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Abstract We consider the initial boundary value problem for nonlinear damped
wave equations of the form u′′ + M(

∫
�

|(−�)su|2 dx)�u + (−�)αu′ = f,

with Neumann boundary conditions. We prove global existence of solutions, when
s ∈ [1/2, 1] and α ∈ (0, 1], and we show that the energy of these ones decays
exponentially, as t → ∞. The uniqueness of solutions is also obtained when
α ∈ [1/2, 1].
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1 Introduction

Problem on vibrations of the elastic bodies has been extensively studied in the last
decades. We will look at the following nonlinear model for small deformations of
an elastic membrane:

u′′ + M

(∫

�

∣
∣(−�)su

∣
∣2 dx

)

�u = f, (1.1)
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where � ⊂ R
n is the region occupied by the membrane. In Eq. (1.1), the prime ′

stands for temporal derivative, M = M (λ) is a positive real function defined for
all λ ≥ 0 and connected with the initial tension and with the characteristic of the
material of the membrane, and � is the Laplace operator. The unknown u = u(x, t)

represents the vertical displacement of a point x of the membrane at time t , and
f = f (x, t) is an external force. Equation (1.1) was derived by Kirchhoff [9] for
the case s = 1/2 and by Carrier [4] for the case s = 0.

Equation (1.1) with different boundary conditions was studied by several authors.
For the Kirchhoff equation ((1.1) with s = 1/2) we can mention the existence results
of Bernstein [2] in the one dimensional case with some restrictions on Fourier series
of the data, and the results by Lions [11] and Pohozhaev [24] which considered the
data in a special class of analytic functions. Medeiros-Milla Miranda in [14] studied
local well-posedness for (1.1) under very weak hypothesis on the data. The general
case, when s ∈ [0, 1], was analyzed by Cousin et al. in [6], where the authors
obtained existence of global solution in classes of Pohozhaev.

By adding a dissipative mechanism in Eq. (1.1), i.e.,

u′′ + M

(∫

�

∣
∣(−�)su

∣
∣2 dx

)

�u + (−�)αu′ = f, (1.2)

we can cite several works which have obtained some decay rate of the solutions. For
example, for the Kirchhoff equation (s = 1/2) with Dirichlet boundary conditions
and α = 0, we mention Brito [3], Nishihara-Yamada [20], Ono [22], and Yamada
[26] which have obtained well-posedness and stability (as t → ∞) results by
considering data (u0, u1, f ) ∈ D(−�)×D((−�)1/2)×L2(0, T ; D((−�)1/2)) and
satisfying a certain smallness conditions. Here and in what follows, D(A) represents
the domain of the operator A. Considering the case α = 1 (strong dissipation)
we cite the works of Matos-Pereira [13], Mimoni et al. [18], Nishihara [19], Ono
[21], and Vasconcelos-Teixeira [25] which contain results of global solvability and
exponential decay (as t → ∞) of solutions. Still with Dirichlet boundary conditions
and data (u0, u1, f ) ∈ H 1

0 ∩ D((−�)α) × L2 × L2(0, T ; L2), Medeiros and Milla
Miranda in [15] obtained global existence and exponential decay (as t → ∞)
of solutions of (1.2) when α ∈ (0, 1]. The uniqueness has been proved when
α ∈ [1/2, 1]. Considering Neumann boundary condition and α = 1, Aassila in
[1] studied the global existence and asymptotic behaviour (as t → ∞) of solutions
of the Kirchhoff equation. Relative to Carrier equation (s = 0) the literature is not
so extensive, even so, we can mention Cousin et al. [7], Frota-Goldstein [8], Larkin
[10], and Park et al. [23] which analyzed existence of global solutions and energy
decay for this one with a nonlinear dissipative term. Besides all the previously
mentioned works, we still indicated for the interested readers to consult the works
by Medeiros et al. [16, 17] which contain an extensive list of results obtained for
Kirchhoff-Carrier equation.
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In this work, we consider a problem associated to (1.2) with Neumann boundary
conditions, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

u′′ + M
(∫

�
|(−�)su|2 dx

)
�u + (−�)αu′ = f in � × R+,

∂u

∂ν
= 0 on � × R+,

u(·, 0) = u0, u′(·, 0) = u1 in �,

(1.3)

where � is a bounded open set of Rn with smooth boundary �, ν is the unit outward
normal to �. The purpose of the present paper is to analyze the well-posedness
and asymptotic behavior (as t → ∞) of solutions for the problem (1.3) under the
following conditions:

M(λ) ≥ m0 > 0, ∀λ ≥ 0, (1.4)

0 < α ≤ 1 and 1/2 ≤ s ≤ 1, (1.5)

and data (u0, u1, f ) ∈ D((−�)α) ∩ D((−�)α+s− 1
2 ) × D((−�)s− 1

2 ) ×
L2(0, T ; D((−�)s− 1

2 )). It is important to point out that, as in [15], the initial
motivation was to obtain information as α → 0, but to our best knowledge, the
existence of global solution of this system with α = 0 and no restriction on the
data is still an open (and seems to be difficult) problem. Returning to our results,
to obtain the existence of solutions for (1.3), we need to construct a complete
orthonormal system in a closed subspace of L2 and to project the problem in this
closed subspace. Thus, we can decompose the solutions of problem in two parts: one
belonging to the kernel and another in the range of an operator, which corresponds
to solutions of the projected problem. We also show that the projected solution
decays in an exponential rate. The uniqueness of this solutions is obtained when
α ∈ [1/2, 1]. For α ∈ (0, 1/2) the uniqueness is still an open problem.

