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Preface

The series of scientific conferences Information Technologies and Mathematical
Modelling (ITMM) was started in 2002. In 2012, the series acquired an international
status, and selected revised papers have been published in Communication in Computer
and Information Science since 2014. The conference series was named by Alexander
Terpugov, one of the first organizers of the conference, an outstanding scientist of the
Tomsk State University and a leader of the famous Siberian school on applied prob-
ability, queueing theory, and applications.

Traditionally, the conferences have about ten sections in various fields of mathe-
matical modelling and information technologies. Throughout the years, the sections on
probabilistic methods and models, queueing theory, and communication networks have
been the most popular at the conference. These sections gather many scientists from
different countries. Many foreign participants come to this Siberia conference every
year because of our warm welcome and serious scientific discussions.

This year, the ITMM conference was held in Tomsk together with 12th International
Workshop on Retrial Queues and Related Topics (WRQ). This workshop is aimed at a
specific area within queueing theory. It has been held since 1998 in different countries
and traditionally gathers 20–40 scientists in field of retrial queues.

This volume presents selected papers from the 17th ITMM conference and the 12th
WRQ. The papers are devoted to new results in queueing theory and its applications,
including retrial queues. Its target audience includes specialists in probabilistic theory,
random processes, and mathematical modelling as well as engineers engaged in logical
and technical design and operational management of data processing systems, com-
munication, and computer networks.

September 2018 Alexander Dudin
Anatoly Nazarov

Alexander Moiseev
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A Survey of Recent Results
in Finite-Source Retrial Queues

with Collisions

Anatoly Nazarov1, János Sztrik2(B), and Anna Kvach1

1 National Research Tomsk State University, 36 Lenina ave., Tomsk 634050, Russia
nazarov.tsu@gmail.com, kvach as@mail.ru
2 University of Debrecen, Debrecen, Hungary

sztrik.janos@inf.unideb.hu

Abstract. The aim of the present paper is to give a review of recent
results on single server finite-source retrial queuing systems with collision
of the customers. There are investigations when the server is reliable and
there are models when the server is subject to random breakdowns and
repairs depending on whether it is idle or busy. Tool supported, numeri-
cal, simulation and asymptotic methods are considered under the condi-
tion of unlimited growing number of sources. Several cases and examples
are treated and the results of different approaches are compared to each
other showing the advantages and disadvantages of the given method. In
general we could prove that the steady-state distribution of the number
of customers in the service facility can be approximated by a normal
distribution with given mean and variance. Using asymptotic methods
under certain conditions in steady-state the distribution of the sojourn
time in the orbit and in the system can be approximated by a generalized
exponential one. Furthermore, it is proved that the distribution of the
number of retrials until the successful service in the limit is geometrically
distributed. By the help of stochastic simulation several systems are ana-
lyzed showing directions for further analytic investigations. Tables and
Figures are collected to illustrate some special features of these systems.

Keywords: Finite-source queuing system · Retrial queues
Collisions · Server breakdowns and repairs · Analytic results
Algorithmic approach · Stochastic simulation · Asymptotic analysis

1 Introduction

Finite-source retrial queues are very useful and effective stochastic systems to
model several problems arising in telephone switching systems, telecommuni-
cation networks, computer networks and computer systems, call centers, wire-
less communication systems, etc. To see their importance the interested reader
is referred to the following works and references cited in them, for example
[3,9,15,19]. Searching the scientific databases we have noticed that relatively
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-319-97595-5_1
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2 A. Nazarov et al.

just a small number of papers have been devoted to systems when the arriving
calls (primary or secondary) causes collisions to the request under service and
both go to the orbit, see for example [1,7,18,24,40].

Nazarov and his research group developed a very effective asymptotic method
[39] by the help of which various systems have been investigated. Concerning to
finite-source retrial systems with collision we should mention the following papers
[25–28,35].

Sztrik and his research group have been dealing with systems with unreliable
server/s as can be seen, for example in [2,44,45,51] and that is why it was
understandable that the two research groups started cooperation in 2017.

Our investigations have been based on the analytical, numerical, simulation
and asymptotic approached as treated in, for example [3,5,6,10,16,20,23,29,30,
34,39,42,43,50,52].

The primary aim of the present paper is to give a survey on the results
obtained in this field in the near past by means of different methods. Doing so
we have tried to unify the notation appeared in different publications and to use
the standard notation of Western-style papers which is many times differs from
the Russian-style ones.

The rest of the paper is organized as follows. In Sect. 2 description of the
model is given, the corresponding multi-dimensional non-Markov process is
defined. In Sects. 3 and 4 systems with a reliable and an unreliable server are
treated, respectively. In the subsections models with exponentially and gener-
ally distributed service times are investigated, and then analyzed by means of
tool supported, algorithmic, simulation and asymptotic methods, respectively.
The main results of the papers are collected and several Figures illustrate the
most interesting features of the given system. Finally, the paper ends with a
Conclusion and some future plans are highlighted.

2 Model Description and Notations

In the following we introduce the model in the most general form as it was
treated by the help of numerical and asymptotic methods.

Let us consider a retrial queuing system of type M/GI/1//N with collision of
the customers and an unreliable server (Fig. 1). The number of sources is N and
each of them can generate a primary request during an exponentially distributed
time with rate λ/N . A source cannot generate a new call until the end of the
successful service of this customer.

If a primary request finds the server idle, he enters into service immedi-
ately, in which the required service time has a probability distribution function
B(x). Let us denote its service rate function by μ(y) = B

′
(y)(1 − B(y))−1 and

its Laplace -Stieltjes transform by B∗(y), respectively. If the server is busy, an
arriving (primary or repeated) customer involves into collision with customer
under service and they both move into the orbit. The inter-retrial times of cus-
tomers are supposed to be exponentially distributed with rate σ/N . We assume
that the server is unreliable, that is its lifetime is supposed to be exponentially
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Fig. 1. Retrial queueing system of type M/GI/1//N with collisions of the customers
and an unreliable server

distributed with failure rate γ0 if the server is idle and with rate γ1 if it is busy.
When the server breaks down, it is immediately sent for repair and the repair
time is assumed to be exponentially distributed with rate γ2. We deal with the
case when the server is down all sources continue generation of customers and
send it to the orbit, similarly customers may retry from the orbit to the server
but all arriving customers immediately go into the orbit. Furthermore, in this
unreliable model we suppose that the interrupted request goes to the orbit imme-
diately and its next service is independent of the interrupted one. Of course in
the case of reliable server γ0 = γ1 = 0. All random variables involved in the
model construction are assumed to be independent of each other.

Let J(t) be the number of customers in the system at time t, that is, the
total number of customers in the orbit and in service. Similarly, let K(t) be the
server state at time t, that is

K(t) =

⎧
⎨

⎩

0, if the server is idle,
1, if the server is busy,
2, if the server is down (under repair).

Thus, we will investigate the process {K(t), J(t)}, which is not a Markov-process
unless the service time is exponentially distributed. To be a Markov one we will
use the method of supplementary variables, namely, we will consider two variants:
the residual service time method and the elapsed service time method depending
on what is the aim of the investigation.

Let us denote by Y (t), and Z(t), the supplementary random process equal
to the elapsed service time of the customer till the moment t and by Z(t) the
residual service time, that is time interval from the moment t until the end of suc-
cessful service of the customer, respectively. It is obvious that {K(t), J(t), Y (t)}
and {K(t), J(t), Z(t)} are Markov processes. Let us note, that Y (t) and Z(t) are
defined only in those moments when the server is busy, that is, when K(t) = 1.
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Let us define the stationary probabilities as follows:

P0(j) = P{K = 0, J = j},

P1(j, y) = P{K = 1, J = j, Y < y},

P1(j, z) = P{K = 1, J = j, Z < z},

P2(j) = P{K = 2, J = j}.

Of course in the case of exponentially distributed service time the steady-
state probabilities are denoted as follows:

Pk(j) = P{K = k, J = j}, k = 0, 1, 2, j = 0, ..., N.

The steady-state distribution of the server’s state is denoted by

Rk = P (K = k), k = 0, 1, 2

and the distribution of number of customers in the system is designated by

P (j) = P (J = j), j = 0, ..., N.

It is clear that in the case of reliable server all the probabilities where K = 2
are 0.

The main aim of the investigations is to get these distributions and other
performance measures of the systems, such as the distribution of the sojourn time
in the system, distribution of the total service time, distribution of the number
of retrials. These are very complicated problems and to the best knowledge of
the authors there are no exact analytical formulas to the solutions. That is the
reason we have tried to obtain the characteristics of different systems by the help
of tool supported, algorithmic, stochastic simulation and asymptotic methods.

3 Systems with a Reliable Server

3.1 M/M/1 Systems

Algorithmic Approach. In papers [26,35] the steady-state Kolmogorov equa-
tions were derived and the distribution of the system’s state were obtained by
an algorithmic approach. Then the distribution of the number of customers in
the system were calculated and used to validate the asymptotic results.

Asymptotic Approach. The main contribution of paper [35] is that the in
steady-state the prelimit distribution of the number of customers in the system
can be approximated by a normal distribution with given mean and variance.
In paper [35] 2nd and 3rd order approximations of the prelimit distribution
were compared to the exact distribution obtained by the algorithmic method.
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In different parameter setup and for different N the applicability of the asymp-
totic method was validated and some conclusions were drawn.

A more complicated problem, namely the distribution of the sojourn time in
the service facility was investigated in [25] by the help of asymptotic methods as
N tends to infinity. It was proved that the characteristic function of the sojourn
time T of a customer spends in the service facility can be approximated by

E exp {iuT} ≈ q + (1 − q)
σq/N

σq/N − iu
, q =

μR0

δ + μ
.

3.2 M/GI/1 System

This section deals with the results when the required service times are generally
distributed but in the examples the gamma distribution is used due to its useful
properties. Namely, it is easy to see that its squared coefficient of variation can
be less, equal or greater than 1 depending on the values of the shape and scale
parameters.

Algorithmic Approach. Paper [27] deals with the algorithmic approach how
to get the steady-state distribution of the system. The method of supplementary
variable technique with residual service time were applied and several numerical
examples were treated with gamma distributed service time. The results helped
the validation of asymptotic results for the same model.

Stochastic Simulation. Papers [37,38] are devoted to the asymptotic analysis
of the mean total service time, distribution of the sojourn time in the system
and the distribution of number of retrials. It must be noted that the results have
not been validated by simulation, yet. Meanwhile simulations have been carried
out the estimations for the mean and variance of the sojourn time have been
obtained, and the distribution of the number of retrials also has been determined.
The simulation analysis will be published in the near future.

Asymptotic Approach. In this part the asymptotic results published in
[37,38] are summarized. Before doing that we need some notations, namely

B∗(α) =
∫ ∞

0

e−αxdB(x), δ(κ1) = λ + (σ − λ)κ1.

Then κ1 can be obtained from

κ1 = 1 − δ(κ1)
λ

· B∗(δ(κ1))
2 − B∗(δ(κ1))

, (1)

and the distribution of the server’s state can be determined by

R0 =
1

2 − B∗(δ)
, R1 =

1 − B∗(δ)
2 − B∗(δ)

.
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Introducing the notations

A1 = λ(1 − κ1), R∗
1(α) = −δR0 [B∗(α)] ,

we obtain

κ2 =
A1

(
R0 · B∗(δ) [δ + A1] − (δ + A1R0)

)

A1(σ−λ)
(
R∗

1(δ)−R1−R0(B∗(δ)−1)
)
+δ

(
(σ−λ)

(
R∗

1(δ)−R0B∗(δ)
)
−λ

) .

Consequently the steady-state prelimit distribution of the number of cus-
tomers in the system can be approximated by a normal distribution with mean
Nκ1 and variance Nκ2.

For the distribution of the number of retrials/transitions of the tagged customer
into the orbit we have the following results.
Let ν be the number of transitions of the tagged customer into the orbit, then

lim
N→∞

E zν =
q

1 − (1 − q)z
,

where value of parameter q has a form

q = R0B
∗(δ).

From the proved theorem it is obviously follows that the probability distribution
P {ν = n} , n = 0,∞ of the number of transitions of the tagged customer into
the orbit is geometric and

P {ν = n} = q(1 − q)n
, n = 0,∞.

Consequently, by using the law of total probability for the characteristic
function of the sojourn/waiting time W of the tagged customer in the orbit we
get

EeiuW ≈ q + (1 − q)
σq

σq − iuN
.

In the case of N → ∞ the limiting probability distributions of the sojourn
time of the customer in the system T and the sojourn time of the customer in
the orbit W coincide, namely

lim
N→∞

E exp
{

iu
T

N

}

= lim
N→∞

E exp
{

iu
W

N

}

= q + (1 − q)
σq

σq − iu
.

4 Systems with an Unreliable Server

In many practical situations the server is not reliable and after a random time
it can fail and needs repair which also takes a random duration. To deal with
these service interruptions several papers have been published, see for example
[2,8,11,12,14,21,41,45,48,49,53]. In the following parts we summarize our
results obtained by different methods.



A Survey of Recent Results in Finite-Source Retrial Queues with Collisions 7

4.1 M/M/1 System

Tool Supported Approach by MOSEL. Because of the fact, that in many
practical situations the state space of the describing Markov chain is very large,
it is rather difficult to calculate the system measures in the traditional way of
writing down and solving the underlying steady-state equations. To simplify this
procedure several software packages have been developed and effectively used for
performance evaluation of complex systems, see for example [11–14,17]. In our
investigations a similar software tool called MOSEL (Modeling, Specification and
Evaluation Language) has been used to formulate the model and to obtain the
performance measures. Paper [4] deals with the model formulation, derivation
of several performance measures and generation of illustrative examples showing
an interesting phenomenon of finite-source retrial queues, that is under specific
parameter setup the mean waiting/ sojourn time has a maximum as the arrival
intensity is increasing.

Stochastic Simulation. To validate the applicability of the asymptotic app-
roach we need either numerical or simulation results. The correct operation of the
simulation software was tested by the numerical sample examples. The investiga-
tions carried out by the simulation and asymptotic methods have been submitted
for publication, see [31,32].

Asymptotic Approach. First we deal with the distribution of the number cus-
tomers in the system as it has been published in [31]. The first order asymptotic
results are the following

lim
N→∞

Eexp
{

iw
J

N

}

= exp {iwκ1} ,

where κ1 is the positive solution of the equation

(1 − κ1) λ − μR1(κ1) = 0,

where the stationary distributions of probabilities Rk(κ1) of the server state
k = 0, 1, 2 are obtained as follows

R0(κ1) =
{

γ0 + γ2
γ2

+
γ1 + γ2

γ2
· a (κ1)
a (κ1) + γ1 + μ

}−1

,

R1(κ1) =
a (κ1)

a (κ1) + γ1 + μ
· R0(κ1),

R2(κ1) =
1
γ2

[γ0R0(κ1) + γ1R1(κ1)] ,

here a (κ1) is
a (κ1) = (1 − κ1) λ + σκ1.
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The second order asymptotic results are

lim
N→∞

Eexp
{

iw
J − κ1N√

N

}

= exp
{

(iw)2

2
κ2

}

,

where κ2 is

κ2 =
γ2μ(R1 − b1) + (1 − κ1)λ {(γ1 + γ2) b1 + (1 − κ1) λR2}

(λ + μb2) γ2 − (1 − κ1) λ (γ1 + γ2) b2
,

and

b1 =
(1 − κ1) λ

a + γ1 + μ
R0, b2 =

(σ − λ)(R0 − R1)
a + γ1 + μ

.

Consequently the prelimit distribution of the number of customers in the sys-
tem can be approximated by a normal distribution with mean Nκ1 and variance
Nκ2.

One of the main contributions of paper [32] is that for the limit of the charac-
teristic function of the normalized sojourn time we have

lim
N→∞

E exp
{

iw
T

N

}

= q + (1 − q)
σq

σq − iw
,

where q is

q =
(1 − κ1)λ

(1 − κ1)λ + σκ1
.

Consequently the characteristic function of the sojourn time of the customer
in the system in the prelimit situation of finite N can be approximated by

E eiuT ≈ q + (1 − q)
σq

σq − iuN
. (2)

For the distribution of the number of transitions/retrials of the tagged cus-
tomer into the orbit we got the following results.
Let ν be the number of transitions of the tagged customer into the orbit, then

lim
N→∞

E zν =
q

1 − (1 − q)z
,

resulting that the probability distribution P {ν = n} , n = 0,∞ of the number
of transitions of the tagged customer into the orbit is geometric and has the form

P {ν = n} = q(1 − q)n, n = 0,∞.

Consequently the prelimit characteristic function of the sojourn/waiting time W
of the tagged customer in an orbit can be approximated as

EeiuW ≈ q + (1 − q)
σq

σq − iuN
.



A Survey of Recent Results in Finite-Source Retrial Queues with Collisions 9

In the case of N → ∞ the limiting probability distributions of the sojourn time
of the customer in the system T and the sojourn time of the customer in an
orbit W coincide, namely

lim
N→∞

E exp
{

iu
T

N

}

= lim
N→∞

E exp
{

iu
W

N

}

= q + (1 − q)
σq

σq − iu
.

4.2 M/GI/1 System

Stochastic Simulation. In paper [47] the required service time is supposed to
be gamma distributed and the input parameters of the system are collected in
Table 1.

Table 1. Numerical values of model parameters

Case N λ/N γ0 γ1 γ2 σ/N α β

1 100 0.01 0.1 0.1 1 0.01 0.5 0.5

2 100 0.01 0.1 0.1 1 0.01 1 1

3 100 0.01 0.1 0.1 1 0.01 2 2

Figure 2 shows the steady-state distribution of the three investigated cases. It
is observed the mean number of customers increases as α and β are getting
larger. Case 2 is a special case because when α = 1 it represents the expo-
nential distribution. From the shape of the curves it is clearly visible that the

Fig. 2. Comparison of steady-state distributions
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steady-state distribution of the cases are normally distributed. The next table
presents the considered performance measures in relation with the different cases
(see Table 2).

In Table 2 the notations mean the followings: E(J) and V ar(J) - mean num-
ber and variance of customers in the system, E(T ) and V ar(T ) - mean and
variance of response time, E(W ) and V ar(W ) - mean and variance of waiting
time, E(S) and V ar(S) - mean and variance of successful service time, E(IS) -
mean interrupted service time.

Table 2. Simulation results

Case E(J) V ar(J) E(T) V ar(T ) E(W) V ar(W ) E(S) V ar(S) E(IS)

1 63.6842 27.9734 175.3073 65657.3454 174.5884 65434.6696 0.3147 0.1979 0.4041

2 70.5912 24.3012 239.9734 105273.4267 238.9734 104918.6389 0.4784 0.2289 0.5217

3 75.1825 21.2439 302.8106 151781.1411 301.5377 151277.6006 0.6472 0.2095 0.6257

Figure 3 represents the confirmation of mean waiting time. The same param-
eters are (see Table 2) used as in case of Fig. 2 but here the running parameter is
λ/N . As it is expected with the increment of λ/N mean waiting time increases
as well but an interesting phenomenon is noticeable namely after λ/N is greater
than 0.1 mean waiting time starts to decrease.

Fig. 3. Mean waiting time vs. intensity of incoming customers

Asymptotic Approach. These results have been published in [36] using sup-
plementary variable technique. The limit of the characteristic function of the
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scaled number of customers in the systems can be written in the following form

lim
N→∞

E exp
{

iw
J

N

}

= exp {iwκ1} ,

where κ1 is the positive solution of the equation

(1 − κ1) λ − δ(κ1) [R0(κ1) − R1(κ1)] + γ1R1(κ1) = 0,

here δ (κ1) is
δ (κ1) = (1 − κ1) λ + σκ1,

and the stationary distributions of probabilities Rk(κ1) of the server’s state
k = 0, 1, 2 are determined as follows

R0(κ1) =
{

γ0 + γ2
γ2

+
γ1 + γ2

γ2
· δ (κ1)
δ (κ1) + γ1

[1 − B∗(δ(κ1) + γ1)]
}−1

,

R1(κ1) = R0(κ1)
δ (κ1)

δ (κ1) + γ1
· [1 − B∗(δ(κ1) + γ1)] ,

R2(κ1) =
1
γ2

[γ0R0(κ1) + γ1R1(κ1)] .

4.3 Stochastic Simulation of Special Systems

In paper [47] systems with not only gamma distributed service times but also
gamma distributed inter-arrival and gamma distributed retrial times have been
investigated.

The Effect of Breakdowns Disciplines. In paper [46] the M/G/1//N and
G/M/1//N systems were investigated with exponentially distributed operating
and repair times. In case of a server failure two operation modes are considered:

– The interrupted request gets into the orbit instantaneously.
– The service of the interrupted request is suspended and it continues after

repairing the server.

As it was expected the second operation mode results lower mean sojourn times
and higher mean successful service times. The Figures are similar to the cases
treated earlier that is why they are omitted.

5 Conclusion

In this paper tool supported, numerical, simulation and asymptotic methods
were considered under the condition of unlimited growing number of sources in a
finite-source retrial queue with collisions of customers and an unreliable server.
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During the survey several cases and examples were treated and the results of
different approaches were compared to each other showing the advantages and
disadvantages of the given method. Tables and Figures were collected to illustrate
some special features of these systems. In the near future the two research groups
would like to continue their investigations in this direction including systems with
impatient customers, systems embedded in a random environment, systems with
two-way communications, just to mention some alternative generalizations.

Acknowledgments. The work/publication of J. Sztrik is supported by the EFOP-
3.6.1-16-2016-00022 project. The project is co-financed by the European Union and the
European Social Fund.
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Abstract. The equation of term structure for the price of a zero-coupon
bond is considered, the solution of which in analytical form is known,
basically, for the simplest models and has an affine structure with respect
to the short-term rate. The paper constructs solutions of this equation
for a family of term structure models that are based on short-term rate
processes in which the square of volatility is proportional to the third
power of the short-term rate in stochastic differential equations. The
solution of the equation is sought in the form of a definite functional
series and, as a result, is reduced to a confluent hypergeometric func-
tion. Three versions of the underlying stochastic differential equations
for short-term rate processes are considered: with zero drift, linear drift,
and quadratic drift. Numerical examples are given for the yield curve
and the forward rate curve for these versions. Some conditions for the
existence of nontrivial solutions of the equation of time structure in the
family of processes under consideration are formulated.

Keywords: The equation of the yield term structure
The price of zero-coupon bond · The CIR(1980) model
The Ahn – Gao model · The yield curve · The forward curve

1 Introduction

Suppose that the state of the financial market is described by the interest rate
r(t), which follows a Markov process homogeneous in time, generated by the
stochastic differential equation

dr(t) = μ(r(t))dt + σ(r(t))dw(t)

with the drift function μ(x ), the volatility function σ(x ), and the standard
Wiener process w(t). For convenience of reasoning, we denote the drift func-
tion m(r) = μ(r) − λ(r)σ(r) and the diffusion function s(r) = 0.5σ2(r). Here
λ(r) is the so-called market risk price. Previously [1], the problem of determining
the time structure of the yield of a zero-coupon bond, when the functions m(r)
and s(r) are polynomials was considered. It turned out, in this case, whether
the yield curves can be polynomials or power series in the variable r. It turned

c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 16–26, 2018.
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out that this happens if only m(r) and s(r) are polynomials of not more than
first degree. In this case, the models of the yield term structure are affine.

In this paper, we consider a similar problem, but the term structure of the
price of a zero-coupon bond is sought in the form of a functional series that
differs from the power series. It is found out that for some cases such solutions
exist. The resulting term structure turns out to be non-affine and is described
by confluent hypergeometric functions. This family includes such known models
of interest rates as the model CIR(1980) [2] and the model Ahn – Gao [3].

2 The General Equation for the Price of a Bond and Its
Components

Consider the equation of term structure for the price of the zero-coupon bond
P(r, τ) [4]

− ∂P (r, τ)
∂τ

+ m(r)
∂P (r, τ)

∂r
+ s(r)

∂2P (r, τ)
∂r2

− rP (r, τ) = 0, P (r, 0) = 1. (1)

Here m(r) is the function of the short-term interest rate drift, and s(r) is
the square of its volatility. We seek a solution of this equation in the form

P (r, τ) =
∞∑

n=0

(
a (τ)

r

)α+n

cn, (2)

where a(τ), α and cn, n = 0, 1, 2, ..., are the function and coefficients to be
determined.

The corresponding derivatives used in Eq. (1) have the form

∂P (r, τ)
∂τ

=
a′ (τ)
a (τ)

∞∑

n=0

(α + n)
(

a (τ)
r

)α+n

cn,

∂ P (r, τ)
∂r

=
1

a (τ)

∞∑

n=0

(α + n)
(

a (τ)
r

)α+n+1

cn,

∂2P (r, τ)
∂r2

=
1

a (τ)2

∞∑

n=0

(α + n) (α + n + 1)
(

a (τ)
r

)α+n+2

cn. (3)

Suppose that the drift and volatility of the short-term interest rate are such
that the functions m(r) and s(r) are polynomials of order p and q, respectively:

m(r) =
p∑

k=0

mkrk, s(r) =
q∑

k=0

skrk. (4)

Now substituting expressions (2) – (4) in Eq. (1), we obtain
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∑

j

(−I(j | 0) (α + j) a′(τ) a(τ)α+j−1 cj − I(j | − 1) a(τ)α+j+1 cj+1

−I(j | 1 − p)
p∑

k=Max{0, 1−j}
(α + j + k − 1) mk a(τ)α+j+k−1cj+k−1

+I (j | 2 − q)
q∑

k=Max{0,2−j}
[(α + j + k − 2t) (α + j + k − 1)

× sk a (τ)α+j+k−2
cj+k−2]

) (
1
r

)α+j

= 0. (5)

A certain complexity in the expression (5) is caused by the fact that the
summation over the index j for each term starts in different ways: for the first
term j ≥ 0, for the second term j ≥ −1, for the third term j ≥ 1 − p, for the
fourth summand j ≥ 2 − q. Therefore, in expressions of the terms, the factors
I (j | k) appeared, representing indicator functions equal to one if j ≥ k, and
zero otherwise.

Equality (5) must be satisfied uniformly with respect to the variable r. In
this case, since the functions r−j(j = 0,±1,±2, ...) are linearly independent, the
coefficients in front of these functions in expression (5) must be zero. This leads
to a system of equations for the unknown parameters α, a(τ) and cn, n = 0,
1, 2, ..., in the representation (2) of the solution of Eq. (1), if it exists in in this
form. Note that each term in each element of the sum (5) has a nonzero factor
a(τ)α, therefore, for simplicity, it can be reduced in all elements of the sum.

3 The CIR(1980) Model

Among the models of short-term rate r(t) processes with zero drift, the
CIR(1980) model [2] is widely known, in which the rate is generated in the
general case by the diffusion process

dr = σrγdw. (6)

Despite the fact that the model is known for a long time, the time structure
of its zero-coupon yield has not been described so far. It turns out that the
proposed method for finding the time structure allows this. In Eq. (6) we take
γ = 1.5 and s ≡ 0.5σ2. Equation (1) for the price of the zero-coupon bond
P (r, τ) takes the form

− ∂P (r, τ)
∂τ

+ sr3
∂2P (r, τ)

∂r2
− rP (r, τ) = 0, P (r, 0) = 1. (7)

We seek a solution of this equation in the form (2). The corresponding deriva-
tives have the form (3). After substituting these expressions into Eq. (7), we
obtain the following equality
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−a′(τ)
a(τ)

∞∑

n=0

(α + n)
(

a(τ)
r

)α+n

cn − a(τ)
∞∑

n=0

(
a(τ)

r

)α+n−1

cn

+s a(τ)
∞∑

n=0

(α + n)(α + n + 1)
(

a(τ)
r

)α+n−1

cn = 0.

This equality can be rewritten in a more convenient form:

∞∑

n=0

[
(α + n)

a′(τ)
a(τ)

cn + a(τ) cn+1 − s a(τ) (α + n + 1)(α + n + 2)cn+1

]

×
(

a(τ)
r

)α+n

+ a(τ) (1 − sα (α + 1)) c0

(
a(τ)

r

)α−1

= 0.

Since the expressions (a(τ)/r)k as functions of the variable r for different
values of k are linearly independent, and the equality must be satisfied uniformly
with respect to r, then the coefficients before these expressions for different k
must be zero. And we get a system of equations for the unknowns α, a(τ) and
cn, n = 0, 1, 2, ...

sα(α + 1) = 1, (8)

(α + n)
a′(τ)
a(τ)2

cn + cn+1 − s(α + n + 1)(α + n + 2)cn+1 = 0, n = 0, 1, 2, ... (9)

From the Eq. (8) the parameter α is determined by

α =
1
2

(√
1 +

4
s

− 1

)
≡ 1

2

(√
8 + σ2

σ
− 1

)
> 0. (10)

Generally speaking, Eq. (8) has two roots: positive and negative. However,
with a negative solution, as will be shown below, the price function P (r, τ)
acquires properties that the price of the zero-coupon bond does not possess.
Therefore, we take the root (10). Consider the Eq. (9) for n = 0.

a′(τ)αc0 + a(τ)2c1[1 − s(α + 1)(α + 2)] = 0.

Taking into account equality (8), it can be rewritten as

a′(τ) = a(τ)2
2ω

α2
, (11)

where for brevity we denote ω = c1 / c0. Equation (11) is a differential equation
with respect to the function a(τ). The solution of the equation has the form

a(τ) = − α2

2ωτ + η
, (12)

up to a constant η, which, if necessary, is determined from the properties of the
bond price. We note that it follows from (11) that
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a′ (τ)
a (τ)2

=
2ω

α2
.

Now consider Eq. (9) for an arbitrary n ≥ 1. It can be written as a recurrence
relation that determines the coefficient cn+1 in terms of the coefficient cn:

cn+1 =
2(α + n)ω

[s(α + n + 1)(α + n + 2) − 1]α2
cn, (13)

Note that

2(α + n)
[s(α + n + 1)(α + n + 2) − 1]α2

=
θ

n + 1

(
n + α

n + ξ

)
,

where for brevity is denoted ξ = 2(α + 1), θ = ξ/α. Thus, the sequence of
coefficients {cn, n = 0, 1, 2, ...} is as follows

c0, c1 = c0ω = c0 ω θ
α

ξ
, c2 = c0

ω θ

2
(1 + α)
(1 + ξ)

,

c3 = c0
(ω θ)2

1 × 2 × 3
(1 + α)
(1 + ξ)

(2 + α)
(2 + ξ)

, ..., cn = c0
(ω θ)n−1

n !

n−1∏

k=1

(k + α)
(k + ξ)

, ...

Then the solution (2) of Eq. (7) can be represented in the form

P (r, τ) = c0

(
a(τ)

r

)α
[
1 +

(
ωθa(τ)

r

)
α

ξ
+

∞∑

n=2

(
ωθa(τ)

r

)n 1
n !

n−1∏

k=0

(k + α)
(k + ξ)

]
.

We note that among the special functions there is a so-called confluent hyper-
geometric function (Kummer function) 1F 1(x, y, z ) (in the notation of the
Wolfram Mathematica system), which is defined by

1F1 (x, y, z) = 1 +
∞∑

n=1

zn

n !

n∏

k=1

(x + k − 1)
(y + k − 1)

= 1 +
Γ (y)
Γ (x)

∞∑

n=1

zn

n !
Γ (x + n)
Γ (y + n)

.

Using these notations, the price P(r, τ) can be written in the form

P (r, τ) = c0

(
a(τ)

r

)α
(

1 +
Γ (ξ)
Γ (α)

∞∑

n=1

1
n !

(
ωθ

a(τ)
r

)n
Γ (α + n)
Γ (ξ + n)

)

= c0

(
a(τ)

r

)α

1F1

(
α, ξ, ωθ

a(τ)
r

)
.

In terms of its economic properties, the bond price as a function of the
maturity term τ is a continuous monotonically decreasing function that for any
r > 0 has limits [9]

lim
τ→0

P (r, τ) = 1, lim
τ→∞ P (r, τ) = 0.
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These requirements can be satisfied by determining the so far undetermined
constants c0 and η by appropriate way. The final expression for the price of the
zero-coupon bond becomes

P (r, τ) =
(1 + α)

√
π

21+2α Γ (α + 1.5)

(
1

s r τ

)α

1F1

(
α, 2(1 + α), − 1

s r τ

)
, (14)

where s ≡ 0.5σ2, α = 0.5
(√

1 + 4/s − 1
)

> 0, and Γ (x ) is gamma function.
Here it is assumed that α > 0. When α < 0, the gamma function Γ (x ) used in
formula (14) can have undesirable properties. For example, for integer negative
values of an argument, it has unbounded discontinuities, on intervals (2κ, 2κ+1),
κ = 0, 1, 2, ..., it is negative, etc., which is not corresponds to the properties of
the bond price. Therefore, negative values of the parameter α are undesirable.

Typically, the term structure is in practice not represented through the bond
price, but through yield. By definition, the yield to maturity of the zero-coupon
bond (yield curve) y(r, τ) and the yield of the forward rates (forward curve)
f(r, τ) are determined by the expressions [5]:

y(r, τ) = − ln P (r, τ)
τ

, f(r, τ) = −∂ ln P (r, τ)
∂ τ

(15)

and, unfortunately, are not presented in a compact analytical form and can only
be investigated numerically.

4 The Ahn – Gao Model

Now let the polynomials m(r) and s(r) be such that p = 2, q = 3, that is
1 − p = 2 − q = −1. Then the components of the sum (9) differ from zero only
for j ≥ −1, where the first term differs from zero only for j ≥ 0. In this case we
obtain the following system of equations:
for j = −1

− c0 − α m2 c0 + α (α + 1) s3 c0 = 0 ; (16)

for j = 0

−αa′(τ)a(τ)−1c0 − a(τ)c1 −
2∑

k=1

(α + k − 1)mka(τ)k−1ck−1

+
3∑

k=2

(α + k − 2)(α + k − 1)ska(τ)k−2ck−2 = 0; (17)

for j = 1

−(α + 1)a′(τ)c1 − a(τ)2c2 −
2∑

k=0

(α + k)mka(τ)kck

+
3∑

k=1

(α + k − 1)(α + k)ska(τ)k−1ck−1 = 0; (18)
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for j > 1

−(α + j)a′(τ)a(τ)j−1cj − a(τ)j+1cj+1−
2∑

k=0

(α + j + k − 1)mka(τ)j+k−1cj+k−1

+
3∑

k=0

(α + j + k − 2)(α + j + k − 1)ska(τ)j+k−2cj+k−2 = 0. (19)

From the Eq. (16), which under the assumption that c0 �= 0 has the form
α(α + 1)s3 = αm2 + 1, the parameter α is determined.

