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Abstract. A simplification of Burke theorem proof [1] and its gener-
alizations for queuing systems and networks are considered. The proof
simplification is based on the fact that points in output flow take place
in moments when Markov process of customers number in queuing sys-
tem has jumps down. First steps in this direction were made in [2]. But
here we improved proves of main results and consider queuing systems
in random environment. In such way it is possible to obtain a property
of the mutual independence of the flow into disjoint periods of time and
to calculate intensity of output flow. In this case Poisson input flow with
randomly varying intensity may be represented as Poisson flow with aver-
age intensity also. If this flow is independent with service process then it
is possible to simplify significantly consideration of queuing systems in
random environment. These assumptions may be applied to a consider-
ation of multiphase type networks [3] which are convenient in analysis of
queuing models with retrial queues [4–8].

Keywords: An output Poisson flow · The Jackson network
A random environment · A directed graph · A non-return set of nodes

1 Introduction

This paper is devoted to analysis of output flows in queuing systems and net-
works. In first part of the paper we consider simplification of Burke theorem
proof [1] and its generalizations. The proof simplification is based on the fact
that points in output flow take place in moments when Markov process of cus-
tomers number in queuing system has jumps down. In such way it is possible to
obtain a property of the mutual independence of the flow into disjoint periods
of time. Then it is possible knowing the process of customers number distribu-
tion to calculate intensities of such jumps down and so to calculate intensity of
output flow. This approach allows to obtain different corollaries for output flows
in open and close queuing networks.

Such consideration may be applied not only to output flows but to input flows
also. In this paper it is shown that for some stochastic models Poisson input flow
with randomly varying intensity coincides by distribution with Poisson flow with
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average intensity. This fact allows to analyse and to calculate distributions of
processes in open queuing network with finite number of nodes, infinite number
of servers in nodes, exponential distributions of service times and Poisson input
flow with randomly varying intensity. A presence of infinite number of servers
in the network nodes [4–6] together with the statement that the cardinality
of counting set of counting sets is counting set also allows to transform initial
queuing network into queuing network of multiphase type [3] so that in each node
a customer may be served no more than once. A transformation of the Jackson
network into the multiphase type network is closely connected with models of
retrial queues [7,8].

It is proved that all flows of so transformed network in stationary regime
are Poisson. Synergetic effects in this network are analysed using a replacement
of infinite number of servers by finite number of them. Synergetic effect means
that if number of servers in nodes and intensity of input flow increase in n → ∞
times then probability of queues existence on finite time interval tends to zero.

This investigation is based on the Burke theorem [1] that in stationary regime
output flow of multiserver system M |M |n|∞ is Poisson.

2 New Proof of Burke Theorem and Its Corollaries

In [1] the following statement is proved: in queung system M |M |n|∞ in station-
ary state, the output flow has the same distribution as the input flow. Recently,
however, interest in the study of flows in queuing systems is increased. Now it
is necessary to give a more compact and convenient for generalizations proof of
this theorem.

A random sequence of points will be called a Poisson flow with continuously
differentiable intensity λ(t), t ≥ 0, if the following conditions are satisfied [9,
p. 12, 13], [10, p. 20, 35 – 37]:

(a) the probability of the existence of the point of flow on the time interval
[t, t + h) does not depend on the location of the points of the flow up to
the time t (this property is called lack of follow-through and expresses the
mutual independence of the flow into disjoint periods of time);

(b) the probability that a flow point appears in the semi-interval [t, t + h) is
λ(t)h + o(h), h → 0;

(c) the probability of occurrence of two or more flow points in the range [t, t+h)
is o(h), h → 0.

Let the system An = M |M |n|∞ of the Poisson input flow has an intensity
λ > 0, and the service time has an exponential distribution with the parameter
μ > 0, 1 ≤ n < ∞. Denote Pk,n(t), k ≥ 0, distribution of the number of
customers in the system at the time t.

