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Abstract. A tandem retrial queueing system with orbital search in
which two self-service stations namely, the main station and the offer
zone and an orbit for passive customers lost from the offer zone without
joining the main station is considered. The main service station is of infi-
nite capacity while the offer zone which works in a random environment
and the orbit for passive customers are of finite capacities. Two types of
customers arrive to the service stations according to a Marked Markovian
Arrival Process (MMAP) with representation (D0, D1, D2). The service
times in both stations are exponentially distributed. A virtual search
mechanism associated with the main station will be working when the
number of customers in the main station is below a pre-assigned level
L. The duration of search is exponentially distributed. The condition
for system stability is established. The system state distribution in the
steady state is obtained. Several system performance characteristics are
derived. An associated optimization problem is investigated.

Keywords: Retrial queue · Tandem queue · Main station
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1 Introduction

Tandem queues form an important class of the queueing networks and it serves
as a link between the theory of queues and queueing networks. A bibliography of
articles on queueing networks with finite capacity service stations can be found
in [22]. Most of the literature in this regard assume that the service stations
in the tandem network are of finite capacity and the time between successive
arrivals to the system are exponentially distributed. [17] gives an algorithm for
solving exponential tandem queues with blocking. In [11–13] multi-stage queue-
ing networks with correlated arrivals are considered. In Krishnamoorthy et al.
[16] considered a tandem queueing model with two service stations and one of
which namely, the offer zone works in a random environment. Artalejo [1,2] gives
a detailed bibliography of retrial queues. The monograph by Falin and Temple-
ton [10] gives an introduction to the theory of retrial queues and it describes how
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the theory of retrial queues can well be applied in the analysis of problems which
are more realistic as well as practically important. The present paper generalizes
the model described in one of our papers [16] to a retrial set-up by setting up
an orbit for holding the customers who leave the system after completing their
service at the offer zone.

In the present paper, we consider a tandem retrial queueing network with two
service stations and an orbit for those customers who discontinued their service
after a trial service. This model is the mathematical formulation of a set of real life
problems persisting in the field of telecommunication. In the field of telecommu-
nication, various service providers compete for attracting the maximum number
of customers to their paid service. Some customers directly enter the paid service
while some others would like to make a previous trial of service before subscrib-
ing to paid service. Service providers announce various types of offers, incentives
and free trials to make the maximum number of customers to continue with their
service. They try to minimize the loss of customers from the subscription of their
service. Not all the customers, who utilized the offers and free trials, move on to
paid service. Some may continue with the same service provider as paid customers,
while some others discontinue the service temporarily after the free-trial. But the
service providers have a data-base consisting of those customers who discontinued
service after the free trial and that may be considered as an orbit. Having discon-
tinued withe service for a short time, a few may have a tendency to come back to
paid service, which may be considered as retrials and those retrial rates may be
small when compared to direct arrivals to the paid service. So the customers in
the orbit may be designated as passive customers. The service providers need a
minimum number of customers in paid service for the proper functioning of their
system. So whenever the number of customers in the paid service drops down to
this pre-assigned value, the service providers try to bring some more customers to
the paid service by means of orbital search. This search can be any of the activities
like contacting those passive customers over the telephone, sending e-mails, addi-
tional cash-back offers etc. Search may result in an additional increment in the
number of paid customers and whenever it reaches the optimum level, no more
search has been done. Since there is some cost associated with the search, an opti-
mum of this level to switch on the search mechanism is to be found. This problem is
modelled mathematically as a tandem retrial queueing system with orbital search
in which two service stations, namely the main station and the offer zone are func-
tioning. The main service station is of infinite capacity while the offer zone is of
finite capacity. The most important feature of the finite capacity offer zone in our
model is that it works in a finite number of random environments, each of which
lasts for a time interval whose distribution is Phase Type. In [13] and [12] servers
in the same station are independent and identical. In our model the servers of the
same station are identical, but the rate at which service is offered at the offer zone
depends on the current environmental status of the offer zone. In addition to the
retrials from the orbit, search for customers start functioning when the number of
customers in the main station drops down to a preassigned level.
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In classical queueing models Neuts and Ramalhoto [19] introduced the con-
cept of search of orbital customers by the server at the end of a service completion
epoch. In the case of M/G/1 retrial queues, search of orbital customers was intro-
duced by Artalejo et al. [3]. Analysis of multi server queues with orbital search
was done by Chakravarthy et al. in [5]. Krishnamoorthy et. al [14] investigated
M /G/1 Retrial queues with non persistent customers and orbital search. More
literature related to orbital search can be found in [6,7,15]. We also assume that
the arrivals to the main station and the offer zone is according to a Marked
Markovian Arrival Process [MMAP]. In Krishnamoorthy et al. [15] considered a
queueing system with MMAP arrivals. Steady state probabilities are computed
using Neuts’ Matrix Geometric methods [20]. The rate matrix is computed using
Logarithmic reduction Algorithm [18]. Various methods for the calculation of the
equilibrium distribution of LDQBD’s can be found in the papers by Neuts and
Rao [21], Bright and Taylor [4] and Ramaswamy [18]. The stability condition is
established and the steady state distribution is computed. Several performance
measures of the system that influences the efficiency are derived. The cost func-
tions for optimizing the level at which the search mechanism is to be switched
off is derived. The control problems that optimizes the maximum capacity of the
offer zone as well as the orbit are analyzed.

