To study the coupled evolution of the fluid and magnetic field these equations
need to be coupled to the induction equations for the magnetic field:

∂tB
i = εijkεklm∇j (vleBm)− 1

ap
εijk∇j f e

k , (8.65)
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where, under the assumption that nvp � nv one finds

f i
e ≈

1

4πρp

Rp

1+R2
p

[
RpB

j∇j (Hc1B̂
i)− B∇ iHc1 − εijkBj∇kHc1ε

ijkB̂jB
l∇l B̂k

]
,

(8.66)
where Rp is the drag parameter describing the scattering of electrons on proton
vortices.

One may also expect an additional contribution to the mutual friction, due to the
flux-tube and neutron vortex interaction, of the form

f i
pn,mf = ρnκnv

Cv

1+R2
p
[Rpf

i∗ + εijkŴp
j f∗k], (8.67)

f i∗ ≈
1

4πapρp
[B̂j∇j (Hc1B̂

i)−∇iHc1], (8.68)

where Cv is a phenomenological coefficient that parameterises the strength of the
resistive interaction between the proton and neutron vortex arrays, which may also
drive the evolution of the magnetic field (Ruderman et al. 1998).

The magnetic field configuration of superfluid and superconducting neutron stars
has been analysed in detail in recent years both by studying equilibrium models
(Lander 2013; Henriksson and Wasserman 2013; Lander 2014) and, more recently,
by studying the evolution of the coupled core and crust magnetic fields (Elfritz
et al. 2016). In general superfluidity and superconductivity have a strong impact
on the timescales for the evolution of the core magnetic field (Passamonti et al.
2017a), and for strongly magnetized neutron stars (B ≥ 1014 G) could lead to the
expulsion of the toroidal field from the core, and significant rearrangement of the
crustal magnetic field on timescales comparable to, or shorter than, the age of the
star.

8.4.1 Relativistic Fluids

What has been presented up to now is the Newtonian framework for describing
superfluid and superconducting neutron stars. One can develop a similar framework
in general relativity (Carter and Khalatnikov 1992, 1994; Carter and Langlois 1998),
for a review see Andersson and Comer (2007). First define the number density four-
currents of each component

nμx = nxu
μ
x , (8.69)

with normalization ux
μu

μ
x = −1 and Greek letters representing four dimensional

space-time indices; summation is implicit over repeated Greek indices. A master
function 1 is then defined which is a function of the scalars of the system, in
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particular the number densities nx and n2
xy = n2

yx = −gμνnμx nνy, where gμν is
the metric (Carter and Khalatnikov 1994). In the case of co-moving fluids 1 is (up
to the sign) simply the local thermodynamical energy density. In the general case 1
includes relative flows of the fluids by definition.

Having at our disposal the master function we can proceed to define the conjugate
momenta in the standard fashion of the Lagrangian theory (Carter and Khalatnikov
1992, 1994; Carter and Langlois 1998)

πx
μ = gμν(Axnνx +Axynνy), (8.70)

Ax = −2
∂1

∂n2
x
, (8.71)

Axy = Ayx = − ∂1

∂n2
xy
, (8.72)

where the effect of entrainment is encoded in the coefficientsAxy. The stress-energy
tensor is defined as

T μ
ν = �δμν −

∑
x

nμx π
x
ν , (8.73)

with the generalised pressure � defined as

� = 1−
∑

x

nμx π
x
μ. (8.74)

The equations of motion for the fluid can then be written as a set of Euler equations

∑
x

nμx∇[μπν] = 0, (8.75)

to be solved together with the Einstein’s equations of general relativity and
conservation equations for the individual four-currents of the components

∇μnμx = 0. (8.76)

Note that the solution to the equations above automatically satisfies the energy-
momentum conservation ∇μT μ

ν = 0.
Relativistic superfluid hydrodynamics of the type described above was formu-

lated initially by Carter and Khalatnikov (1992, 1994) and Carter and Langlois
(1998). The corresponding equations where adapted to differentially rotating rela-
tivistic superfluid neutron stars in Langlois et al. (1998) in the case of cold equations
of state. Equilibrium configurations of two-fluid (superfluid and normal component
featuring) neutron stars were constructed in Refs. Prix et al. (2005); Sourie et al.
(2016). Accounting for heat transport, dissipation and in particular vortex-mediated
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mutual friction is more challenging in general relativity than in Newtonian physics
(Gusakov et al. 2013), as standard approaches by Eckart (1940); Landau and Lifshitz
(1959) lead to causality and stability problems. While Israel and Stewart (1979);
Carter (1991) resolve some of these issues, and progress has been made making
maximal use of the variational approach (Andersson and Comer 2015) the general
relativistic formulation is, however, not complete. Some recent advances in the
problem of mutual friction and vortex motion in a relativistic framework can be
found in Andersson et al. (2016); Gusakov (2016).

8.5 Pinning Effects

In the previous discussion we have considered mainly vortices that are free to move
with respect to the fluid components and experience a standard drag force, linear in
the difference in velocity between said component and the vortices themselves. (A
brief discussion of pinning in the crust was given at the end of Sect. 8.3 to complete
the discussion of microphysics of mutual friction). However the interaction between
vortices and ions in the crust, or flux-tubes in the core, can be strong enough to
balance the Magnus force, and ‘pin’ the vortices, preventing them from moving,
similarly to static friction. We now turn to the detailed discussion of the pinning
effects in the superfluid core and in the crust of the neutron star.

8.5.1 Vortex-Flux Tube Pinning and Interactions

In the outer core of the neutron star, where neutrons are superfluid and protons are
expected to form a type II superconductor, the magnetic field is confined to flux-
tubes with flux quantum φ0 = πh̄c/e ≈ 2× 10−7 G cm2. The neutron vortices thus
co-exist with an array of far more numerous flux tubes, with average spacing

lφ =
(
B

φ0

)−1/2

≈ 4× 103
(

B

1012 G

)−1/2

fm. (8.77)

Proton flux tubes are also less rigid than neutron vortices. Indeed the tension of a
neutron vortex is given by

Tv = ρnκ
2

4π
ln

(
lv

ξn

)
≈ 109

(
ρn

2× 1014 g cm−3

)
erg cm−1 (8.78)

with the typical inter-vortex separation lv ≈ 10−3 (P/10 ms)1/2 cm. The flux-tube
tension is given by Harvey et al. (1986)

T� =
(

φ0

4πλ

)2

ln
(
λ

ξp

)
≈ 107

(
m∗p/mp

0.5

)−1 ( xp

0.05

)( ρn

2× 1014g cm−3

)
erg cm−1,

(8.79)
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where m∗p is the effective mass of the protons, ξp ≈ 20 fm the coherence length of
a proton vortex and λ ≈ 100 fm is the London penetration depth of the magnetic
field. Neutron vortices will thus be immersed in a tangle of far more numerous flux
tubes.

The interaction between neutron vortices and flux tubes changes the energy of
the system in two ways: there will be a change in condensation energies, as the
superfluid and superconducting cores overlap, and also a contribution from the
interaction between the magnetic fields of the two vortices, as described in Sect. 8.3.
If the overlap reduces the energy of the overall configuration neutron vortices are
effectively ‘pinned’ to flux tubes, to some extent in the same way as they can be
pinned to ions in the crust.

The contribution due to the change in condensation is given by Muslimov and
Tsygan (1985a) and Sauls (1989)

�Ec ≈ 0.13 MeV

(
�p

1MeV

)( xp

0.05

)−1
(
m∗n/mn

1

)−2 (m∗p/mp

0.5

)−1

(8.80)

with m∗n the neutron effective mass, �p the proton pairing gap, while the change in
energy due to the magnetic interaction (Jones 1991a; Chau et al. 1992):

�Emag = 2
Bi

nB
�
i

8π
(πλ2lλ), (8.81)

with Bi
n the magnetic field along the neutron vortex, Bi

� ≈ 1015 G that along the
proton vortex, and lλ is the overlap length between vortex and flux-tube. Keeping
in mind that neutron vortices can be considered rigid on lengthscales approximately
100 times larger than those over which a fluxtube can bend, we can average the
expression in (8.81) to obtain (Link 2012):

�Emag ≈ 10

(
m∗p/mp

0.5

)−1/2 ( |mp −m∗p|/m∗p
0.5

)( xp

0.05

)1/2
(

ρn

2× 1014 g/cm3

)1/2

MeV.

(8.82)

In general one may expect also a dependence on the inclination angle of the global
magnetic field with the rotation axis, and on vortex tension, see Gügercinoğlu and
Alpar (2016); Sedrakian et al. (2011) for a discussion of toroidal flux tubes and
the effect of bending and pinning in this case. Nevertheless the above averaged
expression illustrates that the pinning force will be sizeable. Pinned vortices can
thus ‘push’ magnetic flux tubes, possibly winding up a strong toroidal component
of the magnetic field in magnetars (Glampedakis and Andersson 2011) and leading
to the long term expulsion of magnetic flux from the star as the vortex array expands
while the star spins down (Srinivasan et al. 1990; Ruderman et al. 1998; Jahan-Miri
2000; Jones 2006).

If, on the other hand, the pinning force cannot balance the Magnus force, vortices
are forced to cut through flux tubes. This process will excite Kelvin waves along the
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vortex, leading to strong dissipation and mutual friction (Epstein and Baym 1992;
Link 2003). The energy released at every vortex/flux tube intersection is: (Link
2003)

�Evf = 2

π

�E2
mag

ρnκλ
(vλwnp)

−1/2, (8.83)

where vλ = h̄/2mKλ ≈ 109 cm/s is the characteristic velocity of a kelvon of
effective mass mK . The energy loss rate per unit volume is thus

Ė = nvwpn

lφ
2 �Evf . (8.84)

By equating the expression in (8.84) to the work done by the mutual friction force
we can derive the drag coefficient for vortex/flux tube cutting (Haskell et al. 2014)

R = R0

(
vλ

wpn

)3/2

,

R0 = 2

π

(
�Emag

ρnκλvλ

)2

≈ 1.3× 10−10
(

B

1012G

)
. (8.85)

Note that the mutual friction coefficient is now velocity dependent, and the lower the
relative velocity the larger the friction. In practice as soon as vortices start moving
they are unlikely to be able to continue and the system will move back towards the
pinned state (Haskell et al. 2014).

8.5.2 Pinning-Repinning of Vortices

Let us consider the forces acting on a massless vortex segment. If the vortex is free
the force balance equation, averaged over a number nv of vortices per unit area, is

κnvεijk�̂
j (vkn − vkv)+ κnvR(v

p
i − vv

i ) = 0. (8.86)

One can solve Eq. (8.86) for the vortex velocity viv (the direction of which will
depend on R) and obtain the standard form of mutual friction in Eq. (8.50). Pinning
to the ions in the crust or flux tubes in the core modifies the force balance equation,
because now some of the vortices may be immobilized by the pinning. When
averaging over a large number of vortices we can assume that only a fraction γ

of them is free, leading to a force balance equation of the form:

γ κnvεijk�̂
j (vkn − vkv)+ γ κnvR(v

p
i − vv

i )+ (1− γ )κnvεijk�̂
j (vkn − vkp)+f pin

i = 0
(8.87)
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where f pin
i now balances the Magnus force on the (1 − γ )nv pinned vortices, for

which we have assumed that viv|pinned = vip. The force acting on the fluids is thus

f
n,pin
i = −f p,pin

i = f
pin
i .

The quantity that is needed for the equations of motion in Eqs. (8.47) and (8.87)
is thus the pinning force per unit length acting on a vortex, which is highly uncertain.
The pinning force per pinning site can, in fact, be quite readily obtained theoreti-
cally, as it depends only on the difference in energy between the configuration where
the vortex overlaps with an individual pinning site, and that in which it is outside.
Nevertheless even in this case significant uncertainties remain, with different results
in the literature disagreeing also on whether the interaction is attractive or repulsive,
i.e. on whether one has pinning to nuclei or interstitial pinning (Pizzochero et al.
2002; Donati and Pizzochero 2004, 2006). Note, however, that to understand the
dynamics of the fluid we are mainly interested in the magnitude of the pinning
force, and not in its sign.

For the case of pinning of neutron vortices to nuclei in the crust the maximum
pinning force acting on a vortex can be estimated as (Alpar 1977)

|Fpin| ≈
(
nout E

cond.
out − nin E

cond.
in

) V

ξn
, (8.88)

where V is the volume of a nuclear cluster and ξn is the coherence length of the
neutron vortex, which defines the scale of the interaction, ‘in’ and ‘out’ refer to
quantities taken within the nuclear cluster and in the free neutron gas, Econd. �
3�2

n/8εFn is the condensation energy of neutron fluid per unit volume. The pinning
force per unit length depends however on the difference in energy between different
configurations of a vortex that encounters several pinning sites and may bend to
reduce its energy. It is thus, generally a function of the orientation of the vortex with
respect to the lattice

fpin(θ, φ) = |Fpin|�n(θ, φ)
lT

, (8.89)

where the angles (θ, φ) are taken with respect to a reference axis and lT ≈ 102 −
103RWS is the length scale over which a vortex can bend, determined by the tension
in Eq. (8.78), and RWS is the radius of the Wigner-Seitz cell. It was pointed out
early on in Jones (1991b) that vortex rigidity plays an important role, as for an
infinite vortex all configurations would be energetically equivalent (i.e. they would
intercept the same number of pinning sites) and there would thus be no pinning at
all.

Recently calculations have been carried out for a realistic setup by Seveso
et al. (2016), who averaged the expression in Eq. (8.89) over all orientations of a
vortex with respect to a BCC lattice. The authors find nuclear pinning, i.e. vortices
are pinned to the nuclei. Wlazłowski et al. (2016) studied the interactions of a
vortex with a pinning site in the time dependent local density approximation, i.e.,
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Fig. 8.3 Dependence of the critical lag ��c for unpinning on the internal cylindrical radius of the
star for a 1.4M� neutron star model described by the GM1 equation of state as described in Seveso
et al. (2016) and Seveso et al. (2012)

it includes superfluid dynamics in addition to static interactions. In this case, the
pinning is interstitial, i.e., the vortices are localized in-between the nuclear clusters.

The angular momentum reservoir is, however, independent of the sign of the
pinning force, and both works (Wlazłowski et al. 2016; Seveso et al. 2016)
obtain pinning forces that are dynamically significant and can explain the observed
glitching activity of the Vela pulsar. By simply balancing the Magnus force with the
pinning force, Seveso et al. (2016) find that velocity differences up to |wpn| ≈ 104

cm s−1 can be sustained in the crust, which can explain the observed glitching
activity of the Vela and other pulsars, also in the presence of strong entrainment.
An example of the critical lag profile in a neutron star, obtained for the pinning of
Seveso et al. (2016), is shown in Fig. 8.3.

The results of dynamical simulations can also be used to study the problem of
repinning of free vortices. This is a fundamental issue, as while estimating when a
pinned vortex will unpin allows us to estimate how much angular momentum can
be stored and released in a glitch, calculating when a vortex will re-pin allows us to
understand whether vortices will ‘creep’ out, gradually spinning down the star, or
expel vorticity in ‘avalanches’.

Macroscopic vortex dynamics in a spinning down container was studied on the
basis of Gross-Pitaevskii equations by Warszawski and Melatos (2011); Warszawski
et al. (2012), who have shown that the main unpinning trigger for vortices is the
proximity effect, i.e. the change in Magnus force due to the motion of neighbouring
vortices, which can lead to forward or backward propagating vortex avalanches.
These can, in turn, trigger a glitch. Computational limitations, however, constrain
these simulations to a small number of vortices (typically of the order of hundreds)
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separated by at the most tens of pinning sites. This is in contrast with the situation
encountered in neutron stars where a large numberNv � 1012 of vortices must move
together in a glitch. These are on average separated by a large number (of the order
of 1010) pinning sites. Nevertheless, the external spin-down drives the system by
increasing the lag between the superfluid and normal fluid to the critical value for
unpinning. It is thus crucial to understand whether the system can self-adjust and
hover close enough to the critical lag that vortices can unpin and skip over many
pinning sites in order to knock on neighbouring vortices and allow an avalanche to
propagate.

The problem of vortex re-pinning was investigated by Sedrakian (1995); Haskell
and Melatos (2016), by considering vortex motion in a parabolic pinning potential.
Pinning of a moving vortex in a random potential was also studied in Link (2009).
In particular Haskell and Melatos (2016) calculated the mean-free path of a straight
vortex for scattering off cylindrical pinning sites, and found that the main parameters
that control repinning are the strength of the mutual friction and, crucially, how
close the system is to the critical threshold lag for unpinning. From Fig. 8.4 we can
deduce that if the system is within 5% of the critical lag for unpinning, a vortex
can move a distance comparable to the inter-vortex separation and knock on other
vortices, causing an avalanche, for realistic values of the mutual friction. Studies by
Chauve et al. (2001); Marchetti et al. (2003); Fily et al. (2010) have also shown that
the geometry of the lattice can play a crucial role, with a more disordered lattice
behaving like a plastic system, in which unpinned and pinned vortices coexist, and
an ordered lattice behaving like an elastic system in which there is a sharp transition
to mass unpinning.

Before moving on, let us note that if protons form a type II superconductor in the
core, as was discussed in Sect. 8.5.1, the energy cost of vortex/flux-tube cutting can
lead to pinning. A simple estimate of the pinning force per unit length f pin,φ can be
obtained from the expression for the overlap energy in (8.81)

f pin,φ ≈ Emag

λlφ
, (8.90)

where λ is the London penetration length, lφ the distance between fluxtubes and
Emag is defined in Eq. (8.82). The force (8.90) is balanced by the Magnus force
for a critical velocity |wpn| ≈ 5 × 103(B/1012G)1/2 cm s−1, which indicates that
this force could play an important role in a glitching model based on unpinning of
vortices in the core. Note, however, that the estimate (8.90) does not account for the
effect of averaging over different orientations of the vortex lattice, and is thus an
upper limit on the pinning force.
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Fig. 8.4 Mean free path λ∗ of a vortex, normalized to the intervortex spacing a, for different values
of δ = (��c − ��)/��c, with ��c the critical lag for unpinning, as described in Haskell and
Melatos (2016). The left panel shows the case in which mutual friction is described by the same
parameter R inside and outside the pinning potential, while the right panel is for the case in which
there is no mutual friction outside the pinning potential. In general avalanches can propagate if
mutual friction is weak, and especially in the case in which mutual friction is the same everywhere,
if δ � 0.05, i.e. the system is close to the critical lag for unpinning

8.6 Macrophysics of Superfluidity in Neutron Stars

8.6.1 Glitches and Post-glitch Relaxations

Pulsar glitches are sudden spin up events in the otherwise steadily decreasing
rotational frequency of pulsars. These were observed in the Vela pulsar soon after
the discovery of radio pulsars (Reichley and Downs 1969; Radhakrishnan and
Manchester 1969). The initial jump in frequency in the case of the Vela pulsar is
instantaneous to the accuracy of the data (with the best upper limit of τr � 40 s
coming from the Vela 2000 glitch (Dodson et al. 2002)), but is often accompanied
by an increase in spin-down rate that relaxes back towards the pre-glitch values
on longer timescales (ranging from minutes to months). The long-time scales of
relaxations following glitches were taken as an evidence for the presence of a
loosely coupled superfluid component in the star (Baym et al. 1969).

Initial studies attributed the long relaxation times to the slow coupling of the
core of the star due to the weak coupling of vortices to the electron fluid according
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to Eq. (8.39), see Baym et al. (1969); Feibelman (1971). Anderson and Itoh put
forward the hypothesis that glitches are linked to a pinned superfluid in the star,
that is decoupled from the observable ‘normal’ component, and whose sudden re-
coupling (due to unpinning) leads to an exchange of angular momentum and a glitch
(Anderson and Itoh 1975).

Following the idea of a pinned superfluid in the crust of neutron stars (Anderson
and Itoh 1975) the initial models of glitches and post-glitch relaxation concentrated
on the details of the physics of vortex pinning and unpinning mainly in the crust
and the fits of the models to the observed behaviour of the Vela pulsar (Alpar et al.
1984a,c, 1985; Cheng et al. 1988). The glitch in these models was generated by
a sudden unpinning of neutron vortices within the crust of the neutron star. The
observed subsequent slow relaxation of the rotation frequency and its derivative
was modelled in terms of thermal creep of neutron vortices against pinning barriers.
The ‘creeping’ velocity of neutron vortices is given in these models by

vr ≈ v0 exp(−Ea/kBT ), (8.91)

where v0 ≈ 107 cm s−1 (Alpar et al. 1984a), kB is Boltzmann’s constant and Ea

is the activation energy for unpinning (Link and Epstein 1991). This latter quantity
in a first approximation can be taken as Ea ≈ Ep (1−��/��c) , with Ep the
pinning energy,�� the lag between the superfluid neutrons and the crust, and ��c

the critical lag for unpinning. The equations of motion for the frequency of the
observable ‘normal’ component of the star �p are

Ip�̇p = Next +
∑
i

I in
2�i

n

$
vir , (8.92)

where Ip is the moment of inertia of the crust and all components tightly coupled
to it, $ the cylindrical radius, Next is the external torque, and the superfluid is
divided into a number i of different regions, with associated moment of inertia I in,
angular velocity �i

n and vortex velocity vir , calculated from (8.91). The solutions
to Eq. (8.92) admit two regimes. If the steady state lag �� is much smaller that
��c then the response of the system is linear and the region contributes to the
frequency relaxation exponentially after a glitch (Alpar et al. 1993). This is also the
regime that can be modelled in terms of mutual friction coupling due to a small
number of free vortices (van Eysden and Melatos 2010; Haskell et al. 2012a; van
Eysden 2014; Howitt et al. 2016). If �� ≈ ��c the response will be nonlinear, and
the contribution of the region to the relaxation takes the form of a Fermi function
(Alpar et al. 1984a; Link 2014). Recent work has also shown that the non-linear
response of creep to glitches can be used to interpret the inter-glitch behaviour of
the Vela pulsar, and predict the occurrence of the next glitch (Akbal et al. 2016). The
creep model has been more recently extended to the scenario where neutron vortices
creep against the core flux-tubes (Link 2014; Gügercinoğlu and Alpar 2016), with
essentially the same physical picture of post-jump relaxation involved. Pinning
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of superfluid neutron vortices to proton vortices in the core naturally extends the
reservoir of angular momentum available for a glitch thus potentially explaining
the observed activity of the Vela pulsar (Gügercinoğlu and Alpar 2014), although
a large amount of pinned vorticity in the core is not consistent with linear models
for the recovery of Vela glitches (Haskell et al. 2013). The original crustal vortex
creep model relied on the assumption, derived from the short relaxation times found
in Alpar et al. (1984b), that the core is coupled to the crust on short dynamical
time-scales, which are unobservable in glitches and their relaxations.

An alternative to crust-based models is the vortex cluster model of dynamics of
superfluid neutron vortices in the core of a neutron star, where the coupling between
the superfluid and normal component occurs on much longer time-scales (Sedrakian
and Sedrakian 1995). Models of pulsar glitches and post-glitch relaxations based on
the superfluid core rotation in the absence of pinning between the neutron vortices
and flux-tubes were developed within the vortex cluster model and applied to Vela
glitches in Sedrakian et al. (1995). The glitch itself can arise in these models through
the interaction of vortex clusters with the crust-core interface (Sedrakian and Cordes
1999); the core moment of inertia alone was estimated to be sufficient to account
for both glitches and post-glitch relaxations (Sedrakian et al. 1995; Sedrakian and
Cordes 1999).

If the system hovers close to the critical unpinning threshold vortex, avalanches
may propagate in the neutron star interior (Haskell and Melatos 2016), making them
a viable mechanism for triggering a glitch (Cheng et al. 1988; Warszawski et al.
2012). A glitching pulsar would thus behave as a self organised critical system, in
which slowly increasing global stresses (due to the external spin-down torque that
drives the increase in lag and thus Magnus force) are released rapidly and locally
via nearest neighbour interactions between vortices. Such a system is scale invariant
and one expects the distribution of sizes of the avalanches to be a power-law, and
the distribution of waiting times an exponential. This is generally what is observed
in the pulsar population (Melatos et al. 2008), with the notable exception of the
Vela pulsar and PSR J0537-6910, which exhibit a quasi-periodicity in their glitching
behaviour and for which the glitches can be predicted (Middleditch et al. 2006;
Akbal et al. 2016). This behaviour in the case of PSR J0537 is generally attributed to
the presence of crust-quakes, but may also be the consequence of the timescale of the
external driving (the spin-down) being short compared to the time-scale on which
stress is released locally by the vortices. Another system in which the distribution of
glitch sizes appears to deviate from a power-law is the Crab pulsar (Espinoza et al.
2014) for which there appears to be a cut off for small glitch sizes. This behaviour
is, however, natural if one considers not only the exchange of angular momentum
due to vortex motion, but also the coupling timescale due to mutual friction. Haskell
(2016) investigated this by considering a multifluid system described by Eq. (8.47),
in which however only a number γ nv of vortices is free at any given time, with
γ ≤ 1. The value of γ is randomly drawn from a power-law distribution after a
waiting time tw (randomly drawn from an exponential distribution) and the results
of these simulations show that small values of γ not only correspond to a small
amount of angular momentum, but also to an effective reduction in the average



8 Superfluidity and Superconductivity in Neutron Stars 437

Fig. 8.5 Probability distribution function for glitch sizes ��p/�p for a microscopic waiting time
tw = 0.1 days and two different microscopic power law indices: n = −1.05 (left) and n = −1.5,
as described in Haskell (2016). In both cases there is a clear deviation from a power-law, with the
appearance of a cutoff at low sizes, as observed in the Crab pulsar (Espinoza et al. 2014)

mutual friction and an increased coupling timescale. In this case the event does not
appear as a sudden jump in frequency, but is more gradual and closer to timing
noise, thus not being recognised as a glitch by detection algorithms and producing
a cutoff in the size distribution for small glitches, see Fig. 8.5.

In addition to the mechanisms mentioned above there exist a number of other
candidate mechanism for glitches. As already mentioned crust quakes may drive
glitches (Ruderman 1969, 1976; Carter et al. 2000) as has been suggested for PSR
J0537-6910 and also the Crab pulsar (Middleditch et al. 2006), and hydrodynamical
instabilities may also lead to a glitch (Mastrano and Melatos 2005; Glampedakis
and Andersson 2009).

In the above discussion of the pinning-based trigger mechanisms for a glitches
we tacitly assumed that pinning occurs between vortices and ions in the crust or
vortices and flux-tubes in the core. The extent and location of the pinning region can,
however, be studied more quantitatively by examining both the size of the maximum
glitch recorded in a pulsar (Pizzochero 2011; Seveso et al. 2012), and its ‘activity’
A, i.e the amount of spin-down that is reversed by glitches during observations

A = 1

tobs

∑
i

��i
p

�p
, (8.93)

where the sum is performed over all recorded glitches in a time tobs and ��i
p is the

recorded size of glitch i. From angular momentum conservation over a glitch one
has that the ratio between the moment of inertia of the superfluid reservoir In and
that of the ‘normal’ component Ip is

In

Ip
≈ −�p

�̇p
A(1− εn). (8.94)
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Andersson et al. (2012); Chamel (2013) noted that in the presence of strong
neutron entrainment εn, such as is predicted in the crust where εn ≈ 10 due to
Bragg scattering (Chamel 2012) (although see Watanabe and Pethick (2017) for
a description of how pairing may lead to weaker entrainment), the crust cannot
store enough angular momentum to explain the observed activity of the Vela pulsar
(unless the star has a very small mass M � 1M�). The core must be involved in
the glitch mechanism. The neutron superfluid is, in fact, expected to extend into the
core and models that extend the reservoir beyond the crust can predict the observed
activity of the Vela and other pulsars (Newton et al. 2015; Ho et al. 2015). The
observed activity of a pulsar, together with the size of its maximum glitch, can then
potentially be used to determine the mass of a glitching pulsar and constrain the
equation of state of dense matter (Ho et al. 2015; Pizzochero et al. 2017; Antonelli
et al. 2018).

Finally let us note that the effect of both classical and superfluid turbulence have
been ignored in the above discussion, but my have an impact on glitch physics.
Transitions between turbulent and laminar regimes could explain the short spin up
timescales and long inter-glitch timescales (Peralta et al. 2006; Melatos and Peralta
2007) and shear-driven turbulence can contribute to low frequency fluctuations in
the spin of the star, i.e. so-called ‘timing noise’ (Melatos and Link 2014).

8.6.2 Oscillations in Superfluid Stars

Neutron stars are expected to be prolific emitters of gravitational waves (Haskell
et al. 2015; Lasky 2015) and in particular there are several modes of oscillation
of the star that could lead to detectable emission. The most promising modes
for ground based detection are the f -mode, or fundamental mode, and the r-
mode, analogous to Rossby waves in the ocean, which can be driven unstable due
to gravitational wave emission and grow to large amplitudes (Andersson 1998;
Friedman and Morsink 1998). In order to assess the detectability of these signals
it is thus crucial to understand in which region of parameter space the modes can be
driven unstable by gravitational wave emission, and in which region, on the other
hand, they are rapidly damped by viscosity. At high temperatures (T � 109 K)
bulk viscosity is the main damping mechanisms and matter is not expected to be
superfluid. At lower temperatures, however, superfluidity has a strong impact on
the damping. On the one side superfluidity leads to a suppression in the neutron-
neutron and neutron-proton scattering events that give rise to shear viscosity, which
in this case is mainly due to electron-electron scattering and is reduced with respect
to the case in which neutrons are normal (Andersson et al. 2005). On the other
hand superfluidity opens a new dissipative channel by allowing for vortex mediated
mutual friction.

It has been established early on that the doubling of the degrees of freedom in
the superfluid component doubles the number of oscillations modes; these have been
studied in Newtonian theory (Lindblom and Mendell 1994; Lee 1995; Sedrakian and
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Wasserman 2001a) and general relativistic setting (Comer et al. 1999). The l ≤ 2
modes of incompressible superfluid self-gravitating fluids (both axially symmetric
and tri-axial) were studied by Sedrakian and Wasserman (2001a,b) in the presence
of mutual friction and viscosity using the tensor virial method. In the absence of
shear viscosity the mutual friction can be eliminated from the equations describing
the center-of-mass motions of the two fluids and it acts to damp only the relative
motions of the two fluids. Shear viscosity which acts only in the normal fluid
breaks the symmetry of the Euler equations for the normal fluid and superfluid and,
therefore, couples these two sets of modes (Sedrakian and Wasserman 2001a,b).
These initial studies were followed by studies which obtained the analogues of the
f and p modes in superfluid neutron stars (Prix and Rieutord 2002) and included
the general relativity in the mode description in the case of non-rotating stars
(Andersson et al. 2002; Gualtieri et al. 2014). Furthermore, much work has been
concentrated on the r-modes of the superfluid neutron stars (Lee and Yoshida 2003;
Yoshida and Lee 2003a,b; Prix et al. 2004; Haskell et al. 2009; Andersson et al.
2010) which may play a key role in the dynamics and stability of rapidly rotating
neutron stars. Progress has been made in understanding the oscillations modes
at finite temperature (Gusakov and Andersson 2006; Kantor and Gusakov 2011;
Andersson et al. 2013b) as well as the influence of crust elasticity (Passamonti and
Andersson 2012).

Let us examine this problem in detail. The linearised version of the equations of
motion in (8.47) can be written in terms of two sets of degrees of freedom, one that
represents the ‘total’ motion of the fluid (and would be present also in a normal,
non-superfluid, star), and one that represents the counter-moving motion. Let us
consider the case in which mutual friction is the only dissipative mechanism acting
on the system. By introducing the total mass flux

ρδvk = ρnδv
j
n + ρpδv

j
p (8.95)

with ρ = ρn + ρp and where δ represents Eulerian perturbations, we can write
a ‘total’ Euler equation for the total velocity vi , in a frame rotating with angular
velocity �,

∂tδvi +∇i δ�+ 1

ρ
∇iδp − 1

ρ2 δρ∇ip + 2εijk�jδvk = 0 (8.96)

where the pressure p is obtained from

∇ip = ρn∇i μ̃n + ρp∇i μ̃p. (8.97)

We also have the standard continuity equation

∂t δρ +∇j (ρδvj ) = 0. (8.98)
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As already mentioned these are identical to the perturbed equations of motion for
a single fluid system, and quite notably the mutual friction term drops out of the
equations. The mutual friction naturally appears in the equations of motion for the
second degree of freedom, which we can write in terms of the perturbed relative
velocity δwj = δv

j
p − δv

j
n . The ‘difference’ Euler equation is

(1− εnx
−1
p )∂t δwi +∇iδβ + 2B̃′εijk�jδwk − B̃εijk�̂j εklm�lδwm = 0, (8.99)

where we have defined the local deviation from chemical equilibrium

δβ = δμ̃p − δμ̃n (8.100)

and B̃′ = 1 − B′/xp and B̃ = B/xp with xp = ρp/ρ the proton fraction. The
continuity equation for the proton fraction is:

∂t δxp + 1

ρ
[xp(1− xp)ρδw

j ] + δvj∇j xp = 0 (8.101)

The degrees of freedom are thus explicitly coupled unless xp is constant. In general
we do not expect to find any mode of oscillation in a realistic neutron star that
is purely co-moving, and thus all modes are affected, to some extent, by mutual
friction.

We can define a conserved energy for the system by first defining a ‘kinetic’ term
as an integral over a volume V

Ek = 1

2

∫ [
|δv|2 + (1− εn/xp)xp(1− xp)|δw|2

]
ρ dV (8.102)

and a ‘potential’ term

Ep = 1

2

∫ {
ρ

(
∂ρ

∂p

)
β

|δh|2 +
(
∂ρ

∂β

)
p

[2Re(δhδβ∗)+ |δβ|2] − 1

4πG
|∇iδ�|2

}
dV,

(8.103)

where a star represents complex conjugation. The perturbed equations of motion we
have written down explicitly include dissipative terms due to mutual friction. It is,
however, instructive to consider the non dissipative case and ignore the contribution
due to mutual friction. In this case ∂t (Ek +Ep) = 0 and one can solve the problem
for a mode with time dependence eiωt . If damping is weak, and procedes on a
timescale τ much longer than the period of the mode, i.e. one has ω = ωr + i/τ ,
with τ � 1/ωr , we can use the solution of the non-dissipative problem to estimate
the damping timescale as

τ =
∣∣∣∣2(Ep + Ek)

∂tE

∣∣∣∣ , (8.104)
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where ∂tE is obtained from a dissipation integral, in which the dissipative terms due
to viscosity are evaluated using the non dissipative solution. In the case of mutual
friction one can see that this takes the form (Andersson et al. 2009)

∂tEB = −2
∫

ρnB�[δmi − �̂m�̂i]δwi∗δwm dV. (8.105)

If the damping timescale is sufficiently short, the estimate of τ in (8.104) matches
that obtained from the full mode solution. Often, however, the full solution to the
dissipative problem is not available, and (8.104) is the only way to asses the impact
of viscosity.

Finally one must calculate the timescale for gravitational waves to drive the
mode. The energy lost to gravitational waves can be obtained from a multipole
expansion (Thorne 1980)

∂tEgw = −ωr
∑
l

Nlω
2l+1
i (|δDlm|2 + |δJlm|2), (8.106)

where ωi is the frequency of the mode in the intertial frame Nl = (4πG)(l+ 1)(l+
2)/

{
c2l+1l(l − 1)[(2l + 1)!!]2} and the mass multipoles are

δDlm ≈
∫

δT00Y
∗
lmr

ldV (8.107)

and the current multipoles are:

δJlm ≈ −
∫

δT0jY
B∗
j,lmdV, (8.108)

with YB
j,lm the magnetic multipoles (Thorne 1980) and Tαβ is the two-fluid stress

energy tensor defined in Sect. 8.4.1.
We refer the interested reader to Andersson and Kokkotas (2001); Andersson

et al. (2009) for a detailed discussion of the calculation, and simply point out that in
general

T00 ≈ δρ, (8.109)

T0j ≈ ρδvj + δρvj , (8.110)

i.e., only the co-moving degree of freedom radiates gravitationally to leading order
in rotation.

We are now potentially equipped to calculate the driving timescale τgw and
compare it to the mutual friction damping timescale τB for realistic neutron star
modes. Clearly if τB � τgw mutual friction will damp the mode faster than
gravitational radiation can drive it, and suppress the instability, while in the opposite
case a mode can grow to large amplitudes and radiate gravitationally.
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Let us first of all examine the fundamental, or f -mode. This is essentially a
‘surface’ mode for which the frequencyωf ∼ ρ̄1/2, with ρ̄ the average density of the
star. In the case of the f -mode both Newtonian and relativistic studies have shown
that mutual friction completely suppresses the gravitational-wave driven instability
below the superfluid transition temperature (Andersson et al. 2009; Gaertig et al.
2011). It may thus play a role in hot newly born neutron stars (Pnigouras and
Kokkotas 2016; Surace et al. 2016) but is unlikely to be active in older, colder stars.

The situation is different for the r-mode. To first order in rotation this mode is
purely axial and comoving, leading to a single multipole solution of the form:

δvj =
[∑

l

(
m

r2 sin θ
UlY

m
l ê

j
θ +

i

r2 sin θ
Ul∂θY

m
l ê

j
φ

)]
exp (iω0t) (8.111)

where Ul = Arl+1 with A a constant, ω0 = 2m/l(l + 1) is the frequency of the
mode in the rotating frame, and we are using spherical coordinates, with ê

j
θ and

ê
j
φ unit vectors and Ym

l are spherical harmonics. The l = m = 2 r-mode thus
provides the strongest contribution to gravitational wave emission, as in a single
fluid star. However, as we have mentioned, the co-moving motion couples to the
counter-moving degrees of freedom at higher orders in rotation, leading to mutual
friction damping (Passamonti et al. 2009).

For the r-mode standard mutual friction due to electron scattering off vortex
cores has little effect on the instability (Lindblom and Mendell 2000; Haskell
et al. 2009). Strong mutual friction due to vortex/flux-tube cutting in the core can,
however, have a strong impact on the instability and damp it in a large section of
parameter space. Furthermore strong dissipation due to vortex-flux tube interactions
limits the growth of the mode and sets an effective saturation amplitude for it that
may be smaller than the saturation amplitude due to non-linear couplings to other
modes (Haskell et al. 2014).

A number of authors have also suggested that for specific temperatures there
can be avoided crossings between the superfluid r-modes and other inertial modes,
leading to enhanced mutual friction damping (Lee and Yoshida 2003; Gusakov
et al. 2014a,b; Kantor and Gusakov 2017). This is in an interesting scenario as it
would reconcile our understanding of the r-mode instability in superfluid neutron
star with observational data on spins and temperatures of neutron stars in Low Mass
X-ray Binaries (Ho et al. 2011; Haskell et al. 2012b; Mahmoodifar and Strohmayer
2013). This scenario also predicts the existence of hot, rapidly rotating neutron stars
(Chugunov et al. 2014; Kantor et al. 2016).

Finally it has been pointed out that in the presence of pinned vorticity the r-mode
can grow unstable if a large lag develops between the superfluid and the crust, also
possibly triggering a glitch (Glampedakis and Andersson 2009; Andersson et al.
2013a).
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8.6.3 Long-Term Variabilities

In addition of the phenomena discussed above neutron stars exhibit long-term
variability, which has been attributed to free precession (Stairs et al. 2000; Kerr et al.
2016). Theoretical studies of precession in neutron stars containing a superfluid
component indicate that the analogue of free precession in classical systems will
be damped if the superfluid is coupled strongly to the normal component (Shaham
1977; Sedrakian et al. 1999). In addition to this analogue of the classical precession,
a fast precession mode appears, which is associated with the doubling of the
degrees of freedom. To leading order it is independent of the deformation of the
star and scales as the ratio of the moments of inertia of the superfluid and normal
components. Nevertheless, free precession of neutron stars has been modelled
and applied to the available data with some success (Jones and Andersson 2001;
Wasserman 2003; Akgün et al. 2006; Jones 2012; Ashton et al. 2017), which might
be evidence for weak coupling of the superfluid to the normal component. Long
term variabilities in neutron stars can also be understood in terms of Tkachenko
waves - oscillations of the vortex lattice in the neutron superfluid (Ruderman 1970).
The corresponding modes have been studied in a number of setting, including the
damping by mutual friction and shear viscosity (Noronha and Sedrakian 2008;
Shahabasyan 2009; Haskell 2011; Shahabasyan and Shahabasyan 2011), and have
been shown to be in the range relevant for the long-term periodicities observed in
pulsars.

8.7 Conclusions and Future Directions

This chapter provided an educational introduction to the physics of superfluidity and
superconductivity as well as a discussion of selected subjects of current interest.
Some basic aspects of the physics of superfluidity in neutron stars are now well
established: the rough magnitudes of the pairing gaps, the existence of vortices and
flux tubes, the basic channels of mutual friction and mechanisms of vortex pinning.
The basic contours of the macro-physics behaviour in glitches, their relaxations and
other anomalies such as precession and oscillations are also emerging. However,
there are significant uncertainties related to the details of the theory. For example,
it is a matter of debate whether glitches occur in the crust, in the core or in both
components of the star. The same applies to the post-glitch response of various
superfluid shells that respond to a glitch on observable dynamical time-scales.
Finally, there are phenomena that are not understood well at the basic level, such
as for example, the possibility of free precession in neutron stars.

One of the main difficulties in modelling these phenomena lies in the large
separation in scales that exists in neutron stars between the interactions of vortices,
flux tubes and clusters on the Fermi scale, vortex-vortex interactions on the scale
of millimeters and the large scale hydrodynamics of the star. Future efforts must
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thus focus on bridging the gap between these scales, both from a theoretical and a
computational point of view.

Future theoretical developments in the field will definitely obtain impetus
from observational programs in radio, X-ray and gravitational wave astronomy.
The SKA radio observatory, to become operational in the upcoming decade, has
the potential of significant discoveries in pulsars astrophysics through the strong
increase of the number (up to 30.000) of observed pulsars and its high sensitivity.
The currently operating gravitational wave observatories are sensitive probes of
continuous gravitational wave radiation from pulsars and current upper limits on
such radiation are sensitive enough to constraint some physics of neutron star
interiors (e.g., the rigidity of the crust). In the future, some of the transients seen in
the electromagnetic spectrum may become observable through gravitational waves,
thus providing complementary information on their dynamics. Finally, current and
future X-ray observations of pulsars are expected to put stronger constraints on the
thermal evolution models of neutron stars and their gross parameters (in particular,
neutron star radii will be measured by the NICER experiment to a high precision).
Combined these ‘multi-messenger’ observations of neutron stars will provide us
with a deeper theoretical understanding of the workings of superfluids in neutron
star interiors.
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Chapter 9
Reaction Rates and Transport in Neutron
Stars

Andreas Schmitt and Peter Shternin

Abstract Understanding signals from neutron stars requires knowledge about the
transport inside the star. We review the transport properties and the underlying
reaction rates of dense hadronic and quark matter in the crust and the core of neutron
stars and point out open problems and future directions.

9.1 Introduction

9.1.1 Context

Transport describes how conserved quantities such as energy, momentum, particle
number, or electric charge are transferred from one region to another. Such a transfer
occurs if the system is out of equilibrium, for instance through a temperature
gradient or a non-uniform chemical composition. Different theoretical methods are
used to understand transport, depending on how far the system is away from its
equilibrium state. If the system is close to equilibrium locally and perturbations
are on large scales in space and time, hydrodynamics is a powerful technique.
Further away from equilibrium other techniques are required, for example kinetic
theory, which can also be used to provide the transport coefficients needed in the
hydrodynamic equations. In any case, transport is determined by interactions on a
microscopic level, and it is the resulting transport properties that we are concerned
with in this review.

Signals from neutron stars are sensitive to equilibrium properties such as the
equation of state but also, to a large extent, to transport properties – here, by
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neutron stars we mean all objects with a radius of about 10 km and a mass of about
1–2 solar masses, including the possibilities of hybrid stars, which have a quark
matter core, and pure quark stars. Therefore, understanding transport is crucial to
interpret astrophysical observations, and, turning the argument around, we can use
astrophysical observations to improve our understanding of transport in dense matter
and thus ultimately our understanding of the microscopic interactions.

Transport properties are most commonly computed from particle collisions.
(Although, in strongly coupled systems, the picture of well-defined particles
scattering off each other has to be taken with care.) These can be scattering processes
in which energy and momentum is exchanged without changing the chemical
composition of the system, or these can be flavor-changing processes from the
electroweak interaction. Understanding transport thus amounts to understanding
the rates of these processes, as a function of temperature and density. Electroweak
processes are well understood, but large uncertainties arise if the strong interaction
is involved in a reaction that contributes to transport. Therefore, approximations
such as weak-coupling techniques or one-pion exchange for nucleon-nucleon
collisions are being used, and efforts in current research aim at improving these
approximations.

In a neutron star, most of the particles involved in these processes are fermions:
electrons, muons, neutrinos, neutrons, protons, hyperons, and quarks. Since the
Fermi momenta of these fermions are typically much larger than the temperature
(neutrinos are an exception), transport probes the excitations in small vicinities
of the corresponding Fermi surfaces. (It can also probe the values of the Fermi
momenta themselves since momentum conservation of a given reaction imposes a
constraint on them.) Some of the processes we discuss involve bosonic excitations,
for instance the lattice phonons in the crust, the superfluid mode, or mesons such
as pions and kaons. Typically, their contribution is smaller because, well, they do
not have a Fermi surface and thus the rates and transport coefficients contain higher
powers of temperature. Therefore, purely bosonic contributions are usually only
relevant if the fermionic ones are suppressed, for example through an energy gap
from Cooper pairing.

9.1.2 Phenomenological and Theoretical Motivations

Computing transport properties of matter inside neutron stars is motivated by phe-
nomenological and theoretical considerations. The phenomenological motivation is
of course to understand astrophysical data that are sensitive to transport. Our focus
in the main part of the review is on the transport properties themselves, and we
discuss observations only in passing. Therefore, let us now list some of the relevant
phenomena which are intimately connected with transport. (Here we only include
very few selected references, which we think are useful for further reading; many
more references will be given in the main part.)
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• Oscillatory modes of the star, most importantly r-modes, become unstable
with respect to the emission of gravitational waves (Andersson 1998; Friedman
and Morsink 1998). We know that these instabilities must be damped because
otherwise we would not observe fast rotating stars. Viscous damping plays a
major role, and knowledge of both bulk and shear viscosity (which are important
in different temperature regimes) is required (Haskell 2015).

• Pulsar glitches, sudden jumps in the rotation frequency of the star, are commonly
explained through pinning and un-pinning of superfluid vortices in the inner
crust of the star (Haskell and Melatos 2015). A quantitative treatment requires
the understanding of superfluid transport, including entrainment effects of the
superfluid in the crust, and possibly hydrodynamical instabilities.

• The interpretation of thermal radiation of neutron stars depends on knowledge
about heat transport in the outermost layers of the star, the atmosphere and the
ocean (Potekhin 2014; Potekhin et al. 2007; Potekhin et al. 2015b).

• Cooling of neutron stars, for instance isolated neutron stars and quiescent X-
ray transients, requires understanding of the microscopic neutrino emission
processes. Together with thermodynamic properties such as the specific heat and
other transport properties such as heat conductivity, the cooling process can be
modeled (Yakovlev and Pethick 2004; Page et al. 2006).

• Understanding the time evolution of magnetic fields in neutron stars and its
coupling to the thermal evolution requires magnetohydrodynamical simulations.
As an input from microscopic physics electrical and thermal conductivities
are needed (Viganò et al. 2013). Additional complications may arise from
superconductivity and magnetic flux tubes in the core.

• In accreting neutron stars, the crust is forced out of equilibrium by the accreted
matter, and in some cases, for instance ‘quasi-persistent’ sources, the subsequent
relaxation process can be observed in real time. Nuclear reactions, including
pyco-nuclear fusion, contribute to the so-called ‘deep crustal heating’ (Haensel
and Zdunik 2008), and transport properties of the crust such as thermal conduc-
tivity are needed to understand the relaxation process (Degenaar et al. 2014).
An important role is possibly played by transport properties of inhomogeneous
phases in the crust/core transition region (‘nuclear pasta’) (Horowitz et al. 2015).
Deep crustal heating also plays a pivotal role in maintaining high observed
temperatures of X-ray transients (Brown et al. 1998).

• Crust relaxation is also important for magnetar flares. Similar to accretion, the
crust is disrupted, now by a catastrophic rearrangement of the magnetic field.
Crustal transport properties in the presence of a magnetic field become important
(Turolla et al. 2015).

• The neutron star in the Cassiopeia A supernova remnant has undergone unusually
rapid cooling in the past decade (Heinke and Ho 2010; Shternin et al. 2011;
Elshamouty et al. 2013; Ho et al. 2015). If true (the reliability of this data is
under discussion (Posselt et al. 2013); Posselt and Pavlov 2018) this indicates
an unusual neutrino emission process, for instance Cooper pair breaking and
formation at the critical temperature for neutron superfluidity (Shternin et al.
2011); Page et al. (2011).
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• Core-collapse supernovae and the evolution of the resulting proto-neutron star are
sensitive to neutrino transport and neutrino-nucleus reactions. The phenomeno-
logical implications include direct neutrino signals (Janka 2017), nucleosynthe-
sis, the mechanism of the supernova explosion itself, cooling of proto-neutron
stars, and pulsar kicks (Janka et al. 2012).

• Neutron star mergers have proved to be multi-messenger events, emitting
detectable gravitational waves and electromagnetic signals (Abbott et al.
2017a,b). Simulations of the merger process within general relativity are
being performed, using (magneto)hydrodynamics, where viscous effects may
be important (Alford et al. 2018). Merger events explore transport at larger
temperatures than neutron stars in (near-)equilibrium. Similar to proto-neutron
stars from supernovae, the evolution of merger remnants requires understanding
of neutrino reactions and transport.

The theoretical motivation for understanding transport in neutron star matter
can—at least for the ultra-dense regions in the interior of the star—be put in the
wider context of understanding transport in matter underlying the theory of Quan-
tum Chromodynamics (QCD) or, even more generally speaking, of understanding
transport in relativistic, strongly interacting theories. This perspective connects
some of the results in this review with questions about the correct formulation
of relativistic, dissipative (superfluid) hydrodynamics, about the validity of the
quasiparticle picture and thus of kinetic theory, about non-perturbative effects in
QCD scattering processes, about universal results and bounds for shear viscosity
and other transport coefficients and so forth. These questions are being discussed
extensively in the recent and current literature, be it from an abstract theoretical
perspective, e.g., within the gauge/gravity correspondence, or in a more applied
context such as relativistic heavy-ion collisions or cold atomic gases. Neutron stars
may appear to be too specific and too complicated to be viewed as a clean laboratory
for these questions, but we think it is worth pointing out these connections, and they
will be touched in some sections of this review.

9.1.3 Purpose and Structure of this Review

We intend to collect and comment on recent results in the literature, pointing out
open problems and future directions, with an emphasis on the theoretical, rather than
the observational, questions. We include pedagogical derivations and explanations
in most parts, making this review accessible for non-experts in transport theory and
neutron star physics. In particular, we start in Sect. 9.2 by introducing some basic
concepts of transport theory and explain how the basic approach must be extended
and adjusted to the extreme conditions inside a neutron star. After this introductory
section, we have structured the review by moving from the outer layers of the
star into the central regions. Since we thereby move from low densities to ultra-
high densities, we encounter various distinct phases with very distinct transport
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properties. We start from the crust in Sect. 9.3, where the matter composition is
rather well known: a lattice or a strongly coupled liquid of ions coexists with
an electron gas, and, in the inner crust, with a neutron (super)fluid. As we move
through the crust/core interface, we encounter the so-called nuclear pasta phases,
and eventually end up in a region of nuclear matter, composed of neutrons and
protons, with electrons and muons accounting for charge neutrality. Additionally,
hyperons may be present, and possibly meson condensates. We discuss transport
of hadronic matter in the core in Sect. 9.4. At sufficiently large densities, matter
becomes deconfined and we enter the quark matter phase. Since the density at which
this transition happens is unknown, we do not know whether quark matter exists in
the core of neutron stars (or whether there are pure quark stars). Transport properties
of quark matter, which we discuss in Sect. 9.5, are one important ingredient to
answer that question. For readers unfamiliar with quark matter and its possible
phases, we have included an introductory section and overview in Sects. 9.5.1
and 9.5.2. At the end of Sect. 9.5—although being a somewhat decoupled topic—
we briefly discuss possible effects of quantum anomalies on transport in neutron
stars. In all sections, our main goal was, besides some introductory and pedagogical
discussions, to focus on the most recent results and their impact for future research.
In some parts, for instance in Sect. 9.5 about quark matter, we have tried to give
a more complete overview, including older results, which is possible because of
the smaller amount of existing literature compared to nuclear matter. Reaction rates
in the core from the weak interaction are discussed in Sects. 9.4.2 and 9.5.3. The
rates for these processes are interesting by themselves since they directly feed into
the cooling behavior of the star. They are also interesting for the bulk viscosity
because bulk viscosity in a neutron star is dominated by chemical re-equilibration
and thus by flavor-changing processes. We discuss bulk viscosity, including the
rates for other leptonic and non-leptonic flavor-changing processes, for hadronic
matter in Sect. 9.4.3 and for quark matter in Sect. 9.5.4. Shear viscosity, thermal and
electrical conductivity, are discussed together since they are determined by similar
processes, some of which rely on the strong interaction, and we discuss them in
Sects. 9.3.1, 9.4.1, and 9.5.5.

9.1.4 Related Reviews

There are a number of reviews that (partially) deal with transport properties in
neutron stars, having some overlap with our work, and which we recommend for
further reading. Page and Reddy (2012) review transport in the inner crust of the
star. A more exhaustive overview of the crust is given by Chamel and Haensel
(2008), discussing transport as well as details of the structure and connections to
observations. Potekhin et al. (2015b) review cooling of isolated neutron stars and
discuss transport and thermodynamic properties that are needed to understand the
cooling process, including the effect of strong magnetic fields. Cooling in proto-
neutron stars just after a core collapse supernova explosion has recently been
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reviewed by Roberts and Reddy (2017). Many of the currently used results for
neutrino emissivity in hadronic matter, including superfluid phases, can already be
found in the review by Yakovlev et al. (2001). Superfluidity in neutron stars and
some of its effects on transport and reaction rates are reviewed by Page et al. (2014).
For a detailed discussion of many-body techniques for hadronic matter inside
neutron stars, including neutrino emission processes, see the review by Sedrakian
(2007). Transport properties of quark matter are discussed in chapter VII of the
review about color superconductivity by Alford et al. (2008a), for a pedagogical
discussion of neutrino emissivity in quark matter see Schmitt (2010). Our review
serves as an update to some of these earlier reviews and has a somewhat different
focus than most of them, bringing together theoretical results for transport properties
from the crust through nuclear matter in the core up to ultra-dense deconfined quark
matter.

There are several aspects of transport and reaction rates in neutron stars which
we do not discuss or only touch very briefly: we will not elaborate on reactions
relevant for neutrino transport in supernovae (Burrows et al. 2006) and neutrino-
nucleus reactions relevant for supernovae nucleosynthesis (Balasi et al. 2015).
Nuclear astrophysics in a broader context is discussed by Wiescher et al. (2012)
and Schatz (2016), and we refer the reader to the review by Meisel et al. (2018) and
more specific literature regarding nuclear reactions in accreting crusts (Yakovlev
et al. 2006; Gupta et al. 2007; Gupta et al. 2008; Haensel and Zdunik 2008; Steiner
2012; Afanasjev et al. 2012; Schatz et al. 2014). Neutrino emission reactions in
the crust are summarized by Yakovlev et al. (2001) with more recent updates by
Chamel and Haensel (2008) and Potekhin et al. (2015b), and we have nothing to
add to these reviews. Finally, we will not discuss transport in the outer layers of the
star, including the atmosphere and the heat blanketing envelopes, where radiative
transfer, transport of non-degenerate electrons (Potekhin et al. 2015a; Potekhin et al.
2015b), and diffusion processes (Beznogov and Yakovlev 2013; Beznogov et al.
2016), among others, are important.

9.2 Basic Concepts of Transport Theory

9.2.1 Basic Equations and Transport Coefficients

We start with a brief introduction to the basic concepts that will be used throughout
this review. The goal of this section is to provide the definition of the most important
transport coefficients, to show how they appear in the hydrodynamical framework
and how they are computed from kinetic theory. In the present section, we shall
present a general setup for a dilute gas of one non-relativistic fermionic species.
Further assumptions and specifications will be made in the subsequent sections.
Our starting point is the Boltzmann equation for the non-equilibrium fermionic
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distribution function f (x,p, t),

∂f

∂t
+ u · ∂f

∂x
+R · ∂f

∂p
= I [f ] , (9.1)

where the particle velocity u is related to momentum via p = mu with the particle
mass m, and R is the external force which we do not specify for now, except for
assuming that ∇p · R = 0. For instance, it can include the gravitational force or, if
the particles carry electric charge, the Lorentz force. The collision term is

I [f ] = −
∫

p1

∫
p′

∫
p′1
W(p,p1;p′,p′1)[ff1(1− f ′)(1− f ′1)− (1− f )(1− f1)f

′f ′1] ,
(9.2)

with the abbreviations f1 = f (x1,p1, t), f
′ = f (x′,p′, t), f ′1 = f (x′1,p′1, t), and

∫
p

≡
∫

d3p

(2πh̄)3
. (9.3)

The collision integral gives the number of collisions per unit time in which a particle
with a given momentum p is lost in a scattering process with another ingoing
particle with momentum p1 to produce two outgoing particles with momenta p′
and p′1, plus the number of collisions of the inverse process, in which a particle
with momentum p is created. The transition rates W(p,p1;p′,p′1) depend on the
details of the collision process and contain energy and momentum conservation
of the process. Their specific form is not needed for now; we shall see later how
the Boltzmann equation is solved approximately in specific cases. For notational
convenience, we have omitted the spin variable. One may think of the momentum
to actually be a pair of momentum and spin and the momentum integral to include
the sum over spin. We have written the collision term in the simplified form that
only contains scattering of a given, single particle species with itself. Later, we shall
discuss approximate solutions to the Boltzmann equation for more than one particle
species, for instance electrons and ions in the neutron star crust.

The Boltzmann equation allows us to derive an equation for the transport of any
dynamical variable ψ(x,p, t). To this end, we introduce the average value of ψ per
particle as

〈ψ〉 = 1

n

∫
p

ψf , n =
∫

p

f , (9.4)

where n is the number density. Multiplying the Boltzmann equation with ψ and
integrating over momentum then yields

∂n〈ψ〉
∂t
+∇·(n〈ψu〉) = n

(〈
∂ψ

∂t

〉
+ 〈u · ∇ψ〉 +

〈
R · ∂ψ

∂p

〉)
+
∫

p

ψI [f ] , (9.5)
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where ∇ is the spatial gradient. The first two terms in the parentheses on the right-
hand side account for the production of ψ due to its space and time variations, the
third therm gives the supply from forces, and the last term gives the production rate
from collisions.

From the transport equation (9.5) we derive the hydrodynamic equations by
choosingψ to be a quantity that is conserved in a collision, such that the momentum
integral overψ times the collision term vanishes. These invariants areψ = 1, which
corresponds to particle number conservation, energyψ = p2/(2m), and momentum
components ψ = pi . Thus we obtain three equations (two scalar equations, one
vector equation) that do not depend on the collision term explicitly (but contain the
non-equilibrium distribution function, which in principle has to be determined from
the full Boltzmann equation). These equations can be written as

∂ρ

∂t
+∇ · g = 0 , (9.6a)

∂E
∂t
+∇ · jE = nR · v, (9.6b)

∂gi

∂t
+ ∂j (2ji + πji) = nRi . (9.6c)

Here we have introduced the center-of-mass velocity v. In the present case of a
single fluid, this velocity is identical to the drift velocity of the (single) fluid 〈u〉.
For multi-fluid mixtures, there is a drift velocity for each fluid, which of course does
not have to be identical to the total velocity v of the mixture. This case will become
important in the next section, where we discuss electrons in an ion background with
a nonzero ϑ ≡ 〈u〉 − v. In Eq. (9.6) we have also introduced mass density ρ = mn,
momentum density g = ρv, energy density E = E0 + ρv2/2, and stress tensor
2ij = ρvivj + δijP , where the energy density in the co-moving frame of the fluid
E0 and the pressure P are given by

E0 = n〈ε〉 = ρ

2
〈w2〉 , P = ρ

3
〈w2〉 = 2

3
E0 , (9.7)

where w ≡ u − v is the difference between the single-particle velocity and the
macroscopic center-of-mass velocity, and

ε = mw2

2
(9.8)

is the single-particle energy in the co-moving frame of the fluid. The flux terms in
the energy conservation (9.6b) and momentum conservation (9.6c) equations are

jE,i = (E + P)vi + πij vj + jT ,i = m

2

∫
p

u2uif , (9.9a)

2ij + πij = m

∫
p

uiujf , (9.9b)
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which include the dissipative contributions, which vanish in equilibrium,

jT ≡ n〈εw〉 , πij ≡ ρ〈wiwj 〉 − δijP . (9.10)

We assume that close to equilibrium we can apply the thermodynamic relations
E0 + P = μn + T s and dE0 = μdn + T ds locally, with the t and x dependent
chemical potential μ, entropy density s, and temperature T . Using these relations,
together with Eqs. (9.6a) and (9.6c), the energy conservation (9.6b) can be written
as an equation for entropy production. And, using Eq. (9.6a), the momentum
conservation (9.6c) can be written in the form of the Navier-Stokes equation. Hence,
Eqs. (9.6b) and (9.6c) become

∂s

∂t
+∇ ·

(
sv + jT

T

)
= −πji∂j vi + jT · ∇T/T

T
≡ ς , (9.11a)

∂vi

∂t
+ (v · ∇)vi = −∂iP

ρ
+ Ri

m
− ∂jπji

ρ
, (9.11b)

where we have defined the entropy production rate ς . Instead of deriving the
hydrodynamical equations from the Boltzmann equation, we can also view them
as an effective theory where dissipative terms can be added systematically with
certain transport coefficients. These transport coefficients are then an input to
hydrodynamics, for instance computed from a kinetic approach. From Eq. (9.11a)
we see that the dissipative part is composed of products of the thermodynamic
forces ∇T/T and ∂ivj and the corresponding thermodynamic fluxes jT and πij .
The usual transport coefficients are then introduced by assuming linear relations
between them with the coefficients being thermal conductivity κ , shear viscosity η,
and bulk viscosity ζ ,

jT = −κ∇T , (9.12a)

πij = −2η

(
vij − δij

3
∇ · v

)
− ζ δij∇ · v , (9.12b)

where we have abbreviated

vij ≡ ∂ivj + ∂j vi

2
. (9.13)

In principle, one can systematically expand the fluxes in powers of derivatives
and thus create terms beyond linear order (Burnett 1935, 1936; García-Colín
et al. 2008). Higher-order hydrodynamical coefficients are rarely used in the non-
relativistic context (see however Chao and Schäfer (2012) and Schäfer (2014) for
a discussion of second-order hydrodynamics, motivated by applications to unitary
Fermi gases). In contrast, second-order relativistic hydrodynamics has been studied
much more extensively, motivated by the acausality of the first-order equations
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and by applications to relativistic heavy-ion collisions (Israel and Stewart 1979;
Romatschke 2010; Denicol et al. 2012). Here we will not go beyond first order.

The simple one-component monatomic gas discussed above does not have a bulk
viscosity ζ because ζ is proportional to the trace of πij , as we see from Eq. (9.12b),
and the trace of πij vanishes in our simple example, as Eq. (9.10) shows, due to the
relation between energy density and pressure in Eq. (9.7). In more general cases, the
hydrostatic pressure is not given by (9.7), and the bulk viscosity is nonzero. Notice
that the three terms in Eqs. (9.12) have different spatial symmetry and do not couple.
We can compute the rate of the total entropy change Ṡ of the system by integrating
Eq. (9.11a) over the volume V of the system. Making use of Eqs. (9.12), we obtain

Ṡ =
∫
V

d3x

T

[
2η

(
vij − δij

3
∇ · v

)2

+ ζ(∇ · v)2 + κ(∇T )2
T

]
−
∫
∂V

dσ · jT
T

.

(9.14)

The first integral gives the total entropy production by the dissipative processes
inside the system, while the surface integral corresponds to the heat exchange
with the external thermostat. Due to the second law of thermodynamics, all
phenomenological coefficients κ , η, and ζ have to be non-negative.

In more general cases, the entropy production equation (9.11a) contains more
terms, for instance related to diffusion in multi-component mixtures. Some of
these terms will be discussed in the following sections. When additional dissipative
processes are considered, the equations become more cumbersome, but the principal
scheme is the same.

9.2.2 Calculating Transport Coefficients
in the Chapman-Enskog Approach

Kinetic theory allows us to compute the transport coefficients on microscopic
grounds. The basic idea is to expand the distribution function around the local
equilibrium distribution function. The kinetic equation then describes the evolution
of the system towards local equilibrium. There exist two elaborate methods for
this expansion, namely Grad’s moment method (Grad 1949) and the Chapman-
Enskog method (Chapman et al. 1999), see also the textbooks by Kremer (2010)
and Zhdanov (2002) for extensive discussions of both methods. Here we give a
brief sketch of the Chapman-Enskog method. We write the distribution function as

f (x,u, t) ≈ f (0) + δf , δf = −∂f
(0)

∂ε
�+O(�2) ≈ f (0)(1− f (0))

kBT
� ,

(9.15)
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with a small correction �(x, t) to the Fermi-Dirac function in local equilibrium

f (0)(x,u, t) =
{

exp

[
ε(x,u, t)− μ(x, t)

kBT (x, t)

]
+ 1

}−1

, (9.16)

where kB is the Boltzmann constant and where ε from Eq. (9.8) is a function of
w(x,u, t) = u − v(x, t). The idea of the following approximation is to only keep
the lowest order in � and also drop higher-order terms in the derivatives of T ,μ, and
v. Inserting the ansatz (9.15) into the Boltzmann equation (9.1) yields the following
lowest order equation

∂f (0)

∂t
+ u · ∂f

(0)

∂x
+R · ∂f

(0)

∂p
≈ Ilin[�] , (9.17)

where Ilin[�] is the linearized collision term. To be more general than in the
previous section we do not specify its expression for now. [Linearizing the collision
term (9.2) yields Eq. (9.31).] Note that on the left-hand side the terms proportional
to � are counted as higher order since they are multiplied by derivatives of T , μ,
and v. Certain integral constraints on the deviation functions � can be obtained
from the condition that number density, momentum, and energy in a gas volume
element must be the same if calculated with the local equilibrium distribution (9.16)
and with the full function f (Pitaevskii and Lifshitz 2008).

Let us for now assume the system to be incompressible, which is a good
approximation for instance for the neutron star crust. On account of the continuity
equation (9.6a), this is equivalent to ∇ · v = 0. (In an incompressible fluid,
the density of a fluid element is constant in time, ∂tρ + v · ∇ρ = 0.) As a
consequence, there is no dissipation through bulk viscosity. We shall come back
to bulk viscosity later when we address the core of the star. There, bulk viscosity
is an important source of dissipation. We also focus on static systems, i.e., we
shall neglect all time derivatives. Extending the results of the previous section, we
will include the electrical conductivity. To this end, we set R = −eE, where E

is the electric field and e is the elementary charge. For now, we do not include a
magnetic field and keep the assumption of a single particle species. This assumption
deserves a comment. The expression (9.11a) does not contain the external force R,
indicating that the force does not create dissipation. Of course, the work done by
the force R affects the energy conservation (9.6b), but this only enters the bulk
motion, as Eq. (9.11b) shows. Dissipation from the electric field emerges if there
exists a friction force which opposes the diffusive motion. This is not described
by the collision integral (9.2), but is realized in a multi-component system such
as the electron-ion plasma in the neutron star crust or nuclear matter in the core
made of neutrons, protons, and leptons. In this case, as already mentioned below
Eq. (9.6), the average velocity of the constituents 〈u〉 is different from the center-of-
mass velocity v of the mixture. This gives rise to an electric (and diffusive) current
j = −enϑ = −en(〈u〉 − v). In the neutron star crust (liquid or solid), due to
the small mass ratio me/mi of electron and ion masses, the contribution of the ion
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diffusion to the electric current can be neglected. Therefore, the rest frame of the
ions is, to a good approximation, identical to the center-of mass frame and we can
keep working with a single particle species (the electrons).

With these assumptions, we find for the left-hand side of Eq. (9.17),

u · ∂f
(0)

∂x
− eE · ∂f

(0)

∂p
= −∂f

(0)

∂ε

[
ε − h

T
w · ∇T + ew ·E∗ + piwj

(
vij −

δij

3
∇ · v

)]
.

(9.18)

Here we work in the co-moving frame of the total fluid, i.e., we have set v = 0 after
taking the derivatives, such that from now on we have w = u = p/m. We have
added a term proportional to ∇ · v (which is zero in our approximation) in order
to reproduce the structure needed for the shear viscosity, defined the enthalpy per
particle h = μ+ sT /n, and the effective electric field

E∗ = E + ∇μ
e
+ s

n

∇T
e

. (9.19)

The enthalpy is included in the thermal conduction term (proportional to ∇T ) to
eliminate the convective heat flux [cf. first term in Eq. (9.9a)].

In order to express the dissipative currents in terms of the deviation function
�, we re-derive the entropy production equation (9.11a) as follows. We assume the
entropy density of the system close to equilibrium to be given by the usual statistical
expression

s = −kB
∫

p

[f ln f + (1− f ) ln(1− f )] . (9.20)

This suggests to set ψ = ln f + (f−1 − 1) ln(1 − f ) in the general transport
equation (9.5). The right-hand side of that equation, including the collision term as
well as the terms from the explicit (x,p, t)-dependence of ψ , yields the entropy
production

T ς = kB

∫
p

[ln f − ln(1− f )] I [f ] = −
∫

p

�I [f ] = j · E∗ − jT ·
∇T
T
− πij ∂j vi .

(9.21)

In the second step we have performed the linearization according to Eq. (9.15),
taking into account that ς vanishes for the local equilibrium function f (0). In the
third step, we have used that, according to the Boltzmann equation (9.17), we can
replace the collision integral by Eq. (9.18), and we have expressed the fluxes in terms
of �,

j = e

∫
p

�
∂f (0)

∂ε
w , jT = −

∫
p

�
∂f (0)

∂ε
(ε − h)w , πij = −

∫
p

�
∂f (0)

∂ε
piwj .

(9.22)
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Now, generalizing Eq. (9.12a), we introduce the transport coefficients associated
with the electric and heat fluxes,⎛

⎝E∗

jT

⎞
⎠ =

⎛
⎝ 1

σ
−QT

−QT T −κ

⎞
⎠
⎛
⎝ j

∇T

⎞
⎠ , (9.23)

where σ is the electrical conductivity and QT is the thermopower. The form
of the non-diagonal terms is a consequence of Onsager’s symmetry principle
(Pitaevskii and Lifshitz 2008). Notice that due to the same spatial rank-one tensor
structure of the thermodynamic forces ∇T/T and E∗, their linear response laws
are coupled. The perturbation that drives the shear viscosity is the second-rank
tensor (9.12b), hence the corresponding response law decouples. In terms of the
transport coefficients, the local entropy production rate (9.21) becomes

T ς = κ
(∇T )2
T
+ j2

σ
+ 2η

(
vij − δij

3
∇ · v

)2

, (9.24)

implying the non-negativeness of κ, η, and σ .
The transport coefficients η, κ , σ , QT can now be computed as follows. To

compute the shear viscosity, we make the ansatz

� = −Aη(ε)

(
piwj − δij

3
p · w

)(
vij − δij

3
∇ · v

)
, (9.25)

where, in an isotropic system, the unknown functionAη only depends on the particle
energy. This function has to be determined by inserting the ansatz for � into the
linearized Boltzmann equation (9.17). We can express the shear viscosity through
Aη as

η = − 2

15

∫
p

p2w2Aη(ε)
∂f (0)

∂ε
. (9.26)

This relation is obtained by inserting the ansatz (9.25) into πij from Eq. (9.22), using
the form of the viscous stress tensor (9.12b) and the angular integral in velocity (or
momentum) space (remember that p = mw in the frame we are working in)

∫
d�p

4π
wiwj

(
wkw# − δk#

3
w2
)
= w4

15

(
δikδj# + δi#δjk − 2

3
δij δk#

)
. (9.27)

In Eq. (9.26) we have multiplied the result by a factor 2 from the sum over the 2
spin degrees of freedom of a spin- 1

2 fermion (such that now the integral does not
implicitly include the spin sum anymore).
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To compute electrical and thermal conductivities and the thermopower, we use
the ansatz

� = −Aκ(ε)
ε − h

T
w · ∇T − Aσ (ε)ew ·E∗ , (9.28)

with Aκ and Aσ computed from the linearized Boltzmann equation, and the
transport coefficients are found in an analogous way as just demonstrated for the
shear viscosity: we insert the ansatz (9.28) into j and jT from Eq. (9.22), perform
the angular integral,

∫
d�p

4π
wiwj = w2δij

3
, (9.29)

and compare the result with Eq. (9.23) to obtain (again taking into account the 2
spin degrees of freedom)

σ = −2e2

3

∫
p

w2Aσ(ε)
∂f (0)

∂ε
, (9.30a)

σQT = −2e

3

∫
p

w2Aκ,σ (ε)
ε − h

T

∂f (0)

∂ε
, (9.30b)

κ + σQ2
T T = −

2

3

∫
p

w2Aκ(ε)
(ε − h)2

T

∂f (0)

∂ε
, (9.30c)

from which σ ,QT , and κ can be computed. As a conseqence of Onsager’s symmetry
principle, we have obtained two expressions for σQT , using either Aσ or Aκ in the
integral.

In general, even the solution of the linearized Boltzmann equation is not an easy
task and various methods and approximations are used. First, one needs to specify
the explicit expression for the collision integral. For instance, the linearization of
the collision integral (9.2) gives

Ilin[�] = − 1

kBT

∫
p1

∫
p′

∫
p′1
W(p,p1,p

′,p′1)f (0)f
(0)
1 (1 − f ′(0))(1 − f

′(0)
1 )(� +�1 −�′ −�′1) ,

(9.31)

where we have used f (0)f
(0)
1 (1−f ′(0))(1−f ′(0)1 ) = (1−f (0))(1−f (0)

1 )f ′(0)f ′(0)1
due to energy conservation.

One of the simplest cases is realized when the collision integral can be written in
the form of the (energy-dependent) relaxation-time approximation,

I = −
∑
lm

δf lm

τ l(ε)
Ylm(�p) , (9.32)
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which takes into account the angular dependence of the deviation to the equilibrium
distribution function by expanding it in spherical harmonics Ylm. Here τ l(ε) is the
relaxation time for the perturbation of multiplicity l. The solution of the Boltzmann
equation is then

Aσ(ε) = Aκ(ε) = τ 1(ε) , Aη(ε) = τ 2(ε) . (9.33)

When the relaxation time approximation is not available, one usually represents the
functions A(ε) in the form of a series expansion in some basis functions. This basis
has to be chosen carefully for a satisfactory convergence of the expansion. In some
cases the infinite chain of equations for the coefficients can be solved analytically
and the exact solution for the transport coefficients is obtained from (9.30) (in form
of an infinite series). In practice, the chain of equations is truncated at a finite number
of coefficients. The truncation procedure is justified on the basis of the variational
principle of kinetic theory (Ziman 2001). The variational principle uses the fact
that the entropy production rate calculated from (9.21) with the linearized collision
integral I [�] is a semi-positive definite functional of �. This is readily seen for the
binary collision integral (9.31) since the probability W is positive, but it holds in
general. Suppose that the arbitrary function �̃ is subject to the constraint

∫
p

X�̃ =
∫

p

Ilin[�̃]�̃ = −T ς [�̃] , (9.34)

where we have abbreviated (9.18) by X. The variational principle states that over
the class of such functions, the entropy production is maximal for the solution of
the Boltzmann equation X = Ilin[�], in other words ς [�] ≥ ς [�̃]. Increasing the
number of terms in the functional expansion and maximizing the functional ς [�̃]
under the constraint (9.34) one approaches the exact solution. This principle can
be reformulated to give a direct limit on the diagonal coefficients in the Onsager
relations. For instance, setting the thermodynamic forces to zero, ∇T/T = 0 and
vij = 0, and keeping only E∗, one obtains the electrical conductivity by minimizing

1

σ
≤ E∗2

T ς [�̃] (9.35)

over the functions subject to (9.34). Notice that the off-diagonal coefficient QT

cannot be constrained in this way.
The variational principle discussed here applies for the stationary case in the

absence of a magnetic field. The extension of the variational principle beyond this
approximation is non-trivial and is outside the scope of the present section.
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9.2.3 Towards Neutron Star Conditions

In this section we briefly comment on some modifications and extensions of the
kinetic theory laid out in the previous sections due to the specific conditions inside
neutron stars. We mention plasma effects, transport in Fermi liquids, relativistic
effects, and effects from Cooper pairing.

9.2.3.1 Plasma Effects

Electrically charged particles, for instance electrons in the crust and in the core,
interact via the long-range Coulomb potential. This seems to be at odds with
the concept of instant binary collisions, which forms the basis of the Boltzmann
approach to compute transport properties of dilute gases. However, the interaction
between charged particles in a plasma is screened and thus is effectively damped
on length scales r > rD , where rD is the Debye screening length. Therefore,
the Boltzmann equation becomes appropriate to describe the processes occurring
on large scales, provided the screened interaction potential is used in the collision
integral (Pitaevskii and Lifshitz 2008). The screening itself depends on the distribu-
tion functions of the plasma components, which severely complicates the solution.
However, for weak deviations from equilibrium, when the linearized Boltzmann
equation is used, the screening which enters the collision integral in Eq. (9.17) can
be calculated from the equilibrium distribution functions (i.e., in the collisionless
limit). Additional justification comes from the degeneracy conditions, which are
appropriate for electrons in most parts of the star (and other charged particles in
the core). In this case, only a small fraction of the thermal excitations contribute to
transport phenomena. Moreover, the kinetic energy of the particles increases with
density stronger than the Coulomb interaction energy. In other words, the denser
the gas is, the closer it is to the ideal Fermi gas (Landau and Lifshitz 1980).
All these properties allow us to use the formalism of the linearized Boltzmann
equation discussed above. Note that the force term R should contain the Lorentz
force with the self-consistent electromagnetic field. The generalized Ohm law (9.23)
then is written in the co-moving frame of the plasma and contains the electric field
measured in this frame, E′ = E + 1

c
v × B. We will return to this aspect in more

details in Sect. 9.4.1.5.
The ions in the neutron star crust are non-degenerate and non-ideal. The

discussion of their transport phenomena is more involved. Fortunately, the ion
contribution is usually negligible, see Sect. 9.3.

9.2.3.2 Transport in Fermi Liquids

Nuclear matter in the core of a neutron star is a strongly interacting, non-ideal,
multi-component fluid. The kinetic theory of rarefied gases described above cannot
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be applied directly. However, the relevant temperatures are low and the matter is
highly degenerate. In this case, the framework of Landau’s Fermi-liquid theory
(Baym and Pethick 1991) can be used to describe the low-energy excitations of the
system. The excitations are considered as a dilute gas of quasiparticles which obey
the Fermi-Dirac distribution (9.16) in momentum space, normalized to give the total
local number density n of the real particles. The single-quasiparticle energy ε(p)

is a functional of the distribution function f , the quasiparticle Fermi momentum
is pF = h̄(3π2n)1/3, and in equilibrium the spectrum of quasiparticles in the
vicinity of the Fermi surface is described by the effective mass on the Fermi surface
m∗ = pF /vF , where

ε(0) − μ = vF (p − pF ) , vF =
(
∂ε(0)

∂p

)
p=pF

, (9.36)

with the Fermi velocity vF , and the superscript (0) indicates equilibrium.
The evolution of the quasiparticle distribution function is described by the

Landau transport equation

∂f

∂t
+ u · ∂f

∂x
−∇ε · ∂f

∂p
= I [f ] , (9.37)

where now u = ∇p ε. The Eq. (9.37) is different from the Boltzmann equation (9.1)
since the term∇ε is present even in the absence of external forces R. This is because
the energy spectrum—being a functional of f—changes from one coordinate point
to another. Thus, ∇ε contains the combined effects of the external forces and the
effective field resulting from interactions between quasiparticles. In addition, the
quasiparticle velocity is coordinate-dependent for the same reason.

Transport coefficients of the Fermi-liquid are computed by considering a small
deviation from local equilibrium and performing the linearization of the Landau
equation in a way similar to Sect. 9.2.2 (Baym and Pethick 1991; Pitaevskii and
Lifshitz 2008). However, there is an important difference. The local equilibrium
distribution function is f (0)(ε(0)), but the conservation laws from the collision
integral employ the true quasiparticle energies ε. Hence the collision integral
vanishes for the functions f (0)(ε) instead of true local distribution function. As a
consequence, the linearized collision integral depends not on δf = f − f (0)(ε(0))

but on δf̃ = f − f (0)(ε), and the definition of the function � (9.15) is modified to

δf̃ = −∂f
(0)

∂ε
� . (9.38)

Since the definitions of the fluxes also contain the true quasiparticle energies and
velocities, they are given by the expressions (9.22) with � redefined according
to (9.38). Therefore, in the stationary case, we obtain formally identical equations
as in the above derivation. Fermi-liquid effects do not appear explicitly. The same
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is true if a magnetic field is taken into account (Pitaevskii and Lifshitz 2008). In
more general cases, terms containing δf can appear on the left-hand side of the
linearized Boltzmann equation. This situation is realized for instance when the bulk
viscosity of the Fermi liquid is considered (Baym and Pethick 1991; Sykes and
Brooker 1970).

9.2.3.3 Relativistic Effects

Neutron stars are ultra-dense objects, and thus relativistic effects are important for
the transport in the star. They manifest themselves in various forms, and we have to
distinguish between effects on a microscopic level (e.g., calculations of transport
coefficients) and a macroscopic level (e.g., simulations based on hydrodynamic
equations), as well as between effects from special relativity (large velocities) and
general relativity (spacetime curvature on scales of interest). In this review, we are
almost exclusively concerned with microscopic calculations, where we can usually
ignore effects from general relativity. The reason is the large separation of the
scale on which the gravitational field changes inside the star from the microscopic
scales on which the equilibration processes (collisions or reactions) operate (Tauber
and Weinberg 1961; Thorne 1966). If the mean free paths of the particles are
microscopic in this sense, one can study transport processes in the local Lorentz
frame, and gravity effectively does not appear in the analysis. If the mean free
path, however, becomes comparable to the macroscopic scale of gravity, one has to
consider the full general relativistic transport equation (Vereshchagin and Aksenov
2017)

pμ
∂f

∂xμ
− �μ

νρ p
νpρ

∂f

∂pμ
= I [f ] , (9.39)

where we have omitted external forces, where �
μ
νρ are the Christoffel symbols,

xμ is the spacetime four-vector, pμ the four-momentum, and I [f ] is the collision
integral (specified in the local reference frame). This situation occurs for instance
for neutrino transport in supernovae and proto-neutron stars (Pons et al. 1999). In
neutron stars, this general approach may be important for example in superfluid
phases if the only available excitations are the Goldstone modes, whose mean free
path can become of the order of the size of the star, see Sects. 9.4.1.4 and 9.5.5.2.
Effects from general relativity are also important when transport coefficients—
computed from a microscopic approach—are used as an input for hydrodynamic
equations. These equations, when they concern the structure of the whole star or a
significant fraction of it, must be formulated within general relativity. An example
is the equation for the radial component of the heat flux in a cooling star (Thorne
1966, 1977),

Fr = −κ e−λ−φ ∂T̃
∂r

, (9.40)
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where κ is the thermal conductivity, λ and φ appear in the parametrization of the
metric,

ds2 = e2φd(ct)2 − e2λdr2 − r2(dθ2 + sin2 θ dϕ2) , (9.41)

and T̃ ≡ T eφ is the redshifted temperature. (It is the redshifted temperature, not the
temperature T , which is constant in equilibrium.)

To connect the non-relativistic hydrodynamic equations of Sect. 9.2.1 to a
covariant formalism, one introduces the (special) relativistic stress-energy tensor,

T μν = T
μν

ideal + T
μν

diss , (9.42)

where we have separated the ideal part T μν
ideal from the dissipative contribution T μν

diss,

T
μν
ideal = (ε + P)vμvν − gμνP , (9.43a)

T
μν

diss = κ(�μγ vν +�νγ vμ)[∂γ T + T (v · ∂)vγ ]

+ η�μγ�νδ

(
∂δvγ + ∂γ vδ − 2

3
gγ δ∂ · v

)
+ ζ�μν∂ · v . (9.43b)

Here, ε and P are energy density and pressure measured in the rest frame of the
fluid, gμν = (1,−1,−1,−1) is the metric tensor in flat space, vμ = γ (1, v) is the
four-velocity with the Lorentz factor γ and the three-velocity v used in Sects. 9.2.1
and 9.2.2. We have abbreviated �μν = gμν − vμvν , and the transport coefficients
κ , η, ζ are heat conductivity, shear and bulk viscosity, as in the non-relativistic
formulation (9.12). In the non-relativistic limit, using the notation from Sect. 9.2.1,
T 00

ideal → E is the energy density, T 0i
ideal → gi is the momentum density, T i0

ideal →
(E + P)vi is the non-dissipative part of the energy flux jE , and T ij

ideal → 2ij is the
non-relativistic stress tensor. The dissipative terms are formulated in the so-called
Eckart frame (Eckart 1940), where—in contrast to the Landau frame (Landau and
Lifshitz 1987)—the conserved four-current jμ = nvμ does not receive dissipative
corrections (Kovtun 2012). The hydrodynamic equations are then obtained from the
conservation laws for the stress-energy tensor and the current,

∂μT
μν = ∂μj

μ = 0 . (9.44)

They reduce to Eqs. (9.6) in the non-relativistic limit. We will briefly return to this
relativistic formulation in Sect. 9.5.4.2, but otherwise we will not discuss any of the
effects illustrated by Eqs. (9.39), (9.40), and (9.43). In particular, since we do not
discuss neutrino transport in supernovae, no effects from general relativity will be
further discussed. Therefore, when we use ‘relativistic’ in the rest of the review,
we mean effects from special relativity in the following simple sense: relativistic
effects are important if the rest mass (times the speed of light) of a given particle
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species is not overwhelmingly larger than its Fermi momentum. (In this case, the
Fermi velocity introduced in the previous section, i.e., the slope of the dispersion
relation at the Fermi surface, becomes a sizable fraction of the speed of light.) With
this criterion, the ions in the crust and the nucleons in the core are often treated
non-relativistically (for ultra-high densities in the core, this treatment becomes
questionable), while the lighter electrons and quarks are relativistic (except for
electrons at very low densities in the outer crust).

9.2.3.4 Transport with Cooper Pairing

The effect of Cooper pairing on reaction rates and transport will be discussed
specifically in various sections throughout the review. As a preparation and a
simple overview, we now give some general remarks that may be helpful to
understand and put into perspective the more detailed discussions and results. For
a pedagogical introduction, bringing together elements from non-relativistic and
relativistic approaches to Cooper pairing in superfluids and superconductors see
Schmitt (2015).

Cooper pairing in neutron stars is expected to occur in the inner crust for
neutrons and in the core for neutrons, protons, and, if present, for hyperons and
quarks. The critical temperatures of these systems vary over several orders of
magnitude, depending on the form of matter, on density, and on the particular
pairing channel. Moreover, it is prone to large uncertainties because the attractive
force needed for Cooper pairing originates from the strong interaction. Nevertheless,
a rough benchmark to keep in mind is Tc ∼ 1 MeV, which is the maximal
critical temperature reached for nuclear matter1 (with significantly smaller values
for neutron triplet pairing) and which is exceeded by about an order of magnitude,
maybe even two, by quark matter, where Tc ∼ (10 − 100)MeV (also in quark
matter, there are pairing patterns with significantly lower critical temperatures). In
any case, we conclude that the temperatures inside the star—except for very young
neutron stars—are sufficiently low to allow for Cooper pairing. The resulting stellar
superfluids and superconductors (Alford et al. 2008a; Page et al. 2014; Haskell and
Sedrakian 2018, this volume) are similar to their relatives in the laboratory, but
the situation in the star is typically more complicated. For instance, the neutron
superfluid in the inner crust coexists with a lattice of ions, the core might be a
superconductor and a superfluid at the same time, and quark matter might introduce
effects of color superconductivity. In addition, the star rotates and has a magnetic
field, which suggests the presence of superfluid vortices and possibly magnetic flux
tubes, which may coexist and interact with each other. Therefore, understanding
superfluid transport in the environment of a neutron star is a difficult task, and some
care is required in using results from ordinary superfluids.

1In units where kB = 1, temperature and energy have the same units, 1 MeV corresponds to
1.160 × 1010 K.
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One obvious effect of Cooper pairing is the suppression of reaction rates and
scattering processes of the fermions that pair. This effect is very easy to understand.
Cooper pairing induces an energy gap � in the quasiparticle dispersion relation
(one needs a finite amount of energy to break up a pair), and thus, for temperatures
much smaller than the gap, quasiparticles are not available for a given process. As
a consequence, if at least one of the participating fermions is gapped, the rate is
exponentially suppressed by a factor exp(−�/T ) for T � �. The suppression is
milder if the pairing is not isotropic and certain directions in momentum space are
left ungapped. This is conceivable for some forms of neutron pairing and in certain
color-superconducting quark matter phases. In this case, if for instance only one- or
zero-dimensional regions of the Fermi surface contribute (as opposed to the full two-
dimensional Fermi surface in the unpaired case), the rate is suppressed by a power
of the small parameter T/�. Except for these special cases, at low temperatures
we can usually neglect the processes suppressed by Cooper pairing and can restrict
ourselves to contributions from ungapped fermions or other low-energy excitations,
if present.

At larger temperatures, as we move towards the critical temperature Tc, the form
of the exponential suppression no longer holds and the rate in the Cooper-paired
phase has to be evaluated numerically. Since particle number conservation is broken
spontaneously, particles can be deposited into or created from the Cooper pair
condensate. This effect induces subprocesses that are called Cooper pair breaking
and formation processes. They are particularly interesting in nuclear matter, where
more efficient processes, such as the direct Urca process, are suppressed. Then,
somewhat counterintuitively, an enhancement of the neutrino emission is possible
as the system cools through the critical temperature for neutron superfluidity.

While Cooper pairing removes fermionic degrees of freedom from transport
at low temperatures, it introduces one or several massless bosonic excitations if
a global symmetry is spontaneously broken by the formation of a Cooper pair
condensate. This is due to the Goldstone theorem, and the corresponding Goldstone
mode for superfluidity is, following the terminology of superfluid helium, usually
called phonon (or ‘superfluid mode’, or ‘superfluid phonon’ to distinguish it from
the lattice phonons in the neutron star crust). In this case, the broken global
symmetry is the U(1) associated with particle number conservation. Superfluid
neutron matter and the color-flavor locked (CFL) quark matter phase both have a
phonon. Transport through phonons is mostly computed with the help of an effective
theory, and we will quote some of the resulting transport properties in hadronic
and quark matter. If Cooper pairing breaks additional global symmetries, such as
rotational symmetry, additional Goldstone modes appear. This is possible in 3P2
neutron pairing (Bedaque and Nicholson 2013; Bedaque and Reddy 2014) and in
spin-one color superconductivity (Pang et al. 2011).

If instead a local symmetry is spontaneously broken, there is no Goldstone mode.
This is the case for Cooper pairing of protons and for quark matter phases other than
CFL such as the so-called 2SC phase (although, due to the presence of electrons
and the resulting screening effects, the Goldstone mode in a proton superconductor
can be ‘resurrected’ (Baldo and Ducoin 2011)). As in ordinary superconductivity,
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the would-be Goldstone boson is replaced by an additional degree of freedom of
the gauge field, which acquires a magnetic mass. One obvious consequence is the
well-known Meissner effect, which is of relevance for the magnetic field evolution
in neutron stars. Magnetic screening can also indirectly affect transport properties
if a certain transport property is dominated by one (unpaired) particle species that
is charged under the gauge symmetry which is spontaneously broken by Cooper
pairing of a different species (even though the species that pairs does not contribute
to transport itself because it is gapped). This situation occurs in nuclear matter
when electrons experience a modified electromagnetic interaction due to pairing of
protons, and in the 2SC phase of quark matter, where the different particle species
are electrons and the different colors and flavors of quarks, which are not all paired
in this specific phase, and the relevant gauge bosons are the gluons and the photon.

As we know from some of the earliest experiments with superfluid helium, a
superfluid at nonzero temperature (below Tc) behaves as a two-fluid system (Tisza
1938; Landau 1941) (for the connection of the two-fluid picture to an underlying
microscopic theory see for instance Alford et al. 2013). This means that, in a
hydrodynamic approach, there are two independent velocity fields: one for the
superfluid component, which is the Cooper pair condensate in a fermionic superfluid
(or the Bose-Einstein condensate in a bosonic superfluid such as 4He), and one for
the so-called normal component, which corresponds to the phonons and possibly
a fraction of the fermions which have remained unpaired. Since only the normal
component carries entropy, the two-fluid nature has obvious consequences for heat
transport, which now can occur through a counterflow of the two fluid components.
While this mechanism proves extremely efficient in laboratory experiments with
superfluid helium, it may be less effective in the more complicated situation in
a neutron star. For instance, in the inner crust of the star the counterflow of the
normal and superfluid components becomes dissipative due to the presence of
electrons which damp the motion of the normal fluid through induced electron-
phonon interactions (Page and Reddy 2012). Another consequence of the two-fluid
behavior is the existence of second sound. (The phonon, first and second sound are
in general three different excitations. At low temperatures, the phonon excitation
is identical to first sound, while close to the critical temperature it is identical
to second sound (Alford et al. 2014a).) In superfluid helium, first and second
sound are predominantly density and temperature oscillations, respectively, for all
temperatures T < Tc. This is not necessarily true for other superfluids and it has
been shown that first and second sound may exchange their roles (Alford et al.
2014a).

Two-fluid systems allow for additional transport coefficients. For instance,
in the hydrodynamics of a superfluid, usually three independent bulk viscosity
coefficients are taken into account (Khalatnikov 1965). In a neutron star, the
situation might become even more complicated due to the presence of additional
fluid components, e.g., a nonzero-temperature neutron superfluid coexisting with
electrons and protons, such that we have to deal with an involved multi-fluid system.
One interesting feature of multi-fluids with relevance for the physics of neutron stars
is the possibility of hydrodynamical instabilities due to a counterflow between the
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fluids. Such an instability may occur for the neutron superfluid in the inner crust, if
it moves (locally) with a sufficiently large nonzero velocity relative to the ion lattice.
In this review, we shall not further discuss multi-fluid transport in detail (except for
the transport coefficients of a single superfluid at nonzero T ) and refer the reader
to the recent literature and references therein (Gusakov et al. 2009a,b; Glampedakis
et al. 2012a; Chamel 2013; Andersson et al. 2013; Haber et al. 2016; Andersson
et al. 2017).

Finally, let us mention another very important consequence of Cooper pairing,
which has been related to various astrophysical observations such as pulsar glitches
(Haskell and Melatos 2015), namely the formation of rotational vortices in a
superfluid and of magnetic flux tubes in a superconductor. (A magnetic field enters
a type-II superconductor through quantized magnetic flux tubes if its magnitude lies
between the upper and lower critical magnetic fields. The presence of a superfluid, to
which the superconductor couples, may change the textbook-like behavior of type-
II superconductors qualitatively (Haber and Schmitt 2017a,b).) Besides ordinary
vortices in hadronic matter, quark matter in the core of neutron stars may contain
so-called semi-superfluid vortices (Balachandran et al. 2006; Alford et al. 2016)
in the CFL phase and/or color magnetic flux tubes (Alford and Sedrakian 2010;
Glampedakis et al. 2012b) in the CFL or 2SC phases (the latter are not protected
by topological arguments and it is unknown if they are energetically stable objects
in the neutron star environment). As for most of the multi-fluid aspects, we will
not review the transport properties of superfluids in the presence of vortices. For
various aspects of the hydrodynamics of these systems, including the possibility of
superfluid turbulence and possible boundaries between phases with and without (or
with a different kind of) vortices, see Hall and Vinen (1956), Khalatnikov (1965),
Donnelly (1999), Gusakov (2016), Gusakov and Dommes (2016), and Graber et al.
(2017).

9.3 Transport in the Crust and the Crust/Core Transition
Region

9.3.1 Thermal and Electrical Conductivity and Shear Viscosity

The main carriers which determine the transport processes in the neutron star crust
are electrons. The electrons in the crust form an almost ideal, degenerate gas. The
degeneracy temperature TF for electrons is

TFe = μe −mec
2

kB
= 5.9× 109K

(√
1+ x2

r − 1

)
, (9.45)

where xr = pFe/(mec) is the electron relativistic parameter, with the electron Fermi
momentum pFe, the electron rest mass me, and the electron chemical potential
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(including the rest mass) μe = mec
2
√

1+ x2
r ≡ m∗ec2. In a one-component plasma

with ion charge number Z and total nucleon number per ion2 A, xr ≈ (ρ6Z/A)
1/3,

where ρ6 is the mass density ρ in units of 106 g cm−3. In most of the crust,
ρ6 � 1 and the electrons are ultra-relativistic. We will not discuss electrons in
non-degenerate or partially degenerate conditions T � TFe. The effects of non-
degenerate electrons are important when the thermal structure of the stellar heat
blanket is calculated. In non-degenerate regions the radiative contribution to heat
transport is relevant, which we also do not discuss here, for details see Potekhin
et al. (2015a; 2015b).

For degenerate electrons (T � TFe) the analysis of the Boltzmann equation is
simplified since the transport is mainly provided by those electrons whose energies
lie in a narrow thermal band near the Fermi surface |ε − μe| � kBT . When using
Eqs. (9.25) and (9.30), it is safe to set h = μe and neglect the thermopower
correction in Eq. (9.30c). As a result, it is convenient to present the transport
coefficients of interest in the form

σ = e2neτσ

m∗e
, (9.46a)

κ = π2k2
BT neτκ

3m∗e
, (9.46b)

QT = π2k2
BTm

∗
e

3ep2
Fe

(3+ ξ) , (9.46c)

η = nep
2
Feτη

5m∗e
, (9.46d)

where τσ , τκ , and τη are the effective relaxation times, and ξ ∼ 1 is a dimensionless
factor which can change sign depending on the electron scattering mechanism.
For brevity, we will not consider the thermopower coefficient further. The inverse
quantities νσ,κ,η = τ−1

σ,κ,η are called the effective collision frequencies. If the
relaxation time approximation (9.32) is applicable, the effective relaxation times
become the actual relaxation times evaluated at the Fermi surface, τσ = τκ = τ 1

e (μ),

τη = τ 2
e (μ), cf. Eq. (9.33), since one approximates ∂f (0)

∂ε
≈ −δ(ε−μe). In this case,

we obtain the standard Wiedemann-Franz rule for conductivities,

κ

σ
= π2k2

BT

3e2 . (9.47)

The relaxation time approximation holds when electron-ion collisions are the
dominant scattering mechanism and the energy ω transferred in these collision is

2In the inner crust, unbound neutrons exist and the ion mass number Anuc is less than A. The ion
mass is then mi = Anucmu, with mu being the atomic unit mass (Chamel and Haensel 2008).
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small ω � kBT . When this is not the case, the variational calculations outlined in
Sect. 9.2.2 are usually employed. It turns out that already the simplest variational
approximation gives a satisfactory estimate for astrophysical conditions. Moreover,
the violation of the Wiedemann-Franz rule is not as dramatic as in ordinary metals
at low temperature (Yakovlev and Urpin 1980).