Theorem 1. The output flow in queuing system An is Poisson with intensity

a(t) =
∑

0<k

μPk,n(t)min(k, n).
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Proof. Let the output flow Tn = {0 ≤ t1 < t2 < . . .} be An described by a
random function yn(t) equal to the number of points of this flow on the segment
[0, t). Denote xn(t) the number of customers in the system An at the time t.
It is known that a random process xn(t) is Markov process (of death and birth
of [10, Chap. II, Sect. 1]), with each point of the Tn flow corresponding to the
time of the jump down process xn(t). Therefore, the output flow Tn satisfies the
condition (a). In turn, the condition (b) follows from the equalities:

P (yn(t + h) = yn(t) + 1) =
n∑

k=1

P (yn(t + h) = yn(t) + 1/xn(t) = k)Pk,n(t)

+P (yn(t + h = yn(t) + 1/xn(t) > n)
∑

k>n

Pk,n(t)

=
n∑

k=1

Pk,n(t)(kμh + ok(h)) +
∑

k>n

Pk,n(t)(nμh + o0(h)) = a(t)μh + o(h),

where for h → 0 we have
ok(h)

h
→ 0, k = 0, . . . , n,

o(h) =
n∑

k=1

Pk,n(t)ok(h) +
∑

k>n

Pk,n(t)o0(h), o0(h)/h → 0.

Thus, the output flow Tn satisfies the condition (b). Check of condition (c) is
quite obvious.

Theorem 2. In queuing system An, when the ergodicity condition λ < μ is
satisfied and the process xn(t) is stationary, the output flow is Poisson with
intensity λ.

Proof. Denote Pk,n, k = 0, 1, . . . , stationary probabilities of ergodic process
xn(t). The system of Kolmogorov-Chapman equalities for Pk,n, k = 0, 1, . . . , is
following:

0 = −P0,nλ + P1,nμ1, 0 = −Pk,n(λ + μk) + Pk−1,nλ + Pk+1,nμk+1, (1)

with μk = min(k, n)μ, k = 1, 2, . . . Prove by an induction that from Formulas
(1) we have

0 = −Pk,nλ + Pk+1,nμk+1, k = 0, 1, . . . (2)

Indeed for k = 0 this statement is a corollary of the first equation in Formulas
(1). Assume that the equality (2) is true for k = i, then from equations in (1)
and induction asumption we have for k = i + 1:

0 = [−Pi+1,n(λ + μi+1) + Pi,nλ + Pi+2,nμi+2] + [−Pi,nλ + Pi+1,nμi+1]

= −Pi+1,nλ + Pi+2,nμi+2.
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Consequently the equations (2) are true for all k = 0, 1, . . . Summarize equalities
(2) by k = 0, 1, . . . , we obtain

λ =
∑

k≥0

Pk+1,nμk+1. (3)

So from Theorem 1 we have the statement of Theorem 2.

Remark 1. Using the scheme of the proof of Theorem 2, it is possible to extend
the results to output flows of systems with limited queue, with priority service,
with unreliable servers [10, Sect. 7].

3 Poisson Flows in Stationary Queuing Networks

Consider an open queuing network (Jackson network [11]) S with a Poisson
input flow of intensity λ0, consisting of a finite number of nodes k = 0, 1, . . . ,m
with exponentially distributed service times. The dynamics of the movement of
customers in the network is set by the route matrix Θ = ||θi,j ||mi,j=0, where θi,j

is the probability of customer transition after service in the i-th node to j-th
node, θ0,0 = 0, where the node 0 is an external source and at the same time a
drain for customers leaving the network. The i node contains li < ∞ servers,
the service time of which has an exponential distribution with the parameter
μi, i = 1, . . . ,m.

Assume that route matrix Θ = ||θi,j ||mi,j=0 is indecomposable, i.e.

∀ i, j ∈ {0, . . . , m} ∃ i1, . . . , ir ∈ {0, . . . , m} : θi,i1 > 0, θi1,i2 > 0, . . . , θir,j > 0.

Then for a fixed λ0 > 0, the system of linear algebraic equations for intensities
of fluxes coming from nodes of S

λk = λ0θ0,k +
m∑

t=1

λtθt,k, k = 1, . . . , m (4)

has the only solution (λ1, . . . , λm) λ1 > 0, . . . , λm > 0, [12, p. 13].
The system (4) is called the system of balance relations and plays an impor-

tant role in the formulation and the proof of the product Jackson theorem [11],
widely used in queuing theory. If

λi < liμi, i = 1, . . . ,m,

then the discrete Markov process (n1(t), . . . , nm(t)), t ≥ 0, describing the num-
ber of customers in the network nodes has a limiting distribution PS(k1, . . . , km),
independent of initial conditions and representable in the form

PS(k1, . . . , km) =
m∏

i=1

Pi(ki),
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where Pi(ki) is the limiting distribution of the number of customers in a stand-
alone li - channel queuing system with Poisson input flow of intensity λi, i =
1, . . . ,m.