α1 =
1

2s3

(
m2 − s3 −

√
4s3 + (m2 − s3)

2

)
,

α2 =
1

2s3

(
m2 − s3 +

√
4s3 + (m2 − s3)

2

)
. (20)

Since Eq. (16) is quadratic, it has two roots, which means that the solution
of Eq. (1) can have two components of the form (2), a compromise between
them, and also the initial condition P(r, 0) = 1 can affect on the choice of the
coefficient c0.

Equation (17) is an ordinary differential equation with respect to the function
a(τ). Its solution has the form

a(τ) =
λ

μ + exp[(τ + αξc0)(m1 − (α + 1)s2)]
, (21)

where for compactness we denote by λ = αc0((1 + α)s2α − m1), μ = c1(1 +
(α + 1)m2 − (α + 1)(α + 2)s3), and ξ is a constant integration of the differential
equation, whose choice is made depending on the properties of the solution of
Eq. (1).

Equation (18) determines the coefficient c2, and Eq. (19) can be considered
as the basis for constructing a recurrence formula for calculating the coefficients
cn+1 in terms of the previous coefficients cj , j ≤ n. Consider first the Eq. (19).
It allows us to express the coefficient cj+1 in terms of the previous coefficients
cj , cj−1, cj−2 by the formula

cj+1 =
1

a(τ)3[(1 + α + j)(2 + α + j)s3 − (1 + α + j)m2 − 1]
×[a(τ)(α + j)(a′(τ) + a(τ)(m1 − (1 + α + j)s2))cj

−[a(τ)(−m0 + (α + j)s1))cj−1 + (α + j − 2)s0cj−2](α + j − 1)]. (22)

However, by the definition of the coefficients cn in the expression (2), they
must be constant coefficients independent of the variable τ . This means that
in the formula (22) the right-hand side of the equality must not depend on τ .
This is only if m0 = 0, s0 = 0, s1 = 0, s2 = 0. This requirement is a necessary
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condition for the existence of a non-trivial solution (2), which says that a non-
trivial solution does not hold for any polynomials m(r) and s(r) are of order 2
and 3, respectively, but only for

m(r) = m1r + m2r
2, s(r) = s3r

3. (23)

Substitution of the required necessary conditions into the formula (22) for
the coefficient cn+1 leads to the recurrence relation

cn+1 =
α + n

(1 + α + n)(2 + α + n)s3 − (1 + α + n)m2 − 1
a′(τ) + a(τ)m1

a(τ)2
cn. (24)

We note that the denominator of the first factor of the right-hand side of
(24) can be represented in the form

(1 + α + n)(2 + α + n)s3 − (1 + α + n)m2 − 1 = s3(1 + n)(β + n),

where

β =

⎧
⎪⎪⎨

⎪⎪⎩

β1 ≡ 1
s3

(
s3 −

√
4s3 + (m2 − s3)

2

)
for α = α1,

β2 ≡ 1
s3

(
s3 +

√
4s3 + (m2 − s3)

2

)
for α = α2.

(25)

When the necessary conditions are fulfilled, the function a(τ), determined by
the formula (21), is somewhat simplified

a(τ) =
λ

μ + exp[(τ + αξc0)m1]
, (26)

where λ = −αc0m1, μ = (1 + (α + 1)m2 − (α + 1)(α + 2)s3)c1. Substituting
into the right-hand side of (24) an explicit expression for the function a(τ),
determined by formula (15), we obtain

a′(τ) + a(τ)m1

a(τ)2
=

μm1

λ
=

s3βω

α
,

where ω ≡ c1/c0. In this case, the dependence on the variable τ on the right-
hand side of formula (24) vanishes. Thus, the recurrence formula (24) for the
coefficient cn+1 is transformed to the final form

cn+1 =
β(α + n)ωcn

α(1 + n)(β + n)
. (27)

Now we turn to the solution of the last Eq. (18), from which it is necessary
to determine c2. Since there are s0 = 0 among the necessary conditions, Eq. (18)
will coincide with Eq. (15) for n = 1 and therefore the coefficient c2 is calculated
from formula (26) for n = 1.

It turns out that if the polynomials m(r) and s(r) of the order 2 and 3,
respectively, are determined by the expressions (23), the solution of Eq.,(1) can
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be represented as the sum of two series of the type (2), each of which has the
following structure

(
a(τ)

r

)α

c0

(
1 +

∞∑

n=1

(
a(τ)

r

ωβ

α

)n 1
n!

n−1∏

k=0

α + k

β + k

)
.

Using again the confluent hypergeometric function, the result can be com-
pactly written in the analytical form

c0

(
a(τ)

r

)α

1F1

(
α, β,

a(τ)
r

ωβ

α

)
. (28)

As already mentioned, since Eq. (16) has two solutions (20), the solution
of Eq. (1) can consist of two components of the form (2) with different sets of
parameters (α, β), whose values are determined by formulas (20) and (25):

P (r, τ) = c01

(
a(τ)

r

)α1

1F1

(
α1, β1,

a(τ)
r

ωβ1

α1

)

+c02

(
a(τ)

r

)α2

1F1

(
α2, β2,

a(τ)
r

ωβ2

α2

)
. (29)

Before concretizing the solution, we will make some preliminary analysis.
First, we consider the properties of the diffusion process, given by drift and
volatility, determined by the functions (1) and (23). According to the assump-
tions made, the process of short-term interest rate r(t), corresponding to these
functions, is described by equation

dr(t) = (m1r(t) + m2r(t)2)dt +
√

2s3r(t)3/2dw.

The marginal probability density of this process has the form

f(r) =
δ2−γe−δ/r

r3−γΓ (2 − γ)
, δ =

m1

s3
> 0, γ =

m2

s3
< 2, s3 > 0, r ≥ 0,

where Γ (x ) is the gamma function. Taking into account these inequalities, we
note that the parameters of expression (28), according to formulas (20) and (25),
take the values α1 < 0, α2 > 0, β2 > 0, and β1 can take positive values only
when the volatility parameter is s3 > 4, which practically does not occur in real
cases.

As is well known, the bond price for r > 0 is a monotonically decreas-
ing function with respect to the variable τ ∈ (0, ∞) from P (r, 0) = 1 to
P (r,∞) = 0. Therefore, expression (28) must have the same properties. The
function 1F 1(x, y, z) has suitable properties only for x > 0, y > 0, z ∈ (−∞, 0).
Therefore, the first term in the representation (29) must be absent. In addition,
for the argument z to 1F 1 to take values in the interval (−∞, 0) as τ changes
in the interval (0,∞), it is necessary to define the integration constant ξ in
expression (15) by the equality ξ = ln(βωs3)/αc0m1. Then

a(τ) =
λ

μ + exp[(τ + αξc0)m1]
=

−m1

(em1τ − 1)s3
.
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Finally, in order for the requirement P (r, 0) = 1, to be satisfied, it is necessary
that the uncertain so far parameter c0 be defined by the equality c0 = Γ (β −
α)/Γ (β). Thus, the final form of the solution (2) of Eq. (1) in the case under
consideration has a final form

P (r, τ) =
Γ (β − α)

Γ (β)

(
m1

r s3 (em1τ − 1)

)α

1F1

(
α, β,

−m1

r s3 (em1τ − 1)

)
,

where the parameters α and β are determined by means of formulas (20) and (25):

α =
1

2s3

(
m2 − s3 +

√
4s3 + (m2 − s3)

2

)
> 0,

β =
1
s3

(
s3 +

√
4s3 + (m2 − s3)

2

)
> 0.

We note that this solution completely coincides with the solution obtained in
another way by Ahn and Gao [3], where in the notation of these authors m1 =
κθ − λ1 > 0, m2 = −κ − λ2 < 0, s3 = σ2/2. In principle, using expression (18),
we can find, by formulas (15), analytical expressions for the yield curve y(r, τ)
and the forward curve f(r, τ). However, these expressions are very cumbersome
and more practical to use numerical methods for expressing these functions for
the necessary numerical parameters.

The functions y(r, τ) and f(r, τ), defined by formulas (15) in terms of the
representation P (r, τ), can be investigated only by numerical methods. True, the
limiting values of these functions can be found in an analytical form:

lim
τ→0

y(r, τ) = lim
τ→0

f(r, τ) = r, lim
τ→∞ y(r, τ) = lim

τ→∞ f(r, τ) = αm.

As you can see, the left limit is determined only by the state of the market
and does not depend on the model parameters, and the right limit is determined
only by the structure of the model and does not depend on the state of the
market at a certain moment in time.

5 Conclusion

The article presents models for which yield curves of zero-coupon bonds and
corresponding forward curves can be found that are not related to the class of
affine models. Unfortunately, models that admit such solutions are few and, in
particular, include some well-known models: the CIR(1980) model [2] and the
Ahn-Gao model [3]. Let us formulate the requirements for the structure of the
short-term interest rate model, which would allow obtaining the term structure
of the bond price in the form (2).

The parameters of the series (2) are determined by the Eq. (9), in fact, from
which we obtain a system of equations with respect to the unknowns α, a(τ) and
cn, n = 0, 1, 2, ...
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1. To obtain a non-trivial solution (that is, for the presence of cn �= 0), it is
necessary that the degrees p and q of the polynomials m(r) and s(r), deter-
mining the drift and volatility of the short-term interest rate, satisfy one of
the following conditions: {p ≤ 2, q = 3}, {p = 2, q ≤ 3}, {p > 2, q = p + 1}.
In these cases, the equations are found from which the positive parameter is
determined.

2. Another necessary condition is related to the existence of a(τ), which does
not depend on the summation index of the series (2).

3. In addition, it is necessary that the coefficients {cn} do not depend on the
variable τ .

Simultaneous fulfillment of these necessary conditions significantly narrows
the family of models for which the solution of the term structure equation (1)
has the form (2).
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Abstract. In this work Markov multi-channel queueing networks with
rate of the external load varying with time are considered. It is assumed
that the starting load in the network can be not only a fixed constant
value, but also can be asymptotically increasing in a series scheme. A
many-dimensional service process of the network is introduced as the
number of calls in the network nodes at the corresponding instant of
time. For the service process, approximating Gaussian processes are con-
structed for both cases of starting load, when the network operates in
heavy traffic regime. Correlation characteristics of the limit processes are
written via the network parameters. It is proved that a many-dimensional
Ornstein-Uhlenbeck process approximates the service process if the num-
ber of calls in the network nodes is asymptotically large at the initial
instant of time.

Keywords: Multi-channel queueing network
Gaussian approximation · Heavy traffic regime

1 Introduction

In recent years, network research has acquired new practical importance as a pri-
mary tool for studying, designing and optimizing real-world systems with inter-
acting components for which queueing networks provide a simple but extremely
useful representation. For instance, the Internet can be represented as a computer
network consisting of provider communication nodes, web servers, transmission
stations and connected through data exchange. The role of the networks is con-
stantly increasing in epidemiology, genetics, economics (insurance, logistics),
in the study of cellular communication networks, computer viruses, computer
support.

The apparatus of the theory of queueing networks is used at all levels of orga-
nization of network structures: when designing their topology, when developing
protocols, when choosing switching methods and algorithms for routing infor-
mation flows. Often the functioning of such networks is described by stochastic
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models with parameters that are functions of time. Analysis of systems and net-
works with time-varying parameters is a complex mathematical problem. Until
now, no universal methods for studying such models have been found. There-
fore, there is need to develop methods that would be effective at least for certain
types of stochastic networks.

Time-dependence of network rates yields additional difficulties in investiga-
tion of the corresponding models. This aspect motivates using nonstationary (in
time) processes for their simulation. A number of publications (see, for example,
[1–3,7,17], etc.) contains studies in this field.

The main approach to studying of queueing networks is based upon the direct
method of finding expressions for the network state probabilities. It allows us
to find the exact solution for multiplicative or, as they are often called, locally-
balanced networks, stationary probabilities of states of which have multiplicative
form. An alternative approach is to use the method of the asymptotic analy-
sis for the researching of complex systems and networks. Different asymptotic
approaches under many variants of heavy traffic conditions for studying networks
are used in [1,2,4,9,10,12,15–17] etc.

In this paper, our approach is related to functional limit theorems for multi-
channel queueing networks. We consider models of multi-channel queueing net-
works where an input flow is a nonhomogeneous Poisson flow whose rate depends
on time. Such a flow is in good agreement with the actual flows in many situa-
tions, even if there are deviations of real flows from the Poisson one. In particular,
we study the network with rate of an input flow depending on time periodically.
Such dependence is typical for real-life networks. Each node operates as a multi-
channel queueing system. Once the call service is completed in a node, the call
is transferred to another node or it leaves the network with the corresponding
probabilities. Call service times are independent random values with exponen-
tial type distributions. It is proved that under some heavy traffic assumptions on
network parameters, the many-dimensional service process that is the number of
calls in the nodes at the corresponding instant of time converges to a Gaussian
process in the uniform topology.

Moreover, two types of starting load of the network are considered. At first,
we assume that at the initial instant of time the network is empty. Actually,
the formulated there result is valid not only for the completely empty network,
but for the networks that are “moderately” downloaded from the start. It means
that the number of calls at the initial instant is equal to the given constant value,
does not depend on series number and, therefore, cannot affect the limit service
process. The totally different case is when the starting load of the network is
asymptotically increasing in series scheme. In such a situation the loading process
can yields substantial changes in the representation of limit process. In this case
we give conditions when a many-dimensional Ornstein-Uhlenbeck process can
be obtained as the limit of the service process. Correlation characteristics of
the Gaussian processes in both cases are written via network parameters in an
explicit form.
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Note, that such a network model with periodical input flow were considered in
[13]. In this paper transient and stationary regimes for the network are studied.
For the service process of calls, quasiergodic distribution is found. In transient
regime, generating function of the service process is obtained, and moments of
the service process are calculated. Network in heavy traffic regime is consid-
ered as well, prove of the limit theorem in case with fixed starting load, that is
omitted in the present work, are given. In present work we formulate in addi-
tion our criterium for many-dimensional Gaussian processes, which enables us
to prove Markovian property of the limit process in case of asymptotically large
starting load. We also consider here more general case of networks with separate
input flows arriving at each network node with asymptotically large starting
load without the periodicity condition. Result about the correspondent service
process approximation by a many-dimensional Ornstein-Uhlenbeck process is
obtained.

This paper is organized as follows. In Sect. 2 we give description for the
basic model of a multi-channel network with a periodical input flow when it
is initially empty. The condition of a heavy traffic regime is formulated as a
condition for the service parameters. Theorem about convergence of normalized
service process to a Gaussian process in heavy traffic regime is given. In Sect. 3,
results about convergence of the service process for the network with periodical
input flow and with asymptotically large initial loading as well as some auxiliary
results are presented. Additional condition for starting load is formulated in order
for the limit process to be a many-dimensional Ornstein-Uhlenbeck process. In
Sect. 4 the similar result for the general model with non-homogeneous Poisson
input flow without periodicity condition is obtained. The conclusions and some
suggestions for future research are given in Sect. 5.

2 Limit Process in Case of Fixed Starting Load

2.1 Model Description

The main model under consideration is a queueing network consisting of r service
nodes. Each of the r nodes operates as a multi-channel stochastic system. If a
call arrives at such a system then its service begins immediately. Service times of
calls are random variables with their distribution depending on the node number.

From the outside, a periodic nonhomogeneous Poisson flow of calls ν(t), t ≥
0, with the leading function arrives to the network. Λ(t), t ≥ 0, is a positive
nondecreasing right-continuous function. At first, we suppose that the input flow
is a regular Poisson flow, and Λ(t) is assumed to be an completely continuous
with density function λ(t), t ≥ 0. It means that it can be written at the form

Λ(t) =
∫ t

0

λ(u)du.

Moreover, let λ(t) be a periodic function with the period T :

λ(nT + θ) = λ(θ) for n = 1, 2, ... and 0 ≤ θ < T.
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A call arriving to the network is directed to the i-th node with probability
p0i, i = 1, 2, . . . , r. The service time in the i-th node is distributed exponentially
with the rate μi, i = 1, 2, . . . , r. Once the service is completed in the i-th node,
the call is directed to the j-th node with probability pij , or it leaves the network

with probability pir+1 = 1 −
r∑

j=1

pij . Denote by P = ‖pij‖r
1 the switching matrix

of the network. An additional node numbered by r+1 is interpreted as an “exit”
from the network.

According to common notation adopted in the theory of queueing networks,
the above model is denoted by [Mt|M |∞]r.

Denote by Qi(t), i = 1, 2, . . . , r, t ≥ 0, the number of calls in the i-th node
of the network at the instant t. The service process of calls in the network
of the [Mt|M |∞]r-type will be defined as an r- dimensional process Q(t)′ =
(Q1(t), ..., Qr(t)). Symbol ′ stands for the transposed vector.

Our main purpose is to study the service process in heavy traffic regime of the
network with a fixed initial load and with the initial load, that is “asymptotically
large”. We identify the conditions under which this process can be approximated
by the r-dimensional Ornstein-Uhlenbeck process as well.

2.2 Heavy Traffic Condition and Limit Theorem for Service Process

The heavy traffic regime for the [Mt|M |∞]r-network with periodical input means
that service rates at the network nodes depend on a series number n such that
the following condition is fulfilled.

Condition 1. limn→∞ nμ
(n)
i = μi > 0, i = 1, 2, ..., r.

In the context of Condition 1 we consider the sequence of stochastic processes:

ξ(n)(t) = n−1/2(Q(n)(nt) − q(n)(nt)), t ≥ 0,

where

q(n)
′
(nt) = (q(n)1 (nt), . . . , q(n)r (nt)), q

(n)
j (nt) =

r∑
i=1

p0i

nt∫
0

p
i(n)
j (nt − u)λ(u)du,

j = 1, . . . , r, p
i(n)
j (τ) are the entries of the matrix P (n)(τ) = ‖p

i(n)
j (τ)‖r

1 =

exp{Δ(μ(n))(P − I)τ}, μ(n)′
= (μ(n)

1 , . . . , μ
(n)
r ); Δ(x) = ‖δijxi‖r

1 is a diagonal
matrix with a vector x′ = (x1, ..., xr) at the principal diagonal, I = ‖δij‖r

1 is an
identity matrix.

In order to describe the limit of the sequence of stochastic processes ξ(n)(t),
n → ∞, we introduce two independent Gaussian processes

ξ(i)
′
(t) = (ξ(i)1 (t), . . . , ξ(i)r (t)), i = 1, 2.

The process ξ(1)(t) is determined by the mean values:

Eξ(1)(t) = 0
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and by the correlation matrixes:

R(1)(t) = Eξ(1)(t)ξ(1)
′
(t) − Eξ(1)(t)Eξ(1)

′
(t) =

∫ t

0

P ′(u)Δ(λ̄)P (u)du,

R(1)(s, t) = Eξ(1)(s)ξ(1)
′
(t) − Eξ(1)(s)Eξ(1)

′
(t) = R(1)(s)P (t − s), s < t,

where λ̄′ = (λ1, ..., λr), λi = p0i

∫ T

0
λ(u)du, P (τ) = exp{Δ(μ)(P − I)τ}.

For the process ξ(2)(t)
Eξ(2)(t) = 0,

R(2)(t) =
∫ t

0

[
Δ(λ̄′P (u)) − P ′(u)Δ(λ̄)P (u)

]
du,

R(2)(s, t) = R(2)(s)P (t − s), s < t.

The following result give an approximation for the service process of the
[Mt|M |∞]r - network under heavy traffic Condition 1.

Theorem 1. Let Condition 1 takes place for the [Mt|M |∞]r- network, and let
the network be empty at the initial instant t = 0 : Qi(0) = 0, i = 1, 2, . . . , r. Then
on any finite interval [0, T ] the sequence of stochastic processes ξ(n)(t), n ≥ 1,
converges as n → ∞ to the process ξ(1)(t) + ξ(2)(t) in the uniform topology.

The proof of Theorem 1 follows from some auxiliary results and can be found
in [13]. It is easy observed that the limit is a Markov Gaussian process. Note,
that the main feature of the limit Gaussian process ξ(t), is the following: ξ(t) =
ξ(1)(t)+ξ(2)(t). The part ξ(1)(t) of the limit process is associated with fluctuations
of an input flow and ξ(2)(t) is associated with fluctuations of service times.

3 Limit Theorem in Case of Asymptotically Large
Starting Load

In assumptions about the above model, it was predicated that at the initial
instant the network have to be empty. This assumption is not crucial, and the
assertion of Theorem 1 will also held true for networks that are “moderately”
loaded at the initial instant of time. This means that the number of calls initially
located in each node does not depend on the series number n, so, it is limited
and, accordingly, can not affect the limit service process.

The situation changes if at the initial instant of time the number of calls
depends on the series number n and increases as n → ∞. Then the service
process of calls that were initially located at the network can converge to a
non-zero limit, and this term can enter into the overall limit process.

So, now, for the [Mt|M |∞]r-network operating in heavy traffic regime, we
consider the case when the vector of initial conditions takes asymptotically large
values.

In order to balance the parameters of the limit process components, we
assume within this section that the [Mt|M |∞]r-network is open. The formulation
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of this network property in terms of a switching matrix leads to the following
condition: the spectral radius of the switching matrix P is strictly less than 1.

We denote the solution of the balance equation for our network by θ′ =
(θ1, ..., θr) = λ̄′ (I − P )−1

. We will require the fulfilment of the following condi-
tion instead of Q

(n)
i (0) = 0, i = 1, 2, ..., r, :

Condition 2. Q
(n)
i (0) =

[
nθi/μi +

√
nη

(0)
i

]
, i = 1, 2, ..., r, where η(0)′

=(
η
(0)
1 , ..., η

(0)
r

)
is a fixed vector in R

r, [·] is the integer part of a number.

Next, we study the asymptotic behavior of the sequence of stochastic pro-
cesses

η(n)(t) = n−1/2
(
Q(n)(nt) − n (θ/μ)

)
, t ≥ 0, n ≥ 1,

(θ/μ)′ = (θ1/μ1, ..., θr/μr) .

In this case, we introduce in addition a Gaussian process ξ(3)(t) that does not
depend on the previously introduced processes ξ(1)(t) and ξ(2)(t). This process
ξ(3)(t) is determined by the mean values

Eξ(3)(t) = P ′(t)η(0),

and by correlation matrices

R(3)(t) = Eξ(3)(t)ξ(3)
′
(t) − Eξ(3)(t)Eξ(3)

′
(t)

= Δ
(
(θ/μ)′

P (t)
) − P ′(t)Δ (θ/μ)P (t),

R(3)(s, t) = Eξ(3)(s)ξ(3)
′
(t) − Eξ(3)(s)Eξ(3)

′
(t) = R(3)(s)P (t − s), s < t.

In order to constructively define the service process, we consider a Markov chain
x(t), t ≥ 0, in the set of states {1, ..., r, r + 1} with infinitesimal rates

aij =

⎧⎨
⎩

−μi (1 − pii) , if i = j = 1, ..., r;
μipij , if i �= j, i = 1, ..., r, j = 1, ..., r, r + 1;
0, if i = r + 1, j = 1, ..., r, r + 1;

and with the initial distribution p′(0) = (p1(0), ..., pr+1(0)) .
If pi(0) = 1, then we mark the corresponding chain as x(i)(t). The state r+1

for the chain x(t) is absorbing. Transient probabilities can be written as follows:

pij(t) = P {x(t) = j/x(0) = i} = P
{
x(i)(t) = j

}
, i = j = 1, ..., r,

P (t) = ‖pij(t)‖r
1 = exp {Δ(μ)(P − I)t} .

The trajectory of a call between the instant of arriving to the network through
the i-th node and the exit instant of it can be described by the chain x(i)(t),
and the absorption in the state r + 1 is interpreted as an exit of the call from
the network.
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Let us connect with the chain x(i)(t), t ≥ 0, an r-dimensional process of
indicator type χ(i)′

(t) =
(
χ
(i)
1 (t), ..., χ(i)

r (t)
)

, t ≥ 0, as follows:

χ(i)(t) =
{

ej , if x(i)(t) = j, j = 1, ..., r;
e0, if x(i)(t) = r + 1.

At this point e0 is an r-dimensional vector with null entries, ej is an r-
dimensional vector whose j-th entry is equal to 1 while the rest are 0.

Let us denote by χ(i)k(t), t ≥ 0, i = 1, 2, ..., r, k = 1, 2, ..., independent
stochastic processes of indicator type whose finite-dimensional distributions are
the same as those of χ(i)′

(t) =
(
χ
(i)
1 (t), ..., χ(i)

r (t)
)

.

We study now the normalized service process of calls being at the nodes of
the network at the initial instant t = 0:

η̃(n)(t) =
1√
n

⎧⎪⎨
⎪⎩

r∑
m=1

[nΘm/μm+
√

nη(0)
m ]∑

k=1

χ(m)k(nt) − nP ′(t) (θ/μ)

⎫⎪⎬
⎪⎭ .

Lemma 1. On any finite time interval [0, T ] the sequence of stochastic processes
η̃(n)(t) converges to the process ξ(3)(t) as n → ∞ in the uniform topology.

Proof. Taking into account that

lim
n→∞ Eη̃(n)(t) = P ′(t)η(0),

lim
n→∞

[
Eη̃(n)(t)η̃(n)′

(t) − Eη̃(n)(t)Eη̃(n)′
(t)

]
= Δ

[
(θ/μ)′ P (t)

] − P ′(t)Δ (θ/μ) P (t),

lim
n→∞

[
Eη̃(n)(s)η̃(n)′

(t) − Eη̃(n)(s)Eη̃(n)′
(t)

]

=
{
Δ

[
(θ/μ)′

P (s)
] − P ′(s)Δ (θ/μ) P (s)

}
P (t − s), s < t,

the conditions of the normal correlation theorem (see [5], p. 188) are fulfilled,
and as a consequence we have the desired convergence of finite-dimensional dis-
tributions.

The process η̃(n)(t) has moments of any order. Therefore, in order to
strengthen the convergence of finite-dimensional distributions to a convergence
in the uniform topology, it is convenient to apply the criterion in [4], p. 179,
with F (t) = t and α = 3/4, and to double use Chebyshov’s inequality for upper
bounding of the corresponding probabilities.

The lemma is proved.
Let Q̃(n)′

(t) =
(
Q̃

(n)
1 (t), ..., Q̃(n)

r (t)
)

, t ≥ 0, be an r-dimensional stochastic
process with distribution coinciding with the distribution of service process in
the [Mt|M |∞]r-network with the periodic input flow in the case when at the
initial instant the network is empty.

As a consequence of Theorem 1 we obtain the following result.
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Lemma 2. Let for the [Mt|M |∞]r-network with a periodic input flow Condition
1 is held and spectral radius of the switching matrix P is strictly less than 1. Then
the sequence of stochastic processes

ξ̃(n)
′
(t) = n−1/2

[
Q̃(n)′

(nt) − n (θ/μ)′ (I − P (t))
]

converges as n → ∞ to ξ(1)(t) + ξ(2)(t) in the uniform topology on any finite
interval [0, T ] .

Proof. For the above model, Λi(t) = p0i

∫ t

0
λ(u)du, i = 1, 2, ..., r, is the leading

function of nonhomogeneous Poisson process arriving from the outside into the
i-th node of the [Mt|M |∞]r-network. Denote by Λ̄′(t) = (Λ1(t), ..., Λr(t)) . Then
we obtain the following consequence from Theorem 1:

n−1/2

[
Q̃(n)′

(nt) −
∫ nt

0

[
dΛ̄(u)

]′
P (n)(nt − u)

]
U⇒n→∞ ξ(1)(t) + ξ(2)(t),

where symbol U⇒ stands for convergence in the uniform topology.

Taking into account Theorem 3.1 from [4], p. 27, Lemma 2 will be proved if
we show that

lim
n→∞ sup

t∈[0,T ]

n−1/2

∣∣∣∣
∫ nt

0

[
dΛ̄(u)

]′
P (n)(nt − u) − n(θ/μ)′(I − P (t))

∣∣∣∣
= lim

n→∞ sup
t∈[0,T ]

n−1/2

∣∣∣∣
∫ t

0

[
dΛ̄(nv)

]′
P (t − v) − n(θ/μ)′(I − P (t))

∣∣∣∣ = 0. (1)

On the one hand, we have
∫ t

0

[
dΛ̄(nv)

]′
P (t − v) = n

∫ t

0

[
d(n−1Λ̄(nv))

]′
P (t − v)

= n

[
n−1Λ̄′(nv) −

∫ t

0

n−1Λ̄′(nv)dP (t − v)
]

.

On the other hand, we can write

sup
t∈[0,T ]

∣∣n−1Λ̄(nt) − λ̄t
∣∣ = sup

t∈[0,T ]

∣∣∣∣∣n−1

(
λ̄[nt]T +

∫ {nt}T

0

λ̄(u)du

)
− λ̄t

∣∣∣∣∣
= sup

t∈[0,T ]

n−1

∣∣∣∣∣
∫ {nt}T

0

λ̄(u)du − λ̄{nt}T

∣∣∣∣∣ ≤ n−1(1 + T )|λ̄|,

where λ̄(t) = (λ1(t), ..., λr(t))
′
.

So,

sup
t∈[0,T ]

n1/2

∣∣∣∣n−1Λ̄′(nt) −
∫ t

0

n−1Λ̄′(nv)dP (t − v) − (θ/μ)′(I − P (t))
∣∣∣∣

= O

(
1√
n

)
(2)
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Since

λ̄′t − λ̄′
∫ t

0

vdP (t − v) = λ̄′
∫ t

0

P (t − v)dv = λ̄′
∫ t

0

P (v)dv

= λ̄′(I − P )−1Δ−1(μ)(I − P (t)) = (θ/μ)′(I − P (t)),

it is obvious that estimation (2) is sufficient to obtain (1).
The lemma is proved.
Under Condition 2, the normalized service process η(n)(t), t ≥ 0, for the

[Mt|M |∞]r-network can be represented as follows:

η(n)(t) � η̃(n)(t) + ξ̃(n)(t), t ∈ [0, T ].

Moreover, η̃(n)(t) and ξ̃(n)(t) are independent stochastic processes.
Then, Lemmas 1 and 2 yields the following result.

Theorem 2. Suppose that the [Mt|M |∞]r-network with a periodical input flow
has the spectral radius of its switching matrix strictly less than 1, and let Condi-
tions 1, 2 be satisfied. Then the sequence of stochastic processes η(n)(t) converges
as n → ∞ to ξ(1)(t)+ξ(2)(t)+ξ(3)(t) in the uniform topology on any finite inter-
val [0, T ].

In comparison with the statement of Theorem 1, the additional summand
ξ(3)(t) of the limit process is associated with fluctuations of service times of the
calls located in the network nodes at the initial instant t = 0.

It is not difficult to check that for correlation matrices we have:

R(1)(t) + R(2)(t) + R(3)(t) = Δ(θ/μ) − P ′(t)Δ(θ/μ)P (t).

So, Theorem 2 implies the following result.

Corollary 1. Suppose that for the [Mt|M |∞]r-network conditions of Theorem
2 are fulfilled. Then the sequence of stochastic processes η(n)(t) converges as
n → ∞ to a stochastic process η(0)(t) in the uniform topology on any finite
interval [0, T ], and η(0)(t) is an r-dimensional Ornstein-Uhlenbeck process in
transient regime with η(0)(0) = η(0) and the following correlation characteristics:

Eη(0)(t) = P ′(t)η(0),

R(0)(t) = Eη(0)(t)η(0)′
(t) − Eη(0)(t)Eη(0)′

(t) = Δ(θ/μ) − P ′(t)Δ(θ/μ)P (t),

R(0)(s, t) = Eη(0)(s)η(0)′
(t) − Eη(0)(s)Eη(0)′

(t) = R(0)(s)P (t − s), s < t.

Note, that by the definition an r-dimensional Ornstein-Uhlenbeck process
is a Markov process (see [6], [8], p. 166). Markovian property of the limit
process η(0)(t) follows from the next criterium for many-dimensional Gaussian
processes ([9]).
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Lemma 3. Let ξ′(t) = (ξ1(t), ξ2(t), . . . , ξr(t)) ∈ Rr be the r-dimensional Gaus-
sian process with zero mean and correlation matrices

R(t) = Eξ(t)ξ′(t) − Eξ(t)Eξ′(t), R(s, t) = Eξ(s)ξ′(t) − Eξ(s)Eξ′(t), s < t.

If for some matrix A and for all s, t (0 ≤ s < t) the functions R(s) and R(s, t)
relate to each other by the following way:

R(s, t) = R(s)P (t − s), where P (t) = exp(At),

then the Gaussian process ξ(t) is a Markov process and the conditional distri-
bution P (ξ(t) ∈ B/ξ(s) = x), B ∈ BRr , is Gaussian with the mean vector
P ′(t − s)x and the correlation matrix R(t) − P ′(t − s)R(s)P (t − s).

The set GA of Gaussian processes for which the condition of Lemma 3 takes
place and the corresponding matrices are the same (equal A) satisfies to the
closure condition: a linear combination of two independent processes from GA

belongs GA. Thus, as a consequence from Lemma 3 we obtain the following
interesting fact: the sum of two independent Markov GA-processes is a Markov
process.

4 Ornstein-Uhlenbeck Approximation Without
Periodicity Condition

Now we consider a network consisting of r nodes with input flows of calls νi(t),
i = 1, 2, ..., r, t ≥ 0, arriving into each node separately. The flow νi(t), that
arrives at the i-th node, is a nonhomogeneous Poisson process with a leading
function Λi(t). Assumption about periodicity is omitted. The routing algorithm
and service characteristics are the same as in the model above. Such a network
will be denoted by the symbol

[
M t|M |∞]r

.
For the external input flows of calls, we consider the next condition.

Condition 3. For any T > 0

sup
t∈[0,T ]

∣∣∣n−1Λ̄(n)(nt) − λ̄t
∣∣∣ = o(n−1/2),

where λ̄ = (λ1, λ2, ..., λr)
′
, λi ≥ 0, i = 1, 2, ..., r, and λ1 + λ2 + ... + λr �= 0.

