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Abstract. In the paper we consider a GI/GI/∞ queuing system with
n types of customers under the assumptions that customers arrive at
the queue according to a renewal process and occupy random resource
amounts, which are independent of their service times. Since, in gen-
eral, the analytical solution of the corresponding Kolmogorov differential
equations is not available, we focus on the amount of resources occupied
by each class of customers under the assumption of infinitely growing
arrival rate, and derive its first and second-order asymptotic approxima-
tions. In more detail, we show that the n-dimensional probability dis-
tribution of the total resource amount is asymptotically n-dimensional
Gaussian, and we verify the accuracy of the asymptotics (in terms of
Kolmogorov distance) by means of discrete event simulation.
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1 Introduction

Modern computer networks are characterized by the integration of heterogeneous
services (phone calls, text messages, media content, cloud computing) over the
same physical infrastructure. The traffic flows generated by the different appli-
cations have specific statistical features (in terms of packet size, bit-rate and
service requirements) and hence is of primary importance the analysis of queue-
ing systems with several classes of customers [3,4,8,9,15]. Moreover, due to the
heterogeneity of services provided by communication networks [6,10–14,16], the
features of the required resources should be taken into account.

In traditional multiclass queuing systems the service process is typically char-
acterized in terms of service time distribution. In this paper we assume that cus-
tomers have different random capacity requirements (depending on their class),
so that the proposed model can be useful for analysis and design issues in high-
performance computer and communication systems, in which service time and
customer volume are independent quantities (see [7] and references therein).
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In more detail, the application of the dynamic screening method permit us to
analyse heterogeneous resource queuing system with unlimited servers number,
non-exponential service time and renewal arriving process are investigated.

The remainder of this paper is structured as follows. Section 2 introduces
the mathematical model and the application of the dynamic screening method
to the considered multiclass queueing system, while in Sect. 3 the corresponding
Kolmogorov equations are presented. Section 4 highlights our main contribution,
the derivation of first and second order asymptotics under heavy load conditions
(i.e., when the mean interarrival time tends to 0), and their applicability is
verified in Sect. 5 by means of discrete event simulation. Finally, Sect. 6 ends the
paper with some final remarks.

2 Mathematical Model

Consider a queuing system with an infinite number of servers and n types
of customers, characterized by different service times and queuing resource
requirements. Arrivals are described by a renewal process with interarrival time
distribution A (z) and for each of them class i is selected with probability

pi (i = 1, . . . , n), where
n∑

i=1

pi = 1. Each arriving customer instantly occupies

the first free server, with service time distribution Bi (τ) and required resource
distribution Gi (y), both depending on the type i of the customer. At the end of
the service, the customer leaves the system. Resource amount and service times
are mutually independent, and do not depend on the epochs of customer arrivals.

Denote by Vi (t) (i = 1, . . . , n) the total resource amount occupied by each
type of customers at the moment t. The aim of this work is to determine the
probabilistic characterization of the n-dimensional process {V(t)}. This process
is, in general, non Markovian, but it can be investigated by means of the dynamic
screening method.

In Fig. 1, n+1 time axes, labeled from 0 to n, are shown: axis 0 indicates the
epochs of customers arrivals, while the remaining axes i = 1, . . . , n correspond
to the different types of customers.

Fig. 1. Dynamic screening of the arrival process
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We define a set of n functions (dynamic probabilities) Si (t) , that satisfy the
conditions

0 ≤ Si (t) ≤ 1,

n∑

i=1

Si (t) ≤ 1,

and assume that a customer, arrived in the system at time t, is screened to axis
i with probability Si (t), and is not screened anywhere with probability

S0 (t) = 1 −
n∑

i=1

Si (t) .

Let the system be empty at time t0, and let us choose some arbitrary time
T with T > t0. Hence, the probability Si (t) that a i-type customer, arrived at
time t with t0 ≤ t ≤ T , will be serviced by time T , is given by

Si(t) = 1 − Bi(T − t), (i = 1, . . . , n) .

Denote by Wi (t) the total resource amount screened on axis i. Then, the
extended process {V (t)} satisfies the following property:

P {V (T ) < x} = P {W (T ) < x} (1)

for all x = {x1, . . . , xn}, where the inequalities V (T ) < x and W (T ) < x
mean that V1 (T ) < x1, . . . , Vn (T ) < xn and W1 (T ) < x1, . . . , Wn (T ) < xn,
respectively. Equality (1) permits us to investigate the process {V (t)} via the
analysis of the process {W (t)} .