The paper is organized as follows. Section 2 contains some notations and
essential results which we will apply in this work. In Sect. 3 we prove existence of
global solution for (1.3) employing the Faedo-Galerkin method. The key point of the
proof is to obtain the complete orthonormal system before mentioned. Concerning
to uniqueness we will use energy method with a special regularization. Finally,
in Sect. 4 we prove the exponential decay for the energy associated to projected
solutions of the problem (1.3) making use of the perturbed energy method as in
Zuazua [27].

2 Some Notations and Results

In this section we establish some important results that help us in the development
of our work. Also we give some notations and we define the spaces and operators
that we will use during the paper. We define the linear operator A0 in L2(�) as
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follows:
∣
∣
∣
∣
∣
∣

D(A0) =
{

u ∈ H 2(�); ∂u

∂ν
= 0 on � = ∂�

}

,

A0u = −�u, ∀u ∈ D(A0).

(2.1)

It is well know that the operator A0 is nonnegative, selfadjoint and the resolvent
(I + λA0)

−1 is compact for all λ > 0.

We recall a result from [1] that will be needed in the sequel.

Lemma 2.1 Let H be a real Hilbert space with inner product (·, ·) and norm |·| .
Consider A : D(A) � H → H a nonnegative selfadjoint operator with domain
D(A) and range R(A) in H. Suppose that (I + A)−1 is a compact operator. Then

(i) R(A) is closed and H = N(A) ⊕ R(A),

(ii) The operator
[A|D(A)∩R(A)

]−1 : R(A) → R(A) is compact, where
A|D(A)∩R(A) is the restriction of A to D(A) ∩ R(A).

According to Lemma 2.1, we can guarantee, for the operator A0 defined in (2.1),
that

R(A0) =
{
v ∈ L2(�); ∫

�
v(x)dx = 0

}
is closed in L2 (�) ,

L2(�) = N(A0) ⊕ R(A0), with N(A0) = {v (x) = constant a.e. in �} ,

and

[
A0|D(A0)∩R(A0)

]−1 : R(A0) → R(A0) is compact.

Let P : L2 (�) → R(A0) be the orthogonal projection of L2(�) onto R(A0). Then

Pu(x) = u(x) − u, ∀u ∈ L2(�),

where u = 1
|�|
∫
�
u(x)dx and |�| is the measure of �.

Let us denote by (·, ·) and | · | the inner product and norm in L2(�), respectively.
We consider the system

{
u′′ + M

(∣
∣As

0u
∣
∣2
)

A0u + Aα
0 u′ = f in L2 (�) ,

u (0) = u0, u′ (0) = u1.
(2.2)

If u(t) is a solution to (2.2), then by Lemma 2.1 we have u(t) = u1(t) + u2(t),

where u1(t) ∈ N(A0) and u2(t) ∈ D(A0) ∩ R(A0). Furthermore, we deduce that

⎧
⎪⎨

⎪⎩

u′′
1 + u′′

2 + M
(∣
∣As

0u2
∣
∣2
)

A0u2 + Aα
0u′

2 = f in L2 (�) ,

u (0) = u1(0) + u2(0) = u01 + u02,

u′ (0) = u′
1(0) + u′

2(0) = u11 + u12,
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where we have used the fact that As
0u(t) = As

0u2(t) and Aα
0u′(t) = Aα

0 u′
2(t). In

this way, we can decompose the last system as follows:

{
u′′

1(t) = 0 in N(A0),

u1(0) = u01, u′
1(0) = u11,

(2.3)

and

{
u′′

2 + M
(
|Asu2|2

)
Au2 + Aαu′

2 = f in R(A),

u2 (0) = u02, u′
2(0) = u12,

(2.4)

where A = A0|D(A0)∩R(A0). If we can solve (2.3) and (2.4), we will get the solution
u(t) = u1(t) + u2(t) for (2.2).

For (2.3), we obtain the following explicit solution:

u1(t) = u01 + u11t .

The analysis of the well-posedness of global (weak) solutions of (2.4), when

u0 ∈ V := D(As) ∩ D(Aα+s− 1
2 ), u1 ∈ H := D(As− 1

2 ), and f ∈ L2(0, T ; H),

(α and s as in (1.5)) and the their asymptotic behavior, as t → ∞, are our objectives
in this paper. This will be done in the next two sections.

3 Well-Posedness

This section is devoted to show the well-posedness for the system (2.4). The
following result holds.