Obviously, when Condition 3 is satisfied, external input flows into each net-
work node νi(t), i = 1, 2, ..., r, t ≥ 0, are close to stationary Poisson processes
with rates λi on a time scale nt.

Provided that the spectral radius of the switching matrix P is strictly less
than 1, there exists a solution of the balance equation

θi = λi +
r∑

j=1

θjpji, i = 1, 2, ..., r.
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Next, we consider a sequence of stochastic processes

η(n)(t) = n−1/2
(
Q(n)(nt) − n(θ/μ)

)
, n = 1, 2, ... .

For η(n)(t), the similar for Theorem 2 result takes place.

Theorem 3. Let for the
[
M t|M |∞]r

-network the spectral radius of the switch-
ing matrix P be strictly less than 1 and let Conditions 1–3 be held. Then η(n)(t)
converges as n → ∞ in the uniform topology on any finite interval [0, T ] to the
r-dimensional Ornstein-Uhlenbeck diffusion process η(0)(t) (η(0)(0) = η(0)) with
the drift vector

A(x) = (P ′ − I)Δ(μ)x,

and the diffusion matrix

B = Δ(θ) (P − I) + (P ′ − I)Δ(θ).

It is obvious that Theorem 2 is a special case of the last theorem.

5 Conclusions

In this work we investigate asymptotic behavior of the service process of calls for
the stochastic network of the [Mt|M |∞]r-type under the assumptions that the
network operates in heavy traffic regime. Firstly, the external input flow of calls
is supposed to be a Poisson flow with time-dependent instant value of its rate
that is periodical function. The network is considered in two different cases of
starting load. Firstly, the number of calls in the initial instant is assumed to be
equal to zero. Secondly, this number is assumed to increase with a series number
increasing. It is proved that under formulated conditions the service process has
Gaussian process as a limit in the uniform topology. It is significant, that the
limit process is decomposed into the sum of independent Gaussian processes. In
case of the fixed initial load it has two summands ξ(1)(t) and ξ(2)(t). In case of
asymptotically large load it can be written as ξ(1)(t) + ξ(2)(t) + ξ(3)(t), where
the first summand ξ(1)(t) is associated with fluctuations of input flow, ξ(2)(t) is
associated with fluctuations of service times of calls arrived from the outside,
and ξ(3)(t) is connected with fluctuations of service times of calls located in the
network nodes at the initial instant t = 0. In case of asymptotically large load,
the limit process is a many-dimensional Ornstein-Uhlenbeck diffusion process.
Similar result about the service process approximation by Ornstein-Uhlenbeck
process is obtained also for more general model with separated input flows with-
out periodicity condition. For all cases functional limit theorems on convergence
in uniform topology are formulated, and the approximating Gaussian processes
with its characteristics in explicit form are constructed.

Some studies of similar multi-channel stochastic networks with time-
dependent input flow and different types of service can be found in [9,10,12].
Stochastic networks with input flow controlled by Markov process was investi-
gated in [14].



38 E. Lebedev and H. Livinska

Note, that in the work jump-wise service processes are approximated by con-
tinuous Gaussian processes of simpler structure. Moreover, all convergences are
proved in the uniform topology. This type of convergence of stochastic processes
gives us a possibility to calculate functionals related with the processes and to
solve optimization problems (see, for example, [11]).
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Abstract. A tandem retrial queueing system with orbital search in
which two self-service stations namely, the main station and the offer
zone and an orbit for passive customers lost from the offer zone without
joining the main station is considered. The main service station is of infi-
nite capacity while the offer zone which works in a random environment
and the orbit for passive customers are of finite capacities. Two types of
customers arrive to the service stations according to a Marked Markovian
Arrival Process (MMAP) with representation (D0, D1, D2). The service
times in both stations are exponentially distributed. A virtual search
mechanism associated with the main station will be working when the
number of customers in the main station is below a pre-assigned level
L. The duration of search is exponentially distributed. The condition
for system stability is established. The system state distribution in the
steady state is obtained. Several system performance characteristics are
derived. An associated optimization problem is investigated.

Keywords: Retrial queue · Tandem queue · Main station
Offer zone · Random environment · Passive customers · Orbit

1 Introduction

Tandem queues form an important class of the queueing networks and it serves
as a link between the theory of queues and queueing networks. A bibliography of
articles on queueing networks with finite capacity service stations can be found
in [22]. Most of the literature in this regard assume that the service stations
in the tandem network are of finite capacity and the time between successive
arrivals to the system are exponentially distributed. [17] gives an algorithm for
solving exponential tandem queues with blocking. In [11–13] multi-stage queue-
ing networks with correlated arrivals are considered. In Krishnamoorthy et al.
[16] considered a tandem queueing model with two service stations and one of
which namely, the offer zone works in a random environment. Artalejo [1,2] gives
a detailed bibliography of retrial queues. The monograph by Falin and Temple-
ton [10] gives an introduction to the theory of retrial queues and it describes how
c© Springer Nature Switzerland AG 2018
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the theory of retrial queues can well be applied in the analysis of problems which
are more realistic as well as practically important. The present paper generalizes
the model described in one of our papers [16] to a retrial set-up by setting up
an orbit for holding the customers who leave the system after completing their
service at the offer zone.

In the present paper, we consider a tandem retrial queueing network with two
service stations and an orbit for those customers who discontinued their service
after a trial service. This model is the mathematical formulation of a set of real life
problems persisting in the field of telecommunication. In the field of telecommu-
nication, various service providers compete for attracting the maximum number
of customers to their paid service. Some customers directly enter the paid service
while some others would like to make a previous trial of service before subscrib-
ing to paid service. Service providers announce various types of offers, incentives
and free trials to make the maximum number of customers to continue with their
service. They try to minimize the loss of customers from the subscription of their
service. Not all the customers, who utilized the offers and free trials, move on to
paid service. Some may continue with the same service provider as paid customers,
while some others discontinue the service temporarily after the free-trial. But the
service providers have a data-base consisting of those customers who discontinued
service after the free trial and that may be considered as an orbit. Having discon-
tinued withe service for a short time, a few may have a tendency to come back to
paid service, which may be considered as retrials and those retrial rates may be
small when compared to direct arrivals to the paid service. So the customers in
the orbit may be designated as passive customers. The service providers need a
minimum number of customers in paid service for the proper functioning of their
system. So whenever the number of customers in the paid service drops down to
this pre-assigned value, the service providers try to bring some more customers to
the paid service by means of orbital search. This search can be any of the activities
like contacting those passive customers over the telephone, sending e-mails, addi-
tional cash-back offers etc. Search may result in an additional increment in the
number of paid customers and whenever it reaches the optimum level, no more
search has been done. Since there is some cost associated with the search, an opti-
mum of this level to switch on the search mechanism is to be found. This problem is
modelled mathematically as a tandem retrial queueing system with orbital search
in which two service stations, namely the main station and the offer zone are func-
tioning. The main service station is of infinite capacity while the offer zone is of
finite capacity. The most important feature of the finite capacity offer zone in our
model is that it works in a finite number of random environments, each of which
lasts for a time interval whose distribution is Phase Type. In [13] and [12] servers
in the same station are independent and identical. In our model the servers of the
same station are identical, but the rate at which service is offered at the offer zone
depends on the current environmental status of the offer zone. In addition to the
retrials from the orbit, search for customers start functioning when the number of
customers in the main station drops down to a preassigned level.
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In classical queueing models Neuts and Ramalhoto [19] introduced the con-
cept of search of orbital customers by the server at the end of a service completion
epoch. In the case of M/G/1 retrial queues, search of orbital customers was intro-
duced by Artalejo et al. [3]. Analysis of multi server queues with orbital search
was done by Chakravarthy et al. in [5]. Krishnamoorthy et. al [14] investigated
M /G/1 Retrial queues with non persistent customers and orbital search. More
literature related to orbital search can be found in [6,7,15]. We also assume that
the arrivals to the main station and the offer zone is according to a Marked
Markovian Arrival Process [MMAP]. In Krishnamoorthy et al. [15] considered a
queueing system with MMAP arrivals. Steady state probabilities are computed
using Neuts’ Matrix Geometric methods [20]. The rate matrix is computed using
Logarithmic reduction Algorithm [18]. Various methods for the calculation of the
equilibrium distribution of LDQBD’s can be found in the papers by Neuts and
Rao [21], Bright and Taylor [4] and Ramaswamy [18]. The stability condition is
established and the steady state distribution is computed. Several performance
measures of the system that influences the efficiency are derived. The cost func-
tions for optimizing the level at which the search mechanism is to be switched
off is derived. The control problems that optimizes the maximum capacity of the
offer zone as well as the orbit are analyzed.

2 Description of the Model

We consider a tandem retrial queueing system in which, there are two self-service
stations namely, the main station and the offer zone. The main station and the
offer zone provides the same kind of service. But the service at the offer zone is
restricted, for example, some trial service and it can not be continued for as long
as they like. But after completing their service at the offer zone, the customers
can decide whether to continue their service at the main station or not. There
are some restrictions on the period of time they can stay in service at the offer
zone. There are two types of customers in this system, say Type A and Type B.
Type A customers are those customers who directly enter the main station for
service and they do not try to take a trial service. Type B customers are those
customers who wish to have a trial service by entering the offer zone and after
their service completion at the offer zone, they can decide whether to continue
their service at the main station or to leave the system. The offer zone works in
a random environment and the environments at the offer zone are designed in
such a way to attract the maximum number of type B customers from the offer
zone to the main station and to make them get served at the main station. The
service at the main station contributes a revenue to the system, while the offer
zone has some kind of establishment as well as holding cost associated with it
for the proper functioning. After the service completion at the offer zone, Type
B customers are assumed to continue their service at the main station with
probability η and with its complimentary probability (1 − η), joins an orbit of
passive customers who temporarily discontinued service but retries for service
after being idle for sometime. The customers in this orbit are referred to be
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passive in the sense that their retrial rates are very low compared to the arrival
rates to both the stations. Let ν be the rate at which retrials from the offer zone
to the main station occur and it is assumed to be lower than the fundamental
rates of arrivals to both the stations. For the proper functioning of the system a
minimum of L customers are to be ensured at the main station and so whenever
the number of customers in service at the main station is below this level L,
a virtual search mechanism associated with the main station, starts working
and it go in search of customers from the orbit of passive customers. This may
be by providing some additional incentives or cash back policies or some other
strategies. As a result of this search, customers arrive to the main station at an
exponential rate ν∗. The main station is of infinite capacity while both the offer
zone and the orbit of passive customers are of finite capacities, say N and M
respectively. As a result, when the offer zone is full, Type B customers directly
enter the main station with probability γ and leaves the system with probability
(1 − γ). Customers arriving to the orbit when it is full, is lost from the system
for ever. Non persistent customers leave the orbit at an exponential rate ζ.

In the present model both type A and type B customers arrive according to
a Marked Markovian Arrival Process (MMAP) with representation (D0,D1,D2)
where D1 = pD∗ and D2 = (1 − p)D∗ for 0 ≤ p ≤ 1. MMAP may be viewed as
a special case of Markovian Arrival Processes or MAPs which is a more general
class of point processes which takes in to account the correlation between inter-
event times. It includes both Renewal as well as non-Renewal point processes.
Many of the processes which we use in modelling of stochastic processes such as
Poisson Processes, PH Renewal Processes, Markov Modulated Poisson Processes
(MMPP) come under the class of MAP’s. The MMAP governing the arrival
of type A and type B customers in the present model is described as follows:
Let the underlying Markov chain {νt, t ≥ 0} be irreducible and let D be the
generator of this Markov chain with state space {1, 2, 3, . . . ,m}. At the end of
a sojourn time in state i, which is exponentially distributed with a positive
finite parameter λi, one of the following events could occur: with probability
pij(0) it can move to state j where j �= i without an arrival, with probability
pij(1) it can move to state j with an arrival of a type A customer and with
probability pij(2) it can move to state j with an arrival of a type B customer.
Let D0 = dij(0) be the rate matrix corresponding to those transitions without
an arrival. Let D1 = dij(1) be the rate matrix corresponding to the arrival
of type A customer and let D2 = dij(2) be the rate matrix corresponding to
the arrival of type B customer. Then the MMAP under consideration is well
be described by the parameter matrices (D0,D1,D2) where D1 = pD∗ and
D2 = (1 − p)D∗ for 0 ≤ p ≤ 1. D = D0 + D1 + D2 is the infinitesimal generator
of the Markov chain corresponding to the MMAP. All the off-diagonal elements
of D0 and all the elements of D1 and D2 are non negative. To completely specify
a MMAP (D0,D1,D2), the initial probability vector in the Markov chain needs
to be specified and we assume that the initial probability vector is the same as
the stationary probability vector. That is our MMAP is a stationary MMAP. The
average total arrival intensity λ is defined by λ = θD1e, where θ is the invariant
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vector of the stationary distribution of the Markov chain {νt, t ≥ 0}. The vector
θ is the unique solution of the system of equations θD = 0,θe = 1. where e
denotes a column vector of 1′s and 0 is a row vector of 0′s. The average arrival
intensity λA and λB of type A and type B customers respectively are defined by
λA = θD1e and λB = θD2e. The squared integral (without differentiating the
types of customers) coefficient of variation of intervals between successive arrivals
is cvar = 2λθ(−D0)−1e − 1. The squared coefficient of variation of inter-arrival
times of type A customers is cvar(A) = 2λAθ[−D0 − D2]−1e − 1 where as that
of inter-arrival times of type B customers is cvar(A) = 2λBθ[−D0 − D1]−1e − 1.
The integral coefficient of correlation of two successive intervals between arrivals
is given as ccor = [λθ(−D0)−1(D − D0)(−D0)−1e − 1]/cvar.

The main station and the offer zone offers the same service but of the offer
zone works in a random environment. We assume that there are a finite number of
environments whose duration follows Phase Type distribution and the generator
matrix of the Markov process leading to the PH distribution depends on the
current environment of the offer zone. Let pi where {i = 1, 2, 3, . . . , n} is the
probability that the offer zone is at environment i. Each environment of the offer
zone consists of one or more offers. Let {1, 2, . . . , n} denote the n environments
of the offer zone and the duration of time the environment i works follow Phase
type distribution with irreducible representation PH(βi, Si) with Mi phases.
The vector S0

i is given by S0
i = −Sie. We assume that all the customers in the

offer zone are getting served in the same environment and so the offers given
to those customers in service at the offer zone change with the change in the
environment in which the offer zone works. After service completion at the offer
zone type B customers enter the main station with probability η and enter the
orbit with probability (1 − η) provided it is not fully occupied.

3 Matrix Analytic Solution

We introduce the necessary random variables as follows: Let N1(t) denote the
number of customers in the main station, N2(t) the number of customers in
the offer zone, N3(t) the number of customers in the orbit, E(t) the environ-
ment of the offer zone, S(t) the phase of the environment of the offer zone
and A(t) the phase of the arrival process. E(t) can take any of the values
{1, 2, . . . , n} depending on the ongoing environment of the offer zone. Then{
N1(t), N2(t), N3(t), E(t), S(t), A(t)

}
is a Markov process and it describes the

process under consideration. This model can be considered as a Level dependent
Quasi-Birth-Death (LDQBD) process and a solution is obtained by Matrix Ana-
lytic Method. We define the state space of the QBD under consideration and
analyze the structure of its infinitesimal generator.

The state space Ω consists of all elements of the form (i, j, k, r, s, t) where

i ≥ 0; 0 ≤ j ≤ N ; 0 ≤ k ≤ M ; t = 1, 2, . . . ,m; r = 1, 2, 3 . . . , n

For a fixed value of r, s = 1, 2, . . . , Mr.
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Let the ordering of the elements of Ω be lexicographical. The infinitesimal
generator Q of the LDQBD describing the model under consideration is of the
form

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
1 A0

0

A1
2 A1

1 A1
0

A2
2 A2

1 A2
0

A3
2 A3

1 A3
0

. . . . . . . . .

. . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where Ai
0, A

i
1, A

i
2 are all square matrices whose entries are block matrices of

appropriate dimensions.
Ai

0 represents the rate matrix corresponding to the arrival of a customer to
the main station; that is transition from level i → i + 1 where i ≥ 0.

Ai
2 represents the rate matrix corresponding to the departure of a customer

after service completion at the main station when there are i customers in the
main station; that is from level i → i − 1, for i = 1, 2, . . . , and

Ai
1 describes all transitions in which the level does not change (transitions

within levels i).
In the following sequel ⊗ and ⊕ represent the Kronecker Sum and Kronecker

product respectively. Let e denote all one vector of appropriate order and IM
denote an identity matrix of order M .

The structure of the Ai
1 for i ≥ 0 are as follows:

Ai
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E1 E0

E1
2 E1 E0

E2
2 E1 E0

. . . . . . . . .
. . . . . . . . .

E
(N−1)
2 E1 E0

EN
2 EN

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

– E0 is the matrix representation of the rate of arrival of type B customers and
it depends neither on the number of customers currently undergoing service at
the main station nor the number of customers waiting in the orbit of passive
customers.

– E1 is the matrix representation of the rates corresponding to the transitions
when there are i customers in the main station and j customers in the offer
zone.

– Ej
2 is the matrix representation of the rates at which customers leave the

offer-zone after completing their service in the offer zone when there are j
customers in the offer zone.
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E1 is an (M + 1) × (M + 1) matrix with sub-blocks given by

E1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

F1

F2 F1

F2 F1

. . . . . .
. . . . . .

F2 F1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

– F1 is the matrix representation of the transition rates corresponding to the
environmental changes, phase changes of the environmental process and the
phase changes of the arrival process when there are i customers in the main
station and j customers in the offer zone and k customers in the orbit where
j = 1, 2, . . . , N and k = 1, 2, . . . ,M

– F2 is the matrix representation of the rates at which passive customers leave
the orbit without retrying for service at the main station

F1 is given by

F1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C1 S0
1 ⊗ p2β2 ⊗ Im S0

1 ⊗ p3β3 ⊗ Im . . . S0
1 ⊗ pnβn ⊗ Im

S0
2 ⊗ p1β1 ⊗ Im C2 S0

2 ⊗ p3β3 ⊗ Im . . . S0
2 ⊗ pnβn ⊗ Im

S0
3 ⊗ p1β1 ⊗ Im S0

3 ⊗ p2β2 ⊗ Im C3 . . . S0
3 ⊗ pnβn ⊗ Im

...
...

...
. . .

...
S0
n ⊗ p1β1 ⊗ Im S0

n ⊗ p2β2 ⊗ Im . . . . . . Cn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

For j = 1, 2, ...N − 1, if i ≤ (L − 1) then

Cl = [Sl − (iμ + jμl + kν + ν∗ + ζ)] ⊕ D0

and if i ≥ L then,

Cl = [Sl − (iμ + jμl + kν + ζ)] ⊕ D0

For j = N , if i ≤ (L − 1) then

Cl = [Sl − (iμ + jμl + kν + ν∗ + ζ)] ⊕ [D0 + (1 − γ)D2]

and for j = N , if i ≥ L then

Cl = [Sl − (iμ + jμl + kν + ζ)] ⊕ [D0 + (1 − γ)D2]

Let M∗ =
∑n

i=1 Mi and M∗∗ = (M + 1)
∑n

i=1 Mi.

F2 = ζImM∗

E0 = IM∗∗ ⊗ D2
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For a fixed value of j, Ej
2 is a block-diagonal matrix of order (M +1)×(M +1)

given by

Ej
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O G
O G

O G
. . . . . .

O G
O G

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

G = diag(IM1 ⊗ (1 − η)jμ1I, IM2 ⊗ (1 − η)jμ2I, . . . , IMn
⊗ (1 − η)jμnI).

Here diag(a, b, c, .., .) represents a diagonal matrix whose diagonal entries
are listed and

I = Im(M+1)(N+1)

The matrix G represents the rate at which the customers enter the orbit of
passive customers and the entry is restricted to a maximum numberM of the
passive customers in the orbit.

The matrix Ai
0 corresponding to the arrival of a customer to the main station

can be written as

Ai
0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

U1

U1
2 U1

U2
2 U1

. . . . . .

UN
2 UN

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

U1 represents the transitions from i → i + 1 without making any changes in
the number of customers in the offer zone

U1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

V1

V 1
2 V1

V 2
2 V1

. . . . . . . . .
. . . . . . . . .

V
(M−1)
2 V1

V M
2 V1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where for j = 1, 2, . . . , (N − 1)

V1 = IM∗∗ ⊗ D1
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and for j = N
V1 = IM∗∗ ⊗ [D1 + γD2]

For k = 1, 2, . . . ,M, the matrices V k
2 represents the rate at which customers

from the orbit of passive customers enter the main station.
In this case there are two possibilities depending on i, the number of cus-

tomers in the main station. Whenever the number of customers is greater than
or equal to L, the virtual search mechanism is in off condition and only retri-
als from the orbit increases the number of customers in the main station and
whenever this i drops down to (L − 1), the search mechanism starts search for
customers from the orbit.

For a fixed i and j, if i ≥ L then

V k
2 = kνImM∗

and if i ≤ (L − 1) then
V k
2 = [kν + ν∗]ImM∗

For j = 1, 2, ...N, the matrix U j
2 gives the rates at which customers from the

offer zone proceeds to the main station without discontinuing their service

U j
2 = diag(IM1 ⊗ ηjμ1I, IM2 ⊗ ηjμ2I, . . . , IMn

⊗ ηjμnI)

where diag(a, b, c, .., .) represents a diagonal matrix whose diagonal entries are
listed and

I = Im(M+1)(N+1)

The matrices Ai
2, representing the rates at which service completion occurs

from the main station are given by

Ai
2 = iμI(N+1)mM∗∗

3.1 Stability Condition

The present model is a level dependent QBD and we apply Neuts-Rao truncation
for the analysis of the model. We assume that when the number of customers
in the main station exceeds a certain limit, say K, service occurs at constant
rates Kμ. In that situation the matrices Ai

2 becomes AK
2 for i ≥ K. We also

assume that the truncation level K is greater than the number L at which the
search must be switched off. The infinitesimal generator Q1 of the modified
model becomes

Q1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A0
1 A0

0

A1
2 A1

1 A1
0

A2
2 A2

1 A2
0

. . . . . . . . .
A2 A1 A0

A2 A1 A0

. . . . . . . . .
. . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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where A1 = AK
1 , A2 = AK

2 and A0 = AK
0 .

Let the matrix A be defined as A = A0 + A1 + A2. We can see that A is an
irreducible infinitesimal generator matrix of the underlying process and so there
exists the stationary 1 × (N + 1)(M + 1)mM∗ vector π of A such that

πA = 0

and
πe = 1.

where M∗ =
∑n

r=1 Mi.
The vector π can be partitioned as

π = (π0,π1,π2, . . . ,πN )

For i = 1, 2, . . . , N the vectors πi can be partitioned as

πi =
(
π(i, 1),π(i, 2), . . . ,π(i,M))

whereas

π(i, j) =
(
π(i, j, 1, 1),π(i, j, 1, 2), . . . ,π(i, j, 1,M1), . . . ,π(i, j, n, 1), . . . ,π(i, j, n,Mn

)

Each vector π(i, j, k, l) is a 1 × m vector denoted as

π(i, j, k, l) = (π(i, j, k, l, 1), π(i, j, k, l, 2), . . . , π(i, j, k, l,m))

where the state π(i, j, k, l,m) is the probability of being in state (i, j, k, l,m)
where i is the number of customers at the offer zone, j the number of passive
customers in the orbit, k the environment of the offer zone, l the phase of the
environment and r the phase of the underlying MMAP arrival process.

Let the matrix A be of the form

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

W 0
1 W0

W 1
2 W 1

1 W0

W 2
2 W 2

1 W0

. . . . . . . . .
. . . . . . . . .

W
(N−1)
2 W

(N−1)
1 W0

WN
2 WN

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where
W0 = E0

for j = 1, 2, .....(N − 1)

W j
1 = E1 + +U1 + KμImM∗∗



Retrial Queue with an Offer Zone and Orbital Search 49

W j
2 = Ej

2 + U j
2

WN
1 = EN

1 + +UN
1 + KμImM∗∗

The Markov chain with generator Q1 is positive recurrent if and only if

πA0e < πA2e

3.2 Steady State Distribution

The stationary distribution of the Markov process under consideration is
obtained by solving the set of equations

xQ1 = 0,xe = 1.

Let x be the steady-state probability vector of Q1.
Partition this vector in conformity with Q1 as follows:

x = (x0,x1,x2, . . . , )

where
xi = (xi0,xi1, . . . ,xiN ), i ≥ 0

For j = 0, 1, . . . , N and k = 1, 2, . . . ,M the vectors

xij = (xij1,xij2,xij3, . . .xijM )

xijk = (xijk1,xijk2, . . . , . . . ,xijkn)
For r = 0, 1, . . . , n

xijkr = (xijkr1,xijkr2, . . . ,xijkrMr
)

xijkrs = (xijkrs1,xijkrs2, . . . ,xijkrsm)
xijkrst is the probability of being in state (i, j, k, r, s, t) where

i ≥ 0; j = 0, 1, . . . , N ; k = 0, 1, 2, . . . ,M ;

r = 1, 2, . . . , n; s = 1, 2, . . . ,Mr; t = 1, 2, . . . , m.

Under the stability condition the steady-state probability vector is obtained as

x(K−1)+i = x(K−1)R
i, i ≥ 0

where R is the minimal non negative solution to the matrix quadratic equation

R2A2 + RA1 + A0 = 0

and the vectors x0, . . . ,x(K−1) are obtained by solving

x0A
0
1 + x1A

1
2 = 0

x(i−1)A
(i−1)
0 + xiA

i
1 + x(i+1)A

(i+1)
2 = 0; 1 ≤ i ≤ (K − 2)

x(K−2)A0 + x(K−1)

[
A

(K−1)
1 + A2R

]
= 0

subject to the normalizing condition
(K−2)∑

i=0

xi + x(K−1)(I − R)−1e = 1.
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4 Some Performance Measures of the System

Some measures of performance, which helps the operators of the system to make
decisions concerning the optimal values of maximum capacities N and M respec-
tively of the offer zone and the orbit of passive customers and of the cut-off point
L are evaluated. Loss of type B customers can happen mainly in two ways: The
first type of loss namely, type I loss is due to the lack of space in the offer zone
and this happens even before getting a service at the offer zone. The other type
of loss namely, type II loss happens when the orbit is full. There is one more
type of loss from the orbit of passive customers and the effect of this loss on the
system can be can be minimized by means of orbital search if the number of cus-
tomers in the main station is less than L. We can also identify the environment
of the offer zone from which the maximum expected number of type B customers
join the main station which in turn help us to redefine the offers. Following are
some performance measures which helps us to make a detailed study about the
problem under consideration.

1. Expected Number of customers in the main station

E[MS] =
∞∑

i=0

ixie

where e is a column vector of appropriate order consisting of all ones.
2. Expected Number of customers in the offer zone

E[OZ] =
∞∑

i=0

N∑

j=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

jxijkrst

3. Expected Number of customers in the offer zone

E[OPC] =
∞∑

i=0

N∑

j=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

kxijkrst

4. Expected number of customers enter the main station as a result of search

E[S] =
(L−1)∑

i=0

N∑

j=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

ν∗xijkrst

5. Probability that a type B customer is lost from the system when the offer
zone is full

P [LT1 ] =
∞∑

i=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

(1 − γ)xiNkrst

6. Probability that a type B customer is lost after service completion at the
offer zone

P [LT2 ] =
∞∑

i=0

N∑

j=0

n∑

r=1

Mr∑

s=1

m∑

t=1

xijMrst
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7. Expected number of non-persistent customers lost from the orbit without
joining the main station

E[LOPC ] =
∞∑

i=0

N∑

j=0

M∑

k=0

n∑

r=1

Mr∑

s=1

m∑

t=1

kζxijkrst

8. Expected number of type B customers who enter the main station after
service completion from environment r of the offer zone

E[E(r)] =
∞∑

i=0

N∑

j=0

M∑

k=0

Mr∑

s=1

m∑

t=1

jμrηxijkrst

for r = 1, 2, ...n
9. Expected number of type B customers lost when the offer zone is full

E[LT1 ] = λB × P [LT1 ]

where λB is the fundamental rate of arrival of customers to the offer zone
10. Expected number of type B customers lost when the orbit is full

E[LT2 ] = λB × P [LT2 ]

11. Expected number of type B customers who enter the main station after the
service completion at the offer zone

E[OZ → MS] =
n∑

r=0

E[E(r)]

12. Expected number of type B customer lost due to the capacity restrictions
of the offer zone and the orbit

E[L] = E[LT1 ] + E[LT2 ]

13. Fraction of time the offer zone is in the rth environment

F [r] =
∞∑

i=0

N∑

j=0

M∑

k=0

Mr∑

s=1

m∑

t=1

xijkrst

where r = 1, 2, . . . , n

5 An Optimization Problem

For the economic interpretation of any queueing model, cost analysis plays an
important role. In this section, we propose an optimization problem which deter-
mines the level L of the main station at which the search mechanism is to be
switched off. In this case we assume that all other parameters are kept fixed.
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To construct an objective function we assume that the customers undergoing
service in the main station provide more revenue to the system when compared
to the customers undergoing service in the offer zone. An additional revenue is
provided by each customer who enter the main station. Operating cost associ-
ated with the functioning of the various environments or offers in the offer zone
and holding cost associated with the working of the orbit are expenditures to
the system. There is a search cost associated with each customer entering the
main station by means of orbital search. The search cost is also an expenditure
encountered by the system. Thus we introduce the revenue and expenditure per
customer as follows:

– revenue r1 monetary units per customer undergoing service in the main
station

– revenue r2 monetary units per customer undergoing service in the offer zone
where r2 < r1

– operating cost c1 monetary units per customer for providing various offers
– holding cost c2 monetary units per customer waiting in the orbit
– search cost c3 monetary units per customer entering the main station as a

result of orbital search

The Expected Total Profit (ETP) is given by

(ETP) = r1E[MS] + r2E[OZ] − c1E[OZ] − c2E[OPC] − c3E[S]

So the objective of the service providers or the operators of the system is to
determine an optimal value of ‘L’ for which the total expected cost (ETP) is
maximum.

6 Conclusion

The results in this paper may be extended to tandem queueing networks con-
sisting of more than two service stations and also to the case where the service
time distributions are of so general say Phase Type distributions. Even though
such a generalization essentially increases the dimensions of the state space of
the Markov chain under consideration which in turn makes the computational
implementations more complex and time consuming, we hope that reducing the
number of environments and also the dimension of the MMAP under consid-
eration will make it more tractable. We plan to investigate such a problem in
future.

Acknowledgement. A. Krishnamoorthy and V.C. Joshua thanks the Depart-
ment of Science and Technology, Government of India, for the support given
under the Indo-Russian Project INT/RUS/RSF/P-15. A. Krishnamoorthy also
thanks the UGC India for the Award of Emeritus Fellowship No.F6-6/2017/-
18/EMERITUS -2017-18-GEN -10822/(SA-II ). Ambily P. Mathew thanks the UGC-
India for the teacher fellowship sanctioned under the Faculty Development Programme
[F.No.FIP/ 12thplan/KLMG002TF06].



Retrial Queue with an Offer Zone and Orbital Search 53

References

1. Artalejo, J.R.: Accessible bibliography on retrial queues: progress in 2000–2009.
Math. Comput. Model. 51, 1071–1081 (2010)

2. Artalejo, J.R.: A classified bibliography of research on retrial queues: progress in
1990–1999. Top 7, 187–211 (1999)

3. Artalejo, J.R., Joshua, V.C., Krishnamoorthy, A.: An M/G/1 retrial queue with
orbital search by server. In: Advances in Stochastic Modelling, pp. 41–54. Notable
Publications, New Jersey (2002)

4. Bright, L., Taylor, P.G.: Calculating the equilibrium distribution in level dependent
quasi-birth-and-death processes. Stoch. Mod. 11, 497–525 (1995)

5. Chakravarthy, S.R., Krishnamoorthy, A., Joshua, V.C.: Analysis of a multi-server
retrial queue with search of customers from the orbit. Perform. Eval. 63, 776–798
(2006)

6. Dudin, A.N., Krishnamoorthy, A., Joshua, V.C., Tsarenkov, G.: Analysis of
BMAP/G/1 retrial system with search of customers from the orbit. Eur. J. Oper.
Res. 157, 169–179 (2004)

7. Dudin, A., Deepak, T.G., Joshua, V.C., Krishnamoorthy, A., Vishnevsky, V.: On
a BMAP/G/1 retrial system with two types of search of customers from the orbit.
In: Dudin, A., Nazarov, A., Kirpichnikov, A. (eds.) ITMM 2017. CCIS, vol. 800,
pp. 1–12. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68069-9 1

8. Dallery, Y., Frein, Y.: On decomposition methods for tandem queueing networks
with blocking. Oper. Res. 41, 386–399 (1993)

9. Falin, G.I.: A survey of retrial queues. Queueing syst. 7, 127–167 (1990)
10. Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)
11. Corral, A.G.: A tandem queue with blocking and Markovian arrival process. Queue-

ing syst. 41, 343–370 (2002)
12. Klimenok, V., Dudin, A., Vishnevsky, V.: On the stationary distribution of tandem

queue consisting of a finite number of stations. In: Kwiecień, A., Gaj, P., Stera, P.
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Abstract. The three-dimensional Perishable Queuing-Inventory Sys-
tem (PQIS) models with positive service time and delayed feedback are
studied in this paper. We assume that the customers either leave the sys-
tem with/without purchasing an item or join the orbit for the decision
making. We apply the (s, S) replenishment policy with the positive order
lead time. The approximate formulas are developed to calculate the joint
distributions and performance measures of the system. The high accuracy
of the approximate formulas is confirmed by the numerical experiments.

Keywords: Perishable Queuing-Inventory Systems
Positive service time · Delayed feedback
(s, S) order replenishment policy
Finite and infinite 3D Markov Chains · Calculation methods

1 Introduction

The different models of Queuing-Inventory Systems (QIS) were widely investi-
gated. The detailed review of Perishable and Non-Perishable QIS models could
be found in [1,2].