3 Kolmogorov Differential Equations

Let z (t) be the residual time from t to the next arrival (in the renewal input
process) and let us denote by

P (z,w, t) = P {z (t) < z,W(t) < w}

the probability distribution of the n + 1-dimensional Markovian process
{z (t) ,W (t)}.

By the law of total probability, we get the following system of Kolmogorov
differential equations:

∂P (z,w, t)
∂t

=
∂P (z,w, t)

∂z
+

∂P (0,w, t)
∂z

(A(z) − 1)

+A (z)
n∑

i=1

piSi (t)

⎡

⎣

wi∫

0

∂P (0,w − yi, t)
∂z

dGi (y) − ∂P (0,w, t)
∂z

⎤

⎦ ,
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where w = {w1, . . . , wn} ,yi = {0, . . . , y, . . . , 0}, z > 0, wi > 0 (i = 1, . . . , n),
with the initial condition

P (z,w, t0) =
{

R(z), w = 0,
0, otherwise,

where R (z) represents the stationary probability distribution of the values of
the random process z (t).

By introducing the partial characteristic function:

h (z,v, t) =

∞∫

0

ejv1w1 . . .

∞∫

0

ejvnwnP (z, dw, t) z > 0, wi > 0,

where j =
√−1 denotes the imaginary unit, we obtain the following equations:

∂h (z,v, t)
∂t

=
∂h (z,v, t)

∂z

+
∂h (0,v, t)

∂z

[

A (z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (vi) − 1)

]

, (2)

where

G∗
i (vi) =

∞∫

0

ejviydGi (y) ,

with the initial condition
h (z,v, t0) = R (z) . (3)

4 Asymptotic Analysis

In general, Eq. (2) cannot be solved analytically, but it is possible to find approx-
imate solutions under suitable asymptotic conditions; in this paper we focus on
the case of infinitely growing arrival rate.

To this aim, let us write the distribution function of the interarrival times
as A (Nz), where N is some parameter that tends to infinity in the asymptotic
analysis [1,2].

Then, Eq. (2) becomes

1
N

∂h (z,v, t)
∂t

=
∂h (z,v, t)

∂z

+
∂h (0,v, t)

∂z

[

A(z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (vi) − 1)

]

, (4)

with the initial condition (3).
We solve the problem (4)–(3) under the asymptotic condition N → ∞, and

obtain approximate solutions with different levels of accuracy, denoted in the
following as “first-order asymptotic” h (z,v, t) ≈ h(1) (z,v, t) and “second-order
asymptotic” h (z,v, t) ≈ h(2) (z,v, t).
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4.1 The First-Order Asymptotic Analysis

As a preliminary result, in this section we present the first-order asymptotic as
the following lemma.

Lemma. The first-order asymptotic characteristic function of the process
{z (t) ,W (t)} is given by

h(1) (z, v, t) = R (z) exp

⎧
⎨

⎩
Nλ

n∑

i=1

jvia
(i)
1 pi

t∫

t0

Si (τ) dτ

⎫
⎬

⎭
,

where λ =
(∞∫

0

(1 − A (x)) dx

)−1

and a
(i)
1 =

∞∫

0

ydGi(y) is the mean amount of

resources required by i-type customers.

Proof. By introducing the following notations

ε =
1
N

,v = εy, h (z,v, t) = f1 (z,y, t, ε) , (5)

in expressions (4) and (3), we get

ε
∂f1 (z,y, t, ε)

∂t
=

∂f1 (z,y, t, ε)
∂z

+
∂f1 (0,y, t, ε)

∂z

[

A(z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (εyi) − 1)

]

, (6)

with the initial condition

f1 (z,y, t0, ε) = R (z) . (7)

The asymptotic solution of the problem (6)–(7), i.e. the function f1 (z,y, t) =
lim
ε→0

f1 (z,y, t, ε), can be obtained in two steps.

Step 1. Let ε → 0; then Eq. (6) becomes:

∂f1 (z,y, t)
∂z

+
∂f1 (0,y, t)

∂z
(A (z) − 1) = 0.

and hence f1(z,y, t) can be expressed as

f1 (z,y, t) = R (z)Φ1 (y, t) , (8)

where Φ1 (y, t) is some scalar function, satisfying the condition Φ1 (y, t0) = 1.
Step 2. Now let z → ∞ in (6):

ε
∂f1 (∞,y, t, ε)

∂t
=

∂f1(0,y, t, ε)
∂z

n∑

i=1

piSi (t) (G∗
i (εyi) − 1) .
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Then, we substitute here the expression (8), take advantage of the Taylor
expansion

ejεs = 1 + jεs + O(ε2), (9)

divide by ε and perform the limit as ε → 0. Since R′ (0) = λ, we get the following
differential equation:

∂Φ1 (y, t)
∂t

= Φ1 (y, t) λ

n∑

i=1

piSi (t) jyia
(i)
1 , (10)

where a
(i)
1 =

∞∫

0

ydGi(y).