Theorem 3.1 Let us suppose M ∈ C0([0,∞[,R), s, and α satisfying (1.4)
and (1.5), and let us consider data (u0, u1, f ) ∈ V × H × L2(0, T ; H). Then there
exists at least a function u : � × [0, T ] → R verifying the following conditions:

u ∈ L∞ (0, T ; V ) ∩ L2(0, T ; D(A
α
2 +s )), (3.1)

u′ ∈ L∞(0, T ; H) ∩ L2(0, T ; D(A
α
2 +s− 1

2 )), (3.2)

u′′ + M
(∣
∣Asu
∣
∣2
)

Au + Aαu′ = f in L2(0, T ; D(A
α
2 +s−1) ∩ D(A− α

2 +s− 1
2 )),

(3.3)

u (0) = u0, u′ (0) = u1 in �. (3.4)
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Furthermore, if M ∈ C1([0,∞[,R) and α ≥ 1/2, the function u satisfying (3.1)–
(3.4) is unique.

Proof To prove the existence of solutions, we will use the Faedo-Galerkin method.
For this, we consider {wν}ν∈N a special basis in R(A) formed by eigenvectors of
A, whose eigenvalues {λν}ν∈N are such that 0 < λ1 < λ2 ≤ λ3 ≤ . . . ≤ λν ≤
. . . with limν→∞(λν) = ∞. We denote by Wm = [w1, w2, . . . , wm] the subspace
of V generated by the first m vectors of {wν}ν∈N. Let us find an approximate
solution um = um(t) ∈ Wm defined by um(t) =∑m

j=1gjm(t)wj , where gjm(t) are
found as solutions of the following initial value problem for the system of ordinary
differential equations:

⎧
⎪⎨

⎪⎩

(u′′
m(t), v) + M

(
|Asum|2

)
(Aum(t), v) + (Aαu′

m(t), v) = (f (t), v), ∀v ∈ Wm,

um(0) = u0m → u0 in V,

u′
m(0) = u1m → u1 in H.

(3.5)

System (3.5) has solutions um defined on a certain interval [0, tm], for tm < T (see,
for example, [5, Th. 1.1, p. 43]). Moreover, the functions um and u′

m are absolutely
continuous in this interval. Thus, we can guarantee the existence of u′′

m almost
everywhere in [0, tm]. This solution can be extended to whole interval [0, T ] by
using the first estimate that we shall prove in the next step.

Estimate I Taking v = 2A2s−1u′
m(t) in (3.5)1, we have

(u′′
m(t), 2A2s−1u′

m(t)) + M
(
|Asum(t)|2

)
(Aum(t), 2A2s−1u′

m(t))

+(Aαu′
m(t), 2A2s−1u′

m(t)) = (f (t), 2A2s−1u′
m(t)).

So

d

dt

{∣
∣
∣As− 1

2 u′
m(t)

∣
∣
∣
2 + M̂
(
|Asum(t)|2

)}

+ 2
∣
∣
∣A

α
2 +s− 1

2 u′
m(t)

∣
∣
∣
2

≤ 2
∣
∣
∣As− 1

2 f (t)

∣
∣
∣
∣
∣
∣As− 1

2 u′
m(t)

∣
∣
∣ ≤
∣
∣
∣As− 1

2 f (t)

∣
∣
∣
2 +
∣
∣
∣As− 1

2 u′
m(t)

∣
∣
∣
2
,

where M̂(λ) = ∫ λ0 M(t)dt. Integrating from 0 to t, 0 ≤ t ≤ tm, we obtain

∣
∣
∣As− 1

2 u′
m(t)

∣
∣
∣
2 + M̂
(
|Asum(t)|2

)
+ 2
∫ t

0

∣
∣
∣A

α
2 +s− 1

2 u′
m(ξ)

∣
∣
∣
2
dξ

≤
∣
∣
∣As− 1

2 u1m

∣
∣
∣
2 + M̂
(
|Asu0m|2

)
+ 2
∫ t

0

∣
∣
∣As− 1

2 f (ξ)

∣
∣
∣
2
dξ

+
∫ t

0

∣
∣
∣As− 1

2 u′
m(ξ)

∣
∣
∣
2
dξ.
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In this way, by (3.5)2, (3.5)3, and since f ∈ L2(0, T ; H), the above inequality
implies that

∣
∣
∣As− 1

2 u′
m(t)

∣
∣
∣
2 + m0 |Asum(t)|2 + 2

∫ t

0

∣
∣
∣A

α
2 +s− 1

2 u′
m(ξ)

∣
∣
∣
2
dξ

≤ C +
∫ t

0

∣
∣
∣As− 1

2 u′
m(ξ)

∣
∣
∣
2
dξ,

where C > 0 is a constant independent of m and t . Thus, by Gronwall’s Lemma,
we obtain

∣
∣
∣As− 1

2 u′
m(t)

∣
∣
∣
2 + m0

∣
∣Asum(t)

∣
∣2 + 2
∫ t

0

∣
∣
∣A

α
2 +s− 1

2 u′
m(ξ)