The classical QIS models are based on the several fundamental assumptions.
The first and important one is that after the customer service completion inven-
tory level decreases. But in reality this condition does not always hold, because
some customers may refuse to purchase the item after being served due to dif-
ferent reasons. The model with such type of customers was first studied in [3,4].
Later the similar models were studied in [5,6] as well.

The second assumption in the studies of QIS models is the absence of feed-
back. In other words, the served customers are not considered for the repeated
service call. But in real systems the served customers may return to the system
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 55–70, 2018.
https://doi.org/10.1007/978-3-319-97595-5_5
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instantly (Instantaneous Feedback, IFB) or after some random period of time
(Delayed Feedback, DFB) because of qualitative service. The first models of the
systems with unlimited inventory (i.e. classical queuing systems) and feedback
were studied in Takacs’ papers [7,8]. The detailed review of the classical queuing
models with feedback could be found in [9,10]. At the same time, analysis of the
existing literature at the moment of writing this article showed that the QIS
with Feedback (Queuing-Inventory Systems with Feedback, QISwFB) models
had been hardly studied. We could only found the papers [11,12]. Let’s consider
these papers more detailed.

Single-channel QISwDFB with non-perishable inventory and finite queue of
the primary customers (p-customers) with Poisson arrival was investigated in
[11]. If the queue is full at the moment of arrival p-customers then it leaves the
system without being served. The p-customers after service completion according
to Bernoulli trial either joins the orbit for future service or leaves the system.
The orbit has finite length and every customer after some exponentially dis-
tributed random time independently recalls for the service. The system serves
the repeated customers (r-customers) if there are no p-customers and/or inven-
tory level is zero. The r-customers requires only service, that is after the ser-
vice completion of r-customers the inventory level remains unchanged. Service
times of both types of customers are exponentially distributed but with differ-
ent parameters. The non-preemptive service policy is assumed, so that if the
r-customer is being served at the moment of arrival of p-customer, the ongo-
ing service is not interrupted. Repetitive orbit re-joining is also allowed, that is
after the service completion of r-customer according to Bernoulli trial it either
re-joins the orbit or leaves the system. The (s, S) inventory replenishment policy
with positive exponential lead time is applied. The three dimensional Markov
Chain (3D MC) is used to describe the mathematical model of the system. The
algorithm based on matrix methods [13] was introduced for the calculation of
steady-state distributions. Additionally, the formulas for the calculation of the
average characteristics as well as for the total cost were developed. Laplace-
Stieltjes transform of waiting time for both types of customers was derived.

The QISwIFB model with perishable inventory (PQISwIFB) was studied in
[12]. This paper investigates a single-channel PQISwIFB with a finite queue of
p-customers that forms the MAP flow. The inventory item lifetime is finite and
exponentially distributed random variable (r.v.). After the service completion,
the p-customers according to Bernoulli trial either instantly joins the second
queue of infinite length for the repeated service or leaves the system. At the same
time, after service completion of p-customer, the system according to Bernoulli
trial either takes the next p-customer or the r-customer from the second queue
for the service. The r-customer after being served either instantly re-joins the
second queue or leaves the system. After finishing the service of the r-customer,
the system accepts the p-customers only if the inventory level is positive. Other-
wise, if there are no p-customers and inventory level is zero the channel becomes
idle for an exponentially distributed period of time. If during the idle period the
p-customer arrives and inventory level becomes positive the channel starts to
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serve the customer. Otherwise, if after the idle period no p-customer arrives and
the inventory is still empty, the channel begins to serve the r-customers. Like-
wise in [11], the r-customers requires only the service and the inventory level
remains unchanged after service completion. The system uses hybrid replenish-
ment policy, so that if inventory level becomes equal to s then the order of size
S − s is placed. Also, if after the service completion of r-customer, the inventory
level is equal to i, i <= s the order of size S − i is placed. The lead time of
order is assumed to be the phase-type distributed r.v. The system is modeled by
6D-MC and the algorithm based on matrix methods is developed to calculate
the steady-state probabilities. Additionally, the formulas for the performance
measures were derived and the total cost minimization problem was considered
as well. It should be noted that the developed algorithm is very complex for
the practical implementation and becomes less effective for the models of larger
dimension.

In our paper we present new single-channel PQISwDFB model. It is similar
to the model studied in [11] but with the following differences:

– We study the model with perishable inventory.
– There are three options after the service completion for the customer:

1. Customer leaves the system without purchasing an inventory item.
2. Customer purchases the item and leaves the system.
3. Customer does not purchase the item and joins the orbit for “decision

making”.
– r-customer may purchase inventory item as well.
– Both finite and infinite queues of p-customers are considered.
– Waiting customers become impatient when there are no items in the inven-

tory.

These differences improve the model’s likeness to the real systems. Moreover, we
present effective method for the calculation of steady-state probabilities. Also
we derive the formulas for the performance measures that contains tabulated
functions.

The paper is organized as follows. First, we provide the general model descrip-
tion and introduce the problem statement. In the next section, we develop the
mathematical model of the system using 3D MC, construct the corresponding
Transition matrix (Q-matrix) and derive the exact formulas for the system per-
formance measures. Afterwards, we analyze the finite and infinite models with
respect to queue length and orbit size. Finally, we provide the numerical results
and give the conclusion.

2 Model Description and Problem Statement

First, let’s consider the detailed description of the model. The system continu-
ously monitors the inventory items, so that every item becomes unusable (per-
ishes) after some finite exponentially distributed random time. Also, we assume
that the item already reserved for the servicing cannot perish.
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The p-customers arrive into the system according to Poisson scheme. For
the simplicity, all the inventory items are considered identical and after the
service completion the inventory level decreases by a single unit if the customer
purchases the item.

If at the moment of the customer arrival there are items in the inventory
and the channel is idle, then the customer is taken to the service by the system.
Otherwise, the arrived customer joins the queue. If the inventory level is zero at
the arrival moment, the customer either joins the queue according to Bernoulli
trial or leaves the system. The customers in the queue become impatient when
the inventory level is zero and they independently leave the system after waiting
some exponentially distributed period of time.

We consider models both with finite and infinite queue sizes. In the finite
case, if at the moment of the arrival the queue is full then the customer is lost.
While in the infinite case, all p-customers join the system.

There are three options after the service completion of the p-customer:

1. Customer leaves the system without purchasing an inventory item.
2. Customer purchases the item and leaves the system.
3. Customer does not purchase the item and joins the orbit for “decision making”

We assume that the customers in orbit do not have any information about
queue state or inventory level. After some random time every r-customer in
orbit applies for service independently, while the system does not differentiate
between p-customers and r-customers. Impatience rates and service times for
both types of customers are the same. Every served r-customer may re-join the
orbit as well, that is the repetitive orbit joins are possible.

The r-customers in orbit are assumed to be insistent. If the queue is full or
the inventory level is zero at the moment of arrival, the r-customer returns to
the orbit.

The service time depends on whether the customer purchases the item or not,
but it has an exponential distribution with different parameters for each case. This
assumption corresponds to the real cases, because the service time needed for the
customer that purchases the item is greater than for the one who does not.

For the simplicity, we use the 2-level inventory replenishment policy in our
model where the lead time of the order is an exponentially distributed r.v. with
finite mean.

The problem is to find the steady-state distribution of the system, determine
the average queue size for both types of the customers and the average size of
the orbit. Later we derive the formulas for the performance measure and perform
the cost analysis of the system.

3 Calculation Methods

Let’s define the following parameters of the system:

– S - the maximum inventory size
– s - the order threshold, s < S/2
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– N - the maximum queue length for the model with limited queue size
– R - the maximum orbit size for the model with finite orbit size
– γ−1 - the average inventory item lifetime
– λ - the arrival rate of p-customers
– τ−1 - average waiting time in the queue when the inventory level is zero
– φ1 - queue joining probability when the inventory level is zero
– φ2 - leaving probability when the inventory level is zero, φ2 = 1 − φ1

– σ1 - the probability of leaving the system without purchasing an item after
the service completion

– σ2 - the probability of purchasing an item and leaving the system after the
service completion

– σ3 - the probability of joining the orbit for “decision making” without pur-
chasing an item after the service completion

– μ−1
1 - average service time of the customer not purchasing the item

– μ−1
2 - average service time of the customer that purchase the item

– ν−1 - the average lead time of the order
– η−1 - the average dwelling time in the orbit

Remark 1. Later the term customer will refer to both types of customers (r and
p customers), unless indicated explicitly.

The model is described by 3D MC with the states (m,n, k), where m is
inventory level, n is queue size and k is the orbit size. The state space (SS) of
the model is defined as follows:

E =
R⋃

k=0

Ek, Ek

⋂
Ek′ = ∅, k �= k

′
. (1)

where Ek =
{
(m,n, k) : m = 0, 1, . . . , S, n = 0, 1, . . . , N

}
, k = 0, 1, 2, . . . , R.

We conclude from (1) that SS is a set of points with integer coordinates inside
the parallelepiped with the height R + 1 and rectangle base with the sides of
length S + 1 and N + 1.

The transitions between the states inside the class Ek occur after the follow-
ing events:

– arrival of p-customer
– inventory replenishment
– service completion
– inventory perishing
– leaving the system due to impatience

On the other hand, the transitions between the classes Ek and Ek′ are associated
with the following events:

– joining the orbit
– r-customer arrival from the orbit
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Let’s denote the transition rate from the state (m1, n1, k1) ∈ Ek1 to the state
(m2, n2, k2) ∈ Ek2 with q((m1, n1, k1), (m2, n2, k2)). The set of all these rates
forms the generator matrix (Q-matrix) of the 3D MC.

According to the accepted service scheme and inventory replenishment policy
of the model, we get the following formulas for the transition rates inside the
class Ek (see Algorithm 1):

q((m1, n1, k), (m2, n2, k)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ, if m2 = m1, n2 = n1 + 1
μ1σ1, if m2 = m1, n2 = n1 − 1
μ2σ2, if m2 = m1 − 1, n2 = n1 − 1
m1γ, if m2 = m1 − 1, n2 = n1 = 0
(m1 − 1)γ, if m2 = m1 − 1, n2 = n1 > 0
ν, if m2 = m1 + S − s, n2 = n1

0, otherwise

. (2)

when m1 > 0,

q((0, n1, k), (m2, n2, k)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λφ1, if m2 = 0, n2 = n1 + 1
n1τ, if m2 = 0, n2 = n1 − 1
Sν, if m2 = S − s, n2 = n1

0, otherwise

. (3)

Algorithm 1. The calculation of Q-matrix element
1: function QElem(m1, n1, k1, m2, n2, k2) � q((m1, n1, k1), (m2, n2, k2))
2: define q := 0
3: if k2 = k1 and m1 > 0 then
4: if m2 = m1 and n2 = n1 + 1 then q := λ
5: else if m2 = m1 and n2 = n1 − 1 then q := μ1σ1

6: else if m2 = m1 − 1 and n2 = n1 − 1 then q := μ2σ2

7: else if m2 = m1 − 1 and n2 = n1 = 0 then q := m1γ
8: else if m2 = m1 − 1 and n2 = n1 > 0 then q := (m1 − 1)γ
9: else if m1 <= s and m2 = m1 + S − s and n2 = n1 then q := ν

10: else if k2 = k1 and m1 = 0 then
11: if m2 = 0 and n2 = n1 + 1 then q := λφ1

12: else if m2 = 0 and n2 = n1 − 1 then q := n1τ
13: else if m2 = S − s and n2 = n1 then q := ν

14: else if k2 �= k1 and m2 = m1 > 0 then
15: if n2 = n1 − 1 and k2 = k1 + 1 then q := μ1σ3

16: else if n2 = n1 + 1 and k2 = k1 − 1 then q := k1η

17: return q
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when m1 = 0. The transition rates between the classes Ek1 and Ek2 , k1 �= k2 is
defined as follows (m > 0):

q((m,n1, k1), (m,n2, k2)) =

⎧
⎪⎪⎨

⎪⎪⎩

μ1σ3, n2 = n1 − 1, k2 = k1 + 1, k1 < R

k1η, n2 = n1 + 1, k2 = k1 − 1, n1 < R

0, otherwise
. (4)

Let’s denote the stationary probability of the state (m,n, k) ∈ E with p(m,n, k).
We conclude from the formulas (2), (3) and (4) that the Q-matrix of the model
is irreducible, therefore there exists the stationary distribution.

The performance measures of the system is calculated via stationary distri-
butions. We will derive the formulas for the following performance measures:
Sav - average inventory level, Γav - average inventory perishing intensity, RR -
average reorder rate, Ls - average queue length, Lo - average number of the
r-customers in the orbit, RL - average customer loss intensity.

The average inventory level, average queue length and average orbit size are
defined as the mathematical expectations of the corresponding random variables:

Sav =
∑

(m,n,k)∈E

mp(m,n, k). (5)

Ls =
∑

(m,n,k)∈E

np(m,n, k). (6)

Lo =
∑

(m,n,k)∈E

kp(m,n, k). (7)

The average perishing rate, assuming that the reserved item for the service
cannot perish, is calculated as follows:

Γav = γ

⎛

⎝
S∑

m=1

m
∑

(m,0,k)∈E

p(m, 0, k) +
S∑

m=2

(m − 1)
∑

(m,n,k)∈E

p(m,n, k)I(n > 0)

⎞

⎠ . (8)

where I(A) is the indicator function of A.
The replenishment order of the inventory is placed independently whenever

the inventory level reaches the threshold s:

RR = γ(s + 1)
∑

(s+1,0,k)∈E

p(s + 1, 0, k) + (μ2σ2 + sγ)
∑

(s+1,n,k)∈E

p(s + 1, n, k)I(n > 0). (9)

The customer loss intensity RL consists of three components:

1. the loss intensity of p-customers (RLp)
2. the loss intensity because of orbit overflow (RLo)
3. the loss intensity because of impatience of both types of customers (RLs)
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RLp = λ
∑

(m,N,k)∈E

p(m,N, k) + λφ2

∑

(0,n,k)∈E

p(0, n, k)I(n < N). (10)

RLo = μ1σ3

∑

(m,n,R)∈E

np(m,n,R)I(mn > 0). (11)

RLs = τ
∑

(0,n,k)∈E

np(0, n, k). (12)

In order to calculate the above performance measures, we need to obtain the
steady-state probability distributions from the balance equations corresponding
to the Q-matrix. The balance equations are the system of (S+1)×(N+1)×(R+1)
linear equations that cannot be solved numerically in a reasonable time for larger
or infinite values of the parameters. Therefore, we apply the hierarchical Space
Merging Algorithm (SMA) to analyze the performance measures asymptotically.

SMA could be effectively applied for the systems where the transition rates
between the states of different classes Ek are very small compared to the tran-
sitions inside the class. This assumption holds for the systems where the proba-
bility of joining the orbit is far smaller than the total probability of leaving the
system: σ3 � σ2 + σ1.

Assuming the above condition we will consider four models:

1. Both queue length N and orbit size R are finite. We will provide the details
of SMA and its application for this model, but provide only the final results
for other cases.

2. The queue length N is finite and orbit size R is infinite.
3. Both queue length N and orbit size R are infinite.
4. The queue length N is infinite and orbit size R is finite.

3.1 Analysis of the Model with Finite Queue Length and Orbit Size

In this section we will consider the detailed step by step application of SMA
for the finite model, N < ∞ and R < ∞. In the first step of the hierarchy we
construct the merge function U1(m,n, k) = 〈k〉 based on (1), where the merged
state 〈k〉 represents the set of all the states inside the class Ek. The set of the
all merged states is denoted by Ω1 = {〈k〉 : k = 0, 1, . . . , R}. Then we get the
following approximate formula for the steady-state distributions:

p̃(m,n, k) ≈ ρk(m,n)π1(〈k〉). (13)

where ρk(m,n) is the probability of the state (m,n) inside the class Ek and
π1(〈k〉) is the probability of the merged state 〈k〉, 〈k〉 ∈ Ω1.

Further, based on (13) our problem is reduced to finding the probability
distributions of the R + 1 number 2D MC-s and a single 1D MC accordingly.
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Now we re-apply SMA to the obtained 2D MC-s with state spaces Ek, k =
0, 1, . . . , R in order to find the corresponding ρk(m,n) probabilities. All the 2D
MC-s are identical, therefore we will consider the model with fixed k:

E =
S⋃

m=0

Em
k , Em1

k

⋂
Em2

k = ∅,m1 �= m2. (14)

where Em
k =

{
(m,n, k) ∈ Ek : n = 0, 1, . . . , N

}
,m = 0, . . . , S. Similarly, we con-

struct the merge function U2(m,n, k) = 〈m〉 based on (14), where the merged
state 〈m〉 represents the set of all the states inside the class Em

k . The set of the
all merged states is denoted by Ω2 = {〈m〉 : m = 0, 1, . . . , S}. Consequently,
according to SMA:

pk(m,n) ≈ ρkm(n)πk
2 (〈m〉). (15)

where ρkm(n) is the probability of the state (m,n) inside the class Em
k and

πk
2 (〈m〉) is the probability of the merged state 〈m〉, 〈m〉 ∈ Ω2.

Further, let’s consider the problem of finding the probabilities ρkm(n) of the
split models. We conclude from the formulas (2), (3) and (4) that the transition
rates between the states of the split model with state space Em

k do not depend
on the index k, therefore this index is omitted in ρkm(n) and πk

2 (〈m〉) onward.
According to the formula (2), the probability distributions inside the all split
models with the state space Em

k , m = 1, . . . , S are the same as in the classical
model M/M/1/N with load a = λ/μ1σ1:

ρm(n) = an(1 − a)/(1 − aN+1), m = 1, . . . , S. (16)

Similarly, we get from the formula (3) that the probability distribution inside
the split model with the state space E0

k are the same as in the Erlang model
M/M/N/N with the load b = λφ1/τ :

ρ0(n) =
θ(b, n)

N∑
j=0

θ(b, j)
, n = 0, 1, . . . , N. (17)

where θ(i, j) =
ij

j!
.

After performing the mathematical transformations over the formulas (2),
(3), (16) and (17) we derive the following for the transition rates between the
merged states (〈m1〉), (〈m2〉) ∈ Ω2:

q(〈m1〉, 〈m2〉) =

⎧
⎪⎪⎨

⎪⎪⎩

Λ1(m1), if m2 = m1 − 1
ν, if m1 <= s, m2 = m1 + S − s

0, otherwise
. (18)

where Λ1(m1) = m1γρ(0) + (1 − ρ(0))(μ2σ2 + (m1 − 1)γ), m1 = 1, 2, . . . , S.
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Further from (18) we derive (see [6]):

π2(〈m〉) =

⎧
⎪⎪⎨

⎪⎪⎩

αmπ2(〈s + 1〉), if 0 ≤ m ≤ s

βmπ2(〈s + 1〉), if s + 1 ≤ m ≤ S − s

χmπ2(〈s + 1〉), if S − s + 1 ≤ m ≤ S

. (19)

where αm =
s+1∏

i=m+1

Λ1(i)
ν + Λ1(i − 1)

, βm =
Λ1(s + 1)
Λ1(m)

, χm =
ν

Λ1(m)

S∑

i=m−S+s

αi,

Λ1(0) = 0.
The probability π2(〈s + 1〉) is found from the normalizing condition: π2(〈s +

1〉) =

⎛

⎝
s∑

m=0

αm +
S−s∑

m=s+1

βm +
S∑

m=S−s+1

χm

⎞

⎠
−1

Consequently, after mathematical transformations we derive the following
formula for the transition rates between the classes 〈k1〉, 〈k2〉 ∈ Ω1:

q(〈k1〉, 〈k2〉) =

⎧
⎪⎪⎨

⎪⎪⎩

Λ2, if k2 = k1 + 1
k1M2, if k2 = k1 − 1
0, otherwise

. (20)

where Λ2 = μ1σ3(1 − ρ(0))(1 − π2(〈0〉)), M2 = η(1 − ρ(N))(1 − π2(〈0〉)).
We conclude form (20) that the probabilities of the merged states

π1(〈k〉), 〈k〉 ∈ Ω1 are the same as in the model M/M/R/R with load c = Λ2/M2:

π1(〈k〉) =
θ(c, k)
R∑

j=0

θ(c, j)
, k = 0, 1, . . . , R. (21)

Finally, according to the formulas (13) and (15) the approximate steady-state
probabilities of the initial 3D model is calculated as follows:

p̃(m,n, k) ≈ ρm(n)π2(〈m〉)π1(〈k〉). (22)

Further, after substituting (22) in the formulas (5)–(12) we derive the fol-
lowing approximate formulas for the calculation of the system performance mea-
sures:

Sav ≈
S∑

m=1

mπ2(〈m〉). (23)

Ls ≈ π2(〈0〉)
N∑

n=1

nρ0(n) + (1 − π2(〈0〉))
N∑

n=1

nρ(n)

= bπ2(〈0〉)(1 − EB(b,N)) + (1 − π2(〈0〉))
(

a

1 − a
− N + 1

1 − aN+1
aN+1

)
.

(24)
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Lo ≈ c(1 − EB(c,R)). (25)

Γav ≈ γ

S∑

m=1

π2(〈m〉)(mρ(0) + (m − 1)(1 − ρ(0)))

= γ

S∑

m=1

π2(〈m〉)
(

m
1 − a

1 − aN+1
+ (m − 1)

a − aN+1

1 − aN+1

)
.

(26)

RR ≈ π2(〈s + 1〉)[(s + 1)γρ(0) + (sγ + μ2σ2)(1 − ρ(0))]

= π2(〈s + 1〉)[(s + 1)γ
1 − a

1 − aN+1
+ (sγ + μ2σ2)

a − aN+1

1 − aN+1
].

(27)

RLp ≈ λ[ρ(N)(1 − π2(〈0〉)) + ρ0(N)π2(〈0〉) + φ2(1 − ρ0(N))π2(〈0〉)] =

= λ[aNρ(N)(1 − π2(〈0〉)) + π2(〈0〉)(EB(b, N) + φ2(1 − EB(b, N)))].
(28)

RLo ≈ μ1σ3π1(〈R〉)(1 − ρ(0))(1 − π2(0))
= μ1σ3EB(c,R)(1 − ρ(0))(1 − π2(0)).

(29)

RLs ≈ τπ2(〈0〉)
N∑

n=1

nρ0(n) = bτπ2(〈0〉)(1 − EB(b,N)). (30)

Remark 2. EB(x,K)) quantities are the Erlang B-formulas for the calculation
of the customer loss probability for the model M/M/K/K with the load x. We
provide the formulas for the case a �= 1, because when a = 1 the formulas become
even simpler: ρ(n) = 1/(N + 1), n = 0, . . . , N .

Remark 3. We conclude from the formulas (15)–(22) that the stationary distri-
butions depend on all the load parameters of the system. At the same time,
according to the formulas (23)–(30) only Lo depends explicitly on the arrival
intensity of the r-customers. The reason is that according to our assumption,
the probability of joining the orbit is far smaller than the total probability of
leaving the system, in other words, the arrival intensity of the r-customers are
far smaller than of the p-customers. Additionally, the arrival intensity of the
p-customers influences the population of r-customers in the orbit, consequently,
all the performance measures depend on the arrival of r-customers implicitly.

The presented methodology could be applied to PQISwDFB with the infinite
queue and orbit size as well, N = ∞ and/or R = ∞. Below we skip intermediary
mathematical transformations and present the resulting formulas for the steady
state probabilities and the system performance measures for each case.

3.2 Analysis of the Model with Finite Queue Length and Infinite
Orbit Size

Let’s consider the key points and differences for the case where N < ∞ and
R = ∞:
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– ρm(n) and ρ0(n) are calculated by the formulas (16) and (17) accordingly.
– The probabilities of the merged states π1(〈k〉), 〈k〉 ∈ Ω1 are the same as in

the model M(Λ2)/M(M2)/∞:

π1(〈k〉) ≈ ck

k!
e−c, k = 0, 1, . . . . (31)

– Approximate formulas of the performance measures are calculated by the
formulas (23)–(30), except RLo and Lo. RLo = 0 as the orbit size is infinite
and loss probability due to orbit overflow is impossible. The average orbit
size is calculated as follows:

Lo ≈ c. (32)

3.3 Analysis of the Model with Infinite Queue Length and Infinite
Orbit Size

Let’s consider the key points and differences for the case where N = ∞ and
R = ∞:

– The probabilities of all states within the split models with the state space
Em

k , m = 1, . . . , S are the same as in the classical model M/M/1/∞ with
the load a = λ/μ1σ1: ρm(n) = (1 − a)an, m = 1, . . . , S. We assume that, the
ergodicity condition a < 1 holds true.

– The probabilities of all states within the split model with the state space
E0

k are the same as in the Erlang model M/M/∞ with the load b = λφ1/τ :
ρ0(n) = θ(b, n)e−b, n = 1, 2, . . .

– The probabilities of the states of merged models are calculated by the formulas
(19) and (31), where ρ(0) = 1 − a and ρ(N) = 0

– The approximate values of Sav and Lo are calculated by the formulas (23) and
(32) accordingly. The other performance measure are calculated as follows:

Ls ≈ bπ2(〈0〉) +
a

1 − a
(1 − π2(〈0〉)). (33)

Γav ≈ γ

S∑

m=1

π2(〈m〉)(m − a). (34)

RR ≈ π2(〈s + 1〉)((s + 1)γ(1 − a) + (sγ + μ2σ2)a). (35)

RLp ≈ λφ2π2(〈0〉). (36)

RLs ≈ τbπ2(〈0〉). (37)
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3.4 Analysis of the Model with Infinite Queue Length and Finite
Orbit Size

Finally, let’s consider the case where N = ∞ and R < ∞:

– The state probabilities within the split models with the state space Em
k , m =

1, . . . , S and E0
k are the same as in N = ∞ and R = ∞ model.

– The probabilities of the states of merged models are calculated by the formulas
(19) and (21), where ρ(0) = 1 − a and ρ(N) = 0

– The approximate values of Sav and Lo are calculated by the formulas (23)
and (25) accordingly. The other performance measure are calculated by the
formulas (33)–(37), except that RLo:

RLo ≈ μ1σ3EB(c,R)(1 − ρ(0))(1 − π2(0)).

4 Numerical Results

Finally, let’s consider the results of some numerical experiments for the model
with the finite queue length and orbit size. Due to the limitations implied on the

Table 1. Estimation of the accuracy of the steady-state probabilities versus various
norms

(S, N) (s, R) (λ, η) Norms

‖N‖1 ‖N‖2 ‖N‖3

(10,10) (1, 2) (55,5) 0.98964 0.01834 0.00201

(2,3) (60,10) 0.98955 0.02042 0.00200

(4,4) (65,15) 0.98989 0.01731 0.00194

(10,15) (1,2) (55,5) 0.98373 0.01826 0.00154

(2,3) (60,10) 0.98456 0.02037 0.00149

(4,4) (65,15) 0.98595 0.01726 0.00141

(15,10) (2,2) (55,5) 0.95934 0.01823 0.00173

(5,3) (60,10) 0.96858 0.02034 0.00154

(7,4) (65,15) 0.97482 0.01721 0.00138

(15,15) (2,2) (55,5) 0.98686 0.01312 0.00164

(5,3) (60, 10) 0.98900 0.01207 0.00148

(7,4) (65,15) 0.98996 0.01194 0.00141

(20,5) (2,2) (55,5) 0.98019 0.01306 0.00124

(5,3) (60,10) 0.98423 0.01203 0.00111

(9,4) (65,15) 0.98629 0.01190 0.00103

(20,10) (2,2) (55,5) 0.95863 0.01303 0.00129

(5,3) (60,10) 0.97068 0.01308 0.00110

(9,4) (65,15) 0.97645 0.01297 0.00099



68 A. Melikov et al.

Table 2. Estimation of the accuracy of the performance measures. EV - exact value,
AV - approximate value

(S, N) (s, R, λ, η) Sav RR Γav Ls Lo RL

EV AV EV AV EV AV EV AV EV AV EV AV

(10,10) (1,2,55,5) 2.257 2.641 0.536 0.509 3.279 4.010 8.993 9.053 0.524 0.583 43.979 43.716

(2,3,60,10) 2.329 2.850 0.622 0.577 3.385 4.375 9.133 9.202 0.317 0.301 47.957 46.855

(4,4,65,15) 2.236 2.823 0.798 0.722 3.196 4.300 9.228 9.301 0.230 0.186 52.891 51.684

(10,15) (1,2,55,5) 2.257 2.641 0.536 0.509 3.279 4.010 13.185 13.037 0.506 0.583 43.918 41.681

(2,3,60,10) 2.329 2.850 0.622 0.577 3.385 4.375 13.457 13.391 0.307 0.301 47.934 44.876

(4,4,65,15) 2.236 2.823 0.798 0.722 3.196 4.300 13.635 13.624 0.224 0.186 52.876 49.696

(15,10) (2,2,55,5) 3.396 4.165 0.549 0.511 5.434 6.926 9.071 9.146 0.524 0.583 43.872 40.477

(5,3,60,10) 3.459 4.397 0.727 0.654 5.520 7.335 9.203 9.284 0.316 0.301 47.932 43.564

(7,4,65,15) 3.265 4.181 0.860 0.766 5.146 6.912 9.281 9.359 0.230 0.186 52.876 48.258

(15,15) (2,2,55,5) 3.396 4.165 0.549 0.511 5.434 6.926 13.394 13.313 0.510 0.583 42.865 43.239

(5,3,60,10) 3.459 4.397 0.727 0.654 5.520 7.335 13.644 13.633 0.309 0.301 46.770 46.213

(7,4,65,15) 3.265 4.181 0.860 0.766 5.146 6.912 13.776 13.791 0.225 0.186 51.871 51.174

(20,5) (2,2,55,5) 4.387 5.390 0.507 0.473 7.371 9.336 4.450 4.535 0.532 0.582 42.806 41.568

(5,3,60,10) 4.661 5.937 0.646 0.583 7.859 10.359 4.514 4.590 0.320 0.301 46.743 44.620

(9,4,65,15) 4.425 5.689 0.838 0.743 7.389 9.856 4.562 4.630 0.232 0.186 51.854 49.503

(20,10) (2,2,55,5) 4.387 5.390 0.507 0.473 7.366 9.333 9.101 9.177 0.524 0.583 42.766 40.580

(5,3,60,10) 4.660 5.937 0.646 0.584 7.855 10.357 9.240 9.320 0.316 0.301 46.741 43.566

(9,4,65,15) 4.425 5.689 0.838 0.743 7.387 9.854 9.320 9.399 0.230 0.186 51.854 48.297

volume of the paper we will only consider the accuracy of the SMA algorithm. We
will provide comparison of steady-state probabilities and performance measures.
The accuracy will be estimated using the following norms:

– Cosine similarity: ‖N‖1 =

∑
(m,n,k)∈E

p(m,n, k)p̃(m,n, k)

√ ∑
(m,n,k)∈E

(p(m,n, k))2
√ ∑

(m,n,k)∈E

(p̃(m,n, k))2
.

– Maximum absolute difference: ‖N‖2 = max
(m,n,k)∈E

|p(m,n, k) − p̃(m,n, k)|.

– Root mean square deviation (RMSE): ‖N‖3 =

⎡

⎣ 1
|E|

∑

(m,n,k)∈E

(p(m,n, k)−

p̃(m,n, k))2

⎤

⎦

1
2

, where |E| is the cardinality of the state space E.

The exact values of steady-state probabilities are calculated from the linear
system of balance equations corresponding the Q-matrix. The system parameters
for numerical experiments are accepted as follows:

μ1 = 55, μ2 = 5, σ1 = 0.3, σ2 = 0.5, φ1 = 0.3, ν = 1, τ = 1.5.

The comparison results of the steady-state probabilities and performance mea-
sures are given in Tables 1 and 2 correspondingly. We conclude from these tables
that the accuracy of the approximate approach is very accurate.
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4.1 Pros and Cons

The main advantage of SMA is that it eliminates the solving of the complex
systems of linear equations. Therefore it is very fast and could be easily imple-
mented. Although there are some matrix-geometric and eigen-value based algo-
rithms for the solution of finite and infinite MC, their implementations are more
complex, additionally they may become numerically unstable and produce badly
conditioned systems of linear equations. Also the most of them impose manda-
tory conditions on the form of Q-matrix.

The main disadvantage of SMA is that it produces approximate results, while
its accuracy is very high as confirmed by the numerical experiments.

5 Conclusion

The finite and infinite 3D PQIS models with positive service time and delayed
feedback are studied in this paper. It is assumed that the customers either leave
the system with/without purchasing an item or join the orbit for the decision
making. When the inventory level is zero, customers join the system according to
Bernoulli trial, while customers in the queue become impatient. The inventory
replenishment policy belongs to (s, S) class. The exact and approximate formulas
are given for the calculation of the steady-state probabilities and performance
measures of the system. Exact method is based on the solving of balance equa-
tions and is suitable only for the finite models. The approximate approach is
based on the State Merging Algorithm of Markov Chains and is applicable for
both finite and infinite systems. The high accuracy of the given formulas are
proven using numerical experiments and the corresponding comparison tables
are provided.
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Abstract. In this paper, we study the process generated by the cus-
tomers which are serviced in a queueing system with an infinite number
of servers. Two methods referred to as the method of limiting decom-
position and the method of Markovian summation are proposed, imple-
mented and compared. The characteristic function of the probability
distribution for the studied process is obtained. The numerical examples
are performed for different values of queueing system characteristics.

Keywords: Queueing system · Characteristic function
Method of Markovian summation · Method of limiting decomposition

1 Introduction

At present, the methods of queueing theory [1–5] are used for modeling various
real systems: production systems [6], call centers [7,8], economic systems [9–12],
telephone cellular communication [13], etc. Most of the methods used in solving
these problems belong to Markovian models, where it is assumed that arrival
process is a stationary Poisson one and the service time is an exponentially
distributed. The observations of the real systems have shown that it is necessary
to develop methods for the study of the non-Markovian queueing models [14].

Some processes occurring in these systems have been investigated, among
them are the process of the number of the busy servers, the arrival process or
the process of customers leaving the system. Besides, the process generated by
the customers arrived in the system is of interest to the researchers. The process
of this kind is formed in case of computers failure. The study has been made of
this process in [15]. Also, this process is formed by the clients in the insurance
company (the process of occurrence of insurance claims). It has been analyzed
in [16] for an exponentially distributed service and interarrival times.