When there are different relaxation mechanisms for the electron distribution
function, for instance collisions with different particle species, the respective
collision integrals must be added on the right-hand side of the Boltzmann equation.
In practice, one usually considers different mechanisms separately to obtain the
effective collision frequency νej for each scattering process. Due to the strong
degeneracy of electrons, the cumulated collision frequency νtot = ∑j νej obtained
in this way is a good approximation to the solution of the Boltzmann equation with
all mechanisms included. This is known as Matthiessen’s rule (Ziman 2001). The
variational principle of kinetic theory allows us to estimate the error introduced
by this approximation (Ziman 2001), see also Potekhin et al. (2015b). Below we
consider the most important processes that determine the electron transport.

9.3.1.1 Electron-Ion Collisions

The main process for electron transport is their scattering off ions. The ions in the
neutron star crust form a strongly coupled non-ideal plasma, whose state is defined
by an ion coupling parameter�. For a one-component plasma (in the sense that only
one sort of ions is present)

� = Z2e2

aWZkBT
≈ 153 xr

(
Z

50

)5/3 (
T

108 K

)−1

, (9.48)

where the ion Wigner-Seitz cell radius aWZ is defined by the relation

4π

3
a3

WZni = 1 . (9.49)

When � � 1, ions are in the gaseous phase, at � � 1 in the liquid phase, and
at � = �m ≈ 175 (Potekhin and Chabrier 2000) the ion liquid crystallizes and
is thought to form a body-centered cubic lattice (Chamel and Haensel 2008). This
condition and Eq. (9.48) define the (density-dependent) melting temperature Tm.
Notice that the melting point can shift substantially if the electron polarization or
magnetic field effects are taken into account (Potekhin and Chabrier 2000, 2013).
Another important parameter is the ion plasma temperature

Tpi = h̄

kB

(
4πZ2e2ni

mi

)1/2

, (9.50)
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above which the thermodynamic properties are classical, and below which quantum
effects should be taken into account. In the context of electron transport, the
important point is that at T < Tpi the typical energy transferred in the electron-
ion collisions is ω ∼ kBT and the relaxation time approximation cannot be used
(Yakovlev and Urpin 1980). If Tpi < Tm, quantum effects are only important in the
crystalline phase. A temperature regime where quantum effects are relevant in the
liquid phase can in principle be realized for light elements and high densities. In this
case, the properties of the liquid—including transport properties—are modified, but
also the crystallization point itself (the value �m ≈ 175 is obtained from a classical
estimate, not taking into account zero-point vibrations). Calculations show that at
some density the crystallization temperature starts to decrease and reaches zero at
a certain critical density, above which no crystallization occurs (Chabrier 1993;
Jones and Ceperley 1996). However, the importance of a quantum liquid regime
for neutron star envelopes is questionable since nuclear reactions (electron captures
and pyconuclear burning) would not allow light elements to exist at sufficiently large
densities, see Sect. 2.3.5 of Haensel et al. (2007) for more details. Therefore, here
we discuss quantum corrections only for the solid phase (see footnote 4 for a brief
remark about results for the quantum liquid regime).

For any phase state of the ions, the effective electron-ion collision frequency, to
be used in (9.46), is usually written in terms of the effective Coulomb logarithm1ei,

νei = 4πZ2e4ni

p2
FevFe

1ei ≈ 8.8× 1017 Z

50

√
1+ x2

r 1ei s−1 , (9.51)

where vFe = pFe/m
∗
e and we have omitted the transport indices σ, κ, η for

brevity. The Coulomb logarithm is a central quantity in the transport theory of
electromagnetic plasmas. In the (classical) liquid regime, 1 � � < �m, we have
1ei ∼ 1, while in the solid regime 1ei ∝ T/Tm at Tm > T � 0.15 Tpi and
1ei ∝ T 2/(TmTpi) at T � 0.15 Tpi (Potekhin et al. 1999; Chugunov and Yakovlev
2005; Potekhin et al. 2015b). For a one-component plasma it was calculated by
Potekhin et al. (1999) and Chugunov and Yakovlev (2005), including various
effects such as electron screening, non-Born and relativistic corrections, ion-ion
correlations in the liquid regime, and multi-phonon processes in the solid regime.
The main complication in the calculation of the Coulomb logarithm is to properly
take into account the ion-ion correlations that are important in a strongly non-ideal
Coulomb liquid. In the conditions of the neutron star crust, the typical electron
kinetic energy is much larger than the electron-ion interaction energy (as mentioned
in Sect. 9.2.3.1), and electrons can be treated as quasi-free particles scattering off
the static electric potential created by charge density fluctuations in the ion system.
The resulting expression in the first-order Born approximation, which is equally
applicable in liquid and solid states can be written as (Baym 1964)

1ei =
2kFe∫
q0

dk

k
|k2U(k)|2

[
1− β2

r

k2

4k2
Fe

]
R(k)

+∞∫
−∞

dω
z

ez − 1
G(k, z)S(ω, k) ,

(9.52)
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where z = h̄ω/(kBT ), kFe = pFe/h̄, βr = vFe/c, U(k) is the Fourier transform of
the effective potential describing single electron-ion scattering3

U(k) = F(k)

k2ε(k)
, (9.53)

which includes electron screening via the static dielectric function ε(k) and finite-
size corrections for nuclei through the form-factor term F(k), and the term in square
brackets describes the relativistic suppression of the backward scattering. In the
liquid phase, q0 = 0, while in the solid phase, q0 = qBZ = (6π2ni)

1/3, see below.
The functions R(k) and G(k, z) are kinematic factors depending on the transport
property that is calculated, namely Rσ,κ(k) = 1, Rη(k) = 3[1 − k2/(4k2

Fe)],
Gσ,η(k, z) = 1, and

Gκ(k, z) = 1+ z2

π2

(
3
k2
Fe

k2 −
1

2

)
. (9.54)

Finally, S(ω, k) is the dynamical structure factor which describes the ion density
fluctuations,

S(ω, k) = 1

2πNi

∫ +∞
−∞

dt

∫
d3x d3x′ eik·(x−x′)−iωt 〈δn̂†(x, t)δn̂(x′, 0)

〉
eq
,

(9.55)

where 〈. . . 〉eq stands for average over the Gibbs ensemble of ions (thermal average),
Ni is the total number of ions, and

δn̂(x, t) = n̂i(x, t) − 〈n̂i(x, t)〉eq , (9.56)

with the ion number density operator n̂i(x, t).
Let us first consider a liquid with a temperature reasonably far above the melting

temperature, T > Tm. Then 〈n̂i(x, t)〉eq = ni takes into account the uniform
compensating background. Ignoring quantum effects in the liquid, as argued above,
the z → 0 limit can be used in the integrand of the ω-integration in Eq. (9.52),
and one is left with the static structure factor S(k). This case corresponds to the
relaxation time approximation, and one obtains the Ziman formula known from
transport theory of liquid metals (Ziman 1961). The Wiedemann-Franz rule (9.47)
is also fulfilled. The static structure factor can be calculated from numerical
simulations of the Coulomb plasma. In the absence of correlations, S(k) → 1.

3The long-range nature of the Coulomb interaction leads to a logarithmic divergence of the
integral in (9.52) since U(k) ∝ k−2 at small k, which is regularized by plasma screening,
see Sect. 9.2.3.1. Therefore, very roughly, 1ei ∼ log[2kFe/max(q0, r

−1
D )], and hence the name

‘Coulomb logarithm’.
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Potekhin et al. (1999) used static structure factors obtained by Young et al. (1991)
and provided a useful analytical fit for the Coulomb logarithm that can be readily
used in simulations.

Now consider the case T < Tm, when ions are assumed to form a perfect
one-component body-centered cubic (bcc) crystal. The high symmetry of the cubic
lattice implies that the transport properties are isotropic (Harrison 1980). In this
case, the electrons are scattered off phonons, i.e., lattice vibrations. The Coulomb
logarithm is still given by Eq. (9.52), where an expression for the structure factor can
now be obtained using a multi-phonon expansion. For temperatures not too close to
the melting temperature the single-phonon contribution to the structure factor is
sufficient (Flowers and Itoh 1976; Yakovlev and Urpin 1980). In this regime, useful
approximate expressions for the collision frequencies (that however do not include
various corrections already mentioned above) are (Yakovlev and Urpin 1980; Baiko
and Yakovlev 1995; Chugunov and Yakovlev 2005)

ν
κ,σ
ei = αf u−2β

−1
r

kBT

h̄

(
2− β2

r

)
Fκ,σ

(
T

Tpi

)
, ν

η

ei = αf u−2β
−1
r

kBT

h̄

(
3− β2

r

)
Fη

(
T

Tpi

)
,

(9.57)

where αf is the fine structure constant, u−2 = 13.0 is one of the frequency moments
of the bcc lattice, and the functions F(T/Tpi) describe quantum corrections,

Fσ (t) = Fη(t) = t√
t2 + a2

0

, (9.58a)

Fκ(t) = Fσ (t)+ t

π2u−2
(
t2 + a2

2

)3/2

ln(4Z)− 1− β2
r

2− β2
r

, (9.58b)

where a0 = 0.13 and a2 = 0.11. Accordingly, when T � 0.15 Tpi one can set
Fσ,κ,η = 1 in Eq. (9.57). In this classical limit, the relaxation time approximation
still works fairly well and the Wiedemann-Franz rule νσei = νκei applies. The
difference between ν

η
ei and ν

κ,σ
ei is due to the difference in the kinematic factor R

in Eq. (9.52). At low temperatures, T � 0.15 Tpi, the relaxation time approximation
breaks down and quantum effects are important. Since Fκ,σ,η(t) ∝ t , the quantum
corrections suppress the electron-ion collisions in this limit. Because of the second
term in Eq. (9.58b), which is a consequence of the factor (9.54), νσei 
= νκei and the
Wiedemann-Franz rule is violated. This violation is, however, not as dramatic as for
terrestrial solids (Yakovlev and Urpin 1980).

It is important to stress that the electron-phonon interaction in Coulomb crystals
in the astrophysical environment is very different from that in terrestrial metals.
For the latter, normal processes within one Brillouin zone are dominant, k � qBZ,
while in the astrophysical context, since electrons are quasi-free, with kFe � qBZ,
the typical momentum transfer is large compared to qBZ, and Umklapp processes,
which transfer an electron from one Brillouin zone to another, play the major role.
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At very low temperatures, the picture of quasi-free electrons is modified, since the
distortion of the quasi-spherical Fermi surface by band gaps becomes important.
This suppresses the Umklapp processes. However, Chugunov (2012) has shown that
this ‘freezing’ of the Umklapp processes is only important at T � 10−2Tpi and is
relatively slow, see also Page and Reddy (2012). In practice, at these temperatures
the transport is dominated by other processes (see below), and the freezing of
Umklapp processes can be safely neglected in practical calculations.

As the temperature of the Coulomb solid approaches the melting temperature,
T → Tm, the single-phonon picture is no longer valid. Baiko et al. (1998)
calculated the multi-phonon contribution to the structure factor S(ω, k) in the
harmonic approximation; these results were later incorporated in analytical fits by
Potekhin et al. (1999). Recent quantum Monte Carlo simulations have shown that
the harmonic approximation works well up to the vicinity of the melting temperature
(Abbar et al. 2015). Note that in a pure perfect lattice, only the inelastic part
S′(ω, k) of the total structure factor S(ω, k) = S′(ω, k) + S′′(k)δ(ω) contributes
to transport properties. The elastic term S′′(k) describes Bragg diffraction (zero-
phonon process). It does not contribute to scattering, but it leads to a renormalization
of the electron ground state (which are the Bloch waves) and the appearance of the
electron band structure. Notice that the elastic component is automatically taken
out by 〈n̂i(x, t)〉eq in Eq. (9.56) (Baym 1964; Rosenfeld and Stott 1990). The Bragg
elastic contribution to an unmodified density (charge) correlator 〈n̂†n̂〉 is

S′′(k) = e−2W(k)(2π)3ni

∑
G

δ(k −G) , (9.59)

where the summation is taken over the reciprocal lattice vectors G and the exponent
W(k) is the Debye-Waller factor (Harrison 1980), which describes thermal damping
of the Bragg peaks. In addition, Baiko et al. (1998) have proposed that in the liquid
regime, sufficiently close to the melting point, an incipient long-range order exists,
which is preserved during the typical electron scattering time. Solid-like features
such as a shear mode are observed in a strongly coupled system in the liquid
regime both in numerical experiments and in laboratory. Thus, Baiko et al. (1998)
suggested that the electrons obey the local band structure which is preserved during
the electron relaxation. As a consequence, in order to account for this ion local
ordering in the electron transport, they proposed to subtract an ‘elastic’ contribution
given by Eq. (9.59) averaged over the orientations of k from the total liquid structure
factor. This procedure removes the large jumps of the Coulomb logarithm and hence
of the transport coefficients at the melting point. This prescription allowed Potekhin
et al. (1999) and Chugunov and Yakovlev (2005) to construct a single fit for 1ei
valid in both liquid and solid regimes. An interesting feature of the approach by
Potekhin et al. (1999) is that they do not fit the numerical results for the Coulomb
logarithms. Instead, they introduce a fitting expression for the effective potential
which encapsulates the contributions from non-Born terms, electron screening,
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ion correlations, the Debye-Waller factor, and the structure factor. The Coulomb
logarithms are then found by analytical integration in Eq. (9.52).4

This approach is attractive but it was criticized in Itoh et al. (2008) and Daligault
and Gupta (2009). The main argument is that in the simple terrestrial metals the
jump in resistivity at the melting point is a well-established indication of a solid-
liquid transition (e.g., Schaeffer et al. 2012). It seems that a convincing way to
describe electron transport in the disordered state of the strongly coupled Coulomb
melt is missing. It is, in principle, possible to extract the behavior of the crustal
thermal conductivity from studies of the crustal cooling in X-ray transients after the
outburst stages (Brown and Cumming 2009; Page and Reddy 2013; Meisel et al.
2018). However, in this case, effects related to the multi-component composition of
the accreted crust will probably dominate (Mckinven et al. 2016).

9.3.1.2 Impurities and Mixtures

The crustal lattice is not expected to be strictly perfect. Like terrestrial crystalline
solids, it can possess various defects, which are jointly called impurities. One
usually considers impurities in the form of charge fluctuations and introduces the
impurity parameter

Q =
∑
j

Yj (Zj − 〈Z〉)2 , (9.60)

where the summation is taken over the different ion species, Yj and Zj are
number fraction and charge number of each species, respectively, and 〈Z〉 is the
mean charge. If the impurities are relatively rare and weakly correlated, electron-
phonon interactions and electron-impurity scatterings can be considered as different
transport relaxation mechanisms. Employing Matthiessen’s rule, the total electron-
ion collision frequency is expressed as νei = νe−ph + νe−imp. The electron-impurity
effective collision frequency νe−imp is calculated form Eq. (9.51) by substituting
Z2 → Q and using the Coulomb logarithm from Eq. (9.52) with the elastic structure
factor S(k) = 1. Since the elastic scattering is temperature-independent, it limits the
collision frequencies at low temperatures. In the simplest model of Debye screening,

4This fit has also been applied to transport coefficients in a liquid at T � Tpi, where quantum
effects become important. It is supposed (Potekhin et al. 1999; Chugunov and Yakovlev 2005) to
give a more reliable estimate than the use of direct numerical calculations based on the classical
structure factors. This is reasonable since a unified analytical expression in both liquid and solid
phase is used and in the latter phase quantum effects are properly included, see Potekhin et al.
(1999) for a detailed argumentation. Robust results for transport coefficients in the quantum liquid
domain are not present in the literature up to our knowledge since the structure factors in the
quantum liquid regime are unknown.
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U(k) ∝ (k2 + k2
D)
−1, and the integration in Eq. (9.52) gives

1
κ,σ
imp =

1

2

[
1+ 4β2

r ξ
2
S

]
ln
(

1+ ξ−2
S

)
− β2

r

2
− 1+ β2

r ξ
2
S

2+ 2ξ 2
S

, (9.61a)
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)
− 9

2
β2
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2
S −

3

4
β2
r − 3 , (9.61b)

where ξS = kD/(2kFe). The screening wavenumber kD in principle acquires
contributions from Thomas-Fermi screening of degenerate electrons and impurity
screening, k2

D = k2
TF+k2

imp, however kimp can usually be neglected (e.g., Chugunov
and Yakovlev 2005).

In the opposite case, when no crystal is formed in a multi-component plasma
(in a liquid, or in a glassy solid), the so-called plasma additivity rule can be used
(Potekhin et al. 1999), and Z2ni1ei is replaced by

∑
j Z

2
j nj1

j
ei, where 1j

ei is the
Coulomb logarithm for scattering off the ion species j . A modification of this
rule was proposed by Daligault and Gupta (2009) based on large scale molecular
dynamical simulations. They suggest that it is more accurate to use 〈Z〉1/3Z

5/3
j

instead of Z2
j .

The intermediate case is more complicated. Molecular dynamics simulations
strongly suggest that the crystallization of the multi-component Coulomb plasma
occurs even in the case of large impurity parameter Q (Horowitz et al. 2009;
Horowitz and Berry 2009). An amorphous crust structure was also proposed, see
for instance Daligault and Gupta (2009). Some studies show that the diffusion in
the solid phase is relatively rapid and quickly relaxes amorphous structures to a
regular lattice (Hughto et al. 2011). In addition, an amorphous crustal structure
is in contradiction with observations (Shternin et al. 2007; Brown and Cumming
2009). Already in the case of a moderate impurity parameter, Q ∼ 1, the simple
prescription of electron scattering as a sum of phonon contribution and uncorrelated
impurity scattering is questionable. In fact, all information about electron-ion
scattering (from lattice vibrations or impurities) is encoded in the structure factor,
which naturally takes into account correlations in the minority species on the same
footing as the correlations in the majority species. The structure factor of a multi-
component solid can be obtained from numerical simulations. To calculate the
transport properties it is necessary to correctly separate the Bragg contribution,
which does not contribute to scattering, from the total structure factor. This is not as
simple as in case of one-component plasma (Horowitz et al. 2009). The remaining
part of the structure factor is then used to calculate the Coulomb logarithms. As
a result, both classical molecular dynamics simulations (Horowitz et al. 2009;
Horowitz and Berry 2009) and recent quantum path integral Monte Carlo approach
(Abbar et al. 2015; Roggero and Reddy 2016) show that the simple impurity
expression based on the parameter Q underestimates the Coulomb logarithm and
hence overestimates the corresponding values of transport coefficients. Moreover,
Roggero and Reddy (2016) found that their results for a broad range of Q can
be approximated by the standard lattice + impurity formalism, where the effective
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impurity parameter Q̃ = L(�)Q is used.5 The factor L(�) is generally larger than
one and increases with �. Roggero and Reddy (2016) find L(�) ≈ 2 − 4 for the
conditions they consider. Note that classical simulations can treat only the high-
temperature case T > Tpi, while the quantum simulations of Roggero and Reddy
(2016) were the first to investigate the multi-component solid for T < Tpi, where
the dynamical effects in Eq. (9.52) are important.

9.3.1.3 Other Processes

Let us briefly describe other processes which contribute to transport in neutron
star crusts. Electrons in the crust can scatter off electrons, not only off ions. For
degenerate electrons, Matthiessen’s rule is a good approximation, and the electron-
electron collision frequency νee is simply added to the electron-ion collision
frequency νei. The impact of the contribution from electron-electron scattering on
thermal conductivity κ and shear viscosity η was analyzed in Shternin and Yakovlev
(2006) and Shternin (2008a). Note that in this approximation electron-electron
scattering does not change the charge current and therefore does not contribute to
the electrical conductivity.6

In most part of the neutron star crust, electrons are relativistic and their collisions
are mediated by the current-current (magnetic) interaction, in contrast to the
electron-ion Coulomb interaction. The current-current interaction occurs through
exchange of transverse plasmons, which leads to a peculiar temperature and density
dependence of the transport coefficients, as we describe in detail in the context of
lepton and quark transport in the core of the star, see Sects. 9.4.1.2 and 9.5.5.1.
However, except for a very low-temperature, pure one-component plasma, the
electron-electron collisions are found to be unimportant. (They can be important in a
low-Z plasma, i.e., in white dwarfs and degenerate cores of the red giants. In fact, the
correct inclusion of the electron-electron collisions have important consequences for
the position of the red giant branch tip in the Hertzsprung-Russell diagram (Cassisi
et al. 2007).)

Ions in the liquid phase (or phonons in the crystalline solid phase) can also
contribute to transport properties of neutron star crusts. The ion contribution to shear
viscosity was considered by Caballero et al. (2008) and is found to be negligible.
A similar conclusion for the thermal conductivity was reached by Chugunov and
Haensel (2007), see also Pérez-Azorín et al. (2006). However, in a certain parameter
region, the ion contribution can be significant in the magnetized crust for the heat

5An appropriate average of individual species �’s calculated from the first equality in Eq. (9.48) is
used as the mixture � parameter.
6This is not the case in the non-degenerate plasma, where Matthiessen’s rule does not hold, and
both ee and ei collisions need to be considered on the right-hand side of the Boltzmann equation.
The impact of ee collisions is then especially pronounced at small Z (Braginskii 1958).
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conduction across the field lines. Still, simulations suggest that its importance is
limited also in this case, see for example Potekhin et al. (2015b).

9.3.1.4 Inner Crust: Free Neutron Transport

In the inner crust of a neutron star the density becomes sufficiently high for neutrons
to detach from nuclei. The structure of the inner crust then consists of a lattice of
nuclear clusters (where charged protons are localized) alongside with the gas of
unbound (or ‘free’) neutrons, see, e.g., Chamel and Haensel (2008). In addition,
the neutrons are believed to form Cooper pairs in the 1S0 channel. The charge
distribution in the nuclear clusters in the inner crust differs from the point-like nuclei
in the outer crust. This is taken into account by introducing nuclear form factors
in the electron-nuclei scattering potential. These corrections have been included
by Gnedin et al. (2001) for Coulomb logarithms relevant to thermal and electrical
conductivities and by Chugunov and Yakovlev (2005) for shear viscosity. The finite
size of the charge distribution generally reduces the collision frequencies and hence
increases the values of electron transport coefficients.

In the presence of a large amount of free neutrons, electron-neutron scattering
can become important. The relativistic electrons interact with the neutron spins
(magnetic moments). This contribution was analyzed by Flowers and Itoh (1976).
Recently, an induced interaction between electrons and neutrons was proposed
(Bertoni et al. 2015), which can be effectively understood as occurring via exchange
of lattice phonons. However, Bertoni et al. (2015) found that the contribution
from this interaction is never relevant when calculating kinetic coefficients in
the inner crust. In contrast, a similar interaction can be important in the core
(see Sect. 9.4.1.4). If neutrons are superfluid, both these contributions are further
suppressed.

Since the gas of unbound neutrons is present in the inner crust, they can
also contribute themselves to the transport properties. For instance, the thermal
conductivity becomes a sum of electron and neutron contributions, κ = κe+κn. The
neutron contribution for normal neutrons was discussed by Bisnovatyi-Kogan and
Romanova (1982) and more recently by Deibel et al. (2017), and it was found to be
negligible compared to the electron contribution, except probably the region near the
crust-core boundary (Deibel et al. 2017). We are not aware of any calculations for
the shear viscosity of the neutron fluid in the inner crust. The potential importance
of the free neutron transport is further reduced if one takes into account that the
unbound neutrons move in the periodic potential of the nuclear lattice, hence their
spectrum shows a band structure. Chamel (2012) has argued that due to Bragg
scattering of neutrons the actual density of conducting neutrons that participate in
transport is much smaller than the total density of unbound neutrons, which further
reduces the role of neutrons.

When neutrons are superfluid, a collective superfluid mode (‘superfluid
phonons’) can contribute to transport, as explained in Sect. 9.2.3.4. Initial estimates
suggested that the superfluid phonon contribution to the thermal conductivity can
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be important in magnetized stars (Aguilera et al. 2009). However, more detailed
considerations which include the neutron band structure have shown that this
contribution is always less than the contribution of lattice phonons (Chamel et al.
2013, 2016). We will come back to collective modes in the discussion of the
core, see Sects. 9.4.1.4 and 9.4.2.3 for superfluid phonons in nuclear matter, and
Sects. 9.5.4.2 and 9.5.5.2 for superfluid phonons in quark matter.

9.3.1.5 Transport in a Magnetic Field

The magnetic field B in the crust modifies the motion of charged particles in the
directions perpendicular to the direction of the magnetic field b ≡ B/B. It can be
strong enough to have an influence on the transport properties. Electrons are light
and thus lower fields affect their transport (compared to the fields needed to affect
ions). We start from the situation where the electron motion across the magnetic
field is not quantized. In this case, magnetic field effects are characterized by the
Hall magnetization parameter

ωgτ = 1760
B12√
1+ x2

r

τ

10−16 s
, (9.62)

where τ is a characteristic relaxation time, B12 ≡ B/(1012 G), and ωg =
|e|B/(m∗ec) is the electron gyrofrequency, which is related to the electron cyclotron
frequency ωc = |e|B/(mec) by ωg = ωc/

√
1+ x2

r . If ωgτ � 1, the electron
transport becomes anisotropic. Let us first consider the electrical and thermal
conductivities (the perturbation of multiplicity l = 1, see Sect. 9.2.2). The general
expressions for the currents (9.23) are modified such that the kinetic coefficients
become tensors instead of scalars κ, σ, QT → κ̂, σ̂ , Q̂T . Accordingly, one
introduces the effective relaxation time tensors τ̂ σ,κ via Eq. (9.46). The symmetry
relations for the kinetic coefficients in isotropic media suggest that these tensors
have only three independent components. If one aligns the z-axis along b, these are
longitudinal τ̂zz ≡ τ‖, transverse τ̂yy = τ̂xx ≡ τ⊥, and Hall terms τ̂xy = −τ̂yx ≡ τ1.
These tensors are found from the solution of the linearized Boltzmann equation
in an external magnetic field. The procedure is similar as described in Sect. 9.2.2.
However, now the force R contains the magnetic field contribution, and the term
e
c
w × B

∂δf
∂p

must be retained in Eq. (9.18) (Ziman 2001). One usually adopts the
relaxation time approximation (9.32), where the relaxation time τ (ε) is taken from
the non-magnetic problem. In this approximation, the solution to the linearized
Boltzmann equation gives

τ‖ = τ , τ⊥ = τ

1+ (ωgτ)2
, τ1 = ωgτ

2

1+ (ωgτ)2
. (9.63)
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In fact, an averaging of these relaxation times should be performed following
Eq. (9.30). However, in degenerate matter it is sufficient to set τ = τ (μ), like in the
non-magnetized case. In the limit of weak magnetization, ωgτ � 1, one has τ‖ =
τ⊥ = τ and τ1 = 0. In the opposite case of a large Hall magnetization parameter,
the electron transport across the magnetic field becomes strongly suppressed and
ion or neutron contributions can become important.

If the magnetic field is sufficiently strong, the quantization of the transverse
electron motion can no longer be neglected. This happens when h̄ωg � kBT .
The electrons then occupy several Landau levels (weakly quantizing field) or only
the lowest Landau level (strongly quantizing field). In either case, the magnetic
field also modifies the thermodynamic properties of the system. Transport along
and across the magnetic field must be considered separately. The thermal and
electrical conductivities in a quantizing magnetic field in different regimes were
investigated by many authors (Kaminker and Yakovlev 1981; Yakovlev 1984;
Hernquist 1984; Potekhin 1996; Potekhin and Yakovlev 1996). The results for both
quantizing and non-quantizing fields in the relaxation time approximation were
reconsidered and summarized by Potekhin (1999). He suggested that in the case
of strongly degenerate electrons the form of Eq. (9.63) holds, but two different
relaxation times τ must be used in the expressions for the parallel component
τ‖ and the transverse components τ⊥ and τ1. In the weakly quantizing limit,
these two relaxation times oscillate around τ , approaching it in the non-quantizing
limit. Based on the model of the effective electron-ion potential (Potekhin et al.
1999) (see Sect. 9.3.1.1), Potekhin (1999) constructed useful fitting expressions to
calculate Coulomb logarithms appropriate for thermal and electrical conductivities
of magnetized electrons in both quantizing and non-quantizing limits in liquid or
solid neutron star crusts, as long as quantum effects on the ion motion can be
ignored, i.e., at T � Tpi. By construction, these expressions provide transport
coefficients which behave smoothly across the liquid-solid phase transition (recall
the discussion in Sect. 9.3.1.1).

Recently, finite-temperature effects on the electrical conductivity of warm
magnetized matter in the neutron star crust were discussed by Harutyunyan and
Sedrakian (2016). These authors used the relaxation time approximation, but
included also the transverse plasmon exchange channel when calculating the
electron-ion transport cross-section. This channel was found to be suppressed by
a small factor kBT/(mic

2) and does not contribute to the relaxation time.
All results for transport coefficients in magnetized matter described above were

based on various sorts of the relaxation time approximation. This approach is
justified if the scattering probability does not depend on B and if the scattering
is elastic. Both these approximations fail in general at low temperatures, when the
crust is solid (e.g., Baiko 2016; Chugunov and Haensel 2007). In this case, a more
general expression for the collision integral must be used, and the solution of the
Boltzmann equation becomes more complicated. Unfortunately, the construction
of the variational principle in the magnetized case is challenging (Ziman 2001).
In the standard approaches, the solution of the Boltzmann equation corresponds
only to a stationary point of the variational functional among the class of the
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trial functions, not to its maximum.7 However, for degenerate matter, relying
on the experience from the non-magnetized case, one expects the lowest-order
expansion of the deviation function � to give appropriate results. Based on this
expectation, Baiko (2016) studied electron electrical and thermal conductivities
in the magnetized, solid crust employing the Ziman (2001) approach. He used
the one-phonon approximation for the electron-lattice interaction and took into
account the phonon spectra distortion due to the magnetic field. The magnetic field
leads to the appearance of a soft phonon mode, with quadratic dispersion at small
wavenumbers. This mode is easier to excite than the usual non-magnetized acoustic
phonon, therefore the electrical and thermal resistivities increase. Employing the
lowest order of the variational method, and aligning the magnetic field along one
of the symmetry axes of the crystal, Baiko (2016) found that the thermal and
electrical conductivity tensors are expressed via effective relaxation times as in
Eq. (9.63), but like for a quantizing magnetic field, two different relaxation times
enter the longitudinal and transverse parts. The difference between these effective
relaxation times increases with magnetic field. At low temperatures, T � Tpi, both
relaxation times are appreciably larger than in the field-free case. The results of
Baiko (2016) are strictly valid in the non-quantizing case. In this case, phonons
are weakly magnetized. However, the results are also relevant for weakly quantized
fields, when electrons populate several Landau levels, and yield estimates of the
transport coefficients averaged over the quantum oscillations. The most relevant
case of highly magnetized phonons, where the influence of the magnetic field on
κ and σ is largest, corresponds to the strongly quantizing magnetic field, where
electrons populate only the lowest Landau level and the approach used by Baiko
(2016) is inappropriate. An accurate analysis of the transport properties of quantized
electrons in strongly magnetized Coulomb crystals has yet do be done.

The effects of a magnetic field on the shear viscosity of the crust has not received
as much attention as the thermal and electrical conductivities. The electron shear
viscosity was considered by Ofengeim and Yakovlev (2015) for the non-quantizing
magnetic field, taking into account only electron-ion collisions in the relaxation-
time approximation. In an anisotropic medium, where the anisotropy is for instance
caused by an external magnetic field, the viscous stress tensor contains the fourth-
rank tensor ηαβγ δ instead of the scalar coefficient η. Symmetry constraints leave
five independent shear viscosity coefficients η0 . . . η4 (Pitaevskii and Lifshitz 2008).
For degenerate electrons, the expressions for the five shear viscosity coefficients
in the relaxation time approximation are rather simple (Ofengeim and Yakovlev
2015). The coefficients η0, η2, and η4 are given by Eq. (9.46d) where τ‖, τ⊥, and
τ1 from Eq. (9.63) are used, respectively. The coefficient η0 is independent of B
and can be called longitudinal viscosity in analogy to longitudinal conductivities.
The two remaining coefficients can be found from the relations η1(B) = η2(2B)
and η3(B) = η4(2B). The ‘Hall’ viscosity coefficients η3 and η4 do not enter

7A promising variant of the variational principle was recently suggested by Reinholz and Röpke
(2012), where the positive-definite variational functional was proposed.
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the expression for the energy dissipation rate. More accurate calculations of the
shear viscosity of the magnetized neutron star crust should deal with the various
effects outlined in the previous discussion on conductivities. This remains for future
studies.

9.3.2 Transport in the Pasta Phase

As the density in the inner crust increases, the size of the nuclei—or better: the
size of the nuclear clusters—increases until the clusters start to overlap. The density
at the crust-core interface ρcc, where nuclei are fully dissolved in uniform nuclear
matter, is about ρcc ≈ ρ0/2 = 1.4 × 1014 g cm−3, where ρ0 is the mass density
at nuclear saturation. It is now generally believed that the transition region hosts
several phases that are characterized by peculiar shapes of the nuclear clusters,
reminiscent of various shapes of pasta. Hence the term ‘nuclear pasta’ for these
phases. Loosely speaking, when the spherical nuclear clusters start to touch, as
a result of the competition between the nuclear attraction and Coulomb repulsion
of protons, it may become energetically favorable for them to rearrange and form
elongated structures like rods, or two-dimensional slabs. This was first pointed out
by Ravenhall et al. (1983) and Hashimoto et al. (1984). In a simple picture, five
subsequent phases appear as we increase density, i.e., as we move from the crust
into the core of the star: first, usual large spherically shaped clusters (‘gnocchi’),
then cylindrical rods (‘spaghetti’), then plane-parallel slabs (‘lasagna’), followed
by the inverted phases, with rod-like voids, then spherical voids (‘anti-gnocchi’ or
‘swiss cheese’) in nuclear matter. At high temperature, the pasta is in the liquid state,
but at low temperatures it is thought to freeze in ordered or disordered structures, for
example in a regular lattice of slabs. The pasta region is estimated to exist between
densities of about 1014 g cm−3 and ρcc, being about 100 m thick; the total mass of
the pasta layer can be as large as the mass of the rest of the crust. The appearance
of the pasta phases in simulations depends on the details of the interaction and
implementation, and there are models that predict less pasta phases, mixtures of
different phases, or do not predict the pasta phases at all (Douchin and Haensel
2000; Oyamatsu and Iida 2007). In modern models, where large-scale simulations
are employed, there is a rich variety of possibilities for pasta phases, see for instance
Alcain et al. (2014), Schneider et al. (2014), Horowitz et al. (2015), Berry et al.
(2016), and Caplan and Horowitz (2017) and Yakovlev (2015) for more detailed
reviews.

The complexity of the nuclear pasta naturally suggests that its transport prop-
erties can be very different from the rest of the crust. The main contribution to
the conductivities and shear viscosity comes from electrons which now scatter
off the non-trivial charge density fluctuations of the pasta phase. In applications,
it is not unreasonable to treat the transport coefficients for the pasta phase as
phenomenological quantities. In analogy to the treatment of disorder in the crust,
one can introduce an effective impurity parameter Q̃ to parametrize the transport
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coefficients. For instance, assuming that the pasta layer has much lower electrical
conductivity (with Q̃ ≈ 100) than the rest of the crust, Pons et al. (2013) were
able to explain the existence of the maximal spin period of X-ray pulsars (see also
Viganò et al. (2013) for the effect of the resistive pasta layer on the magnetic field
evolution of isolated neutron stars). In a similar way, assuming that the pasta is a
thermal insulator with Q̃ ≈ 40, Horowitz et al. (2015) were able to explain the late-
time crustal cooling in the quasi-persistent X-ray transient MXB 1659–29 (Cackett
et al. 2013). Notice that the effective impurity parameter, of course, does not have
to be the same when different transport coefficients κ , σ , or η are considered.

Horowitz and Berry (2008) computed shear viscosity and thermal conductivity
of the pasta phase based on classical molecular dynamics simulations. The electrons
scatter off the charged protons, whose correlated dynamics is described by the
proton structure factor Sp. Thus, one can use the expressions given in the previous
section for electron-ion scattering with Sp replacing S, and using the proton charge
Z = 1. As pointed out by Horowitz and Berry (2008), this approach applies also
if nuclei form spherical clusters (ions) of a charge Z, which will be reflected
in the proton structure factor. The results show that the transport coefficients
obtained in this way do not change dramatically when non-spherical pasta phases
are considered. In fact, Horowitz and Berry (2008) obtained the same order-of-
the magnitude values as can be inferred from Chugunov and Yakovlev (2005),
where spherical nuclei were considered in the same density range. Since classical
molecular dynamics simulations are used, these results are applicable only for high
temperatures. Horowitz and Berry (2008) set T = 1 MeV and the proton fraction
Yp = 0.2. These values do not apply directly to neutron star crusts, and the authors
discuss how smaller proton fractions and smaller temperatures might modify their
conclusions. Similar conclusions were reached recently by Nandi and Schramm
(2018) based on quantum molecular dynamics simulations for a wider range of
parameters than in Horowitz and Berry (2008).

Horowitz and Berry (2008) and Nandi and Schramm (2018) used the expres-
sion (9.52) for calculating the Coulomb logarithm. This expression is based on
the angular-averaged structure factor Sp(q), which assumes isotropic, or nearly
isotropic, scattering. It is clear that this is not the case in nuclear pasta. One
can imagine that electron scattering should be much stronger in directions across
the pasta clusters than in directions along them. This is indeed reflected in the
strong dependence of the structure factor Sp(q) on the direction of the vector q

(Schneider et al. 2014, 2016). Transport in nuclear pasta is essentially anisotropic,
and the transport theory of anisotropic solids must be applied. The solution of the
Boltzmann equation becomes more complicated since the collision integral involves
anisotropic scatterings. The transport coefficients in anisotropic materials become
tensor quantities, just like for the magnetized case considered above, where the
anisotropy (gyrotropy) was induced by the magnetic field.
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If the scattering is still elastic, but anisotropic, the relaxation-time approxima-
tion (9.32) generalizes to

Ie = −
∑
lml′m′

δf lm(ε)
[
ν̂e(ε)

]l′m′
lm

Yl′m′(�p) , (9.64)

where ν̂e(ε) is the inverse relaxation time (collision frequency) matrix. In the

isotropic case, one has
[
ν̂e(ε)

]l′m′
lm
= [τ le(ε)]−1

δll′δmm′ , and we recover Eq. (9.32).

In principle, the expression for the matrix elements
[
ν̂e(ε)

]l′m′
lm

can be expressed
in integral form employing the proton structure factor Sp(q) in a similar way to
Eqs. (9.51)–(9.52).

An essential property of the general anisotropic case is that the perturbations
of different multiplicities l can mix. It is customary to assume, however, that this
mixing is small and can be neglected, so that l = l′ in Eq. (9.64), see for instance
Askerov (1981). Yakovlev (2015) employed this approximation and considered
electrical and thermal conductivities (i.e., l = 1) of the anisotropic pasta, including
also a magnetic field, and assuming that the pasta phase has a symmetry axis
(not necessarily aligned with the magnetic field). The l = 1 perturbation of the
distribution function can be written as � = −w · ϑ , where the vector ϑ has to
be determined. If we orient the z-axis of the laboratory system along the pasta
symmetry axis, the generalized relaxation time approximation can be written as
(Yakovlev 2015)

Ie = −∂f
(0)

∂ε

[
νa(ε)wzϑz + νp(ε)wp · ϑp

]
, (9.65)

where the collision frequencies νa and νp describe relaxation along and across the
symmetry axis, respectively, where wp is the electron velocity component transverse
to the symmetry axis, and ϑp is the corresponding component of ϑ . Using this
expression for the collision integral, one solves the Boltzmann equation containing
electric field, temperature gradient, and external magnetic field to find the vector ϑ .
Then, the thermal and electrical conductivity tensors (and the thermopower) can be
found from the expressions for the currents. They remain tensor quantities even in
the absence of an external magnetic field. Since the relaxation time approximation
is used, the thermal and electrical conductivity tensors are still related via the
Wiedemann-Franz law (9.47). Yakovlev (2015) discussed the general structure of
the solutions and their qualitative properties for the case where one of the principal
collision frequencies is much larger than the other, say νp � νa . That means that
the heat or charge transport is much more efficient along the symmetry direction
of the pasta phase than across it. The net effect of this anisotropy on the transport
in the inner crust of the neutron star will depend on the predominant orientation
of the nuclear clusters (they can be aligned with the radius, be predominantly
perpendicular, or form a disordered domain-like structure). We refer the reader to the
original work (Yakovlev 2015) for a discussion of the rich variety of possibilities.
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Microscopic calculations of the relaxation time tensor for nuclear pasta remain
a task for future studies. Schneider et al. (2016) made a step towards this goal by
running a large classical molecular dynamics simulation. They find a pasta slab
phase with a number of topological defects and calculate the static proton structure
factor Sp(q), including the full angular dependence. While they do not present a full
calculation of the transport properties, they perform simple estimates for the angular
dependence of the kinetic coefficients. They find that the relaxation along two
symmetry axes can differ by an order of magnitude, thus supporting the assumptions
of Yakovlev (2015). As before, the molecular dynamics simulations were performed
at high temperatures and proton fractions and thus cannot be directly applied to the
neutron star crust. However, they found that topological defects present in the pasta
decrease the values of transport coefficients, and this decrease can be described
by the effective impurity parameter Q̃ ∼ 30, a value having the same order of
magnitude as inferred from astrophysical observations (Pons et al. 2013; Horowitz
et al. 2015). This suggests that detailed investigations of the transport properties in
the pasta phase along these lines are promising directions for the future.

9.4 Transport in the Core: Hadronic Matter

At densities above ρcc, the nuclear clusters dissolve completely and the matter in
neutron stars is uniform and neutron-rich. The simplest composition is npeμ matter,
where muons (μ) appear when the difference between neutron and proton chemical
potentials becomes larger than the muon mass, which occurs at densities around ρ0.
The matter is usually thought to be in (or close to) equilibrium with respect to weak
processes. The condition of beta-decay and the inverse process of lepton capture to
proceed at the same rate then imposes the following relation between the chemical
potentials,

μn = μp + μ#, (9.66)

where # stands for electrons or muons, such that μe = μμ. We have omitted
the neutrino chemical potential μν because at typical neutron star temperatures
neutrinos leave the system once they are created (exceptions are the hot cores
of proto-neutron stars, binary neutron star mergers, and supernovae interiors,
where neutrinos can be trapped and thus μν 
= 0). This beta-equilibrated matter,
together with the condition of electric charge neutrality, is highly asymmetric, or
neutron-rich: the typical proton fraction in neutron star cores is xp � 15% (e.g.,
Haensel et al. 2007). Electrons and muons form almost ideal degenerate gases
(electrons are ultra-relativistic, while muons become relativistic soon after their
threshold). The nucleons, however, form a highly non-ideal, strongly-interacting
liquid, where nuclear many-body effects are of utmost importance. In this Sect. we
discuss the transport properties of this high-density nuclear matter, starting from
the non-superfluid case, and including effects of superfluidity later on. We will
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also briefly discuss some of the effects of hyperons, in particular in Sect. 9.4.3,
where we address the bulk viscosity of hadronic matter. At even larger densities,
it is conceivable that a transition to deconfined quark matter occurs. The transport
properties of various possible phases of quark matter are discussed separately in
Sect. 9.5.

9.4.1 Shear Viscosity, Thermal and Electrical Conductivity

9.4.1.1 General Formalism

Transport coefficients of nuclear matter in neutron star cores are calculated within
the transport theory for Landau Fermi liquids, outlined in Sect. 9.2.3.2, adapted to
multi-component systems. The response to external perturbations is described by a
system of Landau transport equations for quasiparticles (9.37), whose solution, as
discussed in Sect. 9.2.3.2, is equivalent to the solution of the system of linearized
Boltzmann equations for the transport coefficients we are interested in. For a given
quasiparticle species ‘c’, the collision term of the linearized Boltzmann equation
Ic = ∑

i Ici contains a sum of collision integrals for collisions with other species
‘i’, each of the form (9.31), with binary transition probabilities Wci . Depending on
the antisymmetrization of the particle states in the calculation of Wci , the symmetry
factor (1+ δci)

−1 must be included in (9.31) to avoid double counting of collisions
within the same particle species.

Quasiparticle scattering occurs within the thermal width of the Fermi surface,
and thus the typical energy transfer in the collision event is of the order of tem-
perature. Therefore, the collisions cannot be considered elastic, and the relaxation
time approximation—frequently used in the previous section, where electron-ion
collisions were considered—is generally not applicable. The system of transport
equations must be solved retaining the full form of the collision integrals on the
right-hand side of the Boltzmann equation, for instance with variational methods.

Some general properties of the transport coefficients can be deduced imme-
diately from Eq. (9.31). Due to the strong degeneracy, the Pauli blocking factors
f (0)f

(0)
1 (1− f ′(0))(1− f ′(0)1 ) effectively place all quasiparticles on their respective

Fermi surfaces, and for each momentum integration in Eq. (9.31) we can write

d3p ≈ pFm
∗dε d�p , (9.67)

where the change from momentum to energy integration has produced the density
of states on the Fermi surface ∝ p2

F /vF = m∗pF . It is customary to describe
the deviation function �(ε) in terms of a series expansion over the dimensionless
excitation energy x = (ε − μ)/(kBT ). Moreover, in traditional Fermi liquids, the
rate Wci is considered to be independent of the energy transfer in the collisions.
This leads to a T 2 behavior of the collision integral (9.31) irrespective of the details
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of collisions, which only reorient the quasiparticle momenta, leaving their absolute
values intact.

In the simplest variational solution, the deviation functions are assumed to have
the form (9.25) or (9.28), appropriate for the perturbation in question, with a
constant effective relaxation time (9.33) for each quasiparticle species. Then the
Boltzmann equation reduces to a system of algebraic equation for the effective
relaxation times

1 =
∑
i

νciτc +
∑
i 
=c

ν′ciτi, (9.68)

where, according to the discussion above, the effective collision frequencies are
νci ∝ T 2m∗cm∗2i 〈Wci 〉tr, with a slightly different effective mass dependence for the
mixing terms, ν′ci ∝ m∗2c m∗i . Here, 〈Wci〉tr is an effective transport scattering cross-
section, which is the angular average of Wci at the Fermi surface with appropriate
kinematic factors [cf. Eqs. (9.51)–(9.54)]. Hence, the effective relaxation times τc ∝
T −2, and this temperature dependence is reflected in the transport coefficients. Thus
in a normal Fermi liquid one obtains

η ∝ T −2, σ ∝ T −2, κ ∝ T −1. (9.69)

Notice that the effective collision frequencies are not the same for κ , η, and σ .
The exact result obeys the same general properties as the variational solution.

The correction to the variational solution for any transport coefficient, say κ , can be
written as κ = Cκκvar whereCκ is a temperature-independent correction factor. This
factor is found from the solution of a system of dimensionless integral equations
for �c(x). For a one-component Fermi liquid, the exact solution was constructed
in Brooker and Sykes (1968), Sykes and Brooker (1970), Højgård Jensen et al.
(1968) in the form of a rapidly converging series, see Baym and Pethick (1991) for
details. The integral equation for �c(x) can be also solved numerically by iterative
methods. In any case, the correction constants Cκ,σ,η were found to be in the range
1–1.4, which is unimportant for practical purposes in astrophysical applications. An
exact analytic expression for the spin response of the Fermi liquid in an external
(oscillating) magnetic field was recently constructed from the transport equation
by Pethick and Schwenk (2009). The exact solution of the transport equation
was generalized to multi-component Fermi liquids in the neutron star context by
Flowers and Itoh (1979) and then analyzed in a general form by Anderson et al.
(1987). Owing to large uncertainties present in the various parameters describing
the neutron star matter, the simplest variational result seems to be a sufficient
approximation in all cases.

For npeμ matter in neutron star cores, the collision frequencies in Eq. (9.68)
are determined by electromagnetic interactions between charged particles, and
by strong interactions between baryons. It turns out that the lepton and nucleon
subsystems in Eq. (9.68) decouple and can be considered separately (Flowers and
Itoh 1979). Then, the thermal conductivity (or shear viscosity) can be written as
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κ = κeμ + κnp. The situation is different for the electrical conductivity, which is
relevant in the presence of a magnetic field, see Sect. 9.4.1.5.

9.4.1.2 Lepton Sector

The lepton (electron and muon) transport coefficients are mediated by the collisions
within themselves and with charged protons, which now can be considered as
passive scatterers. Since the electromagnetic collisions are long-range (and hence
small-angle), the corresponding collision frequencies are determined by the charac-
ter of plasma screening (see Sect. 9.2.3.1). Explicitly, the differential transition rate
Wci is proportional to the squared matrix element for electromagnetic interaction,
which, in an isotropic plasma, can be written as

Mci ∝ J
(0)
1 J

(0)
2

q2 +2l(ω, q)
− J 1t · J 2t

q2 − ω2 +2t(ω, q)
, (9.70)

where ω and q are the energy and momentum transferred in the collision, respec-
tively, J (0) and J t are time-like and transverse (with respect to q) space-like
components of the transition current, respectively, and 2l and 2t are the longi-
tudinal and transverse polarization functions. In conditions present in neutron star
cores, the long-wavelength q � pF and static ωvF � q limits are appropriate since
the transferred energy is of the order of the temperature, ω ∼ T . The first term in
Eq. (9.70) corresponds to the electric (Coulomb) interaction, while the second term
corresponds to the magnetic (Ampère) part of the interaction. The second term is
essentially relativistic and is suppressed for non-relativistic particles by the ratio
Jt/J

(0) ∝ u/c. Therefore, the magnetic term is not that important in the crust (see
Sect. 9.3.1), where the dominant contribution to transport coefficients comes from
electron collisions with heavy non-relativistic ions, but it becomes significant in the
core. In the context of plasma physics, the relativistic collision integral (9.31), taking
into account longitudinal and transverse screening as in Eq. (9.70), was first derived
by Silin (1961). Alternatively, the two terms in Eq. (9.70) can be viewed as resulting
from interaction via longitudinal and transverse virtual plasmon exchange.

The dominance of the transverse plasmon exchange in the transport properties
of relativistic plasmas was realized by Heiselberg et al. (1992) and worked out
by Heiselberg and Pethick (1993) in the context of unpaired quark matter, see
Sect. 9.5.5.1. The reason is as follows. To lowest order, the longitudinal screening is
static, 2l = q2

l , where q2
l is the Thomas-Fermi screening wavenumber. Therefore,

the dominant contribution to the part of the collision frequency that is mediated by
the longitudinal interaction comes from q � ql . In contrast, the transverse plasmon
(photon) screening is essentially dynamical in the from of Landau damping, so that

2t = i
π

4

ω

qc
q2
t , (9.71)



498 A. Schmitt and P. Shternin

where qt ∼ ql is a characteristic transverse wavenumber (ql = qt if all charged
particles are ultra-relativistic). Hence, the dominant contribution to the ‘transverse’
part of the collision frequency comes from q � [πω/(4cqt)]1/3qt � ql . The
latter inequality is due to the low temperature (ω ∼ T ) and has two important
consequences. First, the transverse plasmon exchange dominates the collisions
between the relativistic particles in a degenerate plasma, and second, the scattering
probability depends on the energy transfer of the collision. As a consequence,
the temperature behavior of lepton transport coefficients in neutron star cores
is essentially non-Fermi liquid (in contrast to the general theory outlined in the
previous section). The modification of the temperature behavior depends on the
kinematics of the problem in question and on the relation between the ‘longitudinal’
and ‘transverse’ contributions. For the thermal conductivity, the effective collision
frequency becomes νci ∝ T if transverse plasmon exchange fully dominates the
interaction, while for shear viscosity and electrical conductivity in the same limit,
νci ∝ T 5/3 (Heiselberg and Pethick 1993). Note that the energy dependence of the
scattering rate does not change the conclusion that the simple variational solution
described by Eq. (9.68) remains a sufficient approximation. It can be shown that the
correction to the variational solution for the transverse-dominated collisions does
not exceed 10% (Shternin and Yakovlev 2007, 2008a).

The lepton transport coefficients for npeμ matter with correct account for
the transverse plasmon exchange were analyzed in Shternin and Yakovlev (2007,
2008a), Shternin (2008b). The low-temperature result (when the transverse plasmon
exchange dominates) for the thermal conductivity is (Shternin and Yakovlev 2007)

κeμ = κe + κμ = π2

54ζ(3)

kBc(p
2
Fe + p2

Fμ)

h̄2αf

= 2.43× 1022
(
nB

n0

)2/3 (
x

2/3
e + x2/3

μ

) erg

cm s K
, (9.72)

where n0 = 0.16 fm−3 is the number density at nuclear saturation, nB is the
total baryon number density, xe and xμ are the electron and muon number density
fractions, respectively. The expression for the electron and muon contributions to the
shear viscosity (Shternin and Yakovlev 2008a) ηeμ = ηe + ημ is more cumbersome
in analytical form, and we only give the numerical result

ηeμ = 8.43× 1020
(
nB

n0

)14/9( T

108 K

)−5/3 x2
e + x2

μ

(x
2/3
e + x

2/3
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2/3
p )2/3

g

cm s
.

(9.73)

We also give the expression for the electrical conductivity of non-magnetized npeμ
matter (Shternin 2008b),

σ = 1.86× 1030
(
nB

n0

)8/9 (
T

108 K

)−5/3 x
1/3
e + x

1/3
μ + x

1/3
p

(x
2/3
e + x

2/3
μ + x

2/3
p )2/3

s−1. (9.74)



9 Reaction Rates and Transport in Neutron Stars 499

This result for the electrical conductivity is already the full result for npeμ matter
(and thus we have not added the subscript ‘eμ’), because the baryon sector
(neutrons) does not contribute to the electrical conductivity in the non-magnetized
case. The result (9.74) is of the same (very large) order of magnitude as the classical
estimate of Baym et al. (1969), rendering Ohmic dissipation in neutron star cores
insignificant. In magnetized matter, the situation changes dramatically, as we will
discuss in Sect. 9.4.1.5.

The thermal conductivity is temperature-independent and depends only on the
carrier Fermi momentum. The result (9.72) is valid for all practically relevant
temperatures and densities in (non-superfluid) neutron star cores (Shternin and
Yakovlev 2007). In contrast, the result (9.73) can significantly overestimate the shear
viscosity since the dominance of transverse collisions is not always strict (especially
at lower densities), for details see Shternin and Yakovlev (2008a) and Kolomeitsev
and Voskresensky (2015). The same is true for the electrical conductivity in
Eq. (9.74). A relatively compact expression obtained from a fit for ηeμ that is
valid in a broad temperature and density range can be found in Kolomeitsev and
Voskresensky (2015).

We conclude this subsection by noting the advantage of the lepton kinetic coef-
ficients. Since they are mediated by electromagnetic collisions, the final analytical
expressions can be used for any equation of state (since they depend only on the
effective masses of charged particles and their Fermi momenta). In addition, they
can easily be updated to include other charged particles acting as passive scatterers,
for instance hyperons.

9.4.1.3 Baryon Sector

The nucleon transport coefficients in npeμ cores are governed by collisions between
neutrons and protons mediated by the strong interaction. Since nuclear matter in the
core of neutron stars is highly asymmetric (in other words, the proton fraction xp
is small), the proton contribution to transport coefficients is small, and it is enough
to treat them only as a passive scatterers for neutrons. In this case, the system of
equations (9.68) reduces to one equation for the effective neutron relaxation time
τn (e.g., Baiko et al. 2001). It is sometimes assumed that due to xp being small
the results for pure neutron matter are appropriate for neutron star cores, at least at
low densities. However, pure neutron matter turns out to be a bad approximation
for assessing the transport coefficients, since the protons cannot be ignored even if
xp ≈ 0.01 (Baiko et al. 2001; Shternin et al. 2013). The reason is that the effective
transport cross-section for neutron-proton collisions is larger than that for neutron-
neutron collisions due to inclusion of the Tz = 0 isospin channel in scattering, and
different kinematics of these collisions (Shternin et al. 2013). Applying the general
theory outlined in Sect. 9.4.1.1 for neutrons scattering off neutrons and protons, one
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obtains the following results for thermal conductivity and shear viscosity,

κn = 1.03× 1022 nn
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)−1

×
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where mN = 939 MeV/c2 is the nucleon mass (neglecting the mass difference
between neutron and proton), and we have used the same notations as in Baiko et al.
(2001), Shternin and Yakovlev (2008a), Shternin et al. (2013), and Kolomeitsev
and Voskresensky (2015). The quantities Sκ/ηNN (N = n, p) are the quasiparticle
scattering rates Wci averaged with certain phase factors, for details see for example
Shternin et al. (2013), Shternin et al. (2017). They have the meaning of effective
transport cross-sections and are normalized by the relevant nuclear force scale—the
inverse pion mass squared, m−2

π ≈ 20 mb in natural units. Note that the numerical
prefactors in Eqs. (9.75) include the correction constants Cκ ≈ 1.2 and Cη ≈ 1.05,
as discussed at the end of Sect. 9.4.1.1 (Shternin et al. 2013). These corrections are
of course irrelevant for most applications in neutron star physics.

The main ingredients for the calculation of the nucleon transport coefficients are
the effective masses of the nucleons m∗ on the Fermi surface and the quasiparticle
scattering rates Wci . Both quantities are strongly affected by in-medium effects and
should be calculated using a microscopic many-body approach. Thus, the results
for the nucleon transport coefficients are model-dependent and, in principle, their
calculation should be based on the same microscopic model as the calculation of
the equation of state. From Eqs. (9.75) we see that the effective mass enters the
expressions for the transport coefficients in fourth power (because it describes the
density of states and four quasiparticle states are involved in binary collisions). A
moderate modification of the effective masses thus results in a strong modification of
the transport coefficients. Therefore, the simplest way to include in-medium effects
is to compute the effective mass modification, but use the free-space scattering
rate which is well-known from experiment. This approach is particularly appealing
because of its universality. The resulting expressions can be used for any equation of
state of dense nuclear matter. Convenient fitting expressions for effective collision
frequencies within this approach can be found in Baiko et al. (2001), Shternin
and Yakovlev (2008a). Typical values of transport cross-sections at nB = n0 in
Eqs. (9.75) are Sκnn ∼ Sηnn ∼ Sηnp ≈ 0.2m−2

π , while Sκnp ≈ 0.4m−2
π . Note that

older results by Flowers and Itoh (1979), obtained via the same approach, turned out
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to be incorrect. Unfortunately, the in-medium modifications of the scattering rates
themselves can be substantial. At present, the theoretical uncertainties are rather
large and can result in order of magnitude differences in the final results.

Several many-body approaches have been employed in the calculation of the
transport coefficients. The main problem is to properly take into account the particle
correlations appearing in the strongly interacting liquid. Additional complications
arise from the need to include three-body nucleon forces, which are necessary
to reproduce the empirical saturation point of symmetric nuclear matter (see for
instance Baldo 1999). Results have been obtained within the Brueckner-Hartree-
Fock (BHF) scheme, where the in-medium G-matrix is used in place of the
quasiparticle interaction (Benhar et al. 2010; Zhang et al. 2010; Shternin et al.
2013, 2017), within the effective quasiparticle interaction constructed on top of the
G-matrix (Wambach et al. 1993) (for neutron matter only), within the in-medium T -
matrix approach (also for pure neutron matter) (Sedrakian et al. 1994), and using the
Correlated Basis Function and the cluster expansion technique (Benhar et al. 2010;
Benhar and Valli 2007; Carbone and Benhar 2011), which employs the variationally
constructed effective interaction. All these approaches start from ‘realistic’ nuclear
potentials, which are designed to fit the data on the free-space scattering phase shifts
and properties of bound few-body systems.

A somewhat different approach is based on the Landau-Migdal Fermi-liquid
theory for nuclear matter. In this approach, the long-range pion-exchange part
of the nucleon-nucleon interaction is considered explicitly, while the short-range
part of the potential is absorbed into a number of phenomenological constants.
The key point of the theory is an in-medium modification of the pion propagator
(Migdal et al. 1990; Migdal 1978) leading to the softening of the pion mode. This
softening is strongly density-dependent and becomes important at nB � n0. At
larger densities, this can lead to pion condensation. It is assumed that above the
saturation density n0, the nucleon quasiparticle scattering is fully determined by the
medium-modified one-pion exchange (MOPE), where also the interaction vertices
are modified due to short-range nuclear correlations. Since the pion mode is soft,
the effective range of the nucleon interaction increases, which leads to a strong
enhancement of the scattering rates, especially at high densities. As a consequence,
the effective collision frequencies in Eq. (9.68) become larger and the transport
coefficients reduce substantially. The calculations in this model (for pure neutron
mater) were performed by Blaschke et al. (2013) for thermal conductivity and by
Kolomeitsev and Voskresensky (2015) for shear viscosity.

Let us compare the lepton and nucleon contributions to the thermal conductivity
and shear viscosity of non-superfluid nuclear matter. The strong non-Fermi-liquid
behavior of the lepton thermal conductivity (remember that κeμ is constant in T )
makes it smaller than the baryon contribution κn ∝ T −1 regardless of the micro-
scopic model used to calculate the latter quantity. However, the key result is that
the thermal conductivity is large such that the neutron star core is isothermal (more
precisely, accounting for effects of general relativity, the redshifted temperature is
spatially constant), and the precise value of κ is not important. This value is only
interesting for the cooling of young neutron stars, as it regulates the duration of the



502 A. Schmitt and P. Shternin

thermal relaxation in the newly-born star (Gnedin et al. 2001; Shternin and Yakovlev
2008b; Blaschke et al. 2013). For instance, delaying the thermal relaxation due to the
decrease of κn in the MOPE model allowed Blaschke et al. (2013) to fit the cooling
data of the Cas A neutron star. The situation is different for the shear viscosity:
here, the leptonic contribution is proportional to T −5/3 to leading order and is not
damped at low temperatures. The calculations reported in the literature show that
ηeμ can be either larger or smaller than the nucleonic contribution ηn, see, however,
the discussion in Shternin et al. (2013).

All considerations above assume a uniform Fermi liquid. Let us briefly address
the possibility of proton localization, originally proposed by Kutschera and Wójcik
(1989, 1990). In this scenario, for small proton fractions, the protons in neutron star
cores can be localized in a potential well produced by neutron density fluctuations
induced by the protons themselves. The protons occupy some bound ground
state and do not form a Fermi sea. This model has its analogy in the polaron
problem in solids (Kutschera and Wójcik 1993). Recently, proton localization
was reconsidered for some realistic equations of state (Szmaglinski et al. 2006;
Kubis and Wójcik 2015). The authors find that protons can localize at densities
nB � (0.5 − 1) fm−3, i.e., well in the range that can occur in the interior of
neutron stars. The transport properties of nuclear matter with localized protons
were studied by Baiko and Haensel (1999). They considered npe matter, where
the localized protons are uncorrelated. Then the problem has much in common
with transport properties of the neutron star crust with charged impurities, see
Sect. 9.3.1.2. The electrons and neutrons now scatter off themselves and off the
localized protons. Unless the protons can be excited in their sites, the scattering
is elastic and the collision frequencies to be used in Eq. (9.68) become temperature-
independent and dominate over temperature-dependent collision frequencies for
other scatterings (cf. Sect. 9.3.1.2). Clearly, this leads to a strong decrease of
the transport coefficients at low temperatures compared to the results without
localization (Baiko and Haensel 1999). The consequences of proton localization
on neutron star cooling was investigated in Baiko and Haensel (2000), but other
possible astrophysical implications are largely unexplored. Baiko and Haensel
(1999) considered a completely disordered system of localized protons, and it was
proposed that these impurities can form a lattice (Kutschera and Wójcik 1995).

9.4.1.4 Effects of Cooper Pairing

So far we have neglected the effects of neutron and proton pairing on the transport
coefficients. Pairing directly affects the dissipation in the neutron and proton
subsystem since the structure of the excitations in superfluid matter is changed.
However, as we will see immediately, proton pairing also affects the leptonic
transport coefficients that were discussed in Sect. 9.4.1.2 without pairing.

We start by considering the electron and muon transport in the presence of proton
pairing in the 1S0 channel. The effect of proton superconductivity is twofold. First,
it modifies the scattering rates of leptons off the protons (the protonic excitations)
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and second, it modifies the screening properties of the plasma which regulates the
electromagnetic interaction in Eq. (9.70). In the static limit, the longitudinal part
of the polarization operator 2l , which describes longitudinal plasmon screening,
remains unaffected (e.g. Arseev et al. 2006; Gusakov 2010). In contrast, the
character of the transverse screening changes dramatically. The most important
difference from the non-superconducting case is that now the transverse screening
is predominantly static (2t 
= 0 for ω → 0). In this case, the collision probability
becomes ω-independent, which restores the standard Fermi-liquid behavior of the
collision frequencies between the electrons and muons, νci ∝ T 2.

The long-wavelength (q → 0) transverse plasmon (photon) in superconductor
acquires a Meissner mass. However, at larger q the screening mass gradually
drops and in the Pippard limit, qξ � 1, it becomes inversely proportional to
q . Here, ξ ∼ vFp/�p is the coherence length, with the energy gap �p in the
proton quasiparticle spectrum from Cooper pairing. It turns out that both the long
wavelength and Pippard limits may be applicable to the neutron star cores (Shternin
2018). Here we review the situation which is realized at high densities or low Δp,
where the Pippard limit for the transverse screening is relevant and refer to Shternin
(2018) for a more detailed discussion. At low temperatures T � Tcp, the protons
give the dominant contribution to the polarization function 2t , and one obtains [cf.
Eq. (9.71)]

2t ≈ παf p
2
Fp

�p

q
, (for qξ � 1) . (9.76)

Thus the characteristic screening wavenumber in this case is ∝ �
1/3
p instead

of ∝ ω1/3 in Sect. 9.4.1.2. The detailed behavior of screening at intermediate
temperatures and a crossover from static to dynamical screening was discussed by
Shternin and Yakovlev (2007, 2008a). They found that the ‘transverse’ part of the
collision frequencies dominates in this case as well.

Taking into account lepton collisions with protons is more involved. The main
low-energy excitations of the proton system are the single-particle excitations,
namely the Bogoliubov quasiparticles. In addition to the presence of the energy
gap in the quasiparticle spectrum, one needs to take into account that the number
of quasiparticles is not conserved. They can be excited from the Cooper pair
condensate, or coalesce into it. As a consequence, the collision integral describing
electron-proton scattering is more complicated than in Eq. (9.31). However, at low
temperatures the main effect of pairing is the exponential reduction of the number of
quasiparticles and thus the exponential reduction in the collision frequencies, νcp ∝
exp(−�p/T ) (Shternin and Yakovlev 2007, 2008a). Therefore, for temperatures
much lower than the critical temperature for proton pairing, T � Tcp, the
details of the lepton-proton collisions are not important, since they are suppressed.
The transport coefficients are dominated in this case by collisions in the lepton
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subsystem, and, taking into account the screening modification, one derives the
following compact leading-order expression for the thermal conductivity instead
of Eq. (9.72) (Shternin and Yakovlev 2007),

κSF
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(9.77)
This result shows the standard Fermi-liquid dependence κ ∝ T −1 and is several
orders of magnitude larger than the non-superfluid result (9.72). This is not really
important in practice since the star becomes isothermal in a short time in both cases.

Similarly, one can compute the low-temperature expression for the leptonic shear
viscosity (Shternin and Yakovlev 2008a),
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(9.78)

Comparing Eq. (9.78) with Eq. (9.73), we see that the effect of proton Cooper
pairing on the lepton shear viscosity is less dramatic than in the case of thermal
conductivity. This is due to a weaker dependence of η on the screening momentum
than κ . In turns out that Eq. (9.78) is a better approximation to the full result for
ηSF
eμ than the non-superfluid expression (9.73). The electrical conductivity in the

presence of proton pairing cannot be treated in similar simple way, see Sect. 9.4.1.5.
Recently, an effective lepton-neutron interaction was proposed by Bertoni et al.

(2015). The idea is that the neutron quasiparticle in the neutron star core is in fact
a neutron dressed by a neutron-proton cloud. Thus it possesses an effective electric
charge and interacts with charged leptons on the same ground as the protons.
Within field-theoretical language, this lepton-neutron interaction is induced by a
proton particle-hole excitation which is coupled to neutrons (Bertoni et al. 2015).
Estimates show that this effective interaction can be relevant when the protons are
in the superconducting state. Moreover, at T � Tcp, the effective lepton-neutron
collisions can dominate over the inter-lepton collisions, thus providing a dominant
contribution to lepton transport coefficients. A detailed rigorous treatment of this
interaction is yet to be done and would be highly desired. Notice that such a
coupling can also modify the screening properties of the photons in the nuclear
medium and therefore other collisions mediated by electromagnetic interactions.
This is currently under investigation (Stetina et al. 2018).

Let us turn now to the nuclear (hadronic) sector in the presence of pairing. Recall
that the main carriers are neutrons. If they are unpaired, but the protons are gapped,
only neutron-proton collisions are affected. This situation can be treated in a similar
way as the lepton-proton collisions above. The result has not yet been computed
in detail for T � Tcp, but at low temperatures the main effect is the exponential
suppression of the collision frequency (Baiko et al. 2001; Shternin and Yakovlev
2008a). The damping of neutron-proton scattering leads to increase of the neutron
effective relaxation times and, as a consequence, of neutron transport coefficients,
which are now governed by the neutron-neutron scattering only.
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A more interesting situation occurs if neutrons pair. In general, the transport
equations in the superfluid are complicated, as one needs to account for anomalous
contributions (the response of the condensate), just like in terrestrial fermionic
superfluids such as liquid 3He (Vollhardt and Wölfle 1990). However, the situation
simplifies greatly when the temporal and spatial scales of the external perturbation
are large compared to h̄�−1 ∼ 10−22 s and ξ ∼ 10−11 cm, which is the
appropriate limit for the transport coefficients. In this case, the response of the
condensate is instantaneous, such that it can be considered to be in local equilibrium.
Then, the kinetics of the system is described by the transport equation for Bogoli-
ubov quasiparticles, whose streaming (left-hand side) term reduces to a standard
streaming term of the Boltzmann equation (Vollhardt and Wölfle 1990), see also
Gusakov (2010) for the case of superfluid mixtures. The transport coefficients can
then, in principle, be calculated along the lines laid out in Sect. 9.4.1.1, provided
the collision integral is specified. The latter can be derived from the normal-
state collision integral by applying the Bogoliubov transformations. The resulting
expression takes into account non-conservation of quasiparticles. Since neutron
pairing in the core of a neutron star is expected to occur in the anisotropic 3Pj state,
additional complications arise. This is analogous to certain phases of superfluid
3He, which break rotational symmetry as well, resulting in anisotropic transport
properties (Vollhardt and Wölfle 1990). It is also comparable to anisotropic transport
in nuclear pasta phases discussed in Sect. 9.3.2. In the context of neutron stars, this
was not studied in detail (see however Shahzamanian and Yavary 2005 and Juri
and Hernández 1988). A thorough investigation of the Bogoliubov quasiparticle
contribution to transport coefficients remains an open problem, but the key features
at low temperatures can be worked out, neglecting all the modifications to the
quasiparticle collision integral except the spectrum modification by the gap (for the
neutron thermal conductivity this was done by Baiko et al. 2001).

Naively, one might think that since the number of available quasiparticles
is exponentially suppressed at low temperatures, their contribution to transport
coefficients is exponentially suppressed as well. This is true if there exists a
scattering mechanism which effectively limits the quasiparticle mean free path. If,
however, the main contribution to the collision probability comes from collisions
between the Bogoliubov quasiparticles, it is suppressed roughly by the same factor.
As a result, the exponential factors cancel each other, and one is left with the
standard Fermi-liquid dependence of the thermal conductivity, κ ∝ T −1, as shown
in the context of the so-called B phase of superfluid 3He (Pethick et al. 1977).
Similar arguments show that the shear viscosity tends to a constant value which
is not far from its value at Tc. Moreover, it can be shown that a relation analogous
to the Wiedemann-Franz rule (9.47) applies (Pethick et al. 1977),

κT

η
= 5�2

p2
F

. (9.79)

In neutron star cores, this situation can be realized when neutron pairing occurs at
lower temperatures than proton pairing, such that T < Tcn < Tcp. Then, neutron-
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proton collisions are suppressed exponentially stronger than neutron-neutron col-
lisions (there are much less proton excitations than neutron ones) and do not
participate in neutron transport (Baiko et al. 2001). Nevertheless, with lowering
temperature, the transport coefficients stay large until other neutron relaxation
mechanisms start to dominate over neutron-neutron scattering, for instance neutron-
lepton scattering due to the neutron magnetic moment or interactions with collective
excitations. This will lead to a strong suppression of the transport coefficients
compared to the limiting values discussed by Pethick et al. (1977). Evidently, a
similar analysis in the opposite case, Tcn > Tcp, leads to analogous results.

Let us note that the quasiparticle mean free path increases exponentially with
decreasing temperature. Eventually, at about 0.1 Tc, it becomes of the order of
the size of the superfluid region. In this case, the bulk hydrodynamical picture is
inappropriate to describe the transport since the quasiparticles move ‘ballistically’.
Moreover, one needs to take into account the spatial structure of the superfluid
region (baryon density, the gap value �, and the gravitational potential change
on the mean free path scale) and the interaction of the quasiparticles with the
boundaries of the superfluid region (more precisely, with the edges of the critical
temperature profile, where Tcn(nB) is lower and the macroscopic hydrodynamical
picture is restored). If the spatial scale of the external perturbations is smaller than
the quasiparticle mean free path (or the frequency of the perturbation is larger
than the collision frequency), the response of the quasiparticle system cannot be
considered in the local equilibrium approximation. To our knowledge, these effects
have not been studied yet. Nevertheless, one expects that leptons dominate the
transport in this regime.

At low temperatures, since the number of single-particle excitations is suppressed
exponentially, low-energy collective modes become the relevant degrees of freedom,
if they exist. As the superfluid condensate spontaneously breaks the U(1) internal
symmetry related to baryon number conservation, at least one gapless collective
mode must exist in the superfluid system according to the Goldstone theorem (see
Sect. 9.2.3.4). This fundamental mode is called superfluid phonon because of its
acoustic dispersion relation. When this is the only low-lying collective excitation,
it fully defines the transport properties of the system. This situation is realized, for
instance, in superfluid 4He or in cold atomic gases. In this case, an effective theory
can be constructed on general grounds that describes the phonon dispersion and
the interactions between phonons (e.g., Son 2002; Son and Wingate 2006; Greiter
et al. 1989). In the context of neutron star cores, the phase that comes closest to this
scenario (in the sense that there are no additional low-energy excitations such as
leptons or other unpaired fermions) is the color-flavor locked phase of quark matter,
and we give some details on the field-theoretical description of superfluid phonons
in Sect. 9.5.5.2. The phonon transport coefficients are calculated from the solution
of the appropriate kinetic equation that includes phonon scatterings in the collision
term (Khalatnikov 1965). In the case of neutron pairing, shear viscosity and thermal
conductivity mediated by phonon-phonon interactions were investigated in Manuel
and Tolos (2011), Manuel and Tolos (2013), Manuel et al. (2014), Tolos et al.
(2016). These studies suggest that the phonon contribution is important in a narrow
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range of temperatures, 109 K � T < Tcn, where, in fact, the validity of the effective
theory is questionable. In reality, the excitation spectra and in neutron star cores is
richer and various scattering mechanisms can be important (Bedaque and Reddy
2014; Kolomeitsev and Voskresensky 2015). Superfluid phonons of the neutron
component couple to leptons indirectly via the neutron-proton interaction; this
provides an efficient scattering mechanism for phonons, decreasing their mean free
path. According to Bedaque and Reddy (2014), this makes the superfluid phonon
contribution to transport coefficients negligible (cf. discussion in Sect. 9.3.1.4).
The phonon coupling with the Bogoliubov quasiparticles was investigated by
Kolomeitsev and Voskresensky (2015) with a similar conclusion. Other low-energy
excitations which can exist in neutron star cores in the presence of nucleon Cooper
pairing are as follows. In metallic superconductors, the collective mode is massive
due to presence of Coulomb interaction. However, it was proposed that the efficient
plasma screening in nuclear matter ‘resurrects’ the Goldstone mode of the proton
condensate (Baldo and Ducoin 2011) (it corresponds to the oscillation of a charge-
neutral mixture of proton pair condensate and leptons). This mode was found to
effectively scatter on leptons and does not contribute to transport (Bedaque and
Reddy 2014). Since neutrons in the core form Cooper pairs in the anisotropic 3P2
state, the condensate spontaneously breaks rotational symmetry, and one expects
the appearance of corresponding Goldstone modes. These modes were termed
‘angulons’8 by Bedaque et al. (2003). The properties of angulons were studied
by Bedaque and Nicholson (2013), and their contribution to transport properties
of neutron star cores by Bedaque and Reddy (2014). Leinson (2012) analyzed the
collective modes of the order parameter on a microscopic level for all temperatures
and did not find a gapless mode. Instead, he found modes similar to ‘normal-
flapping’ modes of the A-phase of superfluid 3He (Vollhardt and Wölfle 1990),
which are not massless at finite temperatures. This, however, contradicts the recent
study by Bedaque et al. (2015), who find that angulons have zero mass at any
temperature. The reason for the contradiction is unknown, and a consistent picture
of the low-lying excitations in the superfluid phases of neutron star cores is yet to
be developed. Nevertheless, even the massive mode can contribute to the transport
properties provided its mass is sufficiently small (of the order of T ). Note also that
Fermi-liquid effects can strongly modify the properties of the collective modes at
nonzero temperatures. It is possible that such modes become purely diffusive, not
being well-defined quasiparticle excitations at finite q . These issues were discussed
in detail for a general Fermi liquid that becomes superfluid by Leggett (1966a,b).
Finally, we note that the warnings stated above regarding transport in the ‘ballistic’
regime apply also for the superfluid phonons (and other collective modes). The
phonon mean free path grows by powers of T in comparison to the exponential
growth of the mean free path for Bogoliubov quasiparticles, but it can still easily
become of the order of the size of the superfluid region in the star. The dissipation
in this situation must be treated with caution, see also remarks and references below
Eq. (9.158) in the context of quark matter.

8Note that the same term was recently used in a different context (Schmidt and Lemeshko 2015).
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9.4.1.5 Magnetic Field Effects

Transport properties of the magnetized neutron star core can be addressed using
similar methods as for the crust, discussed in Sect. 9.3.1.5, but generalized to the
case of multi-component mixtures. As in the crust, the anisotropy induced by the
magnetic field renders the transport coefficients anisotropic. In contrast to the crust,
the fermionic excitations are not expected to become strongly quantized by the
magnetic field due to the larger effective masses.9 Still, the collision probabilities
can depend on the magnetic field, for instance due to a modification of the plasma
screening, although this effect has never been investigated, to the best of our
knowledge. The anisotropic thermal conductivity has never been considered since
it is assumed to be very large anyhow. Similarly, the shear viscosity in magnetized
star cores has not been calculated (except for the attempt to study the collisionless
problem by Banik and Nandi (2013)).

However, the problem of electrical conductivity has gained considerable atten-
tion because this quantity is one of the key ingredients in the magnetic field
evolution in neutron stars, see for instance Graber et al. (2015) and references
therein. The response of multi-component mixtures to an external electromagnetic
field differs qualitatively from the case of the electron conductivity described in
Sect. 9.3.1.5 because of the relative motion between all components in the plasma.
This is especially pronounced if neutral species are present in the mixture, like in
the case of a partially ionized plasma or in neutron star matter. We briefly review
the details of the calculations following Yakovlev and Shalybkov (1991a).

Let us assume that the plasma as a whole moves with a non-relativistic velocity
v under the influence of an external force (electric field, but we will be a bit more
general at this point). This force induces an l = 1 perturbation to the distribution
function that is given by �i = −wi ·ϑ i , where i = 1, . . . , N labels the constituents
of the multi-component system. The unknown vectors ϑ i are energy-dependent,
but, as a first approximation, can be assumed to be constant (as we saw above,
this is a fairly good approximation in degenerate matter). Then, these vectors are
exactly the diffusion velocities of the constituents of the mixture (relative to the
total velocity v). If the co-moving frame is defined to ensure zero total momentum
of the fluid element, the diffusion velocities obey the linear constraints (Yakovlev
and Shalybkov 1991a)

∑
i

μini

c2 ϑ i = 0 . (9.80)

9Remember that the effective mass of electrons becomes larger as we increase the density. For a
rough estimate, let us assume nB = n0, an electron density ne = nB/10, and vFe ≈ c. Then, the
effective mass m∗e = pFe/vFe squared can be translated into a magnetic field B ∼ 4 × 1018 G,
at which quantizing effects would become important. This field is larger than what is typically
expected for neutron star cores, given that the largest measured surface magnetic fields are of the
order of 1015 G (According to the data in the ATNF pulsar catalogue on the time of writing (version
1.58) http://www.atnf.csiro.au/research/pulsar/psrcat, Manchester et al. 2005).

http://www.atnf.csiro.au/research/pulsar/psrcat
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Here, in a generalization of the center-of-mass velocity to a degenerate fluid of
relativistic particles, the mass density mini has been replaced by μini/c

2, where
the chemical potentials μi include the rest mass.

Instead of the single Eq. (9.17), one then obtains a system of linearized kinetic
equations. In order to determine the vectors ϑ i , one multiplies these equations by
pi and integrates them over momenta to arrive at (neglecting temperature gradients
for simplicity, i.e., there are no thermo-diffusion and thermo-electric effects)

− μini

c2 v̇ + F i + qini

c
ϑ i ×B =

∑
j

Jij (ϑ i − ϑj ), (9.81)

where the friction term on the right-hand side is given by the symmetric matrix
Jij , which is related to the effective collision frequencies [see Eq. (9.68)] by Jij =
nim

∗
i νij . The driving term on the left-hand side contains the body forces F i =

niRi , which do not depend on ϑ i , and the magnetic part of the Lorentz forces. The
system (9.81) contains more unknowns than equations since it also determines the
plasma acceleration v̇, but is closed by Eq. (9.80). After v̇ is eliminated, the solution
can be written as (Yakovlev and Shalybkov 1991b)

ϑ i = −D̂ij

(
F j − XjF

)
, (9.82)

where F is the total force and Xj = njμj

(∑
k nkμk

)−1 is the mass fraction

of species j . The auxiliary tensor D̂ij has rank N − 1 and can be expressed in
different ways (Lam 2006). The resulting drift velocities are of course the same
for any representation of D̂ij . Due to the linear constraint (9.80), one can use
any N − 1 independent linear combinations of diffusion velocities for forming
the current terms in the final hydrodynamical expressions. A natural choice for
one of these combinations is the electric (charge) current j = ∑

i qiniϑ i . In the
three-component npe plasma containing a neutral (n) component and a charged
(pe) fluid, the natural choice of the second independent velocity is the ‘ambipolar
drift’ velocity, i.e., the relative velocity of the charged fluid with respect to neutrons.
This description has become standard, starting from the work by Goldreich and
Reisenegger (1992). However, in the more general case where several charged and
neutral species coexist (for instance when muons and/or hyperons are included), this
description becomes less convenient. We thus prefer to keep the more symmetric
choice, that is to work with the drift velocities ϑ i subject to (9.80) and use the
full system of multi-fluid hydrodynamical equations. Of course any representation
leads to the same physical results. For the generalized Ohm law and the induction
equation in npe matter this was discussed in detail by Shalybkov and Urpin (1995).
It is instructive to write the expression for the entropy generation rate in collisions
with the help of the general Eq. (9.21),

T ς |coll =
1

2

∑
ij

Jij (ϑ i − ϑj )
2 . (9.83)
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Now consider the electrical conductivity problem, where the force terms in
Eq. (9.81) are solely given by the electromagnetic field (Yakovlev and Shalybkov
1991a),

F i = qiniE
′ ≡ qini

(
E + 1

c
v ×B

)
. (9.84)

Then, the electric current and electric field E′ in the co-moving system are related
via the (generalized) Ohm law j = σ̂E′, where the electrical conductivity tensor σ̂
is expressed through the tensor D̂ij as

σ̂ = −
∑
i,j

qiqjninj D̂ij . (9.85)

It is convenient to introduce also the resistivity tensor R̂ = σ̂−1. The final result
for non-superfluid npe matter assuming charge neutrality and neglecting electron-
neutron collisions reads

R‖ = [σ(B = 0)]−1 , R⊥ = R‖ + X2
n

Jpnc2B
2 , R1 = 1− 2Xe

neec
B ,

(9.86)

where R‖ and R⊥ are the resistivities parallel and perpendicular to the magnetic
field, respectively, and R1 is the Hall resistivity. The second term in the expression
for R⊥ is proportional to B2 and thus is responsible for a considerable increase of
the resistivity in strong magnetic fields. As we see from its form, it originates from
the friction of the neutron fluid with the charged components, governed by the strong
forces. In this sense, it can be viewed as the result of ambipolar diffusion (Goldreich
and Reisenegger 1992). Note that the increase of the transverse resistivity in a
magnetized plasma containing neutral species is a well-known effect in physics of
space plasmas (Bykov and Toptygin 2007). This has important consequence on the
dissipation of the magnetic field energy. Indeed, the field energy dissipation rate per
unit volume is

ẆB = −j ·E′ = −j2‖R‖ − j2⊥R⊥ , (9.87)

where j‖ and j⊥ are the components of the electric current along and transverse
to B , respectively. Therefore, as first noted by Haensel et al. (1990), the increase
of R⊥ in Eq. (9.86) can lead to accelerated dissipation. Since the neutron-proton
collision frequencies scale as Jnp ∝ T 2, the increase in R⊥ becomes pronounced at
lower temperatures. The microscopic calculation of the friction coefficients Jij (or
effective collision frequencies) were performed by Yakovlev and Shalybkov (1991b)
and updated in Shternin (2008b) (as described in Sect. 9.4.1.2 and 9.4.1.3). Recall
that the recent results by Bertoni et al. (2015) indicate the possible importance of the
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electron-neutron collisions. The influence of this effect on the electrical conductivity
in neutron star cores has not been studied yet.

This simple picture is modified if other driving forces (in addition to the
electromagnetic field) are present on the left-hand side of Eq. (9.81). If gradients of
temperature or chemical potentials are present, one deals with thermo-electric and
electro-diffusion effects. The Eqs. (9.80)–(9.83) still hold, but the expressions for
the hydrodynamical currents are different (Landau and Lifshitz 1987; Landau et al.
1984). For instance, the electric current is not proportional to E′, but also depends
on thermal and chemical gradients. In the following we do not consider any thermal
gradient and focus on diffusion effects, which were found to be important in the
problem of the magnetic field evolution in neutron stars (Goldreich and Reisenegger
1992; Pethick 1992). The reason is that the timescale of the field evolution can be
comparable to the typical times of the reactions that are responsible for chemical
equilibration (see Sect. 9.4.2). The driving forces for diffusion are the gradients of
the chemical potentials, which are added to the force term in the kinetic equation10

F i = qiniE
′ − ni∇μi. (9.88)

In a one-component fluid (Sect. 9.2.2), the chemical potential gradient can be
absorbed into an effective electric field, see Eq. (9.19). Multiple ∇μi ’s do not
allow this simple prescription. The diffusion velocities are still found by Eq. (9.82).
They now receive contributions from the electric field and from the gradients. The
microscopic equation for the entropy generated in the collisions still has the form
given in Eq. (9.83), but the macroscopic expression now reads

T ς |coll =
∑
i

F i · ϑ i = j ·E′ −
∑
i

niϑ i · ∇μi . (9.89)

The first term on the right-hand side corresponds to Ohmic heating, while the second
term describes entropy generation due to the irreversible diffusion process. The heat
source for the latter is the particle (chemical) energy μidni . If chemical reactions
are taken into account, dni = −νidξ , with the stoichiometric coefficients νi and the
reaction extent ξ , such that � ≡ ξ̇ is the reaction rate. The thermodynamic force
that drives the relaxation to chemical equilibrium is11

δμ =
∑
i

νiμi . (9.90)

10The driving force terms should also contain gravitational acceleration to ensure the proper
equilibrium state (Shalybkov and Urpin 1995; Lam 2006); we omit the corresponding terms for
brevity.
11In the chemistry literature, (the negative of) δμ is called reaction affinity and usually denoted by
A. All reactions with nonzero reaction affinity we discuss later (Sects. 9.4.2, 9.4.3, and 9.5.4) have
stoichiometric coefficients νi = ±1, and the notation δμ is used mostly (but not exclusively) in the
neutron star literature we refer to.
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In equilibrium, δμ = 0, and the reactions tend to move to this point. The
thermodynamic flux conjugate to δμ is �. In the linear regime, � = λ δμ,
where λ is the corresponding transport coefficient, which, to a first approximation,
only depends on the equilibrium state. The entropy generation from the chemical
reactions is

T ς |react = � δμ = λ δμ2 , (9.91)

thus the second law of thermodynamics requires λ > 0.
If we allow for chemical reactions, the conservation laws are modified: source

terms appear in the continuity equations for the constituent species, recoil terms
emerge in the momentum conservation equations (usually neglected as second-
order), and the energy conservation law is also modified. For instance, using the
continuity equation including the source term,

∂ni

∂t
+∇ · (niv)+∇ · (niϑ i ) = −�νi , (9.92)

one rewrites Eq. (9.89) as

−ẆB −
∑
i

μi

(
∂

∂t
+ v · ∇

)
ni = T ς |react + T ς |coll = λ δμ2 + 1

2

∑
ij

Jij (ϑ i − ϑj )
2,

(9.93)

where we have used Eq. (9.80) and assumed div v = 0. (The interplay between
fluid compression, i.e., div v 
= 0, and the chemical reactions is discussed in
detail in Sect. 9.4.3.) It is frequently assumed that the magnetic field evolution is
quasistationary, such that the second (‘chemical’) term on the left-hand side of
Eq. (9.93) can be neglected. Then, Eq. (9.93) describes the transfer of energy of
the magnetic field to heat via binary collisions and reactions (Gusakov et al. 2017;
Castillo et al. 2017).

The problem of the magnetic field evolution in neutron star cores attracts
persistent attention (Castillo et al. 2017; Gusakov et al. 2017; Passamonti et al.
2017; Glampedakis et al. 2011; Beloborodov and Li 2016; Graber et al. 2015;
Hoyos et al. 2008; Elfritz et al. 2016; Bransgrove et al. 2018), and a more complete
list of references can be found in the cited works. We did not discuss general
relativistic effects and the influence of Cooper pairing, which can both be important.
A full dynamical analysis that includes magnetic, thermal, and chemical evolution
is highly demanded but has not been performed yet.
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9.4.2 Reaction Rates from the Weak Interaction

9.4.2.1 General Treatment

Neutrino emissivity is a key ingredient in the study of the neutron star evolution.
Minutes after the birth of a neutron star, neutrinos escape the star freely, taking away
energy and thus cooling the star. The core is the main source of neutrinos, which
are produced in various reactions involving the weak interaction. In the exhaustive
review by Yakovlev et al. (2001) the wealth of neutrino-producing reactions possible
in neutron star cores are described systematically. Naturally, the most important
processes among them involve baryons. In this section we mainly focus on the recent
results for these reactions, and mention others—less efficient ones—only briefly. As
for the case of the transport coefficients discussed in Sect. 9.4.1.3, the main recent
efforts have been focused on improving the treatment of in-medium effects.

The problem of calculating the neutrino emissivity is closely related to the
more general problem of neutrino transport in dense matter, which is of utmost
importance in supernovae and proto-neutron star studies. The emissivity can be
calculated from the gain term in the corresponding neutrino transport equation.
If this is done in the framework of non-equilibrium transport theory, one is in
principle able to study the weak response of dense matter in a systematic way,
including situations far from equilibrium. For a pedagogical discussion of the
real-time Green’s function approach see Sedrakian (2008, 2007) and references
therein. Alternatively, emissivities can be found using the optical theorem without
employing the neutrino transport equation (see, e.g., Voskresensky 2001). In any
case, the rates can be expressed through the contraction of the weak currents with
the polarization of the medium. The latter accounts for all many-body processes
which exist in dense matter, and its microscopic calculation is not straightforward.
Fortunately, in neutron star cores the quasiparticle approximation is well-justified.
In this approximation, the reaction rates can be equivalently calculated using
Fermi’s Golden Rule based on the squared matrix element of the process. Due to
its transparency, this approach is most commonly used for the weak reactions in
hadronic cores of neutron stars. In this section we will follow this prescription and
discuss the results beyond the quasiparticle picture at the end. This also allows us to
make a close connection to the previous section. We note, however, that the approach
based on Green’s functions is particularly advantageous in the case of pairing, where
some difficulties can arise with the use of Fermi’s Golden Rule. We illustrate this
approach in Sect. 9.5.3, where neutrino emission from quark matter is considered.

The weak reactions are naturally classified by the number of quasiparticles
involved, since each fermion generally adds a phase factor T/μ (cf. Sect. 9.4.1.1),
and by the type of the weak current (neutral or charged) responsible for the
process.12 Both types contribute to the neutrino emissivity, but only the flavor-
changing reactions (that go via the charged weak current) are responsible for

12In this section we set kB = 1 for brevity, such that T /μ is dimensionless.
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establishing beta-equilibrium. The first kinematically allowed processes with the
lowest number of involved quasiparticles give the dominant contribution to the
reaction rates. Therefore, the most powerful neutrino emission mechanism is the
so-called baryon direct Urca process, which consists of a pair of reactions going via
the charged weak current

B1 → B2 + #+ ν̄#, (9.94a)

B2 + #→ B1 + ν#, (9.94b)

where B1,2 stand for baryons [for instance (B1,B2) = (n, p) in the case of nuclear
matter], # for leptons, and ν# for the corresponding neutrino. In equilibrium, the
rates of the reactions (9.94a) and (9.94b) are equal. They scale as T 5 and the
neutrino emissivity as T 6, see below. It is essential that direct Urca processes in
strongly degenerate matter have a threshold: in the quasiparticle approximation
all fermions in Eqs. (9.94) are placed on their Fermi surfaces [see Eq. (9.67)].
Momentum conservation implies that the Fermi momenta of the triple (B1,B2, #)

satisfy the triangle condition (if one neglects the small neutrino momentum which is
of the order T ). In the highly isospin-asymmetric cores of neutron stars [(B1,B2) =
(n, p)] this strongly limits both the electron (# = e) and muon (# = μ) direct
Urca processes. Only in matter with a sufficiently large proton fraction (and as a
consequence of the electric neutrality, lepton fraction) the triangle condition for the
Fermi momenta of the triple (n, p, #) can be satisfied. In electrically neutral npe
matter, the threshold for the proton fraction xp is 11%. Therefore, not all equations
of state allow for the direct Urca process to operate. Depending on the xp(nB)

profile, some equations of state can allow direct Urca processes for massive stars,
and for some equations of state the proton fraction never exceeds the direct Urca
threshold.

The counterpart to (9.94) via the neutral weak current is

B1 → B1 + ν̄# + ν#. (9.95)

In the quasiparticle approximation, this reaction is kinematically forbidden, unless
the baryons B1 form a Cooper pair condensate, see Sect. 9.4.2.3.

When the direct Urca processes are not allowed, the next-order processes in the
number of quasiparticles take the lead. They include an additional baryon C which
couples to the emitting baryons via the strong force.13 The presence of a spectator
relieves the triangle condition, but the price to pay is the reduced phase space of the
process by a factor of (T /μ)2. In the presence of the spectator, the neutral-current
reaction

B1 + C → B1 + C + ν̄# + ν# (9.96)

13The spectator particle C can also be a lepton coupling via the electromagnetic forces, but this
process is negligible.
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becomes possible, and it is the familiar bremsstrahlung emission. The most impor-
tant processes are, however, the charged-current reactions

B1 + C → B2 + C + #+ ν̄#, (9.97a)

B2 + C + #→ B1 + C + ν#, (9.97b)

called modified Urca reactions (see Yakovlev et al. 2001 for the origin of the
nomenclature). The reactions (9.96)–(9.97) are sometimes jointly called the elec-
troweak bremsstrahlung of the lepton pairs. Depending on the relations between
the Fermi momenta of the five degenerate fermions involved in the modified Urca
reactions (9.97), these reactions can also have thresholds. However, in practice, this
is never really important in neutron star conditions. For the complete classification
of all phase-space restrictions for reactions (9.94)–(9.97) see Kaminker et al. (2016).

The expression for the rate � and the neutrino emissivity εν of any of the
reactions (9.94)–(9.97) can be expressed via Fermi’s Golden Rule as follows (e.g.,
Yakovlev et al. 2001; Shapiro and Teukolsky 1983)

(
�

εν

)
=
∫ ∏

j=i,f

d3pj

(2π)3
Ff i(2π)

4δ(4)
(
Pf − Pi

) ( 1
ων

)
s
∣∣Mf i

∣∣2 , (9.98)

where Mf i is the transition amplitude for the reaction (summed over initial and
averaged over final polarizations), Pi and Pf are total four-momenta of initial
and final particles, respectively, integration is done over the whole phase-space of
reacting quasiparticles (including neutrinos),14 and the symmetry factor s corrects
the phase volume in case of indistinguishable collisions. The quantity Ff i is the
Pauli blocking factor

Ff i =
∏
i

fF (εi − μi)
∏
f 
=ν

[
1− fF (εf − μf )

]
, (9.99)

where fF (y) ≡ (ey/T + 1)−1. It contains products of the distribution functions
for all fermions except neutrinos (which escape the star). At small temperatures,
it effectively puts all the quasiparticles on the respective Fermi surfaces when the
matrix element is calculated [cf. Eq. (9.31)]. Finally, the energy ων , which enters
the expression for the emissivity εν , is the neutrino/antineutrino energy in the
reactions (9.94), (9.97) and the total energy of the neutrino pair in the case of the
bremsstrahlung reaction (9.96).