In [13] network S is mapped to a directed graph G with edges corre-
sponding to positive elements of the route matrix. Let’s call the vertex set
U ⊆ {0, 1, . . . ,m} irrevocable if from any node not included in U, there is no
edge to the node belonging to U. Then all flows passing through the edges from
the node set U to the node set {0, 1, . . . ,m} \ U, are independent and Poisson.

Theorem 3. Flow T i
S , i = 1, . . . ,m, coming out of node i of open queuing

network S, with stationary process (n1(t), . . . , nm(t)), t ≥ 0, is Poisson with
intensity λi.

Proof. Indeed, the points of the flow T i
s , exiting the i, node are the

moments of jumps down the ni(t) component of the discrete Markov process
(n1(t), . . . , nm(t)), t ≥ 0. Hence the flow T i

S satisfies the condition (a). Condi-
tions (b), (c) are checked similarly to the proof of Theorem 1. Note that the
limit probability that the i node contains ki of customers is Pi(ki), and the flow
rate T i

S is λi, i = 1, . . . ,m.

Theorem 4. Flows T i
S , i = 1, . . . ,m, are independent.

Proof. From Theorem 3 and independence of stationary random variables nj(t),
j = 1, . . . , m, it follows that the union

TS =
m⋃

j=1

tjS

of flows leaving the nodes of open queuing network S is also Poisson flow with

intensity λΣ =
m∑

j=1

λj . And each point of the combined flow TS belongs to the

flow T i
S with probability

λi

λΣ
. Hence the flows T i

S , i = 1, . . . ,m, are independent.

Remark 2. Theorems 3, 4 enhance the results of the article [13], removing restric-
tions on the independent Poisson flows considered in it.

Consider now a closed queueing network S, consisting of a finite number
of nodes i = 1, . . . ,m. The i node contains li < ∞ servers, the service time
on which has an exponential distribution with the parameter μi, i = 1, . . . , m.
A finite number N of customers move along network S. The dynamics of the
customers movement in the network is specified by the matrix Θ = ||θi,j ||mi,j=1,

where θi,j is the probability of transition after service of customer in the ith
node to j-th one.

Let the route matrix Θ be indecomposable, i.e.

∀ i, j ∈ {1, . . . , m} ∃ i1, . . . , ir ∈ {1, . . . , m} : θi,i1 > 0, θi1,i2 > 0, . . . , θir,j > 0.
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Then for a fixed λ1 > 0, the system of linear algebraic equations

λk =
m∑

t=1

λtθt,k, k = 1, . . . ,m (5)

has a unique solution of (λ1, . . . , λm) with λ1 > 0, . . . , λm > 0, [12, p. 13].
For a closed queueing network S with N customers discrete Markov process

(n1(t), . . . , nm(t)), t ≥ 0, describing the number of customers in the network
nodes has a limit distribution of PS(k1, . . . , km), independent of the initial con-
ditions and presented in the form

PS(k1, . . . , km) =
∏m

i=1 Pi(ki)∑
k1,...,km: k1+...+km=N

∏m
i=1 Pi(ki)

, k1 + . . . + km = N.

Hence, the stationary probability πi(ki) that in a node i of the network S there
is ki customers satisfies the equality

πi(ki) =
∑

kj , 1≤j �=i≤m,
∑

1≤j �=i≤m kj=N−ki

PS(k1, . . . , km), ki = 0, . . . , N.

Theorem 5. The flow T i
S
, leaving the i node of the closed queueing network S

with the total number of customers N, being in a stationary state, is Poisson

with intensity
N∑

ki=1

min(ki, li)μiπi(ki), i = 1, . . . ,m.

Proof. Indeed, the points of the flow T i
S
, exiting the node i, are the

moments of jumps down the component ni(t) of the discrete Markov process
(n1(t), . . . , nm(t)), t ≥ 0. Consequently, the flow T i

S
satisfies condition (a). Con-

ditions (b), (c) are proved similarly to the proof of Theorem 1.