This paper focuses on the implementation of the new method of Markovian
summation to analyze the process generated by the customers arrived in the
queueing system with independent, identically, and generally distributed service
times and stationary Poisson arrival process. Also, the aim of this paper is to
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compare the results obtained by using two different methods: the method of
limiting decomposition and the method of Markovian summation.

The structure of this paper is organized as follows. Section 2 gives a descrip-
tion of the mathematical model and the statement of the problem. Section 3
specifies the method of limiting decomposition for the problem under study. In
Sect. 4, we describe the method of Markovian summation and show how it works.
Section 5 presents the comparison of the results obtained by using two methods.
In Sect. 6 a numerical examples are presented for the gamma-distributed service
times.

2 Mathematical Model

We consider a queueing system (Fig. 1) with an infinite number of servers. It is
assumed that the arrival process is a stationary Poisson process, with the rate
equal to λ. The service times are independent and identically distributed with
an arbitrary distribution function B(x). During the service time every arrived
customer generates any events where intensity equals to γ independently from
other customers. These events formed by the one customer are referred to as
the local d-process (derivative process). The set of the events generated by all
customers are referred to as the total d-process (or d-process). The events of
d-process do not generate other events.

Fig. 1. The model of queueing system with d-process

The problem is to obtain the characteristic function of a number of d-process
events occurred during the time T on the interval [0, T ] under condition that at
the initial time t = 0 the system is free.

3 Method of Limiting Decomposition

Let us consider the method of limiting decomposition. According to this method
the stationary Poisson arrival process with parameter λ is divided into N inde-

pendent Poisson processes, with the rate equal to
λ

N
under polynomial scheme.

So, we can decompose the original system with an infinite number of servers and
consider the set of N (for N → ∞) single-line systems with loses of the arriving
customers, when the server is busy (Fig. 2).
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Fig. 2. The model of queueing system with loses

As d-process of the original system with an infinite number of servers is
the limiting (for N → ∞) sum of N independent d-processes of a single-line
system with loses, then we first can obtain the probabilistic characteristics of the
studied process of this single-line system. After that, we will find the probabilistic
characteristics of d-process of the system with an infinite number of servers by
summation.

3.1 Research of the Single-line System

Let us denote n(t) number of d-process events occurred in the single-line system
during the time t on the interval [0, t]. We assume that the system is free at the
initial moment of time t = 0. Also, we denote k(t) the state of the server:

k(t) =

{
0, if the server is free,
1, if the server is busy.

As the process k(t) is not Markovian then we have to denote the additional
variable z(t)—a length of the interval from the moment time t to the end of the
current service. And now the two-dimensional process k(t), z(t) is Markovian.

Denote
P0(n, t) = P{k(t) = 0, n(t) = n},

P1(n, z, t) = P{k(t) = 1, z(t) < z, n(t) = n}.

Applying the formula of total probability, we can write the following equations:

P0(n, t + Δt) = P0(n, t)
(

1 − λ

N
Δt

)
+ P1(n,Δt, t) + o(Δt),

P1(n, z − Δt, t + Δt) = [P1(n, z, t) − P1(n,Δt, t)](1 − γΔt)

+P0(n, t)
λ

N
ΔtB(z) + P1(n − 1, z, t)γΔt + o(Δt).

After performing some transformation, we derive the following system of the
Kolmogorov differential equations [17] for the probability distribution of the
studied process n(t):

∂P0(n, t)
∂t

= − λ

N
P0(n, t) +

∂P1(n, 0, t)
∂z

,

∂P1(n, z, t)
∂t

=
∂P1(n, z, t)

∂z
− ∂P1(n, 0, t)

∂z
− γP1(n, z, t)

+ B(z)
λ

N
P0(n, t) + γP1(n − 1, z, t),
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where it is denoted

∂P1(n, z, t)
∂z

∣∣∣∣
z=0

=
∂P1(n, 0, t)

∂z
.

To solve this system, we will consider the partial characteristic functions:

H0(u, t) =
∞∑

n=0

ejunP0(n, t),

H1(u, z, t) =
∞∑

n=0

ejunP1(n, z, t),

where j—imaginary unit. Thus, we can write for these partial characteristic
functions the following system of equations:

∂H0(u, t)
∂t

= − λ

N
H0(u, t) +

∂H1(u, 0, t)
∂z

,

∂H1(u, z, t)
∂t

=
∂H1(u, z, t)

∂z
− ∂H1(u, 0, t)

∂z

+γ(eju − 1)H1(u, z, t) + B(z)
λ

N
H0(u, t),

(1)

under the initial condition:

H0(u, 0) = 1, H1(u, z, 0) = 0. (2)

The solution {H0(u, t),H1(u, z, t)} of the Cauchy problem (1) and (2) we will
find in the following form:

H0(u, t) = 1 +
1
N

F0(u, t) + O

(
1

N2

)
, F0(u, 0) = 0,

H1(u, z, t) =
1
N

F1(u, z, t) + O

(
1

N2

)
, F1(u, z, 0) = 0.

(3)

Thus, we can write the equations for F0(u, t), F1(u, z, t):

∂F0(u, t)
∂t

= −λ +
∂F1(u, 0, t)

∂z
,

∂F1(u, z, t)
∂t

=
∂F1(u, z, t)

∂z
− ∂F1(u, 0, t)

∂z
+ γ(eju − 1)F1(u, z, t) + B(z)λ.

(4)

Let us denote
∂F1(u, 0, t)

∂z
= h(u, t) then the system (4) we can write in the

form:

∂F0(u, t)
∂t

= h(u, t) − λ,

∂F1(u, z, t)
∂t

− ∂F1(u, z, t)
∂z

= γ(eju − 1)F1(u, z, t) + B(z)λ − h(u, t).
(5)
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Solution to the second differential equation of the system (5) is determined by
solving the following system of ordinary differential equations for characteristic
curves [18]:

dt

1
=

dz

−1
=

dF1(u, z, t)
(eju − 1)γF (u, z, t) + λB(z) − h(u, t)

.

We will find a solution of this equation under the initial condition F (u, z, 0) = 0.
Denoting a(u) = (eju − 1)γ, we can write:

F1(u, z, t) = ea(u)t

t∫
0

e−a(u)x[λB(t + z − x) − h(u, x)] dx. (6)

Thus, for function h(u, t) we can write:

h(u, t) = ea(u)t
t∫
0

e−a(u)xλB′(t − x) dx

= ea(u)t

t∫
0

e−a(u)(t−y)λB′(y) dy = λ

t∫
0

ea(u)y dB(y),

where we make the following changes to the variable: t − x = y. Thus, we have
obtained:

h(u, t) = λ

t∫
0

ea(u)y dB(y). (7)

Let us denote

lim
z→∞ F1(u, z, t) = F1(u, t).

Performing the transition z → ∞ in the formula (6) and taking into account (7),
we will obtain:

F1(u, T ) =
λ

a(u)

⎧⎨
⎩ea(u)T (1 − B(T )) − 1 +

T∫
0

ea(u)xdB(x)

⎫⎬
⎭ , (8)

where a(u) = (eju − 1)γ.
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From the first equation of the system (5) and taking into account (7), we can
write:

F0(u, T ) = −λT + λ

T∫
0

(T − x)exp{(eju − 1)γx} dB(x). (9)

Summing up (8) and (9) and denoting

F (u, t) = F0(u, t) + F1(u, t) ,

we obtain

F (u, T ) = −λT + λ

T∫
0

(T − x)exp[(eju − 1)γx] dB(x) +
λ

(eju − 1)γ

×
⎧⎨
⎩(1 − B(T ))exp[(eju − 1)γT ] − 1 +

T∫
0

exp[(eju − 1)γx] dB(x)

⎫⎬
⎭ .

(10)

Taking into account (3), we can write

H(u, T ) = H0(u, T ) + H1(u, T ) = 1 +
1
N

F (u, T ) ,

where H(u, T )—characteristic function of the number of d-process events
occurred during time T on the interval [0, T ] into the single-line system with
loses.

3.2 Research of the System with an Infinite Number of Servers

We denote H̃(u, T )—the characteristic function of the number of the total d-
process events occurred during time T on the interval [0, T ] into the original
system with an infinite number of servers. Thus, we can write for H̃(u, T ) the
following expression:

H̃(u, T ) = lim
N→∞

(
1 +

1
N

F (u, T )
)N

= exp{F (u, T )}, (11)

where F (u, T ) is defined by the formula (10). Rewrite it back to notation
a(u)(eju − 1)γ:

F (u, T ) = −λT + λ

T∫
0

(T − x)ea(u)x dB(x)

+
λ

a(u)

⎧⎨
⎩(1 − B(T ))ea(u)T − 1 +

T∫
0

ea(u)x dB(x)

⎫⎬
⎭ .

(12)
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The equalities (11) and (12)—are result of a study of the d-process problem
into the system with an infinite number of servers, with an arbitrary distribution
function of the service times and a stationary Poisson arrival process.

The method of limiting decomposition considered above can only be applied
to the systems with stationary Poisson arrival process. However, this method
cannot be used to study the systems with other kinds of arrival processes, e.g.
Markovian modulated Poisson process or renewal arrival process, because these
arrival processes are not stochastic independent.

Thus, to explore the queueing system and to solve our problem we offer other
method referred to as the method of Markovian summation.

4 Method of Markovian Summation

Considering d-process into the system with an infinite number of servers on
the interval of time [0, T ], let us denote ξ(t)—the number of d-process events
generated on the intervale [0, T ] (precisety on the interval [t, T ]) by the customer
arrived at time t. Also, we denote n(t)—the total number of d-process events
formed on the interval [0, T ] by all the customers arrived in the system during
the time t on the interval [0, t].

It is obvious, if t = T then value n(T ) is equal to the number of d-process
events occurred during the time T on the interval [0, T ] under condition that at
initial moment t = 0 the system is free. Herewith, the value n(t) is not equal
to the number of d-process events occurred during the time t on the interval
[0, t], because d-process events formed by arrived customers occur throughout
the interval [0, T ], the time after moment t included. The study of the process
n(t) is necessary to find the probability distribution of the value n(T ) equal to
the sum of the number d-process events occurred on the interval [0, T ].

As the random variables ξ(t) for different moments t of the arriving customers
are independent and the random process n(T ) is Markovian, then the proposed
method will be called the method of Markovian summation of the values ξ(t).

4.1 Probability Distribution of the Value ξ(t)

We denote for the arriving customer at the moment t ∈ [0, T ] r(i, t) = P{ξ(t) =
i} and obtain this probability distribution.

The arrived customers can be of two kinds (Fig. 3).
On the time axis the interval boundaries and the moments t1 and t2 of two

arriving customers are marked. For the customer arrived at the moment t1 the

Fig. 3. The model of formation d-process
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service time ends before the moment t = T . For the customer arrived at the
moment t2 the service time ends after the moment t = T . In the first case all
d-process events generated by this customer belong to the interval [0, T ]. For
the customer of the second kind the d-process events generated by this customer
belong to the interval [t, T ].

Let us fix the value x of the service time of the customer of the first kind.
Then, the number of the d-process events generated by this customer is Poisson
distributed, with rate equal to γx. For the number of the d-process events gen-
erated by the customer of the second kind the rate of the Poisson distribution
is equal to γ(T − t).

Applying the formula of total probability to the distribution r(i, t), we can
write:

r(i, t) =

T−t∫
0

(γx)i

i!
e−γx dB(x) + (1 − B(T − t))

(γ(T − t))i

i!
e−γ(T−t). (13)

Its characteristic function can be represented as follows:

g(u, t) = M{ejuξ(t)} =
∞∑

i=0

ejuir(i, t)

=

T−t∫
0

exp{(eju − 1)γx} dB(x) + (1 − B(T − t))exp{(eju − 1)γ(T − t)}.

(14)

4.2 Kolmogorov Equations

For the Markovian process n(t) let us denote P (n, t) = P{n(t) = n} and write
the equalities:

P (n, t + Δt) = P (n, t)(1 − λΔt) + λΔt

n∑
i=0

P (n − i, t)r(i, t) + o(Δt).

After performing some transformation, we derive the following system of the
Kolmogorov differential equation for the probability distribution of the process
n(t):

∂P (n, t)
∂t

= −λP (n, t) + λ

n∑
i=0

P (n − i, t)r(i, t). (15)

Let us denote H(u, t) the characteristic function of the distribution P (n, t)

H(u, t) = M{ejun(t)} =
∞∑

n=0

ejunP (n, t).

Taking into account the system (15), we will write the equation

∂H(u, t)
∂t

= λH(u, t)(g(u, t) − 1).
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Now, we can write the characteristic function for t = T under initial condition
H(u, 0) = 1:

H(u, T ) = exp

⎧⎨
⎩λ

T∫
0

(g(u, t) − 1) dt

⎫⎬
⎭ , (16)

where g(u, t) is defined by equality (15).
The obtained characteristic function (16) as well as the function (11) define

the probability distribution P (n, T ) of the number of d-process events occurred
during the time T on the interval [0, T ] in the system with an infinite number
of servers. It is obvious, these functions should be the same. Let us make sure.

5 The Comparison of the Characteristic Functions

The characteristic functions (11) and (16) are the exponential ones depending

on the F (u, T ) and λ
T∫
0

(g(u, t) − 1) dt. The function F (u, T ) is defined by the

equality (12) and has the following form:

F (u, T ) = −λT + λ

T∫
0

(T − x)ea(u)x dB(x)

+
λ

a(u)

⎧⎨
⎩(1 − B(T ))ea(u)T − 1 +

T∫
0

ea(u)x dB(x)

⎫⎬
⎭ .

(17)

Denote G(u, T ) = λ
T∫
0

(g(u, t)−1) dt, where g(u, t) is defined by the expression

(14). Rewrite its using the designation (eju − 1)γ = a(u):

G(u, T ) = −λT + λ

T∫
0

g(u, t)dt

= −λT +

T∫
0

⎧⎨
⎩(1 − B(T − t))ea(u)(T−t) +

T−t∫
0

ea(u)xdB(x)

⎫⎬
⎭ dt.

Let us make the change to the variable T − t = y in (17). We will obtain

G(u, T ) = −λT + λ

T∫
0

(T − x)ea(u)x dB(x)

+
λ

a(u)

⎧⎨
⎩(1 − B(T ))ea(u)T − 1 +

T∫
0

ea(u)x dB(x)

⎫⎬
⎭ .

(18)

Since the functions F (u, T ) and G(u, T ) from (17) and (18) are equal to each
other then the characteristic functions H̃(u, T ) from (11) and H(u, T ) from (16)
are match.
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6 Numerical Example

In this section, we present the numerical results for the various parameters of
the studied model. Let the service time has gamma distribution with a shape
parameter equal to α and an inverse scale parameter equal to β. The interarrival
time has an exponential distribution with parameter λ, the intensity of occur-
rence of d-process events equal to γ. Shown on the graphs (Figs. 4, 5 and 6) are
distributions P (n, T ) of the number of d-process events occurred during time T
on the interval [0, T ] for the various values of parameters: λ, γ, T, α, β:

Table 1 contains the expected value (a) and variance (D) of the number of
d-process events occurred during time T on the interval [0, T ] for the following
values of parameters: λ = 2, T = 5, N = 60. The values of parameters α, γ, β =
α will be changed in a series of experiments.

Fig. 4. λ = 3, γ = 1, T = 1, α = 2, β = α, N = 20

Fig. 5. λ = 2, γ = 1, T = 5, α = 0.5, β = α, N = 40
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Fig. 6. λ = 2, γ = 2, T = 15, α = 1, β = α, N = 120

Table 1. The expected value and variance of the number of d-process events

γ = 0.2 γ = 1 γ = 2

α = 0.5 a = 1.437, D = 2.040 a = 7.159, D = 20.014 a = 14.315, D = 65.679

α = 1 a = 1.603, D = 2.090 a = 8.013, D = 20.202 a = 16.030, D = 64.855

α = 2 a = 1.700, D = 2.140 a = 8.500, D = 19.504 a = 16.998, D = 60.940

7 Conclusions

Thus, in this paper we have researched the d-process generated by the arrived
customers using two methods. The method of limiting decomposition is used
to study the system with a stationary Poisson arrival process. However, the
proposed method of Markovian summation can be successfully generalized for
the study d-process in the system with the more common arrival processes, e.g.
Markovian modulated Poisson process or renewal arrival process. The results of
the study of the processes as d-process can be used to analyze the activity of
some economic or production systems. The future investigations will be focused
on the study d-process in the systems with Markovian modulated Poisson process
and arbitrary service time distribution function.
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Abstract. The iterative Takahashi—Takami method is adjusted to cal-
culate distribution of the number of requests in the multi-phase sys-
tems with H2- service time and exponential distribution of the requests’
“patience”. The method of calculating the moments of waiting and
sojourn time distributions for “successful” requests is also offered. The
results are compared with the ones obtained from the simulation model.
Application of the method is shown to calculate the successful request’s
sojourn time distribution in the queueing network.

Keywords: Queueing theory · Multi-phase systems · Iteration
Impatient requests

1 Introduction

Among many applications of the queuing theory, situations with impatient cus-
tomers who have random restrictions on the request’s sojourn time play a signifi-
cant role. In telecommunications and military it could be some moving equipment
with a limited time of staying in the zone of reach, in emergency situations people
rescue, in court—lengthy legal procedures with deadlines, in medicine—critical
patients whose conditions deteriorate rapidly in anticipation of emergency assis-
tance, etc.

The simplest problem of this type—Markovian system with exponentially
distributed service time [1–3]—has a very limited practical value. The attempt
taken in [4] to generalize the approach for M/H2/n−H2 model proved ineffective
due to the fast growth of the problem dimension.

A reasonable compromise would be a M/H2/n−M model. Specifics of imple-
mentation of an iterative method [5–7] are discussed below—with additional cal-
culation of the system’s sojourn time for “successful” requests, their ratio with
respect to input flow, as well as calculating non-productive system losses due to
incomplete service. This software model is in essence the only one that allows to
generalize the problem on the queueing networks—thanks to the possibility to
disregard the accumulated requests’ patience due to its Markovian property.

c© Springer Nature Switzerland AG 2018
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2 Iterative Method for the Model M/H2/n − M

The considered system receives a Poisson flow of requests of the intensity λ.
The H2- servicing can be presented as an exponentially distributed for requests
of two types, selected with probabilities y1 and y2, with intensities μ1 and μ2

respectively. Any request’s sojourn time in the system, regardless of its location
(in the channel or in the queue), is limited by a random variable exponentially
distributed with parameter γ.

Shown on Fig. 1 is a fragment of the diagram of transitions between
microstates of the system M/H2/3 − M by outgoing, presented for 2-nd, 3-rd
and 4-th layers.

Fig. 1. Fragment of the withdrawal chart

Each layer corresponds to the number of system requests shown to the left
(in our example—2, 3, 4). Code combinations like (2,1) indicate the distribution
by type of requests being served; additional multipliers {yi} placed at the ends
of arrows—the probabilities of selecting requests of the appropriate type from
the queue. On layers j > 3 the difference will consist only in the intensity
of additional vertical transitions (γ, 2γ, 3γ, . . . ), reflecting exit of the impatient
requests from a queue of the current length.

Let Sj be a set of all possible system microstates in which exactly j of
requests are being served, and let mj be a number of elements in Sj . Further,
in accordance with the diagram of transitions for the selected model, let’s build
the matrices of the intensities of infinitesimal transitions:

Aj [mj × mj+1]—in Sj+1 (on arrival requests),
Bj [mj × mj−1]—in Sj−1 (full completion of service request),
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Dj [mj × mj ]—exit from the states of layer j
(the matrices sizes are indicated in the square brackets). Calculation of these
matrices in case of H2 approximation of the service time distribution is easily
programmed.

Let’s introduce vectors-strings gj = {gj,1, gj,2, . . . , gj,mj
} of probabilities for

the system to be in the state (j, i), j = 0, 1, . . .. Now it is possible to write down
the vector-matrix equations of the transition balance

g0D0 = g1B1,
gjDj = gj−1Aj−1 + gj+1Bj+1, j = 1, 2, . . .

(1)

Now we describe the general scheme of the iterative calculation of the sta-
tionary vectors of probabilities. Assume tj = γj/pj , where pj is the cumulative
probability of presence exactly j requests in the system, and define

xj = pj+1/pj , zj = pj−1/pj . (2)

With the bottom-up passage of the layers in the iteration number m the system of
equations (1) can be rewritten with respect to vectors of conditional probabilities
of the microstates normalized to 1 within a layer:

t
(m)
0 D0 = x0t

(m)
1 B1,

t
(m)
j Dj = zjt

(m−1)
j−1 Aj−1 + xjt

(m)
j+1Bj+1, j = 1, 2, . . .

(3)

Using vectors-columns 1j = {1, 1, . . . , 1}T of size σj , the additional system
conditions (3) for normalizing components to 1 can be written for all j

tj1j = 1 (4)

and the balance of the total intensities of transitions between adjacent layers

t
(m)
j Aj1j+1 = xjt

(m)
j+1Bj+11j . (5)

In the case of the system with an unlimited queue, the calculation algorithm
for the set of vectors {tj} and the numbers {xj} and {zj} satisfying ratios (3)–(5),
relies on the existence of a limit vector of conditional probabilities t = limj→∞ tj ,
which is a consequence of the stabilization of transition matrices at j > n. The
algorithm is based on a sequential approximation to the desired characteristics
for a bounded set of indices j = 0, N .

Let’s rewrite the equations of the system (3) for j ≥ 1 as

t
(m)
j = zjβ

′
j + xjβ

′′
j , (6)

where
β′

j = t
(m−1)
j−1 Aj−1D

−1
j ,

β′′
j = t

(m)
j+1 Bj+1D

−1
j .

(7)
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In this and subsequent formulas the products of matrices can be calculated
before the start of iterations. In particular, their products by 1j are equal to the
row sums, and the products

t
(m)
j−1Aj−11j = λ. (8)

One of the central ideas of the Takahashi—Takami method is the assumption
about stabilization of conditional probabilities vectors {tj} for j → ∞ confirmed
by calculations. It allows to close the calculation scheme by assuming that for a
layer with sufficient large number j = N

β′′
N = t

(m−1)
N−1 BN+1D

−1
N . (9)

This assumption was a consequence of the transition matrices stabilization
already at j = n + 1. In our case, {Bj} and {Dj} are stabilized only at j → ∞,
but due to increasing decline of “impatient” requests, the cumulate layer proba-
bilities {pj}, having other equal conditions, will decrease much faster, and hence
the errors from the above assumption will play a lesser role. Therefore, we will
still use the condition (9) for the boundary layer N . The acceptability of this
assumption can be verified by repeating the calculation for an increased value
of N .

What is left to specify is how to calculate {zj} and {xj}. We rewrite (5)
accounting (7):

(zjβ
′
j + xjβ

′′
j )Aj1j+1 = zjt

(m)
j+1Bj+11j .

Hence we have the proportionality

zj = cxj

with a factor

c =
t
(m)
j+1Bj+11j − β′′

j Aj1j+1

β′
jAj1j+1

.

Since all the products Aj1j+1 (the row sums of the matrices of requests arrival
intensities) in the considered case of Poissonian incoming flow are equal to λ,
the last formula can be represented as

c =
t
(m)
j+1Bj+11j − λβ′′

j 1j

λβ′
j1j

. (10)

Substitution of (8) in (6) and multiplying both parts of the result by 1j give

1 = t
(m)
j 1j = x

(m)
j (cβ′

j + β′′
j )1j .

So,
x
(m)
j = 1/[(cβ′

j + β′′
j )1j ]. (11)
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A convenient criterion for terminating iterations is the condition

max
j

|x(m)
j − x

(m−1)
j | ≤ ε.

Due to rather obvious considerations, it is convenient to choose initial condi-
tional distributions of the number of served requests of each type to be binomial
with probabilities proportional to {yi/μi}.

After iterations termination, we can now move on to find cumulant proba-
bilities. Assuming p0 = 1, we sequentially calculate

pj+1 = pjxj , j = 0, N − 1, (12)

and then normalize them to 1. We recall that sufficiency of the chosen N is
determined by the smallness of the last probabilities.

Let’s compare the implementation of the described method and the corre-
sponding simulation model for a three-channel system with H2- service time
distribution (coefficient of variation v = 2)—Table 1:

Table 1. Probabilities of system states

j Simulation Calculation j Simulation Calculation

0 8.578e-2 8.556e-2 10 5.577e-3 5.640e-3

1 1.986e-1 1.981e-1 11 2.838e-3 2.812e-3

2 2.256e-1 2.252e-1 12 1.319e-3 1.330e-3

3 1.650e-1 1.654e-1 13 6.093e-4 5.973e-4

4 1.178e-1 1.181e-1 14 2.611e-4 2.553e-4

5 8.096e-2 8.101e-2 15 1.188e-4 1.040e-4

6 5.286e-2 5.295e-2 16 4.774e-5 4.042e-5

7 3.275e-2 3.284e-2 17 1.886e-5 1.502e-5

8 1.924e-2 1.929e-2 18 4.876e-6 1.822e-6

9 1.064e-2 1.072e-2 19 3.149e-6 5.966e-7

Simulation was carried out before acceptance for service of 2 million requests.
Therefore, the agreement of the calculated and statistical probabilities of order
10−4 and more, for which the number of observations exceeded 100, should be
considered very good.

3 Distribution of the Waiting Time

The biggest problem in the systems with impatient requests calculation is the
definition of their temporaryś characteristics. Here, the known formula for the
moments of waiting time distribution

wj = q[j]/λj , j = 1, 2, . . . , (13)
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in which {q[j]} are the factorial moments of queue length distribution, as shown
by simulation experiments, gives poor accuracy.

Let us calculate

– vectors-rows gk = pk ∗ tk of the stationary probabilities of microstates, k =
0, 1, . . . ,

– diagonal matrices of total up-transition intensities with elements {σk,i},
– diagonal matrices {Uk(s)} of the Laplace-Stieltjes transformations (LST) of

the distributions of up-transitions duration by the corresponding total inten-
sities {σk} with elements {σk,i/(σk,i + s)},

– the product Ũn(s) of the matrix Un(s) by a unit vector-column,
– matrices {Tk} with elements {bk,i,j/σk,i} of the probabilities of transitions on

the overlying layer.

In addition, we replace the diagonal matrix Un(s) by the same name vector-
column. It is not difficult to see that the LST of waiting time outputs directly
on service from n-th layer is

ωn(s) = gnŨn(s).

For the (n + 1)-th layer we have

ωn+1(s) = gn+1[Un+1(s)Tn+1]Ũn(s),

for the (n + 2)—

ωn+2(s) = gn+2[Un+2(s)Tn+2Un+1(s)Tn+1]Ũn(s),

etc. Given the above rules for forming factors Fk(s) = Uk(s)Tk included in these
formulas, we can immediately define matrices {Fk} as the sets of elements type
{bk,i,j/(σk,i + s)}. Summing up the results for all possible starting layers, we get
the final formula for the LST of waiting time distribution:

ω(s) =
[ ∞∑

k=0

gn+k

k∐
i=0

Fn+i(s)
]
Ũn(s). (14)

In this formula, the inverted product symbol is used to specify the inverse
order of cofactors (be reminded that the multiplication of matrices in general is
non-commutative). The initial value is Fn(s) = I.

Having calculated a table of LST values in a neighbourhood of zero, we can
construct its approximation by the Newton interpolation polynomial, and obtain
the moments of waiting time distribution by multiple differentiation of the latter.

All is left is to consider the possibility of “impatience” for the same labeled
request. Because for each request, the probability to endure the time u is equal
to e−γu, the distribution function of a successful waiting

W+(t) =

t∫
0

e−γuw(u) du.
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Accordingly, the LST of this distribution

ω+(s) =

∞∫
0

e−std

[ t∫
0

e−γuw(u) du

]
dt.

The derivative of integral by the parameter in this case is e−γtw(t). Hence,

ω+(s) =

∞∫
0

e−ste−γtw(t) dt = ω(s + γ).

Thus, LST of the successful waiting should be calculated according to (14) with
replacing the argument s by s + γ.

The moments of successful waiting, obtained in this way, should be divided
by the probability of a successful wait, including zero, that is, by

πw =
n−1∑
k=0

pk + ω+(γ).

We compare the numerical results obtained by this technique and by means
of simulation (2 million of served requests). For a three-channel system with the
intensity λ = 1.5 of the incoming Poissonian flow, average service time b1 = 4.0,
the service variation factor vb = 2.0 and impatience intensity γ = 0.2 the results
are summarized in Table 2.

Table 2. Moments of the distribution of successful waiting

Method w+
1 w+

2 w+
3

Imitation 0.483 1.048 3.319

Calculation 0.479 1.039 3.287

4 Distribution of a Successful Request Sojourn Time

When the request from a queue has been extracted, the assumption of the permis-
sible patience having Markovian distribution allows to count down its patience
anew. After all, we are only interested in “successful” requests which received
complete servicing. Suppose the distribution of the latter be two-phase hyper-
exponential with parameters {ym, μm}. Then the j-th moment of the time of
successful servicing

b+j =

∞∫
0

[ θ∫
0

tjb(t) dt

]
γe−γθ dθ =

∞∫
0

[ θ∫
0

tj
2∑

m=1

ymμme−μmt dt

]
. (15)
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It can be shown that

b+j = j!
2∑

m=1

ym

μj
m

− j!
2∑

m=1

ym

μj
m

·
j∑

i=0

γ

μm + γ

(
μm

μm + γ

)i

= j!
2∑

m=1

ym

μj
m

[
1 − γ

μm + γ

j∑
i=0

(
μm

μm + γ

)i]
. (16)

In accordance with (15), the zero moment of the successful servicing can be
considered as a probability πs of the such. Substituting j = 0 in (15), we get

πs =
2∑

m=1

um

[
1 − γ

μm + γ

]
=

2∑
m=1

ymμm

μm + γ
. (17)

It is of interest to estimate the volume of wasted service. The average service
time of the interrupted request

τ̄ =

∞∫
0

θB̄(θ)γe−γθ dθ,

where B̄(θ) is the complementary distribution function of the full service dura-
tion. In our problem

τ̄ =

∞∫
0

θ

[ 2∑
m=1

yme−μmθ

]
γe−γθ dθ (18)

= γ

2∑
m=1

ym

∞∫
0

θe−(μm+γ)θ dθ = γ

2∑
m=1

ym

(μm + γ)2
.

Total losses per unit of time will be

g = λπw(1 − πs)τ̄ .

The moments of {v+
j } of a successful stay in the system are calculated via

convolution of {w+
j } and {b+j }, and the probability of a successful stay in the

system
πv = πwπs.

5 Calculation of a Network with Impatient Requests

The assumption that permissible patience has the Markovian distribution allows
us to apply the results of previous section to the calculation of networks with
hyper-exponential servicing, using their flow-equivalent decomposition. Since in
our case the intensity of the exiting successful flow differs from the intensity
of the incoming one, it is necessary to make the following changes in the usual
scheme of open network calculation:
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1. There should be no cyclic routes in the network.
2. The numbering and, respectively, the order of the nodes calculation must be

determined on the basis of a preceding relationship—for example, using the
well-known Floyd algorithm.

3. The nodes with impatience must be calculated using the above method. The
intensities of the output flow for such nodes must be calculated via multiplying
the incoming intensities by the corresponding probability πv.

The network sojourn time calculation deserves a special consideration. When
talking about most critical applications, it isn’t enough to know the average
sojourn time—such cases usually raise the question of the highest moments
and/or calculation of the distribution function. Appropriate technique [8] is
based on the construction of the LST for the network sojourn time distribution
via the “nodal” LST, a routing matrix, and its’ subsequent numerical differen-
tiation at zero.

6 Conclusion

The main results of this work are as follows:

1. A diagram of transitions between microstates of the model M/H2/n − M is
proposed taking into account exponentially distributed patience of all requests
located in the system. On its basis, the rules are corrected to calculate the
matrices {Bj} and {Dj} of the transition intensities.

2. Permissibility of using the formula (8) was justified, which allows to limit the
number of accounted layers.

3. The stationary probabilities of system states, moments of successful waiting
and sojourn time were obtained and compared with their analogs received by
simulation.

4. The formulas for calculating average losses from interrupted service per unit
of time and the intensity of the flow of successful requests were proposed

5. Application of these results to the calculation of the queueing networks service
with impatient requests was demonstrated.

Acknowledgments. The work described in the paper was supported by state project
0073-2018-0003.
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Abstract. We consider the optimal estimation problem for the states
of a semi-synchronous event flow of the second order with two states; it
is one of the adequate mathematical models for an incoming stream of
claims (events) in modern digital integral servicing networks, telecommu-
nication systems, satellite communication networks. We find an explicit
form for posterior probabilities of the flow states. The decision about the
flow state is made with the maximal a posteriori criterion.

Keywords: Semi-synchronous event flow · Optimal states estimation
Posterior probabilities · Maximal a posteriori criterion

1 Introduction

In modern times information flows of messages are functioning in telecommuni-
cation systems, satellite communication networks and global computer networks.
Doubly stochastic flows of events are their adequate mathematical models [1,2].
These flows are characterized by double randomness, namely: the moments when
events occur are random and the intensity of the flow is a random process.

A semi-synchronous event flow of the second order is the object of studying
in this work. A semi-synchronous flow is an integration of the following types
of flows: a synchronous flow, where the transition from state to state depends
directly on the occurrence of the event [3], and asynchronous, where the transi-
tion from state to state does not depend on whether the event has occurred or
not [4].

The main problems in the studying of doubly stochastic event flows are prob-
lems that are realized by observing the moments when events occur: (1) estimat-
ing the states of an event flow [5–7]; (2) estimating flow parameters [8–10].

We emphasize that the mathematical models of doubly stochastic flows of
events, in particular the model of the semi-synchronous event flow of the second
order is considered in this paper, are the most characteristic and appropriate
flow models in real telecommunication systems and networks [11,12].
c© Springer Nature Switzerland AG 2018
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We propose an algorithm for optimal estimation of the states of the flow under
consideration by the method of maximum a posterior probability in this paper.
The application of this method is due to the fact that a posterior probability is
a characteristic is possessing the most complete information about the process
is being investigated, that is contained in the sample of observations, and also
because the method of maximum a posterior probability provides a minimum of
the total probability of error in making the decision [13]. This article is a direct
development of [14,15].