2 Description of the Model

We consider a tandem retrial queueing system in which, there are two self-service
stations namely, the main station and the offer zone. The main station and the
offer zone provides the same kind of service. But the service at the offer zone is
restricted, for example, some trial service and it can not be continued for as long
as they like. But after completing their service at the offer zone, the customers
can decide whether to continue their service at the main station or not. There
are some restrictions on the period of time they can stay in service at the offer
zone. There are two types of customers in this system, say Type A and Type B.
Type A customers are those customers who directly enter the main station for
service and they do not try to take a trial service. Type B customers are those
customers who wish to have a trial service by entering the offer zone and after
their service completion at the offer zone, they can decide whether to continue
their service at the main station or to leave the system. The offer zone works in
a random environment and the environments at the offer zone are designed in
such a way to attract the maximum number of type B customers from the offer
zone to the main station and to make them get served at the main station. The
service at the main station contributes a revenue to the system, while the offer
zone has some kind of establishment as well as holding cost associated with it
for the proper functioning. After the service completion at the offer zone, Type
B customers are assumed to continue their service at the main station with
probability η and with its complimentary probability (1 − η), joins an orbit of
passive customers who temporarily discontinued service but retries for service
after being idle for sometime. The customers in this orbit are referred to be
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passive in the sense that their retrial rates are very low compared to the arrival
rates to both the stations. Let ν be the rate at which retrials from the offer zone
to the main station occur and it is assumed to be lower than the fundamental
rates of arrivals to both the stations. For the proper functioning of the system a
minimum of L customers are to be ensured at the main station and so whenever
the number of customers in service at the main station is below this level L,
a virtual search mechanism associated with the main station, starts working
and it go in search of customers from the orbit of passive customers. This may
be by providing some additional incentives or cash back policies or some other
strategies. As a result of this search, customers arrive to the main station at an
exponential rate ν∗. The main station is of infinite capacity while both the offer
zone and the orbit of passive customers are of finite capacities, say N and M
respectively. As a result, when the offer zone is full, Type B customers directly
enter the main station with probability γ and leaves the system with probability
(1 − γ). Customers arriving to the orbit when it is full, is lost from the system
for ever. Non persistent customers leave the orbit at an exponential rate ζ.