∣
∣
∣
2
dξ ≤ C,

where C > 0 is a constant independent of m and t . Therefore

∣
∣
∣
∣
∣
(um) is bounded in L∞(0, T ; D(As)),

(u′
m) is bounded in L∞(0, T ; H) ∩ L2(0, T ; D(A

α
2 +s− 1

2 ))
(3.6)

and, consequently, we can prolong the approximate solution um(t) for all t in [0, T ].
Estimate II Let us consider v = A2s+α−1um(t) in (3.5)1, then

d

dt
(u′

m(t), A2s+α−1um(t)) −
∣
∣
∣A

α
2 +s− 1

2 u′
m(t)

∣
∣
∣
2 + M
(
|As(um(t))|2

) ∣∣
∣As+ α

2 um

∣
∣
∣
2

+1

2

d

dt

∣
∣
∣As+α− 1

2 um(t)

∣
∣
∣
2 = (f (t), A2s+α−1um(t)).

Integrating this identity from 0 to t, t ∈ [0, T ] , we get

1

2

∣
∣
∣As+α− 1

2 um(t)

∣
∣
∣
2 +
∫ t

0
M
(
|Asum(ξ)|2

) ∣∣
∣As+ α

2 um(ξ)

∣
∣
∣
2
dξ

= −(As− 1
2 u′

m(t), As+α− 1
2 um(t))

+(As− 1
2 u1m,As+α− 1

2 u0m) + 1

2

∣
∣
∣As+α− 1

2 u0m

∣
∣
∣
2

+
∫ t

0

∣
∣
∣A

α
2 +s− 1

2 u′
m(ξ)

∣
∣
∣
2
dξ +
∫ t

0
(As− 1

2 f (ξ),As+α− 1
2 um(ξ))dξ.

Using the Young’s inequality and (3.6)2 we obtain

1

4

∣
∣
∣As+α− 1

2 um(t)

∣
∣
∣
2 + m0

∫ t

0

∣
∣
∣As+ α

2 um(ξ)

∣
∣
∣
2
dξ ≤ C + 4

∣
∣
∣As− 1

2 u′
m(t)

∣
∣
∣
2

+1

2

∫ T

0

∣
∣
∣As− 1

2 f (t)

∣
∣
∣
2
dt + 1

2

∫ t

0

∣
∣
∣As+α− 1

2 um(ξ)

∣
∣
∣
2
dξ ≤ C +

∫ t

0

∣
∣
∣As+α− 1

2 um(ξ)

∣
∣
∣
2
dξ,
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where C > 0 is a constant independent of m and t , t ∈ [0, T ] . So, applying again
the Gronwall’s Lemma, we can conclude that

1

4

∣
∣
∣As+α− 1

2 um(t)

∣
∣
∣
2 + m0

∫ t

0

∣
∣
∣As+ α

2 um(ξ)

∣
∣
∣
2
dξ ≤ C,

where C > 0 is constant independent of m and t, t ∈ [0, T ]. Therefore

(um) is bounded in L∞(0, T ; D(As+α− 1
2 )) ∩ L2(0, T ; D(As+ α

2 )). (3.7)

Passage to the Limit From estimates (3.6) and (3.7), there exists a subsequence of
(um), still denoted in the same form, such that

∣
∣
∣
∣
∣
∣
∣
∣
∣

um → u weak − ∗ in L∞(0, T ; D(As) ∩ D(As+α− 1
2 )),

um → u weakly in L2(0, T ; D(As+ α
2 )),

u′
m → u′ weak − ∗ in L∞(0, T ; H),

u′
m → u′ weakly in L2(0, T ; D(A

α
2 +s− 1

2 )).

(3.8)

To treat the convergence of the nonlinear term, we observe that, since the injections
D(As+ α

2 ) ⊂ D(As) ⊂ H are continuous and the embedding of D(As+ α
2 ) into

D(As) is compact, it follows by (3.6), (3.7), and Aubin-Lions’ Compactness
Theorem that exists a subsequence of (um), which we still denote by (um), and
a function u : [0, T ] → R, such that

um → u strongly in L2(0, T ; D(As)).

Then there exists a subsequence of (um), which we still denote by (um), such that

∣
∣Asum(t)

∣
∣2 → ∣∣Asu(t)

∣
∣2 a.e. in (0, T ).

By the continuity of M , we have

M
(∣
∣Asum(t)

∣
∣2
)

→ M
(∣
∣Asu(t)

∣
∣2
)

a.e. in (0, T ),

and

M
(∣
∣Asum(t)

∣
∣2
)

≤ C a.e. in (0, T ).

Thus, by the Lebesgue’s Dominated Convergence Theorem, we get

M
(∣
∣Asum(t)

∣
∣2
)

→ M
(∣
∣Asu(t)

∣
∣2
)

strongly in L2(0, T ). (3.9)
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The convergences (3.8) and (3.9) are sufficient to pass to the limit in (3.5)1 and to
obtain the function u satisfying (3.1)–(3.3). By standard arguments, we can verify
the initial conditions (3.4).

Before proving the uniqueness, we consider the following lemma.