Taking into account the initial condition, the solution of (10) is

Φ1 (y, t) = exp

⎧
⎨

⎩
λ

n∑

i=1

jyia
(i)
1 pi

t∫

t0

Si (τ) dτ

⎫
⎬

⎭
.

By substituting Φ1 (y, t) from (8), we obtain

f1 (z,y, t) = R (z) exp

⎧
⎨

⎩
λ

n∑

i=1

jyia
(i)
1 pi

t∫

t0

Si (τ) dτ

⎫
⎬

⎭
.

Therefore, we can write

h (z,v, t) = f1 (z,y, t, ε) ≈ f1 (z,y, t) = R (z) Φ1 (y, t) =

R (z) exp

{
λ

n∑
i=1

jyia
(i)
1 pi

t∫
t0

Si (τ) dτ

}
= R (z) exp

{
Nλ

n∑
i=1

jvia
(i)
1 pi

t∫
t0

Si (τ) dτ

}
.

The proof is complete.

4.2 The Second-Order Asymptotic Analysis

Now we are able to formulate the main contribution of this work, which is sum-
marized by the following theorem.

Theorem. The second-order asymptotic characteristic function of the process
{z (t) ,W (t)} is given by

h(2) (z, v, t) = R (z) exp

⎧
⎨

⎩
Nλ

n∑

i=1

jvia
(i)
1 pi

t∫

t0

Si (τ) dτ

+Nλ

n∑

i=1

(jvi)2

2
a
(i)
2 pi

t∫

t0

Si (τ) dτ
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+
Nκ

2

n∑

i=1

n∑

m=1

jvia
(i)
1 pijvma

(m)
1 pm

t∫

t0

Si (τ) Sm (τ) dτ

⎫
⎬

⎭
, (11)

where a
(i)
2 =

∞∫

0

y2dGi(y) and κ = λ3
(
σ2 − a2

)
, a and σ2 being the mean and the

variance of the interarrival time, respectively.

Proof. Let h2 (z,v, t) be a solution of the following equation

h (z,v, t) = h2 (z,v, t) exp

⎧
⎨

⎩
Nλ

n∑

i=1

jvia
(i)
1 pi

t∫

t0

Si (τ) dτ

⎫
⎬

⎭
(12)

Substituting this expression into (3) and (4), we get the following equivalent
problem:

1
N

∂h2 (z,v, t)
∂t

+ λh2 (z,v, t)
n∑

i=1

jvia
(i)
1 piSi (t) =

∂h2 (z,v, t)
∂z

+
∂h2 (0,v, t)

∂z

[

A (z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (vi) − 1)

]

, (13)

with the initial condition
h2 (z,v, t0) = R (z) . (14)

By performing the following changes of variable

ε2 =
1
N

,v = εy, h2 (z,v, t) = f2 (z,y, t, ε) . (15)

in (13) and (14), we get the following problem:

ε2
∂f2 (z,y, t, ε)

∂t
+ f2 (z,y, t, ε) λ

n∑

i=1

jεyia
(i)
1 piSi (t) =

∂f2 (z,y, t, ε)
∂z

+
∂f2 (0,y, t, ε)

∂z

[

A (z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (εyi) − 1)

]

, (16)

with the initial condition

f2 (z,y, t0, ε) = R (z) . (17)

As a generalization of the approach used in the previous subsection, the
asymptotic solution of this problem

f2 (z,y, t) = lim
ε→0

f2 (z,y, t, ε)

can be derived in three steps.
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Step 1. Letting ε → 0 in (16), we get the following equation:

∂f2 (z,y, t)
∂z

+
∂f2 (0,y, t)

∂z
(A (z) − 1) = 0.