In the present model both type A and type B customers arrive according to
a Marked Markovian Arrival Process (MMAP) with representation (D0,D1,D2)
where D1 = pD∗ and D2 = (1 − p)D∗ for 0 ≤ p ≤ 1. MMAP may be viewed as
a special case of Markovian Arrival Processes or MAPs which is a more general
class of point processes which takes in to account the correlation between inter-
event times. It includes both Renewal as well as non-Renewal point processes.
Many of the processes which we use in modelling of stochastic processes such as
Poisson Processes, PH Renewal Processes, Markov Modulated Poisson Processes
(MMPP) come under the class of MAP’s. The MMAP governing the arrival
of type A and type B customers in the present model is described as follows:
Let the underlying Markov chain {νt, t ≥ 0} be irreducible and let D be the
generator of this Markov chain with state space {1, 2, 3, . . . ,m}. At the end of
a sojourn time in state i, which is exponentially distributed with a positive
finite parameter λi, one of the following events could occur: with probability
pij(0) it can move to state j where j �= i without an arrival, with probability
pij(1) it can move to state j with an arrival of a type A customer and with
probability pij(2) it can move to state j with an arrival of a type B customer.
Let D0 = dij(0) be the rate matrix corresponding to those transitions without
an arrival. Let D1 = dij(1) be the rate matrix corresponding to the arrival
of type A customer and let D2 = dij(2) be the rate matrix corresponding to
the arrival of type B customer. Then the MMAP under consideration is well
be described by the parameter matrices (D0,D1,D2) where D1 = pD∗ and
D2 = (1 − p)D∗ for 0 ≤ p ≤ 1. D = D0 + D1 + D2 is the infinitesimal generator
of the Markov chain corresponding to the MMAP. All the off-diagonal elements
of D0 and all the elements of D1 and D2 are non negative. To completely specify
a MMAP (D0,D1,D2), the initial probability vector in the Markov chain needs
to be specified and we assume that the initial probability vector is the same as
the stationary probability vector. That is our MMAP is a stationary MMAP. The
average total arrival intensity λ is defined by λ = θD1e, where θ is the invariant
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vector of the stationary distribution of the Markov chain {νt, t ≥ 0}. The vector
θ is the unique solution of the system of equations θD = 0,θe = 1. where e
denotes a column vector of 1′s and 0 is a row vector of 0′s. The average arrival
intensity λA and λB of type A and type B customers respectively are defined by
λA = θD1e and λB = θD2e. The squared integral (without differentiating the
types of customers) coefficient of variation of intervals between successive arrivals
is cvar = 2λθ(−D0)−1e − 1. The squared coefficient of variation of inter-arrival
times of type A customers is cvar(A) = 2λAθ[−D0 − D2]−1e − 1 where as that
of inter-arrival times of type B customers is cvar(A) = 2λBθ[−D0 − D1]−1e − 1.
The integral coefficient of correlation of two successive intervals between arrivals
is given as ccor = [λθ(−D0)−1(D − D0)(−D0)−1e − 1]/cvar.

The main station and the offer zone offers the same service but of the offer
zone works in a random environment. We assume that there are a finite number of
environments whose duration follows Phase Type distribution and the generator
matrix of the Markov process leading to the PH distribution depends on the
current environment of the offer zone. Let pi where {i = 1, 2, 3, . . . , n} is the
probability that the offer zone is at environment i. Each environment of the offer
zone consists of one or more offers. Let {1, 2, . . . , n} denote the n environments
of the offer zone and the duration of time the environment i works follow Phase
type distribution with irreducible representation PH(βi, Si) with Mi phases.
The vector S0

i is given by S0
i = −Sie. We assume that all the customers in the

offer zone are getting served in the same environment and so the offers given
to those customers in service at the offer zone change with the change in the
environment in which the offer zone works. After service completion at the offer
zone type B customers enter the main station with probability η and enter the
orbit with probability (1 − η) provided it is not fully occupied.

3 Matrix Analytic Solution

We introduce the necessary random variables as follows: Let N1(t) denote the
number of customers in the main station, N2(t) the number of customers in
the offer zone, N3(t) the number of customers in the orbit, E(t) the environ-
ment of the offer zone, S(t) the phase of the environment of the offer zone
and A(t) the phase of the arrival process. E(t) can take any of the values
{1, 2, . . . , n} depending on the ongoing environment of the offer zone. Then{
N1(t), N2(t), N3(t), E(t), S(t), A(t)

}
is a Markov process and it describes the

process under consideration. This model can be considered as a Level dependent
Quasi-Birth-Death (LDQBD) process and a solution is obtained by Matrix Ana-
lytic Method. We define the state space of the QBD under consideration and
analyze the structure of its infinitesimal generator.