Lemma 3.1 If 1
2 ≤ α ≤ 1, u ∈ L2(0, T ; D(As+ α

2 ), and u′ ∈ L2(0, T ;
D(As+ α

2 − 1
2 )), then

d

dt

∣
∣Asu
∣
∣2 = 2
(
As− α

2 + 1
2 u,As+ α

2 − 1
2 u′) . (3.10)

Proof We consider the space W (0, T ) defined by

W (0, T ) =
{
v; v ∈ L2

(
0, T ; D(As+ α

2 )
)

, v′ ∈ L2(0, T ; D(As+ α
2 − 1

2 ))
}

equipped with the norm

‖v‖2
W(0,T ) = ‖v‖2

L2(0,T ;D(A
s+ α

2 ))
+ ‖v‖2

L2(0,T ;D(A
s+ α

2 − 1
2 ))

.

By Lions-Magenes [12, p. 13], we have that D([0, T ]; D(As+ α
2 )) is dense in

W (0, T ). Taking ϕ ∈ D([0, T ]; D(As+ α
2 )), it follows that ϕ′ ∈ D ([0, T ];

D(As+ α
2 )
)

. We also have D(As+ α
2 ) ⊂ D(As− α

2 + 1
2 ) with continuous injections,

because s + α
2 ≥ s − α

2 + 1
2 . In this way, we can assert that As+ α

2 − 1
2 ϕ,As+ α

2 − 1
2 ϕ′ ∈

D
(
A1−α
)

and

d

dt

∣
∣Asϕ
∣
∣2 = d

dt

(
As− α

2 + 1
2 ϕ,As+ α

2 − 1
2 ϕ
)

=
(
As− α

2 + 1
2 ϕ′, As+ α

2 − 1
2 ϕ
)

+
(
As− α

2 + 1
2 ϕ,As+ α

2 − 1
2 ϕ′)

=
(
A1−α
(
As+ α

2 − 1
2 ϕ′) , As+ α

2 − 1
2 ϕ
)

+
(
As− α

2 + 1
2 ϕ,As+ α

2 − 1
2 ϕ′)

=
(
As+ α

2 − 1
2 ϕ′, A1−α

(
As+ α

2 − 1
2 ϕ
))

+
(
As− α

2 + 1
2 ϕ,As+ α

2 − 1
2 ϕ′)

=
(
As+ α

2 − 1
2 ϕ′, As− α

2 + 1
2 ϕ
)

+
(
As− α

2 + 1
2 ϕ,As+ α

2 − 1
2 ϕ′)

= 2
(
As− α

2 + 1
2 ϕ,As+ α

2 − 1
2 ϕ′) ,

for all ϕ ∈ D
(
[0, T ]; D(As+ α

2 )
)

. In this way, using density arguments, we

get (3.10) and this proves the lemma. �
Returning to uniqueness of solution, to prove it, we will make use of the energy

method with a special regularization. In fact, firstly we observe that we can not
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multiply Eq. (3.3) by A2s−1u′ directly because A2s−1u′ ∈ L∞(0, T ; D(As− 1
2 )∗) ∩

L2(0, T ,D(As− α
2 − 1

2 )∗) and u′′ ∈ L2(0, T ; D(A
α
2 )∗) and therefore the duality

〈u′′, A2s−1u′〉 does not make sense. To overcome this difficulty, let us consider the
function u defined over R with the properties analogous with the properties of u

over [0, T ] (which is possible by reflection). Let us consider a sequence of mollifiers
{ρε}ε>0, that is, a sequence of functions ρε ≥ 0 on R such that

ρε ∈ C∞
c (R) , supp ρε ⊂ [−ε, ε],

∫ ∞

−∞
ρε (s) ds = 1.

Taking

uε(x, t) =
∫ ∞

−∞
ρε(t − s)u(x, s)ds,

we can see that u′′
ε ∈ L2(0, T ,D(As− 1

2 )) and so the duality
〈
u′′

ε , A
2s−1u′

ε

〉
makes

sense.
Let us suppose that u and v are two solutions in the conditions of Theorem 3.1.

Defining wε = uε − vε and w = u − v, we have that

w′′
ε + ρε ∗

[
M
(∣
∣Asu
∣
∣2
)

Au − M
(∣
∣Asv
∣
∣2
)

Av
]

+ Aαw′
ε = 0. (3.11)

Making the duality between (3.11) and A2s−1w′
ε, one has

〈
w′′

ε , A2s−1w′
ε

〉+
〈
ρε ∗ M

(
|Asu|2
)

Aw,A2s−1w′
ε

〉

+
〈
ρε ∗
[
M
(
|Asu|2
)

− M
(
|Asv|2
)]

Av,A2s−1w′
ε

〉
+ 〈Aαw′

ε, A
2s−1w′

ε

〉 = 0.