Hence, we can express f2 (z,y, t) as

f2 (z,y, t) = R (z)Φ2 (y, t) , (18)

where Φ2 (y, t) is some scalar function that satisfies the condition Φ2 (y, t0) = 1.
Step 2. The solution f2 (z,y, t) can be represented in the expansion form

f2 (z,y, t) = Φ2 (y, t)

[

R (z) + f (z)
n∑

i=1

jεyia
(i)
1 piSi (t)

]

+ O
(
ε2
)
, (19)

where f (z) is a suitable function. By substituting the previous expression and
the Taylor-Maclaurin expansion (9) in (16), taking into account that R′ (z) =
λ (1 − A (z)), it is easy to verify that

f ′ (0) = λf (∞) +
κ

2
,

and κ = λ3
(
σ2 − a2

)
, where a and σ2 are the mean and the variance of the

interarrival time.
Step 3. Letting z → ∞ in (16), by the definition of the function f2 (z,y, t, ε),

we obtain

lim
z→∞

∂f2 (z,y, t, ε)
∂z

= 0,

and, taking into account the expansion

ejεs = 1 + jεs +
(jεs)2

2
+ O

(
ε3
)
,

we can write

ε2 ∂f2(∞,y,t,ε)
∂t + f2 (∞,y, t, ε) λ

n∑

i=1

piSi (t) jεyia
(i)
1

= ∂f2(0,y,t,ε)
∂z

n∑

i=1

piSi (t)
(
jεyia

(i)
1 + (jεyi)

2

2 a
(i)
2

)
+ O

(
ε3
)
,

where a
(i)
2 =

∞∫

0

y2dGi(y).

By substituting here the expansion (19) and taking the limit as z → ∞,
we get

ε2
∂Φ2(y,t)

∂t + Φ2 (y, t) λ
n∑

i=1
jεyia

(i)
1 piSi (t)

n∑

m=1
jεyma

(m)
1 pmSm (t) f(∞)

= Φ2 (y, t) λ
n∑

i=1
piSi (t)

(
jεyia

(i)
1 +

(jεyi)
2

2 a
(i)
2

)

+Φ2 (y, t) f ′ (0)
n∑

i=1
piSi (t) jεyia

(i)
1

n∑

m=1
pmSm (t)

(
jεyma

(m)
1 +

(jεym)2

2 a
(m)
2

)
+ O

(
ε3
)
.
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After simple manipulations, and taking into account that

κ

2
= (f ′ (0) − f (∞)) ,

we get the following differential equation for Φ2 (y, t):

∂Φ2(y,t)
∂t = Φ2 (y, t)

[

λ
n∑

i=1

(jyi)
2

2 a
(i)
2 piSi (t)

+κ
2

n∑

i=1

n∑

m=1
jyia

(i)
1 pijyma

(m)
1 pmSi (t) Sm (t)

]

,

whose solution (with the given initial condition) can be expressed

Φ2 (y, t) = exp

⎧
⎨

⎩
λ

n∑

i=1

(jyi)2

2
a
(i)
2 pi

t∫

t0

Si (τ) dτ

+
κ

2

n∑

i=1

n∑

m=1

jyia
(i)
1 pijyma

(m)
1 pm

t∫

t0

Si (τ) Sm (τ) dτ

⎫
⎬

⎭

Substituting this expression into (18) and performing the inverse substitu-
tions of (15) and (12), we get the expression (11) for the asymptotic characteristic
function of the process {z (t) ,W (t)}.

The proof is complete.

Corollary. For z → ∞, t = T and t0 → −∞ we get the characteristic function
of the process {V (t)}in the steady state regime

h (v) = exp

{

Nλ
n∑

i=1

jvia
(i)
1 bi

+Nλ
n∑

i=1

(jvi)2

2
a
(i)
2 pibi +

Nκ

2

n∑

i=1

n∑

m=1

jvia
(i)
1 jvma

(m)
1 Kim

}

, (20)

where

bi = pi

∞∫

0

(1 − Bi (τ)) dτ,

Kim = pipm

∞∫

0

(1 − Bi (τ)) (1 − Bm (τ)) dτ.

The structure of function (20) implies that the n-dimensional process {V (t)}
is asymptotically Gaussian with mean

a = Nλ
[
a
(1)
1 b1 a

(2)
1 b2 . . . a

(n)
1 bn

]
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and covariance matrix

K = N
[
λK(1) + κK(2)

]
,

where

K(1) =

⎡

⎢
⎢
⎢
⎣

a
(1)
2 b1 0 . . . 0
0 a

(2)
2 b2 . . . 0

. . . . . . . . . . . .