The state space Ω consists of all elements of the form (i, j, k, r, s, t) where

i ≥ 0; 0 ≤ j ≤ N ; 0 ≤ k ≤ M ; t = 1, 2, . . . ,m; r = 1, 2, 3 . . . , n

For a fixed value of r, s = 1, 2, . . . , Mr.
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Let the ordering of the elements of Ω be lexicographical. The infinitesimal
generator Q of the LDQBD describing the model under consideration is of the
form

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
1 A0

0

A1
2 A1

1 A1
0

A2
2 A2

1 A2
0

A3
2 A3

1 A3
0

. . . . . . . . .

. . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where Ai
0, A

i
1, A

i
2 are all square matrices whose entries are block matrices of

appropriate dimensions.
Ai

0 represents the rate matrix corresponding to the arrival of a customer to
the main station; that is transition from level i → i + 1 where i ≥ 0.

Ai
2 represents the rate matrix corresponding to the departure of a customer

after service completion at the main station when there are i customers in the
main station; that is from level i → i − 1, for i = 1, 2, . . . , and

Ai
1 describes all transitions in which the level does not change (transitions

within levels i).
In the following sequel ⊗ and ⊕ represent the Kronecker Sum and Kronecker

product respectively. Let e denote all one vector of appropriate order and IM
denote an identity matrix of order M .

The structure of the Ai
1 for i ≥ 0 are as follows:

Ai
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E1 E0

E1
2 E1 E0

E2
2 E1 E0

. . . . . . . . .
. . . . . . . . .

E
(N−1)
2 E1 E0

EN
2 EN

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

– E0 is the matrix representation of the rate of arrival of type B customers and
it depends neither on the number of customers currently undergoing service at
the main station nor the number of customers waiting in the orbit of passive
customers.

– E1 is the matrix representation of the rates corresponding to the transitions
when there are i customers in the main station and j customers in the offer
zone.

– Ej
2 is the matrix representation of the rates at which customers leave the

offer-zone after completing their service in the offer zone when there are j
customers in the offer zone.
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E1 is an (M + 1) × (M + 1) matrix with sub-blocks given by

E1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

F1

F2 F1

F2 F1

. . . . . .
. . . . . .

F2 F1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

– F1 is the matrix representation of the transition rates corresponding to the
environmental changes, phase changes of the environmental process and the
phase changes of the arrival process when there are i customers in the main
station and j customers in the offer zone and k customers in the orbit where
j = 1, 2, . . . , N and k = 1, 2, . . . ,M

– F2 is the matrix representation of the rates at which passive customers leave
the orbit without retrying for service at the main station

F1 is given by

F1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C1 S0
1 ⊗ p2β2 ⊗ Im S0

1 ⊗ p3β3 ⊗ Im . . . S0
1 ⊗ pnβn ⊗ Im

S0
2 ⊗ p1β1 ⊗ Im C2 S0

2 ⊗ p3β3 ⊗ Im . . . S0
2 ⊗ pnβn ⊗ Im

S0
3 ⊗ p1β1 ⊗ Im S0

3 ⊗ p2β2 ⊗ Im C3 . . . S0
3 ⊗ pnβn ⊗ Im

...
...

...
. . .

...
S0
n ⊗ p1β1 ⊗ Im S0

n ⊗ p2β2 ⊗ Im . . . . . . Cn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

For j = 1, 2, ...N − 1, if i ≤ (L − 1) then

Cl = [Sl − (iμ + jμl + kν + ν∗ + ζ)] ⊕ D0

and if i ≥ L then,

Cl = [Sl − (iμ + jμl + kν + ζ)] ⊕ D0

For j = N , if i ≤ (L − 1) then

Cl = [Sl − (iμ + jμl + kν + ν∗ + ζ)] ⊕ [D0 + (1 − γ)D2]

and for j = N , if i ≥ L then

Cl = [Sl − (iμ + jμl + kν + ζ)] ⊕ [D0 + (1 − γ)D2]

Let M∗ =
∑n

i=1 Mi and M∗∗ = (M + 1)
∑n

i=1 Mi.