2 Problem Setting

We consider the stationary operation mode of a semi-synchronous doubly
stochastic event flow of the second order (hereinafter flow), the accompanying
random process of which is a piecewise constant process λ(t) with two states S1

and S2. Hereinafter, the ith state of the process is understood as the state Si,
i = 1, 2.

The duration of the interval between the flow events at the first state is
determined by the random variable η = min(ξ(1), ξ(2)), where random variable
ξ(1) has distribution function F

(1)
1 (t) = 1 − e−λ1t, random variable ξ(2) has

distribution function F
(2)
1 (t) = 1 − e−α1t; ξ(1) and ξ(2) are independent random

variables.
At the moment of the flow event occurrence, the process λ(t) transits from the

first state to the second either with probability P
(1)
1 (λ2|λ1), or with probability

P
(2)
1 (λ2|λ1), depending on what value the random variable η has taken. At the

moment of the flow event occurrence, the process λ(t) remains at the first state
either with probability P

(1)
1 (λ1|λ1), or with probability P

(2)
1 (λ1|λ1), depending

on what value the random variable η has taken. Here P
(1)
1 (λ2|λ1)+P

(1)
1 (λ1|λ1) =

1, P
(2)
1 (λ2|λ1) + P

(2)
1 (λ1|λ1) = 1. The duration of the interval between the flow

events at the first state is random variable with distribution function F (t) =
1 − e−(λ1+α1)t.

The time during which the process λ(t) remains at the second state is random
variable with distribution function F2(t) = 1 − e−α2t. During the time when the
process λ(t) is in the second state, there is a Poisson event flow with parameter λ2.

Hereinafter, it is assumed that the state Si (ith state) of the process λ(t)
takes place if λ(t) = λi, i = 1, 2; λ1 > λ2 ≥ 0.

The infinitesimal characteristics matrices for the process λ(t) are as follows

D0 =
∣
∣
∣
∣

∣
∣
∣
∣

−(λ1 + α1) 0
α1 −(λ2 + α2)

∣
∣
∣
∣

∣
∣
∣
∣

,

D1 =
∣
∣
∣
∣

∣
∣
∣
∣

λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1) λ1P

(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)

0 λ2

∣
∣
∣
∣

∣
∣
∣
∣
.

Elements of the matrix D1 are the intensities of the process transitions from
state to state with an event occurrence. Nondiagonal elements of the matrix D0
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are the intensities of transitions from state to state without an event. In turn,
the diagonal elements of the matrix D0 are the intensities of the process exit
from its states taken with the opposite sign.

An example of one of the realizations of the process λ(t) and the event flow
are shown on Fig. 1, where t1, t2, ... denote the moments when events occur in
the flow.

Fig. 1. Semi-synchronous event flow of the second order

Assertion. λ(t) is a Markov process.
Proof. It is not difficult to show that the time during which the process

λ(t) remains at the first state is a random variable is distributed accord-
ing to the exponential law with the distribution function F1(t) = 1 −
e−[λ1P

(1)
1 (λ2|λ1)+α1P

(2)
1 (λ2|λ1)]t.

In turn, the time during which the process λ(t) remains at the second state
is a random variable is distributed according to the exponential law F2(t) =
1 − e−α2t. This implies the statement of the assertion.

Since the process λ(t) is unobservable in principle, and we can only observe
time moments t1, t2, ... when events occur in the flow, then λ(t) is a hidden
Markov process or an unobservable accompanying Markov process.

We have to estimate the state of the process λ(t) (flow) at time moment t,
when the observations have stoped by observations t1, t2, ... of the event flow
over the time interval (t0, t), where t0 denotes the beginning of observations. We
can let t0 = 0 without loss of generality.

To make the decision regarding the state of the process λ(t) at time moment
t, we have to determine posterior probabilities w(λi|t) = w(λi|t1, ...tm, t) =
P (λ(t) = λi|t1, ..., tm, t), i = 1, 2, of the fact that at time moment t the value
of the process λ(t) = λi (m is the number of events in time t), here w(λ1|t) +
w(λ2|t) = 1. The optimal estimation is as follows: if w(λi|t) ≥ w(λj |t), i, j =
1, 2, i �= j, then the estimation of the state of the process is λ̂(t) = λi, otherwise
λ̂(t) = λj , i, j = 1, 2.
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3 Optimal Estimation Algorithm for the States of the
Semi-synchronous Event Flow of the Second Order

We will consider time intervals (tk, tk+1), k = 1, 2, ..., between neighboring events
in the flow. Denote t as the decision making moment, here 0 < t < t1 or tk <
t < tk+1, k = 1, 2, ....

Lemma 1. On time intervals (0, t1) and (tk, tk+1), k = 1, 2, ..., the posterior
probability w(λ1|t) satisfies the Riccati differential equation

dw(λ1|t)
dt

= (λ1 − λ2 + α1)w2(λ1|t) − (λ1 − λ2 + α1 + α2)w(λ1|t) + α2. (1)

Proof. To derive the formulas for posterior probabilities we use the method of
obtaining recurrence relations for posterior probabilities as described in [13]: we
first consider discrete observations divided by sufficiently small time intervals Δt
and then make the limit transition as Δt tends to zero.

We suppose that the time is discrete and changes with step Δt : t(n) =
nΔt, n = 0, 1, .... We introduce a two-dimensional process (λ(n), rn), (λ(n), rn) =
(λ(nΔt), rn(Δt)) = (λ(nΔt), r(nΔt)− r((n− 1)Δt)) where λ(n) = λ(nΔt) is the
value of process λ(t) at time moment t(n) = nΔt(λ(n) = λi, i = 1, 2); rn = rn(Δt)
is the number of events in the flow occurred on the interval ((n − 1)Δt, nΔt) of
length Δt, rn = 0, 1, ... . Note that this two-dimensional process is Markovian.

We denote by rm = (r0, r1, ..., rm) the sequence of the number of events in
time from 0 to mΔt on intervals ((n − 1)Δt, nΔt) of length Δt, n = 0, 1, ...,m,
where r0 is the number of events on the interval (−Δt, 0); since there are no
observations on this interval, so we can set an arbitrary value to it, say r0 = 0.
We denote by λ(m) = (λ(0), λ(1), ..., λ(m)) the sequence of unobservable values of
the process λ(nΔt) at time moments nΔt, n = 0, 1, ...,m, where λ(0) = λ(0) =
λi, i = 1, 2. We denote by (λ(m)|rm) the posterior probability of the value λ(m)

under the condition that we have observed a realization rm.
For the Markov random process (λ(n), rn), a recurrent relation is obtained in

[16] for the posterior probabilities w(λ(m+1)|rm+1) and w(λ(m)|rm)

w(λ(m+1)|rm+1) =

=

λ2∑

λ(m)=λ1

w(λ(m)|rm)p(λ(m+1), rm+1|λ(m), rm)

λ2∑

λ(m)=λ1

λ2∑

λ(m+1)=λ1

w(λ(m)|rm)p(λ(m+1), rm+1|λ(m), rm)
, (2)

where p(λ(m+1), rm+1|λ(m), rm) is the transition probability for the process
(λ(n), rn) in one step Δt from state (λ(m), rm) to state (λ(m+1), rm+1). Due
to the fact that the two-dimensional process under consideration is Markovian
and also because of the construction of the semi-synchronous event flow of the
second order, the transition probability can be written as

p(λ(m+1), rm+1|λ(m), rm) = p(λ(m+1)|λ(m))p(rm+1|λ(m), I(λ(m))), (3)
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where the indicator

I(λ(m)) =

{

λ(m+1), if λ(m) = λ1,

0, if λ(m) = λ2.

Taking into account (3) and that w(λ(m)|rm) = w(λ(m)|rm(t)) = w(λ(m)|t),
w(λ(m+1)|rm+1) = w(λ(m+1)|rm+1(t + Δt)) = w(λ(m+1)|t + Δt) we can rewrite
(2) as

w(λ(m+1)|t + Δt) =

=

λ2∑

λ(m)=λ1

w(λ(m)|t)p(λ(m+1), λ(m))p(rm+1|λ(m), I(λ(m)))

λ2∑

λ(m)=λ1

λ2∑

λ(m+1)=λ1

w(λ(m)|t)p(λ(m+1), λ(m))p(rm+1|λ(m), I(λ(m)))
. (4)

Let in (4) λ(m+1) = λ1 for definiteness. The value rm+1 takes only two values
rm+1 = 0, 1 due to the definition of the semi-synchronous event flow of the second
order. Situations where rm+1 = 2, 3, ... has probability equal o(Δt). We consider
the behavior of posterior probability w(λ1|t) on the interval (tk, tk+1) between
neighboring events of the flow, i.e. consider the case of the absence of events
on the observation interval (t, t + Δt). Then rm+1 = 0 and taking into account
the matrix D0 the transition probabilities in the recurrence relation (4) on the
interval (t, t + Δt) = (mΔt, (m + 1)Δt) take the following form

p(λ(m+1) = λi)|λ(m) = λi)p(rm+1 = 0|λ(m) = λi, λ
(m+1) = λi) =

= 1 − λiΔt − αiΔt + o(Δt), i = 1, 2,

p(λ(m+1) = λ1)|λ(m) = λ2)p(rm+1 = 0|λ(m) = λ2) = α2Δt + o(Δt),

p(λ(m+1) = λ2)|λ(m) = λ1)p(rm+1 = 0|λ(m) = λ1, λ
(m+1) = λ2) = 0.

Substituting these expressions into (4), we obtain

w(λ1|t + Δt) =
w(λ1|t) − (λ1 + α1)w(λ1|t)Δt + α2w(λ2|t)Δt + o(Δt)

1 − Δt
[

(λ1 + α1)w(λ1|t) + λ2w(λ2|t)Δt + o(Δt)
Δt

] . (5)

Taking into account the fact that (1 − x)−1 = 1 + x + o(x) where x > 0 is a
sufficiently small quantity, we can rewrite (5) as

w(λ1|t + Δt) − w(λ1|t) =

= −[(λ1 + α1)w(λ1|t)−α2w(λ2|t)− (λ1 + α1)w
2(λ1|t)− λ2w(λ1|t)w(λ2|t)]Δt + o(Δt).

Taking into account that w(λ2|t) = 1 − w(λ1|t), dividing both sides of the
last equality by Δt and passing to the limit for Δt → 0, we find (1). Lemma 1
is proved.
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Lemma 2. The posterior probability w(λ1|t) at the time a semi-synchronous
flow of the second order event tk, k = 1, 2, ..., occurs is given by the following
conversion formula:

w(λ1|tk + 0) =
[λ1P

(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)]w(λ1|tt − 0)

λ2 + [λ1 + α1 − λ2]w(λ1|tk − 0)
, k = 1, 2, .... (6)

Proof. Let rm+1 = 1, i.e. a flow event occurs on the interval (t, t + Δt) at time
moment tk, t < tk < t + Δt. Thus, we have two adjacent intervals (t, tk) and
(tk, t+Δt), whose durations are Δt′ = tk − t and Δt′′ = t+Δt− tk respectively.
Then w(λ(m)|t) = w(λ(m))|tk − Δt′), w(λ(m+1)|t + Δt) = w(λ(m+1)|tk + Δt′′)
take place and (4) takes the following form for λ(m+1) = λ1

w(λ1|tk + Δt′′) =

=

λ2∑

λ(m)=λ1

w(λ(m)|tk − Δt′)p(λ1|λ(m))p(rm+1 = 1|λ(m), I(λ(m)))

λ2∑

λ(m)=λ1

λ2∑

λ(m+1)=λ1

w(λ(m)|tk − Δt′)p(λ(m+1), λ(m))p(rm+1 = 1|λ(m), I(λ(m)))

. (7)

Taking into account the matrix D1 on the interval (t, t + Δt) = (mΔt, (m +
1)Δt) we can rewrite transition probabilities in (7) as

p(λ(m+1) = λi|λ(m) = λ1)p(rm+1 = 1|λ(m) = λ1, λ
(m+1) = λi)

= [λ1P
(1)
1 (λi|λ1) + α1P

(2)
1 (λi|λ1)]Δt + o(Δt), i = 1, 2,

p(λ(m+1) = λ2|λ(m) = λ2)p(rm+1 = 1|λ(m) = λ2) = λ2Δt + o(Δt),

p(λ(m+1) = λ1|λ(m) = λ2)p(rm+1 = 1|λ(m) = λ2) = 0.

Substituting the expressions for the transition probabilities into (7), we
obtain

w(λ1|tk + Δt′′) = {[λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1)]w(λ1|tk − Δt′)Δt + o(Δt)}×

×{[(λ1 + α1)w(λ1|tk − Δt′) + λ2w(λ2|tk − Δt′)]Δt + o(Δt)}−1.

Taking into account that w(λ2|tk − Δt) = 1 − w(λ1|tk − Δt′) dividing the
numerator and denominator of the last equality by Δt and passing to the limit
for Δt → 0 (Δt′ and Δt′′ tend to zero simultaneously), we find (6). Lemma 2 is
proved.

Remark. The point tk, which is a solution of Eq. (1), is the point of discontinuity
of the first kind for the probability w(λ1|t). The probability w(λ1|tk +0) depends
on the value w(λ1|tk−0), where w(λ1|tk−0) is the value of probability w(λ1|t) at
the time moment tk when t changes on the interval (tk−1, tk), k = 1, 2, .... Thus,
probability w(λ1|tk +0) contains information about the entire prehistory of flow
observations starting from the time moment t0 of the beginning of observations
until the moment tk of the kth event occurrence of the flow.
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Let π1(t|t0) be a prior probability that the process λ(t) = λ1 at time moment
t under the condition that the flow functioning started at the time moment t0.
Then the differential equation for the introduced probability takes place

π′
1(t|t0) = −[λ1P

(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1) + α2]π1(t|t0) + α2,

integrating which and taking into account the initial condition π1(t0|t0) = π and
considering the obtained solution under the stationary operation mode (t → ∞
or t0 → −∞), we find the prior final probability of the first state of the process
λ(t):

π1 =
α2

λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1) + α2

. (8)

Lemmas 1 and 2 yield the following theorem.

Theorem 1. On time intervals (0, t1) and (tk, tk+1), k = 1, 2, ..., the posterior
probability w(λ1|t) follows the following explicit formula:

w(λ1|t) =

=
w1[1 − w(λ1|tk + 0)] − [w1 − w(λ1|tk + 0)]e−(λ1−λ2+α1)(1−w1)(t−tk)

[1 − w(λ1|tk + 0)] − [w1 − w(λ1|tk + 0)]e−(λ1−λ2+α1)(1−w1)(t−tk)
, (9)

where w1 =
α2

λ1 − λ2 + α1
, tk < t < tk+1, k = 0, 1, ...; w(λ1|tk + 0), k = 1, 2, ...,

is given by (6); w(λ1|t0 + 0) = π, π is defined in (8).

Proof. Integrating Eq. (1) with the initial condition w(λ1|t) = w(λ1|tk + 0) at
time moment tk of the event occurrence of the flow, we obtain the assertion of
the theorem. Theorem is proved.

Thus, formulas (6), (8), (9) let us construct the optimal estimation algorithm
for the states of the semi-synchronous event flow of the second order, in other
words, the algorithm to compute probabilities w(λ1|t), w(λ2|t) = 1 − w(λ1|t)
and the algorithm to make a decision regarding the state of the process λ(t) at
any time moment t:

(1) according to formula (8), compute the prior probability of the first state of
the process under consideration w(λ1|t0 + 0) = w(λ1|t0 = 0) = π1 at time
moment t;

(2) according to formula (9), for k = 0 compute the probability w(λ1|t) at time
moment t, t0 < t < t1, where t1 is the moment when the first event occurs
in the flow, here π1 is the initial condition at this step;

(3) for k = 0 compute the probability w(λ1|t1) = w(λ1|t1 − 0) at time moment
t1 by following formula

w(λ1|t1) =
w1[1 − π1] − [w1 − π1]e−(λ1−λ2+α1)(1−w1)(t1−t0)

[1 − π1] − [w1 − π1]e−(λ1−λ2+α1)(1−w1)(t1−t0)
;
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(4) according to formula (6) for k = 1 compute the posterior probability
w(λ1|t1 + 0) at time moment t1 which is the initial value for w(λ1|t) at
the next step of the algorithm;

(5) according to formula (9), for k = 1 compute the probability w(λ1|t) at time
moment t, t1 < t < t2, where t2 is the moment when the second event occurs
in the flow;

(6) for k = 1 compute the probability w(λ1|t2) = w(λ1|t2 − 0) at time moment
t2 by following formula

w(λ1|t2) =
w1[1 − w(λ1|t1 + 0)] − [w1 − w(λ1|t1 + 0)]e−(λ1−λ2+α1)(1−w1)(t2−t1)

[1 − w(λ1|t1 + 0)] − [w1 − w(λ1|t1 + 0)]e−(λ1−λ2+α1)(1−w1)(t2−t1)
;

(7) k increases by one and so on.

As we compute posterior probability w(λ1|t) we can make a decision regard-
ing the state of process λ(t) at any time moment t: if w(λ1|t) ≥ w(λ2|t) then we
estimate λ̂(t) = λ1, otherwise λ̂(t) = λ2.

4 Results of Numerical Calculations

We developed the algorithm for computing the posterior probability to obtain
numerical results. The algorithm consists of two stages. Also statistical experi-
ments were made.

The simulation of the semi-synchronous event flow of the second order is
performed directly at the first stage of the implementation algorithm. Posterior
probabilities are calculated at the second stage based on the obtained sample of
the moments of event occurrence of the flow, and also estimates of the considered
event flow states are constructed.

Figure 2 shows an example of one of the realizations of the process λ(t) and
its estimation at the time interval of T = 10 units of time (simulation time) for
the following set of parameters: λ1 = 2, λ2 = 0, 8, α1 = 2, α2 = 0, 8 and the
probabilities P

(1)
1 (λ1|λ1) = P

(2)
1 (λ1|λ1) = 0, 4, P

(1)
1 (λ2|λ1) = P

(2)
1 (λ2|λ1) = 0, 6.

Figure 3 shows the trajectory of the posterior probability behavior w(λ1|t)
for the case under consideration.

These statistical experiments, which consist of following steps, were made to
find the frequency of making erroneous decisions about the state of the process
λ(t):

(1) for the fixed set of parameters simulate the semi-synchronous event flow of
the second order at time interval of T (ith experiment);

(2) according to formulas (6), (9) compute the probability w(λ1|t) for the given
time interval;

(3) construct the estimation of the process λ(t) at any time moment t for the
given time interval;

(4) compute the value di (for ith experiment) that is total length of time inter-
vals, where estimation value λ̂(t) does not coincide with the actual value of
the process λ(t);
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Fig. 2. The process λ(t) trajectory and the estimation λ̂(t) trajectory

Fig. 3. Trajectory of the posterior probability w(λ1|t)

(5) compute the fraction of wrong decisions p̂i = di/T (estimation of the total
error probability of the state estimation of the process λ(t) for the given
time interval);

(6) repeat 1–5 steps N times (i = 1, N).

The result of the above algorithm is a sample of fractions of wrong decisions
in N experiments p̂i, i = 1, N , by which we find a sample mean of the total

probability of the erroneous solution P̂er =
1
N

N∑

i=1

p̂i and a sample variance D̂ =

1
N − 1

N∑

i=1

(p̂i − P̂er)2.

The results of the first statistical experiment are given in Tables 1, 2, 3, 4
and 5.

We consider the dependence of P̂er, D̂ change for N = 100, probabilities
P

(1)
1 (λ1|λ1) = P

(2)
1 (λ2|λ1) = 0, 4, P

(1)
1 (λ2|λ1) = P

(2)
1 (λ1|λ1) = 0, 6 and flow
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Table 1. The results of the first statistical experiment for λ1 = 3

T 100 300 500 700

P̂er 0,1901 0,2002 0,1899 0,1908

D̂ 0,0023 0,0021 0,0019 0,0020

Table 2. The results of the first statistical experiment for λ1 = 4

T 100 300 500 700

P̂er 0,1700 0,1877 0,1777 0,1699

D̂ 0,0018 0,0017 0,0020 0,0018

Table 3. The results of the first statistical experiment for λ1 = 5

T 100 300 500 700

P̂er 0,1666 0,1709 0,1670 0,1507

D̂ 0,0015 0,0019 0,0020 0,0017

Table 4. The results of the first statistical experiment for λ1 = 6

T 100 300 500 700

P̂er 0,1309 0,1397 0,1299 0,1101

D̂ 0,0014 0,0010 0,0013 0,0011

Table 5. The results of the first statistical experiment for λ1 = 7

T 100 300 500 700

P̂er 0,1001 0,0897 0,0721 0,0892

D̂ 0,0011 0,0009 0,0002 0,0010

parameters λ2 = 0, 8, α1 = 2, α2 = 0, 8 for the values λ1 = 3, 4, 5, 6, 7 and
simulation time T = 100, 300, 500, 700 units of time in this experiment.

Analysis of the numerical results given in Tables 1, 2, 3, 4 and 5 shows that
the estimation of the unconditional probability of an erroneous solution P̂er is
sufficiently stable for the simulation time T ≥ 100 units of time for all variants of
computation, and it is also clear that the estimate P̂er decreases with increasing
of the parameter λ1, which is quite normal due to better states distinguishability
in this case. We note that the optimal estimation algorithm for the states of the
semi-synchronous event flow of the second order provides a sufficiently accept-
able estimate of the unconditional probability of an erroneous solution for these
parameter values, and the sample variance of this estimate is small.
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Table 6. The results of the second statistical experiment for λ2 = 0, 8, α1 = 2, α2 = 0, 8

λ1 2 4 6 8

P̂er 0,3009 0,2189 0,1387 0,0350

D̂ 0,0029 0,0021 0,0009 0,0008

Table 7. The results of the second statistical experiment for λ1 = 2, λ2 = 0, 8, α2 = 0, 8

α1 2 4 6 8

P̂er 0,2961 0,1998 0,1197 0,0410

D̂ 0,0035 0,0024 0,0013 0,0013

Table 8. The results of the third statistical experiment for λ2 = 0, 1, α1 = α2 = 1

λ1 0,2 0,4 0,6 0,8

P̂er 0,1437 0,1206 0,1095 0,0629

D̂ 0,0015 0,0013 0,0008 0,0008

Table 9. The results of the third statistical experiment for λ1 = 1, α1 = α2 = 1

λ2 0,2 0,4 0,6 0,8

P̂er 0,0769 0,0992 0,1120 0,1307

D̂ 0,0008 0,0009 0,0013 0,0014

Table 10. The results of the third statistical experiment for λ1 = 1, λ1 = 0, 1, α2 = 1

α1 0,2 0,4 0,6 0,8

P̂er 0,0499 0,0753 0,1096 0,1260

D̂ 0,0005 0,0008 0,0012 0,0018

We present the results of the second statistical experiment for the fixed
simulation time T = 100 units of time and values N = 100, P

(1)
1 (λ1|λ1) =

P
(2)
1 (λ1|λ1) = 0, P

(1)
1 (λ2|λ1) = P

(2)
1 (λ2|λ1) = 1 in Tables 6 and 7. The esti-

mations P̂er, D̂ are obtained for λ2 = 0, 8, α1 = 2, α2 = 0, 8 with parameter
changing λ1 = 2, 4, 6, 8 in Table 6; for λ1 = 2, λ2 = 0, 8, α2 = 0, 8 with parameter
changing α1 = 2, 4, 6, 8 in Table 7.

Analyzing the numerical results obtained in Tables 6 and 7, we can do the fol-
lowing conclusions. The estimate P̂er decreases with increasing of the parameter
λ1 (Table 6) which is normal, since the conditions for the states distinguishability
of the process λ(t) improve; the estimate P̂er also decreases with increasing of
the parameter α1 (Table 7), since the conditions for the states distinguishability
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of the process λ(t) improve (the process λ(t) is predominantly at the second
state).

We present the results of the third statistical experiment for the fixed sim-
ulation time T = 100 units of time and values N = 100, P

(1)
1 (λ1|λ1) =

P
(2)
1 (λ2|λ1) = 0, 4, P

(1)
1 (λ2|λ1) = P

(2)
1 (λ1|λ1) = 0, 6 in Tables 8, 9 and 10. The

estimations P̂er, D̂ are obtained for λ2 = 0, 1, α1 = α2 = 1 with parameter
values λ1 = 0, 2, 0, 4, 0, 6, 0, 8 in Table 8; λ1 = 1, α1 = α2 = 1 with parameter
values λ2 = 0, 2, 0, 4, 0, 6, 0, 8 in Table 9; for λ1 = 1, λ2 = 0, 1, α2 = 1 with
parameter values α1 = 0, 2, 0, 4, 0, 6, 0, 8 in Table 10.

Analyzing the numerical results obtained in Tables 8, 9 and 10, we can do the
following conclusions. The estimate P̂er decreases with increasing of the param-
eter λ1 (Table 8). The latter is due to the fact that the frequency of transitions
from the first state to the second state of the process λ(t) increases with increas-
ing the parameter λ1, which has a positive effect for the states distinguisha-
bility conditions. The estimate P̂er increases with increasing of the parameter
λ2 (Table 9), which is also due to the convergence of the values λ1 and λ2,
which affects negatively on the states distinguishability conditions in this case.
Increasing of the estimate P̂er is observed with increasing the parameter α1 for
its small values (Table 10). This is explained by the frequency of the change of
states. Thus, we can conclude that the probability of error P̂er decreases for
large values of the quantities |λ1 − λ2| and |α1 − α2| with constant other flow
parameters.

5 Conclusion

We present formulas for the computation of posterior probabilities w(λ1|t),
w(λ2|t) in this paper. The optimal estimation algorithm for the states of the
semi-synchronous event flow of the second order has been developed on the
basis of the formulas that was found, which provides a minimum of the total
error probability of the decision making. The algorithm to compute posterior
probabilities and the algorithm for estimating the flow states were implemented
based on a sample of the moments of event occurrence obtained by simulating
the flow under consideration. The algorithms were implemented by C# program-
ming language in Visual Studio 2013. Statistical experiments were carried out,
the numerical results of which do not contradict the physical interpretation.
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Abstract. A simplification of Burke theorem proof [1] and its gener-
alizations for queuing systems and networks are considered. The proof
simplification is based on the fact that points in output flow take place
in moments when Markov process of customers number in queuing sys-
tem has jumps down. First steps in this direction were made in [2]. But
here we improved proves of main results and consider queuing systems
in random environment. In such way it is possible to obtain a property
of the mutual independence of the flow into disjoint periods of time and
to calculate intensity of output flow. In this case Poisson input flow with
randomly varying intensity may be represented as Poisson flow with aver-
age intensity also. If this flow is independent with service process then it
is possible to simplify significantly consideration of queuing systems in
random environment. These assumptions may be applied to a consider-
ation of multiphase type networks [3] which are convenient in analysis of
queuing models with retrial queues [4–8].
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A random environment · A directed graph · A non-return set of nodes

1 Introduction

This paper is devoted to analysis of output flows in queuing systems and net-
works. In first part of the paper we consider simplification of Burke theorem
proof [1] and its generalizations. The proof simplification is based on the fact
that points in output flow take place in moments when Markov process of cus-
tomers number in queuing system has jumps down. In such way it is possible to
obtain a property of the mutual independence of the flow into disjoint periods
of time. Then it is possible knowing the process of customers number distribu-
tion to calculate intensities of such jumps down and so to calculate intensity of
output flow. This approach allows to obtain different corollaries for output flows
in open and close queuing networks.

Such consideration may be applied not only to output flows but to input flows
also. In this paper it is shown that for some stochastic models Poisson input flow
with randomly varying intensity coincides by distribution with Poisson flow with
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average intensity. This fact allows to analyse and to calculate distributions of
processes in open queuing network with finite number of nodes, infinite number
of servers in nodes, exponential distributions of service times and Poisson input
flow with randomly varying intensity. A presence of infinite number of servers
in the network nodes [4–6] together with the statement that the cardinality
of counting set of counting sets is counting set also allows to transform initial
queuing network into queuing network of multiphase type [3] so that in each node
a customer may be served no more than once. A transformation of the Jackson
network into the multiphase type network is closely connected with models of
retrial queues [7,8].

It is proved that all flows of so transformed network in stationary regime
are Poisson. Synergetic effects in this network are analysed using a replacement
of infinite number of servers by finite number of them. Synergetic effect means
that if number of servers in nodes and intensity of input flow increase in n → ∞
times then probability of queues existence on finite time interval tends to zero.

This investigation is based on the Burke theorem [1] that in stationary regime
output flow of multiserver system M |M |n|∞ is Poisson.

2 New Proof of Burke Theorem and Its Corollaries

In [1] the following statement is proved: in queung system M |M |n|∞ in station-
ary state, the output flow has the same distribution as the input flow. Recently,
however, interest in the study of flows in queuing systems is increased. Now it
is necessary to give a more compact and convenient for generalizations proof of
this theorem.

A random sequence of points will be called a Poisson flow with continuously
differentiable intensity λ(t), t ≥ 0, if the following conditions are satisfied [9,
p. 12, 13], [10, p. 20, 35 – 37]:

(a) the probability of the existence of the point of flow on the time interval
[t, t + h) does not depend on the location of the points of the flow up to
the time t (this property is called lack of follow-through and expresses the
mutual independence of the flow into disjoint periods of time);

(b) the probability that a flow point appears in the semi-interval [t, t + h) is
λ(t)h + o(h), h → 0;

(c) the probability of occurrence of two or more flow points in the range [t, t+h)
is o(h), h → 0.

Let the system An = M |M |n|∞ of the Poisson input flow has an intensity
λ > 0, and the service time has an exponential distribution with the parameter
μ > 0, 1 ≤ n < ∞. Denote Pk,n(t), k ≥ 0, distribution of the number of
customers in the system at the time t.

Theorem 1. The output flow in queuing system An is Poisson with intensity

a(t) =
∑

0<k

μPk,n(t)min(k, n).
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Proof. Let the output flow Tn = {0 ≤ t1 < t2 < . . .} be An described by a
random function yn(t) equal to the number of points of this flow on the segment
[0, t). Denote xn(t) the number of customers in the system An at the time t.
It is known that a random process xn(t) is Markov process (of death and birth
of [10, Chap. II, Sect. 1]), with each point of the Tn flow corresponding to the
time of the jump down process xn(t). Therefore, the output flow Tn satisfies the
condition (a). In turn, the condition (b) follows from the equalities:

P (yn(t + h) = yn(t) + 1) =
n∑

k=1

P (yn(t + h) = yn(t) + 1/xn(t) = k)Pk,n(t)

+P (yn(t + h = yn(t) + 1/xn(t) > n)
∑

k>n

Pk,n(t)

=
n∑

k=1

Pk,n(t)(kμh + ok(h)) +
∑

k>n

Pk,n(t)(nμh + o0(h)) = a(t)μh + o(h),

where for h → 0 we have
ok(h)

h
→ 0, k = 0, . . . , n,

o(h) =
n∑

k=1

Pk,n(t)ok(h) +
∑

k>n

Pk,n(t)o0(h), o0(h)/h → 0.

Thus, the output flow Tn satisfies the condition (b). Check of condition (c) is
quite obvious.

Theorem 2. In queuing system An, when the ergodicity condition λ < μ is
satisfied and the process xn(t) is stationary, the output flow is Poisson with
intensity λ.

Proof. Denote Pk,n, k = 0, 1, . . . , stationary probabilities of ergodic process
xn(t). The system of Kolmogorov-Chapman equalities for Pk,n, k = 0, 1, . . . , is
following:

0 = −P0,nλ + P1,nμ1, 0 = −Pk,n(λ + μk) + Pk−1,nλ + Pk+1,nμk+1, (1)

with μk = min(k, n)μ, k = 1, 2, . . . Prove by an induction that from Formulas
(1) we have

0 = −Pk,nλ + Pk+1,nμk+1, k = 0, 1, . . . (2)

Indeed for k = 0 this statement is a corollary of the first equation in Formulas
(1). Assume that the equality (2) is true for k = i, then from equations in (1)
and induction asumption we have for k = i + 1:

0 = [−Pi+1,n(λ + μi+1) + Pi,nλ + Pi+2,nμi+2] + [−Pi,nλ + Pi+1,nμi+1]

= −Pi+1,nλ + Pi+2,nμi+2.
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Consequently the equations (2) are true for all k = 0, 1, . . . Summarize equalities
(2) by k = 0, 1, . . . , we obtain

λ =
∑

k≥0

Pk+1,nμk+1. (3)

So from Theorem 1 we have the statement of Theorem 2.

Remark 1. Using the scheme of the proof of Theorem 2, it is possible to extend
the results to output flows of systems with limited queue, with priority service,
with unreliable servers [10, Sect. 7].

3 Poisson Flows in Stationary Queuing Networks

Consider an open queuing network (Jackson network [11]) S with a Poisson
input flow of intensity λ0, consisting of a finite number of nodes k = 0, 1, . . . ,m
with exponentially distributed service times. The dynamics of the movement of
customers in the network is set by the route matrix Θ = ||θi,j ||mi,j=0, where θi,j

is the probability of customer transition after service in the i-th node to j-th
node, θ0,0 = 0, where the node 0 is an external source and at the same time a
drain for customers leaving the network. The i node contains li < ∞ servers,
the service time of which has an exponential distribution with the parameter
μi, i = 1, . . . ,m.

Assume that route matrix Θ = ||θi,j ||mi,j=0 is indecomposable, i.e.

∀ i, j ∈ {0, . . . , m} ∃ i1, . . . , ir ∈ {0, . . . , m} : θi,i1 > 0, θi1,i2 > 0, . . . , θir,j > 0.

Then for a fixed λ0 > 0, the system of linear algebraic equations for intensities
of fluxes coming from nodes of S

λk = λ0θ0,k +
m∑

t=1

λtθt,k, k = 1, . . . , m (4)

has the only solution (λ1, . . . , λm) λ1 > 0, . . . , λm > 0, [12, p. 13].
The system (4) is called the system of balance relations and plays an impor-

tant role in the formulation and the proof of the product Jackson theorem [11],
widely used in queuing theory. If

λi < liμi, i = 1, . . . ,m,

then the discrete Markov process (n1(t), . . . , nm(t)), t ≥ 0, describing the num-
ber of customers in the network nodes has a limiting distribution PS(k1, . . . , km),
independent of initial conditions and representable in the form

PS(k1, . . . , km) =
m∏

i=1

Pi(ki),
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where Pi(ki) is the limiting distribution of the number of customers in a stand-
alone li - channel queuing system with Poisson input flow of intensity λi, i =
1, . . . ,m.

