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Abstract Carbon nanotubes (CNTs) are basically graphene roll-up in cylindrical
form that can have large value of length-to-diameter ratio. In this paper electrical
property such as band-gap, density of states, and energy-dependent conductance of
single walled carbon nanotubes is quantumly calculated using density functional
theory (DFT). It can be seen that band-gap of different SWCNTSs changes with the
change in diameter. Density of states and energy dependent conductance is also
calculated for different single walled CNTs. It is observed that armchair carbon
nanotube band gap remain constant irrespective of the diametric size.

11.1 Introduction

In more recent history the discovery of CNTs is attributed to Iijima as the first
scientist who described the multiwalled carbon nanotubes (MWCNTs) preparation
process after a random event during the test of a new arc evaporation method for C60
carbon molecule fabrication in 1991 [1-3]. Structurally, SWCNTSs can be described
as a “rolled up” one-atom-thick sheets of graphene (Fig. 11.1). The way in which
the graphene sheet is wrapped gives different structures of carbon nanotubes
describe by chiral vector C which is a result of a pair (n,m) of integers that corre-
spond to graphene vectors ~a; and ~a, [4, 5]. The principle of SWCNT con-
struction from a graphene sheet along the chiral vector C = na; + ma, is shown in
Fig. 11.1. Depending on the values of n and m three types of carbon nanotubes are
formed [6-8]. When n has any integer values and value of m is zero the nanotube
structure thus formed is called “zigzag”. When values of n = m the nanostructure
thus formed is called “armchair”. The third type of CNTs construction, for which
n>m > 0, is called as “chiral”” nanotubes [9].
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Fig. 11.1 CNT from graphene sheet along the chiral vector Cy,

11.2 Method

The most common and simplest method used for determining the electronic
structure of SWCNTs is the density functional theory (DFT). This model is best for
the case of weak overlap of atomic wave functions in an insulating crystal and
widely used in solid-state physics. According to the density functional theory
(DFT), the conducting properties of different carbon nanotube structure will depend
on the relationship between the coefficient n and m of the vector C = na; + ma,,
which relates two crystallographic equivalent sites as shown in Fig. 11.1. It is
observed that if mod(n — m,3) = 0, 1, 2, then mod1 and mod2 are semiconducting
in nature and mod0 SWCNTs are metallic in nature at room temperature and exhibit
a small chirality dependent energy-gap. The small energy-gap corresponds to
quasi-metallic conduction at lower temperature. The energy gap has a minimum
value of zero corresponding to p = 2n/3. If n is not an integer multiple of three then
minimum value of p — 2n/3 is equal to 1/3. This suggests that the minimum energy
gap is then given by
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The impact of B doping in pristine and doped CNT(8,0) is analysed using
density functional theory (DFT) along with non-equilibrium green function
(NEGF).

11.3 Results

The nanotube diameter, dictated through Cy,, also affects the electron dispersion and

it was derived in a semiconducting nanotube, E, = 43’5;3 The above translates
t

numerically to E, = 07? eV, with a vg = 105m/s (Figs. 11.2 11.3 and 11.4).

Effect of Boron doping concentration on electronic properties

In this section the CNTs are doped with boron atoms. With variation in the number
of doped atoms, there band structures are analyzed. For this work CNT(8,0) is taken
and doped with one, two and four atoms of boron. The band structure of the
undoped CNT(8,0) is compared with that of doped nanotubes.

Our results clearly indicates that CNT(8,0) is semimetallic in nature
(Fig. 11.5al). The corresponding density of states (DOS) plot shown in Fig. 11.5a2
completely agrees with the band structure of CNT(8,0). There is a band gap of
0.6 eV between the valence and conduction band. Carbon nanotubes electronic
properties can be altered by doping with various impurities. In this work, boron is
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Fig. 11.2 i Energy band-gap plot for different chiral SWCNTs. ii Figure shows band structure of
different (n,0) zig-zag carbon nanotubes (a) (10,0) (b) (11,0) (c) (13,0) (d) (14,0). From the figure it
can be shown that the band-gap is inversely proportional to diameter of the nanotubes which is
dependent on the values of n. As value of n increases, the band-gap decreases
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Fig. 11.3 i Figure shows band structure of different (n,n) arm-chair nanotubes (a) (2,2) (b) (3,3)
(c) (4,4) (d) (5,5). So, from the above figure it can be concluded that arm-chair nanotubes are
always metallic nanotubes. (ii) Figure shows band structure of different (n,m) chiral nanotubes for
which values of n # m, (a) for (4,1) and (b) for (4,3). So, those nanotubes for which mod((n —
m),3) = 0 are metallic nanotubes. And band-gap for which mod((n — m),3) = 1,2 i.e. case (b) are
semiconducting nanotubes

taken for doping of CNT. It was clearly observed from Fig. 11.5 that Fermi level of
doped CNT(8,0) shifts downward resulting in p-type semiconducting behavior. The
energy band gap is decreased with the increase in doping atoms as evident from
band structure of undoped and doped CNT(8,0). The incorporation of boron atoms
adds additional electronic states around the Fermi level, Eg. With the increase in
doping concentration number of electronic states near the Fermi level increases.
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Fig. 11.4 i Figure shows density for states of different chiral nanotubes having mod((n —
m),3) = 0. Chiral nanotubes have finite number of density of states at Fermi level are metallic
nanotubes. ii Shows energy-dependent conductance for (a) (4,1) and (b) (4,3) chiral nanotubes.
Conductance for chiral nanotube (4,3) is zero which indicate a higher value of energy-gap in this
semiconductor nanotube
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Fig. 11.5 al Electronic band structure of CNT(8,0), b1, ¢l and d1 Electronic band structure of
doped CNT(8,0) with 1-atom of boron, 2-atoms of Boron and 4-atoms of Boron respectively. It
can be depicted from the band structure of CNT (8,0) that with the increase in doping atoms the
bandgap of CNT(8,0) decreases. a2—d2 shows the corresponding density of states of undoped and
doped CNT(8,0). These results can be used in fabrication of high speed electronics as well as
logical electronics
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11.4 Conclusion

It was observed that the density of states near the Fermi level Er increases with the
increase in doping concentration. CNTs shows potential as future material for the
development of next generation devices. The study about band gap and electronic
properties of CNTs will help in the development of high speed devices and
transistors.
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