F2 = ζImM∗

E0 = IM∗∗ ⊗ D2
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For a fixed value of j, Ej
2 is a block-diagonal matrix of order (M +1)×(M +1)

given by

Ej
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O G
O G

O G
. . . . . .

O G
O G

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

G = diag(IM1 ⊗ (1 − η)jμ1I, IM2 ⊗ (1 − η)jμ2I, . . . , IMn
⊗ (1 − η)jμnI).

Here diag(a, b, c, .., .) represents a diagonal matrix whose diagonal entries
are listed and

I = Im(M+1)(N+1)

The matrix G represents the rate at which the customers enter the orbit of
passive customers and the entry is restricted to a maximum numberM of the
passive customers in the orbit.

The matrix Ai
0 corresponding to the arrival of a customer to the main station

can be written as

Ai
0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

U1

U1
2 U1

U2
2 U1

. . . . . .

UN
2 UN

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

U1 represents the transitions from i → i + 1 without making any changes in
the number of customers in the offer zone

U1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

V1

V 1
2 V1

V 2
2 V1

. . . . . . . . .
. . . . . . . . .

V
(M−1)
2 V1

V M
2 V1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where for j = 1, 2, . . . , (N − 1)

V1 = IM∗∗ ⊗ D1
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and for j = N
V1 = IM∗∗ ⊗ [D1 + γD2]

For k = 1, 2, . . . ,M, the matrices V k
2 represents the rate at which customers

from the orbit of passive customers enter the main station.
In this case there are two possibilities depending on i, the number of cus-

tomers in the main station. Whenever the number of customers is greater than
or equal to L, the virtual search mechanism is in off condition and only retri-
als from the orbit increases the number of customers in the main station and
whenever this i drops down to (L − 1), the search mechanism starts search for
customers from the orbit.

For a fixed i and j, if i ≥ L then

V k
2 = kνImM∗

and if i ≤ (L − 1) then
V k
2 = [kν + ν∗]ImM∗

For j = 1, 2, ...N, the matrix U j
2 gives the rates at which customers from the

offer zone proceeds to the main station without discontinuing their service

U j
2 = diag(IM1 ⊗ ηjμ1I, IM2 ⊗ ηjμ2I, . . . , IMn

⊗ ηjμnI)

where diag(a, b, c, .., .) represents a diagonal matrix whose diagonal entries are
listed and

I = Im(M+1)(N+1)

The matrices Ai
2, representing the rates at which service completion occurs

from the main station are given by

Ai
2 = iμI(N+1)mM∗∗

3.1 Stability Condition

The present model is a level dependent QBD and we apply Neuts-Rao truncation
for the analysis of the model. We assume that when the number of customers
in the main station exceeds a certain limit, say K, service occurs at constant
rates Kμ. In that situation the matrices Ai

2 becomes AK
2 for i ≥ K. We also

assume that the truncation level K is greater than the number L at which the
search must be switched off. The infinitesimal generator Q1 of the modified
model becomes

Q1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
1 A0

0

A1
2 A1

1 A1
0

A2
2 A2

1 A2
0

. . . . . . . . .
A2 A1 A0

A2 A1 A0

. . . . . . . . .
. . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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where A1 = AK
1 , A2 = AK

2 and A0 = AK
0 .