(3.12)

Notice that
〈
ρε ∗ M

(
|Asu|2
)

Aw,A2s−1w′
ε

〉
=
〈
ρε ∗ M

(
|Asu|2
)

As− α
2 + 1

2 w,A
α
2 +s− 1

2 w′
ε

〉

=
〈
ρε ∗ M

(
|Asu|2
)

As− α
2 + 1

2 w,A
α
2 +s− 1

2 w′
ε − A

α
2 +s− 1

2 w′
〉

+
〈
ρε ∗ M

(
|Asu|2
)

As− α
2 + 1

2 w,A
α
2 +s− 1

2 w′
〉
.

(3.13)

By Lemma 3.1, we have

〈
ρε ∗ M

(
|Asu|2
)

As− α
2 + 1

2 w,A
α
2 +s− 1

2 w′
〉
= 1

2
d
dt

〈
ρε ∗ M

(
|Asu|2
)

Asw,Asw
〉

−
〈
ρε ∗ [M ′(|Asu|2)

(
As− α

2 + 1
2 u,As+ α

2 − 1
2 u′
)
]Asw,Asw

〉
.

(3.14)
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Substituting (3.13) and (3.14) into (3.12) we get

1

2

d

dt

(∣
∣
∣As− 1

2 w′
ε

∣
∣
∣
2 +
〈
ρε ∗ M(|Asu|2)Asw,Asw

〉)

+
∣
∣
∣A

α
2 +s− 1

2 w′
ε

∣
∣
∣
2

=
〈
ρε ∗
[
M
(
|Asv|2
)

− M
(
|Asu|2
)]

As− α
2 + 1

2 v,A
α
2 +s− 1

2 w′
ε

〉

+
〈
ρε ∗
[
M ′
(
|Asu|2
) (

As− α
2 + 1

2 u,As+ α
2 − 1

2 u′
)]

Asw,Asw
〉

+
〈
ρε ∗ M

(
|Asu|2
)

As− α
2 + 1

2 w,A
α
2 +s− 1

2 w′ − A
α
2 +s− 1

2 w′
ε

〉
.

(3.15)

Integrating (3.15) from 0 to t ≤ T we have

1

2

(∣
∣
∣As− 1

2 w′
ε

∣
∣
∣
2 +
〈
ρε ∗ M

(
|Asu|2
)

Asw,Asw
〉)

+
∫ t

0

∣
∣
∣A

α
2 +s− 1

2 w′
ε

∣
∣
∣
2
ds

=
∫ t

0

〈
ρε ∗
[
M
(
|Asv|2
)

− M
(
|Asu|2
)]

As− α
2 + 1

2 v,A
α
2 +s− 1

2 w′
ε

〉
ds

+
∫ t

0

〈
ρε ∗
[
M ′
(
|Asu|2
) (

As− α
2 + 1

2 u,As+ α
2 − 1

2 u′
)]

Asw,Asw
〉
ds

+
∫ t

0

〈
ρε ∗ M

(
|Asu|2
)

As− α
2 + 1

2 w,A
α
2 +s− 1

2 w′ − A
α
2 +s− 1

2 w′
ε

〉
ds.

We can rewrite the above equality as follows

1

2

(∣
∣
∣As− 1

2 w′
ε

∣
∣
∣
2 +
〈
ρε ∗ M

(
|Asu|2
)

Asw,Asw
〉)

+
∫ t

0

∣
∣
∣A

α
2 +s− 1

2 w′
ε

∣
∣
∣
2
ds

=
∫ t

0

〈
ρε ∗
[
M
(
|Asv|2
)

− M
(
|Asu|2
)]

As− α
2 + 1

2 v,A
α
2 +s− 1

2 w′
〉
ds

+
∫ t

0

〈
ρε ∗
[
M
(
|Asv|2
)

− M |Asu|2
]
As− α

2 + 1
2 v,A

α
2 +s− 1

2 w′
ε − A

α
2 +s− 1

2 w′
〉
ds

+
∫ t

0

〈
ρε ∗
[
M ′
(
|Asu|2
) (

As− α
2 + 1

2 u,As+ α
2 − 1

2 u′
)]

Asw,Asw
〉
ds

+
∫ t

0

〈
ρε ∗ M

(
|Asu|2
)

As− α
2 + 1

2 w,A
α
2 +s− 1

2 w′ − A
α
2 +s− 1

2 w′
ε

〉
ds.

(3.16)

Notice that, as ε → 0, we have

∫ t

0

〈
ρε ∗
[
M
(∣
∣Asv
∣
∣2
)

− M
(∣
∣Asu
∣
∣2
)]

As− α
2 + 1

2 v, A
α
2 +s− 1

2 w′
ε − A

α
2 +s− 1

2 w′〉 ds → 0

(3.17)

and

∫ t

0

〈
ρε ∗ M

(∣
∣Asu
∣
∣2
)

As− α
2 + 1

2 w,A
α
2 +s− 1

2 w′ − A
α
2 +s− 1

2 w′
ε

〉
ds → 0. (3.18)
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Thus, passing (3.16) to the limit, as ε → 0, and taking into account the convergences
in (3.17) and (3.18), we get

1

2

∣
∣
∣As− 1

2 w′
∣
∣
∣
2 +
〈
M
(
|Asu|2
)

Asw,Asw
〉
+
∫ t

0

∣
∣
∣A

α
2 +s− 1

2 w′
∣
∣
∣
2
ds

=
∫ t

0

〈[
M
(
|Asv|2
)

− M
(
|Asu|2
)]

As− α
2 + 1

2 v,A
α
2 +s− 1

2 w′
〉
ds

+2
∫ t

0

〈
M ′
(
|Asu|2
) (

As− α
2 + 1

2 u,As+ α
2 − 1

2 u′
)

Asw,Asw
〉
ds.