4 Queuing System M |M |1|∞ with Random Intensities
of Input Flow and Service

Consider queuing system A1 = M |M |1|∞ with a service intensity of μ(t) and a
Poisson input flow Λ with an intensity of λ(t), which are randomly changed by
the following rules. Let the time axis t ≥ 0 be split into half-intervals

[T0 = 0, T1 = T0 + ξ1), [T1, T2 = T1 + ξ2), . . . ,

where ξ1, ξ2, . . . are independent random variables with distribution

P (ξk > t) = exp(−σt), t ≥ 0, k = 1, 2, . . .

with parameter σ > 0.
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We introduce a discrete Markov chain nl, l = 1, . . . , with a set of states
{1, . . . , N} and an irreducible transition matrix ||θi,j ||Ni,j=1. Markov chain nl, l =
1, . . . , has a unique (with positive components) solution (ψ1, . . . , ψN ) of the
system of Kolmogorov-Chapman stationary equations

ψi =
N∑

j=1

ψjθj,i, l = 1, . . . , N. (6)

We now introduce the Markov process n(t), t ≥ 0, such that n(t) = nl, t ∈
[Tl−1, Tl), l = 1, . . . It is obvious that the stationary distribution (ψ1, . . . , ψN )
of the Markov chain nl, l = 1, . . . , is a stationary distribution of the Markov
process n(t), t ≥ 0. Indeed denote

ψi(t) = p(n(t) = i), i = 1, . . . , N, (7)

then the Kolmogorov-Chapman system of equations for Markov process n(t) has
the form

ψ̇i(t) = −σψi(t) + σ

N∑

j=1

ψj(t)θj,i, i = 1, . . . , n,

so the system of Kolmogorov-Chapman stationary equations coincides with (6).
Let’s call such a queuing system as M |M |1|∞ in a random environment.

Suppose that on each half-interval [Tk−1, Tk) the input flow to the M |M |1|∞
system is Poisson with intensity λ(t) = λnl

, t ∈ [Tl−1, Tl), l = 1, 2, . . . , and the
service intensity satisfies the relations μ(t) = μnl

, t ∈ [Tl−1, Tl), l = 1, 2, . . . ,
where λ1, . . . , λN , μ1, . . . , μN are some positive numbers. It is worthy to remark
that in this system the input flow and the process of service (random sequence
of service times) are dependent random objects.

Theorem 6. The stationary output flow in the system M |M |1|∞ in a random

environment is Poisson with an average intensity a =
N∑

j=1

ψjλj .

Proof. Consider Markov random process (x(t), n(t)), t ≥ 0, whose first compo-
nent sets the number of customers in the system M |M |1|∞ and write for its
stationary probabilities pi,j Kolmogorov-Chapman equations:

λip0,i = −σp0,i + μip1,i + σ
N∑

j=1

p0,jθj,i, i = 1, ..., N,

(λi+μi+σ)pk,i = λipk−1,i+μipk+1,i+σ

N∑

j=1

pk,jθj,i, i = 1, ..., N, k = 1, 2, ... (8)

We introduce the following notation at i = 1, . . . , N :

A0,i = −λip0,i +μip1,i, Ak,i = −(λi +μi)pk,i +λipk−1,i +μipk+1,I , k = 1, 2, . . . ,
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Bk,i = −σpk,i + σ

N∑

j=1

pk,jθj,i, k = 0, 1, . . .

Then the equations (8) may be rewritten as

0 = Ak,i + Bk,i, i = 1, . . . , N, k = 0, 1, . . . (9)

Denote Ck,i =
k∑

r=0

Ar,i, Dk,i =
k∑

r=0

Br,i, then by Formulas (9) we have

0 = Ck,i + Dk,i, i = 1, . . . , N, k = 0, 1, . . . (10)

Obviously, the following relations are fulfilled:

1
σ

N∑

i=1

Bk,i = −
N∑

i=1

pk,i +
N∑

i=1

N∑

j=1

pk,jθj,i = −
N∑

i=1

pk,i +
N∑

j=1

N∑

i=1

pk,jθj,i = 0.

and consequently
N∑

i=1

Dk,i = 0. (11)

By induction of k we can obtain equalities by analogy with Theorem 2 proof:

Ck,i = −λipk,i + μipk+1,i, i = 1, . . . , N, k = 0, 1, . . . (12)

Summing up the equations (10) by i= 1, . . . , N, k = 0, 1, . . . , and using Formulas
(11), (12), we obtain:

0 = −
N∑

i=1

λi

∞∑

k=0

pk,i +
N∑

i=1

μi

∞∑

k=0

pk+1,i. (13)

The second term in Formula (13) is the intensity of a of the output Poisson flow
in a given queuing system. In turn, by virtue of formulas (7), (13) we obtain
that the intensity

a =
N∑

j=1

ψjλj . (14)

Remark 3. By methods of Theorem 1 proof it is easy to obtain that the flow

Λ is Poisson with intensity a =
N∑

j=1

ψjλj . Indeed, let us consider the Markov

process (y(t), n(t)), t ≥ 0, where y(t) is the number of customers of the input
flow that came to the system up to t. This process has the following transient
intensities: the transition intensity (m, i) → (m, j) equals σθi,j , the intensity
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of the transition (m, i) → (m + 1, i) equals to λi, i, j = 1, . . . , N, m = 0, 1, . . .
So the jump intensity y(t) → y(t) + 1 equals

∑

1≤j≤N, 0≤m

p(y(t) = m, n(t) = j)λj =
N∑

j=1

p(n(t) = j)λj =
N∑

j=1

ψjλj = a.