Let the matrix A be defined as A = A0 + A1 + A2. We can see that A is an
irreducible infinitesimal generator matrix of the underlying process and so there
exists the stationary 1 × (N + 1)(M + 1)mM∗ vector π of A such that

πA = 0

and
πe = 1.

where M∗ =
∑n

r=1 Mi.
The vector π can be partitioned as

π = (π0,π1,π2, . . . ,πN )

For i = 1, 2, . . . , N the vectors πi can be partitioned as

πi =
(
π(i, 1),π(i, 2), . . . ,π(i,M))

whereas

π(i, j) =
(
π(i, j, 1, 1),π(i, j, 1, 2), . . . ,π(i, j, 1,M1), . . . ,π(i, j, n, 1), . . . ,π(i, j, n,Mn

)

Each vector π(i, j, k, l) is a 1 × m vector denoted as

π(i, j, k, l) = (π(i, j, k, l, 1), π(i, j, k, l, 2), . . . , π(i, j, k, l,m))

where the state π(i, j, k, l,m) is the probability of being in state (i, j, k, l,m)
where i is the number of customers at the offer zone, j the number of passive
customers in the orbit, k the environment of the offer zone, l the phase of the
environment and r the phase of the underlying MMAP arrival process.

Let the matrix A be of the form

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

W 0
1 W0

W 1
2 W 1

1 W0

W 2
2 W 2

1 W0

. . . . . . . . .
. . . . . . . . .

W
(N−1)
2 W

(N−1)
1 W0

WN
2 WN

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where
W0 = E0

for j = 1, 2, .....(N − 1)

W j
1 = E1 + +U1 + KμImM∗∗
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W j
2 = Ej

2 + U j
2

WN
1 = EN

1 + +UN
1 + KμImM∗∗

The Markov chain with generator Q1 is positive recurrent if and only if

πA0e < πA2e

3.2 Steady State Distribution

The stationary distribution of the Markov process under consideration is
obtained by solving the set of equations

xQ1 = 0,xe = 1.

Let x be the steady-state probability vector of Q1.
Partition this vector in conformity with Q1 as follows:

x = (x0,x1,x2, . . . , )

where
xi = (xi0,xi1, . . . ,xiN ), i ≥ 0

For j = 0, 1, . . . , N and k = 1, 2, . . . ,M the vectors

xij = (xij1,xij2,xij3, . . .xijM )

xijk = (xijk1,xijk2, . . . , . . . ,xijkn)
For r = 0, 1, . . . , n

xijkr = (xijkr1,xijkr2, . . . ,xijkrMr
)

xijkrs = (xijkrs1,xijkrs2, . . . ,xijkrsm)
xijkrst is the probability of being in state (i, j, k, r, s, t) where

i ≥ 0; j = 0, 1, . . . , N ; k = 0, 1, 2, . . . ,M ;

r = 1, 2, . . . , n; s = 1, 2, . . . ,Mr; t = 1, 2, . . . , m.

Under the stability condition the steady-state probability vector is obtained as

x(K−1)+i = x(K−1)R
i, i ≥ 0

where R is the minimal non negative solution to the matrix quadratic equation

R2A2 + RA1 + A0 = 0

and the vectors x0, . . . ,x(K−1) are obtained by solving

x0A
0
1 + x1A

1
2 = 0

x(i−1)A
(i−1)
0 + xiA

i
1 + x(i+1)A

(i+1)
2 = 0; 1 ≤ i ≤ (K − 2)

x(K−2)A0 + x(K−1)

[
A

(K−1)
1 + A2R

]
= 0

subject to the normalizing condition
(K−2)∑

i=0

xi + x(K−1)(I − R)−1e = 1.
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4 Some Performance Measures of the System

Some measures of performance, which helps the operators of the system to make
decisions concerning the optimal values of maximum capacities N and M respec-
tively of the offer zone and the orbit of passive customers and of the cut-off point
L are evaluated. Loss of type B customers can happen mainly in two ways: The
first type of loss namely, type I loss is due to the lack of space in the offer zone
and this happens even before getting a service at the offer zone. The other type
of loss namely, type II loss happens when the orbit is full. There is one more
type of loss from the orbit of passive customers and the effect of this loss on the
system can be can be minimized by means of orbital search if the number of cus-
tomers in the main station is less than L. We can also identify the environment
of the offer zone from which the maximum expected number of type B customers
join the main station which in turn help us to redefine the offers. Following are
some performance measures which helps us to make a detailed study about the
problem under consideration.