(3.19)

Using (1.4) and the fact that s + α
2 ≥ s + 1

2 − α
2 , we have that there exists ξ = ξ (t)

between |Asu (t)|2 and |Asv (t)|2 such that

〈[
M
(∣
∣Asv
∣
∣2
)

− M
(∣
∣Asu
∣
∣2
)]

As− α
2 + 1

2 v, A
α
2 +s− 1

2 w′〉

≤ ∣∣M ′(ξ)
∣
∣
(∣
∣Asu
∣
∣+ ∣∣Asv

∣
∣
) ∣
∣
∣
∣Asu
∣
∣ − ∣∣Asv

∣
∣
∣
∣
∣
∣
∣
〈
As− α

2 + 1
2 v, A

α
2 +s− 1

2 w′〉∣∣∣
≤ C
∣
∣Asw
∣
∣
∣
∣
∣
〈
As+ 1

2 − α
2 v,As− 1

2 + α
2 w′〉
∣
∣
∣

≤ C
∣
∣Asw
∣
∣
∣
∣
∣As+ 1

2 − α
2 v

∣
∣
∣
∣
∣
∣As− 1

2 + α
2 w′
∣
∣
∣ ≤ C

∣
∣
∣As+ 1

2 − α
2 v

∣
∣
∣
2 ∣
∣Asw (t)

∣
∣2 + 1

2

∣
∣
∣As− 1

2 + α
2 w′
∣
∣
∣
2

≤ C

∣
∣
∣As+ α

2 v

∣
∣
∣
2 ∣
∣Asw
∣
∣2 + 1

2

∣
∣
∣As− 1

2 + α
2 w′∣∣∣

2
.

(3.20)

We can also note by (1.4) that

〈
M ′ (∣∣Asu

∣
∣2
)(

As− α
2 + 1

2 u,As+ α
2 − 1

2 u′)Asw,Asw
〉
≤ C

(∣
∣
∣As+ α

2 u

∣
∣
∣
2 +
∣
∣
∣As+ α

2 − 1
2 u′
∣
∣
∣
2
) ∣
∣Asw
∣
∣2 .

(3.21)

Combining (3.19)–(3.21), it follows that

m0
∣
∣Asw
∣
∣2 + 1

2

∫ t

0

∣
∣
∣A

α
2 +s− 1

2 w′
∣
∣
∣
2
ds ≤ C

∫ t

0
h(s)
∣
∣Asw(s)

∣
∣2 ds, (3.22)

with h (t) =
∣
∣
∣As+ α

2 u (t)

∣
∣
∣
2 +
∣
∣
∣As+ α

2 v (t)

∣
∣
∣
2+
∣
∣
∣As+ α

2 − 1
2 u′ (t)
∣
∣
∣
2 ∈ L1 (0, T ). Applying

the Gronwall’s Lemma in (3.22), we conclude that w(t) = 0, for all t ∈ [0, T ], and
this gives the uniqueness. �
Remark 3.1 As an immediate consequence of the estimates to obtain existence of
solutions in the proof of Theorem 3.1, we have that if f (x, ·) is defined in the
interval (0,∞), then (3.1)–(3.3) hold when we consider T = ∞.
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4 Asymptotic Behavior

The aim of this section is to study the asymptotic behavior, as t → ∞, of the energy
E(t) associated to solution of the problem (2.4) (with f = 0). This energy is given
by

E(t) = 1

2

∣
∣
∣As− 1

2 u′(t)
∣
∣
∣
2 + 1

2
M̂
(∣
∣Asu(t)

∣
∣2
)

, ∀t ≥ 0. (4.1)

Recall that M̂(λ) = ∫ λ0 M(t)dt . The main result of this section is the following.

Theorem 4.1 Under the assumptions of Theorem 3.1 with f = 0, there exist
positive constants C and γ such that the energy (4.1) satisfies

E(t) ≤ CE(0)e−γ t , ∀t ≥ 0. (4.2)

Proof A simple computation gives

E′
m(t) = −

∣
∣
∣As+ α

2 − 1
2 u′

m

∣
∣
∣
2 ≤ −λα

1

∣
∣
∣As− 1

2 u′
m

∣
∣
∣
2
, (4.3)

where Em(t) is the energy similar to (4.1) associated to the approximated sys-
tem (3.5) and λ1 is the first eigenvalue of A. From (4.3), we see that Em(t) is
non-increasing function.