The calculation of � and εν is similar to the calculation of collision frequencies
described in Sect. 9.4.1.1. First, we assume that the matrix element Mfi does
not depend on the neutrino energy. Then, the integrals over the absolute values

14We keep the same normalizations of the baryon and lepton wave functions for brevity, while
traditionally one puts 2ε in the denominator for relativistic particles.
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of the momenta are rewritten as energy integrals—for the degenerate particles
according to Eq. (9.67) and for the neutrino d3pν = c−3ε2

ν dεν d�ν . Introducing
the dimensionless energy variables x = (ε − μ)/T as in Sect. 9.4.1.1, one can
express the energy-conserving delta-function as

δ(Ef − Ei) = T −1δ

⎛
⎝∑

f

xf −
∑
i

xi + δμ

T

⎞
⎠ , (9.100)

where δμ is the chemical potential difference between the final and initial particles
in the reaction, as introduced in Eq. (9.90). Recall that the freely escaping neutrinos
have zero chemical potential. Finally, we can write both � and εν in the following
generic form,

(
�

εν

)
= s

(2π)3n−4 �̂ T k Iε

(
δμ

T

)
〈∣∣Mf i

∣∣2〉∏
j 
=ν

pFjm
∗
j , (9.101)

where �̂ is the angular integral over quasiparticle momenta orientations for fixed
absolute values of momenta, so that the possible relative orientations are restricted
by momentum conservation (Kaminker et al. 2016), 〈∣∣Mf i

∣∣2〉 stands for the angular-
averaged matrix element, n is the number of reacting quasiparticles, and the
last product comes from the quasiparticle densities of states on the respective
Fermi surfaces. The factor Iε(δμ/T ) in Eq. (9.101) is the energy integral over the
dimensionless variables xi,f . Due to Eq. (9.100), it depends on the ratio δμ/T .
In beta-equilibrium and for bremsstrahlung reactions, δμ = 0. The temperature
dependence is given by the factor T k in Eq. (9.101), where the exponent k depends
on the specific reaction and on whether we compute � or εν : each degenerate
fermion on either side of the reaction gives one power of T , the neutrino contributes
a factor T 3, and one power of T is subtracted due to the energy-conserving
delta function. Therefore, the rate for the direct Urca process (three fermions) is
proportional to T 5 and the rate for the modified Urca process (five fermions) is
proportional to T 7. The corresponding emissivities have an extra factor T due to the
neutrino energy ων (Shapiro and Teukolsky 1983). Slightly different considerations
should be carried out for the bremsstrahlung reactions, where the assumption of
an energy-independent matrix element no longer holds. Instead, as we discuss
below, the leading energy-dependence of the bremsstrahlung matrix elements is
Mfi ∝ ω−1

ν and can be factored out from the angular integration. After the
factorization, the decomposition (9.101) still holds where the energy-independent
part of the angular-averaged squared matrix element stays in place of 〈∣∣Mf i

∣∣2〉. The
temperature dependence for the bremsstrahlung reaction (9.96) is the same as for
the modified Urca reactions (9.97) since the appearance of the squared neutrino
pair energy in the denominator is compensated by the fact that the integration is
now performed over the momenta of both neutrino and antineutrino in the outgoing
channel of the reaction (see for instance Yakovlev et al. 2001).
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Let us return to the Urca reactions, which are responsible for the processes
of beta-equilibration. We denote quantities related to the forward and backward
reactions by superscripts ‘+’ and ‘−’, respectively. Then, the net neutrino emissivity
from a pair of forward and backward reactions is εν(δμ) = ε+ν + ε−ν and the rate
of the composition change is ��(δμ) = �+ − �−. In equilibrium, δμ = 0 and
�� = 0, while εν = 2ε+ν . Beta-equilibration processes increase the entropy of the
system, while the neutrino emission takes away energy. Thus the total heat release
of the Urca reactions in non-equilibrium is

T ς = �� δμ− εν. (9.102)

This means that the pair of the Urca reactions can either cool or heat the star
depending on the relation of two terms in Eq (9.102), which in turn depends on
the degree of departure from equilibrium.

Both �� and εν can be expressed as a product of the equilibrium reaction rate
times a function which depends solely on δμ/T . The analytical expressions for
these functions in non-superfluid matter can be found, for example, in Reisenegger
(1995). When the deviation from beta-equilibrium is small (|δμ| � T ), the response
to this deviation is linear, �� ∝ δμ, while εν ≈ ε

eq
ν . In the suprathermal regime,

when |δμ| � T , the phase space available for the reacting particles is determined
by δμ instead of T . Then, Iε ∝ (δμ/T )k , such that the Urca reaction rates become
temperature-independent, and δμ enters the final expressions in place of T , see for
instance Yakovlev et al. (2001) for details. Moreover, Flores-Tulián and Reisenegger
(2006) proved the general expression

∂εν

∂δμ
= 3�� . (9.103)

Thus the reactions generate heat if εν(δμ) is steeper than δμ3 and cool the star via
neutrino emission otherwise. The advantage of the relation (9.103) is that it also
works in case of pairing (Flores-Tulián and Reisenegger 2006).

9.4.2.2 Neutrino Emission of Nuclear Matter

We now use the general formalism outlined above to quantitatively discuss the main
neutrino reactions relevant in neutron star cores. We start with the most efficient one,
the direct Urca reaction (9.94). The possibility of its occurrence and importance for
neutron stars was first pointed out by Boguta (1981), who found that the threshold
conditions for the direct Urca process to operate can be fulfilled in some relativistic
mean field models. This paper was unnoticed for a decade until Lattimer et al.
(1991) rediscovered this possibility and argued that the sufficiently large proton
fraction can be achieved for many realistic density dependencies of the symmetry
energy of nuclear matter. In the limit of small momentum q transferred from leptons
to nucleons, the weak charged current of nucleons contains vector (V ) and axial-
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vector (A) contributions. For non-relativistic nucleons, when nucleon recoil can be
neglected, the direct Urca matrix element averaged over the directions of neutrino
momenta is (Lattimer et al. 1991; Yakovlev et al. 2001)

|MDU|2 = 2G2
F cos2 θC(g

2
V + 3g2

A) , (9.104)

where GF = 1.17× 10−5 GeV−2 is the Fermi coupling constant, θC is the Cabibbo
angle with sin θC ≈ 0.22, and gV = 1 and gA ≈ 1.26 are the nucleon weak vector
and axial vector coupling constants.

Inserting the expression (9.104) into Eq. (9.101), one obtains for the rate of the
np# reaction (in equilibrium) in physical units

εDU
ν = 4× 1021

(
nB

n0

)1/3

x
1/3
#

m∗pm∗n
m2
N

(
T

108K

)6

�np# erg cm−3 s−1, (9.105)

where �np# is the step function accounting for the threshold. The reaction rates
� = �+ = �− in equilibrium and the composition change rate in the subthermal
regime are (Yakovlev et al. 2001)

�DU = 0.118

T
εDU
ν , ��DU = 0.158

T

δμ

T
εDU
ν (for δμ� T ) . (9.106)

We note that the characteristic time for a nucleon to participate in a direct Urca
reaction is quite large, τDU ∼ nB/�

DU ≈ 500 yr (for nB = n0, T = 108 K, and
x# = 0.1). Nevertheless, the direct Urca reaction is the strongest neutrino emission
process and—if it operates—cools the star very fast.

The classical result (9.105) changes when relativistic corrections are taken into
account. Apart from the nuclear recoil effect (Leinson and Pérez 2001), such
corrections arise from additional terms in the nucleon charged weak current,
corresponding to a non-trivial spatial structure of nucleons. In addition to the
vector and axial vector contributions, the weak currents contain tensor (T ) and
induced pseudoscalar (P ) terms (see, for instance, Timmermans et al. (2002) for
the discussion of the weak hadron currents). The T -terms are of the order q/mp

and describe weak magnetism. According to Leinson (2002) the weak magnetism
contribution can be as large as 50% of the rate (9.105). In the closely related context
of the neutrino opacity due to charged weak current reactions, these corrections
were taken into account in Horowitz and Pérez-García (2003), see also Roberts
and Reddy (2017b) and references therein for a recent discussion on this subject.
The contribution from the P -terms turns out to be proportional to the lepton mass
and thus is found to be unimportant for the direct Urca processes with electrons
(Leinson 2012). However, for the muonic direct Urca (# = μ), this contribution can
be substantial (Timmermans et al. 2002). For modifications of the direct Urca rate
in various parametrizations in the framework of relativistic mean field theories see
also Ding et al. (2016).
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Another modification of the rate (9.105) results from in-medium effects (cf.
Sect. 9.4.1). The simplest manifestation of the in-medium effects is through the
modifications of the effective nucleon masses m∗p and m∗n (see, e.g., Baldo et al.
(2014) for an illustration of the range of uncertainty). Dong et al. (2016) investigated
the suppression of the emissivities due to Fermi surface depletion. The depletion
is quantified in terms of the ‘quasiparticle strength’ zF < 1, which appears in
the numerator of the single-particle propagator in the interacting system (Dickhoff
and Van Neck 2008). The reaction rates are basically multiplied by powers of zF
depending of the number of quasiparticle involved. In this case it is important to use
the effective masses calculated in the same order of the theory. Corrections leading
to zF < 1 are counterbalanced by an increase of the effective mass (Schwenk et al.
2003; Zuo et al. 1998; Baldo and Grasso 2000; Schwenk et al. 2004), thus the overall
corrections are not dramatic. Also, the couplings gV and gA (and, in principle, the
tensor and pseudoscalar couplings gT and gP ) are renormalized in a dense medium
due to nucleon correlations (Voskresensky 2001). This effect is assumed to be not
very important for direct Urca processes (Kolomeitsev and Voskresensky 2015).

In any case, all these corrections (relativistic, weak magnetism, in-medium)
modify the estimate (9.105) at most by a factor of a few, leaving all the principal
astrophysical consequences based on its high rate intact.

Now we turn to the situation where the proton fraction is small and the triangle
condition forbids the direct Urca process. Then the next order processes come into
play, which all involve the strong interaction. The corresponding reaction rates
are subject to uncertainties in the description of nucleon-nucleon interactions in
medium. In this regard, the situation is similar to the problem of kinetic coefficients
discussed in Sect. 9.4.1 but is more complicated even if in-medium effects are not
considered. This can be understood by looking at the relevant diagrams for the
bremsstrahlung reaction (9.96) presented in Fig. 9.1. The dashed line represents the
emitted lepton pair, while the block TNN represents the nucleon strong interaction
amplitude. With respect to the strong interaction vertex, the emission of the
lepton pair occurs from ‘external legs’ in diagrams (a) and (b), but there are also
rescattering contributions (c) and emission from internal meson exchange lines (d)
(Hanhart et al. 2001). Moreover, the amplitude TNN is half on-shell in contrast to
the on-shell amplitude involved in the kinetic coefficients calculations.

Despite the considerable progress achieved in recent decades in the treatment
of the nucleon interaction, in practice the standard benchmark for the electroweak
bremsstrahlung reactions follows the work of Friman and Maxwell (1979), who
used the lowest-order one-pion exchange (OPE) model to describe the nucleon inter-
action. The neutron star cooling simulations which employ neutrino emissivities
calculated in the Friman and Maxwell (1979) model are called ‘standard cooling
scenarios’ (e.g., Yakovlev and Pethick 2004). However, it is well-known that at
energies relevant to neutron stars, OPE in the Born approximation overpredicts the
cross-section by a factor of a few. Friman and Maxwell (1979) also estimated the in-
medium effects of long-range and short-range correlations by considering a special
form of the correlated potential, utilizing the set of the Landau-Migdal parameters,
and investigating the role of the one-ρ exchange. In their calculations, Friman and
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Fig. 9.1 Feynman diagrams contributing to the NN electroweak bremsstrahlung reactions. Here
p1 . . . p4 label initial and final nucleon momenta, q, ω are the emitted lepton pair [νν̄ for
bremsstrahlung reactions (9.96) and ν̄## for modified Urca reactions (9.97)] momentum and
energy, respectively. TNN is the quasiparticle scattering amplitude. In diagram (d), the J (2)μ5 block
represents the two-body axial vector current. The figure is redrawn from Hanhart et al. (2001)

Maxwell considered diagrams (a) and (b) and used the non-relativistic V-A model
for the weak vertices. They found that in the limit of small q , the vector current
contributions of diagrams (a) and (b) cancels exactly for both OPE and Landau
interactions. This is true for both neutral current and charged current (modified
Urca) reactions (although the cancellation in latter case is nontrivial and involves
exchange contributions). Therefore they concluded that the neutrino emission is
dominated by the axial vector current. We will see below that this result survives
in a more elaborate treatment.

One may use a more universal approach based on the soft electroweak
bremsstrahlung theorem. This method is similar to the soft-photon theorems for
the electromagnetic emission (Low 1958; Burnett and Kroll 1968) which relates
the cross-sections of the radiative processes in the leading and sub-leading orders
to the corresponding cross-sections of the non-radiative processes. The soft photon
theorem was extended to the axial vector currents by Adler and Dothan (1966) and
first applied to neutrino emission in Hanhart et al. (2001) and Timmermans et al.
(2002). Hanhart et al. (2001) employed the dominant term in the soft expansion,
while Timmermans et al. (2002) proved the general soft electroweak bremsstrahlung
theorem. They also analyzed the full relativistic structure of the weak currents and
the strong interaction amplitude. It was found that in the extreme non-relativistic
limit the vector current contribution vanishes irrespectively of the details of the
structure of the amplitude TNN , which generalizes the Friman & Maxwell result.
The basis of the soft emission theorem is the requirement of the vector current
conservation and the partial axial vector current conservation. In the soft limit,
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the dominant contribution comes from the diagrams (a)–(b) in Fig. 9.1, while the
diagrams (c)–(d) are of higher order in q , ω.

The hadronic part of the matrix element corresponding to diagram (b) in Fig. 9.1
can be written as

Mf i ∝ 〈f |
̂Z/WGN(p2 − q; ε2 − ω)TNN |i〉 , (9.107)

where 
̂
Z/W

is the neutral or charged current weak vertex, and GN is the nucleon
propagator in the intermediate nucleon line. Non-relativistically, the quasiparticle
propagator can be written in the form

GN(p; ε) =
[

p2

2m∗N
− p2

FN

2m∗N
− (ε − μN)

]−1

. (9.108)

When the lepton pair energy and momentum are small, ω � ε2, q � p2, one
obtains GN(p2 − q; ε2 − ω) ≈ ω−1. Therefore, in the soft limit, Mfi ∝ ω−1.

For the bremsstrahlung reactions (9.96) the emitted energy is equal to the energy
of the neutrino pair ω = ων , that is of the order of the temperature T � 10 MeV.
Therefore, the soft limit is directly applicable. In contrast, for the modified Urca
processes (9.94), the emitted energy is basically the degenerate lepton Fermi energy
μ# ∼ 100 MeV, which is not small. We thus first discuss the reactions (9.96),
although they are generally less important for neutron stars than the modified Urca
processes. For nn (or pp) bremsstrahlung, the soft limit matrix element of the axial
vector nucleon current in the non-relativistic limit can be expressed via the on-shell
scattering amplitude as (Hanhart et al. 2001; Timmermans et al. 2002)

JA
f i ∝

gA

ων
[TNN,S]f i , (9.109)

where S is the operator of the total spin of the nucleon pair and the square
brackets denote the commutator. The denominator ων comes from the virtual
nucleon propagator in the dominant ‘external legs’ diagrams [diagrams (a) or (b) in
Fig. 9.1]. This allows us to calculate the reaction rates and emissivities in a model-
independent way based on the experimentally measured phase shifts (in other words,
TNN ). A similar approach was used in Baiko et al. (2001) for transport coefficients
(see Sect. 9.4.1). An analogous (but different) expression can be written for the np
bremsstrahlung (Timmermans et al. 2002).

It is customary to write the expression for the neutrino emissivity in the Friman
& Maxwell form (Friman and Maxwell 1979; Yakovlev et al. 2001)

εnnν = 7.5× 1011
(
m∗n
mN

)4 (nn
n0

)1/3 ( T

108 K

)8

αex
nnβnnNν erg cm−3 s−1,

(9.110)
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where Nν = 3 is the number of neutrino flavors and αex
nn ≈ 0.8 is the

dimensionless factor coming from the angular averaged OPE matrix element; its
density dependence is very mild.15 (The superscript ‘ex’ indicates that the exchange
contribution is included.) Note that Friman and Maxwell (1979) overestimated the
exchange contribution by a factor of two because they used incorrect symmetry
factor s = 1/2 [see Eq. (9.98)] instead of s = 1/4 which should be used when
working with the antisymmetrized amplitudes16 (Lykasov et al. 2008; Hannestad
and Raffelt 1998; Yakovlev et al. 2001; Hanhart et al. 2001). The same incorrect
factor seems to have been used in Maxwell (1987); Schwenk et al. (2004); van Dalen
et al. (2003). The factor βnn takes into account all other corrections beyond OPE,
see below. Similar expressions can be written down for np and pp bremsstrahlung,
resulting in ε

pp
ν < ε

np
ν < εnnν (see for instance Yakovlev et al. 2001). The

calculations show that the use of the realistic TNN matrix instead of the OPE leads
to the suppression of the neutrino emissivity approximately by a factor of four
[so αex

nn(TNN) ≈ 0.2] (Hanhart et al. 2001; Timmermans et al. 2002; van Dalen
et al. 2003; Li et al. 2009, 2015). Note that the inclusion of additional meson
exchange terms (Friman and Maxwell 1979; van Dalen et al. 2003) results in a
better agreement with T -matrix calculations. Li et al. (2015) quantified the limits of
applicability for the soft bremsstrahlung theorem for a certain realistic model of the
nucleon interactions. They found that the approximation (9.109) is accurate within
10% up to ων = 60 MeV. Relativistic corrections for the densities of interest are
within 5–15% (van Dalen et al. 2003).

Up to now we have not considered in-medium effects. Since the bremsstrahlung
reactions are based on nucleon-nucleon collisions, one deals with similar compli-
cations as in Sect. 9.4.1.3, where we discussed transport coefficients. As usual, one
medium effect is in the renormalization of the effective masses. Since m∗ enters the
bremsstrahlung emissivities in the fourth power, bremsstrahlung is more sensitive
to the effective mass than the direct Urca processes. Apart from the effective
masses and possible renormalization of weak coupling constants, correlations in the
medium modify the quasiparticle scattering rates. It was found by van Dalen et al.
(2003) that the use of the G-matrix of BHF theory (three-body forces not included)
instead of the T -matrix results in some 30% increase of the bremsstrahlung rate.
This is in contrast to estimates by Blaschke et al. (1995), who found a decrease of
the in-medium emissivity by a factor of 10–20. A possible source of this discrepancy
may be the omission of the tensor 3P2− 3F 2 coupling in the latter work (van Dalen
et al. 2003). Schwenk et al. (2004) used quasiparticle scattering amplitudes which
are constructed from renormalization group methods based on the low momentum

15The numerical prefactor in Eq. (9.110) is calculated assuming a charge-independent value of the
pion-nucleon coupling constant f 2

NNπ = 0.08, as used in Friman and Maxwell (1979); Yakovlev
et al. (2001). Using f 2

NNπ = 0.075, as in Timmermans et al. (2002), results in a prefactor 6.6
instead of 7.5. This difference plays no role in practical applications.
16This gives 1/2, and another 1/2 is needed to account for double counting of collisions when
integrating over distributions of initial particles.
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universal potential Vlow−k (Schwenk and Friman 2004). Their results computed to
second-order give an overall reduction of the emissivity by a density-dependent
factor of 4− 10. This reduction is higher at lower densities and thus more relevant
to supernova studies (remember that their values must be divided by two (Lykasov
et al. 2008)).

More general calculations can be performed in the framework of linear response
theory by studying the response of nuclear matter to a weak probe. As it is clear
from Eq. (9.109) and the discussion above, essential information is contained in
the dynamical spin response function Sσ (ω, q), see for example Lykasov et al.
(2008), Hannestad and Raffelt (1998) and references therein. For results within
Landau’s Fermi liquid theory see Lykasov et al. (2008) and a general overview
of the correlated basis function approach to the weak response is given in Benhar
and Lovato (2015). In any case, at present the medium modifications of the
bremsstrahlung rates deep in the interior of neutron stars are quite uncertain. One
can easily imagine a modification by a factor of two in any direction.

In the medium-modified OPE (MOPE) model of Migdal et al. (1990), Voskre-
sensky (2001), the emissivity receives a strong density-dependent correction due to
the softening of the pion mode. This correction results in a factor that can be written
as (Kolomeitsev and Voskresensky 2015)

βMOPE
nn = 3

(
n

n0

)4/3 [�(n)/�(n0)]6

(ω̃π /mπ)
3 , (9.111)

where �(n) ≈ [
1+ 1.6(n/n0)

1/3
]−1

and ω̃π is the effective pion gap in the
medium. The adopted density dependence of the pion gap results in suppression
at n � n0 and in significant enhancement at n � n0 up to a factor of βMOPE

nn ≈ 100
depending on a model adopted for the pion gap.

Finally, in the exotic case of proton localization, also discussed in Sect. 9.4.1,
the neutrino emissivity due to scattering of neutrons off the localized protons was
considered by Baiko and Haensel (1999). Its interesting feature is the T 6 tempera-
ture dependence of the emissivity, compared to T 8 for the ordinary bremsstrahlung
processes. This contribution could thus be very important, provided that the
phenomenon of proton localization is realized in neutron stars. According to the
results of Baiko and Haensel (1999), the ratio ε

n−loc.p
ν /εMU

ν can be as large as
2× 103 T −2

8 , dominating the neutrino emission in the neutron star core.
Unfortunately, the situation for the modified Urca reactions (9.97) is even more

cumbersome. As stated above, the applicability of soft electroweak theorems is not
justified since the energy of the lepton pair is not small, ω ∼ pF#. Therefore it is not
immediately clear that the ‘leg’ diagrams (a) and (b) in Fig. 9.1 give the dominant
contribution. Moreover, off-shell amplitudes should be used. In npeμ matter one
considers two branches of the modified Urca processes, namely neutron and proton
branches [C = n and C = p in Eq. (9.97)]. We focus on the neutron branch,
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for the proton branch see Yakovlev et al. (2001).17 In the OPE approximation,
the emissivity of the modified Urca process from the leg diagrams is (Friman and
Maxwell 1979; Yakovlev et al. 2001)

εMU
ν = 8.1× 1013

(
m∗n
mn

)3 (m∗p
mp

)4 (
pF#c

μ#

)(
np

n0

)1/3 (
T

108 K

)8

αn#MU erg cm−3 s−1,

(9.112)

where αn#MU ≈ 1 comes from the averaged matrix element (Yakovlev et al. 2001).
Comparing with Eq. (9.110), one sees that the neutrino emissivity from the modified
Urca process is more than 50 times stronger than that of the bremsstrahlung process.
The reaction rate is given by the equation analogous to Eq. (9.113), but with different
numerical constants in the prefactors

�MU = 0.106

T
εMU
ν , ��MU = 0.129

T

δμ

T
εMU
ν (for δμ� T ) . (9.113)

The correlation effects considered by Friman and Maxwell (1979) reduce the rate
in Eq. (9.112) approximately by a factor 1/2. From the above discussion of the nn
bremsstrahlung, one expects further reduction of the emissivity when going beyond
the OPE approximation towards the full scattering amplitude. Indeed, according to
estimates by Blaschke et al. (1995), the expected reduction is about 1/4 with respect
to the OPE result and the use of the in-medium T -matrix leads to further reduction
by an additional factor of 0.6− 0.9.

In the recent work by Dehghan Niri et al. (2016), the in-medium modified Urca
emissivity was calculated starting from the correlated nucleon pair states (see also
Sawyer and Soni 1979 and Haensel and Jerzak 1987). The pair correlation functions
are determined in the lowest-order constrained variational (LOCV) procedure. The
LOCV functions turn out to be similar to those obtained in the BHF scheme (Baldo
and Moshfegh 2012). The modified Urca emissivity calculated in this way by
construction effectively includes rescattering diagrams of type (c) in Fig. 9.1 (as
pointed out already by Friman and Maxwell 1979). It was found that the LOCV
result at two-body level shows a reduction of the emissivity from the Friman &
Maxwell result. The reduction becomes more pronounced with increasing density,
reaching a factor of 4 at n = 3n0. However, the inclusion of phenomenological
three-body forces (in the Urbana IX model (Carlson et al. 1983)) eliminates this
reduction, and the LOCV result with three-body forces turns out to be close to that
of Friman and Maxwell (1979).

One might expect that in the MOPE model of in-medium nuclear interactions
(Migdal et al. 1990; Voskresensky 2001) the correction of the emissivity of
the modified Urca process is similar to the bremsstrahlung correction given in

17Note that the angular factor �̂ [see Eq. (9.101)] for the proton branch is slightly incorrect in
Yakovlev et al. (2001), see Gusakov (2002), Kaminker et al. (2016) for details.
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Eq. (9.111). This is not the case. According to the analysis of Voskresensky (2001),
at n � n0, diagrams of type (d) dominate, which describe in-medium conversion of
a virtual charged pion to a neutral pion with the emission of a real lepton pair. The
modification factor for the medium modified Urca reaction with respect to the free
one-pion exchange result is

βMMU = 3

(
n

n0

)10/3 [�(n)/�(n0)]6

(ω̃π /mπ)
8 . (9.114)

Comparing with Eq. (9.111), one finds a higher power of the pion gap ω̃π in
the denominator and a stronger density dependence in the prefactor. With typical
parameters, one obtains enhancement by a factor of βMMU ∼ 3 at n ∼ n0 and up
to βMMU ≈ 5 × 103 at n = 3n0. Note, however, that this enhancement strongly
depends on the uncertain values of the pion gap ω̃π and the vertex correction �

entering Eqs. (9.111) and (9.114).
The modified Urca process is dominant when the direct Urca process is for-

bidden. When the density is sufficiently close to (but still below) the direct Urca
threshold, one needs to take into account the softening of the nucleon propagation in
the virtual lines when examining the ‘leg’ contributions (a) and (b) in Fig. 9.1. This
can increase the modified Urca rates significantly in comparison to the standard
result (Shternin et al. 2018). For example, consider diagram (b) for the neutron
branch of the modified Urca reaction, i.e., p2 corresponds to a neutron line. After
emitting the lepton pair with momentum q ≈ pF# and energy ω ≈ μ# + ων , the
neutron transforms to a virtual proton with energy ε = μn − ω and momentum
k = p2 − q well above the Fermi surface (k > pFp). The standard practice (e.g.,
Friman and Maxwell 1979) is to set the proton propagator to G−1

0 = −ω ≈ −μ# in
Eq. (9.108). However, in the case of backward emission q ↑↓ p2 (k = pFn −pF#),
the intermediate momentum k can be close to kFp and in beta-stable matter ε ≈ μp

(we neglectων here). When ρ > ρDU this results in a pole on the real-axis (G−1 = 0
for some values of q), manifesting opening of the direct Urca process, while for
ρ → ρDU, the intermediate proton line softens in a certain (backward) part of the
phase space. In other words, G−1 can be much smaller than G−1

0 when k → pFp,
leading to a strong enhancement of the neutrino emissivity. As a consequence, only
the vicinity of k ≈ p2 − q is important when calculating the matrix element
in (9.107), i.e., only weakly off-shell values of TNN are needed. In this sense, one
reinstalls the soft bremsstrahlung theorem in a certain way. A crude estimate of
the effect of the nucleon softening can be obtained by neglecting all momentum
dependence in (9.107) except for G. For the contribution of diagram (b) in Fig. 9.1
one gets (Shternin et al. 2018)

〈∣∣∣M(b)
f i

∣∣∣2〉
�〈∣∣∣M(b)0

f i

∣∣∣2〉
�

≈ m∗2p μ#

2p2
FppF# δp

, δp � pFn , (9.115)
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where M
(b)
f i and M

(b)0
f i are calculated using G and G0, respectively, and δp =

pFn − pFp − pF# measures the distance from the direct Urca threshold in terms
of momenta. A slightly different result is found for the (a) diagram18 but the δp−1

asymptotic behavior is the same. The exchange contributions somewhat complicate
this picture, however they are of next order in δp. The correction (9.115) to the
modified Urca rates leads to a more pronounced density dependence of QMU than
given in Eq. (9.112) and a significant rate enhancement at ρ → ρDU. Moreover,
calculations show that the rates are enhanced by a factor of several for all relevant
densities in neutron star cores (even far from ρDU). Notice that this result is universal
in a sense that it does not depend on the particular model employed for the strong
interaction. A more detailed study of this effect would be interesting.

Let us note that the softening of the intermediate nucleon, which results in the
enhancement of the modified Urca rate given by Eq. (9.115), has similarity with the
MOPE result (9.114) where the enhancement is due to softening of the intermediate
pion. We note, however, that the dominance of the diagram (d) contribution over
diagrams (a)-(c) in MOPE calculations was found without taking into account
enhancement of the latter by the effects described above. This can alter the MOPE
result.19

At high temperatures, one needs to go beyond the quasiparticle approximation
and take into account coherence effects such as the Landau-Pomeranchuk-Migdal
(LPM) effect. When the quasiparticle lifetime becomes small [the spectral width
γ (ω) of the quasiparticle becomes large], it undergoes multiple scattering during
the formation time of the radiation. In this case, the picture of well-defined
quasiparticles fails and the nuclear medium basically plays the role of the spectator
in reactions (9.96)–(9.97), such that the process (9.95) essentially becomes allowed.
Calculations of the reaction rates and emissivities become more involved (Knoll and
Voskresensky 1995). The finite spectral width in the nucleon propagators regularize
the infrared divergence (9.109), leading to the LPM suppression of the reaction
rates. This becomes important when ω ∼ T � γ (ω). According to various
calculations, the threshold temperature is rather large, T � 5 MeV (van Dalen et al.
2003; Sedrakian and Dieperink 1999; Lykasov et al. 2008; Shen et al. 2013).

9.4.2.3 Neutrino Emission in the Presence of Cooper Pairing of Nucleons

The onset of the pairing instability has a strong effect on the reaction rates and
the neutrino emission, as already mentioned in Sect. 9.2.3.4. As discussed in
Sect. 9.4.1.4, the presence of the gap in the quasiparticle spectrum reduces the
available phase space for the reaction to proceed and the reaction rates become

18One should substitute m∗p by m∗n and one of the factors pFp in the denominator by pFn in
Eq. (9.115).
19Notice that it is not sufficient simply to compare Eqs. (9.114) and (9.115), since the ‘leg’
diagrams (a)-(b) also possess MOPE enhancement, c.f. Eq. (9.111).
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strongly suppressed (in the close-to-equilibrium situation). In addition, the number
of quasiparticles is not conserved now, which opens new reaction channels, namely
those corresponding to Cooper pair breaking and formation.

The modifications due to Cooper pairing are usually described by superfluid
‘reduction factors’,

εSF
ν = εNν Rε

({
�i

T

}
,
δμ

T

)
, (9.116a)

��SF = ��NR�

({
�i

T

}
,
δμ

T

)
, (9.116b)

where SF refers to superfluid and N to non-superfluid. The factors Rε and R�

describe the superfluid modifications of the total emissivity and the equilibration rate
(for the composition-changing reactions), respectively, and depend on the superfluid
gaps �i , where i labels the superfluid species,20 and on the chemical potential
imbalance δμ. Calculating these factors accurately is a complicated task. Effects
of superfluidity enter the original expressions for the rate and the emissivity (9.98)
through the superfluid quasiparticle distribution functions in (9.99) and the energy
spectra in the delta-function (9.100). They also affect the matrix element Mfi ,
allowing for the quasiparticle number non-conservation, and, moreover, the weak
interaction vertices can be affected by the response of the condensate [this has
crucial consequences when the emission due to Cooper pairing (9.95) is considered,
see below]. All effects of pairing can be taken into account consistently by
starting from the full propagators in the so-called Nambu-Gorkov space. We shall
briefly discuss this approach in Sect. 9.5.3 for the direct Urca process in color-
superconducting quark matter, see Eq. (9.135) and discussion below that equation.
In almost all calculations of the reduction factors Rε/� we are aware of for nuclear
matter, the modifications of the reaction cross-sections are not considered, and only
the phase-space modifications are included. For the direct Urca processes (9.94) this
approach is well-justified, see section 4.3.1 in Yakovlev et al. (2001). The relative
contribution of the number-conserving channels of the reaction and channels which
include breaking and formation of Cooper pairs are considered in Sedrakian (2005),
Sedrakian (2007). At high temperatures, the scattering contribution dominates,
while at T → 0 its contribution decreases to one half of the total rate. In
practice, there is no need to consider these contributions separately and one can
use MDU (9.104) without superfluid modifications (Yakovlev et al. 2001). The
effects of the superfluid coherence factors on the matrix element of the electroweak
bremsstrahlung reactions have, to our knowledge, not been explored. Therefore,
in the following, we briefly discuss the results for the superfluid reduction factor
obtained without superfluid effects on Mf i . Such factors are universal since they

20For simplicity, here we only use the term superfluidity, including proton Cooper pairing. The
distinction between superfluidity and superconductivity is not important in the present context.
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do not depend on the details of the strong interaction and are assumed to reflect the
main properties of the correct results.

Let us first consider beta-equilibrated matter, δμ = 0 (Yakovlev et al. 1999,
2001; Gusakov 2002). Even with the above simplifications, the calculation of Rε/�

require laborious efforts because it has to account for the possible coexistence of
proton pairing and (anisotropic) neutron pairing. Recall that protons are assumed
to pair in the isotropic 1S0 state, while neutrons in the neutron star core are paired
in the 3P2(mJ = 0, ±1, ±2) channel with a possible admixture from the 3F2
channel. Only the cases mJ = 0 and |mJ | = 2 are considered in detail since they
do not include integration over the azimuthal angle of the quasiparticle momentum
about the quantization axis. The angular integration over the polar angle must be
carried out, which precludes using the angular-energy decomposition in the form
of Eq. (9.101).21 At very low temperatures, T � Tc, where Tc is the critical
temperature for pairing, participation in the reaction of a paired fermion species
in the 1S0 or 3P2(mJ = 0) channels leads to an exponential suppression of the
rates. The case |mJ | = 2 is qualitatively different since the gap contains nodes
on the Fermi surface. Then the suppression is given by a power law in T/Tc. At
intermediate temperatures, most interesting in practice, the suppression factors show
an approximate power-law dependence for any superfluidity type, even for a fully
gapped spectrum. Numerical results and fitting expressions for direct Urca, modified
Urca, and bremsstrahlung reactions for various combinations of pairing types,
isotropic and anisotropic, can be found in Gusakov (2002), which also contains a
review of other works.

The beta-equilibrium conditions can be perturbed by various processes, for
instance by compression. In the superfluid case, since the reaction rates are
suppressed, the system cannot counterbalance a growing perturbation δμ. If δμ
becomes larger than the pairing gap � the reactions become unblocked. If the
direct Urca process is allowed by momentum conservation, the threshold value
is δμth = �n + �p. Otherwise, if the modified Urca process is responsible for
beta-equilibration, δμth = �n + �p + 2 min(�n, �p) (Reisenegger 1997). When
δμ > δμth, the beta-equilibration reaction which decreases δμ is allowed and is no
longer suppressed by the presence of gaps. The value of δμ determines the phase
space for the reaction, like in case of normal matter in the supra-thermal regime.
Reisenegger (1997) first suggested this effect22 and qualitatively described it by
introducing step-like suppression factors Rε,� = �(δμ − δμth) [it is understood

21In the case of bremsstrahlung or modified Urca, which can include two neutrons with anisotropic
pairing, the matrix element in principle cannot be taken out of the integration since it depends on
the relative orientation of the scattered particles even without superfluid modifications. This is
always neglected. Note, however, that in this case the region of the momenta orientation that imply
lowest gaps will be extracted from Mfi . One can expect considerable modifications if the angular
dependence of Mfi is not flat (this is the case for n–p scattering, which contributes to modified
Urca and n-p bremsstrahlung rates).
22This idea was re-discovered recently under the name of ‘gap-bridging’ in Alford et al. (2012a),
Alford and Pangeni (2017).



9 Reaction Rates and Transport in Neutron Stars 529

that the ‘N’ quantities in Eqs. (9.116) are calculated including δμ]. Later these
results were improved in Villain and Haensel (2005), Pi et al. (2010), Petrovich
and Reisenegger (2010), González-Jiménez et al. (2015), where discussions of the
behavior of the R-factors and complications of the numerical scheme can be found.
In the recent study by González-Jiménez et al. (2015), the most general case of
anisotropic pairing in considered, but unfortunately no analytical approximation
for the reduction factors are given. It would be nice (but not easy) to obtain
approximations similar to those presented in Gusakov (2002), but for the non-
equilibrium case. In fact, according to Eq. (9.103), it is enough to find one of the
factors Rε or R� (Flores-Tulián and Reisenegger 2006).

Now let us turn to the neutral weak current emission associated with the Cooper
pair breaking and formation (CPF) processes in the reaction given in Eq. (9.95).
These processes were already mentioned in Sect. 9.2.3.4. The process (9.95) is a
first-order process in the number of quasiparticles and therefore does not explicitly
depend on the strong interaction details (although strong interactions determine,
for instance, the value of the gap). This process is kinematically forbidden in the
normal matter but becomes allowed if the nucleons pair. It was proposed by Flowers
et al. (1976) and later rediscovered by Voskresensky and Senatorov (1987) The
expression for the emissivity can be written as (Yakovlev et al. 2001)

εCP
ν = 1.17× 1014

(
m∗N
mN

)(
pFN

mNc

)(
T

108 K

)7

αCPF(�N/T )Nν erg cm−3 s−1 ,

(9.117)

where, as usual, αCP = αCP
V + αCP

A is a dimensionless number that arises from
the matrix element of the process containing vector αCP

V and axial-vector αCP
A

contributions and F(�N/T ) comes from the energy integration (and angular
integration in the anisotropic case). Near the critical temperature T → TcN , the
function F approaches zero linearly, F ∝ (1 − T/TcN), and for low temperatures
F behaves qualitatively like the reduction factors Rε/�, i.e., the emissivity is
exponentially suppressed, unless there are nodes of the gap on the Fermi surface,
in which case F behaves according to a power-law in temperature (Yakovlev
et al. 2001). Thus, at low temperatures, the CPF emission is strongly suppressed.
However, the function F has a maximum at T ∼ 0.8 TcN and in the vicinity of this
temperature the CPF emission can be the dominant neutrino emission mechanism
in the superfluid neutron star core. Therefore, the CPF process is an important
ingredient in the so-called minimal cooling scenario of the thermal evolution of
isolated neutron stars (Page et al. 2004; Gusakov et al. 2004; Page et al. 2009).

During the last decade, significant improvements in CPF emission studies were
made. Crucially, one has to take into account consistently the response of the
condensate (collective modes), which enters the emissivity through the anomalous
part of the weak vertices. This is achieved by a proper renormalization of the
vertices, which ensures vector current conservation (Kundu and Reddy 2004). As a
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consequence, the CPF emission for singlet-paired matter is strongly suppressed
in the non-relativistic limit, as pointed out by Leinson and Pérez (2006), and
later elaborated in Sedrakian et al. (2007), Leinson (2008), Kolomeitsev and
Voskresensky (2008), Steiner and Reddy (2009), Leinson (2009), Kolomeitsev and
Voskresensky (2010), Kolomeitsev and Voskresensky (2011), Sedrakian (2012).
Although some controversy about the results from different approaches still exists,
the main conclusion is that αCP

V ∝ g2
V v

4
FN , being small in the non-relativistic limit.

Recall that the singlet nucleon pairing is present in the low-density, hence non-
relativistic (vFN � 1), domain. The axial-vector contribution does not receive
any vertex correction because there is no spin response from the condensate in
the case of singlet pairing. However, this contribution itself is a relativistic effect,
αCP ≈ αCP

A = α̃CP
A g2

Av
2
FN , where α̃CP

A is a numerical factor of order unity
whose precise value is subject to debates. The final conclusion is that the CPF
emission from the singlet pairing is not important, being much smaller than the
bremsstrahlung contribution even when the latter is suppressed by the superfluid
reduction factor Rε .

The situation is different for the case of triplet pairing of neutrons, which is
thought to occur in a large fraction of the neutron star core. Without taking into
account the condensate response, the CPF emission from the triplet superfluid is
given by Eq. (9.117) with αCP = g2

V + 2g2
A ≈ 4.17 (Yakovlev et al. 2001). Up

to very high densities, where the triplet pairing is usually found to vanish, the
neutrons can still be considered non-relativistic. By analogy with the case of singlet
pairing, one expects that the vector current conservation would suppress the vector
contribution to the emissivity also in the triplet case. This leads to the approximation
αCP = 2g2

A, by a factor of about 0.78 less than the initial result (Page et al. 2009).
However, in contrast to the singlet case, the order parameter of the triplet superfluid
varies under the action of the axial-vector field (Leinson 2010). As a consequence,
this modifies the axial-vector contribution to the emissivity. This was considered
by Leinson (2010), using an angular-averaged gap as an approximation. He indeed
found the suppression of the vector contribution in the non-relativistic limit, while
for the axial-vector contribution the result is αCP ≈ αCP

A = 1
2g

2
A ≈ 0.8. Thus taking

into account the condensate response reduces the emissivity by a factor of 0.19
compared values given by Yakovlev et al. (2001). This quenching has observational
consequences if the real-time thermal evolution of the superfluid neutron star can
be observed, see for instance Shternin and Yakovlev (2015). The actual angular
dependence of the gap and Fermi-liquid effects modify this result only slightly
(within 10% according to Leinson 2013). Thus, even with the more elaborate
treatment of the superfluid response to weak perturbations, the neutrino emissivity
due to CPF processes from triplet neutron superfluidity can be the dominant neutrino
emission mechanism at T ∼ 0.8 Tcn.

Collective modes in the superfluid (see Sect. 9.4.1.4) can also contribute to
the neutrino emissivity. The emission related to the collisions of the Goldstone
modes—angulons—in the triplet superfluid was considered in Bedaque et al. (2003)
and found to be always negligible. However, Bedaque and Sen (2014) recently
considered the case of a strong magnetic field, to which the neutron fluid couples



9 Reaction Rates and Transport in Neutron Stars 531

through the neutron magnetic moment. Since the magnetic field breaks rotational
symmetry explicitly, one of the angulon modes acquires a gap of the order of
eB/(m∗nc) and its decay to a neutrino pair becomes kinematically allowed. The
resulting neutrino emissivity can be written in a form similar to Eq. (9.117), where
the function F(�N/T ) is replaced by the B-dependent function h(gnB/(aT )),
where gn is the neutron magnetic moment, and a = 4.81. This function h(x) peaks
at x ∼ 7 and is exponentially suppressed at large x (small T ). According to the
numerical estimates in Bedaque and Sen (2014), the neutrino emissivity due to the
‘magnetized angulon’ decay can be larger than that of the CPF process at T ≈ 107 K
provided the interior magnetic field is as large as B ∼ 1015 G (the situation where
the magnetic field is confined in flux tubes of the proton superconductor is also
discussed).

9.4.2.4 Electromagnetic Bremsstrahlung

The preceding sections do not contain all neutrino emission processes in the cores
of neutron stars. Other possibly relevant processes are discussed in Yakovlev et al.
(2001), see also Potekhin et al. (2015b). Here we briefly discuss new results for the
electromagnetic bremsstrahlung emission, obtained after, and thus not included in,
Yakovlev et al. (2001). The emission from the electromagnetic bremsstrahlung

#+ C → #+ C + ν + ν̄ , (9.118)

where # = e, μ is a lepton and C is some electrically charged particle, is thought
to be several orders of magnitude smaller than those from collisions mediated by
strong interactions (Yakovlev et al. 2001). Still, the lepton-lepton bremsstrahlung
may be the dominant process for low-temperature superfluid matter (with both
neutrons and protons in the paired state), where the neutrino emission processes
involving baryons are suppressed. The studies reviewed in Yakovlev et al. (2001)
underestimated the significance of the bremsstrahlung in electromagnetic collisions.
The reason is the same as discussed in Sect. 9.4.1.2—correctly taking into account
screening of the transverse part of the interaction makes these collisions much more
efficient. The proper transverse screening was considered for the electron-electron
bremsstrahlung in Jaikumar et al. (2005), with the result

Qee = 1.7× 1012
(

T

108 K

)7 (ne
n0

)2/3

Ñ

(
mDc

2

2T

)
Nν erg cm−3 s−1, (9.119)

where mD is the electric (Debye) screening mass (corresponding to h̄ql/c in the
notation of Sect. 9.4.1.2) and Ñ � 1 is a slowly varying function, approaching
unity in the strongly degenerate limit. Like in the case of the thermal conductivity
(Sect. 9.4.1.2), dynamical screening borrows one power of the temperature from
the expression for emissivity, so it behaves like T 7 instead of T 8 for standard
bremsstrahlung reactions (here we neglect the temperature dependence of Ñ ,
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which becomes important if the temperature approaches the plasma temperature).
According to Eq. (9.119), the emissivity in e-e collisions becomes increasingly
important with lowering the temperature and was underestimated by more than five
orders of magnitude before that work. The bremsstrahlung emission from electron-
proton (or other charged baryons) collisions should obey a similar enhancement,
although the transverse channel is suppressed by the relativistic factor v2

Fp (see
Sect. 9.4.1.2).

The domain of immediate importance of Eq. (9.119) is in the possible region of
the inner core where the singlet proton pairing is absent, but the neutron triplet
pairing exists. Then the neutrino emission due to the process in question can
compete with the proton-proton bremsstrahlung due to strong forces. In the case
of proton pairing, the expression (9.119) is expected to modify in the same way as
the transport coefficients discussed in Sect. 9.4.1.4. Detailed studies of these effects
for realistic conditions in neutron star cores are desirable but not performed yet.

9.4.3 Bulk Viscosity

As we can see from Eq. (9.14), the bulk viscosity ζ is responsible for dissipation
in the presence of a nonzero divergence ∇ · v. Via the continuity equation (9.6a),
this divergence is identical to compression and expansion of a fluid element. In a
neutron star, certain oscillations lead to local, periodic compression and expansion.
Therefore, bulk viscosity is an important transport property of the matter inside
the star if we are interested in the damping of these oscillations. The dominant
contribution to bulk viscosity is given by electroweak reactions because their time
scale becomes comparable to the period of the oscillations of the star, which are
typically of the order of the rotation period. Since rotation periods are of the order of
a millisecond or larger, re-equilibration processes from the strong interaction play
no role for bulk viscosity. The ‘resonance’ between the weak interaction and the
oscillation frequency occurs in a certain temperature regime, usually for relatively
high temperatures of about 1 MeV or higher. Bulk viscosity is thus particularly
important for young neutron stars or in neutron star mergers.

To explain the interplay between the reaction rates of the weak processes and
an externally given volume oscillation, let us briefly review how the bulk viscosity
of dense hadronic matter is computed (Sawyer 1989a; Haensel et al. 2000). We
denote the angular frequency of the volume oscillation by ω, such that we can write
the volume as V (t) = V0[1 + δv(t)], with a (dimensionless) volume perturbation
δv(t) = δv0 cosωt � 1. Then, on the one hand, we can write the dissipated energy
density, averaged over one oscillation period τ = 2π/ω, as

〈Ė〉τ = −ζ
τ

∫ τ

0
dt (∇ · v)2 ≈ −ζω

2δv2
0

2
, (9.120)
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where we have used the continuity equation (at zero velocity v = 0) to relate the
divergence of the velocity field to the change in the total particle number density,
which, in turn, is directly related to the change in volume if the total particle number
is fixed. On the other hand, the dissipated energy density can be expressed in terms
of the mechanical work done by the induced pressure oscillations,

〈Ė〉τ = 1

τ

∫ τ

0
dt P (t)

dδv

dt
, (9.121)

where the pressure is

P(t) = P0 + ∂P

∂V
V0δv +

∑
x=n,p,e

∂P

∂nx
δnx . (9.122)

The oscillation in the pressure is in general out of phase compared to the volume
oscillation because of the microscopic re-equilibration processes which induce
changes in the number densities of the particle species δnx . For this derivation,
we consider the simplest form of hadronic matter, made of neutrons, protons and
electrons. We discuss extensions to more complicated forms of matter and their
bulk viscosity below.

From Eqs. (9.120) and (9.121) we compute the bulk viscosity. Let us for now
assume the electroweak re-equilibration process is the direct Urca process, given by

p + e→ n+ νe , n→ p + e + ν̄e . (9.123)

In chemical equilibrium, the reactions (9.123) do not change the various densities
because they occur with the same rate, and the sum of the chemical potentials of the
ingoing particles is the same as the sum of the chemical potentials of the outgoing
particles, δμ ≡ μp + μe − μn = 0. We assume that neutrinos and anti-neutrinos
leave the system once they are produced. They can thus only be outgoing particles
and we set their chemical potential to zero, μν ≈ 0. This assumption has to be
dropped for very young (proto-)neutron stars where the temperature is large and the
mean free path of neutrinos becomes much smaller than the size of the star. Then,
neutrino absorption processes need to be taken into account in the calculation of
the bulk viscosity, as discussed by Lai (2001). A non-equilibrium situation occurs
if the equality of chemical potentials is disrupted, δμ 
= 0. Such a disruption can be
induced by the volume oscillation if the various particle species respond differently
to compression and expansion. The situation considered here is particularly simple
because there is a single process and a single δμ. In general, there can be multiple
processes related to the same δμ, for instance if we include modified Urca processes
(whose contribution, if the more efficient direct Urca process is allowed, can be
neglected). A more complicated situation occurs if multiple processes are related
to multiple δμ’s, for instance if we include strangeness in the form of hyperons.
We shall sketch the derivation of the bulk viscosity for such a case in the context
of quark matter, see Sect. 9.5.4.1. Here we proceed with the single process (9.123).
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In this case, the changes in the densities are all locked together,

dnn

dt
= −dne

dt
= −dnp

dt
= �[δμ(t)] ≈ λ δμ(t) , (9.124)

where �[δμ(t)] is the number of neutrons produced per unit time and volume in
the process p + e → n + νe. Using the general terminology employed at the end
of Sect. 9.4.1.5, the stoichiometric coefficients of the reaction p + e → n + νe are
−1 for n and +1 for e and p, counting how many particles of a given species are
created and annihilated in the given process. These numbers (in this case simply plus
or minus signs) appear in Eq. (9.124). On the right-hand side of Eq. (9.124) we have
applied the linear approximation for small δμ, such that now all information about
the reaction rate is included in λ, using the same notation as in Eq. (9.91). According
to our definition of δμ, a net production of neutrons sets in for δμ > 0, from which
we conclude that λ > 0. The difference in chemical potentials δμ oscillates due to
the volume oscillation and due to the weak reactions,

dδμ

dt
= ∂δμ

∂V

dV

dt
+

∑
x=n,p,e

∂δμ

∂nx

dnx

dt

= −B dδv

dt
− λCδμ(t) , (9.125)

where we have used Eq. (9.124) and abbreviated

B ≡ ∂P

∂np
+ ∂P

∂ne
− ∂P

∂nn
, C ≡ ∂δμ

∂np
+ ∂δμ

∂ne
− ∂δμ

∂nn
. (9.126)

These quantities are evaluated in equilibrium, i.e., they only depend on the
equation of state, not on the electroweak reaction rate. We can also express the
pressure (9.122) with the help of B,

P(t) = P0 + ∂P

∂V
V0δv + Bδne . (9.127)

In general, δμ(t) oscillates out of phase with the volume δv(t), and we make the
ansatz δμ(t) = Re[δμ0e

iωt ], with the complex amplitude δμ0. The differential
equation (9.125) then yields algebraic equations for real and imaginary parts of
δμ0, which can easily be solved. We compute δne by integrating Eq. (9.124), then
insert the result into the pressure (9.127) and the result into the expression for the
bulk viscosity, which is obtained from Eqs. (9.120) and (9.121). This yields

ζ = −λB Re(δμ0)

ω2δv0
= λB2

(λC)2 + ω2 . (9.128)
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This is the basic form of the bulk viscosity of nuclear matter, as a function of the
thermodynamic quantities B and C, the reaction rate λ, and the external angular
frequency ω. It shows that bulk viscosity is a resonance phenomenon: the viscosity
is maximal when the time scales set by the external oscillation frequency and
the microscopic reaction rate match. Since the microscopic reaction rate typically
increases with temperature T , the bulk viscosity as a function of T at fixed ω is
a function with a maximum at T given by Cλ(T ) = ω. It is now obvious that the
strong processes, which are responsible for thermal equilibrium, do not contribute to
the bulk viscosity because they operate on much shorter time scales. Bulk viscosity
in a neutron star is utterly dominated by weak processes, which are responsible for
chemical re-equilibration. It has been pointed out by Alford and Schmitt (2007) that
the dissipation due to the out-of-phase oscillations of volume (externally given) and
chemical potentials (response of the system) is completely analogous to an electric
circuit with alternating voltage (externally given) and electric current (response of
the system). In this analogy, which is mathematically exact and physically very
plausible, the analogue of the resistance is B−1 and the analogue of the capacitance
is B/(Cλ), while the inductance is zero.

We show the bulk viscosity of hadronic matter in Fig. 9.2. If the direct Urca
process is allowed, the conversion of neutrons into protons and vice versa is
faster and thus the maximum of the bulk viscosity occurs at a smaller temperature
compared to the case where only the modified Urca process is at work. Since the
strong interaction is needed for the modified Urca process, the corresponding rates
are prone to large uncertainties, as discussed in the previous section. The bulk
viscosity due to the modified Urca process used by Alford et al. (2010a), from
which Fig. 9.2 is taken, is based on free one-pion exchange interaction (Friman and
Maxwell 1979; Haensel 1992; Reisenegger 1995). Kolomeitsev and Voskresensky
(2015) showed that medium modifications in the MOPE model can enhance the
rate of the modified Urca process and thus may shift the maximum of the bulk
viscosity to lower temperatures. Figure 9.2 also includes a comparison with quark
matter, whose bulk viscosity we discuss in Sect. 9.5.4. We see that the bulk viscosity
peaks at even lower temperatures than that of hadronic matter with the direct Urca
process. The reason is that in (unpaired) quark matter the more efficient non-
leptonic, strangeness-changing, process u + d ↔ u + s is the dominant chemical
re-equilibration process. The figure also shows that the equation of state, through the
susceptibilities B and C, has a sizable effect on the bulk viscosity. This effect has
also been studied by Vidaña (2012), with an emphasis on the role of the symmetry
energy for the bulk viscosity.

The bulk viscosity also receives contribution from muons. Muons appear in the
direct (or modified) Urca processes (9.123) with electron and electron neutrino
replaced by muon and muon neutrino (Haensel et al. 2000, 2001). One can also
consider the purely leptonic processes that convert an electron into a muon and vice
versa,

e + e↔ μ+ e + ν + ν̄ , e + μ↔ μ+ μ+ ν + ν̄ . (9.129)
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Fig. 9.2 Bulk viscosity of unpaired nuclear matter from Urca processes with angular frequency
ω = 8.4 kHz and baryon density n = 2n0. If the direct Urca process is allowed, the reaction
rate is faster and the maximum of the bulk viscosity is at a lower temperature. The dashed lines
are obtained by using non-interacting matter for the susceptibilities, while the solid curves use
the equation of state of Akmal et al. (1998). The plot also shows the result for unpaired strange
quark matter from the non-leptonic process u + d ↔ u + s, to be discussed in Sect. 9.5.4.1, see
also Fig. 9.4. Again, the dashed curve represents non-interacting quark matter, while the solid curve
includes effects of the interaction on the thermodynamics. Figure from Alford et al. (2010a). https://
doi.org/10.1088/0954-3899/37/12/125202. © IOP Publishing. Reproduced with permission. All
rights reserved

These processes are the dominant contribution to the bulk viscosity for temperatures
well below the critical temperature for hadronic superfluidity (Alford and Good
2010).

As the result for quark matter in Fig. 9.2 suggests, the presence of strangeness
has a significant effect on the bulk viscosity. The reason is that the phase space
for a non-leptonic (strangeness-changing) process is typically much larger than
that for a semi-leptonic process because the leptons have a negligibly small
Fermi momentum. In hadronic matter, the presence of hyperons thus leads to a
very different result for the bulk viscosity, with a maximum typically at smaller
temperatures that for ordinary nuclear matter. The bulk viscosity based on the
strangeness-changing processes

n+ n↔ p +�− , (9.130a)

n+ p ↔ p +1, (9.130b)

n+ n↔ n+1, (9.130c)

https://doi.org/10.1088/0954-3899/37/12/125202
https://doi.org/10.1088/0954-3899/37/12/125202
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has been computed by Jones (2001); Haensel et al. (2002); Lindblom and Owen
(2002); van Dalen and Dieperink (2004); Chatterjee and Bandyopadhyay (2006).
Effects of a large magnetic field were taken into account by Sinha and Bandyopad-
hyay (2009), and the bulk viscosity in quark/hadron mixed phases was computed by
Drago et al. (2005).

The curves in Fig. 9.2 show the result for unpaired matter. Cooper pairing of
nucleons and/or hyperons change the underlying reaction rates dramatically and (to
a much smaller extent) the susceptibilities that enter the bulk viscosity. Therefore,
the energy gap in the nucleon dispersions has to be taken into account, leading to a
suppression of the reaction rates. This suppression is exponential for temperatures
much smaller than the critical temperature if at least one of the participating particles
[say the neutron or the proton for the direct Urca process (9.123)] is gapped with
an isotropic gap. A power law suppression occurs if the pairing leaves a node at the
Fermi sphere where excitations with infinitesimally small energy are possible. This
is conceivable for certain phases of 3P2 pairing of neutrons (the milder suppression
is of course only possible if at the same time there are unpaired protons). As a
consequence of the suppression of the reaction rate, the bulk viscosity is suppressed
for small temperatures T � Tc. The effect of pairing on the bulk viscosity of
hadronic matter was calculated by Haensel et al. (2000, 2001, 2002). If neutrons
form a superfluid, the corresponding Goldstone mode may contribute to the bulk
viscosity and, depending on the equation of state, there may be a temperature regime
where its contribution is dominant (Manuel et al. 2013). Superfluidity also has an
effect on the hydrodynamics of the system. Since a superfluid at finite temperature is
effectively a two-fluid system, there is more than a single bulk viscosity coefficient.
The additional coefficients have been computed for superfluid nuclear matter from
Urca processes by Gusakov (2007), from phonons by Manuel et al. (2013), and
for superfluid nucleon-hyperon matter by Gusakov and Kantor (2008). The effect
of these additional coefficients on the instability window for r-mode oscillations
appears to be small (Haskell and Andersson 2010).

9.5 Transport in the Core: Quark Matter

9.5.1 General Remarks

Matter at sufficiently large baryon density is deconfined and quarks and gluons
rather than baryons and mesons become the relevant degrees of freedom. This
phase of matter is called quark matter or, especially at large temperatures where
the gluons contribute to the thermodynamics, quark-gluon plasma. In the context
of neutron stars, by quark matter we always mean three-flavor quark matter (or
‘strange quark matter’) made of up, down, and strange quarks. The reason is that
the charm, bottom, and top quarks are too heavy to exist at the densities and
temperatures typical for a neutron star. Therefore, even when we use perturbative
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methods which can only be trusted at extremely large densities, we ignore the heavy
flavors because eventually we are interested in extrapolating our results down to
neutron star densities. It is uncertain whether quark matter exists in the interior
of neutron stars because we do not precisely know the central density of the star
and, more importantly, we do not know the critical density at which nuclear matter
turns into quark matter. It is conceivable that this transition is a crossover (Schäfer
and Wilczek 1999; Alford et al. 1999a; Hatsuda et al. 2006; Schmitt et al. 2011),
such that there is no well-defined transition density, just like the transition from the
hadronic phase to the quark-gluon plasma at large temperatures and small baryon
densities (Aoki et al. 2006). Astrophysical data may provide important clues for the
question of the location and nature of the deconfinement transition at large densities.
Connecting observations from neutron stars to properties of ultra-dense matter is an
intriguing example of probing our understanding of fundamental theories such as
QCD with the help of astrophysics. In the case of quark matter (and also ultra-
dense nuclear matter), the interplay between astrophysics and theory is particularly
important because currently there is no rigorous first-principle calculation of dense
QCD, unless we go to even larger densities where perturbative methods become
reliable (Kurkela et al. 2010a,b, 2014). The reason is that even brute force methods
on the lattice fail due to the so-called sign problem, although there has been recent
progress towards evading and/or mitigating the sign problem (Aarts 2016; Glesaaen
et al. 2016; Gattringer and Langfeld 2016). Ideally, we would like a given phase of
dense matter to be identifiable in an unambiguous way from a set of astrophysical
observations. Of course, in reality, several distinct phases may show very similar
behavior with respect to the observables that are accessible to us. For instance,
many of the quark matter phases that we discuss in the following are basically
indistinguishable from each other through bulk properties such as the equation of
state and thus mass and radius of the star. But they do differ from each other in their
low-energy properties, for instance because of different Cooper pairing patterns.
Therefore, it is mostly the transport, less the thermodynamics, that differs from
phase to phase.

When we compute transport properties of quark matter, many aspects are similar
to what we have discussed for hadronic matter in the previous sections: we are
obviously interested in the same quantities, i.e., neutrino emissivity, viscosity
coefficients, etc., and the methods we use are often the same, even though the
formulations in the literature may sometimes look different. Nevertheless, there
are some general differences which are useful to keep in mind before we go into
more details. Firstly, quark matter is relativistic because the quark masses are
small compared to the quark chemical potential and thus compared to the Fermi
momentum.23 (For the up and down quarks, the Fermi velocity vF introduced in
Eq. (9.36) is very close to the speed of light, while the strange quark is heavy
enough to induce sizable corrections to this ultra-relativistic limit.) Therefore,

23In this section, we work in natural units, c = h̄ = kB = 1, such that mass, energy, momentum,
and temperature have the same units.
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all microscopic calculations are performed in a relativistic framework, which for
nuclear matter is only necessary at very large densities where the nucleon rest mass
becomes comparable to the Fermi energy. Secondly, when we want to treat quark
matter rigorously with currently available methods, we need to approach neutron
star densities ‘from above’, i.e., we often assume quarks to be weakly interacting to
be able to apply perturbation theory and then extrapolate the results down in density.
This becomes relevant for some of the results discussed here, but not for all since,
as we know from the previous section, not all transport properties rely on a precise
knowledge of the strong interaction and are rather dominated by the electroweak
interaction. Thirdly, quark matter has a larger variety of candidate phases for neutron
star cores than nuclear matter because there are 9 fermion species in three-flavor,
three-color quark matter. As a result, there is a multitude of different possible
patterns of Cooper pairing (Alford et al. 2008a), which is particularly interesting
with regard to transport properties.

We will summarize the current state of the art of reaction rates and transport
properties in quark matter that are relevant for neutron stars. We attempt to give a
comprehensive account of the current knowledge, which is possible because there
are considerably fewer studies about quark matter transport than about nuclear
matter transport. The results about quark matter we present here were obtained
starting from a few works in the early eighties through a peak period around 2005–
2008 and including very recent progress that is still ongoing, with interesting ideas
and prospectives for future work.

9.5.2 Phases of Quark Matter: Overview

As a preparation, especially for readers unfamiliar with dense QCD, it is useful to
start with a brief overview about the relevant quark matter phases and their basic
properties. In many cases, these basic properties already give us a rough idea about
the behavior of the transport properties which we shall then discuss in more detail.

Just as we know the properties of low-density ‘ordinary’ nuclear matter, we
have solid, albeit only theoretical, knowledge about quark matter at extremely high
densities. If the density is sufficiently large to apply weak-coupling methods and
to neglect all three quark masses compared to the quark chemical potential, the
ground state is the color-flavor locked (CFL) phase (Alford et al. 1998, 1999b).
While in nuclear matter more complicated phases including meson condensates
and hyperons may occur as we move away from ordinary nuclear matter to larger
densities (towards the center of the neutron star), more complicated phases of quark
matter occur as we move towards lower densities (starting from the asymptotically
dense regime, which is beyond neutron star densities).
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In the CFL phase, all quarks participate in Cooper pairing,24 and as a con-
sequence the dispersions of all fermionic quasiparticles are gapped. At zero
temperature, the number densities of all quark species are identical, and therefore
the CFL phase is ‘automatically’ neutral, without any electrons or muons (recall
that the electric charges of up, down and strange quarks happen to add up to zero).
This makes CFL very special with respect to transport because at low energies all
fermionic degrees of freedom are suppressed and can be neglected. The CFL phase
breaks chiral symmetry spontaneously, and thus there is a set of (pseudo-)Goldstone
modes, very similar to the mesons that arise from ‘usual’ chiral symmetry breaking
through a chiral condensate. At low temperatures, these light bosons dominate
(some of) the transport properties of the CFL phase. The CFL mesons appear
with the same quantum numbers as the mesons from quark-antiquark condensation,
which is a consequence of the identical symmetry breaking pattern. However, their
masses are different: in CFL, the kaons, not the pions, are the lightest mesons.

The CFL phase is a superfluid because it spontaneously breaks the U(1)
symmetry associated with baryon number conservation, and thus, as discussed
in Sect. 9.2.3.4, the usual complications of superfluid transport arise, such as the
two-fluid picture at nonzero temperature, or the existence of quantized vortices in
rotating CFL. Moreover, superfluidity implies the existence of an exactly massless
Goldstone mode, which yields the dominant contribution for instance to the shear
viscosity of CFL. The transport properties of CFL are determined by an effective
theory for the pseudo-Goldstone modes and the superfluid mode. The form of this
effective theory, in turn, is entirely given by the symmetry breaking pattern of
CFL, just like usual chiral perturbation theory. Therefore, if CFL persists down to
neutron star densities, we have a very solid knowledge of the low-energy physics
of quark matter, although the numerical coefficients of the effective theory can only
be determined reliably at weak coupling and become uncertain as we move towards
lower densities.

The opposite of CFL, in a way, is unpaired quark matter, where none of the
quark species forms Cooper pairs. Unpaired quark matter probably exists only at
high temperatures T � 10 MeV, because at lower temperatures Cooper pairing in
some form seems unavoidable (Alford et al. 2008a). Nevertheless, unpaired quark
matter is an important concept and its transport properties, even at low temperature,
are relevant. The reason is that almost all quark matter phases except for CFL have
some unpaired quarks or quarks with a very small pairing gap, which dominate
transport. Thus, up to numerical prefactors, the result for unpaired quark matter
is a good approximation for these phases in many instances. The calculation of
transport properties for unpaired quark matter is, in a sense, more difficult than
for CFL because we need to know the interaction via gluons in a strongly coupled

24Cooper pairing in quark matter always implies color superconductivity because at least some of
the gluons acquire a Meissner mass, in CFL all eight of them. Whether a color superconductor is
also an electromagnetic superconductor and a superfluid is more subtle and will not be discussed
in full detail here.
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regime (unless the transport property of interest is dominated by the electroweak
interactions). Therefore, shear viscosity, electrical and thermal conductivities of
unpaired quark matter are typically based on perturbative calculations, assuming
the strong coupling constant αs to be small.

Between the two extreme cases of CFL (present at asymptotically large densities
and sufficiently small temperatures) and completely unpaired quark matter (strictly
speaking only present at temperatures higher than in a neutron star but important
conceptually), there are many possible quark matter phases where quarks ‘partially’
pair. These phases are likely to be relevant for neutron stars and thus their transport
properties have been studied extensively. ‘Partial’ pairing means that certain quark
colors or flavors remain unpaired and/or that Cooper pairing does not occur in all
directions in momentum space and even may vary spatially. Such phases necessarily
appear at moderate densities because going down in density means a decrease in
quark chemical potential and an increase in the strange quark mass, somewhere
between the current mass of about 100 MeV and the vacuum constituent mass of
about 500 MeV. As a consequence, the strange quark mass cannot be neglected at
densities in the cores of neutron stars, and the particularly symmetric situation at
asymptotically large densities is disrupted. Why does the less symmetric situation
of different quark masses eventually lead to a breakdown of CFL? The reason is that
the gain in free energy from Cooper pairing is maximized if the two participating
fermion species have the same Fermi surface and pairing occurs over the entire
surface in momentum space. If the fermions that ‘want’ to pair have different Fermi
surfaces, an energy cost is involved in Cooper pairing, and this cost may be too
large to create a paired state. Different masses, together with the conditions of
beta-equilibrium and charge neutrality, provide such a difference in Fermi surfaces
because, at least for the most favorable spin-0 channel, pairing takes place between
quarks of different color and flavor. Therefore, CFL is under stress if we move
away from asymptotically large densities. The system is expected to react in a
series of phase transitions, producing more complicated quark matter phases. The
exact sequence of these phases can be determined in a controlled way at very large
densities and weak coupling, but as we move to lower densities, we have less
rigorous knowledge of the phase structure and rely mostly on model calculations
or bold extrapolations from ultra-high densities. In particular, it is not known where
in this sequence of phases nuclear matter takes over. It is conceivable that CFL
persists down to densities where the transition to hadronic matter occurs, possibly
leading to a nuclear/CFL interface inside a neutron star. It is also possible that
other color-superconducting phases exist in the core of neutron stars, possibly
breaking rotational and/or translational invariance. Also, since the QCD coupling
increases with lower energies, αs � 1 at densities relevant for astrophysics, the
color-superconducting phases may be replaced by something qualitatively different,
possibly involving elements from the Bardeen-Cooper-Schrieffer–Bose-Einstein-
condensation (BCS-BEC) crossover (Deng et al. 2007) seen in atomic gases or
possibly showing features of the quarkyonic phase that is predicted in QCD in the
limit of infinite number of colors Nc (McLerran and Pisarski 2007).
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9.5.3 Neutrino Emissivity

As for hadronic matter, neutrino emissivity is interesting in itself because it is the
main cooling mechanism of the star, and the rates for the neutrino processes can be
relevant for the bulk viscosity of quark matter inside a neutron star. We consider the
processes

d → u+ e + ν̄e , u+ e→ d + νe . (9.131)

These are the analogues of the direct Urca processes in nuclear matter (9.94). In
quark matter, the triangle inequality from momentum conservation does not pose
a severe constraint on this process because the Fermi surfaces between up and
down quark are not as different as the ones for neutrons and protons in nuclear
matter. Therefore, second-order neutrino processes such as bremsstrahlung are
usually negligible in quark matter. We first discuss the processes (9.131) and later
summarize the results that involve strangeness. Generalizing the definition (9.98),
where Fermi’s Golden Rule was applied directly, the neutrino emissivity is

εν ≡ 2
∂

∂t

∫
d3pν

(2π)3
pν fν(t,pν) , (9.132)

where pν is the neutrino momentum, and the factor 2 accounts for neutrinos and
anti-neutrinos. The change of the neutrino distribution function fν is computed from
the gain term in the neutrino transport equation, which takes the form

∂

∂t
fν(t,pν) = −

cos2 θCG
2
F

8

∫
d3pe

(2π)3pνpe
Lλσ fF (pe − μe)

×fB(pν + μe − pe)Im2λσ
R (Q) , (9.133)

with the Fermi and Bose distribution functions fF,B(x) = (ex/T ± 1)−1 for
the electron with energy pe and chemical potential μe and the W -boson with
four-momentum Q = (q0, q) = (pe − pν − μe,pe − pν). We have abbrevi-
ated Lλσ ≡ Tr

[
(γ0pe − γ · pe) γ

σ (1− γ 5)(γ0pν − γ · pν) γ
λ(1− γ 5)

]
, with the

Dirac matrices γ σ (σ = 0, 1, 2, 3) and γ 5 = iγ 0γ 1γ 2γ 3. (Note that the subscript ν
stands for neutrino and is thus not used as a Lorentz index.) Finally, Im2λσ

R is the
imaginary part of the retarded W -boson self-energy

2λσ (Q) = T

V

∑
K

Tr[�λ−S(K)�σ+S(P )] , (9.134)

with the quark propagator S, which is a matrix in color, flavor, and Dirac space
and—in the case of Cooper pairing—in Nambu-Gorkov space. The electroweak
vertices are diagonal in Nambu-Gorkov space, �λ± = diag[γ λ(1− γ 5)τ±,−γ λ(1+
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γ 5)τ∓], where τ± = (τ1±iτ2)/2 with the Pauli matrices τ1, τ2 are matrices in flavor
space which ensure that an up and a down quark interact at the vertex, i.e., K and P
correspond to the up and down quark four-momenta, respectively.

As an instructive example for the neutrino emissivity in quark matter due to the
Urca processes, let us discuss the 2SC phase (Bailin and Love 1984). In the 2SC
phase all strange quarks and all quarks of one color, say blue, are ungapped. This
phase is an example for the less symmetrically paired phases mentioned above. The
up and down quarks participating in the processes (9.131) can be either gapped or
ungapped. Since the weak interaction does not change the color of the quarks, they
are either both gapped (when they are red or green) or both ungapped (when they
are blue). The contribution of the gapped sector, here shown for a single color, is
(Schmitt 2010)

∂

∂t
fν(t,pν) =

π cos2 θCG
2
F

4

∑
e1,e2=±

∫
d3ped

3k

(2π)3(2π)3pνpe
Lλσ

(
T λσB

e1
k Be2

p + Uλσ �2

4εkεp

)

×fF (pe − μe)fF (−e1εk)fF (e2εp)δ(q0 − e1εk + e2εp) , (9.135)

where k and p are the up and down quark three-momenta, respectively. We have
denoted the Bogoliubov coefficients by Be

k = (1 − eξk/εk)/2 with ξk = k − μu

and the quasiparticle dispersion ε2
k = ξ2

k + �2, where μu is the up quark
chemical potential, and analogously for the down quark with chemical potentialμd .

Moreover, we have abbreviated T λσ ≡ Tr
[
γ λ(1− γ 5)γ 01−k γ σ (1− γ 5)γ 01−p

]
,

and Uλσ ≡ Tr
[
γ λ(1− γ 5)γ 51+k γ σ (1+ γ 5)γ 51−p

]
, with the energy projectors

1±k = (1 ± γ 0γ · k̂)/2. The contribution proportional to �2 comes from the so-
called anomalous propagators, the off-diagonal components of the quark propagator
S(K) in Nambu-Gorkov space. Their effect was discussed in detail and evaluated
numerically for the 2SC phase by Jaikumar et al. (2006), see Fig. 9.3 for a
diagrammatic representation of normal and anomalous contributions to theW -boson
self-energy.

The expression in Eq. (9.135) is instructive for the neutrino emissivity in the
presence of Cooper pairing because it shows 4 potential subprocesses that arise
from summing over e1 and e2. Naively, one would expect the distribution functions
for the process u + e → d + νe to appear in the form fefu(1 − fd) (we have
neglected fν since the neutrinos leave the star once they are created). We see that
the combinations fefufd , fe(1−fu)(1−fd), fe(1−fu)fd appear as well [note that
for the Fermi distribution f (−x) = 1 − f (x)]. The reason is that quasiparticles in
the superconductor are mixtures of particles and holes (this momentum-dependent
mixture is quantified by the Bogoliubov coefficients) and are thus allowed to appear
on either side of the reaction. Since we have started from a general form of the
reaction rate that is based on the full structure of the propagator, all four reactions
are included automatically and we do not have to set up a separate calculation of
these Cooper pair breaking and formation processes. This is analogous to nuclear
matter with superfluid neutrons, see Sect. 9.4.2.3. In that case, since the direct Urca
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Fig. 9.3 Normal and anomalous contributions to the W -boson self-energy needed to compute the
neutrino emissivity in the presence of Cooper pairing, here shown for pairing between up and
down quarks, for instance in the 2SC phase. The first diagram contains two ‘normal’ propagators
(diagonal elements in Nambu-Gorkov space), the double line indicating that they include the effect
of pairing through a modified dispersion relation. The second diagram contains two ‘anomalous’
propagators (off-diagonal elements in Nambu-Gorkov space), whose diagrammatic structure
indicates that they describe a propagating fermion that is absorbed by the condensate 〈ud〉 and
continues to propagate as a charge-conjugate fermion. The two contributions are obtained naturally
in the Nambu-Gorkov formalism by performing the trace over Nambu-Gorkov space in Eq. (9.134)

process is usually suppressed, the Cooper pair breaking and formation processes are
discussed for the neutral current process n + n → n + n + ν + ν̄, which, in the
presence of Cooper pairing, allows for the processes {nn} → n + n + ν + ν̄ and
n+ n→ {nn} + ν + ν̄, where {. . .} denotes the Cooper pair condensate. The quark
version of these processes is {uu} → u + u + ν + ν̄ and u + u → {uu} + ν + ν̄

(assuming single-flavor quark Cooper pairing), which yields a neutrino emissivity
εν ∝ T 7 (Jaikumar and Prakash 2001), just like in nuclear matter.

If we are only interested in small temperatures compared to the energy gap
�, the Cooper pair breaking and formation processes are irrelevant, and the
contribution from the gapped quarks is exponentially suppressed, εν ∝ e−�/T . As a
consequence, the neutrino emissivity of the 2SC phase is, at small temperatures,
utterly dominated by the unpaired blue quarks. At higher temperatures, as we
approach the critical temperature Tc (for the 2SC phase, Tc ∼ 10 MeV), Eq. (9.135)
has to be evaluated numerically.

To compute the neutrino emissivity for unpaired quarks, we may set � = 0 in
Eq. (9.135). As a result, the dispersions εk of the quarks (assumed to be massless)
become dispersions of free fermions. However, it is crucial to include the effect of
the strong interaction, i.e., to treat the system as a Fermi liquid rather than a non-
interacting system of quarks. Otherwise, the phase space for the Urca process is
zero and the neutrino emissivity vanishes. Fermi liquid corrections are included by
writing the Fermi momenta of up and down quarks as μu[1 − O(αs)] and μd [1 −
O(αs)]. The result for 2-flavor unpaired quark matter is (reinstating all color degrees
of freedom, Nc = 3)

ε
unp.
ν ≈ 457

630
cos2 θCG

2
FαsμeμuμdT

6
(

1+ 4αs
9π

ln
1

T

)2

, (9.136)
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where the electron chemical potential is related to the quark chemical potentials
via μu + μe = μd in β-equilibrium. The logarithmic correction of Schäfer and
Schwenzer (2004) to the standard result by Iwamoto (1980, 1982) arises if non-
Fermi liquid effects are included for the quarks, and can lead to an enhancement
of the neutrino emissivity at low temperatures (Schäfer and Schwenzer 2004). The
energy scale that appears in the logarithm is of the order of the screening scale,
1 ∝ gμ, where g is the strong coupling constant related to αs by αs = g2/(4π), see
Gerhold and Rebhan (2005) for a calculation of 1. Higher order corrections to this
result have been computed by Adhya et al. (2012). The strange quark mass has to be
included if the result is generalized to strange quark matter. A mass term can easily
be added in the quark dispersion, but the result for the emissivity becomes more
complicated and is best evaluated numerically. One effect of the mass is to open
up the phase space such that the emissivity would be nonzero even if the Fermi
liquid corrections were neglected, as discussed by Iwamoto (1980); Wang et al.
(2006). A dynamical quark mass from a chiral density wave has a similar effect. The
chiral density wave is an anisotropic phase in which the chiral condensate oscillates
between between scalar and pseudoscalar components, and the neutrino emissivity
depends on the dynamical mass and the wave vector that determines this oscillation
(Tatsumi and Muto 2014). This phase, possibly in coexistence with quark Cooper
pairing is a candidate phase in the vicinity of a potential first-order chiral phase
transition between the hadronic matter and quark matter.

A similar calculation as outlined here for the unpaired and 2SC phases applies
to the so-called Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phases and to color
superconductors where Cooper pairs have total spin one. These two classes of
phases are further important examples of the less symmetric phases that are expected
to arise for a large mismatch in Fermi surfaces. An estimate of this mismatch, based
on an expansion for small strange quark masses ms , is given by comparing m2

s /μ

to the energy gap �, where μ is the quark chemical potential (baryon chemical
potential divided by Nc = 3). In neutron stars, exotic phases like LOFF or spin-
one pairing thus occur if the attractive interaction (for which � is a measure) is not
strong enough to overcome the mismatch m2

s /μ (which increases with decreasing
density because ms increases and μ decreases). In the LOFF phase, the system
reacts to the mismatch in Fermi surfaces by forming Cooper pairs only in certain
directions in momentum space, resulting in Cooper pairs with nonzero momentum
(Alford et al. 2001; Anglani et al. 2014). In general, a finite number of different
Cooper pair momenta will be realized in a given phase, resulting in counter-
propagating currents and in a crystalline structure with periodically varying gap
function. Since there are directions in momentum space where the quasiparticle
dispersion is ungapped, the neutrino emissivity of the LOFF phase is qualitatively
very similar to unpaired quark matter, as shown by Anglani et al. (2006). Spin-
one color superconductors arise unavoidably in single-flavor Cooper pairing. This
form of pairing is the only possible one if the mismatch in Fermi momenta of
quarks of different flavor is sufficiently large to prevent any form of cross-flavor
pairing. Spin-one color superconductors break rotational symmetry and typically
exhibit ungapped directions in momentum space as well. Therefore, as for the
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LOFF phase, their neutrino emissivity has the same T 6 behavior as unpaired
quark matter. A possible exception is the color-spin locked phase (CSL), where,
in a certain variant, all quarks are gapped. However, weak coupling calculations
suggest that another variant of CSL, where there are unpaired quasifermions, is
energetically preferred (Schmitt 2005) (although there are fewer paired quarks, the
larger value of the gap function overcomes this lack of pairing). If we only consider
the gapped branches, there are striking similarities of the neutrino emissivity in spin-
one color superconductors, computed by Schmitt et al. (2006); Wang et al. (2006);
Berdermann et al. (2016), to the neutrino emissivity of 3P2 phases in nuclear matter
(Yakovlev et al. 2001), which we have briefly discussed in Sect. 9.4.2.3.

The neutrino emissivity of CFL is qualitatively different from the phases with
ungapped fermions. In CFL, neutrino emissivity is dominated by the Goldstone
modes, and the relevant processes are

π±,K± → e± + ν̄e , π0 → νe + ν̄e , φ+ φ→ φ + νe + ν̄e . (9.137)

Here, π± and K± are the CFL mesons mentioned above, which have the same
quantum numbers as, but different masses than, their counterparts from usual chiral
symmetry breaking. In particular, the kaons are the lightest mesons in CFL, with
masses of a few MeV. Since these masses are larger than typical temperatures of
neutron stars, the resulting neutrino emissivities are exponentially suppressed. The
superfluid mode φ is massless and thus does not show this exponential suppression.
However, the emissivity is proportional to a large power of T , which makes this
result very small as well (Jaikumar et al. 2002),

εCFL
ν ∼ G2

F T
15

fφμ4 , (9.138)

where fφ is the analogue of the pion decay constant for the spontaneous breaking
of baryon number. We conclude that the CFL phase basically does not contribute to
the neutrino emissivity.

Neutrino emissivities of quark matter have been included in cooling calculations
for hybrid stars (Grigorian et al. 2005; Popov et al. 2006; Hess and Sedrakian
2011; Noda et al. 2013), and quark matter may provide an explanation for the
rapid cooling of the neutron star in Cassiopeia A (Sedrakian 2013, 2016a). In this
scenario, the star cools through a transition from the 2SC phase with very inefficient
cooling to a crystalline color superconductor, where there are unpaired fermions.
This explanation assumes that there is no contribution of the strange quarks and—on
purely phenomenological grounds—that there is some residual pairing mechanism
for the blue quarks in 2SC. While the explanation of the rapid cooling in nuclear
matter is based on the transition from an unpaired phase to the superfluid phase,
quark matter may thus potentially show a similar behavior via a transition from one
paired phase to another.
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9.5.4 Bulk Viscosity

9.5.4.1 Unpaired Quark Matter

We have already discussed the definition and physical meaning of the bulk viscosity
ζ in Sect. 9.4.3 and can immediately start from the expression

ζ = − 2

ω2δv2
0

1

τ

∫ τ

0
dt P (t)

dδv

dt
, (9.139)

which follows from Eqs. (9.120) and (9.121). The pressure P(t) is given by
Eq. (9.122), where now, for unpaired quark matter, the oscillations in density occur
for the three quark flavors and the electron, δnu, δnd , δns , δne. We consider the
processes

u+ d ↔ u+ s , (9.140a)

u+ e→ d + νe , d → u+ e + ν̄e (9.140b)

u+ e→ s + νe , s → u+ e + ν̄e . (9.140c)

The non-leptonic process u+ d ↔ u+ s will turn out to be the dominant one, but it
is instructive to keep the leptonic processes. This allows us to sketch the calculation
of the bulk viscosity for a more complicated scenario as outlined at the beginning
of Sect. 9.4.3. Namely, we now have two out-of-equilibrium chemical potentials
δμ1 ≡ μs − μd and δμ2 ≡ μd − μu − μe, relevant for the reactions (9.140a)
and (9.140b). The relevant difference in chemical potentials for the reaction (9.140c)
is then δμ1 + δμ2, and thus not an independent quantity. As independent changes
in densities we keep δnd , δne. The changes in up and strange quark densities then
are δnu = δnd − δne and δns = −δnd − δne. The change in the electron density
comes from the processes (9.140b) and (9.140c), and the change in the down quark
number density comes from the processes (9.140a) and (9.140b), and in analogy to
Eq. (9.124) we write in the linear approximation

dne

dt
≈ (λ2+λ3)δμ2(t)+λ3δμ1(t) ,

dnd

dt
≈ λ1δμ1(t)−λ2δμ2(t) , (9.141)

where λ1, λ2, λ3 have to be computed from the microscopic processes. The result
for the non-leptonic process (9.140a) is (Wang and Lu 1984; Sawyer 1989b; Madsen
1993)

λ1 ≈ 64 sin2 θC cos2 θCG
2
F

5π3 μ5
dT

2 , (9.142)
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while the leptonic processes (9.140b) and (9.140c) yield (Iwamoto 1980, 1982)

λ2 ≈ 17 cos2 θCG
2
F

15π2 αsμuμdμeT
4 , (9.143a)

λ3 ≈ 17 sin2 θCG
2
F

40π2 μsm
2
s T

4 , (9.143b)

where λ2 is obtained from the same calculation that leads to the neutrino emissiv-
ity (9.136), and the leptonic process including the strange quark is computed to
lowest order in the strange quark mass ms . Generalizing Eq. (9.125), we have two
differential equations for δμ1 and δμ2,

dδμi

dt
= ∂δμi

∂V
V0

dδv

dt
+

∑
x=u,d,s,e

∂δμi

∂nx

dnx

dt

= −Bi
dδv

dt
− αiδμ1(t)− βiδμ2(t) , i = 1, 2 , (9.144)

where Bi are combinations of thermodynamic functions in equilibrium, and αi , βi
contain thermodynamic functions and the reaction rates λ1, λ2, λ3. As in Sect. 9.4.3,
we use the ansatz δμi(t) = Re(δμi0e

iωt ) with complex amplitudes δμi0, such
that (9.144) can be solved for real and imaginary parts of δμ10 and δμ20. The bulk
viscosity (9.139) then becomes

ζ = a1Re(δμ10)+ a2Re(δμ20)

ω2δv0
, (9.145)

where a1 and a2 are combinations of B1, B2, λ1, λ2, λ3. Computing Re(δμ10) and
Re(δμ10) from Eq. (9.144) yields the final expression in terms of thermodynamic
functions in equilibrium, the reaction rates, and the externally given frequency ω.
This result is very lengthy and entangles all reaction rates in a complicated way
with the thermodynamic functions (Alford and Schmitt 2007; Sa’d et al. 2007a).
For a qualitative discussion we introduce the inverse time scales γnl = λ1/μ

2
s

for the non-leptonic process (9.140a) and γl = λ2/μ
2
s ≈ λ3/μ

2
s for the leptonic

processes (9.140b) and (9.140c) and assume γnl � γl. Then, with some simple
estimates of the thermodynamic functions, and ignoring numerical prefactors, we
find (Alford and Schmitt 2007)

ζ ∝ γnl
γnlγl + ω2

γ 2
nlγ

2
l + γ 2

nlω
2 + ω4

. (9.146)

From this result, various limit cases can be derived, depending on whether the
external frequency ω is of the order of the leptonic rate, the nonleptonic rate, in
between these rates etc. The most relevant case turns out to be ω ≈ γnl � γl, in
which the slower leptonic processes can be completely neglected. Reinstating the
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thermodynamic functions, we obtain (Madsen 1992)

ζ ≈ λ1B
2

(λ1C)2 + ω2 , (9.147)

where

B ≡ nd
∂μd

∂nd
− ns

∂μs

∂ns
, C ≡ ∂μd

∂nd
+ ∂μs

∂ns
. (9.148)

We have recovered the result (9.128) derived in the context of nuclear matter
for a single reaction rate. The result for unpaired quark matter as a function of
temperature for a fixed frequency ω is plotted in Fig. 9.4.

The calculation of the bulk viscosity in unpaired quark matter outlined here has
been improved and extended in the literature in several ways. Firstly, Cooper pairing
needs to be taken into account, and we shall discuss the results for various phases
in the following subsection (Fig. 9.4 collects most of these results). Secondly, the
supra-thermal regime, where the amplitude of the oscillations in chemical potential
become large compared to the temperature, has been studied by Alford et al.
(2010a), who have generalized earlier numerical results for strange quark matter
by Madsen (1992). Shovkovy and Wang (2011) studied this regime together with
the interplay of leptonic and non-leptonic processes. The bulk viscosity in the
presence of large amplitudes is important if the time evolution and in particular
the saturation of unstable r-modes is studied (Alford et al. 2012b). Thirdly, as for
the neutrino emissivity, see Eq. (9.136), non-Fermi liquid effects can be included in

unpaired 2SC

CFL m 0.5 MeV
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Fig. 9.4 Bulk viscosity for unpaired quark matter, the 2SC phase, and the CFL phase. For the
CFL phase, the result is shown from the process that only involves the superfluid mode φ and from
processes that involve kaons and the superfluid mode, for thermal kaons δm = mK0 − μK0 > 0
and condensed kaons δm < 0. The parameters chosen here are the quark chemical potential μ =
400 MeV, the frequency ω/(2π) = 1 ms−1, and the kaon mass mK0 = 10 MeV. The figure is
reproduced with modifications from Alford et al. (2008b)
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the calculation of unpaired quark matter. Most importantly, they modify the result
for the dominant non-leptonic process u+ d ↔ u+ s (Schwenzer 2012)

λ1 ≈ 64 sin2 θC cos2 θCG
2
F

5π3 μ5
dT

2
(

1+ 4αs
9π

ln
1

T

)4

. (9.149)

The correction factor has a higher power compared to the leptonic process that
leads to the neutrino emissivity (9.136) because now 4, not 2 quarks participate
in the process. If this result is extrapolated to realistic values of the strong coupling,
αs ∼ 1, the enhancement due to the long-range interactions is larger than for
the emissivity. As a consequence, the maximum of the bulk viscosity—at a fixed
frequency ω—is shifted to smaller temperatures. Alford and Schwenzer (2014)
pointed out that this may have interesting consequences for the r-mode instability,
see Fig. 9.5. We have to keep in mind, however, firstly, that completely unpaired
quark matter is unlikely to exist in this (sufficiently cold) temperature regime

Fig. 9.5 R-mode instability window, computed from bulk viscosity (high T ) and shear viscosity
(low T ) in nuclear and quark matter. Stars are unstable with respect to the emission of gravitational
waves through the r-mode instability if they rotate with higher frequencies than given by the
critical curves shown here. The observed pulsars shown as data points are in the stable region
only for interacting quark matter with the non-Fermi-liquid corrections from Eq. (9.149). These
corrections enhance the reaction rate for the conversion of down into strange quarks and thus
shift the maximum of the bulk viscosity towards lower temperatures, leading to a shifted stability
region compared to noninteracting quark matter. Hadronic matter is consistent with the data only
by including additional processes such as dissipation from boundary layer rubbing at the crust
of the star. Reprinted figure with permission from Alford and Schwenzer, Phys. Rev. Lett. 113,
251102 (2014). Copyright (2014) by the American Physical Society
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because some form of Cooper pairing is expected to occur, and, secondly, that
unpaired quark matter provides extremely efficient cooling due to the presence
of direct Urca processes (9.136), which is difficult to reconcile with observations
(Chugunov et al. 2017). Finally, Huang et al. (2010) have computed the bulk
viscosity for unpaired strange quark matter in the presence of a magnetic field,
which induces an anisotropic bulk viscosity and, for very large fields, B � 1018 G,
a hydrodynamical instability.

9.5.4.2 Color-Superconducting Quark Matter

If Cooper pairing between the quarks is taken into account, the derivation outlined
above is still valid, but the thermodynamic functionsB andC in Eq. (9.147) become
different, and of course the reaction rates (9.142) and (9.143) have to be recomputed.
Let us first discuss the 2SC phase and its bulk viscosity from the process u + d ↔
u+s, which was computed by Alford and Schmitt (2007). Since the weak interaction
does not change color, there areNc×Nc = 9 subprocesses from theNc = 3 possible
colors at each of the two electroweak vertices of the process u+ d ↔ u+ s. In the
2SC phase, only if the color at both vertices is blue, all participating quarks are
ungapped. Therefore, at temperatures much smaller than the critical temperature Tc,
where all processes with at least one gapped quark are exponentially suppressed,
the reaction rate in the 2SC phase is 1/9 times the rate of unpaired quark matter.
This does not necessarily mean that the bulk viscosity in the 2SC phase is smaller. It
rather means that the maximum of the bulk viscosity, where the rate is in resonance
with the frequencyω, is assumed at a larger temperature (if the approximation T �
Tc is still valid at this temperature). The peak value of the bulk viscosity in the 2SC
phase is different from the unpaired phase because the peak frequency is different
and the thermodynamic functions B and C are different. It turns out, however, that
for typical values of the strange quark mass and the superconducting gap, the peak
values are very similar, as we can see in Fig. 9.4.

The bulk viscosity has also been computed in spin-one color superconductors,
from the process u+ e↔ d+νe (Sa’d et al. 2007b; Berdermann et al. 2016), which
is the dominant one if strange quarks are ignored, and taking into account the non-
leptonic process u+d ↔ u+s (Wang and Shovkovy 2010), whose reaction rate for
four different spin-one color superconductors was computed by Wang et al. (2010).
The conclusion is very similar as for the 2SC phase: since there are unpaired quarks
in all possible spin-one phases (with the exception mentioned above in the context
of neutrino emissivity), one can, for a rough estimate, neglect the contributions of
the gapped branches, and the reaction rates become, up to a numerical prefactor,
the same as for unpaired quark matter. The bulk viscosity thus behaves qualitatively
similar to 2SC quark matter.

The CFL phase behaves differently because there are no ungapped quarks that
can contribute to chemical re-equilibration processes, and the bulk viscosity is
dominated from bosonic low-energy degrees of freedom, such as the kaon and the
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superfluid mode via the processes

K0 ↔ φ + φ , (9.150a)

φ ↔ φ + φ . (9.150b)

The process involving the neutral kaon has been computed for thermal kaons
by Alford et al. (2007). As mentioned above, the kaons are the lightest pseudo-
Goldstone modes from chiral symmetry breaking in CFL. If the strange quark
mass is taken into account, kaon condensation occurs on top of the Cooper pair
condensation, giving rise to the so-called CFL-K0 phase (Bedaque and Schäfer
2002; Kaplan and Reddy 2002). This phase is the next phase down in density if we
start from the CFL phase at asymptotically large densities and include the effects
of the strange quark mass in a systematic way. It is therefore a very important
phase and a viable candidate for the interior of neutron stars. The bulk viscosity
of the CFL-K0 phase is also dominated by the process (9.150a), where K0 now
denotes the Goldstone mode from kaon condensation (Alford et al. 2008b; Schmitt
2008). This Goldstone mode would be exactly massless if strangeness was an exact
symmetry. Taking into account the effect of the weak interactions, one finds a
mass of about 50 keV for this mode (Son 2001), smaller than the temperatures at
which the bulk viscosity of the CFL-K0 phase becomes sizable. Since all the above
arguments about the bulk viscosity remain valid, the bulk viscosity of CFL also
peaks at a certain temperature. In Fig. 9.4 we see that this maximum is reached only
at temperatures larger than 10 MeV. This is due to the less efficient reaction (9.150a)
compared to contributions from quarks. Therefore, inside neutron stars, the CFL
bulk viscosity, with or without kaon condensation, is very small compared to other
quark matter phases. One might think that the potentially large result for the bulk
viscosity at high temperatures is relevant for proto-neutron stars or neutron star
mergers, where temperatures may well reach 10 MeV or more. However, we expect
the critical temperatures for kaon condensation (Alford et al. 2008c) and the critical
temperature of CFL itself to be of the order of 10 MeV, and thus the results beyond
this temperature have to be taken with care.

At much lower temperatures, the process (9.150b), which only involves the
exactly massless superfluid mode φ, is expected to be dominant (Manuel and Llanes-
Estrada 2007). The result shown in Fig. 9.4 for this process should be taken seriously
only for temperatures larger than about 50 keV, because for smaller temperatures the
mean free path is of the order of or larger than the size of the star, indicating that
we are no longer in the hydrodynamic regime. Since the CFL phase is a superfluid,
there is more than one bulk viscosity coefficient because a superfluid at nonzero
temperature can be viewed as a two-fluid system, as mentioned in Sect. 9.2.3.4. Let
us denote the full relativistic stress-energy tensor of a superfluid by T μν

ideal+ T
μν
diss, as

we did in Sect. 9.2.3.3 for a normal fluid. Then, the dissipative terms in first-order
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hydrodynamics that are usually considered are

T
μν
diss = η�μγ�νδ

(
∂δvγ + ∂γ vδ − 2

3
gγ δ∂ · v

)
+�μν

[
ζ1∂γ

(ns
σ
wγ
)
+ ζ2∂ · v

]
+κ(�μγ vν +�νγ vμ)[∂γ T + T (v · ∂)vγ ] . (9.151)

We have denoted �μν = gμν − vμvν with the metric tensor gμν =
diag(1,−1,−1,−1) and the four-velocity of the normal fluid vμ. Moreover, ns is
the superfluid density, wμ ≡ ∂μψ−μvμ with the chemical potential μ measured in
the rest frame of the normal fluid and ∂μψ/σ the four-velocity of the superfluid with
the phase of the condensateψ and the chemical potential measured in the rest frame
of the superfluid σ = (∂μψ∂

μψ)1/2. For a single fluid, ns = 0, Eq. (9.151) reduces
to the normal-fluid expression (9.43b) with ζ = ζ2. The Josephson equation, which
relates the chemical potential μ to the phase of the condensate, is also modified by
dissipative corrections,

v · ∂ψ = μ+ ζ3∂μ

(ns
σ
wμ
)
+ ζ4∂ · v . (9.152)

In general, there are even more possible dissipative terms and thus more coefficients
in a two-fluid system (Gusakov 2007), which are usually neglected. As mentioned
in Sect. 9.2.3.3, the form given here corresponds to the Eckart frame, where, in
contrast to the Landau frame, there is no explicit dissipative correction to the
conserved current. With ζ4 = ζ1 due to the Onsager symmetry principle, there
are three independent bulk viscosity coefficients ζ1, ζ2, ζ3 (which have different
units), and ζ2 corresponds to ζ discussed above for a single fluid. The bulk viscosity
coefficients have been estimated for the process (9.150b) in the zero-frequency limit
by Mannarelli and Manuel (2010) with the result

ζ1 ∼ m2
s

T μ
, ζ2 ∼ m4

s

T
, ζ3 ∼ 1

T μ2 , (9.153)

and for the process (9.150a) by Bierkandt and Manuel (2011). The bulk viscosity
coefficients of CFL have been applied to the damping of r-modes by Andersson
et al. (2010), but, as argued above, the dissipative effects from bulk viscosity in
CFL are very small. This is not changed by the additional bulk viscosity coefficients
from superfluidity.
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9.5.5 Shear Viscosity, Thermal and Electrical
Conductivity

9.5.5.1 Unpaired Quark Matter

As we have already seen in Sect. 9.4, the physics behind shear viscosity of dense
matter in neutron stars is different from the physics behind bulk viscosity. In the
case of shear viscosity, it is thermal, not chemical, re-equilibration and thus for the
baryonic and the quark contributions the strong, not the electroweak, interaction
becomes relevant. (Recall, however, that even in the calculation of electroweak
processes and chemical re-equilibration the strong interaction plays a role because
the participating quarks interact strongly with each other.) Electrically neutral
unpaired quark matter must contain electrons because the strange quark mass
induces an imbalance between the number densities of up, down, and strange quarks,
and electrons are needed to neutralize the system. We shall discuss the electron
contribution in the context of the 2SC phase below, but first focus on the contribution
from quarks alone. If we assume the QCD coupling to be weak, the quasiparticle
picture is valid and we can use a kinetic approach to compute the quark-quark
scattering rate from one-gluon exchange. This calculation proceeds along the same
lines as outlined in Sect. 9.4.1. Here we simply give the final results for shear
viscosity η, thermal conductivity κ , and electrical conductivity σ for unpaired quark
matter at low temperatures T � μ, computed by Heiselberg and Pethick (1993),

ηunp. ≈ 4.4× 10−3μ
4m

2/3
D

α2
s T

5/3
= 5.5× 10−3 μ4

α
5/3
s T (T /μ)2/3

≈ 2.97 × 1015
( μ

500 MeV

)14/3
(

T

1 MeV

)−5/3 g

cm s
, (9.154a)

κunp. ≈ 0.5
m2
D

α2
s

≈ 2.53 × 1021
( μ

500 MeV

)2 erg

cm s K
(9.154b)

σ unp. ≈ 0.01
e2μ2m

2/3
D

αsT 5/3
≈ 2.72 × 1025

( μ

500 MeV

)8/3
(

T

1 MeV

)−5/3

s−1 , (9.154c)

where m2
D = Nf g

2μ2/(2π2) is the gluon electric screening mass (squared). The
results show a similar non-Fermi-liquid behavior as the leptonic results discussed
in Sect. 9.4.1.2 for the same reason: the magnetic interaction that governs the
quasiparticles collisions is screened dynamically. For the estimates given here, we
have set αs ≈ 1 and Nf = 3. Jaccarino et al. (2012) have performed a numerical
comparison of the quark matter shear viscosity to that of nuclear matter.