1. Expected Number of customers in the main station

E[MS] =
∞∑

i=0

ixie

where e is a column vector of appropriate order consisting of all ones.
2. Expected Number of customers in the offer zone

E[OZ] =
∞∑

i=0

N∑

j=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

jxijkrst

3. Expected Number of customers in the offer zone

E[OPC] =
∞∑

i=0

N∑

j=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

kxijkrst

4. Expected number of customers enter the main station as a result of search

E[S] =
(L−1)∑

i=0

N∑

j=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

ν∗xijkrst

5. Probability that a type B customer is lost from the system when the offer
zone is full

P [LT1 ] =
∞∑

i=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

(1 − γ)xiNkrst

6. Probability that a type B customer is lost after service completion at the
offer zone

P [LT2 ] =
∞∑

i=0

N∑

j=0

n∑

r=1

Mr∑

s=1

m∑

t=1

xijMrst
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7. Expected number of non-persistent customers lost from the orbit without
joining the main station

E[LOPC ] =
∞∑

i=0

N∑

j=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

kζxijkrst

8. Expected number of type B customers who enter the main station after
service completion from environment r of the offer zone

E[E(r)] =
∞∑

i=0

N∑

j=0

M∑

k=0

Mr∑

s=1

m∑

t=1

jμrηxijkrst

for r = 1, 2, ...n
9. Expected number of type B customers lost when the offer zone is full

E[LT1 ] = λB × P [LT1 ]

where λB is the fundamental rate of arrival of customers to the offer zone
10. Expected number of type B customers lost when the orbit is full

E[LT2 ] = λB × P [LT2 ]

11. Expected number of type B customers who enter the main station after the
service completion at the offer zone

E[OZ → MS] =
n∑

r=0

E[E(r)]

12. Expected number of type B customer lost due to the capacity restrictions
of the offer zone and the orbit

E[L] = E[LT1 ] + E[LT2 ]

13. Fraction of time the offer zone is in the rth environment

F [r] =
∞∑

i=0

N∑

j=0

M∑

k=0

Mr∑

s=1

m∑

t=1

xijkrst

where r = 1, 2, . . . , n

5 An Optimization Problem

For the economic interpretation of any queueing model, cost analysis plays an
important role. In this section, we propose an optimization problem which deter-
mines the level L of the main station at which the search mechanism is to be
switched off. In this case we assume that all other parameters are kept fixed.
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To construct an objective function we assume that the customers undergoing
service in the main station provide more revenue to the system when compared
to the customers undergoing service in the offer zone. An additional revenue is
provided by each customer who enter the main station. Operating cost associ-
ated with the functioning of the various environments or offers in the offer zone
and holding cost associated with the working of the orbit are expenditures to
the system. There is a search cost associated with each customer entering the
main station by means of orbital search. The search cost is also an expenditure
encountered by the system. Thus we introduce the revenue and expenditure per
customer as follows:

– revenue r1 monetary units per customer undergoing service in the main
station

– revenue r2 monetary units per customer undergoing service in the offer zone
where r2 < r1

– operating cost c1 monetary units per customer for providing various offers
– holding cost c2 monetary units per customer waiting in the orbit
– search cost c3 monetary units per customer entering the main station as a

result of orbital search

The Expected Total Profit (ETP) is given by

(ETP) = r1E[MS] + r2E[OZ] − c1E[OZ] − c2E[OPC] − c3E[S]

So the objective of the service providers or the operators of the system is to
determine an optimal value of ‘L’ for which the total expected cost (ETP) is
maximum.

6 Conclusion

The results in this paper may be extended to tandem queueing networks con-
sisting of more than two service stations and also to the case where the service
time distributions are of so general say Phase Type distributions. Even though
such a generalization essentially increases the dimensions of the state space of
the Markov chain under consideration which in turn makes the computational
implementations more complex and time consuming, we hope that reducing the
number of environments and also the dimension of the MMAP under consid-
eration will make it more tractable. We plan to investigate such a problem in
future.
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