Thus, the random flow Λ by distribution coincides with the Poisson flow of
average intensity a.

Remark 4. The statement of Remark 3 allows to obtain criterion’s of ergodicity,
to derive formulas for stationary distributions, to analyse output flows for man-
ifold queuing systems with independent input flow Λ and sequences of service
times: open queuing network of Jackson type, queuing systems with failures,
queuing systems with feedbacks [4].

5 Transformation of Open Queuing Network into
Multiphase Type Queuing Network

Following [3] demonstrate how to transform open queuing network into multi-
phase type queuing network. Consider open queuing network S with finite num-
ber of nodes U = {0, 1, . . . ,m} and input flow Λ. As the flow Λ and service times
of customers in different nodes are independent then it is convenient to consider
the flow Λ as Poisson flow with average intensity λ0 = a. Paths of customers
in the network S are defined by the route matrix Θ = ||θi,j ||mi,j=0, θ0,0 = 0,
consisting of probabilities θi,j of customers transitions from the node i to the
node j after a service in the node i. The node 0 is a source of customers arriving
the network and a container of customers departing the network. Here θ0,i is the
probability that input flow customer moves to the node i and θi,0 is the proba-
bility that customer departs network after service in the node i. In the node k
of the network S there is infinite number of identical servers with service times
which has the distribution

Fk(t) = 1 − exp(−μkt), t ≥ 0, μk, 0 < μk < ∞, k = 1, . . . ,m.

Transform the network S into the following network S∗. Each node k, 0 ≤
k ≤ m, is divided into infinite number of nodes (k, j), 1 ≤ j. Here nodes with
1 ≤ k ≤ m are nodes with infinite numbers of servers and nodes with k = 0
absorb customers departing the network. A customer arriving the network with
the probability θ0,k moves to the node (k, 1). The node (0, 1) is sham because
θ0.0 = 0 and so customers do not visit it. Then after a service in the node
(p, j), 1 ≤ p ≤ m, 1 ≤ j, customer with the probability θp,q moves to the node
(q, j +1) and with the probability θp,0 moves to the node (0, j +1) - departs the
network, 1 ≤ p, q ≤ m, 1 ≤ j. Consequently initial network S is transformed
into the network S∗ with the nodes set U∗ = {(k, j), 1 ≤ j, 0 ≤ k ≤ m}.
Graphically the network S∗ is represented in Fig. 1.
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Fig. 1. Transformation of Jackson network (leftward) into multiphase type network
(rightward).

The network S∗ is constructed similar to retrial queues systems [4–8]. Trans-
formation of the network S into the network S∗ does not change paths and
service times of customers.

In the network S∗ a system of balance equations for stationary intensities of
flows arriving the nodes of the set U∗ may be solved by recurrent relations

λk,1 = λ0θ0,k, λk,j+1 =
m∑

p=1

λp,jθp,k, 0 ≤ k ≤ m, 1 ≤ j, (15)

and its synergetic effects may be analysed in suggestion that each node with
infinite number of servers in multiphase type network is replaced by node with
large by finite number of servers.

6 Conclusion

It is worthy to devote special attention to an application of Remark 4 to queuing
systems and networks with retrial queues. Such systems appear in manifold
modern applied problems [4–8]. In this section we connect a representation of
the input flow Λ as Poisson flow with average intensity and a consideration of
networks with infinite number of servers in their nodes [4–6]. For this purpose
we use a transformation of such networks into multiphase type networks [3]. In
multiphase type networks it is possible to assume that each customer may be
serviced a fixed number of times also not arbitrary ones. This suggestion together
with the representation of the input flow Λ as Poisson flow with average intensity
and with an assumption that the flow Λ and service process are independent
allow to consider models more close to applications.

Acknowledgment. This paper is partially supported by Russian Fund for Basic
Researches, project 17-07-00177.
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