In [13] network S is mapped to a directed graph G with edges corre-
sponding to positive elements of the route matrix. Let’s call the vertex set
U ⊆ {0, 1, . . . ,m} irrevocable if from any node not included in U, there is no
edge to the node belonging to U. Then all flows passing through the edges from
the node set U to the node set {0, 1, . . . ,m} \ U, are independent and Poisson.

Theorem 3. Flow T i
S , i = 1, . . . ,m, coming out of node i of open queuing

network S, with stationary process (n1(t), . . . , nm(t)), t ≥ 0, is Poisson with
intensity λi.

Proof. Indeed, the points of the flow T i
s , exiting the i, node are the

moments of jumps down the ni(t) component of the discrete Markov process
(n1(t), . . . , nm(t)), t ≥ 0. Hence the flow T i

S satisfies the condition (a). Condi-
tions (b), (c) are checked similarly to the proof of Theorem 1. Note that the
limit probability that the i node contains ki of customers is Pi(ki), and the flow
rate T i

S is λi, i = 1, . . . ,m.

Theorem 4. Flows T i
S , i = 1, . . . ,m, are independent.

Proof. From Theorem 3 and independence of stationary random variables nj(t),
j = 1, . . . , m, it follows that the union

TS =
m⋃

j=1

tjS

of flows leaving the nodes of open queuing network S is also Poisson flow with

intensity λΣ =
m∑

j=1

λj . And each point of the combined flow TS belongs to the

flow T i
S with probability

λi

λΣ
. Hence the flows T i

S , i = 1, . . . ,m, are independent.

Remark 2. Theorems 3, 4 enhance the results of the article [13], removing restric-
tions on the independent Poisson flows considered in it.

Consider now a closed queueing network S, consisting of a finite number
of nodes i = 1, . . . ,m. The i node contains li < ∞ servers, the service time
on which has an exponential distribution with the parameter μi, i = 1, . . . , m.
A finite number N of customers move along network S. The dynamics of the
customers movement in the network is specified by the matrix Θ = ||θi,j ||mi,j=1,

where θi,j is the probability of transition after service of customer in the ith
node to j-th one.

Let the route matrix Θ be indecomposable, i.e.

∀ i, j ∈ {1, . . . , m} ∃ i1, . . . , ir ∈ {1, . . . , m} : θi,i1 > 0, θi1,i2 > 0, . . . , θir,j > 0.
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Then for a fixed λ1 > 0, the system of linear algebraic equations

λk =
m∑

t=1

λtθt,k, k = 1, . . . ,m (5)

has a unique solution of (λ1, . . . , λm) with λ1 > 0, . . . , λm > 0, [12, p. 13].
For a closed queueing network S with N customers discrete Markov process

(n1(t), . . . , nm(t)), t ≥ 0, describing the number of customers in the network
nodes has a limit distribution of PS(k1, . . . , km), independent of the initial con-
ditions and presented in the form

PS(k1, . . . , km) =
∏m

i=1 Pi(ki)∑
k1,...,km: k1+...+km=N

∏m
i=1 Pi(ki)

, k1 + . . . + km = N.

Hence, the stationary probability πi(ki) that in a node i of the network S there
is ki customers satisfies the equality

πi(ki) =
∑

kj , 1≤j �=i≤m,
∑

1≤j �=i≤m kj=N−ki

PS(k1, . . . , km), ki = 0, . . . , N.

Theorem 5. The flow T i
S
, leaving the i node of the closed queueing network S

with the total number of customers N, being in a stationary state, is Poisson

with intensity
N∑

ki=1

min(ki, li)μiπi(ki), i = 1, . . . ,m.

Proof. Indeed, the points of the flow T i
S
, exiting the node i, are the

moments of jumps down the component ni(t) of the discrete Markov process
(n1(t), . . . , nm(t)), t ≥ 0. Consequently, the flow T i

S
satisfies condition (a). Con-

ditions (b), (c) are proved similarly to the proof of Theorem 1.

4 Queuing System M |M |1|∞ with Random Intensities
of Input Flow and Service

Consider queuing system A1 = M |M |1|∞ with a service intensity of μ(t) and a
Poisson input flow Λ with an intensity of λ(t), which are randomly changed by
the following rules. Let the time axis t ≥ 0 be split into half-intervals

[T0 = 0, T1 = T0 + ξ1), [T1, T2 = T1 + ξ2), . . . ,

where ξ1, ξ2, . . . are independent random variables with distribution

P (ξk > t) = exp(−σt), t ≥ 0, k = 1, 2, . . .

with parameter σ > 0.



112 G. Tsitsiashvili and M. Osipova

We introduce a discrete Markov chain nl, l = 1, . . . , with a set of states
{1, . . . , N} and an irreducible transition matrix ||θi,j ||Ni,j=1. Markov chain nl, l =
1, . . . , has a unique (with positive components) solution (ψ1, . . . , ψN ) of the
system of Kolmogorov-Chapman stationary equations

ψi =
N∑

j=1

ψjθj,i, l = 1, . . . , N. (6)

We now introduce the Markov process n(t), t ≥ 0, such that n(t) = nl, t ∈
[Tl−1, Tl), l = 1, . . . It is obvious that the stationary distribution (ψ1, . . . , ψN )
of the Markov chain nl, l = 1, . . . , is a stationary distribution of the Markov
process n(t), t ≥ 0. Indeed denote

ψi(t) = p(n(t) = i), i = 1, . . . , N, (7)

then the Kolmogorov-Chapman system of equations for Markov process n(t) has
the form

ψ̇i(t) = −σψi(t) + σ

N∑

j=1

ψj(t)θj,i, i = 1, . . . , n,

so the system of Kolmogorov-Chapman stationary equations coincides with (6).
Let’s call such a queuing system as M |M |1|∞ in a random environment.

Suppose that on each half-interval [Tk−1, Tk) the input flow to the M |M |1|∞
system is Poisson with intensity λ(t) = λnl

, t ∈ [Tl−1, Tl), l = 1, 2, . . . , and the
service intensity satisfies the relations μ(t) = μnl

, t ∈ [Tl−1, Tl), l = 1, 2, . . . ,
where λ1, . . . , λN , μ1, . . . , μN are some positive numbers. It is worthy to remark
that in this system the input flow and the process of service (random sequence
of service times) are dependent random objects.

Theorem 6. The stationary output flow in the system M |M |1|∞ in a random

environment is Poisson with an average intensity a =
N∑

j=1

ψjλj .

Proof. Consider Markov random process (x(t), n(t)), t ≥ 0, whose first compo-
nent sets the number of customers in the system M |M |1|∞ and write for its
stationary probabilities pi,j Kolmogorov-Chapman equations:

λip0,i = −σp0,i + μip1,i + σ
N∑

j=1

p0,jθj,i, i = 1, ..., N,

(λi+μi+σ)pk,i = λipk−1,i+μipk+1,i+σ

N∑

j=1

pk,jθj,i, i = 1, ..., N, k = 1, 2, ... (8)

We introduce the following notation at i = 1, . . . , N :

A0,i = −λip0,i +μip1,i, Ak,i = −(λi +μi)pk,i +λipk−1,i +μipk+1,I , k = 1, 2, . . . ,
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Bk,i = −σpk,i + σ

N∑

j=1

pk,jθj,i, k = 0, 1, . . .

Then the equations (8) may be rewritten as

0 = Ak,i + Bk,i, i = 1, . . . , N, k = 0, 1, . . . (9)

Denote Ck,i =
k∑

r=0

Ar,i, Dk,i =
k∑

r=0

Br,i, then by Formulas (9) we have

0 = Ck,i + Dk,i, i = 1, . . . , N, k = 0, 1, . . . (10)

Obviously, the following relations are fulfilled:

1
σ

N∑

i=1

Bk,i = −
N∑

i=1

pk,i +
N∑

i=1

N∑

j=1

pk,jθj,i = −
N∑

i=1

pk,i +
N∑

j=1

N∑

i=1

pk,jθj,i = 0.

and consequently
N∑

i=1

Dk,i = 0. (11)

By induction of k we can obtain equalities by analogy with Theorem 2 proof:

Ck,i = −λipk,i + μipk+1,i, i = 1, . . . , N, k = 0, 1, . . . (12)

Summing up the equations (10) by i= 1, . . . , N, k = 0, 1, . . . , and using Formulas
(11), (12), we obtain:

0 = −
N∑

i=1

λi

∞∑

k=0

pk,i +
N∑

i=1

μi

∞∑

k=0

pk+1,i. (13)

The second term in Formula (13) is the intensity of a of the output Poisson flow
in a given queuing system. In turn, by virtue of formulas (7), (13) we obtain
that the intensity

a =
N∑

j=1

ψjλj . (14)

Remark 3. By methods of Theorem 1 proof it is easy to obtain that the flow

Λ is Poisson with intensity a =
N∑

j=1

ψjλj . Indeed, let us consider the Markov

process (y(t), n(t)), t ≥ 0, where y(t) is the number of customers of the input
flow that came to the system up to t. This process has the following transient
intensities: the transition intensity (m, i) → (m, j) equals σθi,j , the intensity
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of the transition (m, i) → (m + 1, i) equals to λi, i, j = 1, . . . , N, m = 0, 1, . . .
So the jump intensity y(t) → y(t) + 1 equals

∑

1≤j≤N, 0≤m

p(y(t) = m, n(t) = j)λj =
N∑

j=1

p(n(t) = j)λj =
N∑

j=1

ψjλj = a.

Thus, the random flow Λ by distribution coincides with the Poisson flow of
average intensity a.

Remark 4. The statement of Remark 3 allows to obtain criterion’s of ergodicity,
to derive formulas for stationary distributions, to analyse output flows for man-
ifold queuing systems with independent input flow Λ and sequences of service
times: open queuing network of Jackson type, queuing systems with failures,
queuing systems with feedbacks [4].

5 Transformation of Open Queuing Network into
Multiphase Type Queuing Network

Following [3] demonstrate how to transform open queuing network into multi-
phase type queuing network. Consider open queuing network S with finite num-
ber of nodes U = {0, 1, . . . ,m} and input flow Λ. As the flow Λ and service times
of customers in different nodes are independent then it is convenient to consider
the flow Λ as Poisson flow with average intensity λ0 = a. Paths of customers
in the network S are defined by the route matrix Θ = ||θi,j ||mi,j=0, θ0,0 = 0,
consisting of probabilities θi,j of customers transitions from the node i to the
node j after a service in the node i. The node 0 is a source of customers arriving
the network and a container of customers departing the network. Here θ0,i is the
probability that input flow customer moves to the node i and θi,0 is the proba-
bility that customer departs network after service in the node i. In the node k
of the network S there is infinite number of identical servers with service times
which has the distribution

Fk(t) = 1 − exp(−μkt), t ≥ 0, μk, 0 < μk < ∞, k = 1, . . . ,m.

Transform the network S into the following network S∗. Each node k, 0 ≤
k ≤ m, is divided into infinite number of nodes (k, j), 1 ≤ j. Here nodes with
1 ≤ k ≤ m are nodes with infinite numbers of servers and nodes with k = 0
absorb customers departing the network. A customer arriving the network with
the probability θ0,k moves to the node (k, 1). The node (0, 1) is sham because
θ0.0 = 0 and so customers do not visit it. Then after a service in the node
(p, j), 1 ≤ p ≤ m, 1 ≤ j, customer with the probability θp,q moves to the node
(q, j +1) and with the probability θp,0 moves to the node (0, j +1) - departs the
network, 1 ≤ p, q ≤ m, 1 ≤ j. Consequently initial network S is transformed
into the network S∗ with the nodes set U∗ = {(k, j), 1 ≤ j, 0 ≤ k ≤ m}.
Graphically the network S∗ is represented in Fig. 1.
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Fig. 1. Transformation of Jackson network (leftward) into multiphase type network
(rightward).

The network S∗ is constructed similar to retrial queues systems [4–8]. Trans-
formation of the network S into the network S∗ does not change paths and
service times of customers.

In the network S∗ a system of balance equations for stationary intensities of
flows arriving the nodes of the set U∗ may be solved by recurrent relations

λk,1 = λ0θ0,k, λk,j+1 =
m∑

p=1

λp,jθp,k, 0 ≤ k ≤ m, 1 ≤ j, (15)

and its synergetic effects may be analysed in suggestion that each node with
infinite number of servers in multiphase type network is replaced by node with
large by finite number of servers.

6 Conclusion

It is worthy to devote special attention to an application of Remark 4 to queuing
systems and networks with retrial queues. Such systems appear in manifold
modern applied problems [4–8]. In this section we connect a representation of
the input flow Λ as Poisson flow with average intensity and a consideration of
networks with infinite number of servers in their nodes [4–6]. For this purpose
we use a transformation of such networks into multiphase type networks [3]. In
multiphase type networks it is possible to assume that each customer may be
serviced a fixed number of times also not arbitrary ones. This suggestion together
with the representation of the input flow Λ as Poisson flow with average intensity
and with an assumption that the flow Λ and service process are independent
allow to consider models more close to applications.

Acknowledgment. This paper is partially supported by Russian Fund for Basic
Researches, project 17-07-00177.
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Abstract. We consider a multi-server queuing system that can be useful
for solving the problem of reaching a trade-off between energy saving
considerations and quality of customer’s service by the use of so-called
backup servers. A backup server joins to the service of a customer in case
the timer installed at the service beginning moment on the main server
expires. Such service organization allows to avoid too much delays in
the system in conditions of reasonable energy savings. The system under
consideration can also be considered as a model of an unreliable system
where in the case of a failure of a main server a customer is serviced by
a back-up server. In this case, the time set on the timer is interpreted as
the time before the breaking-down of a main server. The behavior of the
system is described by two-dimensional continuous time Markov chain
which is successfully analysed in this paper.

Keywords: Multi-server queueing system · Backup servers
Stationary performance measures · sojourn time

1 Introduction

The problems associated with energy saving in many real systems, in particular,
in data processing centres for cloud computing, can be solved by redundancy,
with further adaptive connection of backup servers. In systems with heteroge-
neous information, for example, in call centers, backup servers assigned for pri-
ority information can greatly improve the quality of service. In unreliable data
transmission systems the availability of redundant channels allows to improve
transmission quality. Due to the stochastic nature of processing and transmis-
sion of information, mathematical modeling of systems with redundancy within
the framework of queuing theory is actual. We mention only some publications
in this field.

Papers [1–3] are devoted to tandem queueing systems with reserved channels
for priority customers at the second station. These systems can be used i.e. for
modeling call centers where customers of different types and different degrees
of importance get service. In the papers [4–7], mathematical models of hybrid

c© Springer Nature Switzerland AG 2018
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communication systems consisting of unreliable Free Space Optics channel and
backup reliable radio channel were investigated.

The authors of papers [8–10] consider the problem energy saving in the data
center under an acceptable level of customer service defined by service level
agreements. In the papers [9] and [10], two classes of servers are considered:
main servers and backup servers. When the number of customers in the system
increases to some nonnegative integer (threshold), the backup servers connect
to the service of customers. When the number of customers decreases to some
other threshold, the backup servers gets back to the standby. The time required
to switch on the reserve block is taken into account. In the system discussed in the
paper [8], there are several reserve blocks and there is instantaneous switching-
on. To activate and deactivate reserve blocks the authors use the multi-threshold
policy. The author come to the conclusion that the benefit of using multiple
blocks of backup servers instead of a single block is negligible. A model similar
to [9] and [10] (but with momentary switching-on of the block of backup servers)
was considered in [11].

In this paper, we consider a multi-server queuing system that can be also used
to solve the problem of finding a trad-off between energy saving and quality of
service by using so-called backup servers. A backup server joins to the service
of a customer in case customers’s service time on the main servers exceeds some
limit defined by a random value. In this case, we will say that the timer has
expired. Such service organization allows to avoid too much delays in the system
in conditions of reasonable energy savings. The system under consideration can
also used for modeling an unreliable queue where in the case of a breaking-down
of a main server a customer is serviced by a back-up server. In this case, the
limiting time is interpreted as the time before the breaking-down of a main server.
The analogous queue was considered in [13] under an assumption that the input
flow is described by a Batch Markovian Arrival Process and service time has a
Phase type distribution. Here we suppose that an arrival flow is the stationary
Poisson one and service times are exponentially distributed. In this partial case
the results have more simple and tractable form. At the same time, these results
do not obviously follow from the results of [13]. This was our motivation for a
separate consideration of the system with backup servers in case of exponential
distributions.

2 Model Description

We consider a multi-server queueing system with an infinite buffer and two class
of servers: N identical independent main servers and R identical independent
backup (reserve) servers, 1 ≤ R ≤ N. Customers arrive into the system in the
stationary Poisson flow with the intensity λ.

The service time of a customer by a main server is exponentially distributed
with the parameter μ.

An arriving customer occupies an idle main server, if any. Otherwise, the
customer goes to the end of the queue and selected for service in accordance with
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the FIFO discipline. At the time when a customer occupies the main server, a
timer is set on this server. If the service time of the customer by the main server
is not over and the timer has expired, an idle backup server, if any, joins to
the service of the customer The timer is defined as exponentially distributed
random value with parameter τ. From the moment of joining the backup server,
the residual service time has exponential distribution with parameter μ̃.

If at the epoch of the timer expiration the service of a customer does not
finish and all backup servers busy, then with probability p the customer leaves
the system forever and with the probability 1 − p the timer on this server is set
again and the service continues, 0 ≤ p ≤ 1.

3 Process of the System States

Let, at time t,

• it be the number of customers in the system, it ≥ 0;
• rt be the number of busy backup servers, rt = 0, 1, . . . ,min{it, R}.

The operation of the queue under consideration is described by a regular
irreducible continuous-time Markov chain ξt = {it, r}, t ≥ 0, with state space

Ω = {(0)}
⋃

{(i, r), i > 0, r = 0, 1, . . . ,min{i, R}}.

In the following, we will assume that the states of the chain ξt, t ≥ 0, are
enumerated in the lexicographic order.

Lemma 1. Infinitesimal generator Q of the Markov chain ξt, t ≥ 0, has the
following three-diagonal block structure:

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(0,0)
0 H(0,1)

0 O O O · · · O O O O · · ·
H(1,0)

0 H(1,1)
0 H(1,2)

0 O O · · · O O O O · · ·
O H(2,1)

0 H(2,2)
0 H(2,3)

0 O · · · O O O O · · ·
...

...
...

...
...
. . .

...
...

...
... · · ·

O O O O O · · · H(N−1,N)
0 O O O · · ·

O O O O O · · · H(N,N)
0 H

(N)
1 O O · · ·

O O O O O · · · Q−1 Q0 Q1 O · · ·
O O O O O · · · O Q−1 Q0 Q1 · · ·
O O O O O · · · O O Q−1 Q0 · · ·
...

...
...

...
...
. . .

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

H(i,i−1)
0 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

iμ 0 . . . 0 0
μ̃ (i − 1)μ . . . 0 0
0 2μ̃ . . . 0 0
...

...
. . .

...
...

0 0 . . . (i − 1)μ̃ μ
0 0 . . . 0 iμ̃

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, 0 ≤ i ≤ R,
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H(i,i)
0 = −λI

−

⎛

⎜⎜⎜⎜⎜⎝

i(μ + τ) iτ . . . 0 0
0 (i − 1)(μ + τ) + μ̃ . . . 0 0
...

...
. . .

...
...

0 0 . . . (μ + τ) + (i − 1)μ̃ τ
0 0 . . . 0 iμ̃

⎞

⎟⎟⎟⎟⎟⎠
,

0 ≤ i ≤ R,

H(i,i+1)
0 =

(
λIi+1 | O(i+1)×min{1,R−i}

)
, 0 ≤ i ≤ R,

H(i,i−1)
0 =

⎛

⎜⎜⎜⎜⎜⎝

iμ 0 . . . 0 0
μ̃ (i − 1)μ . . . 0 0
...

...
. . .

...
...

0 0 . . . (i − R + 1)μ 0
0 0 . . . Rμ̃ (i − R)(μ + pτ)

⎞

⎟⎟⎟⎟⎟⎠
, R < i ≤ N,

H(i,i)
0 = −λI

−

⎛

⎜⎜⎜⎜⎜⎝

i(μ + τ) iτ . . . 0 0
0 (i − 1)(μ + τ) + μ̃ . . . 0 0
...

...
. . .

...
...

0 0 . . . (i − R + 1)(μ + τ) (i − R + 1)τ
0 0 . . . 0 (i − R)(μ + pτ)

⎞

⎟⎟⎟⎟⎟⎠
,

R < i ≤ N,

H(i,i+1)
0 = λIR+1, R < i < N.

H
(N)
1 = λIR+1,

Q−1 =

⎛

⎜⎜⎜⎜⎜⎝

Nμ 0 . . . 0 0
μ̃ (N − 1)μ . . . 0 0
...

...
. . .

...
...

0 0 . . . (N − R + 1)μ 0
0 0 . . . Rμ̃ (N − R)(μ + pτ)

⎞

⎟⎟⎟⎟⎟⎠
,

Q0 = −λI

−

⎛

⎜⎜⎜⎜⎜⎝

N(μ + τ) Nτ . . . 0 0
0 (N − 1)(μ + τ) + μ̃ . . . 0 0
...

...
. . .

...
...

0 . . . (N − R + 1)(μ + τ) (N − R + 1) + τ
0 . . . 0 (N − R)(μ + pτ)

⎞

⎟⎟⎟⎟⎟⎠
,

Q1 = λIR+1.
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Proof. To prove the lemma, we clarify the probabilistic sense of the blocks of
the generator. In the following, we will say that a main server “works in regime
0”, if it works without support of a backup server and “works in regime 1”, if
it works with support of a backup server. We also assume that all states of the
chain under consideration corresponding to i customers in the system form a
level i, i ≥ 0.

The entries of the matrix H(i,i−1)
0 are the intensities of the chain ξt, t ≥ 0,

transition from the level i to the level i−1. Such a transition occurs at the service
completion epoch at one of (i − r) main busy servers working in regime 0 with
intensity (i−r)μ, or at the service completion epoch at one of r main busy servers
working in regime 1 with intensity rμ̃. If there are no available backup servers
when the timer expires, the number of customers in the system also decrease by
one. In this case the customer in service leaves the system forever with intensity
p(i − r)τ .

The entries of the matrix H(i,i)
0 are the intensities of the chain ξt, t ≥ 0,

transitions without changing the number of busy servers. If the number of busy
backup servers is equal to r, the corresponding transition intensity is equal to
rτ. If the timer expires and all backup servers are not available, the number
of customer in the system also does not change. In this case, the interrupted
customer goes to the queue with intensity (1 − p)(i − R)τ .

The entries of the matrix H(i,i+1)
0 are the intensities of the chain ξt, t ≥ 0,

transitions from the level i to the level i + 1. These transitions occur if an
arriving customer sees an idle main server and immediately occupies this server.
The intensities of such transitions are defined by the matrix λIi+1.

The block H
(N)
1 contains the intensities of the chain ξt, t ≥ 0, transitions from

the level N to the level N + 1. These transitions occur if an arriving customer
sees N main servers busy and forces to go to the queue. The intensities of such
transitions are defined by the matrix λIR+1.

The block Q−1 is formed by the intensities of the chain ξt, t ≥ 0, transitions
from the level i, i ≥ N + 2, to the level i − 1. The corresponding transition is
equal to (N − r)μ if the service ends at one of r busy main servers working in
regime 0, and equal to rμ̃ if the service ends at one of r busy servers working
in regime 1. If there are no available backup servers when the timer expires,
the number of customers in the system also decrease by one. In this case the
interrupted customer leaves the system. The intensity of such a transition is
equal to p(N − R)τ .

The block Q0 is formed by the intensities of the chain ξt t ≥ 0, transitions
from the level i, i > N, to the same level. Such a transition occurs without chang-
ing the number of busy servers. If the transition causes by the timer expiration,
the transition intensity is (N −r)τ. If the timer expires and all backup servers are
not available, the number of customers in the system does not also change with
probability 1 − p. In this case the interrupted customer returns to the queue.
The corresponding transition intensity is equal to (1 − p)(N − R)τ .

The block Q1 is formed by the intensities of the chain ξt t ≥ 0, transitions
from the level i, i > N, to the level i+ 1. Such transitions occur when customers
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arrive at the system. In this case, the intensities of transitions are given by the
matrix λIR+1.

Corollary 1. The Markov chain ξt, t ≥ 0, is a quasi-birth-and-death (QBD)
process with many boundary levels, see [14].

The proof of the corollary evidently follows from the definition of QBD given
in [14] and the structure of the generator Q.

4 Ergodicity Condition. Stationary Distribution

Theorem 1. The Markov chain ξt, t ≥ 0, is ergodic if and only if the following
inequality

λ <

R∑

r=0

xr(N − r)μ +
R∑

r=1

xrrμ̃ + p xR(N − R)τ. (1)

holds. Here xr is a steady state probability that r backup servers are busy under
overload condition,

xr = x0

r−1∏
i=0

(N − i)

r!

(
τ

μ̃

)r

, r = 1, 2, . . . , R, (2)

x0 =
[
1 +

R∑

r=1

r−1∏
i=0

(N − i)

r!

(
τ

μ̃

)r]−1

.

Proof. As follows from [14], the QBD process ξt, t ≥ 0, is ergodic if and only if
the following inequality is fulfilled:

xQ1e < xQ−1e (3)

where the vector x is the unique solution to the system of linear algebraic equa-
tions

x(Q−1 + Q0 + Q1) = 0, xe = 1, (4)

e is the column vector consisting of 1’s, 0 is the row vector consisting of 0’s.
Using expressions for the matrices Q−1, Q0, Q1, given by Lemma 1, we rewrite

system (4) as follows:
−x0Nτ + x1μ̃ = 0,

xr−1(N − r + 1)τ − xr[(N − r)τ + rμ̃] + xr+1(r + 1)μ̃ = 0,

xR−1(N − R + 1)τ − xR[(N − R)τ + Rμ̃] = 0,
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R∑

r=0

xr = 1.

This system defines the steady state probabilities xr, r = 0, 1, . . . , R, of the birth-
and-death process with the intensities (N − r)τ and rμ̃. It is well known that
such a system has the unique solution of form (2). Substituting (2) in (3) and
taking into account the explicit expressions for Q−1, Q1 given by Lemma 1, we
reduce ergodicity condition (3) to the form (1).

Introduce the notation for the steady state probabilities:

p(i, r) = lim
t→∞ P{it = i, rt = r}, i ≥ 0, r = 0, 1, . . . ,min{i, R},

and for the row-vectors composed of these probabilities:

pi = (p(i, 0), p(i, 1), . . . , p(i,min{i, R}), i ≥ 0.

Then the Chapman-Kolmogorov (balance or equilibrium) equations for the
steady state probabilities are as follows:

p0H(0,0)
0 + p1H(1,0)

0 = 0,

pi−1H(i−1,i)
0 + piH(i,i)

0 + pi+1H(i+1,i)
0 = 0, i = 1, 2, . . . N − 1,

pN−1H(N−1,N)
0 + pNH(N,N)

0 + pN+1Q−1 = 0,

pNH
(N)
1 + pN+1Q0 + pN+2Q−1 = 0,

pi−1Q1 + piQ0 + pi+1Q−1 = 0, i ≥ N + 2.

To calculate the vectors pi, i ≥ 0, we slightly generalize the known algorithm
for calculating the stationary distribution of QBD process, see [14], to the case
with many boundary levels.

Let Q̃−1 =
(
O(R+1)×a | Q−1

)
, H0 = (H(i,j)

0 )i,j=0,N and H1 =
(

0T
a

H
(N)
1

)

where a = N +
N−1∑
i=0

min{i, R}, O(R+1)×a is the zero matrix having (R + 1) rows

and a columns. Denote also π = (p0,p1, . . . ,pN ).
Then the algorithm for calculating the stationary distribution is described as

follows.

Algorithm

1. Calculate the matrix R as the minimal nonnegative solution of the non-linear
matrix equation

R2Q0 + RQ1 + Q2 = O.

2. Calculate the vector pN+1 as the unique solution of the system

pN+1[Q1 + Q̃−1(−H0)−1H1 + RQ0] = 0,

pN+1[e + Q̃−1(−H0)−1e + R(I − R)−1e] = 1.
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3. Calculate the vector π as follows:

π = pN+1Q̃−1(−H0)−1.

4. Calculate the vectors pi, i = 0, N, as follows:

pi = πdiag{O
i+

i−1∑

k=0
min{k,R}

, Imin{i,R}+1, O
N−i+

N∑

k=i+1
min{k,R}

}, i = 0, N.

5. Calculate the vectors pN+i, i ≥ 2, by pN+i = pN+1R
i−1, i ≥ 2.

5 Stationary Performance Measures

1. Average number of customers in the system L =
∞∑

l=0

lple.

2. The probability that the system is idle at an arbitrary moment p0 = p0e.
3. Steady state probabilities of the number of busy main servers

pn = pne, n = 0, 1, . . . , N − 1, pN = pNe + pN+1(I − R)−1e.

4. Average number of busy main servers Nbusy =
N∑

n=1
npn.

6. Joint probability that there are i customers in the system, r busy main
servers working in regime 1 and min{i,N} − r main servers working in
regime 0.

p
(r)
i = piZ(i,r), r = 0, 1, . . . ,min{i, R}, i ≥ 0, (5)

where Z(i,r) =

⎛

⎝
0T

r

1
0T
min{i,R}

⎞

⎠ .

The brief explanation of formula (5) is as follows. Multiplying the vector pi

by the vector Z(i,r), we select the part of this vector corresponding to r busy
backup servers.

7. Stationary distribution of the number of busy backup servers

qr =
∞∑

i=r

pi(r), r = 0, 1, . . . , R.

8. Average number of busy backup servers N
(backup)
busy =

R∑
r=1

rqr.

9. Stationary distribution of the number of busy servers working in regime 1

gn =
∞∑

i=n

p
(min{i,N}−n)
i , n = 0, 1, . . . , N.
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10. Average number of busy servers working in regime 0

N
(non−support)
busy =

N∑

n=1

ngn.

11. The probability that an arbitrary customer will be lost

Ploss = 1 −

∞∑
i=1

pi

min{i,R}∑
r=1

[Z(i,r)(min{i,N} − r)μ + rμ̃]

λ
. (6)

In formula (6), the expression piZ(i,r)(min{i,N}−r) is the probability that i
customers stay in the system and r backup servers are working. Multiplying
this expression by μ, we obtain the intensity of output flow of customers from
the main servers working without support. By analogy, we get the expression
piZ(i,r)rμ̃ for the intensity of output flow of customers from the main servers
working with support. Then the numerator of the fraction in the right-side
of (6) is the intensity of output flow from the system while the denominator
is the intensity of input flow. So, the fraction (6) is the probability that an
arbitrary customer will not be lost. The probability Ploss is computed as the
complimentary probability.

6 Laplace-Stieltjes Transform of the Sojourn Time
Distribution

In this section, we assume that R = N, i.e. the number of main servers is equal
to the number of backup servers. In this case, the sojourn time of a tagged
customer does not depend on the customers arriving to the system after the
tagged customer. This fact allow us to derive analytically the Laplace-Stieltjes
transform (LST ) of the sojourn time distribution.

Let ϕ(u), Re u > 0, be the LST of the sojourn time distribution of an
arbitrary customer in the system. This time consists of the waiting time of
the customer and its actual service time. The actual sojourn time depends on
whether or not the timer expires before the service of the customer by the main
server finishes.

Lemma 2. The Laplace-Stieltjes transform of actual service time distribution
of an arbitrary customer is calculated as

ϕ(s)(u) =
1

u + μ + τ

(
μ +

τ μ̃

u + μ̃

)
. (7)

Proof. We consider the following service scenarios: (i) if the service of a customer
by a main server finishes before the timer expires, the actual service time of
the customer coincides with the service time by the main server defined by
exponential distribution with parameter μ; (ii) otherwise, the actual service time
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consists of time to timer expiration plus the remaining service time which is
exponentially distributed with parameter μ̃.

In case (i) we can derive the following expression for the LST :
∞∫
0

e−ute−(μ+τ)tμdt, in case (ii) the expression for the LST is as follows:

∞∫
0

e−ut
t∫
0

e−(μ+τ)xτdxe−μ̃(t−x)μ̃dt. Summing these two expressions, we obtain the

desired LST in the form

ϕ(s)(u) =

∞∫

0

e−ute−(μ+τ)tμdt +

∞∫

0

e−ut

t∫

0

e−(μ+τ)xτdxe−μ̃(t−x)μ̃dt. (8)

Calculating the integrals in equation (8), we reduce this equation to the form (7).

Theorem 2. The Laplace-Stieltjes transform of the sojourn time distribution of
an arbitrary customer in the system is calculated by

ϕ(u) =
N−1∑

i=0

piϕ
(s)(u) +

∞∑

i=N

pi[ϕ(s)(u)]i−N+2. (9)

Proof. Formula (9) is derived using the law of total probability. Let an arbitrary
customer arrives at the system and finds idle servers, i.e., i < N customers stay
in system at the arrival epoch. Then the customer immediately occupies an idle
server and starts its service. In this case the sojourn time of the customer is
equal to its actual service time which is defined by the LST ϕ(s)(u). From what
has been said follows that the Laplace-Stieltjes transform under examination is
equal to ϕ(s)(u) with probability

∑N−1
i=0 pi. This explain the first sum over i that

occur in the right-hand side of formula (9).
Let now an arbitrary customer arrives into the system and finds all server

busy and i − N customers staying in the queue. Such an events occurs with
probability pi, i ≥ N. In this case the customer goes to the end of the queue and
waits for the service until the service of one customer in the service will finish
and i − N customers from the queue will be served. Using the above reasonings,
memoryless property of exponential distribution and convolution property we
derive the LST transform of sojourn time of the arriving customer as the product
[ϕ(s)(u)]i−N+2. This explain the second sum over i in the right-hand side of
formula (9).