It is interesting to compare these results, in particular the shear viscosity, with
other QCD calculations and general expectations from strongly coupled systems.
The weak-coupling result for the QCD shear viscosity in the opposite limit, T � μ,
is η ≈ aT 3/[α2

s ln(b/αs)], with numerical coefficients a and b (for massless quarks
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and Nc = Nf = 3, a ≈ 1.35, b ≈ 0.46) (Huot et al. 2007). This result, together
with the entropy density s ∝ T 3 yields a prediction for the dimensionless ratio
η/s. This ratio, in turn, is η/s = 1/(4π) for a large class of (infinitely) strongly
coupled theories, which can be shown with the help of holographic methods based
on the gauge/gravity duality (Kovtun et al. 2003). Experimental data suggests that
the shear viscosity in a quark-gluon plasma created in a heavy-ion collision is
remarkably close to that value, which is difficult to explain by a naive extrapolation
of the weak-coupling result to large values of αs . This has led to the conclusion that
heavy-ion collisions produce a quark-gluon plasma which is strongly coupled. We
may ask the same question in the context of dense QCD: to which extent are we
allowed to extrapolate the weak-coupling result to more moderate densities present
in neutron stars and should we rather be using non-perturbative methods? We know
that Cooper pairing is one non-perturbative effect, which partially answers this
question. If we ignore Cooper pairing for now, the entropy density of Nf = Nc = 3
quark matter at low temperatures is s ≈ 2μ2T , and thus with Eq. (9.154a) we find
η/s ≈ 2.7× 10−3(μ/T )8/3α

−5/3
s . Interestingly, this result is qualitatively different

from the T � μ result because of the appearance of the dimensionless ratio μ/T .
In particular, η/s appears to become large for low temperatures and fixed αs , having
no chance to approach 1/(4π), even when we boldly extrapolate to large values of
αs . Holographic strong-coupling calculations at large Nc by Mateos et al. (2007)
suggest that η/s = 1/(4π) does not receive corrections from a baryon chemical
potential, although Myers et al. (2009) found a μ/T dependence for more exotic
theories, which were compared to and contrasted by Fermi-liquid theory by Davison
et al. (2014). Putting these more exotic theories aside, one might be tempted to
conclude that weak-coupling transport in dense QCD is even more different from
strong-coupling transport than it is in hot QCD. It is, however, conceivable that
η/s = 1/(4π) is not a good benchmark for dense QCD, for instance because
of the large-Nc limit that underlies this holographic result. In any case, it would
be very interesting to go beyond the weak-coupling calculation of high-density
transport properties of quark matter. Since the quasiparticle picture is no longer
valid at strong coupling, the shear viscosity can then no longer been calculated from
a collision integral, and the more general Kubo formalism should be employed,
which allows for a general spectral density. First steps in this direction have been
made by Iwasaki et al. (2008); Iwasaki and Fukutome (2009); Lang et al. (2015);
Harutyunyan et al. (2017), who used this formalism to compute shear viscosity
and thermal conductivity of quark matter at finite T and μ. These calculations
where performed within the Nambu–Jona-Lasinio model and for temperatures larger
than relevant for neutron stars (a calculation within the same model, but using the
Boltzmann approach, was performed recently by Deb et al. (2016)).

9.5.5.2 Color-Superconducting Quark Matter

The results (9.154) were extended to the 2SC phase (without strange quarks) by
Alford et al. (2014b), also in the weak-coupling regime. In the 2SC phase, no global
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symmetry is broken and thus there are no Goldstone modes. Therefore, we expect
the main contribution to come from ungapped fermionic modes. Besides the effect
on the fermionic modes, we now have to take into account the effect of pairing
on the gauge bosons, as discussed in general terms in Sect. 9.2.3.4 and for lepton
transport in nuclear matter in Sect. 9.4.1.4. Remember that screening determines the
range of the interaction, and weaker screening results in a more efficient relaxation
mechanism. In the 2SC phase, different gluons are screened differently, depending
on whether they couple to the unpaired blue quarks or to the paired red and green
quarks. Let us first discuss the static screening of the gauge bosons. The three gluons
which only see red and green quarks—corresponding to the three generators T1−3
of the SU(3) gauge group—are neither magnetically screened (as in unpaired quark
matter) nor electrically screened (unlike in unpaired quark matter). This is because
the red and green charges are all confined in Cooper pairs and the Cooper pairs
themselves carry color charge anti-blue. The gluons corresponding to T4−7 acquire
a Meissner mass and also are electrically screened. Since the relevant interactions
with gluons T1−7 involve at least one red or green quark, they do not matter for the
shear viscosity at temperatures much smaller than the gap, T � 10 MeV. It remains
the 8th gluon and the photon. Their behavior is complicated because they mix, and
in the 2SC phase they do so differently in electric and magnetic sectors (Schmitt
et al. 2004). In the electric sector, there is a screened gluon T8, and a screened
photon corresponding to the generator Q of the electromagnetic gauge group U(1).
In the magnetic sector, there is a screened gluon T̃8 (with a small admixture of the
photon), and an unscreened photon Q̃ (with a small admixture of the 8th gluon).
Because of this rotated photon with zero magnetic screening mass, the 2SC phase
is not an electromagnetic superconductor, i.e., does not show an electromagnetic
Meissner effect. It does show a color Meissner effect for 5 out of the 8 gluons.
(The CFL phase also has such a magnetically unscreened rotated photon and is thus
no electromagnetic superconductor either; in CFL quark matter all 8 gluons—one
of them having a small admixture of the photon—acquire a Meissner mass.) The
rotated photon is screened dynamically in the form of Landau damping like the
ordinary transverse photon in nuclear matter (Sect. 9.4.1.2) or the transverse gluons
in unpaired quark matter of the previous subsection.

The dominant contribution to the shear viscosity comes from unpaired fermions:
blue quarks and electrons. We collect their charges with respect to the 8th gluon
and the photon (and their rotated versions in the magnetic sector) in Table 9.1.
Since the rotated photon is weakly screened, it provides the dominant contribution
to the collision frequencies, effectively suppressing the relaxation times and hence
the transport coefficients for the species which interact via Q̃. The only unpaired
fermion that does not couple to Q̃ is the blue down (bd) quark. Therefore—and
although it interacts via the strong interaction—it has the longest relaxation time
and gives the dominant contribution to the shear viscosity at sufficiently small
temperatures (Alford et al. 2014b),



9 Reaction Rates and Transport in Neutron Stars 557

Table 9.1 Static 2SC screening masses (squared) of the eighth gluon T8 and the photon Q, in units
of μ2/(3π2) (from Schmitt et al. (2004), with Nf = 2), and charges of the unpaired fermions in
the 2SC phase, assuming the strong coupling constant to be much larger than the electromagnetic
coupling g � e

T8 Q T̃8 Q̃

Electric screening Magnetic screening

Screening mass 3g2 2e2 g2/3 0

Blue up −g/√3 2e/3 −g/√3 e

Blue down −g/√3 −e/3 −g/√3 0

Electron 0 −e −e2/(g
√

3) −e
The unpaired fermions dominate the transport properties, and at sufficiently small temperatures
shear viscosity, thermal and electrical conductivities are dominated by the blue down quark because
it does not couple to the only unscreened gauge boson, the rotated photon Q̃. (Here the electric
charge is given in Heaviside-Lorentz units, such that e2 = 4παf )

η2SC
bd ≈ 2.3× 10−3 μ4

α
3/2
s T (T /μ)

. (9.155)

This result is qualitatively different from the unpaired result (9.154a) because in
unpaired quark matter all quarks experience unscreened magnetic interactions. In
that case, the electron contribution becomes important as well, for a short discussion
see Alford et al. (2014b).

At larger temperatures, dynamical screening of Q̃ becomes stronger [recall
Eq. (9.71)] and the interaction via the rotated magnetic photon no longer dominates
over the interaction via the screened gauge bosons. As a consequence, electrons
become dominant and the result (9.155) is no longer valid. In fact, it is only valid
at very small temperatures, T/μ ∼ 10−5. (The contribution of blue up quarks is
never important since they have smaller Fermi momentum that blue down quarks.)
For the numerical results for all temperatures, including thermal and electrical
conductivities, see Alford et al. (2014b). These results show in particular that for
the thermal conductivity the transition from quark-dominated to electron-dominated
regime occurs at a much higher temperature than for shear viscosity, not unlike
the competition of lepton and nucleon contributions to κ and η in nuclear matter.
The electrical conductivity has also been computed close to the critical temperature
and taking into account an external magnetic field by Kerbikov and Andreichikov
(2015).

If the mismatch between the up and down quark Fermi momenta is large,
isotropic pairing is no longer possible. The red and green quarks that participate in
Cooper pairing then develop ungapped quasiparticle excitations in certain regions in
momentum space. Their contribution to the shear viscosity, which is dominated by
transverse, Landau damped gluons T1−3, has been computed for the (anisotropic,
but not crystalline) Fulde-Ferrell phase by Sarkar and Sharma (2017). The result
is small compared to the contribution of the completely unpaired blue quarks, but
elements of the calculation may be transferred in future studies to LOFF phases in
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CFL, where there are no completely unpaired quarks, only few electrons, and all
non-abelian gauge bosons have nonzero electric and magnetic screening masses.
While this calculation has not been done yet, we briefly review the results from
the Goldstone modes in the pure (isotropic) CFL phase. The calculation of the
contribution from the superfluid mode is based on the effective Lagrangian

L = 3(DμψD
μψ)2

4π2
(9.156)

= 1

2
[(∂0φ)

2 − v2(∇φ)2] − π

9μ2
∂0φ(∂μφ∂

μφ)+ π2

108μ4
(∂μφ∂

μφ)2 + . . . , (9.157)

where ψ is the phase of the condensate introduced below Eq. (9.151), the covariant
derivative acting on this phase is Dμψ = ∂μψ−Aμ with Aμ = (μ, 0), the rescaled
field of the superfluid mode is φ = 3μψ/π , the velocity of the Goldstone mode is
v = 1/

√
3, and we have dropped the terms linear and constant in φ in the second

line. The result from φ+φ ↔ φ+φ scattering for the shear viscosity was computed
by Manuel et al. (2005),

ηCFL
φ ≈ 1.3× 10−4 μ4

T (T /μ)4
≈ 6.96× 1022
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500 MeV

)8
(

T

1 MeV

)−5 g

cm s
.

(9.158)

Alford et al. (2010b) calculated the contribution of kaon scattering K0 + K0 ↔
K0 + K0 to shear viscosity in the CFL-K0 phase, where the relevant excitation is
the Goldstone mode K0 from kaon condensation. It was found that this contribution
is smaller than that of the superfluid mode φ. However, the relevant mean free path
(the ‘shear mean free path’) of the phonons becomes of the order of or larger than the
radius of the star at temperatures lower than about 1 MeV. (In this ballistic regime,
an ‘effective shear viscosity’ can be induced from shear stresses at the boundary of
the system, for instance in superfluid cold atoms in an optical trap (Mannarelli et al.
2013; Mannarelli 2013).) This is not the case for the kaons, which therefore may
provide the dominant contribution to shear viscosity in this regime. The thermal
conductivity of CFL due to phonons was obtained from a simple mean free path
estimate by Shovkovy and Ellis (2002). Later, Braby et al. (2010) made this estimate
more precise by a calculation within kinetic theory, and it was found

κCFL
φ � 4.01× 10−2 μ

8

�6 ≈ 1.04× 1026
( μ

500 MeV

)8
(

�

50 MeV

)−6 erg

cm s K
.

(9.159)

This large thermal conductivity suggests that a CFL quark matter core of a neutron
star becomes isothermal within a few seconds (Braby et al. 2010). In addition,
Braby et al. (2010) also computed the kaon contribution. This was done in the
CFL, not the CFL-K0, phase, i.e., from a massive kaon mK0 ∼ 10 MeV instead
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of the (approximately) massless Goldstone kaon in the CFL-K0 phase, which was
used in the calculation for the shear viscosity we just mentioned. It was found that
the contribution from the kaons for typical parameter values is much smaller than
the phonon contribution (9.159). Neither for the shear viscosity nor for the thermal
conductivity, scattering processes due to interactions between the superfluid mode
and the kaon have been taken into account so far.

The shear viscosity of spin-1 color superconductors has not yet been computed.
In most phases, the dominant contribution can be expected to come from unpaired
quarks, and the calculation would be similar as for instance in the 2SC phase, with
possible complications from anisotropies and ungapped directions in momentum
space, like in the case of the Fulde-Ferrell calculation mentioned above. Only in
the fully gapped version of the CSL phase (which seems to be disfavored, at least at
weak coupling, as mentioned above) Goldstone modes would become important. An
effective theory for the massless modes has been worked out by Pang et al. (2011),
which can be used to compute the shear viscosity in CSL quark matter.

9.5.6 Axial Anomaly in Neutron Stars

9.5.6.1 Anomaly-Induced Transport

Transport in the presence of a chiral imbalance, i.e., in systems where there are
more left-handed than right-handed fermions or vice versa, is qualitatively different
from ‘usual’ transport. The reason is the chiral anomaly, which leads to the non-
conservation of the axial current due to quantum effects. Anomaly-induced transport
(or short: anomalous transport25) has been discussed extensively in the recent
literature, with applications in a multitude of different systems, reviewed recently
in a pedagogical article by Landsteiner (2016). One prominent manifestation of
anomalous transport is the ‘chiral magnetic effect’, where a dissipationless electric
current is induced in the direction of a background magnetic field. This effect
has been predicted to occur in non-central heavy-ion collisions (Kharzeev et al.
2008), where large magnetic fields are created and where a chiral imbalance can
be generated by fluctuations of the gluon fields through the QCD anomaly (while
the anomaly of Quantum Electrodynamics (QED) then provides the mechanism for
the creation of the electric current). Signatures of the chiral magnetic effect have
been seen in the data, although the interpretation still leaves room for alternative
explanations (Kharzeev et al. 2016). An unambiguous manifestation of the chiral
magnetic effect has been observed in so-called Weyl semi-metals, which exhibit

25The term ‘anomalous transport’ is used in various contexts with different meaning, for instance
in plasma physics, where it refers to unusual diffusion behavior and has nothing to do with the
quantum anomaly. Confusion can be avoided by using the more cumbersome, but less ambiguous,
‘anomaly-induced transport’. Also ‘chiral transport’ or ‘anomalous chiral transport’ is sometimes
used.
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chiral quasiparticles (Li et al. 2016). The chiral magnetic effect is one example
among various anomaly-induced phenomena. Others are the ‘chiral vortical effect’,
where the role of the magnetic field is played by a nonzero vorticity, and the
‘chiral separation effect’, where the role of the difference in left- and right-handed
fermion densities is played by their sum and an axial current, not a vector current,
is generated. In a hydrodynamic formulation, anomalous effects generate additional
terms with new— ‘anomalous’—transport coefficients (Son and Surowka 2009).
Also an anomalous version of kinetic theory has been formulated (Stephanov and
Yin 2012; Son and Yamamoto 2013).

It is natural to ask whether anomalous transport plays a role in dense matter
and whether it has observable consequences for neutron stars. Sizable effects can
only come from massless or very light particles because a mass breaks chiral
symmetry explicitly and thus tends to suppress any effects from the chiral anomaly.
It has been suggested by Ohnishi and Yamamoto (2014) that a dynamical instability
(‘chiral plasma instability’) due to the chiral magnetic effect for electrons occurs
in core collapse supernovae, possibly producing the very strong magnetic fields in
magnetars. However, the chiral imbalance for electrons created from the electron
capture process is completely washed out by the nonzero electron mass (Grabowska
et al. 2015; Kaplan et al. 2017), although one might naively think that this mass
is negligible in the astrophysical context. The instability may nevertheless be
realized if the electrons experience instead an effective chiral chemical potential
from the fluid helicity generated in the neutrino gas through the chiral vortical
effect (Yamamoto 2016). It has also been suggested that pulsar kicks originate
from chiral imbalance in leptons, either from electrons, which however would
require a very small crust (possibly in quark stars) (Charbonneau and Zhitnitsky
2010; Charbonneau et al. 2010), or from neutrinos due to the chiral separation
effect from the magnetic field, treating electrons and neutrinos as a single fluid
(Kaminski et al. 2016). One may also ask whether anomalous transport of neutrinos
has an effect on the dynamics or even the very existence of core-collapse supernova
explosions. This question is motivated by the different behavior of a chiral fluid with
respect to magnetohydrodynamic turbulence, pointed out by Yamamoto (2016) and
Pavlović et al. (2017). These studies have only begun recently, and it remains to be
seen whether (proto-)neutron stars or supernova explosions, maybe also neutron
star mergers and the hyper-massive neutron stars resulting from them, provide
yet another system where effects of the quantum anomaly become manifest on
macroscopic scales.

9.5.6.2 Axions

Another anomaly-related effect with relevance to neutron stars, now specifically
from the QCD anomaly, is the existence of axions. Axions, which are a promising
hypothetical candidate for cold dark matter, arise from the most natural solution
to the so-called strong CP problem: the axial anomaly effectively—via axial
rotations—induces a CP-violating term proportional to GμνG̃

μν to the QCD
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Lagrangian, where Gμν and G̃μν are the gluon field strength tensor and its dual.
We know that the prefactor of this term, which is an angle θ ∈ [−π, π], must be
extremely small because of very tight experimental constraints on the electric dipole
moment of the neutron. Rather than viewing θ as a parameter, whose smallness then
would be very difficult to understand, Peccei and Quinn (1977) have suggested a
dynamical mechanism that leads to extremely small values for θ . This mechanism
is based on the spontaneous breaking of a global anomalousU(1) symmetry, and the
axion is the corresponding (not exactly massless) Goldstone mode (Weinberg 1978;
Wilczek 1978). The exact implementation of this mechanism in the Standard Model
leaves room for different models, which essentially fall into two classes, introduced
by Kim (1979) and Shifman et al. (1980) one the one hand and Dine et al. (1981)
and Zhitnitsky (1980) on the other hand. Although axions are expected to couple
to electrons, photons, and nucleons, so far a positive signal for the axion or any
axion-like particle has remained elusive in experimental searches. Constraints on
the coupling strengths (and thus on the axion mass) are obtained for instance from
cooling of white dwarfs, from cosmology, and from solar physics (Raffelt 2008). In
addition, supernova explosions (Keil et al. 1997) and the cooling of neutron stars
(Umeda et al. 1997) can potentially contribute to these constraints. To this end,
the reaction rates for axions in a nuclear medium have to be calculated. Many of
these calculations are analogous to the calculations of the neutrino reaction rates
reviewed in Sect. 9.4.2 and share the same problems and uncertainties. Axions
can be emitted from bremsstrahlung in electron scattering processes from ions in
the crust (Iwamoto 1984), or from bremsstrahlung in nucleon-nucleon collisions
N + N → N + N + a in the core, where N can be a neutron or a proton and
a is the axion. The calculation of the latter process involves knowledge of the
strong interaction between the nucleons, just like the analogous neutrino-emitting
process N + N → N +N + ν + ν̄ and like the modified Urca process. Therefore,
the rate contains significant uncertainties. It was first computed using the one-pion
exchange interaction for neutrons by Iwamoto (1984) and later extended to the cases
that involve protons (Iwamoto 2001; Stoica et al. 2009). These results are expected
to present upper limits since medium corrections to the interactions are likely to
reduce the rates (Keil et al. 1997; Hanhart et al. 2001; Fischer et al. 2016). Recently,
Keller and Sedrakian (2013) computed the axion emissivity for superfluid nuclear
matter from pair breaking and formation processes. In unpaired quark matter, the
rate from the analogous process q + q → q + q + a, where q is an u, d , or s
quark has been computed by Anand et al. (1990), using one-gluon exchange for the
quark interaction. The axion emissivities can be used to study numerically the axion
contribution to the cooling of neutron stars. Such a simulation is naturally prone to
large uncertainties, but conservative estimates yield an upper bound for the axion
mass of the order of 0.1 eV (Umeda et al. 1997; Sedrakian 2016b), consistent with
limits set by the direct neutrino detection from supernova SN 1987A.
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9.6 Outlook

We have seen that understanding transport in neutron star matter requires a variety
of different techniques and theoretical results—sometimes even if we ask for the
explanation of a single, specific astrophysical observation. Current efforts combine
nuclear and particle physics with elements of condensed matter and solid state
physics, using and developing methods from hydrodynamics, kinetic theory, many-
body physics, quantum field theory, and general relativity. In many ways, neutron
stars are a unique laboratory, with matter under more extreme conditions than
anywhere else. This laboratory is far away from us and we seem to have very limited
access to the matter deep inside the star. It is thus easy to get discouraged regarding
precise tests of the transport properties that we predict theoretically. Nevertheless,
as we have pointed out, transport properties do provide us with an important tool
to interpret astrophysical data and eventually answer the question about what the
interior of the neutron star is made of. And, most importantly for future studies, the
current exciting results from gravitational-wave astronomy promise more, and more
precise, data for the near future, especially if combined with electromagnetic signals
as for the recently observed neutron star merger event (Abbott et al. 2017a,b).
Neutron star mergers are sensitive to both the equation of state and transport of
(relatively hot) dense matter. Moreover, a possible future detection of gravitational
waves from isolated neutron stars (Glampedakis and Gualtieri 2018, this volume)
would be another spectacular testing ground for transport in ultra-dense matter.
The reason is that potential sources such as the r-mode instability and a sustained
ellipticity of the star are intricately linked to transport properties, such as viscous
effects and the formation and evolution of magnetic flux tube arrays.

Throughout the review we have pointed out open questions and unsolved
problems. Many of them are inevitably related to our limited quantitative grip on
the strong interaction, i.e., on QCD at baryon densities significantly larger than
nuclear saturation density. This concerns for example the modified Urca process
or shear viscosity of ultra-dense matter, be it nuclear or quark matter. First-principle
QCD calculations on the lattice exist for thermodynamic quantities at zero baryon
density, and there are some promising attempts to extend these calculations, firstly,
to finite baryon densities and, secondly, to transport properties. Nevertheless, both
extensions are extremely difficult, let alone implementing them simultaneously.
Therefore, in the foreseeable future, the input from the strong interaction to
transport properties of dense matter will most likely not go beyond the use of
effective theories, phenomenological models, or extrapolations from perturbative
calculations.

Other open problems that we have mentioned are related to transport in a
magnetic field and transport in the presence of Cooper pairing. This concerns
for instance microscopic calculations of transport properties in the crust and the
inhomogeneous nuclear pasta phases, which obviously become very cumbersome
through the anisotropy induced by a magnetic field. It also concerns more macro-
scopic magnetohydrodynamic studies (which we did not discuss in detail), which
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currently do not yield a satisfactory picture of the magnetic field evolution if
compared to observational data. Also in the case of Cooper pairing, microscopic
calculations become much more complicated, and we have pointed out various
approaches and approximations used for that case. Transport properties of many
possible phases, in particular a large part of the multitude of possible color-
superconducting phases, have already been discussed in the literature and significant
progress has been made. Challenges for future studies are for instance the nature
of interfaces between superfluid and superconducting phases, especially if there
are rotational vortices and/or magnetic flux tubes, possibly even color-magnetic
flux tubes in quark matter. Again, also more macroscopic studies are difficult, and
many things remain to be understood, for instance multi-fluid effects due to nonzero
temperatures, or the time evolution of rotating superfluids, say the neutron superfluid
in the crust or the color-flavor locked phase in a possible quark matter core.

Finally, let us emphasize the need of cross-disciplinary approaches for future
efforts in the field of transport theory of dense matter. It is obvious that theoretical
studies from nuclear and particle physics have to be combined with observational
astrophysics. Maybe less obvious are parallels to other fields that deal with strongly
coupled systems where transport properties can be measured. For instance, transport
in unitary atomic Fermi gases has been studied in detail, including effects of
superfluidity. One example is the study of critical velocities in two-component
superfluids (Delehaye et al. 2015), which is of possible relevance to superfluid
neutron star matter. It is even conceivable that future experiments with cold atoms
can be ‘designed’ to mimic, at least qualitatively, effects that we expect in neutron
stars, such as unpinning of vortices from a lattice structure. Also experiments
with more traditional superfluids such as liquid helium might shed some light on
questions we encounter in neutron stars (Graber et al. 2017). Transport also plays
a prominent role in relativistic heavy-ion collisions, which provide a laboratory
for strongly interacting matter at larger temperatures and lower baryon densities.
Future experiments aim, in fact, at increasing the densities in these collisions,
possibly reaching beyond nuclear saturation density (Friman et al. 2011; Blaschke
et al. 2016). In any case, heavy-ion collisions raise various interesting fundamental
questions about (relativistic) hydrodynamics and its regime of applicability, and we
can imagine that insights gained in these studies might, even if not being directly
applicable, give interesting input and pose relevant questions also in the context of
neutron stars.
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Chapter 10
Gravitational Waves from Merging
Binary Neutron-Star Systems

Tanja Hinderer, Luciano Rezzolla, and Luca Baiotti

Abstract The merger of binary neutron-star systems is among the scientifically
richest events in the universe: it involves extremes of matter and gravity, copious
emission of gravitational waves, complex microphysics, and electromagnetic pro-
cesses that can lead to astrophysical signatures observable at the largest redshifts.
We review here the recent progress in understanding the gravitational-wave signal
emitted in this process, focussing in particular on its properties during the inspiral
and then after the merger.

10.1 Introduction

Neutron stars are believed to be born in supernova explosions triggered by the
collapse of the iron core in massive stars. Many astronomical observations have
revealed that binary neutron stars (BNSs) indeed exist (Kramer et al. 2004;
Abbott et al. 2017). Despite this observational evidence of existence, the formation
mechanisms of BNS systems are not known in detail. The general picture is that
in a binary system made of two massive main-sequence stars of masses between
approximately 8 and 25M�, the more massive one undergoes a supernova explosion
and becomes a neutron star. This is followed by a very uncertain phase in which the
neutron star and the main-sequence star evolve in a “common envelope”, that is,
with the neutron star orbiting in the extended outer layers of the secondary star
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(Kiziltan et al. 2013; Ivanova et al. 2013; Özel and Freire 2016). At the end of this
stage, also the second main-sequence star undergoes a supernova explosion and, if
the stars are still bound after the explosions, a BNS system is formed. The common-
envelope phase, though brief, is crucial because in that phase the distance between
the stars becomes much smaller as a result of drag, and this allows the birth of
BNS systems that are compact enough to merge within a Hubble time, following
the dissipation of their angular momentum through the emission of gravitational
radiation. It is also possible that during the common-envelope phase the neutron
star collapses to a black hole, thus preventing the formation of a BNS. Another
possible channel for the formation of BNS systems may be the interaction of two
isolated neutron stars in dense stellar regions, such as globular clusters, in a process
called “dynamical capture” (O’Leary et al. 2009; Lee et al. 2010; Thompson 2011).
Dynamically formed binary systems are different from the others because they have
higher ellipticities. It is presently not known what fraction of BNS systems would
originate from dynamical capture, but it is expected that these binaries are only a
small part of the whole population.

This is undoubtedly an exciting and dynamical time for research on BNS
mergers, when many accomplishments have been achieved (especially since 2008),
while many more need to be achieved in order to describe such fascinating objects
and the related physical phenomena. The first direct detection through the advanced
interferometric LIGO detectors (Harry et al. 2010) of the gravitational-wave (GW)
signal from what has been interpreted as the inspiral, merger and ringdown of a
binary system of black holes (The LIGO Scientific Collaboration and the Virgo
Collaboration 2016) marks, in many respects, the beginning of GW astronomy and
other detections of these systems have been made over the last few months (Abbott
et al. 2016).

More importantly, however, a long-awaited event has taken place on August
17, 2017: the Advanced LIGO and Virgo (Accadia et al. 2011) network of GW
detectors have recorded the signal from the inspiral and merger of a binary neutron-
star (BNS) system: GW170817 (Abbott et al. 2017). The correlated electromagnetic
signals that have been recorded by ∼70 astronomical observatories and satellites
have provided the striking confirmation that such mergers can be associated directly
with the observation of short gamma-ray bursts (SGRBs). Although the detection
rate of these events is still very uncertain and spans three orders of magnitude, it is
expected to be of several events per year (Abadie et al. 2010), so that the operation
of additional advanced detectors, such as KAGRA (Aso et al. 2013) and LIGO India
(see e.g., Fairhurst 2014), are likely to increase the number of detections in the near
future.

This Chapter aims at providing a quick overview of the efforts made to date to
model the GW signal produced by the (late) inspiral, merger and post-merger of
BNS systems (see also Baiotti and Rezzolla (2017), Paschalidis (2017) for some
recent reviews). Because the merger represents a natural divide—both in terms of
the physics involved and of the methods employed to describe this signal—the
report is organised in a first part dedicated to the inspiral and merger dynamics
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(Sect. 10.3) and to a second part devoted instead to the post-merger dynamics
(Sect. 10.4). Both of these parts are prefaced by a general broadbrush description
of the whole process (Sect. 10.2).1

10.2 The Broadbrush Picture

General-relativistic hydrodynamical simulations of BNSs started being performed
in Japan almost 20 years ago (Nakamura and Oohara 1998; Oohara and Nakamura
1999; Shibata 1999). Even if nowadays many state-of-the-art codes are able to solve
more complex sets of equations (e.g., for the evolution of magnetic fields, neutrino
emission, etc.), simulations involving only general-relativistic hydrodynamics are
still the benchmark for any new code and the necessary testbed for more advanced
codes. Furthermore, in many cases, results obtained with pure hydrodynamics,
most notably, gravitational waveforms, provide already a wealth of information on
BNS systems, especially during the inspiral. In many respects, the inspiral may
be considered the easiest part of the problem, in which the stars spiral towards
each other as a result of gravitational-radiation losses, being scarcely or not at all
affected by magnetic fields or neutrinos. Its simplicity notwithstanding, this problem
is still the object of continuous efforts and improvements, which are often carried out
through the synergy of numerical simulations and analytical calculations based on
post-Newtonian expansions or other approximation schemes. We describe progress
on this topic in Sect. 10.3. The inspiral has also recently attracted renewed attention
with the first simulations of arbitrarily spinning BNS systems (see Sect. 10.3).

In what follows, we give a general description of the BNS dynamics using the
figures of Baiotti et al. (2008), which was one of the first to provide complete and
accurate evolutions. Our description is here intentionally qualitative, as we focus
on those aspects that are robust and independent of the EOS. As an aid to the
discussion we show in Fig. 10.1 the various stages in the evolution of an equal-mass
binary system of neutron stars as a function of the initial mass of the binary. More
specifically, the diagram shows on the horizontal axis the progress of time during
the evolution of the system (the intervals in square brackets indicate the expected
duration range of each stage), while on the vertical axis it displays the ratio of the
total (gravitational) mass of the binary (i.e., the sum of the gravitational masses of
the stars composing the system),M , to the maximum mass of an isolated nonrotating
star,2 MTOV . Because the EOS describing neutron stars is still unknown, the precise

1Much of the material presented in the second part relative to the post-merger dynamics has been
presented elsewhere either in the form of original journal articles, as a Chapter in a textbook
(Rezzolla and Zanotti 2013), or as a part of a Review of Progress in Physics (Baiotti and Rezzolla
2017).
2An isolated nonrotating neutron star is the solution of the Tolman-Oppenheimer-Volkoff (TOV)
equation (Tolman 1939; Oppenheimer and Volkoff 1939) and so it is often called a “TOV” star.
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Fig. 10.1 Schematic diagram illustrating the various stages in the evolution of an equal-mass
binary system of neutron stars as a function of the initial mass of the binary. Depending on the
initial total mass of the binary M , and on how it relates to the maximum mass of a nonrotating
neutron star MTOV , the binary can either collapse promptly to a black hole surrounded by a torus
(top row), or give rise to an hypermassive (HMNS) (or to a supramassive neutron star (SMNS)
that ultimately collapses to a black hole and torus (middle row), or even lead to a SMNS (first
differentially and subsequently uniformly rotating) neutron star that eventually yields a black hole
or a nonrotating neutron star (bottom row). Also indicated in red are the typical frequencies at
which gravitational waves are expected to be emitted [Adapted from Rezzolla and Zanotti (2013)
by permission of Oxford University Press www.oup.com]

value of MTOV cannot be determined, although a number of different studies have
now converged on a possible upper limit of MTOV/M� � 2.16+0.17

−0.15 (Margalit
and Metzger 2017; Rezzolla et al. 2018; Ruiz et al. 2018; Shibata et al. 2017).
Furthermore, astronomical observations indicate that it should be larger than about
two solar masses, since there are two different systems that have been measured to
have masses in this range: PSR J0348+0432 with M = 2.01±0.04M� (Antoniadis
et al. 2013), and PSR J1614–2230 with M = 1.97 ± 0.04M� (Demorest et al.
2010).

For millions of years a comparatively slow inspiral progressively speeds up until
the two neutron stars become so close that tidal waves produced by the (tidal)
interaction start appearing on the stellar surface (these are clearly visible in the
second and third panels of Fig. 10.2). Such waves are accompanied by emission
of matter stripped from the surface and by shocks that represent the evolution of
small sound waves that propagate from the central regions of the stars, steepening
as they move outwards in regions of smaller rest-mass density (Stergioulas et al.
2004; Nagakura et al. 2014).

http://www.oup.com
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Fig. 10.2 Isodensity contours in the (x, y) plane for the evolution of a high-mass (individual
stellar rest mass 1.625M�) binary with an ideal-fluid EOS. The thick dashed lines in the lower
panels show the location of the apparent horizon [Reprinted with permission from Baiotti et al.
(2008). © (2008) by the American Physical Society]
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At the merger, the two stars collide with a rather large impact parameter. A
vortex sheet (or shear interface) develops, where the tangential component of the
velocity exhibits a discontinuity. This condition is known to be unstable to very
small perturbations and it can develop Kelvin-Helmholtz instability (KHI), which
curls the interface forming a series of vortices at all wavelengths (Chandrasekhar
1981; Bodo et al. 1994). Even if this instability is purely hydrodynamical and it
is likely to be important only for binaries with very similar masses, it can have
strong consequences if the stars possess magnetic fields. It has in fact been shown
that, in the presence of an initially poloidal magnetic field, this instability may
lead to an exponential growth of the toroidal component (Price and Rosswog 2006;
Giacomazzo et al. 2011; Rezzolla et al. 2011; Neilsen et al. 2014; Kiuchi et al.
2014, 2017). Such a growth is the result of the exponentially rapid formation
of vortices that curl magnetic-field lines that were initially purely poloidal. The
exponential growth caused by the KHI leads to an overall amplification of the
magnetic field of about three orders of magnitude (Kiuchi et al. 2014). At the same
time, high-resolution simulations in core-collapse supernovae find that parasitic
instabilities quench the MRI, with a magnetic-field amplification factor of 100 at
most, independently of the initial magnetic field strength (Rembiasz et al. 2016). Of
course, KHI and MRI are two different instabilities, but the lesson these simulations
provide is that parasitic instabilities may also appear during the development of the
KHI and limit the overall magnetic-field amplification; such parasitic instabilities
are at present not yet apparent because of the comparatively small resolutions
employed when modelling BNS mergers.

The hypermassive neutron star (HMNS) produced from the merger may not
collapse promptly to a black hole, but rather undergo large oscillations with
variations such that the maximum of the rest-mass density may grow to be twice
as large (or more) as the value in the original stars (see the right panel of Fig. 10.3).
These oscillations have a dominantm = 2 non-axisymmetric character (Stergioulas
et al. 2011) and will be discussed in detail in Sect. 10.4. As mentioned earlier,
the formation and duration of the HMNS depends on the stellar masses, the EOS,
the effects of radiative cooling, magnetic fields (Ravi and Lasky 2014; Rezzolla
and Kumar 2015; Ciolfi and Siegel 2015), and the development of GW driven
instabilities (Doneva et al. 2015). Furthermore, the equilibrium of the HMNS can
also be modified by the losses of rest mass via winds that can be driven by shock
heating (Sekiguchi et al. 2015; Bovard et al. 2017), by magnetic fields (Shibata et al.
2011; Kiuchi et al. 2012a; Siegel et al. 2014; Rezzolla and Kumar 2015; Ciolfi and
Siegel 2015; Murguia-Berthier et al. 2017), or by viscosity and neutrino emission
(Dessart et al. 2009; Perego et al. 2014; Just et al. 2015; Martin et al. 2015; Murguia-
Berthier et al. 2014, 2017; Fujibayashi et al. 2017).

In essentially all cases when a black hole is formed, some amount of matter
remains outside of it, having sufficient angular momentum to stay orbiting around
the black hole on stable orbits. In turn, this leads to the formation of an accretion
torus that may be rather dense (ρ ∼ 1012–1013 g cm−3) and extended horizontally
for tens of kilometres and vertically for a few tens of kilometres. Also this point will
be discussed in more detail in Sect. 10.4.
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Fig. 10.3 Left panel: Evolution of the maximum rest-mass density normalized to its initial value
for a high-mass (individual stellar rest mass 1.625M�; gravitational mass of the system 2.998M�)
binary using an ideal-fluid EOS. Indicated with a dotted vertical line is the time at which the binary
merges, while a vertical dashed line shows the time at which an apparent horizon is found. After
this time, the maximum rest-mass density is computed in a region outside the apparent horizon
[from Baiotti et al. (2008). © (2008) by the American Physical Society]. Right panel: The same
as in the left panel but for a low-mass binary (individual stellar rest mass 1.456M� ; gravitational
mass of the system 2.694M�). Note that the evolution is much longer in this case and that different
colours are used to denote the different parts of the evolution (see insets) [Adapted from Rezzolla
et al. (2010). © IOP Publishing. Reproduced with permission. All rights reserved]

The dynamics of the inspiral and merger of a reference equal-mass binary system
is summarised in Fig. 10.3, whose panels show the evolution of the maximum rest-
mass density normalized to its initial value (after the formation of the apparent
horizon, the curve shows the maximum rest-mass density in the region outside
the apparent horizon). Note that together with the large oscillations, the rest-mass
density also experiences a secular growth and the increased compactness eventually
leads to the collapse to a rotating black hole. The differences in the two panels are
essentially related to the initial mass of the system (i.e., M = 2.998M� in the left
panel and M = 2.694M� in the right panel) and it can be seen that, for a given EOS
(even a very simple one like the ideal-fluid EOS used in this case) smaller masses
will yield systematically longer-lived HMNSs.

The matter dynamics described so far in the various stages of the evolution of
a BNS system are imprinted in the GW signal, which then can be used to extract
important information on the properties of the neutron stars. Different parts of
the evolution will provide distinct pieces of information and with different overall
signal-to-noise (SNR) ratios. For example, the post-merger signal would provide
rather clear signatures but at such high frequencies that it may be difficult to measure
them with present detectors. On the other hand, as we will discuss in detail in the
following section, the inspiral signal does depend on the EOS much more weakly,
but in a way that is still measurable because it comes at frequencies where the
detectors are more sensitive.
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10.3 Matter Effects During a Binary Inspiral

For inspiraling compact-object binary systems, GW measurements of the source
parameters are based on matched filtering, where the datastream is cross-correlated
with theoretically predicted template waveforms for different possible parameters
within the wide physically plausible range. A detailed understanding and modelling
of the effect of neutron-star matter on the binary dynamics and GWs is therefore
essential to enhance the science gains from GW observations. For nonspinning
compact objects the main imprint of their internal structure on the GW signal
from the inspiral is due to tidal effects. The energy cost of the tidal deformation
together with the contribution from the moving tidal bulges to gravitational radiation
accelerate the inspiral inspiral and change the GWs compared to the signal from a
black-hole binary. The main characteristic equation-of-state parameter imprinted
in the GWs is the star’s tidal deformability, as recently measured for GW170817
(Abbott et al. 2017) the ratio of the induced quadrupole moment to the perturbing
tidal field.

Tidal effects in binary neutron-star systems are well-known in Newtonian gravity
(Bildsten and Cutler 1992; Reisenegger and Goldreich 1994; Lai 1994; Kochanek
1992; Kokkotas and Schaefer 1995), and in post-Newtonian (PN) theory (Damour
et al. 1992; Lombardi et al. 1997; Mora and Will 2004). A formal description
of the coupling of the neutron-star’s internal structure, described by full General
Relativity (GR), to the orbital dynamics of a binary at large separation was
developed in Flanagan (1998) and expounded upon in Racine and Flanagan (2005).
This provided a rigorous proof that there are no new relativistic “star crushing”
forces (Wilson and Mathews 1995) and that tidal interactions are the leading-
order finite-size effects for nonspinning objects with arbitrarily strong self-gravity
at large separation. The dominant tidal effects in the GWs and the associated
relativistic tidal parameter were derived in Flanagan and Hinderer (2008), Hinderer
(2008). Recent work computed the tidal parameters for higher multipole moments
(Damour and Nagar 2009; Binnington and Poisson 2009), for a wide range of
equations of state models (Hinderer et al. 2010; Postnikov et al. 2010), examined
their physics content (Fattoyev et al. 2013, 2014; Steiner et al. 2015; Lattimer and
Lim 2013; Van Oeveren and Friedman 2017) and the effect of stratification and
elasticity (Penner et al. 2011), considered various other quantities characterising
tidal deformations (Damour and Nagar 2009; Landry and Poisson 2014), the tidal
parameters of black holes (Damour and Lecian 2009; Kol and Smolkin 2012;
Porto 2016; Gurlebeck 2015) and of exotic objects (Cardoso et al. 2017; Sennett
et al. 2017; Mendes and Yang 2017; Uchikata and Yoshida 2016; Pani 2015),
and new tidal parameters that appear for slowly rotating neutron stars (Pani et al.
2015a; Landry and Poisson 2015a). Substantial recent interest has also focused on
I-Love-Q relations (Yagi and Yunes 2013a,b) that link dimensionless parameters
characterising various global properties of the neutron star in an approximately
EOS-independent way (Lattimer and Lim 2013; Pappas and Apostolatos 2014; Yagi
et al. 2014a; Pappas 2017, 2015; Haskell et al. 2014; Chakrabarti et al. 2014; Maselli
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et al. 2013a; AlGendy and Morsink 2014; Chirenti et al. 2015; Pannarale et al. 2015;
Steiner et al. 2016; Breu and Rezzolla 2016; Silva et al. 2016; Yagi 2014; Reina et al.
2017; Chan et al. 2015, 2016); see also Chap. 13 of this book.

Significant progress has also been made on describing the tidal effects on the
orbital dynamics and gravitational radiation, within post-Newtonian theory (Vines
et al. 2011a,b; Bini et al. 2012; Steinhoff et al. 2016), a post-Newtonian affine
approach (Ferrari et al. 2012; Maselli et al. 2012), the gravitational self-force
formalism (Dolan et al. 2015; Bini and Damour 2014; Nolan et al. 2015; Shah
and Pound 2015), effective field theory (Goldberger and Rothstein 2006), and the
effective-one-body model (Damour and Nagar 2010; Vines et al. 2011a; Bini et al.
2012; Bini and Damour 2014; Damour et al. 2012; Bernuzzi et al. 2015a; Hinderer
et al. 2016; Steinhoff et al. 2016). Comparisons and tests of these descriptions
against numerical relativity simulations will be reported in Sect. 10.4 of this chapter.
Based on the above models, several measurability studies of the tidal signature in
the GW signal have been performed using Bayesian data analysis methods, both for
double neutron-star binaries (Del Pozzo et al. 2013; Agathos et al. 2015; Lackey and
Wade 2015; Wade et al. 2014; Chatziioannou et al. 2015; Markakis et al. 2009) and
for neutron-star–black-hole systems (Lackey et al. 2012, 2014; Kumar et al. 2017),
and a first result from LIGO and Virgo observations has recently been reported
(Abbott et al. 2017).

This section will focus on theoretical models of matter effects during the inspiral
epoch of a neutron-star binary system. We will focus on the main imprints from
tidal effects, but in Sect. 10.3.5 will also point out references containing discussions
of other effects including rotational deformations, the tidal excitation of a neutron
star’s various oscillation modes beyond the fundamental mode, nonlinear tidal
effects, and other tidal interactions in general relativity that are not present in
Newtonian gravity. To introduce the theoretical approaches for describing the
inspiral, we will start by recalling tidal effects in Newtonian gravity in Sect. 10.3.1.
The Newtonian discussion will be formulated in way that can be promoted to general
relativity with appropriate modifications, as will be delineated in Sect. 10.3.2, where
we will also review the information needed to compute the tidal parameters for a
given equation of state model, and briefly outline approximate universal relations
between these parameters and similar parameters characterising the rotational
deformation and moment of inertia in Sect. 10.3.3. The effect on the GW signal
from a binary inspiral will be considered in Sect. 10.3.4.

Conventions We will use units in which G = c = 1 unless otherwise indicated.
Indices on tensors consisting of Greek letters α, β, . . . denote four-dimensional
spacetime quantities, while Latin indices i, j, k, . . . denote spatial, three-
dimensional quantities. We will use overdots on quantities to denote derivatives
with respect to coordinate time, e.g., ẋ = dx/dt .
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10.3.1 Tidal Interactions in Newtonian Compact Binaries

In this section we will review Newtonian tidal interactions in a binary system,
discuss the characteristic tidal parameters, and derive an effective action that com-
pactly summarizes the dynamics. This formalism, with appropriate modifications,
will carry over to the relativistic case discussed in Sect. 10.3.2. We will first review
the multipole expansion of the self-field of a body and the gravitational potential of
a binary system, then consider the equations of motion and a corresponding action
principle. The discussion is based on Vines et al. (2011a) and Steinhoff et al. (2016);
some of the introductory material can also be found in the book Gravity by Poisson
and Will (2014).

10.3.1.1 Multipole Expansion of the Self-gravitational Potential

We consider two bodies labeled by A,B. In Newtonian gravity the gravitational
potential generated by a mass distribution with density ρA at a field point x is a
solution to Poisson’s equation ∇2UA = −4πρA or

UA(t, x) =
∫

d3x ′ρA(t, x′)
1

|x − x′| (10.1)

Outside the body’s mass distribution, for points x > x′, the potential can be written
as a Taylor series expansion around a moving reference point zA(t) as

UA =
∫

d3x ′ρA(t, x′)
∞∑
#=0

1

#!(x
′ − zA)

L

(
∂

∂x ′L
1

|x − x′|
)
|x′=zA (10.2a)

=
∫

d3x ′ρA(t, x′)
∞∑
#=0

(−1)#

#! (x ′ − zA)
L∂L

1

|x − zA| . (10.2b)

Here, the notation is that L = a1a2 · · · a# denotes a string of # indices and

xL = xa1xa2 · · · xa#, ∂L = ∂

∂xL
= ∂

∂xa1
. . .

∂

∂xa#
, (10.3)

Throughout this review, the summation over repeated indices is implied.
Similar to the definitions in electromagnetism, we define the body’s Newtonian

mass multipole moments by the following integrals

MA =
∫
A

d3x ρA(t, x), QL
A =

∫
A

d3x ρA(t, x)(x − zA)
<L>, (10.4)

where MA is the mass of the body and the integration is over a sphere surrounding
the matter distribution. The angular brackets around the indices denote the symmet-
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ric and trace-free projection of the tensor, e.g., x<ij> = xixj − δij |x|2; see Thorne
(1980), Hartmann et al. (1994) for a pedagogical introduction to symmetric and
trace-free tensors. The reason that the mass multipole moments defined in Eq. (10.4)
are only the trace-free parts of the integrals that would be read off from (10.2b) is
that the derivative ∂L|x − x′|−1 is a symmetric and trace-free tensor that projects
out only trace-free piece QL in the contribution to the potential (10.2a). Finally, the
mass dipole term (# = 1) has been omitted from the expansion (10.4) since it can
always be made to vanish by choosing the reference point ziA(t) for the multipole
expansion to be the body’s center of mass. With the definitions from Eq. (10.4), the
potential outside the body becomes

UA(t, x) = MA

|x − zA| +
∞∑
#=2

(−1)#

#! QL∂L
1

|x − zA| . (10.5)

This form of the potential is convenient for computing the dynamics of a binary
system. When considering the deformation of a single object, it is useful to work
with spherical coordinates (x− zA)i/|x− zA| = (sin θ cosφ, sin θ sin φ, cos θ) and
express (10.5) as a spherical-harmonic expansion

UA(t, x) = MA

|x − zA| +
∞∑
#=2

#∑
m=−#

Q#m
Y#m(θ, φ)

|x − zA|#+1 . (10.6)

The spherical-harmonic components of the multipole moments are related to the
Cartesian multipole moments by (Thorne 1980)

QA
#m =

4π

2#+ 1
Y∗ #mL QL QL = #!

(2#− 1)!!
#∑

m=−#
Q#mY#m

L . (10.7)

Here, the quantities Y#m
L are symmetric-trace-free tensors consisting of complex

coefficients that appear in the conversion between unit vectors n and spherical
harmonics (Thorne 1980)

Y#m = Y#m
L n<L> n<L> = 4π#!

(2#+ 1)!!
#∑

m=−#
Y#m
L Y ∗#m. (10.8)

10.3.1.2 Expansion of the Companion’s Potential and Tidal Moments

Throughout the subsequent discussion, we will consider a binary system in the
regime where the separation between the bodies is large compared to the character-
istic size of the bodies. The potential due to external sources such as a companion
in the binary that is felt by body A is denoted by U ext

A and can be written as a Taylor
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expansion around A’s center of mass in the form

U ext
A (t, x) = U ext

A (t, zA)+ (x − zA)
j
[
∂jU

ext
A (t, x)

]
x=zA

−
∞∑
l=2

1

#!(x − zA)
LELA,

(10.9a)

where “ext” denotes that the source of this part of the potential is external to
the body. The coefficients ELA in the second line of (10.9) are the body A’s tidal
moments (Thorne and Hartle 1984). Assuming that the source of the external
potential is the potential of body B in a binary system, denoted by UB , the tidal
moments are

ELA = −
(

∂

∂xL
UB(t, x)

)
x=zA(t)

. (10.9b)

Similar to the self-field, the decomposition of the external potential in Eq. (10.9)
can also be written as a spherical-harmonic expansion using the same conversion
and thus not given explicitly here.

10.3.1.3 Equations of Motion and Action Principle

The total potential for the binary is U = UA + UB and the equations of motion for
the center-of-mass positions of either the bodies (C = A or C = B) can be derived
from Newton’s second law:

MCz̈
j

C =
∫

d3x ρC
∂

∂xj
U(t, x) =M

∂

∂xj
U ext
C (t, x) |x=zC −

∞∑
#=2

1

#!Q
L
CEjL,

(10.10)

where in the second equality we have used the multipole expansions described above
and the fact that only the potential sourced by the companion contributes to the
body’s motion, as can be verified by direct calculation.

The dynamics can be conveniently summarised by an action principle con-
structed from the Lagrangian L = T − V , where T = TA + TB is the total kinetic
energy and V = VA + VB the potential energy for the binary system. As reviewed
in detail in Vines et al. (2011a), each of these contributions can be split into a the
center-of-mass motion of the body and an internal contribution:

TA = 1

2

∫
A

d3xρAż2
A + T int

A , VA = 1

2

∫
A

d3xρAUB + Vint. (10.11)

For simplicity, we will specialise the subsequent discussion to the case where onlyA
is an extended body while B is a point mass. To linear order in the finite-size effects,
the case of two extended objects can be recovered by adding the same contribution
with A and B interchanged. Performing the expansions around A’s center of mass,
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using the definitions of the multipole and tidal moments, adding the contributions
TB and VB from the companion, and transforming to the barycentric frame of the
binary system leads to

T = 1

2
μv2 + Tint, V = −μM

r
+
∑
#≥2

1

#!QLEL + Vint. (10.12)

Here, we have defined the total mass M = MA + MB , the reduced mass μ =
MAMB/M , and the relative separation r = zA − zB whose magnitude we denote
by r = |r|, as well as the relative velocity v2 = ṙ · ṙ . The action is then given
by (Flanagan and Hinderer 2008; Rathore et al. 2003; Lai 1994)

S = Sorbit +
∫

dt
∑
#≥2

[
− 1

#!QLEL + Lint
]
, (10.13)

where Sorbit =
∫
dt Lorbit, with Lorbit = (μ/2)v2 + μM/r , describes the orbital

motion of point-masses and Lint encapsulates the internal dynamics of the multipole
moments mass multipole moment that still remain to be specified. We will discuss
the form of Lint for the case where the multipole moments are tidally induced in
the next subsection. The advantage of the formulation in Eq. (10.13) is that the
information about the binary dynamics in summarised in a simple, single scalar
function.

10.3.1.4 Tidally Induced Multipole Moments

We will now further specialise to the case of a body that would be spherically
symmetric in isolation and whose multipole moments result only from the response
to the companion’s tidal field (Bildsten and Cutler 1992; Reisenegger and Goldreich
1994; Lai et al. 1993; Lai 1994; Zahn 1977, 1970; Kopal 1978; Kochanek 1992;
Hansen 2006; Mora and Will 2004; Kokkotas and Schaefer 1995; Flanagan and
Hinderer 2008; Ferrari et al. 2012; Damour et al. 1992; Shibata 1994). For a neutron
star, the main dynamics of the tidally induced multipole moments can be described
by its fundamental oscillation modes (f -modes) with an internal Lagrangian having
the form of a harmonic oscillator (Flanagan and Hinderer 2008; Rathore et al. 2003;
Lai 1994; Kokkotas and Schaefer 1995)

Lint = 1

2#!λ#ω2
0#

[
Q̇LQ̇

L − ω2
0#QLQ

L
]
. (10.14)

An explicit derivation of this Lagrangian starting from the mode amplitudes of
the fluid displacement and their relation to the multipole moments is exhibited in
Chakrabarti et al. (2013). Here, the quantities ω0# denote the f -mode frequencies,
and only the contribution from the modes with no radial nodes have been included
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since higher modes contribute very little to the effect (McDermott et al. 1985).
The parameters λ# are the tidal deformability coefficients that are defined by
considering the adiabatic limit, where the body’s internal time scales τ int ∼
ω−1

0# ∼
√
R3/MA are fast compared to the time scale of variations in the tidal field

τorb ∼
√
r3/(MA +MB). They characterize the equation-of-state-dependent ratio

between the induced multipoles and the tidal field

Qadiab
L = −λ# EL, (10.15)

and are sometimes also referred to as the tidal polarizability. The tidal parameters
λ# are related to the body’s tidal Love numbers k# (or apsidal constants) that were
introduced by the British scientist A.E.H. Love in (1909) and its radius R by

λ# = 2

(2#− 1)!!k#R
2#+1. (10.16)

In many contexts it is useful to work with the dimensionless tidal deformabilities

1# = λ#

M2#+1
= 2

(2#− 1)!!k#C
−(2#+1), (10.17)

where C = M/R is the star’s compactness.
For adiabatically induced multipoles, dQL/dt = 0 and the internal Lagrangian

is only the elastic potential energy associated with the deformation

Lint
adiab = −

1

2#!λ#QLQ
L. (10.18)

Using the relation (10.15), the finite size effects can be written entirely in terms of
the orbital variables and λ#:

Sadiab = Sorbit +
∫

dt

[
λ#

2#!ELE
L

]
, (10.19)

where in this Newtonian context EL = −MB∂Lr
−1. The quantities λ# or k# depend

on the details of the body’s internal structure, and their computation therefore
requires an explicit description of the perturbed interior.

For the Newtonian calculations of λ# we work in the rest frame of the body,
in a region surrounding it that excludes the companion. The first step is to obtain
an equilibrium configuration for the body in isolation, by solving to the Poisson
equation for the gravitational potential together with the continuity and Euler’s
equations that express the conservation of mass and momentum:

∇2U = −4πρ,
∂ρ

∂t
+∇·(ρv) = 0,

∂vi

∂t
+(v·∇)vi = −∂

ip

ρ
+∂iU+aiext,

(10.20)
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where aiext is the acceleration due to external forces. Next, we suppose that the
star is disturbed by an external static tidal gravitational field, e.g., due to a
distant companion. The tidal disturbance is characterized by the set of moments
EL, that each cause the star to deform in response and settle down to a new
static configuration which has a nonzero set of mass multipole moments QL. The
gravitational potential outside the perturbed star is

Utotal = Uself+Utidal = M

r
+
∞∑
#=2

#∑
m=−#

Y#m

[
Q#m

r#+1 −
1

(2#− 1)!!E#mr
#

]
(10.21)

The multipole momentsQ#m characterising the body’s response are associated with
the piece of the exterior potential that falls off as 1/r#+1, while the external tidal
field is related to the terms that grow as r#. To linear order in the external tidal
perturbation and in the adiabatic limit, the induced distortion will be linearly pro-
portional to the tidal perturbation as in Eq. (10.15). Using the properties from (10.8)
and an analogous decomposition as in (10.7) for EL the relation (10.15) can be
written as

Q#m = −λ#E#m (10.22)

for each #th multipole. To compute λ# it is sufficient to consider a single value
of m. The parameters are computed by matching the interior solution and the
exterior description (10.21) at the surface of the star, as we briefly recall here. First,
we compute the interior solution by noting that the perturbed neutron star is still
described by (10.20) but with perturbed pressure p = p0+δp, density ρ = ρ0+δρ,
gravitational potential U = U0 + δU , and an external acceleration aext = ∇Utidal.
The fluid perturbation can be represented by a Lagrangian displacement ξ(x, t)
which is defined so that the fluid element at position x in the unperturbed star is
at position x + ξ(x, t) in the perturbed star. Expanding Euler’s equation about the
background star to linear order in the perturbations yields

d2ξ i

dt2
= −∂iδp

ρ0
+ ∂ip0

ρ2
0

δρ + ∂iδU + aiext. (10.23)

For a barotropic equation-of-state relation of the form p = p(ρ) we can eliminate
δp from (10.23) in terms of δρ. After further specialising (10.23) to static pertur-
bations (ξ̇ = 0), combining all terms that involve δρ into a total derivative, and
integrating we obtain

1

ρ0

dp0

dρ0
δρ − δUtot = const, (10.24)
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where δUtot = δU + Utidal. Using the expansions

δρ = f (r)Y#m(θ, φ), δUtot = H(r)Y#m(θ, φ), (10.25)

and substituting this decomposition into the linearized Poisson’s equation leads to

− 4πf (r)Y#m = Y#m
1

r2

d

dr
r2 dH(r)

dr
+H(r)

[
1

r2 sin θ
∂θ sin θ∂θ + 1

r2 sin2 θ
∂2
φ

]
Y#m (10.26)

= Y#m

[
H ′′ + 2

r
H ′
]
−H(r)

#(#+ 1)

r2 Y#m. (10.27)

Next, using (10.25) in Eq. (10.24) shows that the integration constant must vanish
since the rest of the equation is purely # ≥ 2, and we obtain the relation between the
radial functions

1

ρ0

dp0

dρ0
f −H = 0. (10.28)

Combining Eqs. (10.27) and (10.28) leads to a single master equation for H(r) in
the region r ≤ R:

H ′′ + 2

r
H ′ − #(#+ 1)

r2 H = −4π

(
1

ρ0

dp0

dρ0

)−1

H. (10.29)

Except for special choices of the equation of state (EOS), this ODE has to be
integrated numerically in the interior of the object, with the boundary condition
that ensures regularity at the center of the star, H ∝ r# for r → 0. For r > R the
exterior solution is

H ext = Q#m

r#+1 −
1

(2#− 1)!!E#mr
# = −E#m

[
λ#

r#+1 +
1

(2#− 1)!! r
#

]
. (10.30)

To extract the Love numbers we eliminate E#m by considering the logarithmic
derivative

y(r) = rH ′(r)
H(r)

. (10.31)

We solve for k# by using (10.30) in (10.31) and matching the results for y(R)
obtained from the interior and exterior solutions at the stellar surface:

k# = #− y(R)

2 [#+ 1+ y(R)] | (10.32)

The strategy for practical computations of the Love number is thus the following:
(1) obtain a solution for the background configuration, (2) compute the perturbed
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interior described by (10.29) and evaluate from it y(R) at the surface, and (3) use this
result in Eq. (10.32) to obtain the Love number. Exact solutions can be obtained for
simple EOSs, for example for an incompressible n = 0 polytrope k# = 3/(4#− 4).
The same general method applies in the relativistic case, where, however, one has
to use Einstein’s equations and a more general definition of the multipole moments
and hence the solutions become more complex.

10.3.2 Tidal Effects in General Relativity

The Newtonian results for the binary dynamics of extended nonspinning
objects (10.14) and computation of the characteristic tidal deformability coefficients
can be turned into a relativistic result in the following way (Flanagan and Hinderer
2008; Hinderer 2008; Steinhoff et al. 2016), see also Bini et al. (2012) for the
action in the adiabatic limit and Goldberger and Rothstein (2006) for an effective
field theory approach. We still consider the regime where the separation between
the bodies is large compared to their size, so that the description of the binary
can be divided into several zones, each amenable to a different approximation
method (Flanagan 1998; Racine and Flanagan 2005): (1) The “body-zone”
extending over the neighbourhood of each body, where the presence of the
companion produces small perturbations to its equilibrium structure but a fully
relativistic description is required. (2) The “orbital zone” far from the bodies where
the dynamics can be computed from post-Newtonian (PN) theory and is dominated
by their point-mass contributions, with small corrections due to their finite size
encoded in their multipole moments. (3) The “buffer zone”, at distances large
compared to the size of the body but small compared to the orbital separation,
where both descriptions are connected by matching; this is also the region where
the body’s multipole and tidal moments are defined.

10.3.2.1 Definition of the Body’s Tidal Moments

The generalisation of expanding the gravitational potential around the body’s center
of mass is the so-called worldline-skeleton description (Dixon 1970), where one
considers a reference center-of-mass worldline zμ(σ ) with σ being a parameter
along the worldline, together with a set of multipole moments of the body. The
body’s gravitoelectric tidal moments Eμν are given by projecting the “electric part”
of the spacetime curvature due to the companion that is characterized by the Weyl
tensor Cμανβ as (Thorne and Hartle 1984)

Eμν = Cμανβ
uαuβ

z2
(10.33)
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where uμ = dzμ/dσ is the tangent to the worldline and

z = √−uγ uγ (10.34)

Since we are considering a region of spacetime that excludes the source of the
curvature, the Weyl tensor is the same as the Riemann tensor and Rμανβ could
equivalently be used in (10.33). The tensor Eμν has the properties that it is symmetric
and trace free and is purely spatial in the body’s rest frame, Eμνuν = 0. In the rest
frame, uμ = (−1, 0, 0, 0) and Eij = C0i0j replaces (10.33). Higher multipole tidal
moments are defined in an analogous way from covariant derivatives of the Weyl
tensor projection

EL = 1

(#− 2)!C〈0a10a2;a3···a#〉, (10.35)

where a semicolon denotes a covariant derivative.

10.3.2.2 Definition of the Body’s Multipole Moments

To define the body’s multipole moments we consider a region of spacetime at
distances outside the body that are large compared to the size of the object but
small compared to the radius of curvature of the source of the tidal perturbations. In
this zone, the body’s multipole moments can be read off from the asymptotic metric
expressed in a local asymptotic frame (Thorne 1980, 1998). For example, the time-
time component of the metric can be written in terms of an effective potential Ueff
that is analogous to the Newtonian gravitational potential:

gtt = − (1− 2Ueff) , (10.36)

where for a spherical body described by the Schwarzschild exterior spacetime
Ueff = M/r with r denoting the distance from the body. For a nonspherical body,
the asymptotic form of this metric function is

lim
r→∞Ueff = M

r
+ 3n<ij>Qij

2r3 +O(r−4)− 1

2
n<ij>Eij r2 +O(r3). (10.37)

In this setting, the #th mass multipole moment is associated with the piece in the
asymptotic expansion that falls off as r−(#+1). This method to define the multipole
moments of a body is equivalent to the Geroch-Hansen multipole moments for
stationary spacetimes (Guersel 1983). However, for tidally induced moments in a
binary system a small ambiguity remains in the above definitions (Thorne and Hartle
1984).

Finally, the definition of λ# from Eq. (10.15) still applies for the relativistic
definitions of EL and QL.
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Another new feature of General Relativity that is absent in Newtonian gravity is
that there are also gravitomagnetic tidal fields that induce current multipoles. In the
local frame of the star, the gravitomagnetic part of the curvature is given by

BL = 3

2(#+ 1)(#− 2)!ε<a1jkC
jk

a20;a3···a#>, (10.38)

where εijk is the completely antisymmetric permutation tensor. The induced current
moments SL appear in the time-space part of the asymptotic metric in a local
asymptotic frame

gtj = − 8

r3 εjkiSkin
<ki> +O(r−4)+ 2

3
εjpqBq

kr
2 n<pk> +O(r3), (10.39)

where Sij is the body’s current quadrupole moment and Bij the quadrupolar
gravitomagnetic tidal moment. Similar to the tidal deformability tidal deformability
coefficients λ#, the relation between SL and BL is characterized by a set of
gravitomagnetic Love numbers σ#

SL = −σ#BL . (10.40)

These have no Newtonian analogue but can also be written in terms of dimensionless
Love numbers j# as σ# = (# − 1)/[4(# + 2)(2# − 1)!!]R2#+1j# . See e.g. Damour
and Nagar (2009) and Landry and Poisson (2015b) for further details.

10.3.2.3 Computation of Tidal Love Numbers in General Relativity

Before discussing tidally perturbed bodies we briefly review the construction of a
spherically symmetric, isolated nonspinning neutron-star solution. The metric can
be expressed as (Hartle 1967)

ds2
0 = −eν(r)dt2 + eγ (r)dr2 + r2(dθ2 + sin2 θdϕ2) , (10.41)

and neutron-star matter is modeled by a perfect-fluid stress-energy tensor

Tμν = (ρ + p)uμuν + pgμν , (10.42)

where p and ρ are the neutron-star’s pressure and energy density and uμ is the
fluid’s four-velocity. In the body’s rest frame, the normalization condition uμuμ =
−1 implies that uμ = (e−ν/2, 0, 0, 0). Substituting these expressions into the field
equations Gμν = 8πTμν yields the Oppenheimer-Volkoff equations:

dm

dr
= 4πr2ρ ,

dν

dr
= 2

4πr3p +m

r(r − 2m)
,

dp

dr
= − (4πr

3p +m)(ρ + p)

r(r − 2m)
,

(10.43)
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where m(r) is defined by

m(r) ≡
[
1− e−γ (r)

]
r

2
. (10.44)

Outside the star, m(r) becomes the body’s constant gravitational mass M . To solve
Eq. (10.43) requires specifying an EOS, p = p(ρ). The interior solution is obtained
by imposing regularity at the neutron-star center with a choice of central density
ρc. The initial conditions close to the center r → 0 are ρ = ρc + O(r2) , p =
pc + O(r2), and m = (4π/3)ρcr3 + O(r5) where pc is the central pressure. The
neutron-star’s surface r = R corresponds to a vanishing pressure p(R) = 0.

We next consider linear, static perturbations to the equilibrium configuration
described by the metric

ds2 = ds2
0 + hμνdx

μdxν. (10.45)

We will work in the Regge-Wheeler gauge where hμν can be analysed into tensorial
spherical harmonics (Regge and Wheeler 1957; Thorne and Campolattaro 1967;
Ipser and Price 1991; Detweiler and Lindblom 1985). These are characterized by
the mode integers (#,m) and by a parity π which can be either (−1)# or (−1)#+1.
For small perturbations the (#,m, π) modes are decoupled and the electric-type or
even-parity π = (−1)# perturbations to the metric take the form

he
μνdx

μdxν =
∑
#,m

[
− eνH#m

0 dt2 + 2H#m
1 dtdr + eγH#m

2 dr2 + r2K#md�2
]
Y #m

(10.46)

Here, the functions H0,H2 and K generically depend on (t, r). However, for our
purposes it is sufficient to consider static perturbations, where these functions
depend only on r . The perturbations to the stress-energy tensor are given by (Thorne
and Campolattaro 1967)

δT 0
0 = −δρ#Y#m(θ, ϕ) = −

dρ

dp
δp#Y#m(θ, ϕ) , δT i

i = δp#Y#m(θ, ϕ) .

(10.47)

We substitute the above decompositions into the Einstein field equations Gν
μ =

8πT ν
μ and the stress-energy conservation ∇μT μν = 0, and extract only the pieces

that are linear in the perturbations in all the components. This leads to the relations

H0 = H2 ≡ H , H1 = 0 ,
δp

ρ + p
= −1

2
H . (10.48)

Further, the (r, r) and (r, θ)-components can be used to algebraically eliminate K
and K ′ in favour of H and its derivatives. Finally, the (t, t) component leads to the
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following second-order differential equation

0 = d2H

dr2
+
{

2

r
+ eγ

[
2M

r2
+ 4πr(p − ρ)

]}
dH

dr

+
{
eγ
[
−#(#+ 1)

r2
+ 4π(ρ + p)

dρ

dp
+ 4π(5ρ + 9p)

]
−
(
dν

dr

)2
}
H . (10.49)

The initial condition at the center, for r → 0, is H ∝ r# to ensure regularity of the
solution. The constant of proportionality is irrelevant in further calculations of the
tidal deformabilities and can be chosen arbitrarily.

Outside the star, the metric perturbation reduces to the general form

H# = a
Q
# Q#2(x)+ aP# P#2(x) , (10.50)

where x ≡ r/M−1 and P#2(x) and Q#2(x) are the normalized associated Legendre
functions of the first and second kinds respectively. The normalization is such that
for x → ∞ the asymptotic forms are P#2(x) ∼ x# and Q#2(x) ∼ x−(#+1). The
constants aP# and a

Q
# are determined by matching the logarithmic derivative of the

interior and exterior solutions,

y# ≡ r

H#

dH#

dr
, (10.51)

at the neutron-star surface. Comparing with the definition of Q# and E# in the
asymptotic metric (10.37) and the definition of the Love numbers enables writing
the general expression for 1# in the form given in Damour and Nagar (2009) (see
Binnington and Poisson (2009) for an alternative expression):

(2#− 1)!!1# = − P ′#2(x)− Cy#P#2(x)

Q′#2(x)− Cy#Q#2(x)

∣∣∣∣
x=1/C−1

, (10.52)

where C = M/R is the neutron-star’s compactness. The computation of 1#

thus proceeds by numerically solving for the background and perturbations in the
interior, evaluating the results at the neutron-star surface, and using Eq. (10.52). For
the dominant quadrupolar effect the explicit expression is

1 |#=2 = 16

15
(1− 2C)2[2+ 2C(y − 1)− y]

×
{

2C[6− 3y + 3C(5y − 8)] + 4C3[13− 11y + C(3y − 2)+ 2C2(1+ y)]

+3(1− 2C)2[2− y + 2C(y − 1)] ln(1− 2C)
}−1

, (10.53)
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where y is evaluated at the surface r = R. Since H itself does not enter into
Eq. (10.53) and only the combination of potentials (10.51) is needed it is more
efficient to transform Eq. (10.49) into an equation for y. For # = 2 this becomes
(Lindblom and Indik 2014; Landry and Poisson 2014):

dy

dr
= 4(m + 4πr3p)2

r(r − 2m)2
+ 6

r − 2m
−y

2

r
− r + 4πr3(p − ρ)

r(r − 2m)
y− 4πr2

r − 2m

[
5ρ + 9p + ρ + p

(dp/dρ)

]
.

(10.54)

Recasting the problem into the form (10.54) thus requires only integrating the first
order differential equation with the boundary condition y = 2 at the center and
evaluating the result at r = R. See Chakrabarti et al. (2013b) for a more general
approach that simultaneously determines the tidal deformability and oscillation
mode frequencies.

For an incompressible star with ρ = const or p = Kρ1+1/n with n = 0,
the density profile is a step function and the matching of the interior and exterior
solutions must be modified in the following way (Damour and Nagar 2009). After
obtaining a numerical solution to Eq. (10.54) in the interior the result is evaluated
at the surface to determine y in(R). The step-function density discontinuity has a
nonvanishing derivative at the neutron star surface, which must be taken into account
and leads to a correction to the value of y just outside the star yout that is computed
from the relation, valid for any #,

yout
incompressible = y in

incompressible− 3. (10.55)

10.3.2.4 Tidal Love Numbers for Current Multipoles

Gravitomagnetic tidal perturbations are described by the odd-parity sector of the
metric. They can be decomposed as (Thorne and Campolattaro 1967)

ds2 = ds2
0 − 2h0,#(r)

∂ϕY#m(θ, ϕ)

sin θ
dtdθ + 2h0,#(r) sin θ∂θY#m(θ, ϕ)dtdϕ .

(10.56)

The perturbations to the stress-energy tensor depend on the assumptions on the
fluid such as strict hydrostatic equilibrium as used in Damour and Nagar (2009) or
that an irrotational configuration as a more realistic scenario studied in Landry and
Poisson (2015b). The differential equations for the perturbed metric components
can be derived similar to the procedure in the even-parity case. The master variable
in this case is defined by

h ≡ r3 d

dr

(
h0,#

r2

)
(10.57)
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and it satisfies the differential equation (Landry and Poisson 2015b)

d2h

dr2
+ eγ

r2

[
2M + 4π(p − ρ)r3

] dh
dr
−eγ

[
#(#+ 1)

r2
− 6M

r3
+ (1− 2ε)4π(ρ − p)

]
h = 0 .

(10.58)

Here, the parameter ε characterises the assumptions on the fluid: ε = 1 for the
irrotational case, and ε = 0 for strict hydrostatic equilibrium.

The gravitomagnetic Love numbers σ# are computed similar to the electric-type
ones. The differential equation (10.58) is integrated numerically in the neutron-star
interior with the initial condition at the center h ∝ r#+1 to ensure regularity, where
the constant of proportionality is irrelevant for the final result. For the exterior solu-
tion, the asymptotic behavior of the two independent solutions at spatial infinity is
ĥP# ∼ (r/M)#+1 and ĥQ# ∼ (r/M)−#. Specifically, for # = 2, the exterior solutions

are given by ĥP2 = (r/M)3 and ĥQ2 = −(r/M)3∂(r/M)[F(1, 4; 6; 2M/r)M4/r4]/4,
where F(a, b; c; z) is a hypergeometric function. As in the even-parity case, Love
numbers are determined by matching yσ# ≡ (r/h)(dh/dr) at the neutron-star
surface, which leads to (Damour and Nagar 2009; Landry and Poisson 2015b)

σ# = − (#− 1)M2#+1

4(#+ 2)(2#− 1)!!
ĥP#
′(C−1)− Cyσ# (C

−1)ĥP# (C
−1)

ĥ
Q
#
′(C−1)− Cyσ# (C

−1)ĥ
Q
# (C

−1)
. (10.59)

10.3.2.5 Love Numbers for Deformations of Isodensity Surfaces

The Love numbers discussed in the previous sections characterize the spacetime
geometry at large distances from the deformed object. In the Newtonian limit, the
multipole moments of the gravitational potential are related to the shape or surficial
Love numbers h# characterising the deformation of the object’s surface by h# = 1+
2k#. In General Relativity, this relation becomes more complex and must be obtained
by considering gauge-invariant quantities such as curvature scalars. Consider an
initially spherical star of radius R whose surface deforms in response to a tidal
disturbance. To linear order in the deformation, the Ricci scalar curvature of the
surface is given by (Damour and Nagar 2009; Landry and Poisson 2014)

R = 1

R2 (2+ δR), δR = −2
∞∑
#=2

#+ 2

#
h#
R#+1

M
ELnL. (10.60)

The general-relativistic relation between shape and tidal Love numbers is (Landry
and Poisson 2014)

h# = �1 + 2�2 k#, (10.61)
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where

�1 = #+ 1

#− 1
(1−M/R)F(−#,−#;−2#; 2M/R)− 2

#− 1
F(−#,−#− 1;−2#; 2M/R),

(10.62a)

�2 = #

#+ 2
(1−M/R)F(#+ 1, #+ 1; 2# + 2; 2M/R)+ 2

#+ 2
F(#+ 1, #; 2# + 2; 2M/R),

(10.62b)

where F(a, b; c; z) is the hypergeometric function.
The relation of Eq. (10.61) can be applied directly to black holes, for which

M/R = 1/2 and k# = 0, and thus (Damour and Lecian 2009)

hBH
# =

#+ 1

2(#− 1)

#!2
(2#)! , (10.63)

10.3.2.6 Love Numbers for Tidally Perturbed Spinning Neutron Stars

For spinning neutron stars, new kinds of tidal couplings arise for which there
are corresponding new Love numbers (Pani et al. 2015b; Landry 2017). The
calculations become more complicated than for nonspinning objects because it
leads to a coupling between spherical harmonic modes in the perturbation equations
and because the identification of the Love numbers from asymptotic considerations
becomes more subtle (Pani et al. 2015a,b; Landry and Poisson 2015a; Landry 2017).
These issues have only recently received consideration and work is still ongoing to
fully address the calculations of spin-tidal effects in a binary systems.

10.3.3 I-Love-Q Relations

The I-Love-Q relations are inter-relations between dimensionless quantities char-
acterising the stellar moment of inertia I , the tidal parameter 1, and spin-induced
quadrupole moment Q that are insensitive to the equation of state to within a good
approximation. These and similar relations in more general contexts beyond the
inspiral and post-merger are discussed in Chap. 13. The computation of I and Q is
reviewed in Yagi and Yunes (2017a) and will not be discussed in detail here.

The moment of inertia and spin-induced quadrupole moment are computed using
a similar approach as for the computation of tidal deformabilities discussed above,
by solving Einstein’s equations and stress-energy conservation for small perturba-
tions around an equilibrium stellar configuration. In this case the perturbations are
due to the star’s rotation instead of an external tidal field. At linear order in the spin
the perturbation equations give the moment of inertia I relating the magnitude of
the spin angular momentum S to the angular frequency � through S = I� and
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computed from (Hartle 1967; Kalogera and Psaltis 2000)

I = 8π

3

1

�

∫ R

0

e−(ν+γ )/2r5(ρ + p)ωint
1

r − 2m(r)
dr , (10.64)

where ωint
1 is the solution to the following differential equation in the interior of the

star:

d2ω1

dr2 +
4− 4πr2(ρ + p)eλ

r

dω1

dr
− 16π(ρ + p)eλω1 = 0 . (10.65)

In the Newtonian limit, Eq. (10.64) reduces to (Hartle 1967) IN = (8π/3)
∫ R

0 r4

ρ(r)dr .
The spin-induced quadrupole moment Q determines the magnitude of the

quadrupolar deformation of a star due to rotation and is obtained by carrying out
the perturbative analysis to quadratic order in the spin. The details are described
in Laarakkers and Poisson (1999), Mora and Will (2004), Berti et al. (2008) and
will not be discussed here. Similar to the tidal Love numbers, the dimensionless
measures of the spin-induced deformations are known as rotational Love numbers.
In the Newtonian limit, the rotational and tidal Love numbers quadrupolar are
exactly the same, however, relativistic effects break this degeneracy. Nevertheless
for current models of neutron star EOSs, there exist mutual relations between the
dimensionless parameters 1 and

Ī = I

M3 Q̄ = −QM

| �S|2 , (10.66)

that are nearly independent of the EOS, to within percent-level accuracy. These take
the empirical form that were tested for a large set of currently available EOSs (Yagi
and Yunes 2017a)

ln(Q̄) = 0.1940+ 0.09163 ln1+ 0.04812(ln1)2 − 4.283× 10−3(ln1)3

+1.245× 10−4(ln1)4 (10.67a)

ln(Ī ) = 1.496+ 0.05951 ln1+ 0.02238(ln1)2 − 6.953× 10−4(ln1)3

+8.345× 10−6(ln1)4 (10.67b)

ln(Ī ) = 1.393+ 0.5471 lnQ̄+ 0.03028(ln Q̄)2 + 0.01926(ln Q̄)3

+4.434× 10−4(ln Q̄)4. (10.67c)

The above relations are only valid in the region where the fit was developed, roughly
for the intervals M ∈ [0.8, 2.4]M�, Ī ∈ [5, 30], 1 ∈ [2, 4000], and Q̄ ∈ [2, 10];
see Yagi and Yunes (2013a,b) and Lattimer and Lim (2013).
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The I − Q universality encodes a relation between the neutron-star’s spin or
current dipole moment and its mass quadrupole moment that in some sense is
reminiscent of a generalisation of the no-hair relations for black holes. A similar
relation was also found for higher multipole moments (Pappas and Apostolatos
2014; Yagi et al. 2014a) that greatly simplify the structure of the exterior spacetime
of a neutron star (Pappas 2017, 2015). The universal relations were also found to
hold in the presence of weak magnetic fields (Haskell et al. 2014), and rapid rotation
(Doneva et al. 2014; Chakrabarti et al. 2014). Universal relations between different
neutron-star parameters had been found previously (Lattimer and Prakash 2001,
2004; Lattimer and Yahil 1989; Prakash et al. 1997; Andersson and Kokkotas 1998;
Bejger and Haensel 2002; Carriere et al. 2003; Benhar et al. 2004; Tsui and Leung
2005; Lattimer and Schutz 2005; Morsink et al. 2007; Haensel et al. 2009; Lau
et al. 2010; Urbanec et al. 2013; Bauböck et al. 2013). The work of Yagi and Yunes
(2013a,b) prompted a number of further studies of universal relations (Maselli et al.
2013a; AlGendy and Morsink 2014; Chirenti et al. 2015; Pannarale et al. 2015;
Steiner et al. 2016; Breu and Rezzolla 2016; Silva et al. 2016; Yagi 2014; Reina et al.
2017; Chan et al. 2015, 2016). From the studies in Majumder et al. (2015), Doneva
et al. (2014), Pappas and Apostolatos (2014), Chakrabarti et al. (2014), Gagnon-
Bischoff et al. (2018), from which it has become clear that universality holds only
between dimensionless measures of the neutron-star properties, and that the choice
of normalization for such appropriate quantities has an impact on the accuracy
with which the interrelations hold. Approximate universal relations were recently
also found for quantities characterising neutron-star binaries (Kiuchi et al. 2010;
Kyutoku et al. 2010; Bauswein and Janka 2012; Takami et al. 2014, 2015; Bernuzzi
et al. 2014a, 2015b; Bauswein and Stergioulas 2015; Yagi and Yunes 2016, 2017b;
Rezzolla and Takami 2016; Maione et al. 2016); a more comprehensive review of
universality in binaries will be discussed in Sect. 10.4. Finally, a list of work on
(non-)universality in alternative theories of gravity and for exotic compact objects
can be found in the review article (Yagi and Yunes 2017a) and also in Chap. 13 of
this review.

Various possible reasons for the existence of universal relations for neutron stars
have been considered, see e.g., the discussion in Yagi et al. (2014b). There is
evidence that an approximate symmetry, specifically the self-similarity of radial
profiles of iso-density surfaces in the interior of stars containing cold degenerate
nuclear matter, is linked to the emergence of the universal relations in neutron
stars and their absence in ordinary stars (Yagi et al. 2014b). The universal relations
have several applications (Yagi and Yunes 2013a,b). For example, they be used
to improve measurements by reducing the number of parameters, and for cross-
comparisons between interpretations of measurements such as from GW and
electromagnetic observations. The fact that the universal relations break down for
exotic objects and in some alternative theories of gravity can also be used for tests
of General Relativity and the nature of compact objects.
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10.3.4 Binary Inspiral Dynamics and GWs

Having discussed the calculation of the relevant parameters we now return to the
description of finite-size effects during a binary inspiral, specialising to nonspinning
binaries where the models are currently well-developed. We will focus on the
dominant mass-quadrupolar tidal effects, and only indicate extensions to other
mass multipole moments and to gravitomagnetic interactions. As in the Newtonian
context, unless explicitly indicated, we will take the system to be one extended
object and a point-mass for simplicity and throughout work only to linear order in
the tidal effects.

The action describing tidal interactions in a relativistic binary system can be
obtained as follows. Recall that in the relativistic context we consider a worldline
zμ(σ ) with tangent uμ = dzμ/dσ , where σ is an evolution parameter. We start by
expressing the Newtonian result from Eq. (10.13) in a covariant form and inserting
the appropriate redshift factors, defined in Eq. (10.34), to ensure invariance under
re-parametrizations (Steinhoff et al. 2016):

S = Sorbit +
∫

dσ
[
− z

2
EμνQμν + Lint

rel

]
, (10.68)

Here, Lint
rel denotes the relativistic internal Lagrangian. The action (10.68) can also

be derived from an effective-field-theoretical approach (Goldberger and Rothstein
2006), by considering all possible terms that respect the symmetries (general covari-
ance, parity, and time reversal) and re-defining variables to eliminate accelerations.
For tidally induced quadrupoles due to the f -mode we can obtain Lint

rel from the
Newtonian result given in Eq. (10.14) by replacing all time derivatives by covariant
derivatives along the center-of-mass worldline and inserting appropriate factors of
the redshift. This leads to (Steinhoff et al. 2016)

Lint
rel =

z

4λz2ω2
02

[
DQμν

dσ

DQμν

dσ
− z2ω2

02QμνQ
μν

]
, (10.69)

where

D

dσ
= uβ∇β (10.70)

and ∇α is the covariant derivative. This neglects contributions from quadrupolar
modes with higher radial nodes, as in the Newtonian case, and also omits other terms
due to the incompleteness of the mode spectrum of relativistic compact objects.
Contributions from higher multipoles can be described in a similar manner but are
not given explicitly here. After decomposing Eq. (10.68) into the time and space
components and imposing the constraints to isolate only the physical degrees of
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freedom, the action takes the form

S = Sorbit +
∫

dσ

[
− z

2
EijQij + z

4λz2ω2
02

(
Q̇ij Q̇

ij − z2ω2
02QijQ

ij
)
+ LFD

]
.

(10.71)

Here, the termLFD describes relativistic frame-dragging effects that are contained in
the kinematical term (DQμν/dσ)2 when it is expressed with coordinate time as the
evolution parameter. Specifically, LFD describes the coupling of the orbital angular
momentum to the angular momentum (or spin SQ) associated with the quadrupole

SiQ =
1

λω2
02

εijm

[
Qkj Q̇m

k −QkmQ̇j
k

]
. (10.72)

To proceed with computing the dynamics and GWs requires explicit expressions for
the various quantities such as Eij and z and the frame-dragging terms appearing in
the action. These have been computed in post-Newtonian (PN) theory (Vines et al.
2011a; Bini et al. 2012; Steinhoff et al. 2016), in the test-particle limit (Bini and
Geralico 2015) or the gravitational self-force formalism (Dolan et al. 2015; Bini
and Damour 2014; Nolan et al. 2015; Shah and Pound 2015). There also exists an
alternative approach to the worldline-skeleton method termed the affine model. In
the affine approach, the stars are described as triaxial ellipsoids and one solves a
set of coupled ODEs for the evolution of the axes and the orbit. The most recent
developments that take into account PN effects are derived in Ferrari et al. (2012),
Maselli et al. (2012), where we refer the reader for more details about this model.
Below, we will continue to work within the worldline-skeleton approach and outline
the computation of tidal effects in the GW signal in PN theory before discussing
their inclusion in more sophisticated GW models.

In PN theory, the GW signal can be computed by imposing that the power
radiated by a binary system is balanced by a change in the energy of the binary. This
enables computing the phase evolution of the orbital dynamics where at the leading
order, the GW phase is twice the orbital phase. The radiated power is computed
in a multipolar approximation that at leading order gives the quadrupole formula
involving the total quadrupole moment of the system QT

ij = μr2n<ij> + Qij .
The energy of the binary is E = Epm + Etidal, where the subscript “pm” denotes
point-masses. The computations starting from the action, are described in detail
in Vines et al. (2011b) for the current state-of-the art complete knowledge at 1PN
order in the tidal effects, and in Flanagan and Hinderer (2008), Hinderer et al.
(2010) in Newtonian but more general contexts that include various other effects
and estimate the size of the corrections. Partial information at higher PN orders
is also available (Damour et al. 2012). The idea is to start from the action written
out explicitly to 1PN order, derive from it the equations of motion, specialise to
circular orbits r̈ = ṙ = 0 and φ̇ = �, φ̈ = 0, and perturbatively solve from this
for the orbital separation r in terms of the frequency variable x = (M�)2/3. The
reason for wanting to eliminate r is that it is a gauge-dependent quantity whereas the
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frequency is an observable and hence less gauge-dependent. From the potential and
kinetic energies contained in the action one can compute the energy of the system E

and find the following tidal contribution in the limit of adiabatic tides (Vines et al.
2011a)

Etidal(x) = −1

2
μx

[
−9

MB

MA

λAx
5

M5 −
11

2

(
3M

MA

− MB

M
− 3

M2
A

M2

)
λAx

6

M5

]
+ (A↔ B).

(10.73)

The factor outside the brackets is the result for Newtonian point masses. The results
when including the finite f -mode frequency at Newtonian order can be found
in Flanagan and Hinderer (2008), and the 1PN extension can be determined from the
Hamiltonian and circular-orbit solutions given in Hinderer et al. (2016), Steinhoff
et al. (2016). Next, the mass-quadrupole tidal corrections contribute to the power
radiated in GWs as (Vines et al. 2011b)

P tidal
GW =

32μ2

5M2 x
5/2

[(
18M

MA

− 12

)
λAx

5

M5 +
(

643MA

4M
− 176M

7MA

− 1803

28
− 155M2

A

2M2

)
λAx

6

M5

]
.

(10.74)

By requiring that PGW be balanced by a change in the energy E of the binary one
can derive the evolution equations

dφ

dt
= x3/2

M

dx

dt
= −PGW

dE/dx
(10.75)

There are several ways to solve for φ in a PN approximation. For example, one
can numerically solve Eq. (10.75) for φ(t) and x(t) after first expanding the ratio
PGW/(dE/dx) about x = 0 to the consistent PN order. These waveforms are known
as TaylorT4 approximants as reviewed in Buonanno et al. (2009), where the point-
mass terms are also given explicitly. The adiabatic quadrupolar tidal corrections that
add linearly to the point-mass contributions are (Vines et al. 2011b):

dx

dt
|tidal = 32

5

MB

M7
λA x

10
[

12

(
1+ 11

MB

M

)

+x
(

4421

28
− 12263

28

MA

M
+ 1893

2

M2
A

M2
− 661

M3
A

M3

)]
+ (A↔ B). (10.76)

Other possibilities to perturbatively solve (10.75) and obtain the tidal contribu-
tions to different approximants for the gravitational waveform are detailed in the
Appendix of Wade et al. (2014). The reason why the phase evolution is the most
important prediction for GW data analysis is that matched filtering is employed
to identify and interpret signals, where the datastream is cross-correlated with
theoretical predictions for the GWs (see e.g., Cutler and Flanagan 1994), thus
making the process very sensitive to the phasing (Cutler et al. 1992). Besides
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the TaylorT4 approximants, another widely utilised class of template waveforms
for data analysis are TaylorF2 waveforms. Their advantage is that they provide
a fully analytic frequency-domain model and are thus very fast to generate. The
derivation is explained e.g., in Cutler and Flanagan (1994) and in the stationary
phase approximation leads to a Fourier transform of the signal, denoted by h̃, of the
form

h̃(f ) = Af−7/6 exp
[
i
(
ψpm + ψtidal

)]
. (10.77)

Here f is the GW frequency, A ∝ M5/6/D, where M is the chirp mass M =
η3/5M , and D is the distance between the GW detector and the binary. Extrinsic
parameters of the source such as the location on the sky are also contained in A,
where higher PN order (and tidal) corrections to the amplitude also enter. The point-
mass phase ψpm to the current best knowledge for nonspinning binaries is given
e.g., in Eq. (3.18) of Buonanno et al. (2009). The mass-quadrupole adiabatic tidal
contributions to ψtidal in the adiabatic limit can be expressed in the following form
given explictly in Wade et al. (2014):

δψtidal = 3

128ηx5/2

[
−39

2
1̃x5 +

(
−3115

64
1̃+ 6595

364

√
1− 4

μ

M
δ1̃

)
x6
]
,

(10.78a)

where

1̃ = 16

13

[(
1 + 12MB

MA

)
1AM

5
A
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+
(

1+ 12MA

MB

)
1BM

5
B
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]
(10.78b)

δ1̃ =
(

1− 7996MB

1319MA

− 11005M2
B

1319M2
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)
1AM
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M6
+
(

11005M2
A

1319M2
B

+ 7996MA

1319MB

− 1

)
1BM

6
B

M6
(10.78c)

In Eq. (10.78c) the assumption is that MA > MB . The parameter 1̃ plays an
analogous role as in GW measurements as the chirp mass Mchirp = μ3/5M2/5

as the most readily measurable combination of parameters. For equal-mass binary
neutron stars 1̃ reduces to 1 of the individual neutron stars, and the parameter
δ1̃ vanishes. Other combinations of the two parameters 1A and 1B are also in
use and have advantages in different contexts, e.g., to characterize the dominant
effect in the conservative dynamics (Damour and Nagar 2010), or to improve the
measurability (Yagi and Yunes 2016, 2017b). The key point to note is that for a
double neutron-star system GW measurements are most sensitive to a weighted
average of the deformability parameters of the two objects.

From the discussion above, it is apparent that the fractional corrections to the
Newtonian point-mass results due to tidal effects scale as a high power of the
frequency, x5 and higher, where x = (πMf )2/3. This means that in a PN counting
that is based on assigning to each power of x an additional PN order, tidal effects
first enter effectively as 5PN corrections, although physically, they are Newtonian
effects. Point-mass terms are currently only known to 4PN order in the dynamics
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(Damour et al. 2016; Marchand et al. 2017) and only to 3.5PN order in the GW
phasing (Blanchet 2006). This lack of complete information has raised concerns
about systematic errors in GW measurements of tidal effects (Favata 2014; Yagi
and Yunes 2014; Wade et al. 2014). However, there are two classes of effective
or phenomenological models for black hole binaries that effectively include all
PN orders in an approximate way. These are the effective one body (EOB) model
(Buonanno and Damour 1999, 2000) and the so-called “Phenom” models (Ajith
et al. 2007, 2008), both of which aim to combine the available information on the
relativistic two-body problem from different regimes into a single framework to
generate waveforms for data analysis.

The EOB approach is a framework to compute the dynamics and GWs from
a binary by evolving a description of the coupled system of ODEs for the
orbital motion, GW generation, and radiation-backreaction in the time-domain.
The purpose of the Phenom models is to provide an efficient description of the
dominant effects in the GW signal in the frequency-domain, through a general-
isation of (10.77). Both approaches rely not only on analytical results but also
include information from numerical relativity simulations for black hole binaries;
the current state-of-the art refinements and calibrations of the models are described
in Bohe et al. (2017), Babak et al. (2017) and Nagar et al. (2017, 2018) for an
alternative version of the EOB model, and Khan et al. (2016), Schmidt et al.
(2015) for the Phenom models. By design, these models therefore include high-PN
order information, albeit only in an approximate and phenomenological manner.
When tidal effects are included in such models one might expect the system-
atic uncertainties due to missing high-PN-order point-mass terms to be reduced.
However, the level of remaining systematic errors must be assessed by testing the
models in various ways, such as by comparing to numerical relativity simulations
or comparing results from data analysis studies with the two different classes of
models.

The Phenom models are frequency-domain models that prescribe an analytical
expression for the amplitude and phase of h̃. In the Phenom models, the tidal
terms from Eq. (10.78a) can directly be added to the black hole waveforms without
further work. Alternative tidal phasing models based on a fit to numerical relativity
results have recently also been developed (Dietrich et al. 2017, 2018; Kawaguchi
et al. 2018) and can likewise be added on top of the black hole waveforms for the
inspiral. There also exist surrogate models for EOB waveforms in the frequency
domain (Purrer 2016; Lackey et al. 2017) where the tidal contributions can be
directly added to the phasing as described for the Phenom models. The different
kinds of frequency-domain models are the most efficient for data analysis and were
used in the EOS inferences of GW170817 (Abbott et al. 2018a) as the analysis
in Abbott et al. (2018b) indicated that statistical errors dominate over modeling
uncertainties.

Time-domain models such as the EOB models are less computationally efficient
than frequency-domain models but have other advantages, e.g. they describe both
the binary dynamics and GWs and are based on additional theoretical consid-
erations about the relativistic two-body problem. To include tidal effects in the
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EOB approach at a fundamental level requires both the tidal corrections to the
conservative dynamics and to the gravitational radiation. At present, tidal effects
have only been fully included in the EOB model for nonspinning binaries. Spin
effects for point masses as well as the spin-induced quadrupole effects are currently
incorporated in the EOB models, however, including all spin-tidal interactions to the
relevant order is the subject of ongoing work. Below, we will briefly summarise the
different EOB tidal models available at present and refer the reader to the overviews
of models in Dietrich and Hinderer (2017), Nagar et al. (2018) more specific details.
For adiabatic tidal effects, tidal contributions to the conservative EOB dynamics
were computed from a PN expansion of tidal effects in Damour and Nagar (2010),
Vines et al. (2011a), Bini et al. (2012). These effects were also calculated within
the gravitational self-force approximation in Bini and Damour (2014). The PN
approximation assumes small corrections to Newtonian dynamics but is valid for
any mass ratio, whereas the gravitational self-force formalism assumes linear-in-
mass-ratio corrections to the strong-field test-particle limit. To a certain extent,
the two approximations therefore provide different kinds of information. Tidal
corrections to the GW amplitudes that are used in the EOB model to compute the
emitted GWs and the radiation reaction forces on the orbital dynamics were given
in Damour et al. (2012). These models, however, tend to underestimate finite-size
effects when compared against numerical relativity simulations, see e.g. Bernuzzi
et al. (2015a), Hinderer et al. (2016), Dietrich and Hinderer (2017) for recent studies.
There are three main reasons to expect an enhancement of tidal effects relative to
the information included in the models described above: relativistic corrections that
lead to a stronger tidal field, an enhanced response of the neutron-star matter to
tidal perturbations, and the fact that the tidal models are used to describe the binary
including the nonlinear regimes at merger or tidal disruption. These considerations
motivated two classes of improved EOB models. The first, discussed in Bernuzzi
et al. (2015a), Nagar et al. (2018) is based on extrapolating the results of Bini
and Damour (2014) to second-order in the mass ratio in a particular gauge. The
second, discussed (Hinderer et al. 2016; Steinhoff et al. 2016) includes dynamical
tidal effects due to the f -mode oscillations in the EOB model that can lead to a
substantial tidal enhancement even if the mode resonance is not fully excited during
the inspiral. Note that while the underlying EOB model for black holes are calibrated
to numerical relativity simulations, the tidal part of the model of Hinderer et al.
(2016), Steinhoff et al. (2016) is currently purely based on analytical results, without
any calibrations.