0 0 . . . a
(n)
2 bn

⎤

⎥
⎥
⎥
⎦

,

K(2) =

⎡

⎢
⎢
⎢
⎣

a
(1)
1 a

(1)
1 K11 a

(1)
1 a

(2)
1 K12 . . . a

(1)
1 a

(n)
1 K1n

a
(2)
1 a

(1)
1 K21 a

(2)
1 a

(2)
1 K22 . . . a

(2)
1 a

(n)
1 K2n

. . . . . . . . . . . .

a
(n)
1 a

(1)
1 Kn1 a

(n)
1 a

(2)
1 Kn2 . . . a

(n)
1 a

(n)
1 Knn

⎤

⎥
⎥
⎥
⎦

.

5 Simulation Results

The previous results, summarized by (20), are obtained under the asymptotic
condition of infinitely growing arrival rate (N → ∞) and, hence, they can provide
suitable approximations only for sufficiently large values of N . To investigate
their practical applicability, we have considered several simulation scenarios,
varying all the system parameters (i.e., the distributions of the interarrival and
service times and of the customer capacity as well as the probabilities pi). Since
all the different simulation sets led to similar results, for sake of brevity, we
present just one of them.

In more detail, we assume that the input renewal process is characterized
by a uniform distribution of the interarrival time in the interval [0.5, 1.5], cor-
responding to a fundamental rate of arrivals λ = 1 customers per time unit.
Moreover, each arriving customer may belong to one of n = 3 types, according
to the following probabilities: p1 = 0.5, p2 = 0.3 and p3 = 0.2. We assume that
resource amounts occupied by each customer type have exponential distribution,
with parameters 2, 1 and 0.4, respectively. Finally, the service times have gamma
distribution with shape and inverse scale parameters equal to α1 = β1 = 0.5,
α2 = β2 = 1.5 and α3 = β3 = 2.5, respectively.

Our aim is to show that the Gaussian approximation gets better and better as
N goes to infinity, thus providing some indications on reasonable lower bounds of
N for the applicability of (20). Hence, we carried out different sets of simulation
experiments (in each of them 1010 arrivals were generated) for increasing values
of N and compared the asymptotic distributions with the empiric ones in terms
of Kolmogorov distance [5]

Δ = sup
x

|F (x) − G (x)|

where F (x) is the cumulative distribution function built on the basis of simula-
tion results, and G(x) is the Gaussian approximation given by (20); the corre-
sponding parameters for the three classes are summarized in Table 1. For sake
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Table 1. Parameters of Gaussian approximations

Customers class Mean Variance

First 0.25 N 0.229 N

Second 0.3 N 0.553 N

Third 0.5 N 2.349 N

of brevity, we show the results only for the marginal distributions of the total
resource amount for each class of customers.

Tables 2, 3 and 4 report the values of the Kolmogorov distance for the three
types of customers, highlighting that the goodness of the approximation depends
not only on N , but also on the different statistical features of the considered
customers class.

Table 2. Kolmogorov distance for the first type of customers

N 1 35 50 75 100 125 200 500 1000

Δ 0.294 0.033 0.027 0.022 0.019 0.017 0.014 0.009 0.006

Table 3. Kolmogorov distance for the second type of customers

N 1 35 50 75 100 125 200 500 1000

Δ 0.377 0.042 0.035 0.028 0.025 0.022 0.018 0.011 0.008

Table 4. Kolmogorov distance for the third type of customers

N 1 35 50 75 100 125 200 500 1000

Δ 0.419 0.053 0.043 0.036 0.031 0.028 0.022 0.014 0.009

Fig. 2. Distributions of the total resource amount for the first type of customers
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Fig. 3. Distributions of the total resource amount for the second type of customers

Fig. 4. Distributions of the total resource amount for the third type of customers

As expected, the asymptotic results become more and more accurate when
the scale parameter N increases. This conclusion is also confirmed by Figs. 2,
3 and 4, which compare the asymptotic approximations with the empirical his-
tograms for the total resource amount of each type of customers for two different
values of N .

6 Conclusions

In this work we considered a GI/GI/∞ queue with n types of customers under the
assumption that arrivals follow a renewal process and each customer occupies a
random resource amount, independent of its service time. At first we determined
the corresponding Kolmogorov differential equations, which in the general case
cannot be solved analytically. Hence, we derived first and second-order asymp-
totic approximations in case of infinitely growing arrival rate, and we pointed
out that the n-dimensional probability distribution of the total resource amount
is asymptotically n-dimensional Gaussian. Finally, by means of discrete-event
simulation we verified the goodness of the approximation, and highlighted how
the applicability region of the asymptotic approximation (i.e., lower bounds on
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the scale parameter N for all the different classes of users) can be determined
by considering the Kolmogorov distance as accuracy measure.
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