For an arbitrary ε > 0, we define the perturbed energy

Emε (t) = (1 + εc)Em (t) + εF (t) , (4.4)

with c > 0 being a constant to be determined later and

F (t) =
(
As− 1

2 um (t) , As− 1
2 u′

m (t)

)
.

Notice that

|F (t)| ≤ C1Em (t) , (4.5)

where C1 = max
{
C2

0/m0, c, 1
}

and C0 > 0 is the immersion constant of D (As)

into D(As− 1
2 ). By (4.4) and (4.5)

|Emε (t) − (1 + εc)Em (t)| ≤ εC1Em (t)

or

[1 + ε (c − C1)] Em (t) ≤ Emε (t) ≤ [1 + ε (c + C1)] Em (t) .
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Taking 0 < ε < min {1/2 (C1 − c) , 1/ (C1 + c)}, we get

1

2
Em (t) ≤ Emε (t) ≤ 2Em (t) . (4.6)

Considering the derivative of the function F(t) and using (3.5)1 (with f = 0), we
obtain

F ′ (t) =
∣
∣
∣As− 1

2 u′
m

∣
∣
∣
2 +
(
As− 1

2 um,As− 1
2 u′′

m

)
=
∣
∣
∣As− 1

2 u′
m

∣
∣
∣
2 + (A2s−1um, u′′

m

)

=
∣
∣
∣As− 1

2 u′
m

∣
∣
∣
2 −
(
A2s−1um,M

(
|Asum|2

)
Aum

)
−
(
As+ α

2 − 1
2 um,As+ α

2 − 1
2 u′

m

)

=
∣
∣
∣As− 1

2 u′
m

∣
∣
∣
2 − M
(
|Asum|2

)
|Asum|2 −

(
As+ α

2 − 1
2 um,As+ α

2 − 1
2 u′

m

)
.

(4.7)

By (4.3) and (4.7) one has

E′
ε (t) + εF ′ (t) ≤ −λα

1

∣
∣
∣As− 1

2 u′
m

∣
∣
∣
2 + ε

∣
∣
∣As− 1

2 u′
m

∣
∣
∣
2 − εM

(∣
∣Asum

∣
∣2
) ∣
∣Asum

∣
∣2

− ε
(
As+ α

2 − 1
2 um,As+ α

2 − 1
2 u′

m

)
. (4.8)

Notice that

∣
∣
∣
(
As+ α

2 − 1
2 um,As+ α

2 − 1
2 u′

m

)∣∣
∣ ≤ δ

2

∣
∣
∣As+ α

2 − 1
2 u′

m

∣
∣
∣
2 + 1

2δ

∣
∣
∣As+ α

2 − 1
2 um

∣
∣
∣
2

≤ − δ

2
E′

m (t) + 1

2δ

∣
∣
∣As+ α

2 − 1
2 um

∣
∣
∣
2
, (4.9)

with δ > 0 being a constant to be chosen, and

∣
∣
∣As+ α

2 − 1
2 um

∣
∣
∣
2 =
∑

0<λν≤1

λ2s+α−1
ν |(um,wν)|2 +

∑

λν≥1

λ2s+α−1
ν |(um,wν)|2

≤ |um|2 + ∣∣Asum

∣
∣2 ≤
(

1 + λ1

m0

)

M̂
(∣
∣Asum

∣
∣2
)

. (4.10)

We also have

− M
(∣
∣Asum

∣
∣2
) ∣
∣Asum

∣
∣2 ≤ −m0

τ
M̂
(∣
∣Asum(t)

∣
∣2
)

, (4.11)
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where τ = max
{
M(s); 0 ≤ s ≤ 2E(0)

m0

}
. Combining (4.8)–(4.11), it follows that

E′
m (t) + ε

δ

2
E′

m (t) + εF ′ (t) ≤ − (λα
1 − ε
) ∣∣
∣As− 1

2 u′
m

∣
∣
∣
2

+
[

ε

2δ

(
1 + λ1

m0

)

− εm0

τ

]

M̂
(∣
∣Asum

∣
∣2
)

. (4.12)

Choosing δ = τ (1+λ1)

m2
0

and c = δ/2, we obtain by (4.4) and (4.12) that

E′
mε(t) ≤ − (λα

1 − ε
) ∣∣
∣As− 1

2 u′
m

∣
∣
∣
2 − εm0

2τ
M̂
(∣
∣Asum

∣
∣2
)

. (4.13)

Taking δ0 = min
{
2(λα

1 − ε), εm0
τ

}
, we can conclude by (4.6) and (4.13) that

E′
mε(t) ≤ − δ0

C3
Emε(t), ∀t ≥ 0,

which implies

Emε(t) ≤ Emε(0)e
− δ0

C3
t
, ∀t ≥ 0. (4.14)

Combining (4.6) and (4.14) we get

Em(t) ≤ C3

C2
Em(0)e

− δ0
C3

t
, ∀t ≥ 0. (4.15)

Taking the lim
m→∞ inf in both sides of (4.15) and according the conver-

gences (3.5)2, (3.5)3, (3.8), and (3.9), we deduce the inequality (4.2) and
Theorem 4.1 is proved. �
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