10.3.5 Other Finite-Size Effects

The finite size of neutron stars in a binary system has a number of additional
impacts on the dynamics and GWs, besides the tidal effects discussed above.
For rotating neutron stars, the spin-induced quadrupole moment (and the higher
moments) leads to a contribution to the GW signal that is quadratic in the neutron-
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star’s spin (Poisson 1998; Laarakkers and Poisson 1999; Mora and Will 2004; Berti
et al. 2008). As mentioned above, these effects from the rotational deformations are
already included in the template models described in the previous subsection, both
in the PN models (see Krishnendu et al. (2017) for the latest update) as well as in
the EOB and Phenom models. The GW imprints from gravitomagnetic tidal effects
(Banihashemi and Vines 2018) and spin-tidal interactions (Landry 2018; Jimenez-
Forteza et al. 2018) have recently also been examined within PN theory.

Tidal interactions can also lead to the resonant excitation of various oscillation
modes during the inspiral (Ho and Lai 1999; Flanagan and Racine 2007; Shibata
1994; Yu and Weinberg 2017; Lai 1994; Kokkotas and Schaefer 1995; Tsang 2013;
Tsang et al. 2012), to nonlinear mode coupling effects (Xu and Lai 2017; Essick
et al. 2016; Landry and Poisson 2015c), and to the full f -mode excitations for
eccentric orbits (Gold et al. 2012; Chirenti et al. 2017). In neutron-star–black-hole
binaries, depending on the parameters, the neutron star may get tidally disrupted,
which leads to a sudden shutoff of the GW signal and contains additional equation-
of-state information (Vallisneri 2000; Shibata and Taniguchi 2011; Pannarale et al.
2011; Ferrari et al. 2010; Maselli et al. 2013b; Foucart et al. 2014; Kawaguchi et al.
2017; Lackey et al. 2014). For a review article on GWs from neutron-star–black-hole
binaries containing a comprehensive list of references on the topic see Shibata and
Taniguchi (2011), and for the characteristics of possible associated electromagnetic
counterparts see Fernández et al. (2017), Schnittman et al. (2018), Paschalidis et al.
(2015a). An additional distinction between neutron stars and black holes is that the
neutron star has a surface while a black hole possesses an event horizon that absorbs
all incoming GWs; this effect is also imprinted in the GWs (Maselli et al. 2018).

As discussed above, there are several issues in modelling neutron-star binary
inspirals that remain to be fully addressed and are an active area of research. Most
of these concern currently unmodeled physics, which is also of great interest for
enhancing the potential to extract more details about neutron-star interiors from
GW observations. Examples of remaining work for the inspiral are to develop full
waveform models that incorporate matter effects in spinning neutron-star binaries,
to assess the importance of dynamical tides for various oscillation modes for
a more realistic description of the neutron stars (e.g., including the effects of
superfluidity (Gualtieri et al. 2014) and the effects of spins), and to analyze the
effects of nonlinear couplings in a relativistic setting.

Another issue that could be improved concerns the fact that at present the models
constructed for the inspiral of isolated, perturbed neutron stars are used up to merger,
defined as the peak in the GW amplitude. The peak approximately coincides with the
collision of the high-density neutron star cores, shortly after the neutron outer parts
have already come into contact. The theoretical predictions of the very late stage in
the evolution, could thus be improved by accounting for the main physical effects
of the cores moving through the material of their former outer parts. Similarly, for
neutron star – black hole binaries, developing an improved description that accounts
for nonlinearities of the tidal disruption process remains an open issues.

Other ongoing efforts are focusing on developing a complete model that com-
bines the information from the inspiral, merger and postmerger epochs, and likewise
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for the inspiral and possible tidal disruption in mixed binaries for more generic
systems than considered to date. These studies must rely on interfacing the theo-
retical insights with numerical relativity and data analysis to test and improve the
models and select the order of priorities for addressing the issues mentioned above.
An important application of such models will not only be for the current network
of GW detectors but also to inform the design and science case for future, third-
generation detectors. More work is also required on optimising methods to combine
information from the GWs with those from the electromagnetic counterparts (Baiotti
and Rezzolla 2017; Paschalidis 2017), together with nuclear physics knowledge and
other astrophysical measurements of neutron-star properties to maximise the overall
scientific payoffs. Lastly, other areas of active research are to consider finite-size
effects in alternative theories of gravity, for exotic objects, and for possible bound
states of fundamental fields around black holes.

10.4 Post-merger Dynamics

Research on the post-merger phase has been undergoing intense development over
the last few years because of its importance for linking numerical simulations and
astrophysical observations. The (early) post-merger is also the phase in which most
of the energy in GWs is emitted, as pointed out in Bernuzzi et al. (2016), even
though the GWs emitted in this stage are not those that give the largest signal-
to-noise ratio, because their frequency range is not in the best sensitivity zone of
current interferometric detectors. The numerical description of this stage is far more
challenging than the inspiral one because of the highly nonlinear dynamics and of
the development of strong, large-scale shocks that inevitably reduce the convergence
order, thus requiring far higher resolutions than the ones normally employed. As
a result, the accuracy of some quantities computed after the merger is sometimes
only marginal. The most notable example of these quantities is the lifetime of the
remnant (be it an HMNS or an SMNS) before its collapse to black hole; since this
object is only in metastable equilibrium, even small differences in resolution or even
grid setup are sufficient to change its dynamical behaviour, accelerating or slowing
down its collapse to a black hole. Fortunately, other quantities, such as the spectral
properties of the GW post-merger emission appear far more robust and insensitive
to the numerical details; we will discuss them later in this section.

Since the first general-relativistic simulations of BNS mergers, several works
have studied the nature (neutron star or black hole) of the objects resulting from
the mergers (Shibata and Uryū 2000, 2002; Shibata et al. 2005; Shibata and
Taniguchi 2006; Yamamoto et al. 2008; Baiotti et al. 2008; Anderson et al. 2008;
Giacomazzo et al. 2011). It is of course important to establish whether a black
hole forms promptly after the merger or instead an HMNS forms and lives for
long times (more than 0.1 s), because the post-merger GW signal in the two cases
is clearly different. Anderson et al. (2008) and Giacomazzo et al. (2011) started
investigating the dependence of the lifetime of the HMNS on the magnitude of the
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initial magnetic field in the case of magnetised binaries. However, as mentioned
above, such investigations are extremely delicate since it is not straightforward
to completely remove the influence of numerical artefacts on the lifetime of the
remnant even in the absence of magnetic fields, at least with present resolutions.

In an alternative approach, Kaplan et al. (2014) have investigated the role of
thermal pressure support in hypermassive merger remnants by computing sequences
of axisymmetric uniformly and differentially rotating equilibrium solutions to the
general-relativistic stellar structure equations and found that this too is a subtle
issue: the role of thermal effects on the stability and lifetime of a given configuration
depends sensitively and in a complicated way on its details, like central or mean rest-
mass density, temperature distribution, degree of differential rotation and rotation
rate (see discussion in Hanauske et al. 2016).

Clearly, the issue of the precise lifetime of the binary-merger product before
it reaches its asymptotic state, especially when its equilibrium is mediated by the
generation of magnetic fields or radiative losses is far from being solved and will
require computational resources and/or methods not yet available.

Recently, Paschalidis, East and collaborators (Paschalidis et al. 2015b; East et al.
2016) pointed out that a one-arm spiral instability (Centrella et al. 2001; Watts et al.
2005; Baiotti et al. 2007; Corvino et al. 2010) can develop in HMNSs formed by
dynamical-capture and that the m = 1 mode associated with this instability may
become the dominant oscillation mode if the HMNS persists for long enough3; this
instability has been subsequently studied also in quasi-circular BNSs (Radice et al.
2016; Lehner et al. 2016). The instability, is reminiscent of the shear instability
that has been studied in detail for isolated stars (Baiotti et al. 2007; Corvino et al.
2010; Camarda et al. 2009; Franci et al. 2013; Muhlberger et al. 2014) and seems
to be correlated with the generation of vortices near the surface of the HMNS that
form due to shearing at the stellar surface. These vortices then spiral in toward the
center of the star, creating an underdense region near the center. The growth of the
m = 1 mode and so of the instability, could be related to the fact that the maximum
density does not reside at the center of mass of the star (Saijo et al. 2003), or to
the existence of a corotation band (Balbinski 1985; Luyten 1990; Watts et al. 2005).
The instability has an imprint on the GW signal, but the prospects of detection are
not encouraging, because of the small emitted power (Radice et al. 2016).

10.4.1 Gravitational-Wave Spectroscopy of the Post-merger
Signal

Many researchers have taken up the challenge of studying the properties of the
binary-merger product, because this may give indications on the ultra-high density
EOS, the origin of SGRBs, and even the correct theory of gravity. In what follows

3The m = 1 mode had been studied previously together with the other modes, but it had never
been found to become dominating (see, e.g., Dietrich et al. 2015a).
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we will focus in particular on the determination of the EOS. While detectable
differences between simulations that employed different EOSs already appear
during the inspiral (see Sect. 10.3), the post-merger phase depends more markedly
on the EOS (Bauswein et al. 2014; Takami et al. 2014, 2015; Bernuzzi et al. 2014a,
2015a,b; Rezzolla and Takami 2016; Maione et al. 2016). A note of caution is
necessary here to say that post-merger waveforms are at rather high frequencies
and thus probably only marginally measurable by detectors like Advanced LIGO.
Third-generation detectors, such has ET (Punturo et al. 2010a), may provide the
first realistic opportunity to use GWs to decipher the stellar structure and EOS
(Andersson et al. 2011).

The first attempts to single out the influence of the EOS on the post-merger
dynamics were done in Shibata et al. (2005), Shibata and Taniguchi (2006),
Yamamoto et al. (2008), Baiotti et al. (2008). These works focused mostly on the
dynamics of equal-mass binaries, as these are thought to be the most common
(Osłowski et al. 2011) and are easier and faster to compute, since symmetries of
the configuration can be exploited to save computational resources. The study of
the effect of realistic EOSs in general-relativistic simulations has been subsequently
brought forward by many groups. Kiuchi et al. (2009) made use of the Akmal-
Pandharipande-Ravenhall (APR) EOS (Akmal et al. 1998).4 This nuclear-physics
EOS describes matter at zero temperature and so during the simulation it needs
to be combined with a “thermal” part that accounts for the energy increase due to
shock heating (this is mostly done through the addition of an ideal-fluid part to
the EOS; see Rezzolla and Zanotti (2013) for a discussion). The resulting “hybrid
EOS” appears to be appropriate for studying the inspiral and merger, but may not be
satisfactory for studying the remnant formation and the evolution of the accretion
disc around the formed black hole, because for such cases, effects associated with
the thermal energy (finite temperature), neutrino cooling, and magnetic fields are
likely to play an important role. In another work of the same group (Hotokezaka
et al. 2011), the dependence of the dynamical behavior of BNS mergers on the EOS
of the nuclear-density matter with piecewise-polytropic EOSs (Read et al. 2009)
was studied.

One family of EOSs that has received special attention in the past years is that
describing strange matter, namely matter containing hyperons, which are nucleons
containing strange quarks. The strange-matter hypothesis (Witten 1984) considers
the possibility that the absolute ground state of matter might not be formed by iron
nuclei but by strange quark matter: a mixture of up, down, and strange quarks. This
hypothesis introduced the possibility that compact stars could be stars made also of
strange-quark matter, or strange stars (Haensel et al. 1986; Alcock et al. 1986). One
of the astrophysical consequences of this is the possibility that collision events of

4The APR EOS, and many of the proposed EOSs, were later found to violate the light-speed
constraint at very high densities and phenomenological constraints (Taranto et al. 2013), but no
strong conclusions can be made to rule out such EOSs on this basis because the constraints
themselves are affected by errors.
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two strange stars lead to the ejection of strangelets, namely small lumps of strange
quark matter.

Although the occurrence of hyperons at very large nuclear densities is rather
natural, hyperonic EOSs are generally very soft and currently disfavoured by
the observation of a 2M� star (Antoniadis et al. 2013; Demorest et al. 2010),
which they can hardly reproduce, except by fine tuning of the parameters (see,
e.g., Alford et al. 2005; Rikovska-Stone et al. 2007; Weissenborn et al. 2011). This
basic inconsistency between the expectations of many nuclear physicists and the
observational evidence of very massive neutron stars is normally referred to as the
“hyperon puzzle”; those supporting the use of hyperonic EOSs also state that the
existence of exotic phases in strange stars remains unconstrained and could lead
to higher masses (Bhowmick et al. 2014). Additional work is needed to settle this
“hyperon puzzle” and we will present results on strange-star simulations setting
these doubts aside.

The first investigations of binary strange stars were those of Bauswein et al.
(2009, 2010), who employed the MIT bag model (Farhi and Jaffe 1984). Within
this model, quarks are considered as a free or weakly interacting Fermi gas
and the nonperturbative QCD interaction is simulated by a finite pressure of the
vacuum, the bag constant B. Three-dimensional general-relativistic simulations
with conformally flat gravity of the coalescence of strange stars were performed
and the possibility to discriminate on the strange matter hypothesis by means of
GW measurements was explored. The dynamics of mergers of strange stars, which
are usually more compact, is different from those of neutron-star mergers, most
notably in the tidal disruption during the merger. Furthermore, instead of forming
dilute halo-structures around the binary-merger product, as in the case of neutron-
star mergers, the coalescence of strange stars results in a differentially rotating
hypermassive object with a sharp surface layer surrounded by a geometrically thin,
clumpy high-density strange-quark-matter disc. It was found that in some cases
(some types of EOS and stellar properties) the analysis of the GW signals emitted by
strange-star mergers showed that it may be possible to discern whether strange-star
or neutron-star mergers produced the emission. In particular, it was found that the
maximal frequency during the inspiral and the frequency of the oscillations of the
post-merger remnant are in general higher for strange-star mergers than for neutron-
star mergers. In other cases, however, there remains a degeneracy among different
models, and a conclusion about the strange-matter hypothesis could be reached only
if other types of observations (e.g., of cosmic rays) were available.

Strange-matter EOSs were later studied with a fully general-relativistic code in a
series of articles by Sekiguchi, Kiuchi and collaborators (Sekiguchi et al. 2011a,
2012; Kiuchi et al. 2012b,c), who showed results of simulations performed by
incorporating both nucleonic and hyperonic finite-temperature EOSs (and neutrino
cooling as well). It was found that also for the hyperonic EOS, an HMNS is first
formed after the merger and subsequently collapses to a black hole. The radius
of such an HMNS decreases in time because of the increase of the mass fraction
of hyperons and the consequent decrease in pressure support. Such a shrinking is
noticeably larger than the one simply due to angular-momentum loss through GW
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emission that is present also in nucleonic EOSs. These differences in the dynamics
are clearly visible in the GW signal, whose characteristic peak frequency has an
increase of 20–30% during the HMNS evolution. By contrast, for nucleonic EOSs,
the peak GW frequency in the HMNS phase is approximately constant on the
timescales considered. It was also stressed that these results raise a warning about
using the peak frequency of the GW spectrum to extract information of the neutron-
star matter (see below), because it may evolve and so make the relation of the peak
frequency with the HMNS structure ambiguous. Finally, it was found that the torus
mass for the hyperonic EOS is smaller than that for nucleonic EOSs, thus making
hyperonic EOSs less favourable for the description of SGRBs.

More recently, Radice et al. (2017) performed numerical simulations of BNS
mergers with one EOS, BHB1φ (Banik et al. 2014), that includes 1-hyperons but
that satisfies all presently known EOS constraints, including the astrophysical ones.
They found that the rapid contraction of the merged object due to the appearance of
hyperons does affect amplitude modulation and phase evolution of the gravitational
waveform, but the peak frequencies in the PSD are very similar to those produced
in case of a similar EOSs, DD2 (Hempel and Schaffner-Bielich 2010), that however
has no phase transitions. It was also found that Advanced LIGO could distinguish
the two EOSs considered in that work with the detection a single merger at a distance
of up to about 20 Mpc (Radice et al. 2017).

10.4.2 Spectral Properties of the Signal

In addition to simulating BNS mergers with various EOSs, it is important to
find ways to connect future GW observation with the EOS of the neutron stars.
Recently there have been several suggestions on how to achieve this, based either
on the signature represented by the tidal corrections to the orbital phase or on the
power spectral density (PSD) of the post-merger gravitational waveforms or on
the frequency evolution of the same. The first approach, described in Sect. 10.3, is
reasonably well understood analytically (Flanagan and Hinderer 2008; Baiotti et al.
2010; Bernuzzi et al. 2012, 2015b; Read et al. 2013) and can be tracked accurately
with advanced high-order numerical codes (Radice et al. 2014a,b). Here we describe
works on the post-merger approach in some detail.

Hotokezaka et al. (2013) used their adaptive mesh-refinement (AMR) code5

SACRA (Yamamoto et al. 2008) to perform a large number of simulations with a
variety of mass ranges and EOSs (as done before, approximate finite-temperature
effects were added to the cold EOSs through an additional ideal-fluid term), in order
to find universal features of the frequency evolution of GWs emitted by the HMNS
formed after the merger. In their analysis they found it convenient to decompose the
merger and post-merger GW emission in four different parts: (1) a peak in frequency

5In previous works by this group, described above, a different code with a uniform grid had been
used.
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Fig. 10.4 Top sub-panel: evolution of h+ for binaries with the APR4 and GNH3 EOSs (dark-red
and blue lines, respectively) for optimally oriented sources at a distance of 50 Mpc. Bottom sub-
panel: spectral density 2h̃(f )f 1/2 windowed after the merger for the two EOSs and sensitivity
curves of Advanced LIGO (green line) and ET (light-blue line); the dotted lines show the power in
the inspiral, while the circles mark the contact frequency [Reprinted with permission from Takami
et al. (2014). © (2014) by the American Physical Society]

and amplitude soon after the merger starts; (2) a decrease in amplitude during the
merger and a new increase when the HMNS forms; (3) a damped oscillation of
the frequency during the HMNS phase lasting for several oscillation periods and
eventually settling to an approximately constant value (although a long-term secular
change associated with the change of the state of the HMNSs is always present);
(4) a final decrease in the amplitude during the HMNS phase, either monotonical or
with modulations. Based on this, they find an optimal 13-parameters fitting function,
using which it may be possible to constrain the neutron star radius with errors of
about 1 km (Hotokezaka et al. 2013).

In contrast with this multi-stage, multi-parameter description of Hotokezaka et al.
(2013), other groups have concentrated on the analysis of the full PSD of the post-
merger signal, isolating those spectral features (i.e., peaks) that could be used to
constrain the properties of the nuclear-physics EOSs. As a reference, we show in
Fig. 10.4 the PSDs of some representative GWs when compared with the sensitivity
curves of current and future GW detectors (Takami et al. 2014). More specifically,
two examples are presented in Fig. 10.4, which refers to two equal-mass binaries
with APR4 and GNH3 EOSs, and with individual gravitational masses at infinite
separation of M̄/M� = 1.325, where M̄ is the average of the initial gravitational
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mass of the two stars. The top sub-panel shows the evolution of the # = m = 2
plus polarization of the strain (h+ ∼ h22+ ), aligned at the merger for optimally
oriented sources at a distance of 50 Mpc (dark-red and blue lines for the APR4 and
GNH3 EOSs, respectively). The bottom panel, on the other hand, shows the spectral
densities 2h̃(f )f 1/2 windowed after the merger for the two EOSs, comparing them
with the sensitivity curves of Advanced LIGO (2009) (green line) and of the Einstein
Telescope (Punturo et al. 2010b; Sathyaprakash and Schutz 2009) (ET; light-blue
line). The dotted lines refer to the whole time series and hence, where visible,
indicate the power during the last phase of the inspiral, while the circles mark the
“contact frequency” fcont = C3/2/(2πM̄) (Damour et al. 2012), where C := M̄/R̄ is
the average compactness, R̄ := (R1+R2)/2, andR1,2 are the radii of the nonrotating
stars associated with each binary.

Note that besides the peak at low frequencies corresponding to the inspiral
(cf., dashed lines), there is one prominent peak and several others of lower
amplitudes. These are related to the oscillations of the HMNS and would be absent
or much smaller if a black hole forms promptly, in which case the GW signal would
terminate abruptly with a cutoff corresponding to the fundamental quasi-normal-
mode frequency of the black hole (Kokkotas and Schmidt 1999). The behaviour
summarised in Fig. 10.4 is indeed quite robust and has been investigated by a
number of authors over the last decade (Oechslin and Janka 2007; Stergioulas et al.
2011; Bauswein and Janka 2012; Bauswein et al. 2012, 2014, 2016; Hotokezaka
et al. 2013; Takami et al. 2014, 2015; Clark et al. 2014; Kastaun and Galeazzi
2015; Bernuzzi et al. 2015b; Bauswein and Stergioulas 2015; Dietrich et al. 2015b;
Foucart et al. 2016; De Pietri et al. 2016; Rezzolla and Takami 2016; Maione et al.
2016; Bose et al. 2018).

Figure 10.5 provides a summarising view of some of the waveforms (i.e., of h+
for sources at a distance of 50 Mpc) computed in this paper and that are combined
with those of Takami et al. (2015) to offer a more comprehensive impression of
the GW signal across different masses and EOSs. The figure is composed of 35
panels referring to the 35 equal-mass binaries with nuclear-physics EOSs that were
simulated and that have a postmerger signal of at least 20 ms. Different rows refer
to models with the same mass, while different columns select the five cold EOSs
considered and colour-coded for convenience. It is then rather easy to see how small
differences across the various EOSs during the inspiral become marked differences
after the merger. In particular, it is straightforward to observe how the GW signal
increases considerably in frequency after the merger and how low-mass binaries
with stiff EOSs (e.g., top-left panel for the GNH3 EOS) show a qualitatively
different behaviour from high-mass binaries with soft EOSs (e.g., bottom-right
panel for the APR4 EOS). Also quite apparent is that, independently of the mass
considered, the post-merger amplitude depends sensitively on the stiffness of the
EOS, with stiff EOSs (e.g., GNH3) yielding systematically larger amplitudes than
soft EOSs (e.g., APR4).

The first detailed description of a method for extracting information about the
EOS of nuclear matter by carefully investigating the spectral properties of the post-
merger signal was provided by Bauswein and Janka (2012), Bauswein et al. (2012).
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After performing a large number of simulations using their conformally-flat SPH
code, they pointed out that the largest peak in the PSD (whose frequency is dubbed
there fpeak) correlates with the properties of the EOS, e.g., with the radius of
the maximum-mass nonrotating star for the given EOS. The correlation found was
rather tight, but this was partly due to the fact that their sample was restricted to
binaries having all the same total mass (i.e., 2.7M� in the specific case). It was
shown that such a correlation can be used to gain information on the high-density
EOS through GW measurements, if the masses of the neutron stars forming the
binaries are known. Additionally, it was recognized that fpeak corresponds to a
fundamental fluid mode of the HMNS with # = 2 = m (Bauswein and Janka
2012; Stergioulas et al. 2011) and that the value of this frequency could also be
used to set constraints on the maximum mass of the system and hence on the EOS
(Bauswein et al. 2013, 2014). Subsequent analyses were performed by a number of
groups with general-relativistic codes (Hotokezaka et al. 2013; Takami et al. 2014,
2015; Dietrich et al. 2015b; Foucart et al. 2016; De Pietri et al. 2016; Rezzolla and
Takami 2016; Maione et al. 2016; Radice et al. 2017), which confirmed that the
conformally flat approximation employed by Bauswein and collaborators provided
a rather accurate estimate of the largest peak frequencies in the PSDs.

Takami et al. (2014, 2015) presented a more advanced method to use detected
GWs for determining the EOS of matter in neutron stars. They used the results of a
large number of accurate numerical-relativity simulations of binaries with different
EOSs and different masses and identified two distinct and robust main spectral
features in the post-merger phase. The first one is the largest peak in the PSD (whose
frequency was called there f2 and essentially coincides with the fpeak of Bauswein
and Janka 2012; Bauswein et al. 2012). The functions describing the correlations
of f2 with the stellar properties (e.g., with the quantity (M̄/R3

max)
1/2, where Rmax

is the radius of the maximum-mass nonrotating star), which were first proposed by
Bauswein and Janka (2012), are not universal, in the sense that different (linear)
fits are necessary for describing the f2-correlations for binaries with different total
masses. This conclusion can be evinced by looking at Figs. 22–24 of Bauswein et al.
(2012), but the different linear correlations were first explicitly computed by Takami
et al. (2014, 2015) (see also Hotokezaka et al. 2013).

The second feature identified in all PSDs analysed by Takami et al. (2014, 2015)
is the second-largest peak, which appears at lower frequencies and was called f1
there. Clear indications were given about this low-frequency peak being related to
the merger process (i.e., the first≈3 ms after the merger). This was done by showing
that the power in the peak is greatly diminished if the first few ms after the merger
were removed from the waveform. Furthermore, a simple mechanical toy model
was devised that can explain rather intuitively the main spectral features of the post-
merger signal and therefore shed light on the physical interpretation of the origin of
the various peaks. Despite its crudeness, the toy model was even able to reproduce
the complex waveforms emitted right after the merger, hence possibly opening the
way to an analytical modelling of a part of the signal (Takami et al. 2015).

More importantly, it was shown that the potential measurement of the f1
frequency could reveal the EOS of the merging objects, since a correlation was
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found between the f1-frequency and the average compactness of the two stars in the
binary. Interestingly, this relation appears to be universal, that is, essentially valid
for all EOSs and masses, and could therefore provide a powerful tool to set tight
constraints on the EOS (Takami et al. 2014, 2015). Indeed, an analytic expression
was suggested in Takami et al. (2015) to express the f1 frequency via a third-order
polynomial of the (average) stellar compactness, which reproduces reasonably well
the numerical results. In addition to the correlations described above, Takami et al.
(2014, 2015) also discussed additional correlations (24 in all), some of which had
been already presented in the literature, e.g., in Read et al. (2013), Bernuzzi et al.
(2014a), and some of which are presented there for the first time. Examples of these
correlations are reported in Fig. 10.6, where different colours refer to different EOSs
(see Fig. 1 of Takami et al. (2015) for a legend). The correlations refer to the fmax, f1
and f2 frequencies and the physical quantities of the binary system, e.g., the average
compactness M̄/R̄, the average density (M̄/R̄3)1/2, the pseudo-average rest-mass
density (M̄/R3

max)
1/2, or the dimensionless tidal deformability tidal deformability

(λ/M̄5)1/5 (cf., also Fig. 15 of Takami et al. 2015). In confirmation of the accuracy
of the computed frequencies, very similar values for the f1 frequencies were also
found by Dietrich et al. (2015b) in a distinct work aimed at determining the impact
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that conservative mesh-refinement techniques have on the accuracy of the post-
merger dynamics.

Even though the toy model proposed by Takami et al. (2015) provides a simple
and convincing explanation of the power associated to the f1 frequency peak,
alternative interpretations of the low-frequency part of the PSD have also been
suggested. More specifically, Bauswein and Stergioulas (2015) claimed that the
lower-frequency peak (i.e., the f1 peak in Takami et al. 2014, 2015; Kastaun and
Galeazzi 2015) is actually made of two separate peaks originating from different
processes. One of these peaks is said to be produced by a nonlinear combination
between the dominant quadrupolar oscillation (fpeak or f2 in different notations)
and the quasi-radial oscillation of the remnant and is named f2-0 (Stergioulas et al.
2011), while the other is said to be caused by a strong deformation initiated at the
time of the merger, the pattern of which then rotates (in the inertial frame) more
slowly than the inner cores of the remnant and lasts for a few rotational periods,
while diminishing in amplitude. The GW emission associated with this motion then
powers a peak that was named fspiral in Bauswein and Stergioulas (2015). The
connection between the fspiral peak and the deformation was supported by showing
that only PSDs computed from time intervals of the gravitational waveform that
contain the deformation have the fspiral peak. It was also claimed that the fspiral peak
can be roughly reproduced in a toy model, where two bulges orbit as point particles
around the central double-core structure for a duration of few milliseconds, but no
details were given in Bauswein and Stergioulas (2015).

In their analysis, Bauswein and Stergioulas (2015) also proposed an explanation
for the low-frequency modulations seen in quantities like the lapse function at the
stellar center, the maximum rest-mass density, and the separation between the two
cores of the remnant. Such quantities are modulated according to the orientation
of the antipodal bulges of the deformation with respect to the double central cores:
the compactness is smaller, the central lapse function larger, and the GW amplitude
maximal when the bulges and the cores are aligned, and viceversa.

Making use of a large set of simulations, Bauswein and Stergioulas (2015) were
able to obtain empirical relations for both types of low-frequency peaks in terms
of the compactness of nonrotating individual neutron stars. Different relations,
however, were found for different sequences of constant total mass of the binary, in
contrast with what found in Takami et al. (2014, 2015), where a different definition
for the low-frequency peak was used. As discussed by Bauswein and Stergioulas
(2015), the different behaviour could be due to the fact that the results of Takami
et al. (2014, 2015) were based on a limited set of five EOSs of soft or moderate
stiffness (with corresponding maximum masses of nonrotating neutron stars only
up to 2.2M�), as well as on different chosen mass ranges for each EOS with a
spread of only 0.2M� in the total mass of the binary. In Bauswein and Stergioulas
(2015), on the other hand, ten EOSs (including stiff EOSs with maximum masses
reaching up to 2.8M�) and a larger mass range of 2.4–3.0M� were used. Overall,
the differences between the results of the two groups are significant only for very
low-mass neutron stars (i.e., M = 1.2M�), which Takami et al. (2014, 2015) had
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not included in their sample because of the low statistical incidence they are thought
to have (see also below).

One important consideration to bear in mind is that measuring the fspiral frequen-
cies through the motion of matter asymmetries via gauge-dependent quantities such
as the rest-mass density is essentially impossible in genuine numerical-relativity
calculations. This is because the spatial gauge conditions can easily distort the
coordinate appearance of mass distributions and even the trajectories of the two
stars during the inspiral (see Appendix A 2 of Baiotti et al. (2008) for some dramatic
examples). In an attempt to clarify the different interpretations suggested in Takami
et al. (2014, 2015), Bauswein and Stergioulas (2015) and to bring under a unified
framework the spectral properties of the post-merger GW signal, Rezzolla and
Takami (2016) have recently presented a comprehensive analysis of the GW signal
emitted during the inspiral, merger and post-merger of 56 neutron-star binaries
(Rezzolla and Takami 2016) (waveforms from this work are shown in Fig. 10.5).
This sample of binaries, arguably the largest studied to date with realistic EOSs,
spans across five different nuclear-physics EOSs and seven mass values, including
the very low-mass binaries (e.g., with individual neutron-star masses of 1.2M�)
that were suggested by Bauswein and Stergioulas (2015) to be lacking in the
previous analysis of Takami et al. (2015). After a systematic analysis of the complete
sample, it was possible to sharpen a number of arguments on the spectral properties
of the post-merger GW signal. Overall it was found that: (1) for binaries with
individual stellar masses differing no more than 20%, the frequency at the maximum
of the GW amplitude is related quasi-universally with the tidal deformability of
the two stars; (2) the spectral properties vary during the post-merger phase, with
a transient phase lasting a few milliseconds after the merger and followed by a
quasi-stationary phase; (3) when distinguishing the spectral peaks between these
two phases, a number of ambiguities in the identification of the peaks disappear,
leaving a simple and robust picture; (4) using properly identified frequencies, quasi-
universal relations are found between the spectral features and the properties of the
neutron stars; (5) for the most salient peaks analytic fitting functions can be obtained
in terms of the stellar tidal deformability or compactness. Overall, the analysis of
Rezzolla and Takami (2016) supports the idea that the EOS of nuclear matter can be
constrained tightly when a signal in GWs from BNSs is detected.

An interesting extension of the work of Takami et al. (2014, 2015) was suggested
by Bernuzzi et al. (2015b), who expressed the correlation between the peak
frequencies f2 with the tidal coupling constant κT2 instead of the tidal deformability
parameter 1, as done in Takami et al. (2014, 2015). As found in previous works by
Bernuzzi et al. (2014a, 2015a) (see Sect. 10.3), the dimensionless GW frequency
depends on the stellar EOS, binary mass, and mass ratio only through the tidal
coupling constants κT2 and thus this is a better choice of parameter, also because
it can be extended more straightforwardly to the case of unequal-mass binaries. The
relation f2(κ

T
2 ) was found in Bernuzzi et al. (2015b) to be very weakly dependent

on the binary total mass, mass ratio, EOS, and thermal effects (through the ideal-
fluid index �th). Relevant dependence on the stellar spins was instead found. This
is shown in Fig. 10.7, which reports the dimensionless frequency Mf2 as a function
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of the tidal coupling constant κT2 . Each panel shows the same data set; the colour
code in each panel indicates the different values of binary mass (top left), EOS (top
right), mass-ratio (bottom left), and �th (bottom right). The black solid line is the fit
obtained by Bernuzzi et al. (2015b), while the grey area marks the 95% confidence
range.

Although not explicitly stated, all of the considerations made so far about the
spectral properties of the post-merger signal refer to binaries that are initially
irrotational. It is therefore natural to ask what changes, both qualitatively and
quantitatively, when spinning binaries are considered. This was done in part by
Bernuzzi et al. (2014b) and by Kastaun et al. (2013) and Kastaun and Galeazzi
(2015). The first work considered in particular whether the main-peak frequency
f2 is influenced by the initial state of rotation and found that this is indeed the
case at least for very rapidly rotating neutron stars, suggesting that spin effects may
be more important than those found in Bauswein and Janka (2012). Kastaun and
Galeazzi (2015), on the other hand, analysed the spectral changes induced by the
initial spin on high-mass binaries and showed that the direct influence of the spin on
the frequency f2 is weak and comparable to the width of the corresponding peak.
They also studied in detail the Fourier decomposition of the rest-mass density of the
binary-merger product and its rotational profile, which is important for determining
its lifetime, especially in view of the amplification of the magnetic field. A problem
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that needed to be tackled in their analysis is that of potential gauge artefacts. We
recall, in fact, that rest-mass density distributions are gauge-dependent quantities
and even when the system approaches an axisymmetric state after the merger, the
spatial coordinates may not reflect this, because the gauge conditions employed
in the evolution introduce local and global deformations. In order to exclude
such systematic gauge effects, Kastaun and Galeazzi (2015) introduced a different
coordinate system, used just for post-processing. In this new coordinate system,
they found that, the Fourier decomposition is far more regular than in the coordinate
system normally used in the evolution. Furthermore, they showed that, contrary to
common assumptions, the law of differential rotation of the binary-merger product
consists of a slowly rotating core with an extended and massive envelope rotating
close to Keplerian velocity (see discussion in Hanauske et al. 2016). The latter result
has been confirmed recently also for the binary-merger product produced by the
merger of unequal-mass magnetised binaries (Endrizzi et al. 2016).

A rather different approach to analysing post-merger waveforms has been taken
by Chatziioannou et al. (2017). In order to obtain results that rely less on numerical-
relativity simulations, they use a morphology-independent Bayesian data analysis
algorithm, BAYESWAVE (Cornish and Littenberg 2015; Littenberg and Cornish
2015), to reconstruct as a sum of wavelets injected post-merger GW signals that are
assumed to have been measured (in the absence of observational data, data based on
simulations were used). It was found that BAYESWAVE is capable of reconstructing
the dominant features of the injected signal, in particular the dominant post-merger
frequency, with an overlap between injected and reconstructed signals of above 90%
for post-merger SNRs above 5. This allows f2 to be measured at the 90% credible
level with an error of about 36 (27) [45] Hz for a stiff (moderate) [soft] EOSs and
so to set bounds on the NS radius obtained by the post-merger signal of order
100 m for a signal emitted at 20 Mpc. This accuracy is similar to that predicted
by the other methods discussed above, which are completely based on numerical
simulations. Actually also Chatziioannou et al. (2017) had to use empirical formulas
from numerical simulations (Bauswein and Janka 2012; Bauswein et al. 2012, 2016)
to relate f2 to the radius and they indeed found that their error on the radius is
dominated by the systematic uncertainty (scatter) in such a formula, rather than the
statistical error of the reconstruction.

Before concluding this discussion on the post-merger GW signal we shall also
make some additional important remarks.

• First, GW measurements at the expected frequencies and amplitudes are very
difficult, namely limited to sources within ∼20 Mpc. This number can be easily
estimated with back-of-the-envelope calculations, but it was confirmed through
detailed analysis of the detectability of the dominant oscillation frequency in
Clark et al. (2014), Bose et al. (2018), Yang et al. (2018) via large-scale Monte
Carlo studies in which simulated post-merger GW signals are injected into
realistic detector data that matches the design goals of Advanced LIGO and
Advanced Virgo.
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• Second, the post-merger frequencies evolve in time, albeit only slightly. Hence,
the spectral properties of the GW signal can be asserted reliably only when the
signal-to-noise ratio is sufficiently strong so that even these changes in time can
be measured in the evolution of the PSDs (Kiuchi et al. 2012b; Hotokezaka et al.
2013; Takami et al. 2014; Shibata et al. 2014). In light of these considerations,
the prospects for high-frequency searches for the post-merger signal are limited
to rare nearby events. Yet, if such detections happen, the error in the estimate of
the neutron star radius will be of the order of a few hundred metres (Clark et al.
2014, 2016; Bose et al. 2018; Yang et al. 2018).

• Third, viscous dissipation and energy transport in the post-merger phase may
considerably affect gravitational waveforms. It has been recently pointed out
that shear viscosity and thermal conductivity are not likely to play a major
role in post-merger dynamics unless neutrino trapping occurs, which requires
temperatures T � 10 MeV, or flows that experience shear over short distances of
the order of 0.01 km (Alford et al. 2018). By using the most likely values of the
parameters describing shear viscosity other works had already estimated that the
post-merger GW amplitude is affected, but its frequency peaks are not (Radice
2017; Shibata and Kiuchi 2017). On the other hand, bulk viscous dissipation
could provide significant damping of the high-amplitude density oscillations
observed right after merger, if modified-Urca processes (and not direct-Urca
processes; see e.g. Lattimer et al. 1991) are those that establish flavor equilibrium
(Alford et al. 2018). Hence, viscous dissipative processes deserve more careful
investigation since they may well affect the spectral properties of the post-merger
gravitational-wave signal, especially the f1 and f3 peaks that are produced right
after the merger and that are dissipated rapidly (Takami et al. 2015). In addition, if
viscous dissipation is active after the merger, it will also heat the merger product,
possibly stabilising it on longer timescales via the extra thermal pressure (Baiotti
et al. 2008; Sekiguchi et al. 2011b; Paschalidis et al. 2012; Kaplan et al. 2014).
Finally, future gravitational-wave observations may also give indications about
the fraction of merger material in which direct or modified Urca processes are
dominant.

At the end of this long Section, we summarise the main finding on the spectral
properties of the post-merger signal as follows:

• The most powerful methods to connect observations of the post-merger GW with
the EOS of those neutron stars is based on analyses of the GW PSD.

• In general, there are three main peaks in the PSDs of the post-merger phase
of binary mergers that do not result in a prompt collapse to a black hole.
The frequencies of these peaks are named f1, f2, f3 in Takami et al. (2014,
2015), Rezzolla and Takami (2016), while other works use different symbols,
in particular the frequency of the highest peak,f2, is referred to as fpeak in
e.g., Bauswein and Janka (2012), Bauswein and Stergioulas (2015), Bauswein
et al. (2016). The frequencies were found to roughly follow the relation f2 �
(f1 + f3)/2.
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• The f2 frequencies correspond to the # = 2 = m fundamental mode of the
HMNS and hence are equal to twice the rotation frequency of the bar deformation
of the HMNS. Their values change slightly in time (by ∼5%). The f1 and f3
frequencies are produced only in the first few milliseconds after the merger. A
simple toy model was proposed in Takami et al. (2015) to explain their origin.
See also Bauswein and Stergioulas (2015) for another model.

• The frequencies f2 and f1 were found to correlate well with properties of the
stars in the BNS system. In particular, f2 correlates well with the quantity
(M̄/R3

max)
1/2 for a given total mass of the BNS (Bauswein and Janka 2012),

while f1 correlates well with the average compactness of the two stars in the
binary and such a relation seems valid for any total mass of the BNS, prompting
Takami et al. (2014, 2015) to call the relation universal.

• Such correlations between post-merger frequencies and stellar properties can be
used to estimate rather accurately the radius of the neutron stars and so to infer
information on their EOS. There are, however, caveats against a simplistic use
of post-merger frequencies, since they may vary in time, be affected by bulk
viscosity (Alford et al. 2018) and by the spins of the stars in the binary (if very
high) (Bernuzzi et al. 2014b), and since the post-merger GW signals have a small
SNR in current detectors and therefore the chances of a detection are very small.

10.4.3 Spectral Properties and the Mass-Redshift Degeneracy

Besides providing information on the EOS, the spectral properties of the
gravitational-wave post-merger signal can also be used in a completely different
manner, namely, to remove the degeneracy in the determination of redshift and mass
for cosmological investigations. Indeed, a well-known problem of the detection
of gravitational waves from compact-object binaries at cosmological distances
is the so-called “mass-redshift degeneracy”. More precisely, given a source of
(gravitational) mass M at a cosmological redshift z, a direct gravitational-wave
observation provides information only on the combined quantity M(1 + z), so
that it is not possible to have an independent measurement of M and of z. The
standard solution to this problem is to detect an electromagnetic counterpart to the
gravitational-wave signal, so as to measure z and hence the mass M . However, this
may be not easy in some cases.

In a recent investigation, Messenger et al. (2014) described how this degeneracy
can be broken when exploiting information on the spectral properties of the post-
merger gravitational-wave signal. More specifically, making use of numerically
generated BNS waveforms, it was shown that it is possible to construct frequency-
domain power-spectrum reference templates that capture the evolution of two of the
primary spectral features in the post-merger stage of the waveforms as a function of
the total gravitational mass.

This is summarised via a cartoon in Fig. 10.8, which shows how the information
on the redshifted mass as a function of the redshift (blue stripe) can be correlated
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Fig. 10.8 A cartoon illustrating how the mass-redshift degeneracy is broken through the use of
information from the inspiral and HMNS stages of a BNS merger event. Cross-correlating the
information on the redshifted mass as a function of the redshift (blue stripe) with the information
from the spectral properties of the HMNS phase (red stripe) will provide a localised range in mass
and redshift, breaking the degeneracy [Reprinted with permission from Messenger et al. (2014).
© (2014) by the American Physical Society]

with complementary information from the spectral properties of the HMNS phase.
The overlap will provide a localised range in mass and redshift, breaking the
degeneracy. A Bayesian inference method was then used to test the ability of the
Einstein Telescope (Punturo et al. 2010b) to measure the characteristic frequencies
in the post-merger stage of the signal, finding that redshift and gravitational mass
can be determined separately, with uncertainties in the redshift of sources at z =
0.01–0.04 of 10–20% and in the gravitational mass of <1% in all cases.

10.5 Conclusions

As anticipated in the Introduction, there is little doubt that this is a particularly
exciting and highly dynamical time for research on neutron stars, in general, and
on BNS mergers, in particular. In about 10 years, i.e., starting approximately
from 2008, a considerable effort by several groups across the world has obtained
numerous important results about the dynamics of binary systems of neutron stars,
employing a large variety of numerical (in most cases) and analytical (in a few cases)
techniques and exploring this process with different degrees of approximation and
realism.

Altogether, these works have revealed that the merger of a binary system of
neutron stars is a marvellous physical laboratory. Indeed, BNS mergers are expected
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to be behind several fascinating physical processes, which we recall here: (1)
they are significant sources of gravitational radiation; (2) they act as possible
progenitors for short-gamma-ray bursts (SGRBs); (3) they have the potential to
produce electromagnetic and neutrino emission that is visible from enormous
distances; (4) they are likely responsible for the production of a good portion of
the very heavy elements in the Universe. When viewed across this lens, it is quite
natural to consider BNS mergers as Einstein’s richest laboratory, binding in the same
environment highly nonlinear gravitational dynamics with complex microphysical
processes and astonishing astrophysical phenomena.

The huge progress accomplished over the last 10 years has helped trace a
broadbrush picture of BNS mergers that has several sound aspects, among which
the most robust in our opinion are the following ones6:

• Independently of the fine details of the EOS, of the mass ratio or of the
presence of magnetic fields, the merger of a binary system of neutron stars
eventually leads to a rapidly rotating black hole with dimensionless spin J/M2 �
0.7–0.8 surrounded by a hot accretion torus with mass in the range Mtorus ∼
0.001–0.1M�. Only very low-mass progenitors whose total mass is below the
maximum mass of a (nonrotating) neutron star would not produce a black hole.
It is unclear whether such progenitors are statistically important.

• The complete GW signal from inspiralling and merging BNSs can be computed
numerically with precision that is smaller but overall comparable with that
available for black holes.

• When considering the inspiral-only part of the GW signal, semi-analytical
approximations either in the post-Newtonian or EOB approximation, can repro-
duce the results of numerical-relativity calculations essentially up to the merger.

• The GW spectrum is marked by precise frequencies, either during the inspiral or
after the merger that exhibit a “quasi-universal” behaviour. In other words, while
the position of the peaks depends on the EOS, it can be easily factored out to
obtain EOS-independent relations between the frequencies of the peaks and the
properties of the progenitor stars.

• The result of the merger, i.e., the binary-merger product, is a highly massive
and differentially rotating neutron star. The lifetime of the binary-merger product
depends on a number of factors, including the mass of the progenitors, their mass
ratio and EOS, as well as the role played by magnetic fields and neutrino losses.
While sufficiently large initial masses can yield a prompt collapse at the merger,
for smaller masses the object resulting from the merger can be a neutron star for
at least some milliseconds or maybe forever.

Note that many of the aspects listed above are robust but have been addressed
mostly at a rather qualitative level, with precisions that range from “a-factor-of-
a-few” up to “order-of-magnitude” estimates. Furthermore, these results can be

6In this Section we will intentionally omit references to avoid cluttering the text; all the relevant
references can be found in the various Sections covering the topics discussed here.
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seen as the low-hanging fruits of a tree that still has a number of results to offer,
although these will require an equal, if not larger, investment of effort, microphysical
and numerical developments, and, of course, of computer time. In conclusion, if
GW170817 and the first direct detection of the GW signals from binary systems
of neutron stars has officially given birth to the era of multimessenger astronomy,
the huge advances that are expected to come in the next few years on the physics
and astrophysics of BNSs will help lift many of the veils that still cover Einstein’s
richest laboratory.
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Chapter 11
Electromagnetic Emission
and Nucleosynthesis from Neutron Star
Binary Mergers

Bruno Giacomazzo, Marius Eichler, and Almudena Arcones

Abstract In this chapter we provide a description of the current state of the art
in the field of electromagnetic emission and nucleosynthesis from neutron star
binaries. We will discuss binaries composed by two neutron stars or by a neutron star
and a black hole. While we took the effort to represent what we believe are some of
the most important results in this field, we strongly recommend the interested reader
to check also the references cited in the mentioned publications for a more in detail
view of each topic. As the reader will see from the following sections, this field
has gained considerable attention in the latest years with an increasing number of
publications on the topic. For each argument we will also discuss what we believe
are the current limitations that will need to be addressed in the future.

11.1 Introduction

In the last years there has been a significant increase of theoretical and computa-
tional studies of electromagnetic (EM) emission from mergers of two neutron stars
or of a neutron star and a black hole. While in the past one of the main motivations
was the study of the connection between these systems and short gamma-ray
bursts , nowadays there is a strong interest in understanding EM counterparts of
gravitational wave (GW) signals. This increased interest, combined with new and
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more accurate numerical codes, has led to a better understanding of all the possible
EM emission generated by these mergers, ranging from radio up to gamma rays.
These systems are also expected to emit neutrinos during and after merger, but due
to their large distances, a neutrino detection is not expected in the next years, even
with next-generation detectors such as Hyper-Kamiokande (Sekiguchi et al. 2011).

A major breakthrough in this field happened on August 17th 2017 with the first
detection of a GW signal from a binary neutron star (BNS) coalescence (Abbott
et al. 2017b). The GW detection was followed by a large number of electromagnetic
counterparts observed by ground- and space based telescopes (Abbott et al. 2017c;
Cowperthwaite et al. 2017; Drout et al. 2017; Smartt et al. 2017; Tanvir et al.
2017). Those confirm that (at least some type of) short gamma-ray bursts (SGRBs)
are indeed associated with binary neutron star mergers (Abbott et al. 2017a) and
provided evidence that such systems are also a source of the heaviest elements in
the universe produced via the rapid neutron capture process (r-process ) in matter
ejected by the system (Abbott et al. 2017c; Metzger 2017; Rosswog et al. 2017).
Unfortunately the current sensitivity of the Virgo and LIGO detectors was not
sufficient to detect a post-merger GW signal (Abbott et al. 2017d) and therefore
it is not clear if a black hole (BH) or a neutron star (NS) were the result of the
merger. Nevertheless, preliminary constraints for the equation of state (EOS ) of NS
matter were derived from tidal effects during the inspiral (Abbott et al. 2017b).

In this chapter we will provide an overview of our current understanding of EM
emission and nucleosynthesis from neutron star binary mergers. We will describe
the most important theoretical and computational results in this field and possible
future directions.

11.2 Review of Past Work

11.2.1 Overview of Electromagnetic Counterparts

In the merger of a binary neutron star (BNS) system or of a neutron star (NS) with
a black hole (BH) there are mainly two possible end results: the formation of a BH
surrounded by an accretion disk or of a long-lived NS (only in BNS mergers). Both
scenarios belong to the category of compact binary mergers (CBMs).

In particular, and as we will discuss later, the first scenario is the one that has been
strongly correlated with the central engine of short gamma-ray bursts (SGRBs). But
while SGRBs represent the strongest possible EM emission, there are other signals
that such mergers may emit, ranging from radio to X-rays. Some of these have also
the property of not being collimated, but more isotropic, and hence easier to detect.
This also depends on whether a BH or a long-lived NS is formed after the merger.
Observations of NSs with masses of up to∼ 2M� (Demorest et al. 2010; Antoniadis
et al. 2013) indicate that a significant fraction of BNS mergers may indeed lead
to the formation of a so-called supramassive NS (SMNS), i.e., of an NS with a
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mass below the maximum mass for a uniformly rotating NS (Piro et al. 2017). This,
combined with possible strong magnetic field amplifications, leads to the interesting
possibility of forming magnetars after some BNS mergers (Giacomazzo and Perna
2013).

In the scenario where the end result is a spinning BH surrounded by an accretion
disk (let us call it the “standard” scenario) and which is also the only possible
outcome for the merger of an NS with a BH, all the possible EM emission
investigated, at least theoretically, up to now are summarized in Fig. 11.1.

Figure 11.1 shows both the possible emission of a relativistic jet and the ejection
of matter. The jet can be responsible for a short gamma-ray burst and its afterglow
(from X-rays to radio).

The ejected matter is instead a promising site for the r-process (see Sect. 11.2.2)
that can produce very neutron-rich heavy elements. Their decay to stability powers
an EM transient, a signal that is known under the name “Kilonova” or “Macronova”
(see Sect. 11.2.12) and that was detected after GW170817 (Abbott et al. 2017c; Pian
et al. 2017) as well as in connection with other SGRBs (Tanvir et al. 2013; Yang

BH

θobs

θj
Tidal Tail & Disk Wind

Ejecta−ISM Shock

Merger Ejecta 

v ~ 0.1−0.3 c

Optical (hours−days)

Kilonova
Optical (t ~ 1 day)

Jet−ISM Shock (Afterglow)

GRB
(t ~ 0.1−1 s)

Radio (weeks−years)

Radio (years)

Fig. 11.1 Summary of potential EM emission from BNS and NS-BH mergers. Figure 1 in Metzger
and Berger (2012)
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et al. 2015; Jin et al. 2015, 2016). The EM signal is affected by the temperature
and composition of the ejected matter which is strongly dependent also on whether
the matter is ejected via tidal disruption, typical for NS-BH systems, or via shocks
at merger, which is the dominant ejection process for NS-NS mergers. Therefore
the detection of such a signal may be connected with the properties of the binary
system.

On a longer timescale, the ejected matter may also shock with the interstellar
medium giving rise to radio emission (Rosswog et al. 2014; Grossman et al. 2014).

We will now proceed on describing in more details some of the main processes
taking place in NS-NS and NS-BH mergers.

11.2.2 Nucleosynthesis in Compact Binary Mergers

The electromagnetic afterglow of a compact binary merger (CBM) is thought
to originate from the radioactive decay of neutron-rich heavy nuclei that are
produced in the r-process . It is therefore essential to address the current status of
nucleosynthesis research in these events, which is closely linked with the search
for the cosmic r-process site(s). While regular core-collapse supernovae (CCSNe)
were an early favourite and are still contenders to be a (maybe secondary) source
of low- to intermediate-mass r-process isotopes up to Ag or higher, CBMs of two
neutron stars (NS-NS) or a neutron star and a black hole (NS-BH) are now the most
promising astrophysical scenario to host the r-process. It was always undisputed that
the decompressing matter during a NS-NS or NS-BH merger would be extremely
neutron-rich, but before the emergence of computer simulations it was all but
impossible to estimate how much, if any, matter would become gravitationally
unbound in such a scenario. Lattimer and Schramm (1974) were the first to propose
that r-process material could be ejected from a NS-BH merger. Hydrodynamical
simulations later confirmed this finding (Davies et al. 1994; Rosswog et al. 1999),
followed by the first nucleosynthesis calculations based on trajectories obtained
from these simulations (Freiburghaus et al. 1999). Since then, research in this
field has mainly focused on two branches: (a) improving the physical treatment of
e.g., neutrino interactions, general relativity, etc. in hydrodynamic models, and (b)
understanding the nuclear properties (such as masses, excitation levels, decay rates)
of the neutron-rich isotopes involved in the r-process path. The former is important
for constraining the electron fraction and expansion timescales of the ejecta, while
the latter is required in order to reduce uncertainties in the final abundances of r-
process calculations and to compare the results with the r-process abundances in the
solar system or metal-poor stars.

Recent simulations have shown that in addition to the dynamic ejecta which
become unbound either by tidal forces or shocks during the merger phase, other
mass loss channels are possible. A neutrino-driven baryonic wind component
similar to the one in CCSNe (Perego et al. 2014; Just et al. 2015; Martin et al.
2015) has been found in the aftermath of CBM simulations, while material from
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the remnant torus that can form around the dense central object during the merger
phase can later become unbound due to viscous dissipation and the release of
recombination energy (Fernández and Metzger 2013; Just et al. 2015; Wu et al.
2016). The nucleosynthesis in these additional ejecta mechanisms has only been
studied in the past few years, and it will be addressed further below in this chapter.

11.2.3 The r-Process

In order to explain the origin of stable nuclei heavier than iron, including some
long-lived actinides (232Th, 235,236,238U, and 244Pu), Burbidge et al. (1957) and
Cameron (1957) proposed the rapid neutron capture process (r-process ). As the
name suggests, it operates on the basis of very fast neutron captures in comparison
to β-decays, and runs close to the neutron-drip line. Wherever the path crosses
isotopes with a closed neutron shell, both the neutron capture cross sections and
β-decay rates become significantly smaller, leading to an accumulation of material
in these nuclei, and the path moves closer to stability (see Fig. 11.2). After the supply
of free neutrons has ceased, the extremely neutron-rich isotopes undergo a series of
β-decays to stability. The mass numbers where the r-process path crossed the magic
neutron numbers can be identified in the final abundance pattern by characteristic
peaks, as is shown in Fig. 11.2.

The r-process can operate only if certain conditions are met. Neutron capture
rates are dependent on the neutron density nn, which means that material from the
surface or the vicinity of neutron stars provides a good environment. Furthermore,
the duration of the r-process and the maximum mass number of the final products
is characterized by the ratio between the neutron abundance and the summed up
abundances of all seed nuclei (usually iron group nuclei), Yn/Yseed . This ratio is a
measure of the amount of neutrons every seed nucleus can capture before neutrons
become depleted and the r-process stops. We can estimate the final average mass
number 〈A〉f using

〈A〉f = 〈A〉i +
(

Yn

Yseed

)
i

, (11.1)

where i denotes the initial values. As mentioned above, iron group nuclei are typical
seed nuclei, giving a typical value for 〈A〉i = 60. Under these assumptions, a
neutron-to-seed ratio of Yn/Yseed = 184 would be needed in order to reliably
produce the heaviest long-lived actinide 244Pu. Yn/Yseed is determined by several
factors. A high Yn can be achieved wherever the electron fraction Ye is low (since
charge neutrality is always assumed for astrophysical plasmas), making ejecta from
the vicinity of neutron stars a natural environment favourable for the r-process.
On the other hand, Yn/Yseed can reach large enough values if the abundances of
seed nuclei are kept low. High entropies can counter the build-up of seed nuclei,
with energetic photons dissociating them into nucleons and α-particles. Moreover,
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Fig. 11.2 Top panel: Solar r-process abundances as a function of nuclear mass number A. The
values are taken from Sneden et al. (2008). Bottom panel: Typical r-process path in the nuclear
chart and the corresponding β-decay half-lives according to Möller et al. (2003). Stable isotopes
are marked in black and the magic neutron numbers are indicated by vertical dotted lines. The
overlay of the two panels demonstrates how regions of large T1/2 at the magic neutron numbers
are responsible for the r-process abundance peaks after decay to stability

short dynamical timescales (i.e., fast expansions) also guarantee that the density
decreases quickly past the point where seed nuclei can be efficiently produced from
α-particles, leading to an α-rich freeze-out from charged-particle reactions. Qian
and Woosley (1996), Otsuki et al. (2000), and Thompson et al. (2001) have explored
the combinations of entropies, dynamical timescales, neutrino luminosities, and
neutron star masses that result in the production of r-process nuclei of the second
and the third peak, respectively. However, in hydrodynamic simulations of neutron
star mergers, Ye in the ejecta is so low that also the heaviest stable and long-lived
nuclei are produced, independent of the other factors discussed here (Freiburghaus
et al. 1999).

If the neutron-to-seed ratio is considerably larger than 180, very heavy and large
nuclei are produced. While the attractive nuclear force has a limited range and acts
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mainly between two neighbouring nucleons, the repulsive Coulomb force of the
protons has a larger range and its influence grows with increasing proton number,
until it is strong enough to disrupt the nucleus and fission occurs. The freshly
produced fragments continue capturing neutrons as long as the neutron density is
high enough, and can eventually undergo fission themselves in a phenomenon that
is called fission cycling (Beun et al. 2008). Assuming that each fission cycle divides
〈A〉 by two, we have to modify Eq. (11.1) as follows:

〈A〉f = 〈A〉i + (Yn/Yseed )i

2Ncyc
, (11.2)

where Ncyc is the number of fission cycles. The products of each fission process
depend on the nuclear properties of the parent nucleus as well as of the possible
fragments. Furthermore, the fission rate is extremely sensitive to the height of the
potential barrier that needs to be overcome (or tunnelled through). This makes the
prediction of fission rates and the distribution of fission fragments a very challenging
field of research (see e.g. Giuliani et al. 2017).

In a simplified approach, we neglect all reactions that are not (n, γ ), (γ, n)
reactions, or β−-decays, resulting in a set of differential equations involving all
of the above reactions that either produce or destroy isotope i:

Ẏi =
∑
j

Ni
j λjYj +

∑
j

Ni
j,nρNA〈σv〉j (n,γ )YjYn, (11.3)

where ρ is the density in units of g cm−3, NA is Avogadro’s constant, 〈σv〉j (n,γ ) is
the velocity integrated cross section of the reaction j (n, γ ), and the coefficients Ni

j

and Ni
j,n can take the values ±1, determining if nucleus i is produced or destroyed.

The first term on the right hand side contains β-decays and (γ, n) reactions, with
the decay constant λj which relates to the half-live via

λj = ln(2)

τ1/2
. (11.4)

The second term contains only two reactions in our example: the (n, γ ) reaction
producing nucleus i and the neutron capture on nucleus i itself. While the neutron
capture rates mainly depend on the neutron density nn = ρNAYn, the (γ, n) rates
are affected by the temperature. Depending on the hydrodynamic trajectory, the
(n, γ ) reactions can therefore be in equilibrium with their reverse reactions (γ, n)
for the majority of the duration of the r-process (this hot r-process scenario was
first discussed by Seeger et al. 1965). The (n, γ )-(γ, n) equilibrium is established
in every isotopic chain (isotopes with the same proton number Z) independently,
and the abundance maximum in each chain is determined by the neutron separation
energy Sn of the nuclei involved. The neutron separation energy of a nucleus (Z,A)
is defined as the energy that is required to strip one neutron off of this nucleus, or,
in other words, the negative Q-value of the (Z,A) (γ, n) reaction. As a trend, Sn
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decreases with increasing neutron number N = A − Z, until it becomes 0 at the
neutron-drip line, which means that no energy can be gained from further neutron
captures.

Consider a neutron capture on a nucleus (Z,A) with a known reaction rate. We
can find the rate of the reverse reaction (Z,A + 1) (γ, n) from a concept called
detailed balance. The equilibrium abundance ratio between the nuclei (Z,A) and
(Z,A+ 1) is equal to the ratio of the (γ, n) and (n, γ ) reaction rates:

Y (Z,A+ 1)

Y (Z,A)
= nn

G(Z,A+ 1)

2G(Z,A)

[
A+ 1

A

]3/2
[

2πh̄2

mukT

]3/2

exp(Sn(A+ 1)/kT ),

(11.5)

with the partition functions G that describe the thermally populated excited states,
and the nuclear-mass unit mu. This relation is valid for all nuclei in a given
isotopic chain. For known nn and T , the neutron separation energy at maximum
abundance can be found by approximating Y (A + 1)/Y (Z,A) ≈ 1, identifying
the most abundant isotopes in each isotopic chain. Note that this does not require
the knowledge of the individual neutron capture cross sections, but only the nuclear
masses which determine Sn. Adding the β-decay rates of these most abundant nuclei
we can construct a simplified model for the r-process, the so-called waiting point
approximation.

Reaction rates depend on the nuclear properties, such as masses or the energy
levels of the excited states. Since the r-process path moves through very exotic
neutron-rich region of the nuclear chart, these properties are not known experimen-
tally for all nuclei involved. Thus, theoretical models are being developed which
are fitted to the known nuclear data of less exotic isotopes and then extrapolated
to all nuclei up to the neutron-drip line. Nowadays mass models belong to one of
two categories: macroscopic-microscopic models which contain phenomenological
terms to describe the overall behaviour of the nucleons and including microscopic
corrections, such as shell effects or non-spherical ground-state configurations (e.g.,
Möller et al. 1995, 2012) and fully microscopic models. These are based on effective
nucleon-nucleon interactions (e.g., Aboussir et al. 1995, Goriely et al. 2016, and
references therein). Although there are many mass models of both categories which
reproduce the experimental nuclear data very well, the mass predictions for very
neutron-rich nuclei differ significantly, which has an impact on the reaction rates
used in the nuclear network. Calculated r-process abundances are therefore heavily
dependent on the mass model employed. For recent studies on the impact of nuclear
masses on the calculated r-process abundances see, e.g., Arcones and Martínez-
Pinedo (2011), Kratz et al. (2012), Martin et al. (2016), Mendoza-Temis et al.
(2015), Mumpower et al. (2015), and Wanajo et al. (2005).
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11.2.4 Observational Evidence for r-Process in CBMs

The r-process requires specific conditions to operate, such as large neutron den-
sities, short dynamical timescales, etc. (see Sect. 11.2.3). These requirements
point towards explosive environments containing decompressing deleptonized (e.g.,
neutron-star) material. Both CCSNe and CBMs can in principle meet the require-
ments. However, recent research suggests that regular CCSNe are ruled out as
a source for the heaviest r-process nuclei. With the detection of GW170817,
neutron star mergers have now been confirmed as an operating site of the r-process
(Cowperthwaite et al. 2017; Drout et al. 2017; Kasen et al. 2017; Kasliwal et al.
2017; Kilpatrick et al. 2017; Rosswog et al. 2017; Smartt et al. 2017; Tanvir et al.
2017), as the light curve powered by the radioactive decays of heavy, neutron-rich
nuclei has been observed (see Sect. 11.2.12). The ejected mass for this event is
estimated to be at least 1.5 × 10−2 M�, but may be larger if not all the energy
released from radioactive decays ends up in the observed emission (Rosswog et al.
2017). In addition to the direct observation of a kilonova (Abbott et al. 2017c), a
multitude of indirect observational evidence exists that points towards CBMs as
a major r-process production site. The atmospheres of different extremely metal-
poor (old) stars show the same abundance pattern for the heavy r-elements as the
solar system abundances (e.g., Sneden et al. 2008), with very little scatter among
them. This suggests that the r-process component producing the heaviest elements
is robust and insensitive to small changes in the density or temperature evolution
during the decompression of the ejecta. The robustness of the abundance pattern
is a characteristic of the r-process in CBMs (Korobkin et al. 2012) because the
environment is so neutron-rich that the reaction path runs along the neutron-drip
line.

Regular CCSNe have a well-determined event rate in our galaxy, and in order
to account for the accumulated r-process material in the present-day solar system
a relatively low r-process ejecta mass per event is required (around 10−5 M� of
r-process material or even less). CBMs, on the other hand, are expected to occur at
a much lower frequency, but ejecting around 10−3 M� of r-process material. This
degeneracy of high-rate/low-mass and low-rate/high-mass events can be broken by
recent discoveries. For instance, the strong enhancement of r-elements in a group of
stars belonging to the dwarf galaxy Reticulum II compared to other dwarf galaxies
strongly supports a rare r-process event (Ji et al. 2016). From these data Beniamini
et al. (2016) estimate an r-process event rate between 2.5 × 10−4 and 1.4 × 10−3

times lower than the event rate of regular CCSNe, and an ejected r-process mass
between 6× 10−3 M� and 4× 10−2 M� per event, consistent with GW170817 and
the values obtained in models of neutron star mergers. We can even find evidence in
terrestrial deep sea sediments that exhibit the nuclear traces of the ejecta of nearby
explosive events that rained down on earth millions of years ago. Studying long-
lived radioactive isotopes in these sediments does not only reveal the history of
explosive events in our solar neighbourhood, but helps us disentangle the different
nucleosynthesis processes at the same time. 60Fe has a half-life of T1/2 ≈ 2.6 Myr
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and it is produced in CCSNe. A sediment layer between 1.7 and 3.2 Myr old was
found to contain increased amounts of 60Fe, indicating that around that time the
earth was polluted by the ejecta of a nearby CCSN (Wallner et al. 2016). Assuming
that this CCSN also produced and ejected some r-process material, one should
also find heavier long-lived r-process nuclei. However, the same ocean sediment
samples contain significantly less 244Pu (T1/2 ≈ 81 Myr) than expected from a
continuous enrichment from CCSN ejecta (Wallner et al. 2015). On the other hand,
the measured abundances are compatible with the expected (lower) frequency and
(higher) ejecta masses of CBMs (Hotokezaka et al. 2015).

Another hint comes from the observed frequency of SGRBs. The only observed
kilonovae so far have been associated to GRB 170817A (Abbott et al. 2017a),
SGRB 130603B (Tanvir et al. 2013), SGRB 060614 (Yang et al. 2015; Jin et al.
2015), and SGRB 050709 (Jin et al. 2016), and the observed frequency of SGRBs
supports the required frequency of CBMs as the main r-process source.

It is noteworthy that all the pieces of observational evidence presented above
are independent from each other, however the constraints presented by these
observations to the r-process event rate all agree, pointing to a rate around 5× 10−4

lower than the rate of CCSNe. The resulting ejected mass of r-process material
needed to explain the origin of the r-process element abundances in the solar system
(10−3–10−2 M�) agrees very well with the ejecta mass in CBM models. Upcoming
gravitational wave detections from CBMs will provide further constraints to this
current picture.

11.2.5 Nucleosynthesis in Dynamic Ejecta

While the first hydrodynamic simulations of CBMs have been performed with the
intention to determine the mass of the ejecta (Davies et al. 1994), recent models
aim to pin down the conditions for r-process nucleosynthesis. This includes the
expansion timescales and the Ye distribution of the ejecta, which are affected by the
mass asymmetry of the merging objects, the equation of state (EOS), the treatment
of gravity, the neutrino treatment, and the simulation method (grid, SPH). Both the
EOS and the gravity prescription determine the radii of the neutron stars, setting
the conditions for the actual merger phase. With smaller radii, the neutron stars are
more compact and the collision is more energetic. This means that more matter from
the center of the collision (the interaction region) is flung out and ejected, with very
high initial temperatures. If the collision is less energetic, the component which
becomes gravitationally unbound from tidal forces dominates. The matter from the
tidal component is cooler than the interaction component. While other mass loss
channels related to CBMs exist (see Sect. 11.2.6), the dynamic ejecta have the lowest
Ye and constitute the most promising source for heavy r-process elements. Typical
velocities for the dynamic ejecta are around 0.1 c. It is therefore generally expected
that the effect of neutrino irradiation is small and the Ye stays low during the first
second of the expansion.
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Goriely et al. (2011) and Korobkin et al. (2012) both found narrow Ye distri-
butions of the dynamic ejecta centered around 0.015 (0.03) for a series of NS-NS
and NS-BH mergers with different mass asymmetries. The latter further showed that
the low Ye values guarantee a robust r-process abundance pattern across the different
models even for differing temperature and density evolutions, since the reaction flow
proceeds along the neutron-drip line, in a (n, γ )-(γ, n) equilibrium (see also Eichler
et al. 2015). In addition, the extremely neutron-rich conditions lead to several fission
cycles, which further enhance the robustness in the abundance pattern beyond
the second peak, while lighter elements are not produced in significant amounts.
The insensitiveness of the abundances with respect to the temperature and density
evolution means that the final abundance pattern is almost purely determined by the
nuclear physics employed in the nuclear reaction network, providing an ideal testing
ground for nuclear physics. Several studies have investigated the impact of nuclear
mass models, β-decay rates, fission barriers, fission fragment distribution models,
nuclear heating, and neutrino interactions (Panov et al. 2008; Surman et al. 2008;
Panov et al. 2013; Bauswein et al. 2013; Goriely et al. 2013; Rosswog et al. 2014;
Mumpower et al. 2015; Goriely et al. 2015; Mendoza-Temis et al. 2015; Eichler
et al. 2015; Mumpower et al. 2017; Roberts et al. 2017).

As neutron capture rates and β-decay rates directly depend on the nuclear
masses, so do the final abundances. This was shown in detail in Mendoza-Temis
et al. (2015), where four independent mass models (FRDM (Möller et al. 1995),
WS3 (Liu et al. 2011), DZ31 (Duflo and Zuker 1995), and HFB-21 (Goriely
et al. 2010)) were employed to calculate the r-process abundances on the same
hydrodynamic model of a neutron star merger. They found that mass models with
small neutron separation energies around the N = 130 isotone exhibit a shift of
the third abundance peak (compared to the solar abundances) due to a hold-up
in the reaction flow in these nuclei. In addition, it was shown in Eichler et al.
(2015) that the shift is amplified by late captures of neutrons which are emitted
from fission reactions after the freeze-out from the (n, γ )-(γ, n) equilibrium (see
also Caballero et al. 2014), while β-delayed neutrons also contribute. The strength
of the effect depends on the timing of the last fission cycle with respect to the
freeze-out from (n, γ )-(γ, n) equilibrium. The β-decay rates along the reaction path
determine the waiting points where material is accumulated as well as the duration
of the r-process. Therefore, they also have a say in the position of the third peak in
the final abundances. Recent experimental (Domingo-Pardo et al. 2013; Kurtukian-
Nieto et al. 2014) and theoretical (Suzuki et al. 2012; Zhi et al. 2013; Panov et al.
2015; Marketin et al. 2016) β-decay rate determinations find faster rates for the
heaviest neutron-rich nuclei, decreasing the shift effect after freeze-out. Caballero-
Folch et al. (2016) find that for nuclei beyond N = 126, however, the often used
theoretical β-rates of Möller et al. (2003) give good predictions. Different fission
fragment distribution models (FFDMs) were also tested within the framework of
Eichler et al. (2015), revealing that the region around the second abundance peak is
shaped by the fission fragments produced in the last fission cycle (see also Goriely
2015).
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Late-time effects also affect the small peak around the rare-earth region (Surman
and Engel 2001; Mumpower et al. 2012). An enlightening illustration of how nuclear
masses shape the final rare-earth abundances is given in Mumpower et al. (2017).
Their approach is fundamentally different, as they vary nuclear masses in Monte-
Carlo calculations and from these determine new β-decay and neutron capture rates.
The comparison of the obtained abundance pattern with the solar abundances in the
region of the rare-earth peak allows to draw conclusions about the unknown masses
of the nuclei far from stability in this mass range.

Depending on the setup of the hydrodynamical model, the Ye distribution of the
dynamic ejecta can be broader, which also allows for the production of first peak
material in the dynamic ejecta (Wanajo et al. 2014; Sekiguchi et al. 2015, 2016;
Radice et al. 2016), possibly at the price of the robustness discussed above. In order
to settle this question, the neutrino treatment, in particular, has to be improved. As
it is computationally very expensive, approximations are still used in simulations.

11.2.6 Disk Formation and Ejected Matter

In order to be able to asses the EM emission summarized in Fig. 11.1 and perform
accurate nucleosynthesis calculations, it is crucial to make simulations as accurate as
possible in order to compute the amount of mass that is ejected from these systems
and its properties, such as temperature distribution and electron fraction. It is also
important to compute the properties of the disks that may be formed after merger.
Numerical simulations have in particular shown that, in the case of NS-NS mergers,
larger disks with masses of up to ∼ 0.3M� are produced in mergers that form
hypermassive neutron stars (i.e., NSs with masses larger than the maximum mass for
an uniformly rotating NS and that collapse to a BH in less than ∼ 1s after merger),
while systems that produce a prompt collapse to BH are left with much smaller
disks, with masses smaller than∼ 10−2M� (Rezzolla et al. 2010; Giacomazzo et al.
2013). The mass of the disk can also be affected by the mass ratio of the system,
with lower mass ratios producing larger disks. In the case of NS-BH merger, where
mass ratios as low as 1/7 can be expected, the BH spin plays an essential role in the
disk formation, where disks as massive as ∼ 0.1M� may be formed if the BH was
rapidly rotating with a spin of ∼ 0.9 (Foucart 2012).

On timescales of ∼ 100 ms a part of the disk becomes gravitationally unbound
due to viscous dissipation and nuclear recombination. The fraction of the disk mass
ejected this way depends sensitively on the survival time of the hypermassive NS
(HMNS) before it collapses into a black hole, but according to simulations, around
20–25 % of the disk material can be ejected this way, making it an important factor
for the overall ejecta. The timescales are much longer than for the dynamic ejecta,
and the disk material, which eventually is ejected, can have a much larger Ye due
to neutrino interactions. Just et al. (2015) and Wu et al. (2016) show that in this
component nuclei up to the third r-process peak (A=195) can be produced, and that
it is a reliable source for second peak (A=130) material.
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Similar to the neutrino-driven wind in core-collapse supernovae, a neutrino-
driven wind component has been found in CBMs, where neutrinos can transfer
enough energy to nuclei in the disk resulting in a baryonic wind. This mass loss
channel mainly ejects matter in a direction usually perpendicular to the orbital plane,
adding an angular dependence to light curve models. This mass loss channel relies
on the absorption of neutrinos, which means that Ye in the initially very neutron-rich
material increases. Martin et al. (2015) find a Ye distribution between 0.2 and 0.4,
and a total ejecta mass of almost 10−2 M�, comparable to the mass of the dynamic
ejecta. The mass of the neutrino-driven wind depends on the total mass of the
accretion disk. Due to the higher electron fractions, this channel is not thought to
host a full r-process, but a weak r-process which produces first r-process peak nuclei.

In order to obtain the full picture, all the three mass loss channels need to be
considered, adding complexity to the determination of the nuclear composition in
the ejecta of a CBM. Figure 11.3 presents an overview on the different channels and
their dynamical timescales.

The study of matter ejected in these systems has also provided new interesting
results with general relativistic simulations showing that, in the case of NS-NS
mergers, the shocks developed during merger have a mayor role in ejecting matter
with respect to tidal disruption and that hence more compact NSs produce larger
ejecta, in contradiction with previous Newtonian results that were underestimating

Fig. 11.3 Mass loss channels in a CBM, shown face-on (left) and edge-on (right). Typical
timescales for the outflows are indicated at the bottom. Figure courtesy of D. Martin
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the energy released in shocks. Tidal disruption is still instead the main mechanism
for ejecting matter in NS-BH mergers, but also in this case the NS compactness,
as well as the BH spin and mass ratio, play a fundamental role with less compact
NS ejecting more matter, when keeping the mass ratio and BH spin fixed (Foucart
2012).

11.2.7 Short Gamma-Ray Bursts

One of the strongest EM signals expected from the merger of two NSs or of an NS
and a BH are short gamma-ray bursts. Even before the simultaneous detection of
GW170817 and GRB 170817A (Abbott et al. 2017a), there were already several
indirect evidences that linked such systems to the central engine of SGRBs (Berger
2014). The main idea is that NS-BH and NS-NS mergers will produce a spinning
BH surrounded by an accretion disk. Such a system could then launch a relativistic
jet which, as in the case of long GRBs, will produce gamma-ray emission, e.g., via
internal shocks.

The simultaneous detection of GW170817 and GRB 170817A proved that at
least some type of SGRBs are indeed caused by BNS mergers. The detection was
quite a surprise since it was thought to be quite unlikely. The most optimistic rate
was estimated to be of up to∼2 simultaneous detections every year for the advanced
LIGO and Virgo detectors at design sensitivities (Clark et al. 2015). This was due
to the probably collimated nature of SGRBs, which are observed with median jet
opening angles of 16 ± 10 degrees, but such measurements are very scarce being
based on the few detected jet breaks (Fong et al. 2015). Moreover GRB 170817A
was quite a peculiar SGRB with a delayed X-ray afterglow (Troja et al. 2017) that
is thought to be due to the jet being observed off axis (Lazzati et al. 2017) or to a
chocked jet (e.g., the cocoon model (Mooley et al. 2018)).

Numerical and theoretical studies are therefore still one of the best ways to
try to assess the connection between SGRB properties and CBM. In the last few
years there have been a number of efforts, as also described in more detail in the
following sections, in order to try to explain current observations. As of today the
main mechanism to produce the observed gamma-ray emission and at the same
time explain short time-scale variability in the lightcurves is for the central engine
to produce a strongly relativistic jet, with Lorentz factor of order ∼100 or larger.
Such jets need also to be collimated and have a sufficiently long (short) lifetime
to fit the burst duration. Moreover, any theoretical model needs also to be able to
explain the afterglow emission, including extended emission in the gamma rays and
X-ray plateaus. All of this is clearly challenging and in the following sections we
will describe our current understanding, thanks also to numerical simulations of
CBMs.
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11.2.8 Jet Formation

While it has been known for a while that accretion disks around spinning BHs can
produce relativistic jets via neutrino–antineutrino annihilation (Birkl et al. 2007) or
via magnetic fields (Blandford and Znajek 1977; Komissarov and Barkov 2009),
only very recently simulations of NS-NS and NS-BH mergers have started to show
the formation of such jets, even if with quite low Lorentz factors (lower than ∼ 2).
In particular magnetic fields can give rise to relativistic jets via the Blandford-
Znajek (BZ) mechanism (Blandford and Znajek 1977). In the BZ mechanism, which
describes a spinning BH immersed in a magnetically dominated plasma, magnetic
fields can extract energy from the BH and produce a relativistic outflow.

The first simulation showing that NS-NS mergers may produce relativistic jets
was the so called “Missing Link” paper (Rezzolla et al. 2011) where the authors
showed for the first time that a collimated and mainly poloidal magnetic field
was produced at the end of a simulation of an equal-mass system. While the
formation of a collimated poloidal magnetic field structure is a necessary condition
for the production of a relativistic jet (De Villiers et al. 2005; McKinney 2006),
that simulation was not able to actually show the formation of a jet. The main
reason is that in order to activate the Blandford-Znajek mechanism (Blandford
and Znajek 1977), a magnetically dominated region needs to be formed in the BH
ergosphere (Komissarov and Barkov 2009). Very recently simulations of NS-NS
and NS-BH mergers performed with much higher magnetic fields (i.e., ∼ 1016 G
at the NS center) were instead able to see the formation of a mildly relativistic
jet (Paschalidis et al. 2015; Ruiz et al. 2016), even if only for one specific model
with a simple ideal-fluid EOS. Figure 11.4 shows the end result of those simulations
with the formation of an outflow along a magnetically dominated funnel. More
recently, following what was done in Rezzolla et al. (2011) and Kiuchi et al. (2014),
a different group performed simulations of different NS-NS systems with different
EOSs, mass ratios, and magnetic field orientations (Kawamura et al. 2016). Even if
in this case no jet was produced because of the much lower initial magnetic field
value (i.e.,∼ 1012 G), all the simulations showed the formation of a collimated and

Fig. 11.4 Ratio of magnetic energy density over rest-mass energy density at the end of a NS-BH
merger (Paschalidis et al. 2015) and NS-NS merger (Ruiz et al. 2016) respectively
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mainly poloidal magnetic field configuration at the end of the simulations. Therefore
it seems that, at least in the case of NS-NS mergers, the results produced in Ruiz
et al. (2016) should be general.

11.2.9 The Problem of Magnetic Field Amplification

Magnetic fields can play a crucial role in launching relativistic jets and in giving
rise to SGRBs and other EM emission. It is therefore important to better understand
their evolution in NS-NS and NS-BH mergers. While their evolution can be mainly
neglected during the inspiral phase (Giacomazzo et al. 2009), hydrodynamic and
magnetohydrodynamic instabilities and turbulence may strongly affect the magnetic
field structure and strength during and after merger. There are two instabilities that
play an important role in the magnetic field evolution: Kelvin-Helmholtz (KH) and
the Magneto-Rotational Instability (MRI).

The KH instability develops when a shear layer is formed in the velocity field
during the merger of two neutron stars. A series of vortices can be formed in this
case and they can twist magnetic field lines. So, even when starting with a purely
poloidal magnetic field configuration, the KH instability may lead to the production
of a strong toroidal component and amplify the total magnetic field. How strong
that amplification can be is still matter of debate. Preliminary Newtonian simula-
tions (Price and Rosswog 2006) showed that the magnetic field can be amplified by
several orders of magnitude up to at least ∼ 1015G. Such simulations seem to be
supported by local simulations of turbulent fluid both in Newtonian (Obergaulinger
et al. 2010) and Special Relativistic MHD (Zrake and MacFadyen 2013). In these
local high-resolution simulations magnetic fields are shown to be amplified until the
magnetic energy reaches equipartition with the kinetic energy of the turbulent flow.
This means possible magnetic field amplifications up to values of ∼ 1016−17G.

Unfortunately in order to reproduce the results of such local simulations in a
global simulation of NS-NS mergers one would need to run with much higher
resolutions than those that can be currently afforded. A recent attempt was done by
Kiuchi and collaborators who performed simulations with resolution of up to 17.5
meters (Kiuchi et al. 2015),∼ 1 order of magnitude higher that the typical resolution
used in NS-NS mergers (∼ 200 meters). Their simulations show an amplification
in the magnetic energy of up to ∼ 6 orders of magnitude and with magnetic fields
growing from ∼ 1013 G to ∼ 1016 G. They also showed that the saturation of
the magnetic energy should be at least ∼ 0.1% of the bulk kinetic energy. Such
simulations were possible thanks to the use of the K supercomputer in Japan, but
their computational cost was so high that the group was not able to study what
happens to the magnetic field after this initial amplification (the simulations were
terminated soon after merger).

Other groups have recently proposed different subgrid models to mimic such
large amplification without the need to use such expensive resolutions (Giacomazzo
et al. 2015; Palenzuela et al. 2015).
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While the KH instability and its related magnetic field amplification can be
present only in NS-NS merges, MRI (Balbus and Hawley 1991) can affect the
evolution of magnetic fields both in NS-NS and NS-BH mergers. In the former
the magnetic field may be amplified both in the differentially rotating post-merger
remnant and in the disk, while in the latter only in the disk.

11.2.10 Magnetar Formation

In case a long-lived NS is formed after a NS-NS merger, large magnetic fields may
be able to give rise to a magnetar (Giacomazzo and Perna 2013). The production of
a long-lived magnetar may be used to explain some EM observations, such as the X-
ray plateaus observed in some SGRBs (Rowlinson et al. 2013). The main idea is that
the angular momentum of the magnetar is extracted via magnetic fields and powers
a long-duration EM emission. Unfortunately, while GRMHD simulations of NS-NS
mergers have improved significantly the level of details with which such mergers
are studied, they are still too expensive to be able to follow the magnetar for the
long time scales (∼ hours) required to match with current EM observations. Simple
models have been proposed to overcome this issue and provide estimates for the
EM emission that can be produced by post-merger NS remnants (Siegel and Ciolfi
2016a,b). In particular such models can provide an estimate of the X-ray emission
and link it to the one observed in some SGRBs.

We stress though that the formation of a magnetar requires not only a large
amplification of magnetic fields inside the NS remnant, but also the formation of
a powerful poloidal magnetic field outside the NS remnant. It is not clear at the
moment how the large magnetic field that is expected to be produced inside the
remnant can emerge outside and form the typical poloidal configuration expected in
magnetars.

11.2.11 The Time-Reversal Scenario

The “standard” scenario of SGRBs, depicted in Fig. 11.1, is based on the idea that
the jet powering the SGRB is emitted from a BH surrounded by an accretion disk
and that the afterglow is emitted by the interaction of the jet with the surrounding
interstellar medium. An alternative model, the magnetar one, predicts instead that
the SGRB is produced by the large magnetic energy contained in the magnetar
formed soon after merger. The latter model excludes NS-BH as the source of SGRBs
and it has the problem of explaining how highly relativistic jets may be emitted due
to the baryon pollution problem. Numerical simulations show indeed that, when a
NS is formed after the merger, it is surrounded by a dense baryonic region with
densities of ∼ 1010 g cm−3 (Ciolfi et al. 2017). Such densities seem to be too high
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Fig. 11.5 The “time-reversal” scenario different evolution phases: (I) The differentially rotating
supramassive NS ejects a baryon-loaded and highly isotropic wind; (II) The cooled-down and
uniformly rotating NS emits spin-down radiation inflating a photon-pair nebula that drives a shock
through the ejecta; (III) The NS collapses to a BH, a relativistic jet drills through the nebula and
the ejecta shell and produces the prompt SGRB, while spin-down emission diffuses outwards on a
much longer timescale. Figure and caption are taken from Ciolfi and Siegel (2015)

to allow the production of relativistic jets with Lorentz factors as high as those
measured in SGRB jets (i.e.,∼100–1000).

The former model instead has difficulties explaining the X-ray plateaus that seem
to indicate that energy is injected into the system on time scales much larger than
the typical survival time for an accretion disk (typically less than 1 s).

Therefore alternative models have been developed in order to try to solve both
issues. In particular the two models presented in Rezzolla and Kumar (2015), Ciolfi
and Siegel (2015) and called respectively “two-winds” and “time-reversal” scenario
are both based on the idea that a long-lived magnetar is formed after merger. In
Fig. 11.5 we present the main stages of the evolution of the system as described in
the “time-reversal” scenario (Ciolfi and Siegel 2015).

Both models require a long-lived NS to be formed after merger. Therefore both
models exclude NS-BH mergers as the source of SGRB (while they are not excluded
by the “standard” scenario). The idea is that a baryon-rich wind is generated by the
highly-magnetized remnant followed by the production of a faster but baryon-poor
wind. The interaction between the two gives rise to an X-ray emission. Once the NS
collapses to a BH and a BH-disk system is formed a relativistic jet may be finally
launched and give rise to the SGRB. The wind will still produce the X-ray emission
and therefore, what we observe as a plateau in the afterglow is actually an emission
that originated from an earlier stage of the evolution with respect to the jet (from
this the name “time-reversal” (Ciolfi and Siegel 2015)).

The problem with these models is that they require a disk to be formed after
the collapse to BH of the long-lived NS. Simulations of uniformly rotating NS
collapsing to BH do not show indeed the formation of disks (Baiotti et al. 2005,
2007). Other groups have expressed also doubts that such disks may be formed on
the base also of simpler analytic models (Margalit et al. 2015). We note though
that such models were based on the idea that the NS collapsing to a BH was not
already surrounded by an accretion disk. If such disk was present at the moment
of collapse it would not be destabilized by the collapse and hence form a BH-
disk system (Giacomazzo and Perna 2012). Moreover magnetic fields may also
be able to redistribute angular momentum in the rapidly rotating remnant and
help the formation of a disk (Duez et al. 2006), even if this effect will be more



11 EM emission and Nucleosynthesis from BNS 655

relevant initially when the external regions of the star are still differentially rotating.
Unfortunately such long timescales cannot be simulated and it is therefore difficult
at the moment to state if a disk will be present or not and this is a strong constraint
for both these scenarios.

11.2.12 Kilonovae/Macronovae

The r-process produces heavy and very neutron-rich nuclei which eventually
decay radioactively to stability by means of β-, α-decays, and fission. Li and
Paczyński (1998) were the first to suggest that these series of decays can lead to
an electromagnetic transient, similar to the decay of 56Ni in core-collapse SNe or
Type Ia SNe. This was followed by light curve predictions based on real r-process
compositions performed by Metzger et al. (2010), who assumed opacities in the
ejecta similar to that in CCSN ejecta. Only later it was found that the ejecta in a
CBM stay optically thick for a long time, even though they expand quickly and
comprise only a small mass. This is due to the production of large amounts of
lanthanides, which have a high line transition density and therefore a particularly
high opacity (Kasen et al. 2013; Tanaka and Hotokezaka 2013). As a consequence,
the emitted photons are absorbed and the ejecta are thermalized before radiation can
break out eventually when the densities have sufficiently decreased. If only heavy r-
process elements (A > 130) are synthesised, the high opacities cause the light curve
to peak at a timescale of about 1 week instead of 1 day, at a lower luminosity and
at a wavelength in the near-infrared region, as opposed to optical or ultra-violet. A
good approximation for the time of peak luminosity is given e.g., in Metzger (2016):

tpeak ≈ 1.6 d

(
M

10−2 M�

)1/2 ( v

0.1 c

)1/2
(

κ

1 cm2 g−1

)1/2

, (11.6)

where M is the mass, v is the velocity, and κ is the opacity of the ejecta.
Lanthanide production is not guaranteed throughout the ejecta. In less neutron-

rich conditions (Ye > 0.3) the composition is almost lanthanide-free, with a direct
consequence on the opacity. Electromagnetic emission from this lanthanide-free
component would become visible already after about 1 day, and the spectrum
would be at smaller wavelengths compared to the lanthanide-rich ejecta. Moreover,
some simulations suggest that a small fraction of the ejecta is subject to extremely
fast decompression, such that free neutrons are not captured but decay directly,
producing a blue precursor to the kilonova that peaks on a timescale of a few
hours (Metzger et al. 2015). A distinction can therefore be made into a red and
a blue kilonova component, depending on the amount of lanthanides. Since the
very neutron-rich dynamic ejecta provide large opacities along the equatorial plane
(their emission is lanthanide-rich, therefore red), the blue component would only be
visible if the event is viewed with a certain angle to the plane. The kilonova signal
may therefore also depend on the viewing angle under which the event is observed.
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Apart from the amount of lanthanides, the nuclear composition produced in the
precedent r-process also sets the conditions for the nuclear heating rate in the ejecta.
Since decay half-lives become longer as the composition approaches stability, the
nuclear heating rate is another big factor in the temporal evolution of the kilonova
light curve. The details of the heating rate depend on the nuclear composition and
its decay history as well as the thermalization efficiency εth with which the decay
products thermalize with the ejecta. However, a fitting formula can be found for a
large sample decaying to stability. Korobkin et al. (2012) suggest the following fit
for the specific heating rate:

ε̇(t) = ε0

(
1

2
− 1

π
arctan

t − t0

σ

)α
×
( εth

0.5

)
(11.7)

with ε0 = 2 × 1018 erg g−1 s−1, t0 = 1.3 s, σ = 0.11 s, and α = 1.3.
The thermalization efficiency εth itself is time-dependent and varies significantly
for different thermalization processes (e.g., photoionization, Compton scattering,
Coulomb interactions, etc.), but again the collective behaviour can be approximated
by (see Barnes et al. 2016)

εth(t) = 0.36

[
exp(−at)+ ln(1+ 2b td )

2b td

]
, (11.8)

where a, b, and d are parameters that depend on the mass and velocity of the matter
in the layer of ejecta considered. Values for these parameters are given for a range
of ejecta masses and velocities in Table 1 of Barnes et al. (2016).

The detailed dependence of the overall heating rate and the kilonova light
curve on the initial electron fraction Ye, the specific entropy e, and the expansion
timescale τ is demonstrated in Lippuner and Roberts (2015). Furthermore, Barnes
et al. (2016) and Hotokezaka et al. (2016) have investigated the nuclear heating
rates from the individual decay types (α-decay, β-decay, and fission) and find a
sensitivity to the initial nuclear composition, which in turn is strongly affected by
the nuclear mass model employed for the r-process calculation. The discrepancies
mainly originate from the different abundances of actinides (220 ≤ A ≤ 250) which
usually undergo α-decay, as well as the large uncertainties in fission rates. The
relationship between the nuclear composition before decay and the kilonova heating
rates, if understood better, could ultimately lead to new independent constraints on
the nuclear mass model for neutron-rich nuclei derived from kilonova light curves.

Such theoretical predictions is supported by recent detections in the afterglow
emission of some SGRBs. The first claim for the possible detection of a kilonova
was made for GRB 130603B (Tanvir et al. 2013), a SGRB at redshift z = 0.356.
Unfortunately this claim was supported only by a single data point which showed
a stronger emission in the near infrared with respect to what one would expect
from an afterglow emission due to a decelerating jet. Nevertheless this was the first
observation that could be explained as a kilonova powered by an ejected amount of
matter between 10−2 and 10−1M�. There were also other detections of kilonovae



11 EM emission and Nucleosynthesis from BNS 657

possibly associated with GRB 060614 (Yang et al. 2015; Jin et al. 2015) and with
GRB 050709 (Jin et al. 2016). Now the observation of the kilonova GW170817
confirms the production of heavy r-process and lighter heavy elements in neutron
star mergers. The electromagnetic followup of GW170817 shows a initial blue
emission associated with lanthanide free ejecta and thus Ye > 0.3 followed by a
red/infrared late emission due to heavy r-process elements (e.g. Kilpatrick et al.
2017).

11.2.13 Electromagnetic Precursors

While in the previous part of this chapter we focused on EM emission powered after
the merger, also because this is expected to be the most powerful one, there is also
the possibility to have EM emission before merger.

Observations of SGRB precursors (Troja et al. 2010) have indeed triggered
studies of possible EM emission generated before mergers. There are two main
mechanisms that have been studied. The first one is related to the possibility that
the NS crust may break because of tidal interaction between the NSs in a NS-NS
merger (Tsang et al. 2012). The second one is instead due to the interaction between
the NSs magnetosphere in a NS-NS binary (Palenzuela et al. 2013b,a) or between
the magnetic field of the NS and a BH in the case of a NS-BH system (Paschalidis
et al. 2013; McWilliams and Levin 2011). In both cases the expected luminosity
may be quite low with maximum values between∼1040 and∼1043 erg/s in the hard
X-ray part of the EM spectrum (Palenzuela et al. 2013b; Paschalidis et al. 2013).

No precursor was observed in the case of GW170817 (Abbott et al. 2017c), but
such a possible detection would have required X-ray and gamma-ray observations
of the site of the BNS before the detection of the GW peak. Therefore an early GW
detection of the inspiral signal is required in order to be able to point EM telescopes
before merger.

11.3 Present Challenges and Future Prospects

Numerical and theoretical modelling of EM counterparts and nucleosynthesis in
CBM have made significant progresses in the last few years, but the number of
questions that remain to be addressed is still large. In the following section we
provide an overview of the main topics that need to be addressed in the next years.

11.3.1 Electromagnetic Emission

One of the main challenges is to provide accurate estimates of the lightcurves of
the EM emission produced by NS-NS and NS-BH mergers. Most of the simulations
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(if not all of them) provide only preliminary estimates of the EM luminosity, often
based simply on the integration of the Poynting flux. Such luminosity, while useful
to get an idea of the possible maximum luminosity produced by such events, do
not help in fitting current observation (e.g., SGRBs). It is therefore crucial to better
address the long-term evolution of matter ejecta and magnetic field interaction.

In the case of matter ejected via tidal disruption during the late phase of inspiral
or via shocks at merger, it is fundamental to take into account finite-temperature
effects and neutrino emission and absorption. Very few simulations, as of today,
have started to include both effects in full general relativity.

In the case of systems producing a BH surrounded by an accretion disk, there
is preliminary evidence for the formation of jets, but how these jets depend on
the properties of the binary has not been studied yet. Up to now there have been
indeed only two papers (by the same group and with the same code) showing the
production of a mildly relativistic outflow (Paschalidis et al. 2015; Ruiz et al. 2016).
In both cases the initial magnetic field was several orders of magnitude larger than
the typical magnetic field expected in merging neutron star binaries. While in the
case of NS-NS binaries large magnetic fields may be produced during merger, but
only in the region inside the HMNS/SMNS, such large amplification is not expected
in NS-BH mergers, but it may only be produced later in the disk (if any). Therefore
it is not clear yet if such results will apply also to simulations starting with lower
and more realistic magnetic field values. Clearly these simulations will also need to
properly resolve the turbulent scales on which the magnetic field is amplified and
hence require large computational resources (Kiuchi et al. 2015).

In the case of systems producing a long-lived NS after merger, most of the studies
have been focused on a detailed calculation of the GW emission and very few on the
possible EM counterparts that such systems may emit (Siegel and Ciolfi 2016a,b). It
is not currently possible to follow these systems numerically on the long time scales
required to study their long-term EM emission. It will therefore be important to be
able to better study the properties of post-merger remnants in order to develop better
(analytic) models.

In all cases, it seems evident that a correct description of finite-temperature
effects, magnetic field evolution, neutrino emission and reabsorption, and turbu-
lence is crucial to provide more accurate models. Unfortunately all of this will
require more robust and powerful computational algorithms and the use of faster
supercomputers.

11.3.2 Nucleosynthesis

The young field of nucleosynthesis in CBMs has made considerable progress in the
past few years, culminating in the observation of the kilonova related to GW170817.
Nevertheless, many open questions remain, connected both to the hydrodynamical
simulations and the nuclear physics. Since the r-process operates close to the
neutron-drip line in the nuclear chart, no experimental data exist for the extremely
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neutron-rich isotopes that lie on the typical reaction path. The nuclear mass models
that are used for nucleosynthesis calculations all reproduce the known nuclear data
very well, but drastically diverge with increasing distance to the valley of stability,
as is shown e.g., in Goriely et al. (2007).

Next-generation experimental facilities (e.g., RIKEN in Japan, while FAIR at
GSI Darmstadt and FRIB at Michigan State University are currently being built at
the time of writing) will push the boundaries of experimentally studied isotopes,
in some mass regions almost reaching the typical r-process reaction path. The new
data from mass measurements will significantly help to further constrain nuclear
mass models.

On the theoretical side, more extensive models based on density functional theory
are needed, e.g., fission barrier and fragment distribution calculations (Sadhukhan
et al. 2016) or β-decay rates (Marketin et al. 2016). Efforts should be made to
incorporate new experimental data and reach consistent treatments of (theoretically
derived) nuclear properties. Recently, a lot of progress has been made in modelling
the EM afterglow powered by radioactive decay of the r-process products. The
link between the nuclear compositions achieved in the r-process calculations with
different mass models and reaction rates and the radioactive heating rates should be
studied further.

Equation (11.5) shows that for a given mass model the only factors that determine
which nuclei lie on the r-process path in a hot r-process scenario are the temperature
and the neutron density, with the latter directly dependent on the electron fraction Ye.
These are quantities that are evolved in the tracer particles used for nucleosynthesis
post-processing, and in turn depend on the framework of the hydrodynamical setup,
such as the EoS, the neutrino treatment, etc. The different Ye and temperature
distributions in the ejecta of different simulations therefore add another layer
of uncertainties to any calculated r-process results. Further future detections of
gravitational waves from binary neutron star mergers will greatly constrain the
high-density EOS, since any gravitational wave signal carries the signature of
the EOS (Radice et al. 2016; Kuroda et al. 2016; Clark et al. 2016; Chirenti
et al. 2017; Richers et al. 2017; Bauswein et al. 2017). The three gravitational
wave detectors LIGO-Hanford, LIGO-Livingston, and Virgo are currently being
upgraded. Additional GW observatories (KAGRA, and LIGO India) are already
being built or in the final planning stages. Future observing runs from these facilities
will have a sensitivity high enough to detect several CBMs per year. The direction
of any GW signal has to be determined by means of triangulation. Therefore the
additional detectors are essential to constrain the coordinates of the GW event and
enable follow-up observations of the ensuing kilonova, as it has been demonstrated
by the LIGO-Virgo observation of GW170817 (Abbott et al. 2017b).

Parallel to gravitational wave signals, detections of kilonovae are needed to
match theoretically derived light curves, which will provide new insights on nuclear
aspects such as the dominant decay types and the end point of the r-process.
These comparisons will allow for a quality assessment of the currently available
predictions of nuclear properties far from stability (see Sect. 11.2.12). Furthermore,
observed light curves will also let us draw conclusions about the amount of
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(dynamically) ejected matter. Observations including detailed study of features (i.e.,
absorption/emission lines) in kilonova spectra can also rise new insights about the
composition of the ejecta in combination with the peak luminosity time and color
(e.g., Pian et al. 2017).

11.4 Conclusions

Compact binary mergers are currently one of the most exciting astrophysical sce-
narios to be studied in the GW and EM spectrum, especially after the simultaneous
observations of GW170817 and GRB170817A. That single event provided the first
evidence that BNS mergers are among the main r-process site in our universe, but
also established a link between them and at least some type of SGRBs. While the
actual mechanism to produce the gamma-ray emission is not completely understood,
the main idea is that a jet can be launched from the central BH formed after merger,
emitting highly energetic gamma-rays, which would on earth be observed as a short
GRB. Moreover, the radioactive decays of the fresh r-process products to stability
power an electromagnetic transient known as “kilonova” (or “macronova”) that
peaks days after the actual merger in the optical or near-infrared wavelengths. In this
chapter, the current status of research is presented with respect to nucleosynthesis in
the ejecta of CBMs as well as the origins of the different kinds of electromagnetic
counterparts that are expected in the aftermath of a merger. In particular, we have
discussed the following aspects:

Possible Precursor EM Emission Before the merger takes place, the two neutron
stars in a NS-NS merger affect each other by means of both their gravitational and
magnetic fields, the former leading to a breaking up of the NS crust. Simulations
have shown that these interactions can lead to EM emission before the merger phase.
No precursor was observed in the case of GW170817, but such an observation would
very probably require a very rapid EM search before the merger GW signal.

Dynamic Ejecta During the merger, matter can become gravitationally unbound
mainly by two methods. First, a tidal tail forms behind each NS, ejecting cold,
very neutron-rich matter at a high velocity. Second, at the collision interface matter
gets heated and accelerated by the collision shock. Both components are expected
to harbour a strong r-process, however the second component is considerably
hotter than the tidal ejecta and subject to more neutrino interactions which alter
the electron fraction. Therefore, the ratio of tidal ejecta to shocked ejecta can
have an impact on the nucleosynthesis yields. Major uncertainties in the r-process
nucleosynthesis yields are connected to the unknown properties of neutron-rich
nuclei and the Ye distribution of the ejecta. The radioactive decay of the heavy
elements produced in the r-process later on powers the kilonova light curve (see
below).
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Short Gamma-Ray Bursts SGRBs are the result of highly relativistic jets that
are launched from the central compact object shortly after the merger. Modern
simulations with increased resolution or enhanced magnetic fields only recently
have started to find favourable conditions for jet formation in NS-NS and NS-BH
mergers, that is, a collimated and poloidal magnetic field configuration at the end of
the simulation. The exact mechanism leading to the gamma-ray signal, however, is
still uncertain. Different scenarios have been proposed and are summarized in this
chapter. Apart from the “standard” scenario, where the relativistic jet is launched
from a spinning BH surrounded by an accretion disk (which is the one possibly
behind GRB170817A), other models rely on a long-lived NS emitting isotropic
winds at different stages before its collapse to a BH and the resulting jet launch
(“two-winds” and “time-reversal” scenarios).

The Fate of the Central Remnant In NS-NS mergers the dynamics of the post-
merger remnant depends on the maximum stable NS mass (Mmax

NS ≥ 2 M�; still
unknown today) and the initial masses of the two merging objects. If the resulting
mass of the central object is larger than the maximum allowed NS mass, the system
will collapse into a spinning BH. However, there is a possibility that the initial
fast rotation can temporarily stabilize a central object that is only marginally more
massive than Mmax

NS , resulting in a hypermassive NS that can survive up to a few
100 ms. If the combined mass in a NS-NS merger is not larger than Mmax

NS , a stable,
supramassive NS is formed. In this case, simulations show that strong magnetic field
amplifications can lead to the formation of a magnetar. Magnetars add complexity
to the EM emission after a merger, as angular momentum can be extracted by
the strong magnetic fields, powering a long-duration EM emission. This effect
could explain some observed phenomena, e.g., X-ray plateaus in some SGRBs,
and account for an additional heating source in the baryonic ejecta. However, more
detailed and long-term simulations are needed in the future to pin down the role of
this possible central engine.

Disk Formation and Additional Mass Loss The possible formation of a disk in
the aftermath of a merger is linked to the fate of the central remnant. Simulations
show that a prompt BH formation from a NS-NS merger leaves at most a small
disk of around 10−2 M�, while HMNS or SMNS may be surrounded by much
larger disks with up to 0.3 M�. Fast spinning BHs in a NS-BH merger also
allow for considerable disk formation. The existence of a disk opens up additional
opportunities for the system to eject matter, which need to be considered for the
successful modelling of CBMs. Namely, neutrinos from the central object can
interact with the disk material and drive a baryonic wind (similar to the ν-driven
wind scenario in CCSNe). According to simulations, material ejected this way
amounts to about 10−2 M� (although this number depends on the total mass of the
accretion disk), comparable to the dynamic ejecta. However, the wind component is
considerably less neutron-rich and therefore a good candidate for a weak r-process
site which produces elements of the first r-process peak. On longer timescales,
a fraction of the disk material becomes gravitationally unbound due to viscous
dissipation and nuclear recombination. In this component, the whole range of r-
process elements can be produced, as recent studies show.
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EM Afterglow of the Ejecta (kilonova) The neutron-rich, heavy nuclei that have
been freshly synthesized in the ejecta radioactively decay to stability, releasing
energy that thermalizes the surroundings and leads to an EM transient. This
phenomenon is known as a “kilonova” or “macronova”, such as the one detected
after GW170817. Depending on the opacity in the ejecta, the break-out of the EM
radiation occurs on a timescale of days to weeks after the merger. The presence of
lanthanides greatly increases the opacity and also leads to a red-shift in wavelength.
The dependence of the EM signal on the nuclear r-process yields and the spatial
configuration of the ejecta is the topic of ongoing research. Ultimately, future
observations of kilonovae could provide more constraints on properties of nuclei
along the r-process path. Since no significant amount of lanthanides is produced
in the wind, the wind opacities are comparable to CCSNe, amounting to an EM
emission component that peaks earlier and at smaller wavelengths.

Ejecta Shocks with the Interstellar Medium When the expanding baryonic and
non-baryonic (jet) ejecta interact with the interstellar medium, the arising shock
produces radio emission. This emission can potentially be observed even years after
a CBM.

Synthesized r-Process Elements The ejecta will eventually mix with the inter-
stellar medium and increase the content of heavy elements in new-born stars in
the vicinity. Several independent observations of r-elements in metal-poor stars,
the ocean crust, as well as the recent discovery of a dwarf galaxy that is strongly
enhanced in r-elements point strongly toward a relatively rare r-process site ejecting
about 10−2 M� of r-process material per event. These indications complement the
observation of GW170817, suggesting that CBMs are a major production site for
r-process nuclei, if not the only one.

Finally, we discuss future prospects for the research of CBMs in the context
of nucleosynthesis and EM radiation signals. Most of the expected developments
revolve around the new exciting opportunities arising with the emergence of multi-
messenger astronomy. In particular, future follow-up EM observations of other
CBM GW signals, including possibly a NS-BH merger, will provide more details
about the properties of SGRBs central engines and the production of r-process
material.
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Chapter 12
Gravitational Waves from Single Neutron
Stars: An Advanced Detector Era Survey

Kostas Glampedakis and Leonardo Gualtieri

Abstract With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important physical
mechanisms that could lead to emission of potentially detectable gravitational
radiation from isolated and accreting neutron stars. In particular we discuss the
gravitational wave-driven instability and asteroseismology formalism of the f - and
r-modes, the different ways that a neutron star could form and sustain a non-
axisymmetric quadrupolar “mountain” deformation, the excitation of oscillations
during magnetar flares and the possible gravitational wave signature of pulsar
glitches. We focus on progress made in the recent years in each topic, make a fresh
assessment of the gravitational wave detectability of each mechanism and, finally,
highlight key problems and desiderata for future work.

12.1 Introduction

September 14, 2015 marked a milestone for gravitational physics with the first direct
detection of gravitational waves (GWs) by the twin advanced LIGO observatories
(Abbott et al. 2016a). Since then, and with the additional participation of the
advanced Virgo detector, more detections have been announced (Abbott et al. 2016b,
2017a,b), with all observed signals having been identified as mergers of binary black
hole systems. Finally, it was the turn of neutron stars to be “discovered” by the

K. Glampedakis (�)
Departamento de Física, Universidad de Murcia, Murcia, Spain

Theoretical Astrophysics, University of Tübingen, Tübingen, Germany
e-mail: kostas@um.es

L. Gualtieri (�)
Dipartimento di Fisica, “Sapienza” Università di Roma, Roma, Italy

Sezione INFN Roma1, Roma, Italy
e-mail: leonardo.gualtieri@roma1.infn.it

© Springer Nature Switzerland AG 2018
L. Rezzolla et al. (eds.), The Physics and Astrophysics of Neutron Stars,
Astrophysics and Space Science Library 457,
https://doi.org/10.1007/978-3-319-97616-7_12

673

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97616-7_12&domain=pdf
mailto:kostas@um.es
mailto:leonardo.gualtieri@roma1.infn.it
https://doi.org/10.1007/978-3-319-97616-7_12


674 K. Glampedakis and L. Gualtieri

interferometric telescopes of the new GW astronomy: on August 17, 2017, the first
GW signal from neutron stars has been detected (Abbott et al. 2017c), together
with transient counterparts across the entire electromagnetic spectrum (Abbott et al.
2017d). This signal came, as expected, from the same systems that indirectly
established for the first time the very existence of gravitational radiation: binary
neutron star systems, and in particular their final GW-driven merger (Abbott et al.
2017c). In fact, these catastrophic events had already been routinely observed by
photon astronomy in the form of short gamma-ray bursts (GRBs).

Single neutron stars, the subject of this chapter, await their turn to be added to
the catalogue of observed GW sources—what is still uncertain is if this goal will
be reached by Advanced LIGO/Virgo or by the next generation instruments such as
the Einstein Telescope (ET) (Punturo et al. 2010). The term “single” comprises (1)
isolated neutron stars, that is, the bulk of the known neutron star population which
includes normal radio pulsars, old recycled millisecond pulsars (MSPs), magnetars,
etcetera, and (2) accreting systems, from which the neutron stars in low mass X-ray
binaries (LMXBs) are the ones relevant to this review.

The purpose of this chapter is to provide a 2017 status report of our understanding
of the small mosaic of known mechanisms that could turn single neutron stars into
potentially detectable sources of GWs. More specifically, we discuss (1) the GW-
driven instability of the fundamental f -mode and of the inertial r-mode (including
a basic introduction to the CFS theory of unstable oscillations) (2) the GW
asteroseismology formalism for stable and unstable f -modes (3) the different ways
that non-axisymmetric quadrupolar deformations could be induced and sustained in
neutron stars thereby making them continuous sources of GWs (4) the excitation
of magneto-elastic oscillations and GW emission produced by magnetar flares, and
finally (5) the GW detectability of pulsar glitches.

Although being mostly interested in providing a sober assessment of the
prospects for detecting GWs from these various single neutron star sources, we
also present in some detail key astrophysical “side effects” of GW emission such
as the r-mode driven spin-temperature evolution in accreting neutron stars and the
antagonism between the f -mode and magnetic dipole torque for controlling the
dynamics of neutron star merger remnants.

Given the space limitations, our discussion is, of course, far from being
comprehensive—the objective is to present and discuss key recent developments in
each research topic and give pointers for future work rather than explaining things
from scratch. References to textbooks, earlier review articles and selected research
papers are plentifully given for the reader less familiar with the topics discussed
here.

12.1.1 Summary, Conventions and Plan of This Review

Table 12.1 is a bird’s eye view of the chapter: it provides a list of the various topics
that are discussed in the following sections and of what we consider to be the most
important recent progress and open problems in each area.
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Table 12.1 Summary of topics discussed in this review

Topic Recent progress Key future goals Section

Gravitational wave
asteroseismology

Relativistic-Cowling
formulae, alternative
parametrisations based on
moment of
inertia/compactness instead
of radius

Formalism with dynamical
spacetime. Find “optimal”
set of asteroseismology
parameters

12.2

f -mode instability Relativistic-Cowling
instability windows with
realistic equation of state.
Saturation amplitude.
Application to supramassive
post-merger remnants and
constraints from short
gamma-ray bursts.
Spin-temperature evolutions
in Newtonian gravity

Models with dynamical
spacetime. Obtain saturation
amplitude using relativistic
gravity and fast rotation

12.4

r-mode instability Several r-mode unstable
systems in minimum
damping models. Upper
limits on mode amplitude
from low-mass X-ray
binaries and millisecond
pulsar data and implications.
r-mode puzzle: small
amplitude or enhanced
damping? Multifluid r-mode
modelling. Modified
instability window due to
mode resonances

Improve understanding of
“conventional” damping:
Ekman layer with elastic
crust, magnetic field and
paired matter.
Vortex-fluxtube interactions.
New saturation mechanisms

12.5

Magnetar oscillations Models of magneto-elastic
oscillations including
superfluidity, crust phases,
complex magnetic field
structures. General
relativistic
magnetohydrodynamical
simulations of magnetic field
instability

Analytical expressions for
magnetar asteroseismology
with quasi-periodic
oscillations. Models of giant
flares

12.6

Mountains Deformations of neutron
stars with exotic matter
and/or pinned superfluidity.
Constraints from short
gamma-ray bursts.
Observational evidence
suggesting the existence of
thermal mountains in
accreting neutron stars

Understanding stability of
magnetic field configurations
in neutron stars. Rigorous
magnetic field modelling in
the presence of exotic
matter. Estimates of the
actual size of thermal and
core mountains

12.7

(continued)
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Table 12.1 (continued)

Topic Recent progress Key future goals Section

Pulsar glitches Numerical simulations of
pulsar glitches. Models of
the post-glitch relaxation.
Models of collective vortex
motion using the
Gross-Pitaevskii equation;
extraction of the
gravitational wave signal

Interface between
Gross-Pitaevskii vortex
simulations and
hydrodynamical models,
including magnetic field and
crust-core coupling.
Magnetohydrodynamical
simulations of pulsar
glitches. Modelling of
post-glitch relaxation
including magnetic fields
and mutual friction

12.8

Table 12.2 Table of frequently used normalised parameters

Stellar mass M1.4 M/1.4M�
Stellar radius R6 R/106 cm

Spin period P−3 P/1 ms

Spin period derivative Ṗ−10 Ṗ /10−10

Proton fraction xp1 xp/0.01

Magnetic field Bn B/10n G

Distance D1 D/1 kpc

Moment of inertia I45 I/1045 g cm2

Several equations presented below feature physical parameters normalised to
some canonical value. The physical meaning of these parameters and their normal-
isations are summarised in Table 12.2.

Oscillation modes are assumed to be proportional to eiωt+imϕ . We also make
frequent use of the term “canonical neutron star parameters”. This refers to a non-
rotating neutron star with a typical mass M = 1.4M� and typical radius R =
12 km. Although we discuss stellar models constructed with various equations of
state (EOS) for matter, our frequently used canonical model will be that of a simple
n = 1 Newtonian polytrope.

The remainder of the chapter is structured as follows: in Sect. 12.2 we discuss
neutron star GW asteroseismology. Section 12.3 provides a basic “primer” introduc-
tion to the theory of unstable oscillation modes in rotating neutron stars. The two
most important cases of unstable modes, the f -mode and the r-mode are discussed
in detail in Sects. 12.4 and 12.5 respectively. Section 12.6 is devoted to magnetars
and reviews the properties (including the emission of GWs) of the oscillations that
are believed to be excited in these objects by their magnetic field activity. The
physics and GW detectability of neutron stars with quadrupolar deformations (i.e.
neutron star “mountains”) is discussed in Sect. 12.7. GW emission associated with
pulsar glitches is discussed in Sect. 12.8. Finally, our concluding remarks can be
found in Sect. 12.9.
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12.2 Neutron Star Asteroseismology

The premise behind the notion of neutron star GW “asteroseismology” is more
or less the same as the one of the more traditional helioseismology: use GW
observations of pulsating neutron stars as probes of their interiors. In fact, neutron
star asteroseismology is a bit more specialised: the key idea is to parametrise an
oscillation mode’s angular frequency ω and GW damping timescale τgw in terms
of the neutron star’s three bulk parameters, that is, the mass M , the radius R and
the angular frequency �. A clever combination of these parameters could then
allow the construction of “universal” (i.e. EOS-insensitive) parametrised relations.
Then, an actual observation of a pulsating neutron star, through the measurement
of the ω, τgw pair for one or more modes and the inversion of the parametric
relations, would in principle allow the inference of the three basic stellar parameters.
Moreover, if the mass of the neutron star is known, a measurement of its oscillation
modes would give direct information on the neutron star EOS: its stiffness, the
presence of hyperons/quarks, etc. (Benhar et al. 2004).

The basic idea of neutron star asteroseismology was first put forward almost
two decades ago (Andersson and Kokkotas 1998). This initial work was focused
on the asteroseismology of the fundamental f -mode and that was done for a good
reason: the f -mode is the oscillation most likely to be excited in violent processes
such as neutron star mergers or neutron star formation by supernova core-collapse.
The f -mode has the extra advantage of being a copious emitter of gravitational
radiation—the same property is responsible for the mode’s rapid damping.

The main drawback of the early astreroseismology models was the assumption
of non-rotating systems—astrophysical neutron stars always have some degree
of rotation. In fact, the most relevant scenarios from the point of view of GW
detectability of pulsation modes are likely to involve rapidly rotating systems. It
was thus imperative that the asteroseismology scheme should become “fast” so that
it could be applied to rapidly spinning neutron stars. At the same time it should be
able to adapt to the possibility of having modes growing in amplitude rather than
decaying under the emission of GWs (this is the so-called CFS instability which is
discussed in more detail in Sect. 12.3).

12.2.1 Fast Relativistic Asteroseismology

The problem of extending the asteroseismology scheme to rotating neutron stars was
tackled just a few years ago (Gaertig and Kokkotas 2011; Doneva et al. 2013). This
new effort was based on relativistic stellar models within the so-called Cowling
approximation (where only the fluid is perturbed while the spacetime metric
remains a fixed background) and was again focused on the f -mode. The resulting
parametrised formulae for ω, τgw are constructed with a two-step procedure and are
polynomial-type fits to the numerical data. The typical accuracy of these fits lies
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in the range between few percent and few tens of percent, the larger error typically
associated with high spin rates.

In the first step we have an expression for the mode’s frequency ω0 of a non-
rotating star of the same gravitational mass as the rotating one (Andersson and
Kokkotas 1998; Gaertig and Kokkotas 2011; Doneva et al. 2013),

ω0(kHz)

2π
= κ# + μ#

(
M1.4

R3
6

)1/2

. (12.1)

This fit is clearly inspired by the simple Newtonian relation between the f -mode’s
frequency and the mean stellar density, ω ∼ ρ1/2. For the most interesting case of a
quadrupolar (# = 2) mode the numerical coefficients are (κ2, μ2) = (0.498, 2.418).

In the second step, the mode frequency ωr as measured in the stellar rotating
frame is expressed in terms of� normalised by the mass shedding angular frequency
�K (i.e. the Kepler limit). The resulting parametric formula is the quadratic
expression (Gaertig and Kokkotas 2011; Doneva et al. 2013),

ω
u,s
r

ω0
= 1+ a

u,s
#

�

�K
+ b

u,s
#

(
�

�K

)2

, (12.2)

where the labels u, s stand for the m > 0 (retrograde and potentially unstable)
and m < 0 (prograde and stable) f -mode branches, respectively. The stable
branch turns out to be the one admitting the easiest parametrisation since all
relevant m = −# modes are well approximated by the single pair of coefficients
(αs#, b

s
#) = (−0.235,−0.358). In contrast, the unstable branch requires different

coefficients for each m = # multipole. For example, for the lowest multipole we
have (au2 , b

u
2) = (0.402,−0.406). In all cases the mode frequency in the inertial

frame can be recovered with the help of the general formula,

ωi = ωr −m�. (12.3)

The parametrisation of the f -mode’s damping (or growth) timescale proceeds along
the same lines. First, the damping timescale τ0 of the non-rotating system’s mode is
parametrised as:

1

τ0(s)
= M#+1

1.4

R#+2
6

[
ν# + ξ#

(
M1.4

R6

)]
. (12.4)

This expression makes direct contact with the f -mode timescale of a Newtonian
uniform density star τgw ∼ R(R/M)#+1 (Detweiler 1975). For the particular case
of the # = 2 multipole the numerical coefficients are (ν2, ξ2) = (78.55,−46.71)
(Doneva et al. 2013).

The timescale τgw for the modes of the rotating system are polynomial expan-
sions with respect to the frequency ratio ωr/ω0 (or ωi/ω0). For the stable f -mode
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branch we have (Gaertig and Kokkotas 2011; Doneva et al. 2013)

τgw

τ0
=
[
c# + d#

(
ωs
r

ω0

)
+ e#

(
ωs
r

ω0

)2

+ f#

(
ωs
r

ω0

)3
]2#

, (12.5)

where, unlike the previous frequency fit, different multipoles require different
sets of coefficients. For example, for the m = −2 mode these take the values
(c2, d2, e2, f2) = (−0.127, 3.264,−5.486, 3.349).

This time it is the unstable branch that is well approximated by a single formula
for all # = m multipoles (Gaertig and Kokkotas 2011; Doneva et al. 2013)

τgw

τ0
= sgn(ωu

i )

(
ωu
i

ω0

)−2#
[

0.9− 0.057

(
ωu
i

ω0

)
+ 0.157

(
ωu
i

ω0

)2
]−2#

, (12.6)

where we can notice the appearance of the inertial frame frequency ωi . This
expression has the CFS instability of the f -mode (see Sect. 12.3) hardwired in
it since the change of sign in τgw is synced with the change of sign in ωi (or,
equivalently, with the transition of the mode’s pattern speed from retrograde to
prograde with respect to the stellar rotation, see Eq. (12.14) below).

12.2.2 R or I Asteroseismology?

The previous f -mode formulae are constructed from the basic three parameters
M,R and �. However, this may not be, after all, the best choice of parame-
ters for building “universal” asteroseismology expressions. Seeking an optimal
parametrisation with a higher degree of EOS-independence than the previous
results, recent work has followed an alternative approach that relies on the use of
the stellar moment of inertia I instead of the radius R. The original f -mode model
for non-rotating stars (Lau et al. 2010) was subsequently generalised to rapidly
rotating systems by Doneva and Kokkotas (2015). The final outcome of that work
comprises expressions that directly relate the f -mode’s inertial frame frequency and
damping/growth time to M,�, I without the need to involve the mode properties
of a non-rotating star. We thus have for the stable and unstable f -mode branches,

M1ω
u
i (kHz) = au# + bu#M1�1 + cu# (M1�1)

2 +
[
du# + eu#M1�+ f u

# (M1�)
2
]
η,

(12.7)

M1ω
s
i (kHz) = as# + bs#M1�1 +

(
ds# + es#M1�1

)
η, (12.8)

where M1 = M/M�, �1 = �/kHz and the effective compactness parameter

η2 = M3
1 I
−1
45 , (12.9)
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serves as a proxy for the moment of inertia.1 The numerical coefficients appearing
in (12.7), (12.8) are tabulated in Ref. Doneva and Kokkotas (2015) and of course
should not be confused with the ones of the preceding section. For the m = ±2
modes these coefficients take the values:

(au2 , b
u
2 , c

u
2 , d

u
2 , e

u
2 , f

u
2 ) = (−1.76,−0.143,−0.00665, 3.64,−0.0436, 0.002),

(12.10)

(as2, b
s
2, d

s
2, e

s
2) = (−1.66,−0.249, 3.66, 0.0633). (12.11)

Moving on to the τgw timescale, only the formula for the potentially unstable
branch has been constructed (Doneva and Kokkotas 2015):

1

τgw(s)
= η2(1−#)

M1

[
gu#M1

(
ωu
i

kHz

)
+ hu#M

2
1

(
ωu
i

kHz

)2
]2#

, (12.12)

where for the # = m = 2 mode the coefficients take the value (gu2 , h
u
2) =

(0.644, 0.0207).
Clearly, these “I -asteroseismology” relations are algebraically simpler than their

“R-asteroseismology” counterparts of the preceding section. This is combined with
an enhanced universality with respect to the EOS of matter, although at the price
of a lower overall accuracy caused by the adoption of the Cowling approximation
(Doneva and Kokkotas 2015).

12.2.3 Future Directions

As described in the preceding sections, the last few years have seen an impressive
advance in the modelling of f -mode asteroseismology in neutron stars. There is,
however, much room for further improvement or extension. The main simplification
affecting the accuracy of the entire asteroseismology structure is the adoption of the
Cowling approximation in the numerical computation of the f -modes of relativistic
stars. The error caused by this approximation can be easily gauged by calculating
the f -mode frequency of a uniform non-rotating star in Newtonian gravity. The
outcome of this straightforward exercise is ω2 = 8πGρf#/3 with f# = #/2 and
f# = #(# − 1)/(2# + 1) when the Cowling approximation is used or not used,
respectively. Although this simple calculation slightly overestimates the Cowling-
induced error (which is typically ∼ 10− 30 % ) it does tell us that the approximate
result systematically lies above the exact one and that higher multipoles are less
affected. These same trends are indeed found in more rigorous general relativistic

1As pointed out in Doneva and Kokkotas (2015), this asteroseismology formalism could equally
well have been based on the compactness M/R rather than η.
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(GR) f -mode calculations with or without the Cowling approximation (Zink et al.
2010). For a given error in the mode frequency the corresponding error in the
GW timescale τgw is much more pronounced because of the steep dependence of
this parameter with respect to ω. This is clearly exemplified by comparing the
expressions for the # = 2 f -mode damping timescale in non-rotating stars. The
coefficients in the Cowling-approximated formula (12.4) are about a factor three
larger than the ones appearing in the non-Cowling expressions of Andersson and
Kokkotas (1998), Gaertig and Kokkotas (2011). This large mismatch is caused by
the ∼ ω2#+2 dependence of the GW damping rate (see Eq. (12.15) below) and the
aforementioned error in the mode frequency.

The upshot of this discussion is that a further improvement of the asteroseis-
mology scheme should be based on the removal of the Cowling approximation and
the use of full GR computations of f -modes in rapidly rotating stars. This effort
could be combined with further experimentation with the variables used in the
asteroseismology formulae along the lines discussed in this section. For example,
is � the “best” parameter for representing rotation or is there a more suitable
parametrisation (e.g. the Kerr parameter cJ/GM2, where J is the stellar angular
momentum)?

Neutron star asteroseismology should also be extended beyond the f -mode.
Indeed, as the modelling of neutron stars improves including more and more
physics, new classes of modes appear. Although the f -mode is likely to be the most
relevant for GW detection at the birth and at the death of a neutron star, other modes
could be relevant at different stages of its life. Magneto-elastic oscillations—a class
of modes associated to the elastic strain of the crust and to the magnetic field in the
crust and in the core—can be excited in giant flares of strongly magnetized neutron
stars; they are discussed in detail in Sect. 12.6.1. Moreover, when a superfluid
phase is present in the neutron star core, the multiplicity of the oscillation modes
doubles (see the discussion at the end of Sect. 12.5.5). At characteristic values of
the temperature (of the order of ∼ 108 K), the damping times of these “superfluid”
modes can become small enough to make them—at least in principle—efficient
sources of GWs (Gualtieri et al. 2014). Although the superfluid phase is not present
in the most violent stages of the neutron star life, superfluid g-modes (Gusakov
and Kantor 2013; Kantor and Gusakov 2014; Passamonti et al. 2016; Dommes and
Gusakov 2016) can be unstable by convection in the first year of neutron star’s
life, or—if hyperons are present—can be excited in neutron star’s coalescences;
superfluid r-modes (Gusakov et al. 2014a,b) will be discussed in Sect. 12.5.5.

Neutron star asteroseismology requires the knowledge of analytic expressions
of the frequencies and damping times of the modes in terms of the fundamental
parameters of the star, such as those in Eqs. (12.1), (12.2), (12.4)–(12.8), (12.12). In
recent years, these quantities have been computed in specific models for magneto-
elastic modes and superfluid modes, but we still need a better understanding of the
underlying physics, in order to derive analytic expressions useful for asteroseismol-
ogy.
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12.3 Unstable Oscillation Modes in Rotating Stars: A CFS
Theory Primer

The theory of instabilities in rotating self-gravitating fluid systems came of age
in the 1970s with the seminal work of Chandrasekhar (1970), Friedman and
Schutz (1978a,b), Friedman (1978) but its seeds had been sown much earlier with
the development and completion of the Newtonian theory of classical ellipsoids
(Chandrasekhar 1969). Nowadays this framework is widely known as the CFS
theory or CFS instability mechanism and includes two types of instabilities, the
secular and the dynamical. In reality they all are rotational “frame-dragging”
instabilities that are based on the notion of perturbations with a conserved canonical
energy that can become zero (dynamical case) or even negative (secular case)
above a certain rotational frequency threshold. Apart from this similarity the two
instability types are formally very different: the secular instability requires the fluid
to be coupled to some dissipative mechanism such as GWs or viscosity while the
dynamical instability can take place in an entirely dissipationless system.

Our own discussion of the CFS theory is focussed on the GW-driven secular
instability of normal modes which is the most relevant mechanism for “normal”
neutron stars. In contrast, the dynamical instability, which is briefly discussed at
the end of this section, is known to require the presence of differential rotation
in the system (unless we consider less realistic, uniform density stellar models)
and therefore can take place for very brief periods of time and in very special
environments such as neutron star mergers. Given the “primer” character of this
section our presentation of the CFS theory is very far from being comprehensive;
the reader can find more detailed reviews of the subject in Refs. Andersson and
Kokkotas (2001), Andersson (2003), Friedman and Stergioulas (2013), Andersson
and Comer (2007).

The rotational threshold for the onset of the secular CFS instability marks the
transition of an initially counter-moving mode to a co-moving one as perceived by
an inertial observer. In slightly more technical terms, a mode becomes CFS-unstable
when its pattern speed (that is, the azimuthal propagation speed of a constant phase
wavefront),

σp = dϕ

dt
= −ωi

m
, (12.13)

changes sign, going from negative to positive. This is achieved when the stellar
angular frequency � exceeds the mode’s pattern speed in the rotating frame (see
Eq. (12.3)):

� >
ωr

m
. (12.14)

This condition is the first of the two prerequisites for triggering the secular
instability. The second one is the coupling of the oscillation to a dissipative
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mechanism which would allow the mode’s negative canonical energy to grow (in
absolute value) while more and more positive energy is removed from the system.
Assuming coupling to GWs, the radiated power Ėgw is equal and opposite to the
change in the mode energyEmode and can be calculated with the standard multipole
moment formula (Thorne 1980):

Ėgw = −Ėmode = ωr
∑
#≥2

ω2#+1
i N#

[
|M#m|2 + |S#m|2

]
, (12.15)

where M#m,S#m are the mass and current multipoles respectively and N# a positive
constant. In fact, this same formula allows a quick “rediscovery” of the CFS
instability since it predicts Ėmode > 0 for ωi < 0, i.e. the criterion (12.14). The
GW timescale (for both stable and unstable modes) is defined as (see, e.g. Ipser and
Lindblom 1991)

τgw = 2Emode

Ėgw
. (12.16)

It should be emphasised that the CFS instability is not strictly a GW-driven effect;
electromagnetic radiation and/or normal shear viscosity can also drive unstable
oscillations2 but as it turns out gravitational radiation is almost always the dominant
mechanism. In a realistic scenario, an oscillation mode can become CFS-unstable
provided the mode-dragging condition (12.14) is satisfied and the growth rate due
to GW emission is faster than the viscous damping rate. The damping timescale
associated with a given viscosity mechanism is defined as

τvisc = 2Emode

Ėvisc
. (12.17)

where Ėvisc is the damping rate. In the most common case where several dissipative
mechanisms are operating simultaneously the viscous timescales are combined
according to the “parallel resistors” rule.

The resulting instability parameter space is commonly depicted as a “window”
in the �−T plane and is typically a V-shaped region limited by bulk/shear viscosity
at high/low temperatures and by the spin threshold (12.14) from below. Note that in
this review we shall always consider (unless otherwise specified) the standard form
for these viscosities, namely, shear viscosity due to electron-electron scattering and
bulk viscosity due to the modified URCA reactions (the corresponding viscosity

2We note with some amusement that the literature contains a mechanical pendulum analogue of
the viscosity-driven CFS instability in a 1908 paper by Lamb (1908). Another occurrence of a
CFS-like instability in the context of wave dynamics can be found in the 1974 textbook by Pierce
(1974, Chapter 11).
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coefficients can be found in Sawyer (1989), Andersson et al. (2005a)). The boundary
of the instability window (also known as the critical curve) is then defined by,

τ−1
gw = τ−1

sv + τ−1
bv , (12.18)

where τsv and τbv are respectively the shear and bulk viscosity damping timescales
and the growth timescale τgw is hereafter taken to be a positive parameter. The
extension of (12.18) to cases with additional dissipation is straightforward.

Among the various neutron star oscillation modes, the ones most promising to
become potential sources of GWs and play an important role in the dynamics of
neutron stars via the CFS mechanism are the fundamental f -mode and the inertial
r-mode. Appropriately, these have been the subject of most work in this area and
we discuss them in some detail in Sects. 12.4 and 12.5.

The f -mode is also the one associated with the dynamical CFS instability3 (for
that reason it is nicknamed the “bar-mode” instability from the dominant # = |m| =
2 multipole). The instability erupts once the system reaches a critical value βd of
the rotational to gravitational binding energy ratio β = T/|W |. Mathematically
this amounts to the merger of the m = ±# mode frequencies. The βd threshold
is significantly higher than the corresponding βs for secular mode instabilities and
for realistic models of rigidly rotating neutron stars it lies beyond the Kepler break-
up limit. What this means in practice is that the dynamical f -mode instability is
likely to appear in systems that are formed from the outset with fast and differential
rotation so that β > βd . This could happen in the immediate aftermath of binary
neutron star merger—a scenario that is corroborated by numerical simulations, for
some relatively recent work see e.g. Baiotti et al. (2007), Manca et al. (2007), Franci
et al. (2013). The ensuing bar mode instability acts as a potent source of gravitational
radiation but its duration is severely limited by the resulting rapid spin-down of the
merger remnant and the quenching of differential rotation by the magnetic field
(Shapiro 2000).

The neutron star arsenal of CFS instabilities can be more extensive than what
has been described so far if we allow for a high degree of differential rotation
or a superfluid component. In the former case a low-β (i.e. β � βd ) dynamical
instability may arise via the system’s quadrupole f -modes. This shear instability
was first stumbled upon in numerical studies of the dynamics of differentially
rotating neutron stars (Shibata et al. 2002) and is akin to shear instabilities in
accretion disks. Since then low-β instability has been seen to be excited in core-
collapse numerical simulations (see e.g. Kuroda and Umeda 2010). Follow up work
(Watts et al. 2005; Passamonti and Andersson 2015) established the instability’s

3Remarkably, a similar CFS dynamical instability is known to exist in an entirely different context,
namely, that of a rotating liquid drop with surface tension playing the role of gravity. Laboratory
experiments have probed the impact of the instability on the shape of the drop and have revealed a
rich phenomenology, see e.g. Brown and Scriven (1980), Hill and Eaves (2008).
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intimate connection with the presence of a corotation band (that is, a region where
the mode’s pattern speed matches the local �) in the stellar interior.

The presence of a superfluid opens the possibility for another type of r-mode
CFS instability. This newly discovered “two-stream” instability (Glampedakis and
Andersson 2009; Andersson et al. 2013) requires a spin lag between the neutron
and proton fluids and is driven by vortex mutual friction instead of gravitational
radiation. Although this instability could be a viable mechanism for triggering pulsar
glitches (Glampedakis and Andersson 2009) it remains to be seen if it is of any
relevance as a source of GWs.

12.4 The f -Mode Instability

12.4.1 Newtonian Origins and Recent Developments

The f -mode was chronologically the first to be studied in relation with the CFS
instability, with initial work dating back to the 1980s (Friedman 1983; Ipser and
Lindblom 1989, 1990, 1991). The main conclusion of those early papers was rather
disappointing, predicting that in Newtonian stellar models and under the dissipative
action of standard shear and bulk viscosity the instability sets in at a rotation rate
very close to the Kepler limit, typically � ≈ 0.95�K. Subsequent work (Lindblom
and Mendell 1995) showed that the instability is essentially wiped out in neutron
stars with a superfluid core as a result of the dissipative coupling between the
superfluid’s vortex array and the electrons (this is what we call “standard mutual
friction” Alpar et al. 1984; Andersson et al. 2006). This result has been considered
as a showstopper for the f -mode instability since neutron stars are expected to
become superfluid very soon after they are formed. This leaves as the only realistic
candidates for harbouring unstable f -modes newly formed neutron stars with hot
non-superfluid matter (and obviously with fast rotation).

The traditional astrophysical scenario where these requirements could be met
is that of neutron star formation in the aftermath of a core-collapse supernova.
The f -mode GW detectability of such an event was first analysed in detail in Lai
and Shapiro (1994). This scenario is somewhat less favoured nowadays due to the
uncertainty in forming near-Kepler limit spinning neutron stars (see Stergioulas
(2003) and references therein). The alternative scenario that has attracted much
attention in the recent years is that of binary neutron star mergers—a posterchild
source of GWs. These violent events may provide the only suitable arena for the
occurrence of the f -mode instability by playing the role of cosmic factories of
metastable supramassive neutron stars.4 As we are about to see in the following
section it is this property of high mass, in combination with fast rotation and

4The term “supramassive” refers to a rapidly rotating neutron star with mass above the maximum
allowed mass for spherical non-rotating neutron stars. The excess mass is supported by rotation
which means that a supramassive system is dynamically stable only above a certain spin rate.
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relativistic gravity, that makes these systems prime candidates for harbouring
unstable f -modes.

But before opening the discussion on the f -mode instability in relativistic stars
it is worth reviewing the recent progress achieved with the use of the “outdated”
Newtonian framework. The first problem to be addressed was that of the coupled
spin-temperature evolution of a neutron star undergoing an f -mode instability
(Passamonti et al. 2013). Using a formalism similar to that previously employed
for the r-mode instability (Owen et al. 1998), this work considered hot and rapidly
rotating newly formed systems entering the instability window as the temperature
drops below ∼ 1010 K—this value marks the regime where bulk viscosity becomes
negligibly weak. The unstable f -mode is promptly saturated, at which point the
star begins to spin down with emission of gravitational radiation at almost constant
temperature until it exits the instability window.

A representative example of this evolution is shown in Fig. 12.1 for the most
unstable # = m = 4 f -mode of a massive M = 1.98M� stellar model with a
n = 0.62 polytropic EOS. A first noteworthy feature of these f -mode trajectories
is that the system is unlikely to ever enter the region where neutrons pair to form
a superfluid phase (this is expected to happen at a temperature T � 109 K) and
the instability is suppressed by vortex mutual friction. Even more important is the
interplay between the stellar magnetic field and the unstable f -mode. A neutron
star with surface field B � 1012 G will evolve along a shorter spin-temperature
trajectory (see right panel of Fig. 12.1) with its spin evolution mostly driven by
the magnetic dipole radiation rather than gravitational radiation, hence leading to
a deteriorated GW detectability. A similar situation may arise if in parallel with
the f -mode there is also an unstable r-mode present in the system—a not unlikely
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Fig. 12.1 f -mode spin-temperature evolution: adapted from Ref. Passamonti et al. (2013), this
figure displays the coupled � − T evolution of a Newtonian n = 0.62 polytropic model with
gravitational mass (in the non-rotating limit) M = 1.98M� under the combined influence of an
unstable # = m = 4 f -mode and magnetic dipole torque. The thick solid curve represents the
instability window (accounting for standard shear and bulk viscosity but not for superfluid mutual
friction). Left panel: the various evolution trajectories correspond to different initial� and a surface
dipole field B = 1012 G. Right panel: the same initial � values as before for a surface dipole field
B = 1013 G
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scenario given the much wider instability window of the latter, see Ref. Passamonti
et al. (2013) for more details.

A second key recent development concerns saturation amplitude (or equivalently
saturation energy) of the instability. This arduous calculation was undertaken in
Pnigouras and Kokkotas (2015, 2016) by means of a nonlinear mode-coupling
model similar to the one that had been employed before for the r-modes (see
Sect. 12.5) but with the added property of non-uniform, stratified matter. According
to the aforementioned work the mode’s energy is primarily drained by the non-
linear coupling to g-modes; this leads to a saturation energy that may fluctuate
considerably across the instability’s � − T parameter space. A representative
maximum value for the saturation energy can be taken to be Esat ∼ 10−6Mc2

(Pnigouras and Kokkotas 2015, 2016). This result has obvious implications for the
GW detectability of unstable f -modes and will be discussed in more detail below.

12.4.2 The f -Mode Instability in Relativistic Stars:
A Story of Revival?

The last few years have seen a renewed interest in the f -mode instability with
the objective of revising the earlier Newtonian results using relativistic and rapidly
rotating neutron star models. This effort was spearheaded by Ref. Gaertig et al.
(2011) which considered polytropic models and relativistic gravity in the Cowling
approximation. These first relativistic results were promising, predicting a revised
f -mode growth timescale about an order of magnitude shorter than the Newtonian
value for the same canonical stellar parameters. Accordingly, the instability window
was found to be larger than its Newtonian counterpart, with the # = m = 4 being the
most unstable multipole, see Fig. 12.2 (left panel). Follow-up work (Doneva et al.
2013) established that the combination of a realistic EOS model with a higher stellar
mass (≈ 2M�) can support an even wider instability window—this is shown on the
right panel of Fig. 12.2 and can be directly compared against the Newtonian window
of Fig. 12.1 (which corresponds to a Newtonian polytrope of the same mass).

These calculations allow us to draw a clear conclusion: for a given rotation �,
massive relativistic systems (which are also the most compact ones) have signif-
icantly enhanced f -mode instability properties as compared to their Newtonian
and/or less massive counterparts.

The most dramatic manifestation of this conclusion may take place in the
immediate aftermath of the merger of a binary neutron star system: for the expected
range of initial masses the merger may not immediately produce a black hole but,
instead, lead to a transient phase of a supramassive (M ∼ 2.5M�) and � ≈ �K
neutron star remnant.5 Besides their central role in GW astronomy, these mergers
have come to be seen as the leading theoretical model for the central engine

5A relatively low mass remnant may settle down to a normal neutron star existence without ever
collapsing to a black hole.
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Fig. 12.2 Relativistic f -mode instability window. Left panel: this figure, taken from Ref. Gaertig
et al. (2011), shows the f -mode instability window (solid curves) corresponding to the first
three multipoles # = m = 2, 3, 4 and for a n = 0.73 relativistic polytrope with parameters
M = 1.48M� and R = 10.47 km (in the � = 0 limit). The shaded area indicates the parameter
space where neutron superfluidity is present (with a fiducial onset temperature Tcn = 109 K ).
The critical curves are discontinuous at Tcn as a result of the use of different shear viscosity
coefficients in the superfluid and normal region. The dashed curves show the instability window
of the # = 4 multipole with vortex mutual friction accounted for and the drag coefficient shifted
from its canonical value R ≈ 10−4 (which leads to a fully suppressed instability). Right panel:
the instability window for the same f -mode multipoles (this time assuming non-superfluid matter)
and for a neutron star model with a realistic EOS (in this particular example APR) and parameters
M = 2M�, R = 10.88 km, see Ref. Doneva et al. (2013)

powering short GRBs (see e.g. Dai and Lu 1998; Zhang and Mészáros 2001;
Rowlinson et al. 2013). The supramassive remnant, which now takes the form of a
proto-magnetar as a result of strong magnetic field amplification (see e.g. Rezzolla
et al. 2011; Kiuchi et al. 2014; Giacomazzo et al. 2015), is believed to power
the burst’s late-time emission and is associated with the X-ray plateau and power-
law tail seen in the light curves of several of these events (Rowlinson et al. 2013;
Metzger and Piro 2014). According to the GRB data, the remnant’s lifetime spans a
range 102 − 105 s which is determined by the spin-down timescale due to magnetic
dipole radiation (the same mechanism is responsible for powering the system’s X-
ray emission).

It is during this X-ray “afterglow”/supramassive phase where the f -mode
instability is most likely to take place and become a potentially strong source of
GWs. Viscosity is not likely to be an impeding factor in these circumstances since
the system is expected to cool below 1010 K very shortly after the supramassive
remnant has been formed, see e.g. Lasky and Glampedakis (2016). This scenario
has been put forward in Ref. Doneva et al. (2015) and is backed up by f -mode
calculations that suggest surprisingly short growth timescales, τgw ∼ 10 − 100 s,
see Fig. 12.3 (left panel). However, a short τgw does not necessarily translate
into a conspicuous f -mode GW signal. To what extent post-merger supramassive
remnants could be realistic targets for present and next generation GW detectors is
discussed in more detail in the following section.
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Fig. 12.3 f -mode instability in supramassive neutron stars. Left panel: this figure is adapted from
Ref. Doneva et al. (2015) and shows the f -mode growth timescale (for the first two multipoles and
assuming a WFF2 EOS stellar model) as a function of the supramassive neutron star’s mass. Right
panel: the GW signal-to-noise ratio as a function of the surface dipole field for a supramassive
neutron star located at a fiducial distance 20 Mpc, spinning down under the combined influence of
the f -mode instability (saturated at Esat = 10−6Mc2) and magnetic dipole radiation, for different
choices of baryonic mass and EOS (figure adapted from Doneva et al. (2015))

12.4.3 The Observability of the f -Mode Instability

The overall amplitude of the f -mode signal is limited by the distance of the
source and the mode’s maximum saturation amplitude. As we have already seen,
the latter parameter was recently obtained and expressed as a saturation energy,
Esat ∼ 10−6Mc2 (Pnigouras and Kokkotas 2015, 2016). A perhaps more intuitive
way to quantify this result is via the f -mode-induced ellipticity in the stellar shape.
A back-of-the-envelope calculation leads to Lasky and Glampedakis (2016),

δR

R
∼
(
Esat

Mc2

)1/2(
cR

GM

)1/2

, (12.19)

which for a typical neutron star compactness returns δR/R ∼ 10−3. In other words,
the mode gets saturated at a “linear” level. The GW observability of an unstable
f -mode saturated at this maximum amplitude is shown in Fig. 12.3 (right panel)
in the form of a signal-to-noise ratio (SNR) for the Advanced LIGO/Virgo and ET
detectors as a function of the surface dipole field (Doneva et al. 2015). Detectability
is strongly diminished in systems with magnetar-like fields for the simple reason
that the spin-down timescale is controlled by magnetic dipole radiation and is
much shorter than the duration of a GW-driven spin-down (see also Fig. 12.1). Less
magnetised systems with B � 1014 G are likely to be marginally detectable by
Advanced LIGO but should be “in the bag” for ET.

A more empirical assessment of the f -mode’s GW observability can be made
with the help of the short GRB X-ray data (Lasky and Glampedakis 2016). The



690 K. Glampedakis and L. Gualtieri

∼ t−2 late time decay profile seen in several light curves of these events can be taken
as evidence of an electromagnetic radiation dominated spin-down, in accordance
with the GRB proto-magnetar model. This information, in combination with the
observed duration of the X-ray plateaus, can be used to set upper limits in the
saturation amplitude of unstable f -modes. Interestingly, the resulting limit is similar
to the theoretically predicted maximum amplitude—this result suggests that the f -
mode instability could in principle play an important role in the dynamics of the
post-merger remnant. Unfortunately, the predicted f -mode detectability is rather
pessimistic even for ET, limited by the shortness of the spin-down timescale and the
large distances (� 500 Mpc) associated with short GRBs.

12.4.4 Future Directions

The f -mode calculations discussed in the preceding sections were carried out using
the Cowling approximation. We have already pointed out in a previous section how
this approximation affects the f -mode asteroseismology formalism. As far as the
f -mode instability is concerned, it is known (Zink et al. 2010; Yoshida 2012) that
the Cowling approximation makes relativistic stars less prone to the CFS instability
by increasing the rotation threshold (12.14). It is therefore expected that the f -mode
instability in neutron star models with fully relativistic dynamical spacetime will be
enhanced but a detailed quantitative calculation of this modification is still lacking.

Another desideratum in this area should be the further improvement in the
modelling of the f -mode’s non-linear saturation physics. The very recent state-
of-art calculation of Pnigouras and Kokkotas (2015, 2016) is “primitive” in the
sense that it is based on a Newtonian framework and a slow rotation approximation.
Taking this calculation to the next level (with relativistic gravity and/or fast rotation)
is likely to prove a very challenging—but necessary—endeavour.

Finally, it should be borne in mind that the f -mode instability window could be
significantly modified by viscosity due to the presence of exotic phases of matter in
the interior of neutron stars, such as hyperons and quarks. Although this scenario has
been exhaustively explored in the context of the r-mode instability (see Sect. 12.5)
very little is known about its impact on the f -mode instability.

12.5 The r-Mode Instability

The discovery of the inertial r-mode CFS instability in 1998 came as something of
a surprise to the neutron star community (Andersson 1998; Friedman and Morsink
1998). Since then this instability has received the lion’s share of the published work
on the subject of neutron star oscillations as a consequence of its potentially key role
in the spin evolution of neutron stars and as a promising source of GWs (for early
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comprehensive reviews on the subject see Andersson and Kokkotas 2001; Friedman
and Stergioulas 2013; a more specialised recent review can be found in Haskell
(2015)). Accordingly, this r-mode section occupies a central place in this review.

Two key characteristics are associated with the r-mode instability:

(1) the mode frequency in the rotating frame is

ωr = 2m�

#(#+ 1)
, (12.20)

so that with dissipation switched off, the mode becomes CFS-unstable as soon
as the star acquires rotation (that is, the condition (12.14) is automatically
satisfied for any �). With dissipation restored, the resulting � − T instability
window is in general quite large.

(2) the mode’s predominant axial geometry implies a nearly horizontal fluid flow
pattern and leads to GW emission dominated by the current multipole S22
rather than the mass multipoles. The resulting growth timescale τgw exhibits
a characteristic ∼ �−6 dependence and is very short. For a canonical n =
1 Newtonian polytropic star this is Lindblom et al. (1998), Andersson and
Kokkotas (2001),

τgw ≈ 50M−1
1.4R

−4
6 P 6−3 s. (12.21)

The two above properties alone are sufficient to guarantee the astrophysical
relevance of the r-mode instability. In addition, practitioners of neutron star
dynamics enjoy the luxury of being able to do most of r-mode physics within a New-
tonian/slow rotation framework rather than having to struggle with the complexity of
rapidly rotating GR stars (as it was the case for the f -mode instability). Nonetheless,
relativistic r-mode calculations have been performed (Lockitch et al. 2001; Ruoff
and Kokkotas 2001; Yoshida and Lee 2002; Lockitch et al. 2003; Idrisy et al. 2015)
and have demonstrated the corrections to the Newtonian mode eigenfunction GW
growth timescale to be typically very small. At a qualitative level, GR changes the
purely axial slow-rotation Newtonian r-mode into an axial-led inertial mode—this
is similar to the modification caused by fast rotation in Newtonian theory. More
pronounced is the relativistic correction to the mode frequency which is of the order
of∼ 20%. This is large enough to be accounted for in searches for GW signals from
unstable r-modes (Owen 2010). The r-mode’s insensitiveness extends to variations
in the EOS of matter as well. This has been demonstrated by the very recent analysis
of Idrisy et al. (2015) and is in agreement with earlier investigations that made use
of polytropic models (Lockitch et al. 2003). The upshot is that r-mode calculations
based on a canonical polytropic Newtonian model (or even a uniform density model)
are sufficiently robust and accurate for most practical applications. This will be our
benchmark model for the reminder of our discussion of the r-mode instability unless
otherwise specified.
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12.5.1 r-Mode Phenomenology

Most of the uncertainty related to the r-mode instability has to do with its damping.
In a “minimum physics” (although not necessarily realistic!) model that assumes
dissipation only due to standard shear and bulk viscosity the resulting instability
window overlaps with the box-shaped region occupied by the known population of
rapidly rotating neutron stars in LMXBs and MSPs. This r-mode window is shown
in Fig. 12.4, where we have also included LMXB data tabulated in Mahmoodifar and
Strohmayer (2013), Ho et al. (2011) (to be discussed below). The striking feature
of Fig. 12.4 is that several known neutron stars reside well inside the minimum
damping window and therefore should harbour unstable r-modes. This observation
forms the basis of what we shall call the “r-mode puzzle” in the following section.

The spin distribution of these neutron stars has been something of a mystery since
under the unhindered action of accretion, LMXBs (and their MSP descendants)
should have been expected to straddle the Kepler frequency limit, fK � 1 kHz (see
also e.g. the discussion in Haskell et al. (2012)). The apparent spin cut-off at a much
lower frequency has been taken as evidence of the presence of a spin-down torque
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Fig. 12.4 r-mode instability window. This figure shows the r-mode spin-temperature instability
window (in terms of the spin frequency fspin = �/2π) assuming a canonical neutron star model
and accounting for standard shear (blue curve) and bulk (green curve) viscosity. The corresponding
viscous damping timescales were taken from Lindblom et al. (1998) and Andersson and Kokkotas
(2001) while Eq. (12.21) was used for the growth timescale. The shaded area represents the region
of r-mode stability. Besides the minimum damping window, the figure also includes the critical
curve due to Ekman boundary layer damping (red dashed curve) which is discussed in Sect. 12.5.6.
The data points represent LMXBs with known spin frequencies. The core temperature is inferred
by flux measurements during phases of quiescence Mahmoodifar and Strohmayer (2013) (filled
squares and triangles for upper limits) or is theoretically predicted assuming a combined r-mode
spin and thermal equilibrium during phases of accretion Ho et al. (2011) (open diamonds and
circles for cooling dominated by mURCA reactions and Cooper pair processes respectively) see
Sect. 12.5.3 for details
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that counteracts accretion. A suggestion that has attracted much attention since its
conception is that of a GW torque supplied either by a deformation in the stellar
shape (i.e. a neutron star “mountain”) or an unstable oscillation mode (Papaloizou
and Pringle 1978; Bildsten 1998a; Andersson et al. 1999). This idea obviously
combines well with the minimum dissipation r-mode model but we should not be
too hasty in drawing conclusions. Spin equilibrium in LMXBs could be achieved
by an alternative non-GW mechanism, namely, the coupling of the stellar magnetic
field with the accretion disk (Ghosh and Lamb 1979; Wang 1995; Rappaport et al.
2004; Andersson et al. 2005b) and it is here fitting to open a parenthesis and discuss
it.

In the disk coupling model the global stellar magnetic field threads the material
of the disk and the field lines, being simultaneously anchored in the disk and on the
stellar surface, provide a very efficient braking mechanism. With the input of canon-
ical surface dipole fields, B ∼ 108 − 109 G, and reasonable physical assumptions
the predictions of the available phenomenological disk coupling models compare
fairly well with LMXB spin data (Andersson et al. 2005b; Haskell and Patruno
2011; Patruno and Watts 2012) thus dispelling much of the mystery behind their spin
distribution cut off. Although this is compelling evidence in favour of these models
it is certainly premature to shelve the alternative GW-based mechanisms. In fact,
recent work (Bhattacharyya and Chakrabarty 2017; Bhattacharyya 2017) suggests
that the transient nature of accretion could seriously weaken the efficiency of the
disk coupling model thus calling for an additional spindown torque. What can be
said with certainty is that the existing data do not exclude the realistic possibility of
having some r-mode activity (or indeed a neutron star mountain) in LMXB systems
that could otherwise be dominated by magnetic disk coupling or by magnetic dipole
spin-down when in quiescence. The disk coupling model does, however, remove the
need to cling to solely GW-based spin equilibrium models. With this observation in
mind we can resume our main r-mode discussion.

Once inside the instability window, the r-mode drives a coupled spin-temperature
evolution the details of which are largely determined by the maximum (saturation)
value of the mode amplitude αr . This dimensionless parameter is commonly defined
in the literature via the velocity field of the dominant # = mmode (Owen et al. 1998)

δv = αr

( r
R

)#
�RYB

##e
iωr t , (12.22)

where YB
#m is a vector spherical harmonic of the magnetic type. More simply, we

can think of the amplitude as the ratio αr ≈ δv/�R.
Considering first accreting neutrons stars, once the system moves across a

d�/dT < 0 segment of the instability curve during spin up it will undergo a cyclic
thermal runaway (Levin 1999; Andersson et al. 2000; Bondarescu et al. 2007), see
Fig. 12.5.

The cycle begins with the mode growing under the emission of gravitational
radiation, rapidly reaching its maximum saturation value αsat. When this happens,
and assuming αsat � 1, the viscous timescale becomes comparable to the growth
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Fig. 12.5 r-mode spin-temperature evolution. The r-mode-driven fspin − T evolution of an
accreting neutron star is determined by (1) the instability curve’s slope at the point where the
system, spun up by accretion, first enters the instability window (dashed vertical lines) and (2) the
maximum saturation amplitude αsat. In this figure we show the canonical scenario of a negative
slopping instability curve due to shear viscosity (blue curve) or an Ekman layer (red curve). If
the saturation amplitude is not too small (αsat � αth initially), the system is forced into a cyclic
thermal runaway loop in the vicinity of the instability curve where the GW emitting portions are
indicated in the figure, see Sects. 12.5.1 and 12.5.3 for more details. The cycle’s nearly horizontal
path (r-mode heating) continues until thermal equilibrium is established, αsat = αth, followed by
r-mode spin-down towards the instability curve. In the opposite scenario of a very small saturation
amplitude (i.e. αsat � αth initially) a weak r-mode instability is active during accretion and, once
the latter has ended, cannot prevent the system from cooling (at nearly constant spin) towards a
state of thermal equilibrium or until the instability curve is crossed again (this scenario is shown
here with respect to the minimum damping curve)

timescale, τvisc ≈ τgw, (see the r-mode evolution equations in Owen et al. (1998),
Levin (1999)). At the same time the heat deposited by shear viscosity lifts the
stellar core temperature. This happens at almost constant spin frequency since the
GW spin-down timescale, τ gw

sd ≡ �/|�̇|, is always much longer than the heating
timescale τheat ≡ T/|Ṫ |. These timescales are (see e.g. Levin 1999):

τ
gw
sd ≈

5.3

α2
sat
τgw, τheat = CvT

Ėvisc
≈ 7.8× 10−6 P 2−3 T

2
8

α2
satM1.4R

2
6

τgw. (12.23)

where in the last equation the damping rate Ėvisc is typically fixed by shear viscosity
or a crust-core boundary layer (see below) and the heat capacity Cv ≈ 1.4 ×
1038 T8 erg/K is that of ordinary matter (Shapiro and Teukolsky 1986) (superfluidity
would reduce τheat even further by decreasing Cv). Also note that we have explicitly
used the timescale equality τvisc ≈ τgw for a saturated mode.

The thermal runaway continues up to the point where stellar cooling can
efficiently balance viscous heating. Assuming neutrino cooling due to the stan-
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dard modified URCA process (with the corresponding emissivity Lν ≈ 7 ×
1031 T 8

8 erg/s) Shapiro and Teukolsky (1986) and a minimum damping instability
curve, we can convert thermal equilibrium into a “thermal” r-mode amplitude,

Ėvisc = Ėsv = Lν ⇒ αth ≈ 1.4× 10−9M−1
1.4R

−3
6 P 4−3T

4
8 . (12.24)

Note that this result is indicative as it obviously depends on the assumed cooling
physics. For the temperature range of LMXBs the cooling could be dominated by
superfluid Cooper-pair processes (Ho et al. 2011) or even surface photon emission
(Mahmoodifar and Strohmayer 2013).

At the stage of thermal equilibrium the temperature remains essentially constant
and the r-mode-driven spin-down steers the system towards the instability curve;
once the curve is crossed, the star becomes stable again and rapidly cools.
Eventually, accretion will once again spin up the star preparing the ground for
the next cycle. The duration of the GW-emitting portion of this cycle depends on
αsat. A large amplitude (the first papers to explore the implications of this r-mode
evolution were somewhat optimistically assuming αsat ∼ 0.1–1, see e.g. Andersson
et al. 2000) translates to fast GW-driven evolution but a tiny GW duty cycle, making
LMXBs uninteresting sources of GWs. If αsat is small, the system does not wander
off much from the instability curve and the cycle’s GW efficiency can improve
dramatically. We can make this argument quantitative by approximating the cycle’s
GW efficiency as the ratio between the time the system spends emitting radiation
and the typical LMXB lifetime Heyl (2002),

Dcycle ≈ tcycle

107 year
≈ 10−11

α2
sat

. (12.25)

Combining this with the estimated LMXB birth rate ∼ 10−5/year/galaxy, it is not
too difficult to see that in order to have a system always switched on in our Galaxy,

Dcycle � 10−2 ⇒ αsat � 10−4. (12.26)

Thus, somewhat counterintuitively, a relatively small amplitude is likely to improve
the r-mode’s GW detectability in LMXBs. Of course, the amplitude should not be
too small for otherwise these sources would be too faint. As discussed below, the
upper limit (12.26) is compatible with the theoretically predicted r-mode saturation
amplitude.

In the thermal runaway scenario described above the cut off in the spin
distribution of LMXBs is set by the spin frequency at which the systems enter
the instability window. Taking into account that the expected temperature range for
LMXBs is T ∼ 107 − 5 × 108 K it becomes immediately clear that the previously
defined minimum damping window is in disagreement with the observed∼ 600 Hz
cut off (see Fig. 12.4). The model does much better if we invoke a “canonical” r-
mode instability window which, in addition to shear and bulk viscosity, accounts for
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dissipation due to a viscous Ekman boundary layer at the crust-core boundary. The
implications of this Ekman layer could be crucial for the survivability of the r-mode
instability and are discussed in detail below in Sects. 12.5.6 and 12.5.7.

It should also be emphasised that the cyclic evolution is not an unavoidable
outcome of the r-mode evolution in LMXBs. For instance, the presence of exotic
neutron star matter in the form of hyperons or quarks could lead to an instability
curve with positive d�/dT slope in the temperature range relevant to LMXBs.
As discussed by several authors, this configuration could effectively trap accreting
systems near the critical curve and turn them into persistent sources of GWs
(Andersson et al. 2002; Nayyar and Owen 2006; Haskell and Andersson 2010).
Another way to prevent the cyclic evolution from happening is by invoking a
saturation αsat sufficiently small so that τheat (and consequently τ

gw
sd ) exceeds the

accretion timescale (∼ 107 − 108 year). In this scenario cooling dominates over
r-mode heating, i.e. αsat � αth, and once accretion comes to an end the system
undergoes a “cooling runaway”, moving towards the low T part of the instability
window until thermal equilibrium is established or the instability curve is crossed
(Alford and Schwenzer 2015), see Fig. 12.5. We elaborate more on this small
amplitude scenario below in Sect. 12.5.3.

The r-mode-driven evolution of rapidly rotating non-accreting neutron stars is
somewhat simpler than the cyclic scenario of the preceding paragraphs. These
systems can be either old MSPs or, more speculatively, very young neutron stars
such as the central compact objects (CCOs) associated with supernova remnants.
The latter objects have already been the target of broad band GW searches by LIGO
and, in spite of their unknown spin frequencies (which are likely to be low), have led
to direct upper limits on the r-mode amplitude (Aasi et al. 2015). The key parameter
here is the spin-down timescale (12.23) which becomes

τ
gw
sd ≈ 800

(
10−4

αsat

)2

M−1
1.4R

−4
6 P 6−3 year. (12.27)

According to this expression, a large amplitude r-mode drives a very rapid spin-
down thus seriously diminishing the system’s GW observability. In order to have a
τ

gw
sd that is compatible with the estimated ages of the CCOs (i.e. ∼ 102 − 103 year)

we would need to invoke αsat ∼ 10−3. A much smaller amplitude is required if τ gw
sd

is associated with the observed spin-down age of MSPs. We will return to this point
later, in Sect. 12.5.3.

12.5.2 An r-Mode Puzzle?

How do actual observations compare against the basic r-mode phenomenology
described in the preceding section? As we have seen, the minimum damping model
clearly predicts that the r-mode instability should be operating in a large portion of
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the LMXB and MSP populations (and perhaps in some young sources). The fact that
these objects do not appear to show any evidence of strong r-mode activity should
have important implications for the physics in their interior. For example, and as
already pointed out, the data points shown in Fig. 12.4 are clearly incompatible with
a thermal runaway cycle taking place near the standard shear viscosity instability
curve. Similarly, the MSP timing data are incompatible with the r-mode instability
unless αsat is very small.

A clue is provided by the observed long-term spin-down of accreting millisecond
X-ray pulsars (AMXPs) in quiescence (see Patruno and Watts 2012 for a review).
For example, two of these objects, SAX J1808–3658 and IGRJ00291+5934, are
likely to sit inside the instability window (given the uncertainties on the pulsar
parameters), and therefore could experience r-mode-driven spin-down. However,
the measured spin-down rate is consistent with that caused by a canonical LMXB
magnetic field (∼ 108 G), hence suggesting that the r-mode instability is not the
dominant effect here (Haskell and Patruno 2011; Pappito et al. 2011).

This apparent tension between the minimum damping r-mode model and the
spin-temperature data of known rapidly rotating neutron stars may be dubbed the
“r-mode puzzle”.

There are two complementary ways to make theory and observations mutually
compatible. The first one relies on the presence of additional damping mechanisms
that could modify the instability window and render r-mode-stable the systems in
question. The required extra damping could be provided, for example, by exotic
matter in the neutron star core, strong superfluid vortex mutual friction or an Ekman-
type viscous boundary layer at the crust-core interface. The second possibility is that
of a small saturation amplitude r-mode. In this scenario the r-mode instability does
operate in (at least) some rapidly rotating neutron stars but αsat is sufficiently small
so that the ensuing sluggish r-mode evolution is compatible with observations. We
now can take a closer look at these two resolutions of the r-mode puzzle.

12.5.3 Small Amplitude r-Modes

Theoretical calculations already provide constraints on αsat and obviously need to be
incorporated in any realistic r-mode model. The most robust saturation mechanism
is provided by non-linear couplings between the r-mode and other (primarily
inertial) modes (Schenk et al. 2002; Arras et al. 2003; Bondarescu et al. 2007, 2009).
A series of impressive tour de force calculations have revealed a complicated spin-
temperature evolution pattern for αsat but as a rule of the thumb estimate for the
time-averaged amplitude we can take αsat ∼ 10−4 − 10−3 (Schenk et al. 2002;
Arras et al. 2003; Bondarescu et al. 2007, 2009).

This level of saturation is obviously low but not low enough for the purposes of
the small amplitude scenario! To illustrate this, we consider MSPs with measured
spin-down rates that reside inside the minimum damping instability window. These
data can be used to set upper limits on the r-mode amplitude (obviously, these limits
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make sense provided the systems in question are r-mode-unstable in the first place—
this may not be the case in a more realistic enhanced damping scenario). Equating
the total rate of change of the stellar rotational energy to the GW torque leads to a
spin-down r-mode amplitude (see e.g. Owen 2010):

αsd ≈ 5.7× 10−3P
5/2
−3 Ṗ

1/2
−10M

−1/2
1.4 R−2

6 . (12.28)

The strongest constraints from the available MSP data imply a very small amplitude,
αsd � 10−7 (Alford and Schwenzer 2014a, 2015).

Given that MSPs are almost certainly spinning down via standard magnetic
dipole radiation, it is meaningful to compare the relative Ṗ contribution of GW
emission. It is an easy exercise to derive the following formula for the spin-down
ratio Ṗgw/Ṗem which is also equal to the spin-down age ratio τ em

sd /τ
gw
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−3 . (12.29)

This expression indeed verifies that for canonical MSP parameters the r-mode
torque is much weaker than the electromagnetic one.

Two more key r-mode amplitudes can be calculated by making contact with
LMXB observations. The first one comes from the assumption of spin equilibrium
(discussed earlier). Using a simple fiducial spin up torque that ignores the effect
of the magnetic field on the accretion dynamics leads to Brown and Ushomirsky
(2000)

αacc ≈ 1.2× 10−8
(

Lacc

1035 erg s−1

)1/2

P
7/2
−3 (12.30)

where Lacc is the accretion luminosity. This estimate is very close to the spin
equilibrium amplitude obtained in Ref. Mahmoodifar and Strohmayer (2013)
using a spin-up torque extracted observationally from the time-averaging over a
succession of accretion episodes.

The second “handle” for estimating r-mode amplitudes is provided by the
consideration of thermal equilibrium in LMXBs (Ho et al. 2011; Mahmoodifar and
Strohmayer 2013). Measuring the luminosity of these objects in quiescence allows
the inference of their surface and core temperature and in turn of their cooling rate.
If heating is attributed to the dissipation of a steady-state unstable r-mode, the mode
amplitude can be calculated by invoking thermal equilibrium. This is the approach
taken in Mahmoodifar and Strohmayer (2013) and is of the same logic that led to
the amplitude (12.24).

The quiescent LMXBs considered in Mahmoodifar and Strohmayer (2013) have
T � 108 K (see data points in Fig. 12.4)—this implies a cooling dominated by
surface photon emission rather that neutrinos. The resulting thermal equilibrium
amplitudes lie in the range αth ∼ 10−8 − 10−7. A closer look at the tabulated
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data of Mahmoodifar and Strohmayer (2013) reveals that for sources with both
spin and thermal equilibrium data αth ≈ 0.1αacc. This means within the minimum
damping model, and treating the inferred αth as an empirical saturation amplitude,
r-modes cannot balance the long-term accretion torque in LMXBs. Furthermore,
using αth in Eq. (12.29) we find Ṗgw � Ṗem. In other words, quiescent LMXBs are
expected to predominantly spin-down via magnetic dipole radiation, in agreement
with observations (Haskell and Patruno 2011).

A different angle of approach that makes more contact with the accreting phase
of LMXBs rather that their quiescence assumes both r-mode thermal and spin
equilibrium to take place at the same time. Then, the equality αacc = αth relates
T to the observables Lacc and P . As shown in Ho et al. (2011) the LMXB core
temperatures calculated in this way lie in the range T ∼ 108 − 5 × 108 K and
are consistently higher than those in Mahmoodifar and Strohmayer (2013) (see
also Fig. 12.4). Of course this model would run into difficulties in explaining the
quiescence data (at least for some systems).

What is noteworthy from the preceding discussion is that the three “observable”
amplitudes αsd, αacc, αth lie well below the predicted αsat due to non-linear cou-
plings. This is clearly problematic from a theoretical point of view and therefore
other saturation mechanisms must be sought in order to fill the gap. A recently
suggested alternative mechanism is based on the dissipative coupling between the
superfluid vortex array and the quantised magnetic fluxtubes in regions of the star
where a neutron superfluid co-exists with a proton superconductor (Haskell et al.
2014). The resulting saturation amplitude could be as small as αsat ∼ 10−5 − 10−6.
Although this is much smaller than the mode-coupling αsat, there is still some
significant difference with the observable amplitudes.

The small r-mode amplitude scenario has been further explored in a recent series
of papers by Alford and Schwenzer (2014b,a, 2015). Following an analysis similar
to that of Bondarescu et al. (2007, 2009) but allowing for a very small αsat(�, T ),
they derive steady-state r-mode evolution trajectories for LMXBs/MSPs and young
neutron stars. As mentioned earlier, in their model the cyclic thermal runaway in
accreting systems does not take place since the r-mode is too feeble to heat up (or
spin down) the star efficiently. After the end of accretion, the system simply cools
until it reaches a steady state at a lower temperature (see Fig. 12.5). This scenario,
however, cannot explain the cut off in the LMXB spin distribution since, in the
absence of any other spin-down mechanism, these systems would be free to reach
the Kepler limit.

At this point it is worth pausing to consider the actual GW detectability of r-
mode-active neutron stars as a function of the amplitude and the spin frequency.

12.5.4 r-Mode Detectability

Given the broad scope of this review, the discussion of the r-mode’s detectability
will necessarily be brief—a more detailed recent analysis can be found in Kokkotas
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and Schwenzer (2016). The intrinsic GW strain associated with an r-mode can be
computed with the help of Thorne’s multipole moment formula (Thorne 1980). The
contribution of the dominant # = m = 2 current multipole is (see e.g. Owen 2010):

h0 ≈ 4× 10−23 αrM1.4R
3
6

(
1 kpc

D

)(
fgw

100 Hz

)3

(12.31)

where we have normalised the distance D to a galactic source and used the equality
between the GW frequency and the mode’s inertial frame frequency,

fgw = |fmode| = 4

3
fspin. (12.32)

The detectability of the strain (12.31) is shown in Fig. 12.6 assuming a 1 year phase-
coherent observation and a source at D = 1 kpc. First of all, the smallness of the
r-mode amplitude essentially eliminates extragalactic sources from being candidate
targets for detection unless the source is located within our local group and the
amplitude is much higher than the upper limits suggested by LMXB/MSP spin-
down and thermal data. This could be a realistic possibility if the systems from
which the data came from are not r-mode unstable—in that case it would make sense
to use a fiducial amplitude αr = 10−3, corresponding to a maximum saturation
amplitude due to non-linear mode couplings. The GW strain for this optimistic
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Fig. 12.6 r-mode GW detectability. We show the r-mode strain (12.31) assuming a 1-year
Advanced LIGO/ET phase-coherent observation. For the source parameters we have set M1.4 =
1, R6 = 1.2,D1 = 1. The detector noise curves were taken from https://workarea.et-gw.eu/et/
WG4-Astrophysics, sensitivity curve of ET; https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?
docid=T0900288, sensitivity curve of Advanced LIGO. The three selected mode amplitudes
represent approximate upper limits (discussed in the main text) for saturation due to (1) non-linear
mode couplings (αr = 10−3), (2) spin equilibrium in LMXBs (αr = 10−6) and (3) MSP spin-down
and thermal equilibrium in LMXBs (αr = 10−7)

https://workarea.et-gw.eu/et/WG4-Astrophysics
https://workarea.et-gw.eu/et/WG4-Astrophysics
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=T0900288
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=T0900288
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scenario could indeed be detectable by Advanced LIGO/Virgo (for sources located
anywhere in the Galaxy) and of course by ET for sources located further way or
rotating at a lower frequency, see Fig. 12.6. Such r-mode signals could be associated
with very young neutron stars with still undepleted fast rotation (i.e. fast spinning
CCOs), see discussion at the end of Sect. 12.5.1.

Taking at face value the aforementioned LMXB/MSP upper limits, the amplitude
is constrained to be αr � 10−7 and we can see that the prospects for detection of
any r-mode signal look rather bleak. Only a next generation instrument like ET
could score a detection provided the source is rapidly rotating and relatively close
(D ∼ 1 kpc).

Assuming a neutron star source with known spin frequency, the identification of
an r-mode signal would be unmistakable due to the fgw − fspin relation (12.32)
which is unique among the various neutron star GW emission mechanisms. Making
a source parameter estimation through the GW measured fmode requires the use of
the fully relativistic r-mode frequency. To leading post-Newtonian order, the correc-
tion to the Newtonian frequency comes from the combined effect of gravitational
redshift and frame dragging and is of the order of the stellar compactness M/R;
for a neutron star this translates to an appreciable ∼ 20% frequency shift. With
relativistic corrections accounted for, an r-mode GW detection would thus lead to a
measurement of the compactness.

The importance of using the fully relativistic r-mode frequency was recently
exemplified by the oscillation discovered in the light curve of a burst from
the AMXP XTE 1751–305 (Strohmayer and Mahmoodifar 2014). The observed
frequency is close to the expected Newtonian r-mode frequency for this neutron
star’s known spin frequency but an exact match for reasonable stellar mass and
radius parameters is only possible if relativistic corrections are taken into account
(Andersson et al. 2014). Unfortunately, the inferred r-mode amplitude is too large
to be reconciled with the system’s spin evolution, a result that hints at a different
interpretation of the observed oscillation.

12.5.5 Beyond the Minimum Damping Model

The alternative scenario of enhanced damping can be seen as a pessimistic
standpoint as it attempts to resolve the r-mode puzzle by invoking a much reduced
instability parameter space that prevents much of the known rapidly rotating neutron
stars from becoming r-mode active. With regard to the realism of this scenario, it can
be safely stated that none of the additional damping mechanisms mentioned earlier
(exotic matter, mutual friction, Ekman layer) can be ruled out given our present level
of understanding (or ignorance!).

The situation is particularly murky when it comes to exotic matter. For example,
the presence of hyperons in neutron star cores and their strong bulk viscosity was
once thought to be lethal for the r-mode instability (Jones 2001; Lindblom and
Owen 2002). The day was saved by the likely superfluidity of these particles that
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effectively shuts down their viscosity below a temperature∼ 109 K, see e.g. (Nayyar
and Owen 2006; Haskell and Andersson 2010).

The degree of uncertainty is even higher when it comes to strange quark matter
with the resulting instability windows being extremely sensitive to the details of
quark pairing, see e.g. Madsen (1998, 2000). More recent work (Mannarelli et al.
2008; Andersson et al. 2010) focused on the multifluid aspect of strange stars with
colour-flavor-locked paired quark matter and established that the r-mode instability
suffers very little damping in this type of stars. Unfortunately, given that the very
existence (let alone key properties such as viscosity and pairing) of such exotic
phases of matter in neutron stars is still a matter of debate, we presently cannot
make any reliable prediction.

In our view, it makes more sense to focus on damping mechanisms that rely
on less exotic physics. For instance, taking the commonly accepted view that the
outer core of mature neutron stars contains a mixture of superfluid neutrons and
superconducting protons, the presence of vortex mutual friction is unavoidable.
The standard (that is, best understood) form of this type of friction originates
from the scattering of electrons by the superfluid’s magnetised vortices and it
has been shown to have a negligible effect on r-modes (Lindblom and Mendell
2000). However, additional mutual friction may originate from the direct interaction
between the vortices and the magnetic fluxtubes threading the superconductor, see
e.g. Ruderman et al., Link (2003). Our understanding of this mechanism is (at best)
rudimentary, so far having been used in r-mode saturation amplitude calculations
(Haskell et al. 2014). A more phenomenological approach to this problem is to
consider the standard form for the mutual friction force and explore its impact on
the r-mode by artificially increasing its strength (Haskell et al. 2009), see Fig. 12.7.
It is then found that a factor ∼ 100 increase in the mutual friction drag parameter is
sufficient for suppressing the r-mode instability in a large portion of the parameter
space. Vortex-fluxtube interactions could well lead to friction of this magnitude but
more work is required in order to make a safe prediction.

Fig. 12.7 r-mode instability window with phenomenological mutual friction. This figure repre-
sents the “strong superfluidity” model of Ref. Haskell et al. (2009) and shows the impact that an
increasingly amplified vortex mutual friction force would have on the r-mode instability window.
Note that standard mutual friction (electron scattering by vortices) has a drag coefficient R ∼ 10−4

and leads to negligibly small r-mode damping. A much higher R could result from vortex-fluxtube
interactions. The figure also shows instability curves (for a canonical stellar model) due to standard
shear and bulk viscosity as well as due to a slippage-modified Ekman layer (dashed curve)
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An entirely different kind of effect, taking place in superfluid neutron stars,
could modify the r-mode instability’s parameter space Gusakov et al. (2014a,b). In
general superfluid matter with two fluid degrees of freedom supports twice as many
oscillation modes as compared to ordinary matter. For r-modes in particular, this
doubling leads to “ordinary” and “superfluid” modes, the real physical distinction
between them being the relative amplitude of the two fluids’ co-moving and counter-
moving degrees of freedom. The ordinary (superfluid) r-mode is mostly co-moving
(counter-moving). The mechanism proposed in Gusakov et al. (2014a,b) (see also
Chugunov et al. 2017; Kantor and Gusakov 2017) is based on the observation
that these two mode branches can experience resonant avoided crossings in a
temperature range relevant for LMXBs. Close to these resonances the ordinary r-
mode is mixed with its counter-moving counterpart and suffers strong damping from
vortex mutual friction. The resulting r-mode instability window exhibits resonant
“stability spikes” in the temperature range T ∼ 107 − 108 K. The LMXB evolution
model proposed in Gusakov et al. (2014a,b) represents an interesting modification of
the earlier discussed runaway cycle, envisaging r-mode unstable systems climbing
up these spikes while emitting GWs with the peak of a given spike setting the
spin frequency upper limit. This mode-resonance mechanism is based on more or
less conventional physics and, given its impact on the standard r-mode window, it
deserves to be explored further.

The global interaction of a growing r-mode with the stellar magnetic field is
another type of enhanced damping mechanism that needs to be discussed (there
is also a local interaction with the field at the location of the crust-core Ekman
layer, see Sect. 12.5.7 below). Early work put forward the scenario of a magnetic
field “wind-up” by an unstable r-mode (Rezzolla et al. 2000, 2001a,b). This is a
non-linear effect associated with the mode’s differential rotation and the resulting
Stokes drift experienced by the oscillating fluid elements. In the absence of any
back-reaction from the field itself, this could potentially become a mechanism for
generating a strong azimuthal component from an initial weaker poloidal field while
sapping the mode’s energy in the process (Rezzolla et al. 2000, 2001a,b; Cuofano
et al. 2012). In practice, however, one would expect that at some stage the back-
reaction of the perturbed field should kick in and self-regulate the process. This
becomes obvious from the fact that once the magnetic energy becomes comparable
to the mode energy one cannot even speak of an r-mode. Recent detailed work
(Chugunov 2015; Friedman et al. 2016) suggests that, with back-reaction included,
this mechanism is unlikely to suppress the r-mode instability and produce strongly
magnetised neutron stars (in particular, Ref. Chugunov (2015) shows that r-mode
activity in weakly magnetised systems such as LMXBs cannot amplify the field
beyond∼ 108(αsat/10−4)2 G).

12.5.6 The Role of the Crust

The remaining mechanism of enhanced r-mode dissipation, the viscous Ekman
layer, may be considered as the most robust one since it relies on more or less
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conventional physics (Bildsten and Ushomirsky 2000). In its most basic form, the
damping originates from the “rubbing” of the mode’s flow against the solid crust
and the thin viscous boundary layer formed at that region. The layer thickness is
roughly given by δE ∼ √ν/�, where ν is the shear viscosity coefficient, and is
of the order of a few centimetres. The Ekman damping timescale τE is related to
that of shear viscosity by τE ∼ τsv/

√
Re where Re ∼ R2�/ν is the characteristic

Reynolds number. For neutron star matter Re � 1, suggesting that the Ekman layer
can be strongly dissipative. Indeed, early calculations showed that the Ekman layer
could dominate r-mode damping for any temperature T � 1010 K (Bildsten and
Ushomirsky 2000; Lindblom et al. 2000; Rieutord 2001).

This basic model was soon refined to account for the fluid’s stratification and
compressibility (Glampedakis and Andersson 2006a) and the crust’s elasticity
(Levin and Ushomirsky 2001; Glampedakis and Andersson 2006b). This latter
property is crucial as it allows the crust to participate in the global r-mode oscillation
albeit with a velocity jump at the crust-core interface. The resulting damping rate
is weakened with respect to that of a solid crust by a factor S2, where S is the
dimensionless crust-core “slippage” parameter (a typical value of which is S ≈ 0.05
(Levin and Ushomirsky 2001; Glampedakis and Andersson 2006b)).

The r-mode instability window produced by this “jelly” crust model with its
slippage-modified Ekman layer can be considered as the canonical one. The Ekman
layer curve shown in Figs. 12.4 and 12.5 assumes no slippage and was calculated
using the formalism of Ref. Lindblom et al. (2000) for a canonical neutron star
model with the crust-core boundary assumed at Rc = 0.9R and the shear viscosity
coefficient taken from Andersson et al. (2005b) (with the proton fraction set to xp =
0.03). The resulting Ekman timescale is,

τE ≈ 154P 1/2
−3 T8 s. (12.33)

The addition of slippage lowers the Ekman critical curve (i.e. τE → τE/S2) and
makes the instability window larger. Similar but much less pronounced would be
the modification due to a more accurate shear viscosity coefficient (Shternin and
Yakovlev 2008) (which is about a factor three lower than the one used here). The
curve can also move up or down as a result of changing the location of the crust-core
curve and the matter’s symmetry energy (Wen et al. 2012).

Comparison of the Ekman layer-modified instability window against the LMXB
quiescence data (Mahmoodifar and Strohmayer 2013) reveals that essentially all
systems should be r-mode stable provided there is no crust-core slippage (i.e.
S = 1), see Fig. 12.4. In contrast, LMXBs with assumed r-mode spin and thermal
equilibrium (Ho et al. 2011) are significantly hotter and some of them spill out
of the instability window. If the slippage-modified Ekman layer damping is instead
used, both sets of data would imply unstable r-modes in several sources. In practice,
therefore, the slippage-modified τE leads to a “minimum damping” window and
therefore belongs to the previous small amplitude scenario.
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Slippage aside, the instability window may not be what shown in Fig. 12.4
because of the possibility of having resonances between the r-mode and the various
crustal shear modes (Levin and Ushomirsky 2001; Glampedakis and Andersson
2006b). These resonances, by selectively amplifying damping near the resonant spin
frequency, can lead to a “spiky” instability window with a large � − T instability
swathe carved out in the region where LMXB and MSP may reside, see e.g. Ho
et al. (2011).

12.5.7 Requiem for the r-Mode Instability?

The situation could change even more drastically by a more realistic modelling of
the crust-core interface that takes into account the presence of a magnetic field
threading the two regions. The discontinuity at the interface leads to a kink in
the oscillating magnetic field lines and the launching of short wavelength Alfvén
waves which are subsequently damped by viscosity. The physics of this magnetised
Ekman layer was first explored in an early paper by Mendell (2001) albeit with
the assumption of a solid crust. The main result of that work was that dissipation
is significantly enhanced for field strengths B ∼ 1011 − 1013 G, hence leaving
little or no room for the r-mode instability in systems like normal radio pulsars. On
the other hand, weaker fields B � 1010 G have a negligible impact on the Ekman
layer suggesting that the magnetic field is not a factor for the r-mode instability of
LMXBs or MSPs whose magnetic fields are typically concentrated around∼ 108 G.

This conclusion, however, could be premature. The outer core of these neutron
stars is expected to be in a superconducting state which, among other things, means
that the (squared) Alfvén speed is boosted by a factor Hc/xpB with respect to
its ordinary value v2

A = B2/4πρ, where Hc ≈ 1015 G is the critical field for
superconductivity, and at the same time the shear viscosity coefficient is rescaled
as ν → ν/xp (Glampedakis et al. 2011a). These modifications can be incorporated
in Mendell’s result (Mendell 2001) for the relation between the damping timescale
τmag of the magnetised layer and the timescale τE of the ordinary Ekman layer:

τmag ≈ τE

(
v2

A

�ν

)−1/2

≈ τE

(
Bcr

B

)1/2

. (12.34)

The threshold Bcr ≈ 106ρ
3/2
14 x

3/2
p1 T −2

8 P−1
−3 G marks the transition between a

magnetic field-dominated Ekman layer (B � Bcr) and a non-magnetic one
(B � Bcr). The above formula assumes the former limit and leads to a markedly
shorter damping timescale for systems like LMXBs and MSPs. Crucially, this result
remains accurate in a more realistic model which combines the magnetic field with
an elastic crust (Glampedakis et al. in preparation). The dramatic increase in the
local Alfvén speed stretches the boundary layer, increasing its thickness by a factor
δmag ≈ (B/Bcrit)

3/2δE.
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The magnetic field has another local effect that has not been sufficiently stressed
in the literature although it is commonly adopted in the modelling of magnetar
oscillations (see e.g. Glampedakis et al. 2006; Gabler et al. 2011; Colaiuda and
Kokkotas 2011; Gabler et al. 2012, 2016). As a consequence of the junction
conditions satisfied by the Maxwell equations, the crust-core velocity slippage is
suppressed6 and the discontinuity now first appears in the radial velocity derivative.

The superconductivity-rescaled magnetic Ekman timescale (12.34), in combina-
tion with the suppression of the crust-core slippage, paints a very pessimistic picture
for the viability of the r-mode instability in LMXBs and MSPs. The instability curve
becomes a horizontal temperature-independent line located at the critical frequency
(here we assume canonical stellar parameters),

fmag ≈ 886B1/12
8 Hz. (12.35)

This amounts to an angular frequency �mag ≈ 0.9B1/12
8 �K and obviously implies

the complete suppression of the r-mode instability in all known rapidly rotating
neutron stars.

The significance of this result is obvious but we are still very far from reaching
definitive conclusions. Much of the analysis presented here is preliminary and has
been based on a simplified toy model calculation that does not fully take into account
the rich superfluid/superconducting physics of the system (Kinney and Mendell
2003). Nor does it include the possibility of resonances between an r-mode and
crustal modes or a finite thickness “pasta”-phase crust-core interface (Gearheart
et al. 2011). All these effects could be important and ought to be included in a
more realistic modelling of r-mode Ekman layer damping.

12.6 Magnetar Oscillations

Magnetars are strongly magnetized, isolated neutron stars, with dipole magnetic
fields∼ 1014−1015 G at the surface, and possibly even larger in the interior (Duncan
and Thompson 1992). They are observed as soft γ -ray repeaters (SGRs) and
anomalous X-ray pulsars (AXPs) (Woods and Thompson 2006). These extreme
magnetic fields power an intense electromagnetic activity, with very energetic “giant
flares”, having peak luminosities as large as 1044 − 1047 erg/s. For a recent review
on the subject, we refer the reader to Turolla et al. (2015).

6Starting from the perturbed Faraday’s law, ∇ × δE = −iωδB/c, and applying the usual “circuit”
argument across the crust-core boundary leads to n̂× 〈δE〉 = 0, where n̂ is the unit normal vector
to the boundary and 〈. . .〉 stands for the jump across the boundary. Using cδE = −δv × B for the
r-mode-induced electric field, we find (n̂ · B)〈δv〉 = 0 which for a general magnetic field implies
a vanishing slippage.



12 Gravitational Waves from Single Neutron Stars: An Advanced Detector Era Survey 707

12.6.1 Magneto-Elastic Oscillations

Quasi-periodic oscillations (QPOs) have been observed in the tails of giant flares
from two magnetars, SGR 1804 − 20 (Israel et al. 2005; Strohmayer and Watts
2006) and SGR1900 + 14 (Strohmayer and Watts 2005). Similar QPOs have later
been observed in less intense bursts from the same objects (Huppenkothen et al.
2014a) and from SGR J1550 − 5418 (Huppenkothen et al. 2014b). Most of these
oscillations have frequencies between 18 Hz and 200 Hz, but two high-frequency
QPOs (with frequencies of 625 Hz and 1840 Hz) have also been observed in SGR
1804− 20.

QPOs have been interpreted as stellar oscillations. This means that we have
already observed neutron star oscillations, and neutron star asteroseismology is in
principle possible even before the first detection of GWs from neutron stars! In
particular, once the QPO mechanism will be fully understood, it will be possible
to extract information, from the frequencies of these oscillations, on the EOS of
nuclear matter (see e.g. Samuelsson and Andersson 2007; Watts and Reddy 2007;
Sotani et al. 2012, 2013a). An alternative explanation of QPOs is that they are
oscillations of the neutron star magnetosphere, which is expected to be filled of
plasma during a giant flare. However, the “standard model” based on neutron star
oscillations is much more promising, since it allows to explain the details of QPO
phenomenology.

After the first observations of magnetar QPOs a great effort has been devoted
to the theoretical modelling of these oscillations (see e.g. Watts et al. (2016) and
references therein). Magnetar QPOs have initially been identified with torsional (i.e.
axial parity) elastic modes of the crust (Israel et al. 2005; Samuelsson and Andersson
2007), but it was soon understood that the crustal oscillations are strongly coupled
with Alfvén modes, i.e. magnetic modes of the neutron star core (Levin 2006;
Glampedakis et al. 2006). QPOs are now believed to be magneto-elastic oscillations,
which involve both the core and the crust. The first models of torsional magneto-
elastic oscillations of neutron stars have shown that Alfvén modes are not discrete,
but instead have a continuous spectrum. However, the edges of this continuum
can yield long-lived QPOs (Levin 2007; Sotani et al. 2008). Subsequently, several
groups developed GR magnetohydrodynamics (MHD) numerical codes which
allowed to model torsional magneto-elastic oscillations of magnetars, improving our
understanding of this phenomenon. In van Hoven and Levin (2011), Colaiuda and
Kokkotas (2011), van Hoven and Levin (2012) it was shown that torsional magneto-
elastic oscillations of a poloidal magnetic field have continuous bands. The crustal
modes falling in the bands are absorbed by the continuum (see also Gabler et al.
2012), while those falling in the gaps survive as discrete modes. Further discrete
modes are given by the edges of the bands. Similar results were obtained in Asai
and Lee (2014); Asai et al. (2016) using finite series expansions.

More recently, the models of magnetar oscillations—using GR MHD
simulations—have been extended in two directions. Some works kept studying
axial parity oscillations, including more and more physical contributions: super-
conductivity in the neutron star interior (Passamonti and Lander 2013; Sotani et al.
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2013b; Passamonti and Lander 2014; Glampedakis and Jones 2014; Gabler et al.
2013, 2016), the neutron star magnetosphere (Gabler et al. 2014; Glampedakis and
Jones 2014),“pasta phases” in the neutron star crust (Passamonti and Pons 2016).
The oscillation spectrum found in these works had the structure discussed above:
continuous bands and discrete modes in the gaps. Other works, instead, studied
axial-polar coupled oscillations. As shown in Colaiuda and Kokkotas (2012), if
the background magnetic field is not purely poloidal (they considered the so-called
“twisted torus” configuration, which is discussed in Sect. 12.7.1), oscillations with
axial and polar parities are coupled. This coupling seems to destroy, or at least
reduce, the Alfvén continuous spectrum, leaving a set of discrete modes. Similar
results were found in Sotani (2015), Link and van Eysden (2016a,b), where a
different choice of background magnetic field (the so-called “tilted torus”) also
removed the continuous spectrum.

We can now describe, at least qualitatively, low-frequency QPOs as magneto-
elastic oscillations of magnetars. High-frequency QPOs are more difficult to model:
if they are magneto-elastic oscillations they are expected to be damped in less
than 1 s, but the observations show long-living oscillations. It has recently been
suggested (Huppenkothen et al. 2014c) that the reason of this discrepancy could be
the interpretation of the observations: high-frequency QPOs would die out in a short
timescale, consistently with the theoretical model, but then they would be excited
again, several times during the tail of the giant flare.

Our qualitative understanding of magnetar QPOs is not sufficient to carry on
neutron star asteroseismology with these oscillations. Indeed, in order to extract
information on the inner structure of the star from QPOs, we need (approximate)
analytical expressions of the QPO frequencies in terms of the main features of
the neutron star (mass, radius, magnetic field, etc.). We are very far away from
deriving such expressions, for two reasons: the scarcity of observational data
(we only detected few QPOs from three giant flares) and the limitation of the
theoretical modelling, which still does not include all relevant physical processes
and mechanisms. Hopefully, we will soon have more observational data [especially
when new large-area X-ray detectors (Arzoumanian et al. 2014; Feroci et al.
2012; http://www.isdc.unige.ch/extp/) will be operating] and a deeper theoretical
understanding of these phenomena.

12.6.2 Gravitational Waves from Giant Flares

Giant flares of magnetars are among the most luminous events in the universe. They
are believed to be due to large-scale rearrangements of the magnetic fields, either in
the stellar core (Thompson and Duncan 1995, 2001) or in the magnetosphere (Lyu-
tikov 2006; Gill and Heyl 2010). Even a tiny part of their energy could excite
non-radial oscillations of the neutron star—in particular, the f -mode—and thus
be emitted through GWs. Preliminary estimates (Corsi and Owen 2011) were very
optimistic on the detectability of the f -mode excited by giant flares, but they were

http://www.isdc.unige.ch/extp/
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based on the assumption that the energy emitted in GWs by f -mode excitation is
comparable to the total magnetic energy of the star. More accurate estimates (Levin
and van Hoven 2011) showed that only a small part of the magnetic energy is
converted in GWs. Assuming that the released electromagnetic energy is of the order
of the magnetic energy of the star, a giant flare at D = 10 kpc would excite an f -
mode GW signal detectable by Advanced LIGO/Virgo with a SNR (Levin and van
Hoven 2011)

S

N
� 10−2B2

15 , (12.36)

where B15 is the (normalized) magnetic field-strength at the poles. This result,
based on a perturbative analysis, implies that the f -mode would definitely not
be detectable by second-generation interferometers if B ∼ 1015 G, but it may be
marginally detectable for B ∼ 1016 G.

Subsequently, giant flares and their coupling with the neutron star oscillations
have been studied using general-relativistic MHD numerical simulations of the
magnetic field instability in magnetars (Ciolfi and Rezzolla 2012; Zink et al. 2012).
This is a toy-model which mimics the catastrophic magnetic field rearrangements
during a giant flare, and allows to estimate the amplitude and the features of the
GW emission. The numerical simulations show a power-law relation between the
emitted gravitational signal and the surface magnetic field-strength (in these models
the magnetic field-strength at the surface and in the interior are comparable) (Zink
et al. 2012):

h ∼ 7.6× 10−27B
3.3
15

D1
, (12.37)

where D1 is the distance of the source normalized to 1 kpc. Most of the energy in
the signal is in the f -mode, but also lower frequency modes (likely Alfvén and/or
composition g-modes) are excited (see Fig. 12.8).

The results of numerical simulations (Ciolfi and Rezzolla 2012; Zink et al. 2012)
are even more pessimistic than those of perturbation theory (Levin and van Hoven
2011) shown in Eq. (12.36). The SNR of the GW signal from an f -mode excited by
a giant flare has been estimated to be (Ciolfi and Rezzolla 2012) S/N ∼ 10−4B2

15
for Advanced LIGO/Virgo, and S/N ∼ 10−2B2

15 for ET.
The numerical simulations of Zink et al. (2012) give similar results, see Fig. 12.8.

The SNR can be read off the figure, as the ratio between the signal and the noise
curve, for a given Bpole and for a given detector. As mentioned above, Fig. 12.8 also
shows a low-frequency mode, whose SNR is comparable (but slightly larger) than
that of the f -mode.7

7It is worth noting that the authors of Zink et al. (2012) fit the numerical data with a power-law
relation, finding that the GW amplitude is proportional to B3.3. The authors of Ciolfi and Rezzolla
(2012), instead, have h ∼ B2, because they fit the data with a quadratic function; this choice is
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Fig. 12.8 GW detectability of magnetar oscillations in giant flares. We show the signal amplitude√
T |h|, where h is the estimated dimensionless strain from magnetar oscillations in giant flares,

and T is the estimated damping time of the oscillation. The giant flare is modeled as the instability
of the neutron star magnetic field (see text). The colored boxes on the left represent the f -mode
signal, assuming 50 ms≤ T ≤ 200 ms. The colored boxes on the right represent the signal of
a lower-frequency mode (Alfvén and/or g-modes), assuming 10 ms≤ T ≤ 1 s. Different colors
correspond to different values of the magnetic field at the poles. We also show the signal for the
entire spectrum, assuming a damping time T = 100 ms (from Zink et al. 2012)

These studies confirm that the gravitational emission from mode excitation in
magnetar flares can not be detected by advanced GW detectors. This signal is
expected to be too weak to be detected even by third-generation GW experiments,
such as ET, unless the surface magnetic field is � 1016 G (Zink et al. 2012; Ciolfi
and Rezzolla 2012), i.e. an order of magnitude larger than the observed magnetic
fields.

12.7 Neutron Star “Mountains”

Rotating neutron stars symmetric with respect to the rotation axis do not emit
gravitational radiation. However, if a neutron star is not perfectly axisymmetric
it emits GWs, mostly at frequencies fspin and 2fspin (where fspin is the rotation
frequency). Most of the observed neutron stars have rotation frequencies in the range
between∼ 10 Hz and 1 kHz, which is the range where ground-based interferometers
such as Advanced LIGO/Virgo are most sensitive. Therefore, if the deviation from
axisymmetry is large enough, rotating neutron stars can be promising sources of
GWs.

correct as a first approximation, since in the perturbative results of Levin and van Hoven (2011)
the GW amplitude is a quadratic function of the magnetic field strength.
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The deviation from axisymmetry is described by the quadrupole ellipticity

ε = Q

I
, (12.38)

where Q is the mass quadrupole moment associated to the distortion (i.e. excluding
the contribution of rotation, which is necessarily axisymmetric and is not associated
to GW emission), and I is the moment of inertia of the rotation axis. Such distortions
are called mountains. When ε > 0 the star is oblate, while when ε < 0 it is prolate.

If the distortion has a symmetry axis forming an angle α (called wobble angle)
with the rotation axis, the amplitude of the GW emission is Zimmermann and
Szedenits (1979), Bonazzola and Gourgoulhon (1996)

h0 � 4π2G

Dc4
f 2

gwIε sinα � 4× 10−24P−2
−3 D−1

1 I45

( ε

10−6

)
. (12.39)

The deformation can be due to different mechanisms: from the magnetic field
of the star (Bonazzola and Gourgoulhon 1996; Haskell et al. 2008; Ciolfi et al.
2010; “magnetic mountains”), to temperature gradients in the crust leading to local
deformation sustained by the elastic strain (Bildsten 1998b; Ushomirsky et al.
2000) (“thermal mountains”). The former can arise both in isolated neutron stars
(magnetars, but also in “ordinary” neutron stars), or in accreting neutron stars.
The latter, instead, can only be formed in accreting neutron stars, because the
temperature gradients are created by asymmetries in the matter accreting by a
companion object.

Current searches for GWs from rotating pulsars using first generation
LIGO/Virgo have shown no sign of such emission (see e.g. Aasi et al. (2014)
and references therein). However, this negative result allows us to place upper
limits on the quadrupole ellipticity of the pulsars under study; in the case of the
Crab pulsar, ε � 8.6 × 10−4; in the case of other pulsars, the upper limits are
significantly weaker. These limits are below the theoretical bounds (see below), but
(in some cases) they exceed the spin-down limit on ε, which has been obtained with
the unrealistic assumption that the observed pulsar spin-down is only due to GW
emission.

In the following we shall first discuss current models of neutron stars deformed
by a magnetic field, and then the different astrophysical scenarios for magnetic
mountains. We shall then discuss thermal mountains, and other possible neutron
star deformations in the context of neutron star models with exotic matter and/or
pinned superfluidity.

12.7.1 Modelling Magnetic Mountains

Chandrasekhar and Fermi (1953) (see also Ferraro 1954) first pointed out that
magnetic fields induce quadrupolar deformations on spherically symmetric stars,
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with ellipticities (which we hereafter denote by εB) of the order of the ratio between
the magnetic energy EB and the gravitational energy EG, i.e.

εB ∼ EB

EG
∼ R3〈B2〉

GM2/R
∼ (10−6 − 10−5)〈B2

15〉 , (12.40)

where 〈B2〉 is the volume-averaged square field strength. It was later noted (Wentzel
1960; Ostriker and Gunn 1969) that the magnetic-induced quadrupole ellipticity
εB can be positive or negative, i.e. the shape of the star can be oblate or prolate,
depending on the magnetic field structure. Indeed, neutron star magnetic fields can
have poloidal or toroidal structure,8 and poloidal fields Bpol tend to deform the star
to an oblate shape, while toroidal fields Btor tend to deform it to a prolate shape.
When poloidal and toroidal components are both present, the deformation has both
positive and negative contributions. For instance, in a specific example of magnetic
field geometry the deformation has been estimated to be (Ostriker and Gunn 1969)

εB ∼ E−1
G R3

(
3〈B2

pol〉 − 〈B2
tor〉
)
. (12.41)

The relative contributions of poloidal and toroidal components can change if the
magnetic field geometry is different.

Similar estimates have been derived for a neutron star with a superconducting
phase (see the discussion below), in the case of a purely toroidal field (Cutler 2002):

εB ∼ 10−6〈B15〉 Hc1

1015 G
, (12.42)

where Hc1 (which is believed to be ∼ 1015 G in neutron star cores (Glampedakis
et al. 2011a)) is the critical field strength characterizing superconductivity. These
expressions have been computed for a constant density star, and assuming a dipole
field configuration. However, as we discuss below, more sophisticated numerical
analyses show that Eqs. (12.40), (12.41), (12.42) give good order-of-magnitude
estimates for magnetic deformations of neutron stars.

When a neutron star is prolate (which requires a prevailing toroidal field), a spin-
flip mechanism can take place (Jones 1975; Cutler 2002), in which the wobble angle
grows until the symmetry axis and the rotation axis become orthogonal: an optimal
geometry for GW emission (see Eq. (12.39)).

Presently, we do not have direct information on the internal structure of neutron
star’s magnetic fields. However, it is generally believed that they should have both a
poloidal and a toroidal component. Indeed, analytical computations (Prendergast
1956; Tayler 1973) and numerical simulations (Braithwaite 2006, 2007) show
that purely poloidal and purely toroidal configuration are unstable in an Alfvén

8In polar coordinates, the field-strength components Br , Bϑ are poloidal, while Bϕ is toroidal.



12 Gravitational Waves from Single Neutron Stars: An Advanced Detector Era Survey 713

timescale.9 Conversely, poloidal-toroidal magnetic fields can develop from the
evolution of arbitrary initial fields (Braithwaite and Spruit 2004). The fields found
in Braithwaite and Spruit (2004), Braithwaite and Nordlund (2006) have a so-called
“twisted-torus” structure: a poloidal magnetic field extending throughout the star
and in the exterior, and a toroidal field confined to a torus-shaped region inside the
star.

GR and Newtonian models of stationary neutron star configurations with a
twisted-torus magnetic field have been carried out in Ciolfi et al. (2010), Lander
and Jones (2009). They are based on the numerical integration of the GR MHD
equations for an axisymmetric ideal fluid (which can be reduced to a single partial
differential equation, the so-called Grad-Shafranov (GS) equation), and predict that
the magnetic field induces a quadrupole ellipticity ∼ (10−6 − 10−5) B2

15 (where
B15 is the surface magnetic field),10 consistent with the estimates (12.40), (12.41).
Moreover, the results of Ciolfi et al. (2010), Lander and Jones (2009) show that in
a twisted-torus configuration, the ratio of toroidal field energy over poloidal field
energy is 〈B2

tor〉/〈B2
pol〉 � 0.15. Therefore, in these configurations the poloidal

field prevails, the star is oblate, and the spin-flip mechanism does not occur. More
recently, twisted-torus configurations (with 〈B2

tor〉/〈B2
pol〉 � 0.1) have also been

described by solving the fully non-linear Einstein-Maxwell’s equations, see e.g. Pili
et al. (2014), Uryu et al. (2014).

A different class of twisted-torus configurations has later been found in Ciolfi
and Rezzolla (2013), where—with an appropriate prescription of the azimuthal
currents—the ratio 〈B2

tor〉/〈B2
pol〉 can be as large as ∼ 0.9, i.e. the toroidal field

can prevail. In these models the deformation of the star is larger than the prediction
of Eqs. (12.40), (12.41) by a factor∼ 100

εB ∼ 10−4B2
15 . (12.43)

The equilibrium properties of the magnetized star depend on whether the EOS is
barotropic or non-barotropic. The models in Ciolfi et al. (2010), Lander and Jones
(2009), Ciolfi and Rezzolla (2013) assume a barotropic EOS. As shown in Mastrano
et al. (2011), Glampedakis and Lasky (2016), if the EOS is non-barotropic one is
free to prescribe the magnetic field, and the ratio between toroidal and poloidal
energy becomes a free parameter, even though it is likely to be constrained by the
requirement of stability. In the model studied in Mastrano et al. (2011),

εB ∼ 10−5B2
15

(
1− 0.64

〈B2
tor〉

〈B2
pol〉

)
. (12.44)

9The instability of purely toroidal configurations is also shown in Akgun and Wasserman (2008)
for a superconducting neutron star, by studying the variations of an energy functional.
10In these models the magnetic field-strength has as the same order of magnitude on the surface
and in the interior.
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If the ratio 〈B2
tor〉/〈B2

pol〉 is sufficiently large, i.e. the toroidal field prevails, the
deformation can be as large as that described by Eq. (12.43). In these configurations
(such as in those studied in Ciolfi and Rezzolla (2013)) the neutron star is prolate,
and the spin-flip mechanism can take place.

If higher-order multipoles of the magnetic field are present, the (prolate)
deformation can be even larger (Mastrano et al. 2015). Alternative geometries with
poloidal-toroidal fields have also been studied, such as the “tilted torus” config-
uration, in which the poloidal and the toroidal fields have misaligned symmetry
axes (Lasky and Melatos 2013).

The models discussed above do not take into account the fact that outer cores
of neutron star are expected to contain superconducting protons (and superfluid
neutrons). In a (type II) superconducting phase, the magnetic field is quantized
into fluxtubes surrounded by non-magnetised matter. The force exerted by the
quantized field is not the Lorentz force, but a fluxtube tension force (Mendell 1991;
Glampedakis et al. 2011a); therefore, the description based on the GS equation is not
adequate to model the superconducting phase (even though they still obey a GS-type
equation). In recent years, the deformation of magnetized superconducting neutron
stars has been computed by numerical integrations of the equations for the fluxtube
magnetic force for toroidal fields (Akgun and Wasserman 2008; Lander et al. 2012),
for purely poloidal fields (Henriksson and Wasserman 2013), and for twisted-torus
fields (Lander 2013). All these computations give deformations consistent with the
analytical estimates (Cutler 2002) of Eq. (12.42).

We remark that εB ∼ B2 in non-superconducting neutron stars, while εB ∼ B

in neutron stars with a superconducting phase. This is due to the different magnetic
force acting in superconducting matter. Comparing Eqs. (12.40), (12.43), we can see
that in magnetars (withB ∼ 1015 G) the magnetic deformations have the same order
of magnitude regardless of whether a superconducting phase is present; conversely,
in ordinary neutron stars—such as the observed pulsars—the magnetic field strength
is ∼ 1012 G or smaller, and magnetic deformations are much larger if a (type II)
superconducting phase is present.

12.7.2 Magnetic Mountains in Newly-Born Magnetars
and in Known Pulsars

As we discussed in Sect. 12.6, observations of SGRs and AXPs, with their large
spin-down rates and intense burst activity, suggest that these objects are mag-
netars (Duncan and Thompson 1992). Due to their very large magnetic fields,
magnetars are expected to have the largest magnetic mountains. However, since the
observed SGRs and AXPs have low spin frequencies, they cannot be GW sources
for ground-based interferometers.

The standard magnetar model (Duncan and Thompson 1992; Goldreich and
Reisenegger 1992) predicts that the strong magnetic fields form at the birth of the
neutron star, through convection and dynamo effects, and can last for ∼104–105
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years (Goldreich and Reisenegger 1992; Pons and Geppert 2007). If this scenario is
accurate, a non-negligible fraction (∼ 10%) of newly-formed neutron stars can be
born as magnetars (Kouveliotou et al. 1998; Woods and Thompson 2006), and, if
their rotation rates are large enough, they can be potential sources for GW detectors
(see e.g. Dall’Osso et al. 2009). Presently, it is not clear what the actual rotation
rate of newly-born neutron stars is; current estimates suggest that it should not
be larger than few hundreds of Hz (see e.g. Camelio et al. 2016 and references
therein). A newly-born magnetar with B ∼ 1015 G could have a quadrupole
deformation εB ∼ 10−6–10−5 (12.40) (even larger if the toroidal field prevails,
see Eq. (12.43)). If D ∼ 10 kpc and P ∼ 10 ms, it may yield a GW strain (12.39)
h0 ∼ 10−26, potentially detectable by ET. However, the event rate of galactic newly-
born magnetars (comparable with that of galactic supernovae) is too low to make
them a promising GW source.

We have observed, instead, several pulsars with magnetic field-strengths
�1012 G, and rotation rates in the bandwidth of ground-based GW detectors.
The GW emission from these objects is negligible, unless a type II superconducting
phase is present. Indeed, when B ∼ 1012 the estimate for (type II) superconducting
stars (12.42) is εB ∼ 10−9, while the estimate for non-superconducting stars (12.40)
is a factor∼ 1000 smaller. As noted in Andersson et al. (2011), a (superconducting)
MSP with B ∼ 1012 G at D = 1 kpc would then emit a GW strain h0 ∼ 10−27,
marginally detectable by ET. This estimate, however, is probably too optimistic:
all known MSPs have magnetic fields much smaller than 1012 G, while pulsars
with B ∼ 1012 have periods much larger than ∼1 ms. In Fig. 12.9 we show the
GW strain for the population of known pulsars, assuming that the quadrupole
deformation is given by the estimate (12.42), corresponding to the presence of a
type-II superconducting phase in the core. We can see that, under these assumptions,
the expected signal from known pulsars would be well below the sensitivity curves
of second- and third-generation interferometers.

12.7.3 Magnetic Mountains in Millisecond Magnetars
from Compact Binary Mergers

Binary neutron star mergers can result in strongly magnetized neutron stars (Zhang
2013; Giacomazzo and Perna 2013). They can be meta-stable supramassive neutron
stars living from few seconds to hours (Ravi and Lasky 2014), but can also be stable
neutron stars (Giacomazzo and Perna 2013). These objects have been proposed to be
the central engine of short GRB, in the so-called millisecond magnetar model (Dai
and Lu 1998; Zhang and Mészáros 2001; Rowlinson et al. 2013). In this scenario,
the energy injection in the GRB is due to dipole radiation from a spinning-down
magnetar. Strong evidence supporting the millisecond magnetar model is its ability
to explain the shape of the observed GRB X-ray spectra, which are characterized
by a plateau of ∼ 10–102 s followed, in most cases, by a power-law decay; in a
subset of short GRBs, instead, the decay is much steeper. The X-ray spectrum from
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Fig. 12.9 GW detectability of magnetic mountains in known pulsars. GW strain from the popula-
tion of known pulsars, assuming a 1-year phase coherent observation and quadrupole deformations
given by Eq. (12.42). The detector noise curves were taken from https://workarea.et-gw.eu/et/
WG4-Astrophysics, sensitivity curve of ET; https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?
docid=T0900288, sensitivity curve of Advanced LIGO. All pulsar data were taken from the ATNF
database (http://www.atnf.csiro.au/people/pulsar/psrcat/)

a spinning-down magnetar resulting from a compact binary coalescence would have
the same structure: a plateau followed by a power-law decay if the neutron star is
stable, by a steeper decay if it is a supramassive star eventually collapsing to a black
hole.

The millisecond magnetar model is probably the most promising astrophysical
scenario for GW detection from magnetic mountains. Indeed, numerical simulations
show that the magnetars resulting from a binary neutron star coalescence would have
periods of the order of milliseconds—significantly smaller than the expected periods
of newly-born neutron stars. Moreover, in this scenario we have astrophysical data
from these objects, since they would be the engine of short GRBs.

Preliminary estimates (Dall’Osso et al. 2015) show that the GW emission from
these sources could be marginally detectable by second-generation interferometers,
and detectable by third-generation interferometers such as ET (even more optimistic
estimates have been derived in Corsi and Meszaros (2009)). However, these
computations are based on the assumption that GW emission gives a significant
contribution to the magnetar spin-down. Since the millisecond magnetars predicted
in this model are progenitors of short GRBs, the assumptions of the model can be
tested against GRB observations.

In Lasky and Glampedakis (2016), observations of the X-ray light curve of
short GRBs have been used to constrain the ellipticity of the (stable) neutron stars

https://workarea.et-gw.eu/et/WG4-Astrophysics
https://workarea.et-gw.eu/et/WG4-Astrophysics
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=T0900288
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=T0900288
http://www.atnf.csiro.au/people/pulsar/psrcat/
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produced in the merger, and then to set a bound on the GW emission from these
objects. Indeed, the late time tail of the observed X-ray spectrum is∼t−2, suggesting
that the spin-down is mainly due to dipole electromagnetic emission rather than to
GW emission. Therefore, the comparison between the observed X-ray spectrum and
the predictions of the model allows to set an observational upper limit on the neutron
star ellipticities:

εB � 0.33 η I 1/2
45

(
Lem

1049 erg/s

)−1 (
tb

100 s

)−3/2

, (12.45)

where η ≤ 1 is the conversion efficiency of spin-down energy into X-ray luminosity,
Lem is the short GRB luminosity in the initial plateau phase, and tb is the plateau
duration. This upper limit (through Eq. (12.39)) corresponds to an upper limit on the
expected GW signal. The analysis of Lasky and Glampedakis (2016) shows that the
agreement between the observed X-ray spectrum and the predictions of the model
requires that the magnetar spin-down is mainly due to dipole emission, with a very
small contribution from GW emission. Therefore, these signals are not expected
to be detected by Advanced LIGO/Virgo, but are potentially detectable by third-
generation interferometers such as ET. This can be seen in Fig. 12.10. In the left
panel we show the upper limit (12.45) on the neutron star ellipticities, assuming η =
0.1 (black points with error bars) for eight observed short GRBs. In the right panel
we show the corresponding upper limits on the GW strain amplitude evolution, for
η = 0.1 (dotted lines) and for η = 1 (solid lines), compared with the sensitivity
curves of Advanced LIGO and ET.

Fig. 12.10 Observational upper limits on magnetar deformation and GW emission. Left panel:
Upper limits on the neutron star ellipticity from eight short GRBs, given by Eq. (12.45) (black point
with error bars). The red bars show the theoretical estimate from Eq. (12.40). The blue bars show
the range of maximal ellipticities for which the spin flip can take place. The green line represents
the ellipticity which can be induced by f -mode excitation (see Sect. 12.4). Right panel: Upper
limits on the GW strain amplitude evolution, compared with the sensitivity curves of Advanced
LIGO and ET, for η = 0.1 (dotted lines) and for η = 1 (solid lines). The observation time is
assumed to be 105 s for GRBs with power-law decay, while it coincides with the GRB emission
time for those with steeper decay (figure from Lasky and Glampedakis (2016))
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12.7.4 Magnetic Mountains in Accreting Systems

Magnetic mountains can also form in LMXBs. In this case, the mountain—a
localized deformation—is formed by the accreting matter, but it is sustained by the
magnetic field. Since the mountain is not sustained by crustal rigidity, its quadrupole
ellipticity can be larger than the upper bound associated to the maximum crustal
strain (Ushomirsky et al. 2000). In this scenario (Payne and Melatos 2004; Melatos
and Payne 2005; Vigelius and Melatos 2008), accreted matter accumulates in a
column over the polar cap, distorting the magnetic field and reducing the magnetic
moment of the star. As the stars accretes, the exterior magnetic field evolves
approximately as B = B∗(1 + Macc/Mc)

−1 where B∗ the field when accretion
starts, Macc the accreted matter and Mc the critical accreted mass above which the
magnetic moment starts to change (Shibazaki et al. 1989). The quadrupole ellipticity
associated to magnetic mountains in LMXB is (Priymak et al. 2011; Haskell et al.
2015)

ε ∼ Macc

M�

(
1+ Macc

Mc

)−1

, (12.46)

whereMc ∼ 10−7(B∗/1012G)4/3. This formula is only accurate for Macc � Mc: for
larger values of the accreted mass, the quadrupole ellipticity saturates. Dynamical
MHD simulations suggest that these deformations can persist for timescales of the
order of ∼ 105 − 108 years (Vigelius and Melatos 2009).

Although magnetic fields of LMXBs are much weaker than those of magnetars,
the quadrupole ellipticities of local mountains can be much larger than those
produced by a global magnetic deformation of the star. Moreover, LMXBs have
rotation rates much larger than those of magnetars, well within the sensitivity
band of ground-based interferometers. Fast rotation also enhances the GW signal
from a deformed star. Therefore, as shown in Priymak et al. (2011), Haskell et al.
(2015), a buried field B∗ � 1012 G could generate a deformation, and then a GW
emission, strong enough to be detected by Advanced LIGO/Virgo (Priymak et al.
2011; Haskell et al. 2015).

12.7.5 Thermal Mountains

Accreting neutron stars in LMXBs can have quadrupolar deformations due to
temperature gradients in the accreted crust (Bildsten 1998b; Ushomirsky et al.
2000). Indeed, as the matter accretes, it is buried and compressed until nuclear
reactions occur (electron capture, neutron emission, etc.) (Haensel and Zdunik
1990). These reactions heat the crust, and since the accreted matter is expected
to be asymmetric, the temperature gradient produced by nuclear reactions is also
asymmetric, giving rise to quadrupolar deformations in the neutron star. These
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deformations are called “thermal mountains”; they also belong to the broader class
of “elastic mountains”, i.e. deformations sustained by the elastic strain of the crust.
Presently, thermal gradients are the only known viable mechanism to produce elastic
mountains.

The deformation due to a thermal gradient with quadrupolar component δTq
(which we denote by εth) is (Ushomirsky et al. 2000; Haskell et al. 2015)

εth ∼ 10−10R4
6

(
δTq

105 K

)(
Q

30 MeV

)3

, (12.47)

where Q is the threshold energy of electron capture by nuclei. The quadrupolar
thermal gradient is just a fraction of the total thermal gradient δT , which is expected
to be, at most, of the order of 106 K (Ushomirsky and Rutledge 2001), if produced
by an outburst. In the most optimistic scenario δTq � 0.1 δT � 105 K, yielding
a thermal mountain of the order of εth ∼ 10−10 (Haskell et al. 2015). The GW
strain (12.39) from this deformation would be h0 ∼ 10−27 − 10−28, too weak to be
detected by Advanced LIGO/Virgo, but potentially detectable by third-generation
GW intereferometers such as ET. This can be seen in Fig. 12.11, where we show the
estimated GW strain from a set of observed LMXBs, computed from Eqs. (12.47)
and (12.39), for different values of the electron capture threshold energy Q and
assuming δTq � 105 K. In the figure, the Advanced LIGO and ET sensitivity curves
are shown for different values of the integration time (1 month, which is a typical
outburst duration, and 2 years) because the persistence timescale of the mountain,
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Fig. 12.11 Detectability of thermal mountains. We show the estimated GW strain from thermal
mountains formed in a set of observed LMXB outbursts, for different values of the reaction
threshold energy Q, assuming δTq � 105 K. The detector noise curves assume 1 month (dashed)
or 2 years (solid) of phase-coherent observation (from Haskell et al. (2015))
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and then the typical duration of the signal, is presently poorly constrained. In the
most favourable case (the deformation persists after the outburst, δTq/δT � 0.1)
some of the systems could emit a signal detectable by ET. We note, however, that
this value of δTq/δT is an upper limit with no solid physical motivation; if the actual
value of this ratio is smaller than ∼ 0.1, even third-generation GW interferometers
will not be able to detect thermal mountains.

The GW emission from thermal mountains, regardless of its direct detectability,
may have a role in the spin evolution of LMXBs. Twenty years ago, thermal moun-
tains have been proposed to explain the apparent spin cut-off in LMXBs (Bildsten
1998a). However (as discussed in detail in Sect. 12.5.1), it was later understood
that this feature can probably be explained in terms of the coupling of the stellar
magnetic field with the accretion disk. More recently, thermal mountains have
been revived by the observations of the pulsar PSR J1023 + 0038, which shows a
transition between a radio MSP state and a LMXB state (Archibald et al. 2009).
Remarkably, the pulsar spins down faster (by ∼ 20%) during the LMXB state.
It has been suggested (Haskell and Patruno 2017) that this enhanced spin-down
is due to GW emission by a thermal mountain. To explain the additional spin-
down, a deformation εth ∼ 5 × 10−10 would be required, which—as we have
discussed above—can indeed be a thermal mountain, and would emit gravitational
radiation detectable by third-generation interferometers such as ET. If these results
are confirmed, they will provide the first observational indirect evidence supporting
the existence of GW emission from neutron star mountains.

Thermal mountains (and more generally, elastic mountains) are limited by the
maximum stress that the crust can sustain before breaking (Ushomirsky et al. 2000;
Haskell et al. 2006; Johnson-McDaniel and Owen 2013):

εth � μcrσbrVcr

GM2/R
∼ 10−5

(σbr

0.1

)
, (12.48)

where μcr is the shear modulus of the crust, Vcr is the volume of the crust, and σbr is
the crustal breaking strain, which could be as large as ∼ 0.1 (Horowitz and Kadau
2009).11

We remark that this is just an upper bound: there is no reason to believe
that neutron star have deformations close to this value. For instance, the thermal
mountain which has been suggested in Haskell and Patruno (2017) to explain
the observations of PSR J1023 + 0038 is much smaller than the deformation in
Eq. (12.48). We also remark that this bound applies to thermal mountains (more
generally, to elastic mountains), but it does not necessarily apply to magnetic
mountains. Indeed, when the crust forms in a newly-born neutron star the magnetic
deformation may already be present; in this case, the equilibrium shape of the crust

11It should be mentioned that the breaking strain found in Horowitz and Kadau (2009) is the
result of numerical simulations with duration much shorter than the timescale associated with crust
straining/relaxation.
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would be non-spherical, and the crust would not have to sustain an elastic strain, at
least while the magnetic field is present.

12.7.6 Exotic Mountains

The ellipticities associated with the neutron star deformations discussed so far are
clearly pessimistic from the perspective of GW observability. A somewhat more
promising situation may arise if we consider neutron stars with quark matter cores.
If present, quarks are most likely to find themselves in a color-superconducting state,
the exotic properties of which could accommodate significantly larger quadrupolar
deformations (of both magnetic and elastic nature) as compared to conventional
hadronic matter.

Among the various possible quark matter incarnations (for a review see Alford
et al. 2008) the color-flavor-locked (CFL) phase, where all three quark species
(u, d, s) are paired, appears to be the most favoured one. Another well-studied
phase is the two-flavor superconducting (2SC) state where just the (u, d) quarks
pair. Both of these phases come with remarkable magnetic permeability properties.
The stellar magnetic field threading a CFL/2SC core is likely to do so by forming
an array of quantised vortices in the same way that fluxtubes are formed in the more
familiar type II protonic superconductor (Iida and Baym 2002; Alford and Sedrakian
2010). These vortices, however, are color-magnetic (rather than just magnetic) in the
sense that they are carriers of an admixture of magnetic and gluonic field degrees
of freedom. The latter component is the dominant one and, as a consequence, the
energy per unit length EX (where X labels the phase) of a color-magnetic vortex can
be 2–3 orders of magnitude higher than that of a conventional protonic fluxtube (Iida
and Baym 2002; Alford and Sedrakian 2010). This property entails an amplified
vortex array tension and opens the possibility of creating a large deformation in
a neutron star’s CFL/2SC core (Glampedakis et al. 2012). The ellipticity of this
internal color-magnetic mountain can be estimated by means of the ratio of the
vortex array tension energy to the stellar gravitational energy:

εX ≈ NXEXVq

GM2/R
, (12.49)

where NX is the vortex surface density and Vq is the volume of the quark core.
For a CFL core (and assuming canonical stellar parameters) this expression leads to
(Glampedakis et al. 2012),

εcfl ≈ 10−7〈B12〉
(

Vq

Vstar

)( μq

400 MeV

)2
, (12.50)

where μq is the strange quark chemical potential (normalised to a canonical value)
and, as before, 〈B〉 represents the volume-averaged interior magnetic field.
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Fig. 12.12 GW detectability of color-magnetic mountains. In this figure, adapted from
Glampedakis et al. (2012), we show the estimated GW strain (assuming a 1-year phase-coherent
observation) from the population of known pulsars, assuming they have CFL (or 2SC) quark cores.
We have used the fiducial parameters μq = 400 MeV, Vq = 0.5Vstar, and 〈B〉 = 2Bsurf

The GW strain associated with this deformation can be estimated with the help of
Eq. (12.39), using reasonable values for the various parameters, i.e. μq = 400 MeV,
Vq = 0.5Vstar and 〈B〉 = 2Bsurf (as suggested by models of MHD equilibria in
neutron stars, see e.g. Ciolfi et al. 2009; Lander and Jones 2009). The resulting
GW detectability by Advanced LIGO and ET of the pulsar population with known
surface dipole fields Bsurf is shown in Fig. 12.12. When compared to Fig. 12.9, it is
evident that the presence of a color-magnetic deformation in neutron stars leads to
a marked improvement in the strength of their GW signature. The results presented
here suggest that young pulsars such as the Crab or the Vela could be detectable by
ET. A much larger fraction of the pulsar population could become detectable (even
by Advanced LIGO/Virgo) if we assume a higher magnetic field ratio 〈B〉/Bsurf.

A drastically different phase of quark matter could be that of a crystalline
color-superconductor (CCS) (Rajagopal and Sharma 2006; Mannarelli et al. 2007),
effectively leading to a neutron star with a solid core. Given that the shear modulus
μccs of CCS matter is estimated to be much higher than that of the crustal bcc lattice
(Mannarelli et al. 2007), the elastic deformation that could be sustained by a solid
quark core could be significantly greater than that of normal hadronic neutron stars.
For obtaining the ellipticity of the CCS mountain we can use a formula similar to
Eq. (12.40). We find,

εccs ≈ μccsVqσbr

GM2/R
≈ 6× 10−4

(
Vq

Vstar

)( μq

400 MeV

)2
(

�q

10 MeV

)2 ( σbr

0.01

)
,

(12.51)
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where�q is a quark gap parameter (normalised to a canonical value) and the (highly
uncertain) breaking strain of a crystalline quark core is normalized to the fiducial
value σbr ∼ 0.01. This simple estimate is in good agreement with the results of
more rigorous calculations (Owen 2005; B. Haskell, N. Andersson, D. I. Jones
and L. Samuelsson 2007) and is about a factor μccs/μcr ∼ 103 higher than the
maximum elastic deformation of the crust (Eq. (12.48)). As discussed in B. Haskell,
N. Andersson, D. I. Jones and L. Samuelsson (2007), the presence of such a large
internal deformation in neutron cores could in principle be tested by the upper limits
set by GW searches. According to the recently published Advanced LIGO results
(Abbott et al. 2017e) the most stringent upper limit is ε ≈ 10−7 which is well
below the result (12.51). However, the non-detection of GWs can only be used
as a constraint for the (unidentified) non-axisymmetric straining mechanism or the
poorly known σbr and not as evidence against the existence of CCS matter.

From our brief exposition of deformations related to the presence of quark matter
in neutron star cores it should have become clear that observation of GWs from such
sources could provide strong evidence in favour of the existence of these very exotic
states of matter. But it should also be remembered that the properties of quark matter
in neutron stars are largely uncertain and therefore any theoretical predictions based
on them should be viewed in a similar way.

12.7.7 Mountains and Pinned Superfluidity

The presence of a pinned neutron superfluid component in the interior of neutron
stars may lead to glitches (see next section) but could also have a number of
interesting implications related to mountains. Vortex pinning could take place in
the crust (with the pinning sites provided by the crustal lattice) and/or in the fluid
core as a result of the interaction of the neutron vortices with the fluxtubes of the
proton superconductor.

As discussed in Jones (2010), an elastically or magnetically deformed neutron
star with a pinned superfluid component that has its angular momentum axis slightly
misaligned with the stellar symmetry axes can modify the harmonic structure of the
emitted GW signal by allowing emission at both frequencies 2� and � (whereas
only the former should be present in the absence of pinning and assuming a non-
precessing state).

Incidentally, it is worth mentioning that the same pinned superfluid acts as a fixed
gyroscope and could easily stabilise the previously discussed spin-flip instability of
a strong toroidal magnetic field component (Glampedakis and Jones 2010).

Finally, a pinned superfluid could itself act as a source of deformation and lead
to GW mountain emission (Jones 2002). Since this “Magnus mountain” is the only
deformation mechanism that has not been considered so far in detail it is worth
discussing it a bit more. As the name suggests, the straining mechanism responsible
for this mountain is the Magnus force acting on the pinned superfluid vortices due
to the spin lag between the superfluid and the normal stellar component onto which
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the vortices are attached (see Ruderman 1991a,b for a more detailed discussion).
Assuming both spin angular frequencies �n,� to be aligned along the same axis
(say the z-axis) the resulting Magnus force is purely radial in cylindrical coordinates
and has a per unit volume magnitude,

fm = 2$ρn�lag�, (12.52)

where �lag = �n − � is the spin lag and $ is the standard cylindrical radius. In
order to produce a non-axisymmetric quadrupolar deformation, the force (12.52)
itself has to have a similar non-axisymmetry. In turn, this requires a non-uniform
distribution of pinned vortices which would entail a non-rigid body rotational profile
for the superfluid. Although detailed calculations for this non-axisymmetric Magnus
force are still lacking it is not too difficult to see how this property could come
about in a realistic neutron star model. For example, if pinning is provided by
the magnetic fluxtubes then the generic non-axisymmetry of the stellar magnetic
field would imply a similar property for the spatial distribution of the pinning
sites. In our present back-of the-envelope-analysis the non-axisymmetric character
of the Magnus force can be accounted for by multiplication of (12.52) with a
phenomenological dimensionless factor λ � 1.

The ellipticity of the resulting Magnus mountain can be estimated by means
of the ratio between the volume-integrated Magnus force Fm =

∫
dVfm and the

gravitational binding force (Jones 2002):

εm ∼ Fm

Fgrav
∼ 2λ�lag�R

3ρVpin

GM2 ∼ 2λ�lag�R
3Mpin

GM2 , (12.53)

where Vpin and Mpin represent the volume and mass of the pinned superfluid.
Parametrising this result and assuming canonical stellar parameters we find,

εm ∼ 5× 10−7λP−1
−3

(
�lag

0.01 Hz

)(
Mpin

M�

)
. (12.54)

For the spin-lag we have used a representative value so that the Magnus force is
at most comparable to the pinning force in the crust or in the core, see Link and
Cutler (2002), Link (2003). Assuming λ ∼ 1, we can see that a reasonable range
for ellipticity could be εm ∼ 10−7 − 10−10, with the most favourable case coming
from the scenario of vortex pinning in the core (Mpin ∼ M�). As also concluded
in Jones (2002), the expected Magnus mountain could be comparable to that due to
magnetic or elastic stresses and therefore could be of interest.

12.7.8 Future Directions

In recent years our understanding of the different processes which can lead to
neutron star mountains greatly improved. However, we still do not know which
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mountains are actually present in the different kinds of neutron stars (magnetars,
radio pulsars, LMXB, etc.). Indeed, past and present astrophysical observations
mainly probe the surface and the exterior of the star, while we have very limited
information from its interior.

For instance, spin-down measurements give us accurate estimates of the exterior
magnetic field of magnetars (and of ordinary neutron stars), but if the field inside
the star is much larger than in the exterior, we will need know the interior field
to find the size and shape of magnetic mountains. Theoretical modelling can be
improved, for instance to better understand the stability properties of magnetic field
configurations (which can tell us how much of the field is toroidal and how much is
poloidal). MHD calculations of neutron stars with exotic matter would also be very
important, because these objects can accommodate larger deformations than stars
with conventional hadronic matter; as discussed above, existing calculations of these
systems are only back-of-the-envelope estimates. In any case, we need observational
data to know the actual (volume averaged) strength of the interior magnetic fields.

The same holds for thermal mountains. Theoretical modelling can clarify the
mechanism leading to temperature anisotropies and can give us estimates of their
actual shape and magnitude. In particular, we need to know the size of quadrupole
contribution to temperature anisotropies, δTq. For instance, numerical simulations
of the post-burst thermal evolution would help us understanding how large these
mountains can be. However, even for thermal mountains, the power of theoretical
modelling alone is limited: only observational data can tell us definitely how large
actual mountains are.

The most promising observational probe to study neutron star mountains is the
GW signal they emit as the star rotates. Once observed, this signal would provide a
direct measurement of the mountain, shedding light on the formation mechanisms.
Even an indirect GW observation, i.e., the observation in the electromagnetic
spectrum of a process due to GW emission (such as the spin-down increase
discussed in Haskell and Patruno (2017)) would give us valuable information to
understand magnetic and thermal mountains and their formation.

12.8 Glitches

Radio pulsars have extremely stable rotation rates—they are the most precise
natural clocks in the universe—but some of them exhibit sudden increases in the
rotation rate, called glitches. After the first glitch observations in the Vela and
Crab pulsars (Radhakrishnan and Manchester 1969; Reichley and Downs 1969;
Boynton et al. 1969; Richards et al. 1969), more than three hundred glitches have
been observed in ∼ 100 pulsars (Espinoza et al. 2011). More recently, glitches have
also been observed in gamma-ray pulsars (Ray et al. 2011; Pletsch et al. 2012) and
in magnetars (Dib et al. 2008) (MSPs can also have small glitches, but they are very
rare (Cognard and Backer 2004)).
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The glitch occurs in a very short timescale, still unresolved by observations (the
best upper limit is∼ 40 s (Dodson et al. 2002)). The relative increase in the rotation
rate ��/� ranges from∼ 10−11 to∼ 10−5 (Espinoza et al. 2011), and is generally
followed by an increase in the spin-down rate. Most glitches have ��/� � 10−7,
but few of them (such as those of the Vela pulsar) are significantly larger, with
��/� > 10−6.

The standard model of glitches is the superfluid model, in which glitches are
due to superfluid neutrons in the neutron star interior, which store the angular
momentum in a quantized array of vortices. The star spins down but its superfluid
component does not, because the vortices are “pinned”, i.e. their positions are fixed.
Periodically, some of the vortices “unpin”, move outwards and in this way the
superfluid component removes the excess angular momentum, which is released
in glitches.

An alternative model is the starquake model, in which glitches are due to the
rigidity of the crust, which maintains its shape as the star spins down and reduces its
quadrupole deformation; the strain on the crust increases and, periodically, there is
a starquake, with a rearrangement of the moment of inertia and a glitch. This model
can not explain large Vela-like glitches, but it is in principle possible that some small
glitches are due to this mechanism. For a detailed discussion of the different glitch
models, we refer the reader to Haskell and Melatos (2015) and references therein.

When a glitch occurs, there is a sudden rearrangement of the neutron star
structure (in both the superfluid and the starquake models); therefore, glitches are
expected to emit GWs. In 2006, during the fifth Science Run of LIGO, the Vela
pulsar underwent a glitch. An analysis of the first-generation LIGO data looking
for the excitation of stellar oscillations did not find a GW signal, thus setting an
upper limit on the GW strain h ≤ 1.4 × 10−20 (Abadie et al. 2011). However,
second-generation detectors are expected to be about one order of magnitude more
sensitive to this kind of signal.

Different mechanisms have been suggested for GW emission by pulsar glitches.
They belong to two classes: the signals emitted during the glitch itself and those
emitted during post-glitch relaxation.

• The energy released during the glitch can excite stellar oscillations (Sidery et al.
2010; Keer and Jones 2015; see also Sedrakian et al. 2003; Glampedakis and
Andersson 2009; Santiago-Prieto et al. 2012). The GW strain can be expressed
in terms of the total energy�E deposited into the mode as (Kokkotas et al. 2001)

h ∼ 2× 10−23D−1
1

(
�E

10−12M�c2

)1/2 (1 kHz

fgw

)(
0.1 s

τgw

)1/2

, (12.55)

where fgw, τgw are the frequency and damping time of the oscillation (and of the
GW emission). A back-of-the-envelope estimate of the deposited energy, assum-
ing that the rotational energy change associated to a glitch is entirely converted
into non-radial oscillation, is �E ∼ (2π)2I��/� � 10−12M� c2 (Andersson
and Comer 2001). Then, assuming that most of the energy is deposited into
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the fundamental mode (as suggested by hydrodynamical simulations (Sidery
et al. 2010; Keer and Jones 2015)), fgw ∼ 1 kHz, τgw ∼ 0.1 s and the
GW strain (12.55) is too weak to be detected by Advanced LIGO/Virgo, but
potentially detectable by an ET-class detector.

These estimates, however, are probably too optimistic, at least in the two-
fluid scenario. Indeed, a detailed modelling (Sidery et al. 2010) shows that
non-superfluid matter (ions in the crust and protons in the core) spin up, while
superfluid neutrons spin down; therefore, the available energy is smaller by a
factor ∼ 107. This leads to a GW strain ∼ 10−26 or smaller, too weak to
be detected even by third-generation interferometers. In the starquake scenario,
instead, a careful analysis of the interplay between deformation energy and
rotational kinetic energy shows that the GW strain can be as large as ∼
10−23 (Keer and Jones 2015); however, as mentioned above, this scenario fails
to describe Vela-like glitches.

• During a glitch, a large number of vortices move outwards, in a sort of
“avalanche”, transferring angular momentum to the crust. This process has been
studied using a very sophisticated toy-model in which the superfluid neutron
star is represented by a zero-temperature Bose condensate with dissipation
described by a non-linear Schrödinger equation, the Gross-Pitaevskii (GP) equa-
tion (Warszawski and Melatos 2011, 2012; Warszawski et al. 2012; Warszawski
and Melatos 2013). Numerical simulations of the GP equation model describe
the collective vortex migration associated to a glitch. The simulations of the GP
equations have then been extended using Monte-Carlo techniques, to include a
larger number of vortices, compute the GW emission, and find the distribution of
glitch parameters to be compared with observational data.

In the GP model the star is described as an infinite, rotating cylinder of fluid,
with a rectangular grid of pinning sites. Applying an external spin-down torque,
the vortices unpin and repin, with an average displacement of �r (which is a
key parameter of the model). The GP equation gives the evolution of the vortex
distribution, as they unpin and repin. Each vortex generates a solenoidal velocity
field, which is affected by the displacement process. Therefore, the velocity of
the fluid acquires a non-axisymmetric component, which can be reconstructed by
the vortex distribution. The non-axisymmetric velocity generates a time-varying
current quadrupole moment, and then a GW emission with strain amplitude:

h ∼ 10−23D−1
1

(
�r

1 cm

)−1 (
��/�

10−5

)(
fspin

100 Hz

)3

. (12.56)

The gravitational signal decreases as the travel distance �r increases. This is due
to the fact that, for larger values of �r (keeping fixed ��/�), the number of
vortices involved is smaller and the current quadrupole is also smaller. Recently,
it has been suggested (Melatos et al. 2015) that part of the large scale non-
axisymmetries in the velocity field produced by a vortex avalanche can persist
in the inter-glitch recovery phase. If this is true, the GW signal can be as large as
h ∼ 10−21, potentially detectable even by second-generation interferometers.
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We remark that the GP model is based on simplifying assumptions, which
may affect the GW detectability estimates: it is not an hydrodynamical model,
it is assumed that the system is weakly interacting, the grid of pinning sites is
defined a priori, and the effect of magnetic field, which can be relevant for
vortex pinning in the core, is neglected. However, this model is very powerful,
since it captures the collective behaviour of vortices, which is likely to have a
fundamental role in pulsar glitches.

• After the glitch, the neutron star resumes its spin-down, entering in a recovery
phase which can last from months to years. However, since—just after the
glitch—the crust has a rotation rate larger than the superfluid interior, during
the first part of the glitch recovery the superfluid interior spins-up due to
viscous interactions, restoring corotation with the crust, and erasing the non-
axisymmetries in the velocity field. In this “relaxation phase” viscous interactions
act through the process of Ekman pumping (Benton and Clark Jr 1974), which
operates on a timescale (the “Ekman time”) which has been estimated to range
from days to weeks. As the core spins up, the time-dependent mass and current
quadrupole moments due to non-axisymmetric meridional circulation emit a
continuous GW. Numerical simulations of the relaxation phase (assuming initial
data in which the components with different azimuthal numbers have comparable
amplitude) yield a GW strain (van Eysden and Melatos 2008; Bennett et al. 2010;
Singh 2017)

h ∼ 6× 10−27D−1
1

(
��/�

10−5

)(
fspin

100 Hz

)3

. (12.57)

Although the GW signal emitted during the relaxation phase has a lower
dimensionless strain amplitude than the burst emitted during the glitch, its
duration is larger, and this increases the measured strain ∼ h

√
T (Prix et al.

2011). Therefore, the detectability of this signal crucially depends on its actual
duration. Current models of the relaxation phase (van Eysden and Melatos 2008;
Bennett et al. 2010; Singh 2017) find that the signal can last up to some weeks,
and—if emitted by a large nearby neutron star after a large glitch—it may be
marginally detectable even by second-generation GW interferometers. However,
these models neglect the contribution of magnetic field and mutual friction,
which couple the crust with the core faster than Ekman pumping, reducing the
duration of the signal. These contributions could significantly reduce the actual
detectability of the GW emission in the post-glitch recovery phase.

The estimates of the GW signal from a glitch have recently been extended, for most
of the mechanisms discussed above, to the observed glitches in gamma-ray pulsars
(most of which are radio-quiet), finding that the detectability of the GW signal from
gamma-ray pulsar glitches is comparable with that of the signal from radio pulsar
glitches (Stopnitzky and Profumo 2014).

Summarizing, GW emission from glitches is still not fully understood, and the
predictions can be very different, from pessimistic (signal too weak even for third-
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generation interferometers, as in Sidery et al. (2010)), to moderately optimistic
(signal potentially detectable by ET, as in Keer and Jones (2015), Warszawski
and Melatos (2012)), to very optimistic (signal marginally detectable by Advanced
LIGO/Virgo, as in van Eysden and Melatos (2008), Bennett et al. (2010), Prix et al.
(2011), Melatos et al. (2015)). We remark that the models predicting detectability by
second-generation interferometers require a persistent signal after the glitch—either
due to crust-core viscous interaction, or to a persistent current quadrupole moment
produced by a vortex avalanche—but the actual duration of the signal is still matter
of debate.

12.8.1 Future Directions

Neutron star glitches are a very complex process, which we are just starting to
understand. Our theoretical models probably are able to capture the main features of
this process, but they are often qualitative, and based on simplifying assumptions.
We still need to build a general model which captures the different aspects of pulsar
glitches, and to perform MHD simulations based on this model.

In order to understand the glitch phase, we need a reliable description of the
collective motion of vortices. To this aim, the GP model is a good starting point,
but it needs to be extended and interfaced to an hydrodynamical model, including
magnetic fields and crust-core couplings.

Concerning the post-glitch relaxation phase, our understanding of the mecha-
nisms leading to density and current asymmetries (crust-core differential rotation,
two-stream instabilities, cracks and tilts in the crust, etc. (van Eysden and Melatos
2008)) is only qualitative. We need an accurate model of these processes, including
magnetic field and mutual friction, in order to understand the actual duration of the
relaxation phase and then of the GW signal.

Only a detailed and quantitative description of the entire glitch and post-glitch
relaxation phases, will allow us to determine the GW emission associated to this
process, and to definitely assess its detectability by GW interferometers.

12.9 Concluding Remarks

In this chapter we have surveyed a number of physical processes in isolated and
accreting neutron stars that could be interesting sources for the newborn field of
GW astronomy. A general conclusion that can be drawn from the results summarised
here is that the GW signals from these single neutron stars are not expected to be as
loud as the ones produced by binary systems of black holes or neutron stars. This is
mostly due to the basic fact that there is less gravitational mass “sloshing around” in
single systems than in binary ones. This handicap, however, can be partially offset
by the continuous character of the GW signal associated with some of the emission
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mechanisms (e.g. mountains) and/or the closeness to the source (e.g. known neutron
stars in our Galaxy). All relevant factors accounted for, GWs from single neutron
stars are more likely to be detected by future ET-class observatories.

It should be emphasized that in some cases our present level of understanding of a
particular mechanism does not even allow us to make a safe prediction as to whether
GW emission will operate in the first place. An example of this is provided by the r-
mode instability where the mode’s maximum amplitude and instability window are
still largely uncertain factors. This situation is not surprising given the multi-faceted
physics that has bearing on the problem.

There is one more key point worth considering here, namely, the possibility of
GW emission mechanisms having an impact on photon astronomy observations of
neutron stars. This has, of course, already happened when the orbital evolution of
binary pulsar systems was found to be consistent with GW emission, thus providing
evidence of the existence of GWs several decades before their first direct detection.
A more recent remarkable example of this synergy may have been provided by the
observed spin-down profile of PSR J1203+0038 which is a member of a LMXB
system (Haskell and Patruno 2017). The enhanced spin-down rate of this pulsar
immediately after an accretion phase has been attributed to the GW emission by a
thermal mountain, but the required deformation is too small to be directly detected
by Advanced LIGO. A similar situation of GWs “seen” in the electromagnetic
channel may arise if, for example, a small amplitude r-mode drives the spin
evolution of a MSP.
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Chapter 13
Universal Relations and Alternative
Gravity Theories

Daniela D. Doneva and George Pappas

Abstract This is a review with the ambitious goal of covering the recent progress
in: (1) universal relations (in general relativity and alternative theories of gravity),
and (2) neutron star models in alternative theories. We also aim to be complementary
to recent reviews in the literature.

13.1 Introduction

Neutron stars are complicated astrophysical objects with a lot of physics involved
in their description, as one can see from the previous chapters in this volume. But
when it comes to their overall structure and their stationary properties, gravity is
the most important player. To determine the structure of a neutron star one specifies
an equation of state and then solves the Einstein field equations together with the
hydrostatic equilibrium equation (see Friedman and Stergioulas 2013; Paschalidis
and Stergioulas 2016). The resulting models and their structure depend on the
specific choice of the equation of state. At the moment there exists a large variety of
realistic equations of state that come from different nuclear physics models (a result
of our lack of knowledge with respect to the properties of matter at supra-nuclear
densities), which in turn result to quite a large variety in neutron star models as
Fig. 13.1 shows. Specifying the equation of state is therefore a very hot topic from
both astrophysical perspective as well as nuclear physics perspective.
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Fig. 13.1 Mass-Radius relation of non-rotating neutron stars for different equations of state. The
mass is given in solar masses M�

This large variety was always considered to be a natural outcome of having a
lot of degrees of freedom available in the description of the equation of state and
for this reason neutron stars were not considered to be useful objects for testing our
theories of gravity. The conventional wisdom was that neutron stars were infested
by matter that would hide any possible signal coming from modifications from
general relativity. Nevertheless, there always existed an interest in finding ways to
describe neutron stars in ways that were not very sensitive on the specific choice
of the equation of state. The motives behind such attempts are twofold. On the one
hand, having observables that are insensitive to the specifics of the equation of state
can be very advantageous in our attempts to measure astrophysically the various
properties of neutron stars, by reducing for example modelling uncertainties. This
can be also important in solving the inverse problem of determining the equation of
state from measurements of the bulk properties of neutron stars. On the other hand,
such observables would open the window to observing deviations that are due to
gravity and possible modifications to general relativity and not the equation of state
uncertainty. All the more so, since neutron stars can be in some cases a much more
suitable object for testing such modifications, as we shall discuss shortly.

Alternative theories of gravity attracted significant attention in the past decades.
The reasons for this come both from theory and observations. Modifications
of Einstein’s theory of gravity for example are often employed as alternative
explanation for the dark mater phenomenon or the accelerated expansion of the
universe. The idea is that instead of attributing the accelerated expansion to
unknown constituents of the Universe with rather unusual and strange properties
such as dark energy, one can attribute it to our lack of understanding of gravity.
Besides the observations, there are strong theoretical motivations for modifying
general relativity. The standard Hilbert–Einstein action is by no means the only
possible one but instead the simplest. That is why different generalizations are
possible coming for example from the theories trying to unify all the interactions.
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They predict the existence of a scalar field that can be considered as a new mediator
of the gravitational interaction in addition to the spacetime metric. On the other hand
the quantum corrections in the strong field regime which are introduced in order to
make the theory renormalizable or to cure the singularities in the solutions, naturally
lead to the fact that the Einstein–Hilbert action is supplemented with higher order
terms. Last but not least, as the experience shows, studying in detail theories of
gravity more general than Einstein’s theory can often give as a better insight to
general relativity itself.

Every viable theory of gravity should be consistent with the observations
at all scales and regimes (Will 2014). The weak field experiments give strong
constraints on the parameters of the theory, but the strong field regime is essentially
unconstrained and leaves a lot of space for modifications. Moreover, there are
theories of gravity that are completely indistinguishable from general relativity for
weak fields but can lead to large deviations for strong fields. Therefore, constraining
the strong field regime of gravity or even detecting possible deviations from pure
Einstein’s theory is a difficult but very important task.

Neutron stars and black holes in alternative theories of gravity have been
explored for several decades because they offer the possibility to test the strong field
regime of gravity at astrophysical scales. Black holes, though, have an important
disadvantage because of the no-hair theorems. According to these theorems, the
black hole solutions in some classes of alternative theories of gravity are the same
as in general relativity.1 Naturally, this poses obstacles to testing such theories
of gravity via the astrophysical observations of black holes. Neutron stars on the
other hand do not fall in the scope of the no-hair theorems because of the presence
of matter. Thus, alternative theories of gravity can lead to large deviations from
Einstein’s theory. The neutron star matter, though, is a double edged sword—indeed
it offers the possibility to have compact star solutions different from pure general
relativity, but on the other hand the uncertainties in the high density nuclear matter
equation of state are large. Moreover, there is a degeneracy between effects coming
from modifying the equation of state and the theory of gravity. That is why testing
the strong field regime of gravity via neutron star observations is also a subtle task.
In order to address these problems one has to build a dense net of neutron star
models and astrophysical predictions in various alternative theories that can help
us either break the degeneracy or find effects that are stronger pronounced than
the equation of state uncertainty. Again, as in general relativity, universal relations
can play a significant part here by taking the subtleties of the equation of state out
of the picture so that we can identify effects and deviations that are only due to
modifications in gravity.

Neutron star solutions (both static and rotating) have been constructed in various
alternative theories of gravity. The literature on the subject is vast and the size of
the present chapter is clearly not enough to cover thoroughly the subject. Moreover,

1The perturbations, though, could be different and thus used for testing alternative theories of
gravity.
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we aim at a more pedagogical review. This is why instead of reviewing the whole
subject in detail, we will concentrate on certain classes of alternative theories of
gravity. Since the goal of the chapter is to cover both neutron stars in alternative
theories and universal relations, a natural choice would be to focus mainly on those
theories, in which universal relations have been derived. In the present chapter we
will concentrate on scalar-tensor theories (STT), f (R) theories, Einstein–dilaton–
Gauss–Bonnet (EdGB) theories and the Chern–Simons (CS) theories of gravity. As
a matter of fact they are amongst the most natural and widely used generalizations
of Einstein’s gravity and most of the neutron star studies in the literature have been
done exactly in these alternative theories. In addition all of them fall into the same
class of modifications of Einstein’s theory, i.e. theories for which dynamical scalar
fields are included as mediators of the gravitational interaction in addition to the
metric tensor. A very nice recent review that covers a much larger spectrum of
theories can be found in Berti et al. (2015).

In what follows we will start by discussing in Sect. 13.2.1 the history and present
status of universal relations for neutron stars in general relativity. We will proceed
in Sect. 13.2.2 to briefly review neutron stars in various modifications of general
relativity. In Sect. 13.2.3 we will discuss the current status on the various extensions
of the universal relations to alternative theories of gravity. In Sect. 13.3 we will talk
about the work that needs to be done or could be done in the future as well as the
various challenges that we will face in extending our current results. Finally we will
close with some brief overview of the Chapter.

We will use geometric units (G = c = 1) throughout, unless it is specifically
mentioned otherwise.

13.2 Review of Past Work

13.2.1 Universal Relations in GR

13.2.1.1 Prehistory

Even though the subject of neutron star universal relations, i.e., equation of state
independent or insensitive relations, has received a lot of attention in recent years, as
was mentioned above it has a longer history. Some first results have been presented
in the literature already since the 90s when it was recognised in Lattimer and Yahil
(1989) that the binding energy BE ≡ (Nmn −M) of a neutron star, where N is the
nucleons number and mn the corresponding nucleons mass, expressed in terms of
the stellar compactness C ≡ M/R (the mass here is in geometric units) is insensitive
to the equation of state. A later improved expression between the two quantities was
given by Lattimer and Prakash (2001) and reads,

BE/M = (0.60± 0.05)C(1− C/2)−1. (13.1)
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Such an expression is motivated by the fact that analytic solutions like that of the
incompressible fluid (ρ = const.), the Buchdahl solution (constructed using the
equation of state ρ = 12

√
p∗P − 5P , where p∗ is some constant with dimensions

of pressure) or the Tolman VII model (which is constructed by assuming that inside
the star the density goes like ρ = ρc

(
1− (r/R)2

)
, where ρc is the central density

of the star), give similar expansions in terms of the compactness (see Lattimer and
Prakash 2001).

On a different direction, on the topic of asteroseismology, in the late 90s it was
recognised by Andersson and Kokkotas (1996); Andersson and Kokkotas (1998)
that the f -mode andw-modes exhibit some equation of state independent behaviour.
In particular it was shown that the f -mode frequency (in kHz) is related to the
average density of a neutron star following the relation

ωf

2π
= 0.78+ 1.635

(
M1.4

R3
10

)1/2

, (13.2)

where different equations of state have a relative small spread around this common
fit. In the above expression the mass is measured in units of 1.4M� and the radius
of the star in units of 10 km. The f -mode is related to fluid motion inside the star
that takes place in dynamic time scales. It is reasonable therefore to assume that
the f -mode frequency will be related to the characteristic dynamic time which is
proportional to the square root of the average density, τdyn ∼ √ρ̄. It was also shown
that the damping time (in s) of the f -mode, when scaled in the right way, is related
to the compactness in a linear way,

(
τf

M3
1.4

R4
10

)−1

= 22.85− 14.65 C0, (13.3)

where again the masses and radii are measured using the same units as above (this
is the case also for C0 ≡ M1.4/R10). Finally for the first w-mode the corresponding
relations for the frequency (in kHz) and the damping time (in ms) are,

R10

(ωw
2π

)
= 20.92− 9.14 C0, (13.4)

M1.4(τw)
−1 = 5.74+ 103 C0 − 67.45 C2

0, (13.5)

where the mass and radius units are as before.
Returning to the topic of the structure of neutron stars, in the 2000s it was found

by Lattimer and Prakash (2001); Bejger and Haensel (2002); Lattimer and Schutz
(2005) that there is an equation of state insensitive relation between a neutron star’s
moment of inertia and its compactness,

I

MR2 = (0.237± 0.008)(1+ 2.84C + 18.9C4), (13.6)
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where the compactness is expressed in terms of the mass in geometric units. This
expression is again motivated by the behaviour of the moment of inertia in the
various analytic models, such as the Tolman VII model. Finally, another instance
where relations of this sort were studied is in Urbanec et al. (2013) where for slowly
rotating neutron stars, relations between the reduced moment of inertia I/(MR2)

and the inverse compactness x = 1/(2C) where derived in addition to a new relation
between the reduced quadrupole q̃ ≡ QM/J 2 and x. This last relation could be of
additional interest since it distinguishes between neutron stars and quark stars. We
give here a fitting formula for neutron stars’ q̃ in terms of the compactness,

q̃ = −0.2588C−1 + 0.2274C−2 + 0.0009528C−3− 0.0007747C−4, (13.7)

as it is given in Yagi and Yunes (2017a).
One will notice a common theme in all of these relations, which is that the various

quantities are expressed in terms of the compactness. Using the compactness was a
sensible first choice for parameterising the various properties of neutron stars, since
it is a dimensionless quantity that is representative of the overall structure of the
star. It was a sensible choice also because, in results from analytic models, relations
between various quantities would usually be expressed in terms of the compactness
which would be a measure of how relativistic a particular model is.2 One could think
of these results as precursors of the later proliferation of universal relations. In what
follows we will give an incomplete list of some of these relations. The interested
reader can complement the material presented here with a recently published review
on the subject (Yagi and Yunes 2017a).

13.2.1.2 I-Love-Q

Yagi and Yunes in 2013 (Yagi and Yunes 2013a; Yagi and Yunes 2013b), while
studying slowly rotating and tidally deformed neutron and quark stars, found that
there exist relations between the various pairs of the following three quantities,
the moment of inertia I , the quadrupole moment Q and the quadrupolar tidal
deformability or Love number λ, which are insensitive to the choice of the equation
of state for both neutron as well as quark stars. We will present here a very brief
outline of their calculation which comprises of two parts, first the calculation of the
slowly rotating models and then the calculation of the tidally deformed models.

Initial I-Love-Q Formulation The slowly rotating models were calculated using
the Hartle and Thorne slow rotation formalism (Hartle 1967; Hartle and Thorne
1968). In order to construct a slowly rotating model, one first calculates a non-
rotating spherically symmetric model that has some mass M∗ and radius R∗. The
structure of the star is described by the Tolman–Oppenheimer–Volkoff (TOV)

2The newtonian limit is for C→ 0, while the relativistic limit is for C→ 1/2.
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equation, while the metric has the form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (13.8)

where we can define the mass function M(r) = r
(
1− e−λ(r)

)
/2. The spacetime

outside the star’s surface is the Schwarzschild spacetime. From the mass and the
radius of the star one calculates an angular frequency scale �K =

√
M∗/R3∗ which

is then used to introduce a small expansion parameter ε ≡ �∗/�K that characterises
rotation. Then one introduces corrections to the geometry due to rotation in the form
of perturbations up to second order in the rotation,

ds2 = −eν(r)
[
1+ 2ε2 (h0 + h2P2)

]
dt2 + 1+ 2ε2 (m0 +m2P2) / (r − 2M(r))

1− 2M(r)/r
dr2

+r2
[
1+ 2ε2K2P2

] [
dθ2 + sin2 θ (dφ − εωdt)2

]
, (13.9)

where P2 = (3 cos2 θ − 1)/2 is the second order Legendre polynomial and
ω1 ≡ �K − ω is the angular velocity of the fluid relative to the local inertial
frame. The equations for the perturbations are then solved on top of the background
spherical non-rotating solution. The resulting perturbed configuration is deformed
due to rotation and the deformation of the surfaces of constant density has the form,
r̄ = r + ε2 (ξ0(r)+ ξ2(r)P2). Since all the perturbations scale with the angular
velocity of the star, in practice one has only to calculate the model that rotates at
�K for ε = 1 and then all the models with values of ε ∈ [0, 1] follow from that. Of
course we should note that the results are accurate for values of ε that correspond to
models that rotate as fast as a few milliseconds (Berti et al. 2005).

The various quantities of the rotating model will scale with rotation in term of
the corresponding quantities of the ε = 1 model as, angular velocity: � = ε�K ,
angular momentum: J = εJK , stellar radius: R = R∗ + ε2δRK , mass: M =
M∗ + ε2δMK , and quadrupole moment: Q = ε2QK . The moment of inertia for
a rigidly rotating configuration is defined as I ≡ J/� = JK/�K which means
that for a calculation at the order of ε in J , the moment of inertia is independent
of ε. The angular momentum and the quadrupole moment of the configuration
can be evaluated from the form of the metric outside the star and in particular by
it’s asymptotic expansion in the appropriate coordinate system following Thorne’s
prescription (Thorne 1980; Quevedo 1990).3 Therefore, the angular momentum can
be calculated by the fact that outside the star the metric function ω1 has the form

ω1(r) = �K − 2JK
r3

, (13.10)

3There will be a further discussion on multipole moments when we talk about the 3-hair relations.
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where the angular momentum JK is a constant calculated by the matching of the
interior metric to the exterior metric at the surface of the star. Similarly, in the
exterior of the star the h2(r) perturbation functions has the form

h2(r) = J 2
K

M∗r3

(
1+ M∗

r

)
+ AQ2

2

(
r

M∗
− 1

)
, (13.11)

where Q2
2(x) is the associated Legendre polynomial of the second kind4 and A is

an integration constant that is determined by the matching of the interior solution
to the exterior solution. From the asymptotic expansion of −(1 + gtt )/2, one can
read the quadrupole as the coefficient in front of the P2/r

3 term, which is QK =
−J 2

K/M∗ − 8
5AM

3∗ .
In a similar way to the slowly rotating models, the tidally deformed models are

assumed to be slightly perturbed from sphericity due to the presence of an external
deforming quadrupolar field. For an l = 2, static, even-parity perturbation, the
perturbed metric will take the form,

ds2 = −eν(r) [1+ 2h2P2] dt2 + 1+ 2m2P2

1− 2M(r)/r
dr2 + r2 [1+ 2K2P2]

(
dθ2 + sin2 θdφ2

)
,

(13.12)

where we have introduced again the perturbation functions and assumed zero rota-
tion (Hinderer 2008). The tidal Love number is defined to be the deformability, i.e.,
the response, of a configuration for a given external deforming force. Specifically,
for a given external tidal field E tid that produces a quadrupolar deformation of the
star Qtid, the tidal Love number is defined to be,

λ ≡ −Q
tid

E tid . (13.13)

In addition to this definition, one can define the tidal apsidal constant and the
dimensionless tidal Love number as

k2 ≡ 3

2

λ

R5∗
,

λ̄ ≡ λ

M5∗
= 2

3
k2C−5, (13.14)

respectively. The quadrupolar response and the external quadrupole tidal field can
both be extracted from the form of the metric perturbation h2(r) outside the star.
One should be careful though in this case because the exterior to the star is
not an asymptotically flat spacetime as it was in the rotating case. Instead, the

4The polynomial here is defined as Q2
2(x) = 3

2

(
x2 − 1

)
ln
(
x+1
x−1

)
+ 5x−3x3

x2−1
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asymptotic behaviour is determined by the external quadrupolar field that produces
the deformation. In the exterior of the star the h2(r) perturbation function has in this
case the form,

h2(r) = 2c1Q
2
2

(
r

M∗
− 1

)
+ c2

(
r

M∗

)2 (
1− 2M∗

r

)
, (13.15)

where again the constants c1 and c2 are integration constants that are determined
from the matching conditions at the surface of the star. To identify the external tidal
field and the quadrupolar response of the star, one again expands −(1 + gtt )/2 in
powers of r . In this case, the expansion will have additional terms with positive
powers of r due to the external tidal field.5 The expansion will have the form,

− 1+ gtt

2
= −M∗

r
− Q

r3P2 + · · · + 1

3
r2E tidP2 + · · · , (13.16)

and by comparing this to the corresponding expansion of −(1 + gtt )/2, where gtt
is evaluated from Eqs. (13.12) and (13.15), one finds that Qtid = − 16

5 M
3∗c1 and

E tid = 3M−2∗ c2. Therefore, from the definition of the tidal love number and the
tidal apsidal constant, we have in terms of the integration constants c1 and c2 that,

λ = 16

15
M5∗

c1

c2
⇒ λ̄ = 16

15

c1

c2
, and k2 = 8

5

c1

c2
C5, (13.17)

where the ratio c1/c2 depends on the compactness and the quantity y =
R∗h′2(R∗)/h2(R∗) at the surface of the star.

Having all the relevant quantities at hand, Yagi and Yunes calculated sequences
of neutron star models using various cold realistic equations of state6 and found that
the quantities, normalised moment of inertia: Ī ≡ I/M3∗ , normalised Love number:
λ̄ ≡ λ/M5∗ , and normalised quadrupole: Q̄ ≡ −Q/(χ2M3∗ ),7 where χ = J/M2∗ ,
are related in an equation of state independent way following the relation

ln yi = ai + bi ln xi + ci(ln xi)
2 + di(ln xi)

3 + ei(ln xi)
4, (13.18)

where the different coefficients depend on the pair of quantities to be related and
are given in Table 13.1. The relations presented here, i.e., the I-Love, I-Q and Q-

5We should also note that the expansion in this case is not at infinity. It takes place at a buffer
region outside the surface of the star and inside a radius given by the external field’s characteristic
curvature radius.
6See also Lattimer and Lim (2013) where the results were extended to a wider range of equations
of state. We remind here that these results apply to quark stars as well.
7The minus sign here is due to the fact that rotating neutron stars tend to be oblate due to rotation
which gives a negative value for the quadrupole. On the other hand, an object that is prolate has a
positive quadrupole.
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Table 13.1 Numerical coefficients for the fitting formula given in Eq. (13.18)

yi xi ai bi ci di ei

Ī λ̄ 1.496 0.05951 0.02238 −6.953×10−4 8.345 × 10−6

Ī Q̄ 1.393 0.5471 0.03028 0.01926 4.434 × 10−4

Q̄ λ̄ 0.1940 0.09163 0.04812 −4.283×10−3 1.245 × 10−4

¯δM λ̄ −0.703 0.255 −0.045 −5.707×10−4 2.207 × 10−4

This is an updated version of the table as it appears in Yagi and Yunes (2017a), where a very wide
range of equations of state has been taken into account. In the table we also give the universal
relation for the mass correction ¯δM presented in Reina et al. (2017)
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Fig. 13.2 I-Love, I-Q and Q-Love plots for three typical equations of state. The solid lines
correspond to the fits given in Table 13.1

Love relations, are equation of state independent in the sense that for any given
realistic equation of state, the calculated quantities follow the corresponding fits
given by Eq. (13.18) and Table 13.1 to an accuracy better than O(1%) in the range
of applicability of the fit, which is for neutron stars with masses slightly less than
1M� up to the maximum mass of the given equation of state. The fits with the data
from some typical equations of state are given in Fig. 13.2.

As it was previously mentioned, the moment of inertia by definition (within
the slow rotation scheme) does not depend on the rotation parameter ε, while the
normalised quadrupole −Q/(χ2M3∗) is defined in such a way that the rotation
parameter is scaled out. Similarly, the tidal love number is defined in such a way that
it is independent of the strength of the external tidal field and characterises the given
neutron star model. This means that essentially the quantities Ī , λ̄, and Q̄ form one
parameter families characterised by the central density of the neutron star models.
We should also note that the normalisation of the various quantities in the initial
I-Love-Q formulation was performed with the masses M∗ of the corresponding
spherical configurations. From a practical perspective this could be considered to
be problematic, since when one observes a neutron star and measures it’s mass, that
mass is not the mass M∗ of the spherical configuration but instead it is the mass
M = M∗ + ε2δMK . Nevertheless, in the slowly rotating and small deformations
case δMK/M∗ is of the order of 10% and one can also assume values of ε up to
10%, which make any deviations from the given relations to be of the order of 10−3.
We will revisit this point later on when we will discuss rapidly rotating neutron stars.
Nevertheless, recent work (Reina et al. 2017) has shown that the mass correction,
normalised as ¯δM ≡ M3∗δMK/J

2
K , also follows a universal relation, extending in
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this way the original family of I-Love-Q relations to include the mass correction as
well.

Extensions Beyond the Initial I-Love-Q Formulation The discussion so far has
been about unmagnetised isolated neutron stars, in the sense that we have taken into
account deformations that are only due to rotation or due to some static external
tidal field, the latter of which is not what one would expect if we assumed that the
star was part of some binary for example and the source of the tidal field were a
companion star. The effects of adding a magnetic field were studied in Haskell et al.
(2014) while the effects of having the neutron star being part of a binary system
were studied in Maselli et al. (2013).

In Haskell et al. (2014), Haskell et al. investigated three magnetic field configura-
tions. The first was a purely poloidal magnetic field configuration, the second was a
purely toroidal magnetic field configuration and finally the third was a twisted-torus
configuration. It is known that magnetic fields can cause deformations to neutron
stars which depend on the magnetic field configuration. It is also known that neutron
stars can be strongly magnetised with magnetic fields at the surface as high as 1012G

for pulsars and 1015G for magnetars, while the magnetic field in the interior can be
even stronger than that on the surface. Therefore, for high enough magnetic fields
and sufficiently slow rotation, the deformations due to magnetic fields can dominate
those due to rotation.

When the magnetic field is purely poloidal, in the Newtonian limit and for an
n = 1 rotating polytrope, the normalised quadrupole Q̄ can be expressed in terms
of the normalised moment of inertia Ī as,

Q̄ ≈ 4.9Ī 1/2 + 10−3Ī

(
Bp

1012G

)2 (
P

s

)2

, (13.19)

where the first term is the induced quadrupole due to rotation, while the second term
is the induced quadrupole due to the magnetic field, Bp is the field at the pole and
P is the rotation period of the star. Similarly for a purely toroidal magnetic field the
reduced quadrupole is,

Q̄ ≈ 4.9Ī 1/2 − 3× 10−5Ī

( 〈B〉
1012G

)2 (
P

s

)2

, (13.20)

where 〈B〉 is the field average over the volume of the star.8 There are a few things
that one notices from the above equations. The first is that for the purely toroidal
case the magnetic field tends to make the star more prolate in contrast to rotation and
the effect the magnetic field has in the purely poloidal case. The second is that the
induced quadrupole is proportional to the square of the productB×P and therefore

8We should note that the numerical coefficients in these expressions depend on the specific
configuration.
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the effect is more prominent for larger periods, i.e., slower rotation rates. Finally,
one notices that the effect of the magnetic field is suppressed in relation to the effect
of rotation by factors of 10−3 and 10−5 respectively. These observations also hold in
the relativistic case studied in Haskell et al. (2014) where it was found that the purely
toroidal and purely poloidal magnetic field configurations give an approximately
universal relation between Q̄ and Ī which agrees with the unmagnetised case.

However, the purely toroidal or purely poloidal configurations are both known
to be dynamically unstable (although, the crust could stabilise such configurations
as long as it does not break). For this reason a more realistic configuration was also
studied in Haskell et al. (2014), that of a twisted torus, where both toroidal and
poloidal components of the magnetic field are present. In this case in addition to
the strength of the magnetic field and the rotational period, the results also depend
on the ratio of the toroidal-to-total magnetic field energy, i.e., on the particulars of
the configuration of the magnetic field, while the Ī − Q̄ relation also acquires some
equation of state dependence. Nevertheless, the I-Love-Q universality is preserved
as long as the magnetic field is not too strong, i.e., B � 1012G, and the neutron star
is not rotating too slowly, i.e., P � 10s.

In Maselli et al. (2013) Maselli et al. investigate what are the effects on the Ī − λ̄
relation if one were to assume the more realistic situation of having dynamic tides
caused by a companion star in a binary system. The method used to model tidal
deformations in compact binaries was the Post-Newtonian-Affine approach. It was
shown that the Ī − λ̄ relation is not the same as the one in the stationary case and
that the new relation depends on the inspiral frequency. However, for any given
inspiral frequency the Ī − λ̄ relation is insensitive to the equation of state with an
accuracy of a few %. The fits for the Ī − λ̄ relations for the different gravitational
wave frequencies fGW that the system would emit, that are related to the binary
inspiral frequency as fGW = 2f , are given in Table 13.2. These fits are accurate to
within 2% for every frequency, while there is also an overall fit given which is valid
up to a gravitational wave frequency of∼ 900 Hz and accurate to within 5% for any
frequency in that range.

The tidal fields and the corresponding tidal deformations that we have discussed
so far are of the so called “gravito-electric” type and they are the relativistic exten-

Table 13.2 Numerical coefficients for the binary Ī − λ̄ fitting formula, given in Eq. (13.18) with
yi = Ī and xi = λ̄

fGW ai bi ci di ei

170 1.54 −3.73 × 10−2 5.49 × 10−2 −4.78 × 10−3 1.87× 10−4

300 1.58 −6.53 × 10−2 6.26 × 10−2 −5.68 × 10−3 2.26× 10−4

500 1.60 −8.34 × 10−2 6.83 × 10−2 −6.39 × 10−3 2.59× 10−4

700 1.64 −1.18 × 10−1 7.89 × 10−2 −7.69 × 10−3 3.18× 10−4

800 1.68 −1.46 × 10−1 8.76 × 10−2 −8.77 × 10−3 3.68× 10−4

Any 1.95 −3.73 × 10−1 1.55 × 10−2 −1.75 × 10−3 7.75× 10−4

The different rows correspond to different inspiral frequencies, while the final row is an overall fit.
The table is from (Maselli et al. 2013)
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sions of their Newtonian counterparts. In general relativity though there can exist
“gravito-magnetic” tidal fields and deformations which result to gravitomagnetic
Love numbers. In order to allow for the fullest possible effect in the response
of a compact object under a gravitomagnetic tidal field one needs to go beyond
configurations that are in strict hydrostatic equilibrium (no internal motion of the
fluid), i.e., allow for the fluid to be in an irrotational state. This is because one
expects that the external gravitomagnetic tidal field in a binary system would also
drive internal fluid motion in the star. Allowing for irrotational fluid flows inside
the stars gives a dramatically different behaviour for the Love numbers with respect
to the restricted hydrostatic case. The magnetic Love numbers for irrotational stars
were studied by Landry and Poisson in (Landry and Poisson 2015) (where one can
find further references to previous work). Furthermore Delsate explored in Delsate
(2015) the existence of a universal relation between the # = 2 gravitomagnetic Love
number and the moment of inertia. As in the case of gravitoelectric Love numbers,
the gravitomagnetic Love numbers can be defined as the coefficients σ# that relate
the tidally induced response for a given external tidal field. Delsate found that in
the case of irrotational stars there exists a |k̄mag2 | − Ī universal relation, where
k̄
mag

2 = σ̄2(2C)4 is analogous to the tidal apsidal constant for the gravitoelectric
Love number, which is equation of state independent with a variation less than 5%.

Another significant extension of the initial I-Love-Q analysis (performed in slow
rotation) was the investigation of the Ī−Q̄ relation for rapidly rotating neutron stars
with rotation rates as high as that of the mass shedding limit. Doneva et al. (2013a)
explored the Ī − Q̄ relation for neutron and quark stars rotating at different rotation
rates, from a few hundred Hz up to kHz frequencies close to the Kepler limit,
using models numerically constructed with the RNS numerical code (Stergioulas
and Friedman 1995). They found that the Ī − Q̄ relation changes with rotation
frequency f and in addition for higher frequencies there is an increasing scattering
of the different equations of state. Nevertheless Doneva et al. (2013a) produced
a general fit that captures the behaviour of neutron star models constructed with
modern realistic equations of state and for different rotation rates that has the form,

ln Ī = a0 + a1 ln Q̄+ a2(ln Q̄)2, where ai = c0 + c1

(
f

kHz

)
+ c2

(
f

kHz

)2

+ c3

(
f

kHz

)3

.

(13.21)

The coefficients of the fit are given in Table 13.3, while in Fig. 13.3 one can see
the fit for the rapidly rotating models for different frequencies compared to the

Table 13.3 Numerical
coefficients for the fitting
formula given in Eq. (13.21)

ai c0 c1 c2 c3

a0 1.406 −0.051 0.154 −0.131

a1 0.489 0.183 −0.562 0.471

a2 0.098 −0.136 0.463 −0.273
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Fig. 13.3 I-Q plots for three rotation frequencies and various equations of state. The solid red
lines correspond to the I-Q fit given in Doneva et al. (2013a), while the solid blue correspond to
the slow rotation I-Q fit given in Table 13.1. One can see that there is some scatter between the
different equations of state that was not present in the I-Q relation of Fig. 13.2
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Fig. 13.4 I-Q plots for three spin parameters and various equations of state. The solid red lines
correspond to the I-Q fit given in Pappas and Apostolatos (2014), while the solid blue correspond
to the slow rotation I-Q fit given in Table 13.1. Unlike in Fig. 13.3 there is no scattering between
the equations of state when the parameterisation is done with the spin parameter χ = J/M2

slow rotation fit. One can also notice the scattering around the fit for the different
equations of state and the different rotation frequencies.

A different approach in parameterising rotation for rapidly rotating models
was taken by Pappas and Apostolatos in Pappas and Apostolatos (2014), where
the rotation was parameterised in terms of the spin parameter χ = J/M2, a
dimensionless quantity, instead of the rotation frequency f . By comparing models
of equal spin parameter, Pappas and Apostolatos found that the different equations
of state exhibit no noticeable scattering as one can see in Fig. 13.4. They also
produced a fit for the I-Q relation in terms of the spin parameter, which has the
form,

√
Ī = 2.16+ (0.97− 0.14χ + 1.6χ2)

(√
Q̄− 1.13

)
+ (0.09 + 0.23χ − 0.54χ2)

(√
Q̄− 1.13

)2

,

(13.22)

and is accurate to better than 1%. What becomes clear from the two different
approaches is that the “universality” of the behaviour is sensitive to the choice that
one makes in parameterising an effect. In this case, parameterising rotation with
the spin parameter preserves the equation of state independence of the description,
while the rotation frequency breaks it. Along these lines, Chakrabarti et al. explored
in Chakrabarti et al. (2014) different ways of parameterising rotation so as to
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preserve the equation of state independence of the I-Q relation. Specifically, in
addition to using the spin parameter, Chakrabarti et al. also explored relations that
are parameterised with respect to R×f andM×f , whereR andM are the radii and
masses of the corresponding models, and found that these dimensionless quantities
are also good parameters for preserving equation of state independence, although
the best choice remains the spin parameter.

At this point there is one more thing that we should note, with respect to an
earlier discussion on the normalisation of the various quantities in the initial slow
rotation approach and in view of the results from rapid rotation. As one can see
in Fig. 13.4, the models with spin parameter χ = 0.22 (left plot) are very close
to the curve for the slow rotation I-Q fit.9 But the normalisation for the moment
of inertia and the quadrupole in this case is performed with the total mass of the
numerically constructed model. Nevertheless, the agreement with the slow rotation
results and the normalisation with respect to the non-rotating TOV mass is very
good, providing thus more credibility to our earlier argument on the insensitivity
of the result to whether one uses the TOV or the corrected mass in normalising the
initial I-Love-Q relations.

Applications The existence of the I-Love-Q universal relations is of theoretical
interest by itself, but the most interesting aspect is the potential applications of
such relations. There are two ways in which these relations can be useful: (1) one
could use them to make indirect measurements of quantities that are difficult to
measure, i.e., assume that the relations hold and use them as tools to do physics and
astrophysics, or (2) test their validity by measuring more than one of these quantities
and in this way use them to test the assumptions on which the I-Love-Q relations
are based. Both of these are very interesting prospects.

(1) Assuming the validity of the I-Love-Q relations, one could for example use a
binary pulsar system to measure the moment of inertia (see for example Lattimer
and Schutz 2005) and from that, using the I-Q relation infer the quadrupole of
the neutron star. Such a quadrupole measurement together with the simultaneous
measurement of the mass and the angular momentum of the neutron star could be
used to constrain the equation of state, by taking advantage of the fact that different
equations of state constitute a different surface in an (M, χ, Q̄) parameter space, as
described in Pappas and Apostolatos (2014). Another application could be to use the
Q-Love relation to break degeneracies between individual spins and quadrupoles10

in the analysis of the waveforms of the gravitational waves emitted from the inspiral
of neutron star binaries, along the lines given in Yagi and Yunes (2013a); Yagi and
Yunes (2013b).

9In Chakrabarti et al. (2014) the authors arrive at the same result with χ values as low as 0.1, which
get even closer to the slow rotation fit.
10The degeneracy is in the gravitational wave phase where a spin-spin coupling term has a
contribution at the same order as the quadrupole term.
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Returning to the equation of state measurement front, another application of I-
Love-Q relations, as described by Silva et al. (2016), could be the estimation of
parameters of the equation of state from electromagnetic observations of binary
pulsars or gravitational wave observations of binary inspirals, from systems where
the members are low mass neutron stars. Specifically, Silva et al. (using various
equations of state) found that for low mass neutron stars, quantities like Ī , Q̄ and
λ̄ can be fitted by simple functions of the central density ρc and of the dimensional

parameter η = (K0L
2
)1/3

, where K0 is the incompressibility of symmetric nuclear
matter and L is the slope of the symmetry energy at saturation density (all three
parameters have units of energy). A measurement of any two of Ī , Q̄ or λ̄ could be
used to constrain η and ρc and in this way constrain the parameters of the equation
of state. Alternatively, the measurement of one of the quantities and the use of the
I-Love-Q relations could also provide similar constraints. Finally, one could use
the simultaneous measurement of two or more of these quantities, the I-Love-Q
relations and the relations in Silva et al. (2016) to perform consistency checks on
the assumptions entering the modelling of the equation of state.

(2) Testing the validity of the I-Love-Q relations offers another possibility for
testing the equation of state. As it has been demonstrated (Yagi et al. 2014a; Sham
et al. 2015; Chan et al. 2015), the universality of the I-Love-Q relations comes from
properties of the equation of state that are related to the fact that the equation of
state for compact objects is close to being incompressible. Deviations from being
incompressible would change the different relations and in principle could also
introduce some spin dependence. Therefore, by measuring more than one of the
Ī , Q̄ or λ̄ one could test the validity of the I-Love-Q relations and in this way test
whether the equation of state is close to our current models or not. One possibility
for measuring more than one quantities is to combine astrophysical observations
with gravitational wave observations. So for example, pulsar timing could provide
a measurement of the moment of inertia while gravitational wave observations
could provide a measurement of the tidal Love number (Yagi and Yunes 2013a).
Another possibility has been recently proposed (Chirenti et al. 2017), where the
analysis of gravitational waves from highly eccentric binary systems, where the
f -mode is excited by close encounters between the members of the binary, could
provide simultaneous measurements of the masses, moments of inertia, and tidal
Love numbers of the members of the system.

Another prospect is to test general relativity by testing the I-Love-Q relations.
In principle one would expect that for different theories of gravity, neutron stars
could follow different I-Love-Q relations or no I-Love-Q relations. Therefore by
measuring combinations of the Ī , Q̄ or λ̄, one could test for deviations from general
relativity or even identify an alternative theory of gravity. These prospects will
be further discussed after the discussion of neutron stars in alternative theories of
gravity.
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13.2.1.3 Multipole Moments 3-Hair

The spacetime around a rotating neutron star is a stationary and axisymmetric
spacetime, i.e., there exist two Killing vectors, one timelike ξa which characterises
the spacetime’s symmetry with respect to time translations and one spacelike ηa

which characterises the spacetime’s symmetry with respect to rotations around an
axis which in this case is the stars’ axis of rotation. In addition, for isolated stars, it is
assumed that the spacetime is asymptotically flat. Under these general assumptions
the line element for the spacetime of a rotating neutron star can take the form

ds2 = −e2νdt2 + r2(1− μ2)B2e−2ν(dϕ − ωdt)2 + e2a(dr2 + r2

1− μ2
dμ2)

(13.23)

where μ = cos θ and the metric functions ν, B, ω, and a are all functions of
(r, μ). For such a spacetime one can define relativistic multipole moments, which
can characterise the structure and the properties of the spacetime, as the multipole
moments in Newtonian theory characterise a Newtonian potential. As one would
expect, the moments in the two cases are not completely equivalent, with one
difference between relativistic and Newtonian moments being that in the relativistic
case there exist angular momentum or mass current moments in addition to the
usual mass moments. Another one is that the relativistic moments are also sourced
by geometry in addition to masses and currents, a consequence of the non-linear
nature of the theory.

There exist a few different ways of defining the relativistic multipole moments
of a spacetime, such as the Geroch and Hansen algorithm for stationary spacetimes
(Geroch 1970a,b; Hansen 1974) which was later customised to axisymmetric
spacetimes by Fodor et al. (1989), or alternatively the Thorne algorithm that
was mentioned earlier (Thorne 1980). These formalisms give essentially the same
moments related by a multiplicative factor as,11

M# = (2#− 1)!!MT
# and J# = 2#(2#− 1)!!

2#+ 1
J T# (13.24)

(for a review see Quevedo 1990). While the Thorne formalism seems easier and
more intuitive, because it is based on identifying the coefficients of the asymptotic
expansion of the metric functions, which reminds the Newtonian case, in practice
finding the appropriate coordinate system for calculating higher order moments can

11 Multipole moments in general are tensorial quantities. The rank of the tensor is given by the
order of the corresponding multipole moment. In the case that we also have axisymmetry, the
moments are multiples of the symmetric trace-free tensor product of the axis vector na with itself.
In this case therefore one can define scalar moments as P# = 1/(#!)Pi1 ...i#n

i1 . . . ni
#
, where P#

is the #-th order moment. Since we will discuss about stationary and axisymmetric spacetimes we
will only talk about the scalar moments.
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be very difficult. On the other hand the Geroch–Hansen formalism, even though it
is more involved mathematically, in practice it is more algorithmic. Furthermore,
it’s reformulation in terms of the Ernst potential in the case of stationary and
axisymmetric spacetimes by Fodor et al., makes the calculation of multipole
moments even more straightforward. For the different applications in the literature
so far, where the multipole moments of numerical neutron star spacetimes have been
calculated, people have used the properties of circular equatorial geodesics and their
relation to the moments (Laarakkers and Poisson 1999; Pappas and Apostolatos
2012a,b, 2013a; Yagi et al. 2014b). This has been based on Ryan’s formalism (Ryan
1995) for relating the various relativistic precession frequencies between them and
to other orbital properties, in terms of the multipole moments spectrum of the
background spacetime. Although this approach has served us well in calculating the
multipole moments of numerical spacetimes, it is somewhat limited and therefore
here we will briefly present a more straightforward and rigorous way of calculating
the moments of stationary and axisymmetric numerical spacetimes, that has the
additional benefit of providing higher order moments in a less computationally
expensive way.

As mentioned earlier, the spacetime around a neutron star is a stationary,
axisymmetric, vacuum spacetime that admits the Killing vectors ξa (timelike) and
ηa (spacelike). Using the timelike Killing vector one can define the two scalar
quantities f and ψ through the equations,

f = −ξaξa, ψ,a = εabcdξ
bξc;d, (13.25)

where f is related to the norm of the Killing vector, while ψ is the scalar twist of
the Killing vector. In the Ernst reformulation of the Einstein Field Equations these
two scalar quantities define the complex Ernst potential E = f + iψ . If one has the
Ernst potential for a given spacetime in terms of the Weyl–Papapetrou coordinates
(ρ, z) then one can define along the axis of symmetry ρ = 0 the potential

ξ̃ (z̄) = (1/z̄)
1− E(z̄)
1+ E(z̄) =

∞∑
j=0

mj z̄
j , (13.26)

in terms of the coordinate z̄ = 1/z which is centred at infinity. The different
coefficients in the expansion of ξ̃ (z̄) are the parameters mi that give the moments
of stationary and axisymmetric spacetimes as they were calculated by Fodor et al.
(1989). The process of calculating the moments therefore involves initially two
steps, first the calculation of the Ernst potential and then the transformation of the
metric coordinates to Weyl–Papapetrou coordinates.

Returning to neutron star spacetimes, the metric functions in (13.23) have an
asymptotic expansion outside the star of the form

ν =
∞∑
l=0

( ∞∑
k=0

ν2l,k

r2l+1+k

)
P2l(μ), (13.27)
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ω =
∞∑
l=1

( ∞∑
k=0

ω2l−1,k

r2l+1+k

)
dP2l−1(μ)

dμ
, (13.28)

B = 1+
(π

2

)1/2 ∞∑
l=0

B2l

r2l+2 T
1/2

2l (μ), (13.29)

where Pl(μ) are the Legendre polynomials, T 1/2
2l (μ) are the Gegenbauer polyno-

mials,12 and the various coefficients are not all independent, with the constraints
coming from the field equations in vacuum, which in the frame of the zero angular
momentum observers take the form,

D · (BDν) = 1

2
r2 sin2 θB3e−4νDω ·Dω, (13.30)

D · (r2 sin2 θB3e−4νDω) = 0, (13.31)

D · (r sin θDB) = 0, (13.32)

where D is a flat space 3-dimensional derivative operator in spherical coordinates
(see Butterworth and Ipser 1976). As an indicative example of how the coefficients
are constrained, we have from the field equations that ν0,1 = 0, which means
essentially that there is no “mass dipole” contribution in the metric function ν, while
the next coefficient is constrained to be ν0,2 = − 1

3B0ν0,0. We should note here that
the coefficient ν0,0, as one can see from the asymptotic expansion of ν, gives the
mass, i.e., ν0,0 = −M , while similarly the angular momentum comes from the
asymptotic expansion of ω, which gives ω1,0 = 2J . Coefficients such as ν0,0, ν2,0,
ω1,0, ω3,0, and so on, as well as all the B2l coefficients, are not constrained by the
field equations and are free parameters of the external spacetime that are determined
by the characteristics of the fluid configuration.

Having the metric in terms of μ and as an expansion in 1/r one can proceed to
calculate the scalar twist from Eq. (13.25). The definition of the scalar twist results
in two equations, one for ψ,r and one for ψ,μ. Since the calculation is done using
an expansion in 1/r , the resulting scalar twist will be accurate up to some order in
1/r and can be evaluated as

ψ(r, μ) = −
∫ ∞
r

ψ,r |μ=const.dr, (13.33)

where the asymptotic condition is that ψ(r → ∞, μ) = 0. With the scalar twist
at hand, the Ernst potential will be given in terms of the angular coordinate μ and
an expansion in inverse powers of r . By further setting μ = 1 we have the Ernst

12The Gegenbauer polynomials are given by the definition T
1/2
l (μ) = (−1)l�(l+2)

2l+1/2l!�(l+3/2)
(1 −

μ2)−1/2 dl

dμl
(1− μ2)l+1/2.
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potential along the axis. What remains is to express the r coordinate in terms of the
Weyl–Papapetrou coordinate z along the axis of symmetry. This is done following
the procedure given in Pappas and Apostolatos (2008). By integrating along curves
of constant r from the equatorial plane up to the axis of symmetry and inverting the
resulting expansion to solve for r we have,

z =
∫ 1

0
dμ(r2B,r + rB) ⇒ r = z+ B0

z
+ B2 − B2

0

z3
+ 2B3

0 − 4B0B2 + B4

z5
+ . . .

(13.34)

In this way we can calculate the Ernst potential along the axis of symmetry for a
spacetime given in the form of a quasi-isotropic metric as in Eq. (13.23). From that
Ernst potential one can calculate the moments from the coefficients of the expansion
of ξ̃ . The resulting first few multipole moments are,

M0 = −ν0,0, M2 = 1

3
(4B0ν0,0+ν3

0,0−3ν2,0),
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21
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Multipole Moments of Neutron Stars and 3-Hair (M, χ, Q̄) Relations The
calculation of the moments up to the mass hexadecapole M4 has been numerically
implemented so far for a wide variety of equations of state and for both slowly
and rapidly rotating neutron (and quark) stars (Pappas and Apostolatos 2012a,b;
Urbanec et al. 2013; Pappas and Apostolatos 2014; Yagi et al. 2014b). One very
interesting property of the neutron star multipole moments that has been discovered
is that they follow a simple scaling with the spin parameter χ and the mass M that is
the same as the one that the moments of rotating black holes follow, i.e., the higher
than the angular momentum moments behave as

M2 = aχ2M3, J3 = βχ3M4, M4 = γχ4M5, (13.36)

where for Kerr black holes the mass moments behave as M2n = (iχ)2nM2n+1

and the mass current moments behave as iJ2n+1 = (iχ)2n+1M2n+2, where i is
the imaginary unit. Table 13.4 gives the values of the coefficients a, β, and γ for
some typical equations of state. As one can see, while for Kerr black holes these
coefficients are equal to ±1, in the case of neutron stars their magnitude can be
quite larger than that. An immediate implication of this is that the spacetime around
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neutron stars can be quite different from that of Kerr black holes. One should notice
from Table 13.4 that softer equations of state, like AU, FPS and UU, produce
smaller values for the quadrupole and the higher order moments than the stiffer
equations of state, like Sly4, APR and L. Also, as one increases the central density
and approaches the models close to the maximum mass, then the deviations of the
moments from their corresponding Kerr values become smaller, which means that
in these cases the neutron star spacetime behaves more like a Kerr spacetime. We
should note though that neutron star models never quite reach to the Kerr point
where−a = −β = γ = 1.

If we further define the reduced moments, Q̄ ≡ M̄2 ≡ − M2
χ2M3 , J̄3 ≡ − J3

χ3M4 ,

and M̄4 ≡ M4
χ4M5 , then it was shown in Pappas and Apostolatos (2014); Yagi et al.

(2014b) that both J̄3 and M̄4 are related to Q̄ following universal relations, i.e.,
relations that are equation of state independent. These relations can be seen plotted
in Fig. 13.5. As it can be seen from the two plots, the points seem to follow a power-
law with some break appearing towards the lower values of the reduced quadrupole,
which correspond to the most compact models close to the maximum mass limit.
The two curves can be fitted with an expression of the form,

yi = A+ B1x
n1 + B2x

n2, (13.37)

where yi can be either (J̄3)
1/3 or (M̄4)

1/4, while x is (Q̄)1/2. The two fits presented
in Table 13.5 have been performed for neutron star models only and deviate from
the models by less than 4–5%. In Yagi et al. (2014b); Yagi and Yunes (2017a) one
can find fits for the relations J̄3 − Q̄ and M̄4 − Q̄ that also include quark star
models. Including quark stars results in a slightly wider spread of the data points,
but nevertheless the relations between the moments remain remarkably equation
of state independent. We should note here that the range of quadrupoles plotted in
Fig. 13.5 is between the most compact neutron stars close to the maximum mass

APR

A

AU

FPS

L

SLy4

UU

1.0 10.05.02.0 20.03.01.5 15.07.0
1

2

5

10

20

50

Q

J 3

APR

A

AU

FPS

L

SLy4

UU

1.0 10.05.02.0 20.03.01.5 15.07.0

1

5
10

50
100

500
1000

Q

M
4

Fig. 13.5 Relations between the higher order moments and the mass quadrupole for different
equations of state. The solid lines correspond to the best fits using a double power-law given in
Table 13.5. The J̄3-Q̄ fit comes from Pappas and Apostolatos (2014), while the M̄4-Q̄ fit comes
from Pappas (2017)
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Table 13.5 Numerical coefficients for the fitting formula given in Eq. (13.37)

yi x A B1 B2 n1 n2

(J̄3)
1/3 (Q̄)1/2 −4.82 5.83 0.024 0.205 1.93

(M̄4)
1/4 (Q̄)1/2 −4.749 0.27613 5.5168 1.5146 0.22229

limit down to neutron stars with masses a little less than 1M�, i.e., within the entire
observed mass range.

The 3-hair universal relations have been studied in both the slow rotation limit,
using a Hartle and Thorne expansion in terms of rotation up to the fourth order so
that M4 can be included in the calculation, as well as for rapidly rotating neutron
stars in full numerical relativity using both LORENE and RNS numerical codes.
The results from all approaches have been in full agreement.

Newtonian Insights 3-hair relations where also studied in Newtonian theory by
Stein et al. (2014), providing some insight on the possible origin of this universality,
as well as a very elegant result. Stein et al. studied the Newtonian limit of multipole
moments for a rotating neutron star by using the definitions,

M# = 2π
∫ π

0

∫ R(θ)

0
ρ(r, θ)P#(cos θ) sin θdθr#+2dr, (13.38)

J# = 4π

#+ 1

∫ π

0

∫ R(θ)

0
�ρ(r, θ)

dP#(cos θ)

d(cos θ)
sin3 θdθr#+3dr, (13.39)

where R(θ) is the surface of the star as a function of the polar angle θ and ρ(r, θ)

is the density inside the star. Since the star is rotating it is assumed to have axial
symmetry and in addition we also assume reflection symmetry with respect to the
equatorial plane. These symmetries require that the odd mass moments and the even
angular momentum moments are zero. Of course the angular momentum moments
have no physical meaning in Newtonian theory but could be formally defined as the
Newtonian limit of their relativistic counterparts.

Stein et al. in order to make progress with the analytic calculation of the
moments introduced the following two assumptions, (1) the isodensity surfaces
inside the star are self-similar ellipsoids with a constant eccentricity, and (2) the
density as a function of the isodensity radius r̃ for a rotating configurations is
the same as the corresponding radius of a non-rotating configuration with the
same volume. For these two assumptions, the eccentricity is defined as e =√

1− (semi-minor axis)2/(semi-major axis)2, while the isodensity radius is defined
as r̃ ≡ r/�(θ), where

�(θ) =
√

1− e2

1− e2 sin2 θ
. (13.40)
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The first assumption is strictly true only for constant density stars, i.e., for n = 0
polytropes,13 which give Maclaurin spheroides. In any other case the eccentricity
of the iso-density surfaces varies with the radius inside the star. Nevertheless,
for slowly rotating and compact objects, where the the deviations from sphericity
are not large and the equation of state is close to the incompressible limit, these
assumptions turn out to be good approximations.

Under the aforementioned assumptions, the integrals for the multipole moments
separate to an angular and a radial part and can be given by the expressions,

M# = 2πI#,3R#, and J# = 4π#

2#+ 1
�(I#−1,5 − I#+1,3)R#+1, (13.41)

where the radial and angular integrals are,

R# ≡
∫ a

0
ρ(r̃)r̃#+2dr̃, and I#,k ≡

∫ 1

−1
�(μ)#+kP#(μ)dμ, (13.42)

where μ ≡ cos θ and a is the equatorial radius of the surface. The angular
integral depends only on the eccentricity e, while the radial integral depends on
the eccentricity and the mass distribution. Using the second assumption, the density
profile can be expressed in terms of a non-rotating model. Assuming a polytropic
equation of state, the density will be given by solving the Lane-Emden equation

1

ξ2

d

dξ

(
ξ2 dϑ

dξ

)
+ ϑn = 0, (13.43)

where n is the polytropic index, the function ϑ is related to the density as ρ = ρcϑ
n,

and the radial coordinate is r = αξ with ξ being dimensionless and α being a length
scale that depends on the equation of state.14 For any choice of the polytropic index
corresponds a solution of the Lane-Emden ϑ(ξ) that has a surface when ϑ(ξ1) = 0.
Substituting such a solution in the integrals for the moments, we have that

2#+ 2 = (−1)#+1

2#+ 3

e2#+2

(1− e2)
#+1

3

Rn,2+2#

ξ2#+4
1 |ϑ ′(ξ1)|

M2#+3

C2#+2 ,

J2#+1 = (−1)#

2#+ 3

2�e2#

(1− e2)
#+1

3

Rn,2+2#

ξ2#+4
1 |ϑ ′(ξ1)|

M2#+3

C2#+2
, (13.44)

13A polytropic equation of state has the form P = kρ� , where the exponent can be written as
� = 1+ 1/n in terms of the polytropic index n.
14For n = 0 Lane–Emden admits an exact solution which is ϑ = 1 − 1

6 ξ
2 with a surface at

ξ1 =
√

6, while for n = 1 it admits the solution ϑ = sin ξ
ξ

with a surface at ξ1 = π .
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where we have defined the integral Rn,# ≡
∫ ξ1

0 ϑn(ξ)ξ#+2dξ, and the compactness
C = M/R̄ in terms of the mean radius R̄ = a(1 − e2)1/6. The expressions for
the multipole moments can be combined so as to eliminate � and C giving the
final result in terms of the normalised moments M̄# = (−1)#/2 M#

χ#M#+1 and J̄# =
(−1)(#−1)/2 J#

χ#M#+1 . The 3-hair relations for the Newtonian moments will be,

M̄2#+2 + iJ̄2#+1 = Bn,#M̄
#
2(M̄2 + iJ̄1), (13.45)

where we note that M̄0 = J̄1 = 1 by definition. In this expression all the dependence
on the equation of state is incorporated in the coefficient Bn,# which has the form,

Bn,# ≡ 3#+1

2#+ 3

R#
n,0Rn,2#+2

R#+1
n,2

, (13.46)

where we can see that everything depends on the polytropic index n and the
corresponding ϑ(ξ) as well as the order # of the moment. Therefore the universality
of the 3-hair relations will depend on how sensitive the coefficients Bn,# are to
different choices of the equation of state. The numerical analysis in Stein et al.
(2014) as well as analytic investigations performed by Chatziioannou et al. (2014)
(where the coefficients Bn,# are expanded around the n = 0 solution) show that
the variation of the coefficients for # ≤ 2 and for polytropic indices in the range
of 0 ≤ n ≤ 1 is less than 10% around a fiducial value obtained for n = 0.6.
This means that the Newtonian moments up to M6 and J5 satisfy an approximate
universal relation that expresses them in terms of the mass, the angular momentum
and the quadrupole. Unfortunately, the variation in the coefficients Bn,# increases
with increasing #, therefore for higher order moments the coefficients become more
sensitive to the equation of state. These results have been also tested for piecewise
polytropes by Chatziioannou et al. (2014) and have been found to be robust.

The question now is, what does the Newtonian analysis tells us about the
relativistic 3-hair relations? The first thing we should note is that the Newtonian
results are in good agreement with the relativistic results at the low compactness
limit (Stein et al. 2014; Yagi et al. 2014a) for a polytropic index n ≈ 0.5 and
the agreement extends to the relativistic polytrope as well, which means that
the Newtonian calculation captures the basic elements of the relativistic problem.
Furthermore it is known (Lattimer and Prakash 2001) that realistic equations of state
behave as polytropes with an effective polytropic index in the range 0 ≤ n ≤ 1. As
it was shown in Yagi et al. (2014a), the assumption in the Newtonian calculation to
which the result is most sensitive is that of the isodensity surfaces being self-similar
ellipses. If one were to violate this assumption by introducing a radial dependence
to the eccentricity of the form e(r̃) = e0f (r̃), then the result would be to change the
form that theBn,# coefficients would have, introducing a dependence on the function
f (r̃). Specifically, it was shown in Yagi et al. (2014a) that the larger the variation of
the eccentricity inside the star, the larger the variation in Bn,# in the range n ∈ (0, 1).
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For Newtonian polytropes with n ∈ (0, 1), one can calculate the radial profile of the
eccentricity and see that the variation between the centre and the surface of the star
ranges from 0% for incompressible n = 0 models up to 20% for n = 1 models,
while for models with n > 1.5 it is larger than 40%. Therefore the small variation
we see in the Newtonian case for Bn,# is related to a less than 20% variation in the
eccentricity profile. These results, i.e., regarding the eccentricity variation, generally
also hold for relativistic polytropic stars, as well as realistic equations of state. The
only difference with realistic equations of state is that lower compactness models
can have a lower density atmosphere where the equation of state differs from the
interior higher density equation of state and in this region the eccentricity varies
more drastically. In these cases though, the outer parts of the star contribute a very
small percentage of the mass of the star and have a small contribution to the various
quantities. Therefore, having almost self-similar ellipses seems to be a key element
in having universal 3-hair relations.

The above results can be seen from a slightly different point of view. As it
has been presented in Yagi et al. (2014a); Chatziioannou et al. (2014); Sham
et al. (2015); Chan et al. (2015), one could alternatively consider the 3-hair
universal relations as well as the I-Love relation in terms of how close are realistic
equations of state to being incompressible, as it was discussed earlier. Specifically, in
Chatziioannou et al. (2014); Sham et al. (2015); Chan et al. (2015) various universal
relations were expanded in terms of deviations from the incompressible equation
of state (n = 0 limit) and it was shown that the results were insensitive to these
deviations. We remind here that there is a relation between having an incompressible
equation of state or one close to incompressible and the zero or small eccentricity
variation inside the star, so in a sense statements about eccentricity variation and
incompressibility are equivalent. These conclusions are further strengthened by the
analysis of proto-neutron stars constructed with hot equations of state that was
performed by Martinon et al. (2014). Martinon et al. found that in the first moments
of the proto-neutron stars, where the equations of state have large entropy gradients,
which correspond to models with high effective polytropic indices n and therefore
deviate significantly from being incompressible, the ellipticity profiles inside the
star vary significantly while the corresponding I-Love-Q relations differ from the
relations that hold for cold starts.

Applications As with the I-Love-Q relations, the 3-hair relations could be used
either as tools, by assuming their validity, to infer the higher order multipole
moments from the mass, the angular momentum, and the quadrupole, or alterna-
tively could be tested for their validity against observations.

In the context of general relativity, one could use the 3-hair relations to construct
more accurate spacetimes for describing the exterior of rotating neutron stars
(Manko et al. 1995; Berti and Stergioulas 2004; Pappas and Apostolatos 2013b;
Teichmüller et al. 2011; Pappas 2015; Tsang and Pappas 2016; Pappas 2017).
There exist general algorithms for constructing stationary and axisymmetric neutron
star spacetimes that can be parameterised by the multipole moments. Having the
moments of these spacetimes prescribed using the 3-hair relations one could have
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an accurate description of the neutron star spacetime that in addition depends on
only three essential parameter, i.e., the first three multipole moments. This is of
relevance to astrophysical observations in the electromagnetic spectrum. There is a
plethora of astrophysical phenomena in the environment of neutron stars. One can
observe phenomena related to matter accreting onto neutron stars that are members
of X-ray binaries, such as quasi-periodic oscillations of the X-ray flux coming from
the disc, the reflection spectra also coming from the disc, X-ray pulse profiles from
matter accreting to the surface of the neutron star and so on. The accurate modelling
of these phenomena depends on having an accurate description of the spacetime so
that the motion of both matter and photons is described accurately. Furthermore, the
analytic modelling in terms of only three parameters could improve our capability to
solve the inverse problem of determining the equation of state from observations. As
it has been discussed for the I-Love-Q case, one could in principle use combinations
of observables to estimate the parameters (M, J,Q) for a given neutron star
spacetime, which in turn can be used to constrain the equation of state for the matter
inside neutron stars (Pappas 2012; Pappas and Apostolatos 2014; Pappas 2015).

The alternative use of the 3-hair relations will be to test their validity. As in
the case of I-Love-Q relations this could provide a test for our models of realistic
equations of state, but the most interesting possibility will be to test general relativity
itself. The last prospect will be further discussed after we have discussed neutron
stars in alternative theories of gravity.

13.2.1.4 Universality in Oscillation Frequencies

Asteroseismology is discussed more thoroughly in Chap. 12. Here we will only
briefly present results that are related to the equation of state independent description
of the various oscillation frequencies of neutron stars. We have already mentioned
some early work (Andersson and Kokkotas 1996; Andersson and Kokkotas 1998)
that indicated that there could be some equation of state independent description
of f -modes and w-modes and their damping times in terms of some neutron star
parameters. These results were later extended by including other modern realistic
equations of state (Benhar et al. 2004). As it has become clear from our discussion
so far, a key element to having a universal description is the appropriate choice of
parameters.

In an attempt to extend earlier work, Tsui and Leung (2005a) and Lau et al.
(2010) used a different type of normalisation, more similar to the I-Love-Q type
of normalisations, that has demonstrated a higher degree of equation of state
independence.15 The approach by Lau et al. (2010), inspired by Lattimer and Schutz

15One should always keep in mind that at the end of the day what matters most is not exactly
the errors of the fitting function but instead the accuracy of solving the inverse problem, i.e.
determining the stellar parameters from the observed gravitational wave frequencies and damping
times.
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(2005) where a universal behaviour for the normalised moment of inertia was
observed, turned out to be more useful since both neutron and quark stars could be
fitted with a single relation. Lau et al. (2010) investigated the relation between the
QNM frequency (both real ωr and imaginary ωi parts) of the (fundamental) f -mode
oscillations to the mass and moment of inertia of compact stars. In contrast though to
Tsui and Leung (2005a) and earlier work, Lau et al. convincingly argue that a better
quantity instead of the compactness C to characterise models of different internal
mass profiles would be the inverse square root of the normalised moment of inertia,
η ≡ Ī−1/2 = √M3/I , which they call effective compactness. The reason is that this
quantity is on the one hand a measure of the compactness16 while on the other hand
it also takes into account the distribution of mass inside the star and it could in this
way counterbalance differences coming from having a stiffer or softer equation of
state. The universal relations that Lau et al. found to describe the f -mode in terms
of the effective compactness are,17

Mωr = −0.0047+ 0.133η+ 0.575η2, and Ī 2ωiM = 0.00694− 0.0256η2,

(13.47)

and describe the real and imaginary parts of the # = 2 f -mode frequency with
an accuracy that is better than 1 − 2% for both neutron and quark stars. These
two relations could be used to determine the mass and the moment of inertia of a
compact object, if the f -mode was detected by gravitational waves. We should note
here that this discussion is for non-rotating compact stars. Combining this work to
the I-Love-Q results, Chan et al. (2014) extended the relation between the f -mode
frequency and the moment of inertia to include also the Love number. They further
proceeded to produce relations between higher order oscillation modes and higher
order Love numbers (for a review see Yagi and Yunes 2017a).

The f -mode asteroseismology relations were further investigated and more
equations of state were included by Blázquez-Salcedo et al. (2014) and Chirenti
et al. (2015), where in addition an alternative relation for the f -mode damping time
was proposed in terms of the compactness. The asteroseismology relations with w-
modes were investigated further by Tsui and Leung (2005b,c) and Blázquez-Salcedo
et al. (2013) with a special emphasis on the influence of the presence of hyperons
and quarks in the neutron star core in the latter papers.

Up to this point the discussion has been about the quasi-normal modes of non-
rotating stars. In the case of rotating stars things become a little more complicated.
Due to rotation the frequencies of modes with the same spherical mode number # but
opposite azimuthal index m = ±|m|, which correspond to co- and counterrotating
modes, separate and become distinct. In this case, one needs to express the modes
in the comoving frame in order to remove the complications that the rotation is

16If we approximate the moment of inertia by MR2 then we can see that η = M/R = C.
17See the relevant comment in Chan et al. (2014) for correcting some typos in the numerical
coefficients given in Lau et al. (2010).
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creating. Rapidly rotating models in the so-called Cowling approximation, where
the spacetime is assumed to be frozen, were studied by Gaertig and Kokkotas in
Gaertig and Kokkotas (2011) were the aforementioned behaviour was observed. For
a star rotating at a frequency �, the relation between the mode frequencies in the
inertial frame and the comoving frame is ωin = ωco − m�. Gaertig and Kokkotas
observed in Gaertig and Kokkotas (2011) that even though the mode frequencies
in the inertial frame showed a large variation with the equation of state, the
corresponding frequencies in the comoving frame were quite insensitive to the
equation of state. The real part of the quasi-normal modes in the comoving frame
for the m = −2 stable modes, ωsco, can be fitted with the expression

ωs
co

ω0
= 1.0− 0.27

(
�

�K

)
− 0.34

(
�

�K

)2

, (13.48)

where the frequency is normalised with respect to the frequency of the non-rotating
models ω0, while the rotation frequency � is normalised with the Kepler limit
frequency �K . Similarly, the m = 2 potentially unstable modes, ωu

co, frequency
is fitted with the expression,

ωu
co

ω0
= 1.0+ 0.47

(
�

�K

)
− 0.51

(
�

�K

)2

. (13.49)

The non-rotating frequency ω0 can be expressed in terms of the average density and
has the form,

ω0

2π
= 0.498+ 2.418

(
M1.4

R3
10

)1/2

, (13.50)

where the mass is measured in units of 1.4M� and the radius of the star in units
of 10 km. One will notice that Eq. (13.50) is slightly different than Eq. (13.2) from
Andersson and Kokkotas (1998). This is because in Gaertig and Kokkotas (2011),
the calculations are done in the Cowling approximation which tends to overestimate
the values of the frequencies. Also, the reference to stable and potentially unstable
modes here is with respect to the Chandrasekhar, Friedman and Schutz (CFS-
)instability of non-axisymmetric pulsation modes, which is discussed in Chap. 12.
The imaginary part of the quasi-normal modes will give the damping times for the
different models. Things in this case are a little more complicated and damping
times can be better expressed in terms of the frequencies in the inertial or the
comoving frame. For the retrograde branch (m > 0) the fit for the damping times
has the form,

τ0

τ
= sgn(ωu

in)× 0.256

(
ωu
in

ω0

)4

×
[

1+ 0.048

(
ωu
in

ω0

)
+ 0.359

(
ωu
in

ω0

)2
]4

,

(13.51)
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where τ0 is the damping time of the non-rotating models and sgn(x) is the sign
function. Similarly for the prograde branch (m < 0) the fit for the damping times
has the form,

τ0

τ
= −0.656×

[
1− 7.33

(
ωs
co

ω0

)
+ 14.07

(
ωs
co

ω0

)2

− 9.26

(
ωs
co

ω0

)3
]
.

(13.52)
The damping time of the non-rotating models can be given by the equation

(
τ0
M3

1.4

R4
10

)−1

= 22.49− 14.03

(
M1.4

R10

)
, (13.53)

where again the mass is measured in units of 1.4M� and the radius of the star in units
of 10 km. One will notice that Eq. (13.53) is much closer to Eq. (13.3). These results
were extended to higher order modes and realistic equations of state by Doneva
et al. (2013b), where it was found that higher modes exhibit the same behaviour.
The fitting formulas for these cases are given in Chap. 12.

A more recent approach that is closer to the I-Love-Q perspective using a
parameterisation in terms of the effective compactness η was investigated by
Doneva and Kokkotas (2015) and was found to be even more universal with respect
to different equations of state. The detailed expressions for the frequencies and
damping times are given in Chap. 12.

We should again stress at this point that these results are in the Cowling
approximation and should be taken with a grain of salt. An obvious necessary
extension of these results is to go beyond the Cowling approximation. Moreover,
some improvement in the universality might also come, as we have seen in the case
of I-Love-Q relations for rapidly rotating stars, if the rotation is parametrised in
terms of the spin parameter χ = J/M2 instead of �.

13.2.1.5 Other Universal Properties

Having reviewed the three main classes of universal relations we will briefly
mention here some additional results that either extend those that we have already
discussed or go in a different direction.

One of the extensions of the I-Love-Q results was the multipole Love relations
by Yagi (2014), where he produced universal relations among various #-th (dimen-
sionless) electric, magnetic and shape tidal deformabilities for neutron stars and
quark stars, in the same sense as we have the various universal relations between the
quadrupole and higher order multipole moments. His results are also reviewed in
Yagi and Yunes (2017a). We should note that the tidal Love numbers were calculated
for non-rotating compact objects.

Another extension of the I-Love-Q and 3-hair relations, with a more theoretical
interest, is the one for anisotropic stars by Yagi and Yunes (2015a,b, 2016a). As
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we have noted, when we calculate the multipole moments for example of compact
objects we see that as we increase the compactness up to the maximum possible
value for these objects, we never quite get to the Black Hole limit of Q̄ = J̄3 =
M̄4 = . . . = 1. Instead there seems to be a gap between fluid configurations and
Black Holes. Of course this is expected with respect to compactness, because a
matter configuration cannot be more compact than the Buchdahl limit, i.e., C <

4/9 ≈ 0.4̄ (Buchdahl 1959). The Buchdahl limit though is not a hard physical
limit. One can go around it by using anisotropic pressure, which can produce objects
with a compactness arbitrarily close to the Black Hole value of C = 1/2 (Bowers
and Liang 1974). For this reason Yagi and Yunes (2015a) used anisotropic stars to
study how one approaches the Black Hole limit for the multipole moments and the
other neutron star parameters. For anisotropic stars one has the radial pressure p

and a tangential part of the pressure p⊥ and the difference defines the anisotropy
σ = p − p⊥. In the model that they used, neutron stars with negative anisotropy
reached continuously the Black Hole limit. The exact way that the Black Hole limit
is reached though depends on the value of the anisotropy. The very interesting result
was that there is a critical value of anisotropy above which the models reach the
Black Hole limit directly, while below that value the models circle around the Black
Hole limit until they almost spiral to it. Finally, in order to get to the Black Hole
values one needs to have an “extreme” value of anisotropy. On a more practical
side, there is also the question of how some anisotropy would affect the various
universal relations of regular neutron stars. On that front Yagi and Yunes (2015b)
find that anisotropy affects the universal relations only weakly, i.e., the relations
become less universal by a factor of 1.5–3 relative to the isotropic case when
anisotropy is maximal, but even then they remain approximately universal to 10%.
They further find that this increase in variability is strongly correlated to an increase
in the eccentricity variation of isodensity contours.

The results presented so far are mostly about isolated neutron stars, with the
exception of the work by Maselli et al. (2013) where they studied I-Love-Q for a
binary system. Extending this work Yagi and Yunes investigated the existence of
universal relations between tidal parameters for binaries (Yagi and Yunes 2016b,
2017b) which they called binary Love relations. These relations are between the
individual tidal Love numbers of the members of the binary λ̄1, λ̄2, as they are
combined to form the symmetric λ̄s and antisymmetric λ̄a tidal parameters, and the
so-called dimensionless chirp tidal deformability 1̄ and it’s companion parameter
δ1̄. The idea behind this is that the parameters 1̄ and δ1̄ enter the analysis of the
waveforms from binary inspirals with the dimensionless chirp tidal deformability
1̄ being the dominant tidal parameter in analogy with the chirp mass being the
dominant mass parameter in the waveform. Yagi and Yunes find universal relations
that relate 1̄ to δ1̄ as well as λ̄s to λ̄a , that depend on the symmetric mass ratio
X ≡ q

(1+q)2 , where q is the mass ratio of the members of the binary. These results
are also reviewed in Yagi and Yunes (2017a).

Continuing with binary inspirals, there is another recent interesting result. Ini-
tially Read et al. (2013) found, by modelling numerically the waveforms from binary
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inspirals and coalescences (spinning, equal mass, q = 1), that the instantaneous
frequency at the moment of maximum amplitude in the waveform, which indicates
the transition from the inspiral phase to the merger or coalescence phase, is related
in an equation of state independent way with a parameter which is essentially the
tidal Love number λ̄ of one of the neutron stars defined in Eq. (13.14). Specifically
they find the relation

log10(fGW/Hz) = 8.51155− 0.303350 λ̄1/5. (13.54)

Since in their numerical calculations they considered only equal mass inspirals,
essentially one tidal Love number characterises both neutron stars. Expanding on
this result, Bernuzzi et al. (2014) showed that for more general inspirals, where
q 
= 1, a more appropriate quantity should be used, which is essentially an effective
tidal Love number, called tidal coupling constant and is defined as,

κ# ≡ 2

[
1

q

(
XA

CA

)2#+1

kA# + q

(
XB

CB

)2#+1

kB#

]
, (13.55)

where the definition is with respect to different #-orders in tidal deformabilities and
we define the mass ratio to be q ≡ MA/MB ≥ 1, and for each member of the
binary with respect to the total mass XA ≡ MA/M and XB ≡ MB/M , where
M = MA + MB is the total mass, while CA,B are the respective compactnesses
and k

A,B
# the respective #th order tidal apsidal constants.18 For # = 2 one can see

that κ ≡ κ# ∝ λ̄ and the results of Bernuzzi et al. reproduce the results of Read et
al. quite accurately. Using the tidal coupling constant, Bernuzzi et al. produced an
empirical relation for the mass scaled instantaneous frequency at peak amplitude in
terms of κ , which is

MωGW = 0.360
1+ 2.59× 10−2κ − 1.28× 10−5κ2

1+ 7.49× 10−2κ
, (13.56)

and also produced a relation for the binding energy per reduced mass μ =
MAMB/M in terms of κ , which is

Eb = −0.120
1+ 2.62× 10−2κ − 6.32× 10−6κ2

1+ 6.18× 10−2κ
. (13.57)

These relations were found to be insensitive to variations in the mass ratio q and
showed small sensitivity to the spin of the members of the binary, probably due
to spin-orbit coupling (the calculations were performed for aligned spin binaries).
These results were reproduced by Takami et al. (2014, 2015), where they also find

18Here we are using the naming convention employed in Sect. 13.2.1.2, which is different than the
one used in Read et al. (2013); Bernuzzi et al. (2014).
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by doing spectral analysis of the waveforms, that there is an equation of state
independent relation between the lowest observed frequency f1 of the spectrum
and the average compactness C̄ = M̄/R̄, where M̄ = (MA + MB)/2 and R̄ =
(RA + RB)/2, which is

f1

kHz
= (−22.0717± 6.477)+ (466.616± 31.2)C̄ + (−3131.63± 878.7)C̄2

+ (7210.01± 1947)C̄3. (13.58)

Returning to isolated neutron stars, there are some more results that we would
like to conclude with. Bauböck et al. (2013) produced in the slow rotation
approximation (using the Hartle and Thorne approach ) analytic formulae that relate
the ellipticity and eccentricity of the stellar surface to the compactness, the spin
parameter, and the quadrupole moment of the neutron star. Defining the ellipticity
εs and the eccentricity es as,

εs ≡ 1− Rp

Req

, and es ≡
√(

Req

Rp

)2

− 1, (13.59)

where Rp and Req are the polar and equatorial radius respectively, they found in
terms of the compactness C, the spin parameter χK and the quadrupole q̄K , the
relations

eKs (C, χK, q̄K) =
[

1− 4χKC3/2 + 15(χ2
K − q̄K)(3− 6C + 7C2)

8C2
+ C2χ2

K(3+ 4C)

+ 45

16C2
(q̄K − χ2

K)(C − 1)(1− 2C + 2C2) ln (1− 2C)
]1/2

, (13.60)

εKs (C, χK, q̄K) =
1

32C3

{
2C
[
8C2 − 32χKC7/2 + (χ2

K − q̄K )(45− 35C + 60C2 + 30C3)

+24χ2
KC4 + 8χ2

KC5 − 48χ2
KC6

]
+ 45(χ2

K − q̄K )(1− 2C)2 ln (1− 2C)
}
.

(13.61)

In these relations, the compactness is defined in terms of the non-rotating models’
masses and radii, while the spin parameter χK = JK/M

2∗ , the quadrupole q̄K =
−QK/M

3∗ and the ellipticity εKs and eccentricity eKs correspond to the models that
rotate at the frequency �K , as it is discussed in Sect. 13.2.1.2. The ellipticities and
eccentricities of models rotating with a rotation � < �K will be εs = ε2εKs
and es = εeKs respectively, where ε = �/�K . The above exact expressions
hold independently of the equation of state. All the equation of state information
is encoded in the various parameters. AlGendy and Morsink (2014) also produce
an equation of state independent fit for the ellipticity, where they use a slightly
different parameterisation for the surface than the one used in the Hartle and Thorne
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approach. They parameterise the surface with a function of the form,19

R(θ) = Req

(
1+ o2(C, ε) cos2 θ

)
, (13.62)

where the function o2(C, ε), which is minus the ellipticity defined above, has the
form

o2(C, ε) = ε2(−0.788+ 1.030C), (13.63)

where ε = �/�K as in the Hartle and Thorne case. Their results are in good
agreement with previous results for rapidly rotating neutron stars. Additionally they
find that the effective gravity at the surface of a rotating neutron star can be written
as the simple function g(θ)/g0 = c(C, ε2, θ), where g0 is the acceleration due to
gravity on the surface of a non-rotating relativistic star while the function c can be
written in an equation of state independent form.

Finally, Breu and Rezzolla (2016) find that the mass of rotating configurations on
the turning-point line shows a universal behaviour when expressed in terms of the
spin parameter at the Kepler limit. In particular they find that the mass at the turning
point, Mcrit normalised by the maximum non rotating mass MTOV , is expressed in
terms of the spin parameter, χ normalised by the spin parameter at the Kepler limit
χK , as

Mcrit

MTOV

= 1+ 0.1316

(
χ

χK

)2

+ 0.07111

(
χ

χK

)4

. (13.64)

This expression implies that the maximum mass for any given equation of state will
be, for χ = χK , M � 1.203MTOV .20 Of course MTOV will depend on the equation
of state. In addition, they further explore the Ī = I/M3 relation to inverse powers of
C, where they find that there is a universal relation (that holds up to 10%) that also
depends on the spin χ , as expected. In Breu and Rezzolla (2016) they give fitting
coefficients for different values of χ , while here we will give a relations that is spin
dependent, i.e.,

I/M3 = (1.471+ 0.448χ)− 0.0802+ 0.27289χ

C + 0.438− 0.0346χ

C2

−0.01694+ 0.0056χ

C3 + (3.316+ 1.57χ)× 10−4

C4 (13.65)

19The radius here is expressed in terms of Schwarzschild-like coordinates which reduce to being
circumferential at the non-rotating limit. The radial coordinates in the Hartle and Thorne approach
also have this property.
20The interested reader might want to also have a look at the review by Hartle (1978).
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Fig. 13.6 I-C plots for three spin parameters and various equations of state. The solid lines
correspond to the I-C fit given in Eq. (13.65)

which is also accurate to 10% and is in agreement with the relations given in Breu
and Rezzolla (2016); Staykov et al. (2016) (Fig. 13.6).

13.2.2 Neutron Stars in Alternative Theories

Below we will review the basic theory behind the alternative theories of gravity
we have chosen to concentrate on, the neutron star models in these theories and
their astrophysical implications. We will consider the scalar-tensor theories, f (R)
theories, Einstein–dilaton–Gauss–Bonnet theories and Chern–Simons theories of
gravity. These are all theories for which neutron stars universal relations have been
considered. The strongest emphasis will be on the scalar-tensor theories that are
ones of the simplest and most natural extensions of general relativity.

13.2.2.1 Alternative Theories of Gravity: Mathematical Setup
and Overview

Scalar-Tensor Theories of Gravity The simplest representative of gravitational
theories with an additional scalar field are the scalar-tensor theories of gravity.
Historically, these are some of the first alternative theories to be constructed. The
reason lies on one hand in their simplicity and the fact that such generalization of
Einstein’s theory seems quite natural. On the other hand there is a deep theoretical
motivation coming from the theories trying to unify all the interactions such as
Kaluza-Klein theories, string theories, etc. It can be easily shown for example that
after a dimensional reduction of the five dimensional Kaluza-Klein theory action to
four dimensions, an additional scalar field appears as a mediator of the gravitational
interaction. The scalar-tensor theory of gravity can be formulated also independently
and that was done first by Brans and Dicke on the basis of Mach’s principle
(Brans and Dicke 1961; Dicke 1962). According to it, the inertia of a particle is
a consequence of the total mass distribution in the Universe. Therefore, the inertial
mass is not a constant but also depends on the mass distribution, i.e. it depends on
the interaction of the particle with some cosmological field �. According to the
weak equivalence principle, which is verified extremely precisely, the interaction
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with this scalar field should be the same for all the particles up to some constant.
Thus the mass of the particles should be

m = m0f (�), (13.66)

where f (�) describes the interaction of the particles with the scalar field. Using the
above considerations and also the fact that the absolute scale of the masses of the
particles can be measured only by their gravitational acceleration, we can conclude
that the gravitational constant should depend on the total distribution of the matter
in the universe, i.e. from the cosmological field �. Using all this, one can derive
the scalar-tensor theory action and a very interesting fact is that its vacuum sector
coincides with the action coming from the dimensional reduction of the Kaluza-
Klein theory.

The most general form of the action in the scalar-tensor theories is Damour and
Esposito-Farese (1992)

S = 1

16πG∗

∫
d4x

√−g̃ (F(�)R̃ − Z(�)g̃μν∂μ�∂ν�− 2U(�)
)
+ Smatter(g̃μν, χ), (13.67)

where G∗ is the bare gravitational constant and as a matter of fact the scalar field �
can be interpreted as a “variable gravitational constant”. The second and the third
term in the action are the kinetic and potential terms for the scalar field respectively.
The choice of functions F(�), Z(�), and U(�) determine the specific class of
scalar-tensor theory. The requirement that the gravitons carry positive energy leads
to the following condition F(�) > 0, while the non-negativity of the scalar field
energy requires that 2F(�)Z(�)+3[dF(�)/d�]2 ≥ 0. It is important to point out,
that the action of the matter Smatter(g̃μν, χ), where χ denotes collectively the matter
fields, is the same as in general relativity. Therefore, there is no direct coupling
between the matter and the scalar field, and the scalar field influences the matter
only via the spacetime metric g̃μν . Thus, the equation of motion is the same as in
general relativity ∇̃αT̃ α

μ = 0 and the weak equivalence principle is satisfied.
The action (13.67) is in the so-called Jordan frame which is the physical frame

where distances, time, etc. are measured. The field equations, though, are quite
complicated and difficult to work with in this frame. That is why a common
practice is to introduce the so-called Einstein frame which simplifies the field
equations considerably. The transition to the Einstein frame is made by performing
a conformal transformation of the metric21 and a re-definition of the scalar field:

gμν = F(�)g̃μν, (13.68)(
dϕ
d�

)2 = 3
4

(
d ln(F (�))

d�

)2 + Z(�)
2F(�), (13.69)

21For the interesting case of disformal coupling we refer the reader to (Minamitsuji and Silva
2016).
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where ϕ and gμν are the Einstein frame scalar field and metric. After we introduce
the functions A(ϕ) and V (ϕ) defined as

A(ϕ) = F−1/2(�), (13.70)

V (ϕ) = 1
2U(�)F

−2(�), (13.71)

the Einstein frame action becomes

S = 1

16πG∗

∫
d4x
√−g (R − 2gμν∂μϕ∂νϕ − 4V (ϕ)

)+ Smatter(A2(ϕ)g̃μν, χ),

(13.72)

where R is the Ricci scalar curvature with respect to the spacetime metric gμν . As
we can see the action in the Einstein frame is much simpler and easier to work
with, but everything comes with a price and the price we pay for this simplicity is
that a direct coupling between the sources of gravity and the scalar field appears
through the function A(ϕ). Nevertheless, the resulting field equations are easier to
handle and most of the studies of compact objects in scalar-tensor theories adopt
the Einstein frame. The specific choice of the scalar-tensor theory is completely
determined by the function A(ϕ) and by the potential of the scalar field V (ϕ).

The transformation between the two frames is regular practically for all of the
physically relevant scalar-tensor theories. Thus, it is irrelevant in which frame we
are going to perform our calculations as long as the final observable quantities are
expressed in the physical Jordan frame.

The field equations in the Einstein frame are much simpler as well

Rμν = 8πG∗
(
Tμν − 1

2gμνT
)
+ 2∂μϕ∂νϕ − 1

2gμνV (ϕ), (13.73)

∇α∇αϕ − 1
4V
′(ϕ) = −4πα(ϕ)T , (13.74)

where ∇α is the covariant derivative with respect to the metric gμν and T is the
trace of the Einstein frame energy momentum tensor Tμν . The function α(ϕ) is
called coupling function and it is defined as

α(ϕ) = d lnA(ϕ)

dϕ
. (13.75)

The connection between the Einstein frame and the Jordan frame energy momentum
tensor is

Tμν = A4(ϕ)T̃μν. (13.76)

Since we have a direct coupling between the matter and the scalar field in the
Einstein frame, the equations of motion for the matter fields differ from that in pure
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general relativity:

∇αT α
μ = α(ϕ)T ∂μϕ. (13.77)

Therefore, there will be an additional force acting on the particles in the Einstein
frame which is proportional to the gradient of the scalar field and the particles will
not move on the geodesic of the metric gμν .

Let us briefly comment on the field equations and more precisely under what
circumstances nontrivial scalar field can develop. For simplicity we will consider
the case with zero scalar field potential. The right hand side of Eq. (13.74) is nonzero
only for nonzero trace of the energy momentum tensor T . For isolated black holes
T = 0 which roughly speaking leads to the fact that the solutions are the same as in
pure general relativity, but for neutron stars T is nonzero and thus nontrivial scalar
field can develop.

Let us now discuss briefly the parametrized post-Newtonian (PPN) expansion of
the metric in scalar-tensor theories and the observational constraints one can impose,
since in general different theories of gravity predict different values of the post-
Newtonian parameters. In what follows we will again assume that the scalar field
potential is zero for simplicity. The coupling function α(ϕ) on the other hand can be
expanded in power series of the scalar field ϕ

α(ϕ) = α0(ϕ − ϕ0)+ 1

2
β(ϕ − ϕ0)

2 +O(ϕ − ϕ0)
3, (13.78)

where ϕ0 is the background value of the scalar field and α0 and β are constants. The
case with β = 0 corresponds to the well known Brans–Dicke scalar-tensor theory.
The PPN expansion of the Schwarzschild metric in isotropic coordinates takes the
form (Damour and Esposito-Farese 1992; Will 2014):

−g00 = 1− 2Gm

rc2 + 2βPPN
(
Gm

rc2

)2 +O
(

1
c6

)
, (13.79)

gij = δij

(
1+ 2γ PPN Gm

rc2

)
+O

(
1
c4

)
. (13.80)

As one can see, in scalar-tensor theories only two of the PPN parameters differ
from GR—βPPN and γ PPN which were introduced for the first time by Eddington
for the Schwarzschild metric in isotropic coordinates. They are connected to the
coefficients in the expansion of the coupling function (13.70) in the following way:

γ PPN − 1 = − 2α2
0

1+ α2
0

, βPPN − 1 = 1

2

α0βα0

(1+ α2
0)

2
. (13.81)

Clearly, for α0 = 0 and β = 0 we have γ PPN = 0 and βPPN = 0 and the theory
reduces to pure general relativity.
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Different observations can impose constraints on the PPN parameters γ PPN and
βPPN in the weak field regime, such as the rate of precession of the Mercury
perihelia, deflection of light by the Sun, delay of the light travel time in the vicinity
of the Sun and Lunar Laser Ranging experiment (for a review on this subject see
Will 2014). One can easily show, though, that all these experiments set constraints
only on the parameter α0, while β remains essentially unconstrained. This is natural,
since the case of α0 = 0 and β 
= 0 corresponds to a scalar-tensor theory that
is perturbatively equivalent to general relativity, i.e. all the weak field experiments
are automatically satisfied, but large deviations can be observed for strong fields.
Currently, only the pulsars in close binary systems can impose constraints on β

through observations of the shrinking of their orbits due to gravitational wave
emission because the strong field effects in this case are non-negligible. More
precisely, the shrinking would be different in general relativity and in scalar-tensor
theories because in the latter case we have scalar gravitational radiation in addition
to the standard gravitational waves. It turns out that the observations match very
well to the predictions of pure general relativity and limit severely the emitted scalar
radiation and thus the value of the scalar field. At the end, taking into account both
the weak and the strong field experiments, we have α0 < 10−4 and β > −4.5
(Freire et al. 2012; Antoniadis et al. 2013). The observational constraints on STT
coming from both the weak field and the strong field experiments are plotted in
Fig. 13.7. Such small values of α0 make the neutron stars in Brans–Dicke scalar
tensor theories practically indistinguishable from general relativity and leave little

Fig. 13.7 Solar-system and
binary pulsar constraints on
the constant α0 and β in the
expansion of the coupling
function (13.78). LLR stands
for lunar laser ranging,
Cassini for the measurement
of a Shapiro time-delay
variation in the Solar System,
and SEP for tests of the strong
equivalence principle using a
set of neutron star-white
dwarf low-eccentricity
binaries [Credit Ref. Freire
et al. (2012)]
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space for deviation even for the class of scalar-tensor theory with α0 = 0 and
β 
= 0.22

The discussion above was concentrated on the case with zero scalar-field
potential. The picture changes drastically if we consider a nontrivial potential. One
of the simplest cases is to assume the following standard form of the Einstein frame
potential:

V (ϕ) = 2m2
ϕϕ

2 (13.82)

that is equivalent to considering a scalar field with nonzero mass mϕ . Even though
this might seems like a simple and straightforward extension, it has dramatic
influence on the observational constraints of the theory because of the following
reasons. Introducing a scalar-field mass means that we have introduced a new
characteristic scale, namely the Compton wave-length of the scalar field λϕ =
2π/mϕ, and the scalar field is loosely speaking confined inside λϕ . More precisely,
it drops exponentially at infinity and has non-negligible values only inside its
Compton wave-length. This help us reconcile the theory with the observations for
a much larger range of parameters compared to the massless case. For example
let’s consider the binary pulsar observations. If the Compton wavelength of the
scalar field is smaller than the orbital separation between the two stars, no scalar
gravitational radiation will be emitted and the predictions for the shrinking of the
orbit would be the same as in pure general relativity. For such values of the scalar
field mass the parameter β is essentially unconstrained (Ramazanoğlu and Pretorius
2016; Yazadjiev et al. 2016).

Below we will briefly discuss other alternative theories of gravity that are either
equivalent to scalar-tensor theories, or fall into the same class of modifications of
general relativity, i.e. we have inclusion of a dynamical scalar field. Exactly in these
theories universal relations were built.

f (R) Theories of Gravity We will continue with the f (R) theories, since they are
equivalent to a particular class of scalar-tensor theories with nonzero scalar field
potential. The essence of these theories is that the Ricci scalar R in the Hilbert–
Einstein actions is substituted with a function of R, thus f (R) theories:

S = 1

16πG

∫
d4x
√−gf (R)+ Smatter(gμν, χ). (13.83)

The viable f (R) theories have to be free of tachyonic instabilities and the
appearance of ghosts which is equivalent to Sotiriou and Faraoni (2010); De Felice

22As we will discuss below, this is true only in the static case. The rapid rotation magnifies the
differences significantly and offers new possibilities for probing scalar-tensor theories of gravity.
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and Tsujikawa (2010)

d2f

dR2 ≥ 0,
df

dR
> 0 (13.84)

respectively. One can easily show that after certain transformations (see e.g.
Yazadjiev et al. 2014) this action is equivalent to a scalar-tensor theory with zero
kinetic term in the Jordan frame and nonzero potential. The gravitational scalar �
and the potential U(�) are connected to the f (R) function via the relations

� = df (R)

dR
, U(�) = R

df

dR
− f (R). (13.85)

If one wants to express these quantities in terms of the Einstein frame function that
appear in the action (13.72), then the coupling function becomes α(ϕ) = −1/

√
3

and the potential V (ϕ) = A4(ϕ)U(�(ϕ)) = [R(df/dR) − f (R)]/(df/dR)2. For
example, for one of the simplest case—the R2 gravity, where f (R) = R+ aR2, we
have

V (ϕ) = 1

4a

(
1− e

− 2ϕ√
3

)2

. (13.86)

f (R) theories of gravity were mainly explored in cosmological context as an
alternative explanation of the accelerated expansion of the Universe. Every viable
theory of gravity should pass the observational test on astrophysical scales as well
and that is why neutron stars in f (R) theories attracted particular interest recently.
The form of the f (R) function, though, that is normally used to explain the dark
energy phenomenon would not give significant influence on astrophysical scales.
That is why most of the authors considered the problem the other way around—
assume that indeed the gravitational theory is not the pure Einstein’s theory, but
instead we have an f (R) type of modification of the action. Then one can ask the
question what would be the additional terms in the f (R) function that would give
the dominant contribution on astrophysical scales. It is expected that this is exactly
the R2 term and that is why most of the compact star solutions were constructed in
R2 gravity.

Quadratic Gravity The idea of the quadratic gravity is to supplement the Hilbert–
Einstein action with all the possible algebraic curvature invariants of second order.
These invariants are: R2, R2

μν ≡ RμνR
μν , R2

μνρσ ≡ RμνρσR
μνρσ and the

Pontryagin scalar ∗RR ≡ 1/2Rμνρσ ε
νμλκRρσ

λκ , where ενμλκ is the Levi-Civita
tensor. An extra dynamical scalar field is included as well that couples non-
minimally to the second order curvature corrections.

The motivation behind such modifications lies in the fact that pure general
relativity is not a renomalizable theory which naturally poses severe obstacles to
the efforts of quantizing gravity. The modification of the action proposed by the
quadratic gravity makes the theory renormalizable (Stelle 1977). The price we pay
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is the appearance of ghosts. A way to circumvent this problem is just by assuming
that the quadratic gravity is a truncated effective theory of a more general one (such
as the string theory where the effective action contains infinite series of higher
curvature corrections and it is ghost free).

A general form of the action is Yunes and Stein (2011); Pani et al. (2011a):

S = 1

16π

∫ √−gd4x
[
R − 2∇μϕ∇μϕ − V (ϕ) (13.87)

+ f1(ϕ)R
2 + f2(ϕ)RμνR

μν + f3(ϕ)Rμνρσ R
μνρσ + f4(ϕ)

∗RR
]
+ Smatter

[
χ, γ (ϕ)gμν

]
,

(13.88)

where V (ϕ) is the scalar field potential, the coupling functions f1..f4 depend only
on the scalar field, χ denotes collectively the matter fields in the matter action Smatter
and we have a nonminimal coupling between the scalar field and the matter via the
function γ (ϕ).

The field equations derived from this action in their most general form are of
order higher that two. This leads to problems in the theory such as the appearance
of ghosts as we mentioned above. In some special cases, though, the field equations
remain of second order as discussed below.

Two sectors of the quadratic gravity attracted particular interests—the Einstein–
dilaton–Gauss–Bonnet gravity and the Chern–Simons gravity. As a matter of fact
almost all of the studies of compact objects in quadratic gravity were made exactly
in these sub-theories.

Einstein–dilaton–Gauss–Bonnet Gravity In the EdGB theory the function f4(ϕ) =
0 and one choses a special combination between the other three, namely f1(ϕ) =
f3(ϕ) = −1/4f2(ϕ) ≡ f (ϕ) (Kanti et al. 1996). This combination is chosen in
such a way that the resulting field equations are of second order. The action has the
form

S = 1

16π

∫ √−gd4x
[
R − 2∇μϕ∇μϕ − V (ϕ)+ fGB(ϕ)(R

2 − 4R2
μν + R2

μνρσ )
]
,

(13.89)

where R2
GB ≡ R2 − 4R2

μν + R2
μνρσ is called Gauss–Bonnet scalar. Clearly the

function f (ϕ) has dimensions of inverse curvature and thus a characteristic scale can
be introduced in the EdGB theory equal to

√
αGB where we assumed that f (ϕ) is

proportional to αGB times a dimensionless function of the scalar field. The strongest
constraint on the parameters of the theory comes form the observations of black
hole low-mass X-ray binaries (Yagi 2012), namely

√|αGB| � 5× 106 cm. Another
purely theoretical constraint comes from the requirement for the existence of black
hole solutions, that is fulfilled when

√
αBD is smaller than the black hole horizon

size (Kanti et al. 1996). This leads to αGB/M
2 � 0.691 (Pani and Cardoso 2009).

One should note that the scalar field potential is neglected in most of the studies of
compact objects in EdGB gravity.
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Chern–Simons Gravity The CS gravity considers a different sector of the quadratic
gravity when f1 = f2 = f3 = 0 and only the function f4 is nontrivial (for a review
on the CS theory see e.g. Alexander and Yunes 2009). This means that only the term
proportional to the Pontryagin scalar ∗RR remains.

There are two versions of the theory. The first one is a non-dynamical version
where the kinetic and the potential terms for the scalar field are omitted and the
scalar field is externally prescribed, i.e. it does not evolve dynamically. This case
is simpler and it was the first one to be considered. It turned out, though, that in
this case the theory has certain problems and restrictions, such as the Pontryagin
constraint ∗RR = 0 (Grumiller and Yunes 2008; Alexander and Yunes 2009) That
is why in the last several years another version of the theory, where the scalar field
is dynamical, attracted much more attention. In order to distinguish the dynamical
CS gravity from the non-dynamical version, the abbreviation dCS is used.

Thus the dCS action takes the form

S = 1

16π

∫ √−gd4x
[
R − 2∇μϕ∇μϕ − V (ϕ)+ fCS(ϕ)(

∗RR)
]
. (13.90)

A very interesting property of the dCS gravity is that the static spherically symmetric
solutions do not differ from Einstein’s theory but rotation can introduce large
deviations. As a matter of fact the dCS gravity is almost the only theory with such
property which makes it very interesting to study.

In most of the studies, the function fCS = αCSϕ and the potential of the scalar
field V (ϕ) is zero, which introduces a length scale of the theory

√
αGB. As we

discussed above the general form of the quadratic gravity is prone to problems
such as the appearance of ghost, because of the fact that the field equations contain
higher order derivatives. This problem is circumvented in the EdGB theory because
of the special combination of the curvature invariants, but this is not true for the
dCS theory. Instead, in order to have a well posed theory, one can consider the
decoupling limit, where the field equation are still of second order. Thus, in most
paper dCS gravity is studied perturbatively in the coupling constant αGB. In order
to be able to apply the perturbative approach, the following condition should be
fulfilled, αGB/M

2 � 1. Due to the fact that the static solutions are the same as
in GR, the only weak field experiments that can impose constraints on αGB are the
ones measuring the frame dragging effects, such as the Gravity Probe B, which gives√
αGB � 1013 cm (Ali-Haimoud and Chen 2011) that is also in agreement with the

results in Yagi et al. (2012).

13.2.2.2 Alternative Theories of Gravity: Neutron Star Models and
Astrophysical Implications

Here, we will review the neutron star models constructed in the above discussed
alternative theories of gravity and their astrophysical implications. We are not
aiming towards an exhaustive review, but instead we will discuss the most important
results with an emphasis on the recent achievements in the field.
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Neutron Stars in (Massive) Scalar-Tensor Theories Historically, the compact star
models in STT were some of the first to be considered (see e.g. Horbatsch and
Burgess 2011 and the references therein) and they still attract significant attention,
because of the fact that STT are ones of the most natural and widely used alternative
theories of gravity. Most of the results fall into two categories based on the exact
form of the Einstein frame coupling function α(ϕ) (see Eqs. (13.75) and (13.78))—
neutron stars in Brans–Dicke scalar-tensor theories with constant coupling function
α(ϕ) = α0 and neutron stars in a theory with α(ϕ) = βϕ that is perturbatively
equivalent to general relativity in the weak field regime but can lead to large
deviations for strong fields. As we discussed in the previous section, α0 is severely
limited by the weak field observations which leaves practically no space for any
measurable deviations in the neutron star properties. This is not the case, though,
with the second type of STT, where the only constraints come from the strong
field experiments such as the observations of pulsars in binary systems. The current
constraint on β, i.e. β > −4.5, still leaves space for non-negligible deviations from
the pure Einstein’s theory especially in the rapidly rotating case. That is why we
will consider only the second class of scalar-tensor theory.

Neutron stars in scalar-tensor theories with the Einstein frame coupling function
α(ϕ) = βϕ were considered for the first time in Damour and Esposito-Farèse (1993)
where an effect, called sponteneous scalarization, was found that consists of the
following. There exists a range of stellar parameters where neutron stars can develop
nontrivial scalar field even if the background cosmological value of the scalar field
ϕ0 is zero. As a matter of fact very similar phenomenon is observed also for black
holes in the presence of nonlinear fields, such as charged black holes described
by nonlinear electrodynamics (Stefanov et al. 2007a,b, 2009, 2008; Doneva et al.
2010), in the presence of a complex scalar field (Kleihaus et al. 2015) or black holes
surrounded by matter (Cardoso et al. 2013a,b).

Sequences of scalarized solutions are plotted in Fig. 13.8 for several values of
the parameter β and for both nonrotating star and stars rotating at the Kepler
(mass-shedding) limit. Let us now discuss first the static case. This corresponds
to the black, blue and green tick lines in Fig. 13.8. Note that the case with β =
−4.8 is actually outside of the observational limit β > −4.5 but we plotted it
so that one can have a better intuition about the qualitative behavior with the
increase of β. One of the most important properties of this class of scalar-tensor
theories is the nonuniqueness of the solutions. First, one should note that for
α(ϕ) = βϕ the field equations (13.73) and (13.74) always admit the solutions
with zero scalar field (we will call them trivial solutions). This means that the
pure general relativistic solutions are also solutions for this class of STT. As one
can see from the left panel in Fig. 13.8, at some critical central energy density a
new sequence of neutron star solutions with nontrivial scalar field (we will call
them nontrivial solutions) branch out of the sequence of trivial solutions. This is the
so-called spontaneous scalarization with the name coming from the analogy to the
spontaneous magnetization in ferromagnets. Thus, for a certain range of parameters
nonuniqueness of the solutions is present.
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Fig. 13.8 Left panel: The neutron star mass as a function of the central energy density for static
sequences of neutron stars (solid lines) and sequences of stars rotating at the mass-shedding limit
(dotted lines) with different values of the coupling constant β. A polytropic equation of state with
N = 0.7463 and K = 1186 is used. Right panel: The quantity 1 − M0/M , connected to the
gravitational binding energy, as a function of the baryon rest mass M0 for a fixed value of the
angular momentum cJ/(GM2�) = 1.38 [Credit Ref. Doneva et al. (2013c)]

It is even more interesting that the scalarized neutron stars are energetically more
favorable over the neutron stars with zero scalar field (Damour and Esposito-Farèse
1993; Doneva et al. 2013c) and they will be the ones that will be realised in practice.
This is demonstrated also in the right panel of Fig. 13.8 where the quantity 1 −
M0/M , that is connected to the gravitational binding energy, is plotted as a function
of the baryon rest mass M0. The sequences are calculated for the more general
case of rotating stars with a fixed value of the angular momentum. As one can see,
there is a cusp at the point where the mass reaches maximum which represents a
turning point along the fixed-J sequence. This is the point where secular instability
to collapse sets in. Moreover, the scalarized neutron stars have lower values of 1 −
M0/M and therefore, higher binding energy compared to the pure GR case, which
makes them energetically more favorable. The stability of the scalarized neutron
stars was examined in Harada (1997, 1998) and it was found that nontrivial scalar
field develops for β < −4.35 in the non-rotating case. This result was derived in
Harada (1998) for one particular polytropic EOS, but it turns out that the threshold
value of β is quite similar for other realistic EOS (Novak 1998a). Since the current
observational constraint is β > −4.5 there is not much space for deviations from
pure general relativity.

The scalarization was further examined in Salgado et al. (1998) and the maxi-
mum mass limit was studied in Sotani and Kokkotas (2017). Slowly rotating neutron
stars in STT where constructed in Damour and Esposito-Farèse (1996) where also
the constrains on β coming from the binary pulsar observations where discussed for
the first time. Rotational corrections up to first order in the rotational frequency were
studied later in Sotani (2012) and up to second order in Pani and Berti (2014). What
gives the largest difference, though, is the inclusion of rapid rotation (Doneva et al.
2013c) that enhances the differences between the pure general relativistic solutions
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and the scalarized ones, especially close to the Kepler limit, and also increases the
range of parameters where nontrivial scalar field can developed. It was shown for
example that scalarized solutions exist even for β < −3.9 close to the Kepler limit.
As a matter of fact these were the first rapidly rotating models in alternative theories
of gravity. The effect of rapid rotation is demonstrated in Fig. 13.8 where the dotted
lines correspond to sequences of models rotating at the mass-shedding limit. As one
can see for β = −4.2 no scalarized branch of solutions exists in the nonrotating
limit, but such branch clearly appears close to the Kepler frequency with significant
deviations from pure general relativity. Moreover, while the differences between
the pure general relativistic solutions and the scalarized ones is quite small for the
maximum allowed value β = −4.5 in the static case, the rapidly rotating models
can reach large deviations for the same value of β.

The regime of rapid rotation opens a completely new window towards testing
scalar tensor theories. Currently the fastest known pulsar rotates with a frequency
of about 700 Hz (Hessels et al. 2006) where the rotational effects are important but
they would not lead to significant enhancement of the differences with pure general
relativity. Other objects, though, such as the binary neutron star merger remnants,
will rotate with frequencies close to the Kepler limit shortly after their birth and they
are supposed to be observed in the near future via their gravitational wave emission.
This makes them perfect candidates for further testing of scalar-tensor theories and
the strong field regime of gravity in general.

All the solutions discussed so far are in the negative β regime. It was argued
recently that scalarization can occur for positive β as well for a limited set of
equations of state that admit negative values of trace of the energy-momentum
tensor inside the star (Mendes 2015; Palenzuela and Liebling 2016; Mendes and
Ortiz 2016). This condition practically means that there are regions inside the star
where the pressure surpasses one third of the energy density that can be translated to
a threshold value of the compactness weakly dependent on the particular equation
of state, i.e. (M/R)min ∼ 0.265 (Mendes 2015).

A lot of work has been done on astrophysical implications of the scalarized
neutron stars. Possible ways to constrain scalar-tensor theories through measure-
ments of surface atomic line redshifts was considered in DeDeo and Psaltis (2003).
The orbital and epicyclic frequencies, and the innermost stable circular orbit for
particles orbiting around scalarized neutron stars were calculated in DeDeo and
Psaltis (2004) in the non-rotating case and in Doneva et al. (2014a) for rapidly
rotating models, while general expressions in terms of the multipole moments
have been produced in Pappas and Sotiriou (2015a). These quantities are related
to the properties of accretion discs around compact stars and the observations of
quasi-periodic oscillations in the emitted X-ray flux, and that is why they can
be used to put constraints on the theory. The process of dynamical scalarization
resulting for example after accretion of matter on the neutron star that brings it
above the scalarization threshold, was considered in Novak (1998a). The collapse
in scalar-tensor theories was examined in Harada et al. (1997); Novak and Ibanez
(2000); Gerosa et al. (2016) and the collapse of a neutron star to black holes was
considered in Novak (1998b). Almost all of these studies, with the exception of



13 Universal Relations and Alternative Gravity Theories 783

Doneva et al. (2014a), are in the nonrotating limit. Even though some of them
offered promising ways of constraining the coupling parameter β at that time, the
very recent observations of pulsars in binary systems set very tight limit on β which
makes the deviations from pure general relativity in these astrophysical scenario
practically unmeasurable. Only the rapidly rotating case leads to larger deviations.
If we restrict ourselves to objects rotating with frequencies up to 700 Hz, though,
the deviations in the epicyclic frequencies and the position of the innermost stable
circular orbit considered in Doneva et al. (2014a), would be still difficult to measure.
That is why one needs to go to rotation close to the Kepler limit expected for
example for the binary neutron star merger remnants.

As a matter of fact the neutron star merger in scalar-tensor theories was studied
for the first time a few years ago in Barausse et al. (2013); Shibata et al. (2014). In
these studies a phenomenon called “dynamical scalarization” was observed similar
to the spontaneous scalarization. The essence of the phenomenon is that even though
the two neutron stars would not be scalarized when they are isolated, they can
develop nontrivial scalar field if they are close enough, i.e. as the orbital separation
shrinks the stars undergo dynamical scalarization. This can have significant effect
on the stellar dynamics and leads to some observable effects. Later a semi-analytical
approach based on a modification of the post-Newtonian formalism was developed
that takes into account the presence of a nontrivial scalar field and was proven to be
in agreement with the previous fully nonlinear relativistic results (Palenzuela et al.
2014). This approach was recently improved in Sennett and Buonanno (2016). The
advantage of the semi-analytical approach is that a much larger parameter space can
be explored and template of waveforms can be generated. The problem of binary
neutron star mergers in scalar-tensor theories was examined also via calculation
of quasi-equilibrium sequences of equal-mass, irrotational binary neutron stars in
Taniguchi et al. (2015). The question of detectability of possible (dynamically)
scalarized stated by the Advanced LIGO, VIRGO and KAGRA was discussed in
Sampson et al. (2014) and the results show that the gravitational wave signal is
indeed detectable in certain case that are in agreement with the current observational
constraints. In addition, the electromagnetic counterpart of the binary neutron star
mergers was studied (Ponce et al. 2015) and it was concluded that the differences
with pure general relativity are small but if they are combined with gravitational
wave observations, constraints can be imposed on the deviations from Einstein’s
theory.

The oscillations of neutron stars in scalar-tensor theories were examined for the
first time in Sotani and Kokkotas (2004) where the non-radial polar oscillations
modes (f - and p-modes) were calculated in the Cowling approximation, i.e. when
the spacetime and the scalar field perturbations are neglected. Even though this is a
crude approximation it gives us good qualitative picture of the possible deviations
from pure general relativity. Later, the full perturbation equations for both the
axial and polar modes were derived and the frequencies of the axial modes were
calculated (Sotani and Kokkotas 2005). In Sotani (2014) a different approach was
undertaken—the radial oscillations of scalarized neutron stars were considered in
the Cowling approximation, but without neglecting the scalar field perturbations.
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The radial perturbations of course do not lead to gravitational wave emission
but due to the presence of a scalar field, scalar waves are emitted (Morganstern
and Chiu 1967). All these studies showed that the scalarization indeed changes
significantly the oscillations spectrum leading to non-negligible deviations from
general relativity for small enough values of β. The most recent constraints on β,
though, limit the possible deviations from Einsteins’ theory considerably similar to
the other astrophysical scenarios. Torsional oscillations of scalarized neutron stars
were examined in Silva et al. (2014). The results in Silva et al. (2014) showed that if
one considers realistic values of the β the deviations due to scalarization are smaller
than the uncertainties in microphysics and therefore there is no degeneracy between
the two effects. Oscillations of rapidly rotating neutron stars were examined in
Yazadjiev et al. (2017). The results show that the deviations from pure Einstein’s
theory can be significant especially in the case of nonzero scalar field mass.

Additional “ingredients” to the scalarized neutron stars were also explored, such
as the presence of anisotropic pressure (Silva et al. 2015) both in the nonrotating
and slowly rotating regimes using a quasi-local equation of state similar to the
pure general relativistic case (Horvat et al. 2011; Doneva and Yazadjiev 2012).
Depending on the “sign” of the anisotropy, i.e. whether the tangential pressure is
larger than the radial one or the other way around, the deviations from pure general
relativity due to the presence of nontrivial scalar field are either suppressed or
magnified. This gives us hope that the binary pulsar observations can set constraints
on the degree of anisotropy.

An interesting extension of the above work is to consider not only one scalar
field coupled to the metric, but multiple scalar fields instead. This problems is of
course much more involved and the first steps in this direction were undertaken in
Horbatsch et al. (2015) (see also Damour and Esposito-Farese 1992). The simplest
case is to consider two real scalar fields instead of one, that after a complexification
can be cast to the problem of adding one complex scalar field. The criterion for
neutron star scalarization were examined in this theory and the 3+1 formulation of
the field equations was derived.

So far all the presented results are for the case when the potential of the scalar
field V (ϕ) = 0. New and interesting effects arise, though, if we drop this assumption
as commented in the previous subsection. For example the inclusion of scalar-
field mass mϕ , via the specific form of the potential given by Eq. (13.82), leads
to the fact that the scalar field is suppressed at length scales larger that its Compton
wavelength λϕ . Therefore, if properly chosen, the mass of the scalar field can help
us reconcile the theory with the observations for a much larger range of parameters.
One should note that the calculation of the neutron star models is numerically
challenging because of the following reason. The presence of nonzero mass makes
the field equation for the scalar field (13.74) stiff because this equation admits both
exponentially decreasing and exponentially growing solutions at infinity. Clearly,
only the exponentially decreasing solutions is physically relevant, but it is very
difficult in certain cases to converge numerically to it and special techniques should
be used.
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Let us consider the same class of scalar-tenor theories with coupling function
α(ϕ) = βϕϕ and impose the constraint that the Compton wavelength λϕ � 1010m
(this is roughly the minimal observed orbital separation for close binary pulsars) or
equivalently mϕ � 10−16 eV. Then the emission of scalar gravitational waves will
be suppressed which means that practically no constraints can be imposed on the
parameter β. Thus, the deviations from pure general relativity can be very large.
Neutron star models in such class of scalar-tensor theories were considered for
the first time in Popchev (2015); Ramazanoğlu and Pretorius (2016) for the static
case and in Yazadjiev et al. (2016) for the slowly rotating case. Rapidly rotating
models in massive scalar-tensor theories were examined in Doneva and Yazadjiev
(2016). Further studies on the astrophysical implications of neutron stars in massive
scalar-tensor theories are needed because too large, negative β would clearly lead to
dramatic changes in the neutron star structure that can be tested with the present
astrophysical observations. Considering other forms of the scalar field potential
would be interesting as well. The gravitational radiation of compact binaries in
another class of massive scalar-tensor theories, the massive Brans–Dicke theory,
was considered in Berti et al. (2012); Alsing et al. (2012).

Neutron Stars in f (R) Theories of Gravity Neutron star models in f (R) theories
of gravity attracted considerable interest recently as a natural attempt to study the
astrophysical applications of a class of alternative theories that gives promising
results on cosmological scales, such as an alternative explanation of the accelerated
expansion of the universe. Here we will not give a thorough review on the subject
but instead focus mainly on the realistic astrophysically relevant models which were
also used to construct the universal relations discussed in this chapter. We will
concentrate on the particular case of R2 gravity that is supposed to give the leading
corrections for the neutron star structure. Moreover, the f (R) theories of gravity are
mathematically equivalent to a specific class of scalar-tensor theories with nonzero
scalar field potential, as discussed in the previous subsection, which can simplify
their treatment.

The initial work on the subject was concentrated mainly on discussing the
existence of solutions and building such solutions (see for example Kobayashi and
Maeda 2008; Upadhye and Hu 2009; Babichev and Langlois 2009; Jaime et al.
2011; Babichev and Langlois 2010). In the beginning there was some controversy on
the question of whether compact star solutions exist in f (R) theory but the overall
studies showed that such stars can indeed be constructed. A drawback, though, is
that solving the reduced field equations suffers from severe numerical instabilities.
This can be easily demonstrated using the scalar-tensor formulation of f (R) theory.
Let us consider for example the case of R2 gravity, i.e. when f (R) = R + aR2. In
this case the resulting scalar field potential will lead to a nonzero mass of the scalar
field. Thus, similar to the massive scalar-tensor theories, the field equation for the
scalar field (13.74) becomes stiff and thus leads to severe computational difficulties
in certain cases. That is why, as a simplification, realistic neutron stars in R2 gravity
were first studied perturbatively (Cooney et al. 2010; Arapoglu et al. 2011) (see
also Alavirad and Weller 2013 for the case of logarithmic f (R) theory), i.e. instead
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of solving the full field equations a perturbative expansion in the parameter a was
made. The studies in Yazadjiev et al. (2014) went beyond the perturbative approach
calculating for the first time sequences of realistic neutron star models in R2 gravity
and comparing them with the observations. The calculations were performed using
the mathematical equivalence to a particular class of scalar-tensor theories and they
were later verified by deriving and calculating the full unperturbed field equations
directly in f (R) theories without going through scalar-tensor theories or different
frames (Yazadjiev and Doneva 2015). The results showed that the nonperturbative
results are not only quantitatively but also qualitatively very different from the
results in the perturbative approach. Thus the perturbative approach is not applicable
for f (R) theories and in order to obtain correct results one has to calculate the full
field equations.

The results in Yazadjiev et al. (2014) confirmed what was expected from the
theory—in the limit when a → 0 the solutions converge to the general relativistic
ones and in the limit a →∞ the solutions tend to the case of massless Brans–Dicke
theory with coupling function α(ϕ) = −1/

√
3. Therefore, the neutron star solutions

in R2 gravity are bounded between two limiting cases which also puts an upper
limit on the deviations from general relativity. This can be seen on Fig. 13.9 where
different colors correspond to different dimensionless values of a and the case of
a = 104 corresponds to nearly the maximum possible deviation from pure general
relativity (we use the dimensionless parameter a → a/R2

0, where R0 is one half of
the solar gravitational radius R0 = 1.47664 km, i.e. the solar mass in geometrical
units). The Gravity Probe B experiment imposes the following constraints on the
values of a, namely a � 2.3× 105 in the same dimension units (or a � 5× 1011 m2

in physical units) which means that all cases plotted on Fig. 13.9 fall into the allowed
range of values of a. The studies for several equations of state in Yazadjiev et al.
(2014) showed, though, that the deviations due to the change of the parameters a
are of the same order of magnitude as the equation of state uncertainties which

Fig. 13.9 The neutron star mass as a function of the radius (left panel) and the moment of inertia as
a function of the mass (right panel) for static and rotating at the Kepler limit sequences of neutron
stars in R2 gravity. The results for several values of the parameter a are plotted for the APR4 EOS
[Credit Ref. Yazadjiev et al. (2015)]
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of course poses significant obstacle for testing the f (R) theories. This is not
the case, though, with the moment of inertia calculated in Staykov et al. (2014);
Yazadjiev et al. (2015) where the differences with pure general relativity are better
pronounced. Thus, the future observations of the neutron star moment of inertia
can be used to discriminate between different gravitational theories in the strong
field regime. Rapidly rotating models in R2 gravity were calculated in Yazadjiev
et al. (2015) and similar to the case of scalar-tensor theories, the rotation magnifies
the deviations from pure general relativity considerably in comparison to the static
case. The gravitational collapse in f (R) theories was studied in Borisov et al.
(2012); Cembranos et al. (2012). The astrophysical implication of the constructed
neutron star solutions, such as the orbital and epicyclic frequencies, were considered
in Staykov et al. (2015a) and the oscillations of neutron stars, including different
asteroseismology relations, where examined in Staykov et al. (2015b). These studies
showed that the deviations from Einstein’s gravity are non-negligible, even though
in some cases they are within the equation of state uncertainty. This gives us
hope that the f (R) theories would be better constrained in the future when the
astrophysical observations limit further the allowed range of equations of state.

Neutron Stars in EdGB Gravity Neutron stars in the EdGB theories of gravity were
constructed for the first time in Pani et al. (2011b) both in the static and the slowly
rotating cases. The coupling function between the scalar field and the Gauss–Bonnet
scalar in Eq. (13.89) is chosen to be

f1(ϕ) = αGBe
βϕ, (13.91)

where αGB and β are constants.
An interesting fact is that in the decoupling limit the monopole scalar charge,

i.e. the coefficient in front of the 1/r term in the asymptotic of the scalar field at
infinity, is zero unlike for example the massless scalar-tensor theories.23 Thus there
would be no scalar dipole radiation and it is not possible to impose constraints on
the theory from the binary pulsar observations (Yagi et al. 2016).

In Figs. 13.10 the mass as a function of the central energy density and the moment
of inertia as a function of the mass for neutron stars in EdGB gravity are plotted.
As one can see, contrary to scalar-tensor and f (R) theories, the maximum neutron
star mass decreases with the increase of αGB for fixed β. Even more, it was proven
in Pani et al. (2011b) that for fixed αGBβ no neutron star solutions exist above
some critical maximum central energy density (the exact limit is a quite lengthy
expression and can be found in Pani et al. 2011b). This can serve as a way to impose
constraint on the theory if the nuclear matter equation of state is known with a
good accuracy—one should simply require that αGBβ is below some critical values
chosen in such a way that the maximum mass is above the two solar mass barrier
(Demorest et al. 2010; Antoniadis et al. 2013).

23The neutron stars, though, can still have nonzero higher scalar multipoles and thus nontrivial
scalar field.
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Fig. 13.10 The mass as a function of the central energy density (left panel) and the moment of
inertia as a function of the mass (right panel) for neutron stars in EdGB gravity using the APR
EOS. Models for different values of the Gauss–Bonnet coupling constants α (denoted by αGB in
the text) and β are shown. In the right panel the recent observation of a neutron star withM ≈ 2M�
and a possible future observation of the moment of inertia confirming general relativity within
10% Lattimer and Schutz (2005) are shown [Credit Ref. Pani et al. (2011b)]

As we mentioned above, one of the hopes to test the deviations from pure
general relativity is via the future observations of the neutron star moment of inertia.
Unfortunately, the studies showed that for EdGB gravity this would not be possible
since the moment of inertia deviate from the one in pure Einstein’s theory by a few
percents at most, that is inside the expected observational error.

The axial quasinormal modes of neutron stars in EdGB were examined in
Blázquez-Salcedo et al. (2016). The frequencies of the fundamental spacetime
modes increase compare to pure general relativity. An interesting observation is that
the universal (equation of state independent) relations for the oscillation modes that
are available in Einstein’s theory still hold for the EdGB gravity that can be used to
put constraints on the parameters of the theory.

Rapidly rotating neutron star models in EdGB gravity were calculated in
Kleihaus et al. (2014, 2016). The properties of the rotating compact stars are
examined there in detail and the quadrupole moment is calculated as well. The mass-
radius relation for rapidly rotating neutron stars is shown in Fig. 13.11.

Neutron Stars in dCS Gravity As we commented above, static neutron stars in
dCS gravity are identical with the pure general relativistic ones and differences
are present only in the rotating case. Up to now only models in the slow rotation
approximation were calculated at first order in the rotation (Yunes et al. 2010; Ali-
Haimoud and Chen 2011) and later at second order (Yagi et al. 2013). Up to leading
order in rotation only the moment of inertia is affected by the dCS gravity, while the
mass-radius relation remains the same as in Einstein’s theory.
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Fig. 13.11 The mass-radius relation for different values of the Gauss–Bonnet coupling constant
α = 0, 1 and 2 (α ≡ αGB/M

2�) for the EOS DI-II (the parameter β in Eq. (13.91) is fixed
to β = −1). The chosen values of α are below the upper bound obtained from low mass x-ray
binaries (Yagi 2012) which would correspond to α = 12 when converted to the dimensionless α
used in the graph. For a given α the left boundary curve represents the sequence of static solutions,
while the right boundary curve represents the sequence of neutron stars rotating at the Kepler limit.
Both are connected by the secular instability line [Credit Ref. Kleihaus et al. (2016)]

The change in the moment of inertia �ICS/IGR induced by the CS gravity as
a function of the CS coupling strength is shown in Fig. 13.12. As one can see,
depending on the Chern–Simons coupling constant, the moment of inertia can
deviate significantly from general relativity and if we assume that the accuracy of
the future observations of the neutron star moment of inertia are of the order of 10%,
the Chern–Simons coupling constant can be constrained several orders of magnitude
better than the current estimates.

The calculation of neutron stars in dCS gravity up to second order in rotation
allowed to calculate the mass quadrupole moment and the rotational corrections
to the mass and radius that is plotted in Fig. 13.13. Unfortunately, it turns out that
these corrections are inside the EOS uncertainty and they can not be used to test
the dCS gravity with the present observations. The corrections to the post-Keplerian
parameters are also too small to be observable nowadays via double binary pulsars.

13.2.3 Universal Relations in Alternative Theories

Neutron star universal relations offer a very important tool for testing alternative
theories of gravity, because the equation of state uncertainty, that causes a lot of
problems as we have already mentioned, is taken out of the picture. There are
three classes of universal relation in generalised theories of gravity that have been
discussed in the literature so far. These are the gravitational waves asteroseismology
relations, the I-Love-Q relations, and relations between the moment of inertia and
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Fig. 13.12 Change in the moment of inertia �ICS/IGR induced by the CS modification as
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corrections in the rotational frequency for the two EOSs. The quantity �ICS/IGR is plotted for
the values M/R = 0.1 and 0.15. The dashed lines show the analytic result for a constant density
nonrelativistic star [Credit Ref. Ali-Haimoud and Chen (2011)]

the compactness of neutron stars. In general relativity we also discussed the 3-
hair relations for the multipole moments but this topic has not been tackled yet in
alternative theories of gravity. Below we will comment on the three former classes
in further detail.

The oscillations of neutron stars are directly related to the emitted gravitational
wave signal. That is why relations that connect the neutron star parameters to
the oscillations frequencies and damping times, the so-called gravitational wave
astereseismology relations, were extensively studied in pure Einstein’s theory. They
can be used in practice when gravitational waves from oscillating neutron stars are
observed in the future (see discussion in Sect. 13.2.1.4). The extension to alternative
theories of gravity was done in Sotani and Kokkotas (2004, 2005) for the case of
massless scalar-tensor theories, in Staykov et al. (2015b) for f (R) theories in the
static case. The results there show, that if we restrict ourselves to values of the
parameters that are in agreement with the current observational constraints, the
relations are as equation of state independent as in pure general relativity but the
deviations from pure Einstein’s theory are very small in most of the cases. For
example in R2 gravity one can use an expression like the one in Eq. (13.47) with
a small variation to the coefficients to fit the f -mode frequency in terms of η.
Extensions to other alternative theories of gravity would be interesting, especially
the massive scalar-tensor theory case that can produce very large differences. The
first studies of oscillations modes of rapidly rotating neutron stars in alternative
theories of gravity were performed very recently (Yazadjiev et al. 2017) in the case
of (massive) scalar-tensor theories and the results show that the deviations from pure
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general relativity can be large. Asteroseismology relations in the rapidly rotating
case are still lacking.

Another set of relations that attracted a lot of attention recently are the I-Love-Q
relations, that are discussed in a lot of detail in the rest of the chapter for the pure
general relativistic case. A natural question is whether we can use them to constrain
the strong field regime of gravity. If such universal relations hold in alternative
theories as well and we are able to determine independently via observations two
quantities from the I-Love-Q trio, then possible deviations from general relativity
can be detected. With this motivation in mind, such relations were examined in Yagi
and Yunes (2013a); Yagi and Yunes (2013b) for the dCS gravity, in Pani and Berti
(2014); Doneva et al. (2014b) for massless and in Doneva and Yazadjiev (2016)
for massive scalar-tensor theories, in Kleihaus et al. (2014) for the EdGB theory,
in Sham et al. (2014) for the Eddington-inspired Born-Infeld (EiBI) theory and in
Doneva et al. (2015) for f (R) theories. From these studies only the papers (Doneva
et al. 2014b; Kleihaus et al. 2014; Doneva et al. 2015; Doneva and Yazadjiev 2016)
include the rapidly rotating case. It turned out that for all these theories the equation
of state independence is preserved up to a large extend. The deviations from pure
general relativity, though, are almost negligible for a big portion of the cases if one
considers the allowed range of parameters of the corresponding theory. These are the
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massless STT, the EdGB and the EiBI theory. Larger differences on the other hand
are observed for dCS gravity, massive STT and f (R) theories. One should note that
all these conclusions are true only for the normalized relations, if one considers the
non-normalized relations then the deviations from pure general relativity can reach
very large values. This means that the normalization that is used for the I-Love-Q
relations is so good that not only the equation of state dependence is taken away, but
in some cases also the dependence on the particular theory of gravity. Therefore, it
is unclear so far up to what extend the I-Love-Q relations can be used to test the
various alternative theories of gravity.

We should note here that, as with I-Love-Q, 3-hair relations could also be used
to test gravity modifications, but as we have mentioned earlier these relations have
not been studied yet in alternative theories of gravity. It is possible that the 3-hair
relations in alternative theories can be quite different from their general relativity
counterparts. The caveat here is that it might not be possible to define multipole
moments in all classes of alternative theories of gravity, the way that they are defined
in general relativity. This has been done so far only in scalar-tensor theory for a
massless scalar field (Pappas and Sotiriou 2015b), where possible astrophysical
applications in terms of these moments have been explored (Pappas and Sotiriou
2015a). We should note here that the quadrupole moment has been calculated
in some additional cases such as in the case of EdGB theory by Kleihaus et al.
(2016, 2014) as well as in R2 gravity by Doneva et al. (2015), where the I-Q
relations in these theories were compared against the corresponding relations in
general relativity. Another case where a general definition of multipole moments has
been given, is the case of f (R) theories by Suvorov and Melatos (2016), although
they investigate only Ricci flat cases where there are no extra degrees of freedom
present and the corresponding multipole moments are equivalent to those of general
relativity.

Finally, relations between different normalizations of the moment of inertia and
the compactness of neutron stars, including also relations involving the maximum
stellar mass, were examined for STT and f (R) theories (Staykov et al. 2016)
motivated by the work in pure general relativity (Breu and Rezzolla 2016; Lattimer
and Schutz 2005).24 The results showed that the equation of state universality is
as good as in Einstein’s theory of gravity but the deviations from general relativity
can be large in certain cases,25 especially for the relations involving the maximum
stellar mass, that can be used as a probe of the gravitational theories. Specifically,
Staykov et al. (2016) studied neutron star models using the following theories: (1)
a scalar-tensor theory (denoted as STT) with a massless scalar field (V (ϕ) = 0)
and a conformal factor, that relates the Einstein frame to the Jordan frame, of the

24I-C relations have been also studied in Horndenski and beyond-Horndeski gravity (Maselli et al.
2016; Babichev et al. 2016; Sakstein et al. 2017), as well as for theories with disformal couplings
(Minamitsuji and Silva 2016), which are not covered here.
25For the I-C relations in EdGB, as we have noted earlier, this is not the case though. On the
contrary we expect that the general relativistic relations to hold also in EdGB.
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form A(ϕ) = eβϕ
2/2, with a chosen value for β = −4.5, which is within the range

allowed by observational constrains and produces spontaneous scalarisation, (2) an
f (R) theory with the specific choice for the Lagrangian, f (R) = R + aR2, where
the coupling parameter a is in km2 in geometric units and has the value a = 104M2�,
where the mass of the Sun is M� = 1.477 km, and finally (3) general relativity. For
these theories and the various models that they constructed, they fitted the moment
of inertia in terms of the compactness C for two different choices of normalisation
using two different polynomial forms following Lattimer and Schutz (2005) and
Breu and Rezzolla (2016), i.e.,

Ĩ = I/(MR2) = ã0 + ã1C + ã2C4, and Ī = I/M3 = ā1C−1 + ā2C−2 + ā3C−3 + ā4C−4,

(13.92)

respectively. The coefficients of the fits for the three theories and for three rotation
rates are given in Table 13.6.

For the relations that concern the maximum stellar mass in the various theories,
Staykov et al. (2016) used the following two fitting functions, one where the mass
is normalised with respect to the maximum non-rotating mass, MTOV, and another

Table 13.6 The fitting coefficients for the fit given by Eqs. (13.92)

Ĩ = I/(MR2) Ī = I/M3

ã0 ã1 ã2 ā1 ā2 ā3 ā4

GR

Slow. rot. 0.210 0.824 2.480 1.165 0.0538 0.0259 −0.00144

χ = 0.2 0.211 0.788 3.135 1.077 0.100 0.0172 −9.830 × 10−4

χ= 0.4 0.200 0.823 2.469 1.024 0.123 0.0129 −7.985 × 10−4

χ = 0.6 0.176 0.839 2.393 0.943 0.143 0.00714 −5.539 × 10−4

STT

Slow. rot. 0.201 0.897 0.603 1.057 0.110 0.0173 −0.00103

χ = 0.2 0.196 0.909 0.224 0.884 0.197 0.00270 −3.254 × 10−4

χ = 0.4 0.171 1.055 −2.985 0.664 0.313 −0.0163 5.647 × 10−4

χ = 0.6 0.127 1.256 −7.190 0.257 0.513 −0.0492 0.00202

f (R)

Slow. rot. 0.221 0.981 −0.755 0.941 0.214 0.00521 −4.412 × 10−4

χ = 0.2 0.216 0.989 −1.255 0.853 0.243 0.00190 −3.841 × 10−4

χ = 0.4 0.208 1.011 −1.748 0.805 0.264 −0.00201 −1.978 × 10−4

χ = 0.6 0.201 0.998 −2.143 0.725 0.280 −0.00407 −1.706 × 10−4

The results are given for the slowly rotating cases and rapidly rotating cases with χ = 0.2, χ = 0.4,
χ = 0.6, for the GR case, followed by the STT case and by the f (R) case. The table is taken from
Staykov et al. (2016)
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Table 13.7 The fitting
coefficients for the maximal
mass for the fits (13.93)

a0 a1 a2

M/MTOV

(
J/JKep

)
GR 1 0.251 −0.0626

f (R) 1 0.382 −0.127

STT – – –

M/MKep

(
J/JKep

)
GR 0.844 0.203 −0.0484

f (R) 0.800 0.290 −0.0933

STT 0.724 0.403 −0.126

The table is taken from Staykov et al. (2016)

Fig. 13.14 The maximal
mass normalised to the
maximal Keplerian mass as a
function of the angular
momentum, normalised to the
maximal Keplerian one for
the three different theories.
The curves are for the fit
coefficients in Table 13.7
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where the normalisation of the rotation is done with the angular momentum at the
Kepler limit JKep. As one can see in Table 13.7, where the various coefficients
of the fits are given, there is no fit for the STT case in the M

MTOV
normalisation.

This is because in this particular scalar-tensor theory the neutron star models get
spontaneously scalarised, which means that the models of the theory are the same
as the corresponding models in general relativity with a vanishing scalar field, until
one gets to some critical value of central density and rotation and then the scalarised
solutions appear. This causes a discontinuity in the behaviour of the M/MTOV
and the results are quite scattered, also because the point where spontaneous
scalarisation starts depends on the equation of state. This is the reason why the
second normalisation with respect to MKep was also considered in Staykov et al.
(2016). This latter normalisation gives a nice behaviour without discontinuities and
significantly less scattering in the STT case. The very interesting result is that the
three different theories separate and are distinguishable as one can see in Fig. 13.14.
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13.3 Present Challenges and Future Prospects

As we have seen, the topic of universal relations in general relativity is quite wide
with a variety of relations having already been found. This does not mean that there
are no more topics to be explored and progress to be made. One such case is the
question of what happens in the presence of strong magnetic fields. We have seen
already that there has been some work on I-Love-Q relations and magnetic fields
(Haskell et al. 2014) but there has been no work on 3-hair relations and strong
magnetic fields. In the I-Love-Q case we saw that strong magnetic fields and slow
rotation can destroy universality, but it might be worth exploring the possibility that
there is a more appropriate parameterisation that takes into account the magnetic
field and in the end preserves universality. Universal relations that take into account
magnetic fields could be useful in observationally constraining the strength of the
magnetic field in neutron stars.

There is also a lot of work to be done on the quasi-normal modes universal
relations. So far the calculations have been done mainly using the Cowling
approximation. It is very important therefore that the quasi-normal modes are
calculated beyond that approximation and it is verified that the universal relations
that have been found for the various modes and decay times still hold. This will
enable the more accurate determination of the various neutron star parameters that
can be extracted by the quasi-normal modes observations from gravitational waves.
Another question that could be of interest in the quasi-normal modes topic is to
identify the theoretical/mathematical reason behind the existence of the universality
in the modes.

Further expanding on this, it would be interesting to know if the various universal
relations can be traced to a common mechanism or not. We should note here that
relations like the I-Love-Q, the 3-hair or the quasi-normal modes universal relations
are relations between “integral” or average quantities of the entire star. The question
then is, are there any other quantities that are local and satisfy universal relations
or is it that such relations can exist only between particularly weighted average
quantities?

Finally, there is a lot of work to be done on the front of utilising universal
relations for making measurements of astrophysical observables from neutron stars.
Some work has already been done on using the I-Love-Q relations in order to
break degeneracies in gravitational wave observations (see for example Yagi and
Yunes 2013a; Yagi and Yunes 2013b) and there has been some preliminary work
on using the 3-hair relations to model electromagnetic observables from X-ray
binary systems in order to measure neutron star parameters (Pappas 2015; Tsang
and Pappas 2016; Pappas 2017), but there is a lot more work to be done.

Turning to neutron stars in alternative theories, even though the topic has been
studied for several decades, there is still a lot to be done in the field. One of the
main reasons for this is the complexity of the equations especially if one wants to
consider not only static but also rapidly rotating neutron stars. Thus the studies have
to be extended in two main directions—constructing new neutron star models in
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alternative theories of gravity and studying their astrophysical implication in further
detail. Below we will discuss both of them.

Constructing compact star models for a broader spectrum of alternative theories
of gravity, such as more general or more realistic cases of tensor-multi scalar
theories, Quadratic gravity, Horava gravity, Lorentz-violating theories, etc., is
important since there are many extensions of Einstein’s theory and the neutron
stars offers a unique way of testing them. In addition, for some alternative theories
of gravity a perturbative approach was used for constructing the solutions. This
is a drawback since some strong field effects can be omitted or even worse,
the perturbative approach can be misleading in certain cases such as the f (R)

gravity where it was explicitly shown that the non-perturbative results are not only
quantitatively but also qualitatively different from the perturbative ones. As far as
rotation is concerned, rapidly rotating neutron star solutions were constructed up to
now only in three classes of alternative theories—the scalar-tensor theories, f (R)
theories and Einstein–dilaton–Gauss–Bonnet theory. All these studies show that the
rapid rotation offer new phenomenology that should be further explored in other
generalized theories of gravity. In addition, the full stability of neutron stars in
alternative theories of gravity has not been studied yet, not even in the case of scalar-
tensor theories.

The astrophysical implications of neutron stars, such as stellar collapse, neutron
star mergers, quasiperiodic oscillations, absorption lines, etc. are scarcely studied
in most of the alternative theories of gravity, with the exception of scalar-tensor
theories and some sectors for the quadratic gravity. One of the problems there is that
the observations themselves either suffer from large uncertainties or even there are
multiple astrophysical models explaining the same observations that makes testing
the strong field regime of gravity extremely difficult. Nevertheless, neutron stars are
ones of the very few astrophysical objects where the strong field regime of gravity
can be explored and that is why further studies in this directions are needed.

Last but not least, larger efforts should be put in the directions of breaking the
degeneracy between the effects coming from the alternative theories of gravity and
the uncertainties of the nuclear matter equation of state. Currently this degeneracy
is plaguing a very large portion of the attempts to constrain the strong field regime
of gravity. Some advance in this direction is actually expected to come in the near
future since the astrophysical observations are narrowing the possible set of nuclear
matter equations of state more and more. One thing we should always keep in mind,
though, is that the interpretation of these observations is always done within general
relativity, or even some type of Newtonian approximation. Therefore, an interesting
study that deserved to be done is to explore whether the alternative theories of
gravity could change the corresponding predictions.

On this note, the study of universal relations in alternative theories of gravity is
very important, because in principle such relations could be used to test deviations
from general relativity while evading the equation of state degeneracies. So far work
has been done on the I-Love-Q relations in alternative theories of gravity and in most
of the cases the I-Love-Q relations have been found to be identical to those that hold
in general relativity. Exception to this are the cases of dCS gravity, massive scalar-
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tensor theories and f (R) theories. At a first glance therefore one would say that the
applicability of I-Love-Q relations in testing theories alternative to general relativity
is limited. Still, more work needs to be done before we can definitively decide on
the extent of the usefulness of I-Love-Q relations as tests of our theories of gravity.

Beyond the I-Love-Q relations, there are other relations, discussed in Sect. 13.2.3
that show more promise in distinguishing different theories. The exploration of
these relations is only the beginning. There are many more relations discussed in
Sect. 13.2.1 that should be also explored in other theories as well. Two important
classes of relations that should be explored in alternative theories are the quasi-
normal modes relations and the 3-hair relations. The quasi-normal modes relations
are important to be studied in alternative theories especially in this moment in time
since the opening of the gravitational waves observational window offers a unique
opportunity to probe the structure of compact objects. So far, studies of gravitational
waves emission in alternative theories are missing from the literature. These studies
are very difficult but need to be made in order to better constrain possible deviations
from general relativity.

3-hair relations in alternative theories will be easier to study and already some
steps towards that direction are being made. For example multipole moments in
some classes of alternative theories have been defined (Pappas and Sotiriou 2015b;
Suvorov and Melatos 2016), while there exist numerical codes that can calculate
neutron star models in these theories (Doneva et al. 2013c). Again a possible issue
might be to properly define the normalised quantities that will enter the various
universal relations in the different theories. Also, it will be necessary to have a good
correspondence between the quantities in different theories. At this point there is an
issue that will have to be addressed in order to make progress. Multipole moments
are defined in general relativity as asymptotic quantities (these are the Geroch–
Hansen multipole moments) that characterise fields that exist on asymptotically flat
spacetimes. This definition will not be always possible in all classes of alternative
theories of gravity. Therefore one should be careful when talking about moments in
other theories, making sure that the asymptotic moments are meaningful quantities.
Furthermore, in the cases that asymptotic moments (a la Geroch–Hansen) cannot be
defined, alternative quantities should be considered. Possible alternatives could be
source integrals like the ones given in the case of general relativity by Gürlebeck
(2014) for example, or maybe other type of source integrals like those given by
Hernández-Pastora et al. (2016). In that case one would have to re-evaluate all the
relevant quantities in general relativity as well and find the new relations that they
will satisfy. In addition one will also have to find a way to relate these new quantities
to astrophysical observables as well as some of the usual neutron star properties,
such as the moment of inertia for example.26

26It is also worth noting that one could take a theory independent approach in studying neutron
stars and universal relations in alternative theories of gravity, such as the post-TOV approach
(Glampedakis et al. 2015, 2016).
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Finally there is an elephant in the room that we should address. As we place
more constrains on the equation of state from astrophysics, the notion of universal
relations will become meaningless. This is not expected to happen soon and
probably there will be faster progress on universal relations than on the equation
of state question, but eventually it will happen. Will universal relations become
obsolete? The answer is, not necessarily. If the equation of state is determined,
then it will be in all likelihood one that will preserve the universal relations. These
relations can express quantities (neutron star parameters) in terms of other quantities
and therefore will still be a tool for determining parameters that are difficult
to measure directly. In addition, such relations can serve as consistency checks
for our various astrophysical models that enter the “measurement” of different
quantities from observations. Therefore they will continue to be a useful tool to do
astrophysics. Furthermore, the class of these relations that can distinguish between
different theories of gravity will be a particularly useful tool to do some fundamental
physics by testing general relativity and even possibly selecting a likely alternative,
or at least excluding unlikely ones.

13.4 Conclusions

This chapter has covered two quite wide topics, that of neutron star universal
relations and that of neutron stars in alternative theories of gravity. We have tried
to present the fullest possible spectrum of universal relations in general relativity,
but inevitably some results were covered very briefly or not at all. Similarly, for
neutron stars in alternative theories of gravity we have focused on the better studied
classes of these theories, such as scalar-tensor gravity, f (R), EdGB and CS. These
are all theories for which neutron star universal relations have been considered. Our
aim has been to present some of the basic ideas, giving some attention to the most
important aspects of them, and then focus on the most important results.

As it was discussed, the notion of neutron star universal relations is not new,
but the field gained a lot of momentum the last few years and has opened the way
to circumvent the uncertainties of the equation of state. With respect to isolated
neutron stars, one could say that the main classes of universal relations are three.
The first class are the I-Love-Q relations which relate the moment of inertia, the
quadrupolar love number and the mass quadrupole of a neutron star. The second
class is the 3-hair relations that relate the higher order multipole moments of the
spacetime around neutron stars to the first three non-zero multipole moments, i.e.,
the mass, the angular momentum and the mass quadrupole. Finally the third class
are the universal relations of the oscillation frequencies, which relate the real parts
and the imaginary parts of neutron star QNMs to its other parameters such as
the moment of inertia or the compactness or the average density. Relations like
the I-Love-Q and the 3-hair relations, characterise both neutron and quark stars
and can have many useful applications. They can be used to measure neutron star
properties that are hard to measure directly or they can be used to break degeneracies
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between parameters that enter the description of observables. They could also be
used to test our assumptions or our models of astrophysical mechanisms, if one
could measure one member of the I-Love-Q trio in one way and infer another
member from another observation and an assumed model for example. Furthermore,
by measuring the neutron star parameters from different channels, with the help
of the universal relations, we could use our knowledge of these parameters to
solve the inverse problem and constrain initially and maybe finally identify the
equation of state for matter at supra-nuclear densities. In addition, with the opening
of the gravitational wave observational window, we expect to learn many things
for the structure of neutron stars from the mergers of binary systems and the
universal relations of the oscillation frequencies will play an important part since the
fundamental frequencies of the remnants will be some of our primary observables.
In addition, apart from using the various universal relations, one could also test
for their validity. In this way one could test the assumptions that enter the various
relations, such as the assumptions on the equation of state, i.e., whether our current
models are correct or not. Even more, one could test one of the most fundamental
assumptions of all, that of the theory of gravity that we are using to construct neutron
stars.

Modifications or extensions to general relativity are motivated for several
reasons, such as cosmological and astrophysical considerations like the nature of
dark matter and dark energy questions, as well as more theoretical considerations
coming from attempts to create a theory of everything where additional degrees
of freedom are introduced to the low energy description of such a theory. The
resulting modifications can have the form of additional scalar fields or modifications
of the Einstein–Hilbert action with the introduction of higher powers or arbitrary
functions of the Ricci scalar or various contractions of the Riemann tensor. Apart
from the cosmological implications of such modifications, the implications for
the structure of compact objects in general and neutron stars in particular are of
extreme interest and this is why neutron stars have been extensively studied in such
theories. Here we focused on the most widely studied classes of these theories, i.e.,
scalar-tensor gravity, f (R), EdGB and dCS, that are also the ones for which there
have been studies of various universal relations beyond general relativity. When
studying neutron stars in these theories one needs to also take into account the
constrains that exist on various scales: from laboratory and solar system tests of
gravity to constraints coming from astrophysical and cosmological observations,
as well as viability restrictions to the theories. Although the aforementioned
constrains can be very strong for some parameters of modified theories and the
viability considerations limit the possible options, there is still the possibility to
find theories that are viable and free of pathologies (like tachyonic instabilities
and such), to which the various classes that we present here belong, and have
neutron stars that are quite different from their general relativistic counterparts.
One such example are neutron stars in massive scalar-tensor theory that exhibit
spontaneous scalarisation and another example are neutron stars in R2-gravity,
a subclass of f (R) theories. In both cases neutron stars can be quite different
than their general relativistic counterparts, which makes them very interesting
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astrophysical targets. On the other hand, the deviations of neutron star masses
and radii constructed in EdGB and dCS from their general relativistic counterparts
are quite small, making them more difficult to distinguish with astrophysical
observations (we should note though that in dCS only slow rotation models have
been studied so far). The main source of uncertainty again is the unknown equation
of state and any changes in the structure and the parameters of neutron stars in
modified theories needs to be measured against the range of these parameters that
is possible within general relativity and comes from choosing different equations of
state.

This is where universal relations come into play. Comparing the relations in
general relativity against their counterparts in modified theories of gravity has
the potential to distinguish different theories even though the uncertainty due to
the equation of state seems to give a mixed picture. Such success stories are the
applications of the I-Love-Q relations in dCS and massive scalar-tensor or f (R)
theories, where the relevant relations have been found to differ from their general
relativistic counterparts. In contrast, theories such as the massless scalar-tensor or
EdGB seem to have the same relations as in general relativity, if we restrict ourselves
to values of the parameters of the theory allowed by the observations. Apart from
the I-Love-Q relations, some other classes of promising relations have emerged
such as the relations that express the maximum neutron star mass in terms of the
maximum non-rotating mass and the rotation rate, which seem to be more potent
in distinguishing different theories of gravity. Finally, there is plenty of work to be
done in other directions as well, such as the study of 3-hair relations in alternative
theories, as well as extending work on the study of neutron star QNMs in alternative
theories.

In conclusion, with respect to universal relations, although their usefulness now
that the equation of state is still uncertain is quite obvious, it is important to stress
that these relations will still be useful even after the equation of state has been
determined. This is because they will still express useful relations between different
properties of neutron stars, that can be utilised in the analysis of observations and in
measuring the full range of the relevant neutron star parameters.
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