Corollary 2. The average sojourn time of an arbitrary customer in the system
is calculated using the following formula

ϕ̄ = −
N−1∑

i=0

pi
ϕ(s)(u)

du
|u=0 −

∞∑

i=N

pi(i − N + 2)
dϕ(s)(u)

du
|u=0 (10)

where

dϕ(s)(u)
du

|u=0 = − 1
(μ + τ)

(1 +
τ

μ̃
). (11)
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Proof. To derive formulas (10)–(11), we use the known formula ϕ̄ = −ϕ′(0).
Differentiating in (9) and using equation (7), after some algebraic transformation
we get (10)–(11).

7 Conclusion

In this paper, we investigated a multi-server queuing system that can be used to
solve the problem of finding a a trade-off between energy saving and quality of
service by using backup servers. The service mechanism assumes the connection
of a backup server to the service of a customer, if the service of this customer lasts
too long. The behavior of the system is described by two-dimensional continuous
time Markov chain. We derive the non-trivial but intuitive ergodicity condition,
the steady state probabilities and a number of performance characteristics of the
system. In case when the numbers of main servers and reserve servers coincide,
we derived the sojourn time of an arbitrary customer in the system.
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Abstract. In the paper we consider a GI/GI/∞ queuing system with
n types of customers under the assumptions that customers arrive at
the queue according to a renewal process and occupy random resource
amounts, which are independent of their service times. Since, in gen-
eral, the analytical solution of the corresponding Kolmogorov differential
equations is not available, we focus on the amount of resources occupied
by each class of customers under the assumption of infinitely growing
arrival rate, and derive its first and second-order asymptotic approxima-
tions. In more detail, we show that the n-dimensional probability dis-
tribution of the total resource amount is asymptotically n-dimensional
Gaussian, and we verify the accuracy of the asymptotics (in terms of
Kolmogorov distance) by means of discrete event simulation.

Keywords: Queueing system · Renewal arrival process
Different types of servers · Asymptotic analysis
Infinitely growing arrival rate

1 Introduction

Modern computer networks are characterized by the integration of heterogeneous
services (phone calls, text messages, media content, cloud computing) over the
same physical infrastructure. The traffic flows generated by the different appli-
cations have specific statistical features (in terms of packet size, bit-rate and
service requirements) and hence is of primary importance the analysis of queue-
ing systems with several classes of customers [3,4,8,9,15]. Moreover, due to the
heterogeneity of services provided by communication networks [6,10–14,16], the
features of the required resources should be taken into account.

In traditional multiclass queuing systems the service process is typically char-
acterized in terms of service time distribution. In this paper we assume that cus-
tomers have different random capacity requirements (depending on their class),
so that the proposed model can be useful for analysis and design issues in high-
performance computer and communication systems, in which service time and
customer volume are independent quantities (see [7] and references therein).
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 129–142, 2018.
https://doi.org/10.1007/978-3-319-97595-5_11
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In more detail, the application of the dynamic screening method permit us to
analyse heterogeneous resource queuing system with unlimited servers number,
non-exponential service time and renewal arriving process are investigated.

The remainder of this paper is structured as follows. Section 2 introduces
the mathematical model and the application of the dynamic screening method
to the considered multiclass queueing system, while in Sect. 3 the corresponding
Kolmogorov equations are presented. Section 4 highlights our main contribution,
the derivation of first and second order asymptotics under heavy load conditions
(i.e., when the mean interarrival time tends to 0), and their applicability is
verified in Sect. 5 by means of discrete event simulation. Finally, Sect. 6 ends the
paper with some final remarks.

2 Mathematical Model

Consider a queuing system with an infinite number of servers and n types
of customers, characterized by different service times and queuing resource
requirements. Arrivals are described by a renewal process with interarrival time
distribution A (z) and for each of them class i is selected with probability

pi (i = 1, . . . , n), where
n∑

i=1

pi = 1. Each arriving customer instantly occupies

the first free server, with service time distribution Bi (τ) and required resource
distribution Gi (y), both depending on the type i of the customer. At the end of
the service, the customer leaves the system. Resource amount and service times
are mutually independent, and do not depend on the epochs of customer arrivals.

Denote by Vi (t) (i = 1, . . . , n) the total resource amount occupied by each
type of customers at the moment t. The aim of this work is to determine the
probabilistic characterization of the n-dimensional process {V(t)}. This process
is, in general, non Markovian, but it can be investigated by means of the dynamic
screening method.

In Fig. 1, n+1 time axes, labeled from 0 to n, are shown: axis 0 indicates the
epochs of customers arrivals, while the remaining axes i = 1, . . . , n correspond
to the different types of customers.

Fig. 1. Dynamic screening of the arrival process
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We define a set of n functions (dynamic probabilities) Si (t) , that satisfy the
conditions

0 ≤ Si (t) ≤ 1,

n∑

i=1

Si (t) ≤ 1,

and assume that a customer, arrived in the system at time t, is screened to axis
i with probability Si (t), and is not screened anywhere with probability

S0 (t) = 1 −
n∑

i=1

Si (t) .

Let the system be empty at time t0, and let us choose some arbitrary time
T with T > t0. Hence, the probability Si (t) that a i-type customer, arrived at
time t with t0 ≤ t ≤ T , will be serviced by time T , is given by

Si(t) = 1 − Bi(T − t), (i = 1, . . . , n) .

Denote by Wi (t) the total resource amount screened on axis i. Then, the
extended process {V (t)} satisfies the following property:

P {V (T ) < x} = P {W (T ) < x} (1)

for all x = {x1, . . . , xn}, where the inequalities V (T ) < x and W (T ) < x
mean that V1 (T ) < x1, . . . , Vn (T ) < xn and W1 (T ) < x1, . . . , Wn (T ) < xn,
respectively. Equality (1) permits us to investigate the process {V (t)} via the
analysis of the process {W (t)} .

3 Kolmogorov Differential Equations

Let z (t) be the residual time from t to the next arrival (in the renewal input
process) and let us denote by

P (z,w, t) = P {z (t) < z,W(t) < w}

the probability distribution of the n + 1-dimensional Markovian process
{z (t) ,W (t)}.

By the law of total probability, we get the following system of Kolmogorov
differential equations:

∂P (z,w, t)
∂t

=
∂P (z,w, t)

∂z
+

∂P (0,w, t)
∂z

(A(z) − 1)

+A (z)
n∑

i=1

piSi (t)

⎡

⎣

wi∫

0

∂P (0,w − yi, t)
∂z

dGi (y) − ∂P (0,w, t)
∂z

⎤

⎦ ,
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where w = {w1, . . . , wn} ,yi = {0, . . . , y, . . . , 0}, z > 0, wi > 0 (i = 1, . . . , n),
with the initial condition

P (z,w, t0) =
{

R(z), w = 0,
0, otherwise,

where R (z) represents the stationary probability distribution of the values of
the random process z (t).

By introducing the partial characteristic function:

h (z,v, t) =

∞∫

0

ejv1w1 . . .

∞∫

0

ejvnwnP (z, dw, t) z > 0, wi > 0,

where j =
√−1 denotes the imaginary unit, we obtain the following equations:

∂h (z,v, t)
∂t

=
∂h (z,v, t)

∂z

+
∂h (0,v, t)

∂z

[

A (z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (vi) − 1)

]

, (2)

where

G∗
i (vi) =

∞∫

0

ejviydGi (y) ,

with the initial condition
h (z,v, t0) = R (z) . (3)

4 Asymptotic Analysis

In general, Eq. (2) cannot be solved analytically, but it is possible to find approx-
imate solutions under suitable asymptotic conditions; in this paper we focus on
the case of infinitely growing arrival rate.

To this aim, let us write the distribution function of the interarrival times
as A (Nz), where N is some parameter that tends to infinity in the asymptotic
analysis [1,2].

Then, Eq. (2) becomes

1
N

∂h (z,v, t)
∂t

=
∂h (z,v, t)

∂z

+
∂h (0,v, t)

∂z

[

A(z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (vi) − 1)

]

, (4)

with the initial condition (3).
We solve the problem (4)–(3) under the asymptotic condition N → ∞, and

obtain approximate solutions with different levels of accuracy, denoted in the
following as “first-order asymptotic” h (z,v, t) ≈ h(1) (z,v, t) and “second-order
asymptotic” h (z,v, t) ≈ h(2) (z,v, t).
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4.1 The First-Order Asymptotic Analysis

As a preliminary result, in this section we present the first-order asymptotic as
the following lemma.

Lemma. The first-order asymptotic characteristic function of the process
{z (t) ,W (t)} is given by

h(1) (z, v, t) = R (z) exp

⎧
⎨

⎩
Nλ

n∑

i=1

jvia
(i)
1 pi

t∫

t0

Si (τ) dτ

⎫
⎬

⎭
,

where λ =
(∞∫

0

(1 − A (x)) dx

)−1

and a
(i)
1 =

∞∫

0

ydGi(y) is the mean amount of

resources required by i-type customers.

Proof. By introducing the following notations

ε =
1
N

,v = εy, h (z,v, t) = f1 (z,y, t, ε) , (5)

in expressions (4) and (3), we get

ε
∂f1 (z,y, t, ε)

∂t
=

∂f1 (z,y, t, ε)
∂z

+
∂f1 (0,y, t, ε)

∂z

[

A(z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (εyi) − 1)

]

, (6)

with the initial condition

f1 (z,y, t0, ε) = R (z) . (7)

The asymptotic solution of the problem (6)–(7), i.e. the function f1 (z,y, t) =
lim
ε→0

f1 (z,y, t, ε), can be obtained in two steps.

Step 1. Let ε → 0; then Eq. (6) becomes:

∂f1 (z,y, t)
∂z

+
∂f1 (0,y, t)

∂z
(A (z) − 1) = 0.

and hence f1(z,y, t) can be expressed as

f1 (z,y, t) = R (z)Φ1 (y, t) , (8)

where Φ1 (y, t) is some scalar function, satisfying the condition Φ1 (y, t0) = 1.
Step 2. Now let z → ∞ in (6):

ε
∂f1 (∞,y, t, ε)

∂t
=

∂f1(0,y, t, ε)
∂z

n∑

i=1

piSi (t) (G∗
i (εyi) − 1) .
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Then, we substitute here the expression (8), take advantage of the Taylor
expansion

ejεs = 1 + jεs + O(ε2), (9)

divide by ε and perform the limit as ε → 0. Since R′ (0) = λ, we get the following
differential equation:

∂Φ1 (y, t)
∂t

= Φ1 (y, t) λ

n∑

i=1

piSi (t) jyia
(i)
1 , (10)

where a
(i)
1 =

∞∫

0

ydGi(y).

Taking into account the initial condition, the solution of (10) is

Φ1 (y, t) = exp

⎧
⎨

⎩
λ

n∑

i=1

jyia
(i)
1 pi

t∫

t0

Si (τ) dτ

⎫
⎬

⎭
.

By substituting Φ1 (y, t) from (8), we obtain

f1 (z,y, t) = R (z) exp

⎧
⎨

⎩
λ

n∑

i=1

jyia
(i)
1 pi

t∫

t0

Si (τ) dτ

⎫
⎬

⎭
.

Therefore, we can write

h (z,v, t) = f1 (z,y, t, ε) ≈ f1 (z,y, t) = R (z) Φ1 (y, t) =

R (z) exp

{
λ

n∑
i=1

jyia
(i)
1 pi

t∫
t0

Si (τ) dτ

}
= R (z) exp

{
Nλ

n∑
i=1

jvia
(i)
1 pi

t∫
t0

Si (τ) dτ

}
.

The proof is complete.

4.2 The Second-Order Asymptotic Analysis

Now we are able to formulate the main contribution of this work, which is sum-
marized by the following theorem.

Theorem. The second-order asymptotic characteristic function of the process
{z (t) ,W (t)} is given by

h(2) (z, v, t) = R (z) exp

⎧
⎨

⎩
Nλ

n∑

i=1

jvia
(i)
1 pi

t∫

t0

Si (τ) dτ

+Nλ

n∑

i=1

(jvi)2

2
a
(i)
2 pi

t∫

t0

Si (τ) dτ
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+
Nκ

2

n∑

i=1

n∑

m=1

jvia
(i)
1 pijvma

(m)
1 pm

t∫

t0

Si (τ) Sm (τ) dτ

⎫
⎬

⎭
, (11)

where a
(i)
2 =

∞∫

0

y2dGi(y) and κ = λ3
(
σ2 − a2

)
, a and σ2 being the mean and the

variance of the interarrival time, respectively.

Proof. Let h2 (z,v, t) be a solution of the following equation

h (z,v, t) = h2 (z,v, t) exp

⎧
⎨

⎩
Nλ

n∑

i=1

jvia
(i)
1 pi

t∫

t0

Si (τ) dτ

⎫
⎬

⎭
(12)

Substituting this expression into (3) and (4), we get the following equivalent
problem:

1
N

∂h2 (z,v, t)
∂t

+ λh2 (z,v, t)
n∑

i=1

jvia
(i)
1 piSi (t) =

∂h2 (z,v, t)
∂z

+
∂h2 (0,v, t)

∂z

[

A (z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (vi) − 1)

]

, (13)

with the initial condition
h2 (z,v, t0) = R (z) . (14)

By performing the following changes of variable

ε2 =
1
N

,v = εy, h2 (z,v, t) = f2 (z,y, t, ε) . (15)

in (13) and (14), we get the following problem:

ε2
∂f2 (z,y, t, ε)

∂t
+ f2 (z,y, t, ε) λ

n∑

i=1

jεyia
(i)
1 piSi (t) =

∂f2 (z,y, t, ε)
∂z

+
∂f2 (0,y, t, ε)

∂z

[

A (z) − 1 + A (z)
n∑

i=1

piSi (t) (G∗
i (εyi) − 1)

]

, (16)

with the initial condition

f2 (z,y, t0, ε) = R (z) . (17)

As a generalization of the approach used in the previous subsection, the
asymptotic solution of this problem

f2 (z,y, t) = lim
ε→0

f2 (z,y, t, ε)

can be derived in three steps.
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Step 1. Letting ε → 0 in (16), we get the following equation:

∂f2 (z,y, t)
∂z

+
∂f2 (0,y, t)

∂z
(A (z) − 1) = 0.

Hence, we can express f2 (z,y, t) as

f2 (z,y, t) = R (z)Φ2 (y, t) , (18)

where Φ2 (y, t) is some scalar function that satisfies the condition Φ2 (y, t0) = 1.
Step 2. The solution f2 (z,y, t) can be represented in the expansion form

f2 (z,y, t) = Φ2 (y, t)

[

R (z) + f (z)
n∑

i=1

jεyia
(i)
1 piSi (t)

]

+ O
(
ε2
)
, (19)

where f (z) is a suitable function. By substituting the previous expression and
the Taylor-Maclaurin expansion (9) in (16), taking into account that R′ (z) =
λ (1 − A (z)), it is easy to verify that

f ′ (0) = λf (∞) +
κ

2
,

and κ = λ3
(
σ2 − a2

)
, where a and σ2 are the mean and the variance of the

interarrival time.
Step 3. Letting z → ∞ in (16), by the definition of the function f2 (z,y, t, ε),

we obtain

lim
z→∞

∂f2 (z,y, t, ε)
∂z

= 0,

and, taking into account the expansion

ejεs = 1 + jεs +
(jεs)2

2
+ O

(
ε3
)
,

we can write

ε2 ∂f2(∞,y,t,ε)
∂t + f2 (∞,y, t, ε) λ

n∑

i=1

piSi (t) jεyia
(i)
1

= ∂f2(0,y,t,ε)
∂z

n∑

i=1

piSi (t)
(
jεyia

(i)
1 + (jεyi)

2

2 a
(i)
2

)
+ O

(
ε3
)
,

where a
(i)
2 =

∞∫

0

y2dGi(y).

By substituting here the expansion (19) and taking the limit as z → ∞,
we get

ε2
∂Φ2(y,t)

∂t + Φ2 (y, t) λ
n∑

i=1
jεyia

(i)
1 piSi (t)

n∑

m=1
jεyma

(m)
1 pmSm (t) f(∞)

= Φ2 (y, t) λ
n∑

i=1
piSi (t)

(
jεyia

(i)
1 +

(jεyi)
2

2 a
(i)
2

)

+Φ2 (y, t) f ′ (0)
n∑

i=1
piSi (t) jεyia

(i)
1

n∑

m=1
pmSm (t)

(
jεyma

(m)
1 +

(jεym)2

2 a
(m)
2

)
+ O

(
ε3
)
.
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After simple manipulations, and taking into account that

κ

2
= (f ′ (0) − f (∞)) ,

we get the following differential equation for Φ2 (y, t):

∂Φ2(y,t)
∂t = Φ2 (y, t)

[

λ
n∑

i=1

(jyi)
2

2 a
(i)
2 piSi (t)

+κ
2

n∑

i=1

n∑

m=1
jyia

(i)
1 pijyma

(m)
1 pmSi (t) Sm (t)

]

,

whose solution (with the given initial condition) can be expressed

Φ2 (y, t) = exp

⎧
⎨

⎩
λ

n∑

i=1

(jyi)2

2
a
(i)
2 pi

t∫

t0

Si (τ) dτ

+
κ

2

n∑

i=1

n∑

m=1

jyia
(i)
1 pijyma

(m)
1 pm

t∫

t0

Si (τ) Sm (τ) dτ

⎫
⎬

⎭

Substituting this expression into (18) and performing the inverse substitu-
tions of (15) and (12), we get the expression (11) for the asymptotic characteristic
function of the process {z (t) ,W (t)}.

The proof is complete.

Corollary. For z → ∞, t = T and t0 → −∞ we get the characteristic function
of the process {V (t)}in the steady state regime

h (v) = exp

{

Nλ
n∑

i=1

jvia
(i)
1 bi

+Nλ
n∑

i=1

(jvi)2

2
a
(i)
2 pibi +

Nκ

2

n∑

i=1

n∑

m=1

jvia
(i)
1 jvma

(m)
1 Kim

}

, (20)

where

bi = pi

∞∫

0

(1 − Bi (τ)) dτ,

Kim = pipm

∞∫

0

(1 − Bi (τ)) (1 − Bm (τ)) dτ.

The structure of function (20) implies that the n-dimensional process {V (t)}
is asymptotically Gaussian with mean

a = Nλ
[
a
(1)
1 b1 a

(2)
1 b2 . . . a

(n)
1 bn

]
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and covariance matrix

K = N
[
λK(1) + κK(2)

]
,

where

K(1) =

⎡

⎢
⎢
⎢
⎣

a
(1)
2 b1 0 . . . 0
0 a

(2)
2 b2 . . . 0

. . . . . . . . . . . .

0 0 . . . a
(n)
2 bn

⎤

⎥
⎥
⎥
⎦

,

K(2) =

⎡

⎢
⎢
⎢
⎣

a
(1)
1 a

(1)
1 K11 a

(1)
1 a

(2)
1 K12 . . . a

(1)
1 a

(n)
1 K1n

a
(2)
1 a

(1)
1 K21 a

(2)
1 a

(2)
1 K22 . . . a

(2)
1 a

(n)
1 K2n

. . . . . . . . . . . .

a
(n)
1 a

(1)
1 Kn1 a

(n)
1 a

(2)
1 Kn2 . . . a

(n)
1 a

(n)
1 Knn

⎤

⎥
⎥
⎥
⎦

.

5 Simulation Results

The previous results, summarized by (20), are obtained under the asymptotic
condition of infinitely growing arrival rate (N → ∞) and, hence, they can provide
suitable approximations only for sufficiently large values of N . To investigate
their practical applicability, we have considered several simulation scenarios,
varying all the system parameters (i.e., the distributions of the interarrival and
service times and of the customer capacity as well as the probabilities pi). Since
all the different simulation sets led to similar results, for sake of brevity, we
present just one of them.

In more detail, we assume that the input renewal process is characterized
by a uniform distribution of the interarrival time in the interval [0.5, 1.5], cor-
responding to a fundamental rate of arrivals λ = 1 customers per time unit.
Moreover, each arriving customer may belong to one of n = 3 types, according
to the following probabilities: p1 = 0.5, p2 = 0.3 and p3 = 0.2. We assume that
resource amounts occupied by each customer type have exponential distribution,
with parameters 2, 1 and 0.4, respectively. Finally, the service times have gamma
distribution with shape and inverse scale parameters equal to α1 = β1 = 0.5,
α2 = β2 = 1.5 and α3 = β3 = 2.5, respectively.

Our aim is to show that the Gaussian approximation gets better and better as
N goes to infinity, thus providing some indications on reasonable lower bounds of
N for the applicability of (20). Hence, we carried out different sets of simulation
experiments (in each of them 1010 arrivals were generated) for increasing values
of N and compared the asymptotic distributions with the empiric ones in terms
of Kolmogorov distance [5]

Δ = sup
x

|F (x) − G (x)|

where F (x) is the cumulative distribution function built on the basis of simula-
tion results, and G(x) is the Gaussian approximation given by (20); the corre-
sponding parameters for the three classes are summarized in Table 1. For sake
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Table 1. Parameters of Gaussian approximations

Customers class Mean Variance

First 0.25 N 0.229 N

Second 0.3 N 0.553 N

Third 0.5 N 2.349 N

of brevity, we show the results only for the marginal distributions of the total
resource amount for each class of customers.

Tables 2, 3 and 4 report the values of the Kolmogorov distance for the three
types of customers, highlighting that the goodness of the approximation depends
not only on N , but also on the different statistical features of the considered
customers class.

Table 2. Kolmogorov distance for the first type of customers

N 1 35 50 75 100 125 200 500 1000

Δ 0.294 0.033 0.027 0.022 0.019 0.017 0.014 0.009 0.006

Table 3. Kolmogorov distance for the second type of customers

N 1 35 50 75 100 125 200 500 1000

Δ 0.377 0.042 0.035 0.028 0.025 0.022 0.018 0.011 0.008

Table 4. Kolmogorov distance for the third type of customers

N 1 35 50 75 100 125 200 500 1000

Δ 0.419 0.053 0.043 0.036 0.031 0.028 0.022 0.014 0.009

Fig. 2. Distributions of the total resource amount for the first type of customers
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Fig. 3. Distributions of the total resource amount for the second type of customers

Fig. 4. Distributions of the total resource amount for the third type of customers

As expected, the asymptotic results become more and more accurate when
the scale parameter N increases. This conclusion is also confirmed by Figs. 2,
3 and 4, which compare the asymptotic approximations with the empirical his-
tograms for the total resource amount of each type of customers for two different
values of N .

6 Conclusions

In this work we considered a GI/GI/∞ queue with n types of customers under the
assumption that arrivals follow a renewal process and each customer occupies a
random resource amount, independent of its service time. At first we determined
the corresponding Kolmogorov differential equations, which in the general case
cannot be solved analytically. Hence, we derived first and second-order asymp-
totic approximations in case of infinitely growing arrival rate, and we pointed
out that the n-dimensional probability distribution of the total resource amount
is asymptotically n-dimensional Gaussian. Finally, by means of discrete-event
simulation we verified the goodness of the approximation, and highlighted how
the applicability region of the asymptotic approximation (i.e., lower bounds on
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the scale parameter N for all the different classes of users) can be determined
by considering the Kolmogorov distance as accuracy measure.
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Abstract. A Split–Merge multiserver model of a Desktop Grid com-
puting system is studied. Heavy-tailed distributions are used for service
times of tasks in a system, including the Pareto distribution, which allows
one to obtain some analytical results. The effects of replication and quo-
rum parameters on the key performance measures such as response time
and cost of a Desktop Grid system are studied both analytically and
through simulation under a variety of scenarios for system configuration
and system load. Moment properties of the workload vector, which not
only highlight possible heterogeneity but also play a key role in practical
applications, are derived.

Keywords: Split–Merge Model · Heavy tails · Pareto · Multiserver
Desktop grid · Replication · Quorum · Moment properties

1 Introduction

Parallel computing is widely used as a tool for solving many practical problems
that require a large number of resource-intensive computational experiments
as well as processing large amounts of data. Some notable ones can be found in
quantum chemistry, molecular biology, hydrodynamics and other branches of sci-
ence. With explosive use of the Internet coupled with the growth in the number,
power, accessibility, performance and decrease in cost of personal computers, the
Desktop Grid (DG) computing, a particular and popular case of parallel com-
puting is in high demand [5]. In the DG system, when heterogeneous computing
resources like personal computers, laptops, web servers, cluster nodes, as well
as wearable devices, are idle used as computing resources. This is accomplished
through splitting a special set of tasks into loosely coupled (or independent)
and relatively small units of work. Further, DG systems are subdivided to Vol-
unteer Computing (VC), in which the resources are donated by the volunteers
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and Enterprise DG (EDG), where resources belong to an organization/group of
organizations [9].

Fast application turnaround, low delays and low response time are among
the key optimization goals for a DG system [5]. In DG systems the response
time can be reduced by sending a adequate number of replicas (identical copies)
of workunits (hereafter we use the word task as a synonym of workunit) to
compute nodes and waiting for a quorum (fixed number of valid results). At
the same time, the cost of the calculations (expressed in time and/or energy
consumed during problem solving activities) are important, especially for EDG
systems, and such costs also depend on the replication and quorum parameters.
Thus, it is important to study the stochastic models of DG systems which fall
in the class of multiserver models.

In this paper we continue the study of the effect of replication and quorum
parameters on key performance characteristics of an EDG model discussed in the
papers [4,15]. While in [15] the authors study the model under the assumptions
of Poisson arrivals and phase type (PH) services, in [4] the authors use a more
versatile point process, namely, Markovian arrival process to model the arrivals
and employ the well-known matrix-analytic method under the assumption of
phase type services. Further, for more general set of assumptions (e.g. Weibull
service time distribution) simulation approach is used. Continuing that research
along with inspiring open problems stated in [10], in this paper we study in more
detail the effect of the tails of service time distribution on the response time (also
known as latency or sojourn time) of a task and the cost (which is proportional
to service time of a task).

Heavy-tailed distributions are widely used in modeling of computer and com-
munication systems [3,6,7,14,19]. Key features of heavy-tailed distributions are
related to the finiteness of moments of random variables which, under suitable
aggregation, may help to model long range dependence and hence capture key
performance characteristics of a system [16] that otherwise would have been dra-
matically hidden. Moreover, modeling heavy-tailed distribution for service times
of tasks in multiserver model may lead to heterogeneous moment properties of
servers resulting in many servers being busy with unusually long service times
of tasks [18]. (This effect may explain uneven behavior of the time required to
complete the so-called tail computation of a finite number of workunits in a DG
system, the problem pointed out in [5].) In the present paper we study these
effects adopting a Split–Merge model of an EDG presented in [4,15]. We use
the celebrated Pareto distribution for the service times of tasks in the model
allowing us to obtain some analytical results.

The paper is organized as follows. In Sect. 2, we briefly recall the Split–Merge
model of an EDG and highlight some known basic properties of order statistics
sampled from heavy-tailed Pareto distribution. Moreover, in this section we dis-
cuss the stability condition of the multiserver system. In Sect. 3 we discuss in
detail the moment properties of the stationary workload of a multiserver system
with special focus on the novel results obtained in [18]. We apply these results
to the EDG model to obtain the moment properties for stationary workload
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and also highlight the possible trade-off between the cost and response time
of such a system which rely on replication and quorum. Finally, in Sect. 4 we
provide numerical results based on simulating a few scenarios to illustrate the
dependence of the response time and the cost on the replication and quorum
parameters as well as the system load under a wide set of service time distribu-
tions that includes heavy-tailed ones. Some concluding remarks and directions
for possible future research are outlined in Sect. 5.

2 Split–Merge Model of a Desktop Grid Computing

In this section we give a brief overview of Split–Merge model of a DG presented
in [4,15]. Consider a single EDG system in which a fixed number m identical
servers (known as hosts) process the tasks arriving according to a renewal pro-
cess, {ti}i�1, with intensity λ. Upon arrival, each task is replicated r � m times
(i.e., each task is made into r identical copies) and waits (if necessary) in a sin-
gle First-Come-First-Served queue until a required r servers become free. It is
assumed that all r copies of a task begin service simultaneously (provided there
are r servers available). It is assumed that the service times of these copies are
independent and identically distributed (i.i.d) with distribution function FS . In
Sect. 3, we will consider the case when FS is a Pareto distribution. Once simul-
taneous services begin for the r replicates of a task, we say a quorum is formed
when q (q � r) of the r replicas complete their services. Soon after the quorum is
achieved for a task, the (on-going) services of the remaining r−q replicas of that
task will be canceled and hence removed from the system. Thus, in this model
the service of a task is assumed to be completed when a quorum is achieved for
that task.

Let S1, . . . , Sr be the i.i.d. random variables describing the service times of
a generic task. Since the services of r replicates of a task are to be started
simultaneously, the time, say, Sq:r, to achieve the quorum for the task is the
qth order statistics of r random variables that are i.i.d. Thus, the system under
study is equivalent to a G/G/�m

r � queueing system with generic service time
Sq:r (where �x� is the greatest integer less or equal to x). It should be pointed
out from the system’s point of view that it is efficient to have m to be multiples
of r. The key performance measures of the model are:

Response time Z(q, r) := E(D) + E(Sq:r), where E(D) is the mean stationary
delay of a task,

Cost C(q, r) := rE(Sq:r) is obtained using the mean service time of a quorum.

In Fig. 1 we display graphically our model in detail.

2.1 Properties of Order Statistics

The two key performance measures listed earlier involve order statistics of i.i.d.
random variables and hence in this section we will list some basic properties of
order statistics.
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Fig. 1. Split–Merge multiserver model of an EDG

Suppose that X1, . . . , Xr be r i.i.d. copies of a r.v. X with distribution func-
tion (d.f.) F . Let Xq:r denote the qth order statistics. That is,

X1:r � · · · � Xr:r.

Recall (see, for example, [2]) that

P(Xq:r � x) =
r∑

i=q

(
r

i

)
F i(x)F

r−i
(x),

where F (x) := 1 − F (x) is the tail distribution. In particular, the minimum,
X1:r, has the tail distribution

P(X1:r > x) = F
r
(x),

while the maximum, Xr:r, has d.f.

P(Xr:r � x) = F r(x).

Thus, using the terminology of the stochastic ordering, we have the following
stochastic inequalities

X1:r �st X �st Xr:r,

which, in particular, imply the corresponding inequalities for the expected values.
This property can be used to minimize the time to obtain result in systems with
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replication and quorum, such as the EDG. However, the distribution of Xq:r

for arbitrary values of q and r is not known (except some special cases), and
thus obtaining the optimal (in some sense) replication and quorum parameters is
difficult in general. However, we recall some important monotonicity properties of
order statistics which are hereafter used as accuracy checks in our computations.

For fixed r, the following relation holds [1]:

P(Xq:r � x) = P(Xq−1:r � x) −
(

r

q − 1

)
F q−1(x)F

r−q+1
(x), q > 1. (1)

This relation in particular means that Xq:r �st Xq−1:r, which is as is to be
expected, and hence the cost, C(q, r), monotonically non-decreases with increas-
ing q (for a fixed r). That is,

C(q, r) � C(q − 1, r), q > 1.

Moreover, for some r, q > 1, the following monotonicity result holds [1]:

P(Xq:r � x) = P(Xq−1:r−1 � x) −
(

r − 1
q − 1

)
F q−1(x)F

r−q+1
(x), q > 1. (2)

Thus, in particular, Xq:r �st Xq−1:r−1 and the cost C(q, r) monotonically non-
decreases with simultaneous increase in q and r. That is,

C(q, r) � C(q − 1, r − 1), q, r > 1.

Finally, it follows from [1] that

P(Xq:r � x) = P(Xq:r−1 � x) +
(

r − 1
q − 1

)
F q(x)F

r−q
(x), q � 1. (3)

In particular this means that Xq:r �st Xq:r−1; however, this does not induce
monotonicity of C(q, r) on r for a given q, forcing one to study based on the
type of service time distribution considered.

2.2 Cost of Computations for Pareto Service Time Distribution

Now, to prepare the study of EDG model with Pareto service time distribution,
we present the moment properties of Pareto distribution obtained in [13]. This
analysis has been further developed in [8]. Consider Pareto r.v. S with density

f(x) = α xα
0 x−α−1, x > x0 (f(x) = 0, x � x0), α > 1.

Note that
E(Sk) < ∞, k < α.

Then the following result holds [8]

E(Sk
q:r) = xk

0

r!
(r − q)!

Γ (r − q + 1 − k/α)
Γ (r + 1 − k/α)

, 0 < k < α(r − q + 1), (4)
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where Γ is the gamma function. In particular, (4) means that the r.v. Sq:r has
moment index α(r − q + 1). That is,

sup(k > 0 : E(Sk
q:r) < ∞) = α(r − q + 1) � α,

where α is the moment index of S. Moreover, the moment index of Sq:r linearly
increases in r − q. The latter may be used to select r and q in such a way to
guarantee finiteness of the required moments (say, the variance) of the replicated
task even if the moment index α of the original r.v. S is small. However, to
guarantee C(q, r) < ∞ for given q and r. it is required that α(r − q +1)− 1 > 0.
Note also that (4) allows one to obtain the cost C(q, r) analytically. In particular,
for q = 1 we obtain the cost as

C(1, r) = x0
r2α

rα − 1
, r > 1/α. (5)

It follows that the cost
C(1, r)

r
→ x0, r → ∞.

The above indicates that the cost grows asymptotically linear in r. After some
standard algebraic manipulations, we deduce from (4) the following recurrent
relation

C(q, r + 1) =
(r + 1)2(r − q + 1 − 1/α)
r(r − q + 1)(r + 1 − 1/α)

C(q, r). (6)

Straightforward manipulations with r.h.s. of (6) allow one to conclude that the
cost C(q, r) increases in r, for a given q, if the following inequality (of the second
order in r) holds good:

αr2 + (2α − αq − q − 1)r − αq + α − 1 > 0, (7)

and is non-increasing, otherwise. The discriminant of (7), after some algebra,
equals

D(q) = (αq + q − 1)2 + 4q > 0, q � 1, (8)

and thus (7) always has two distinct roots. It can be verified that the smallest
root of (7) is less than 1/α. In order to guarantee a finite cost, it is necessary
that r > 1/α. Hence, Equation (7) holds good for a given q if

r � r0(q) :=

⌈
1 + q + αq − 2α +

√D(q)
2α

⌉
. (9)

Thus, r0(q) gives the minimum of cost for a given q. In particular, it can be
shown from (9) that r0(1) = 1 for α > 1.5.

To illustrate the dependence of the cost function on q and r for Pareto services
we display the cost of a 100-server EDG by varying r = 1, . . . , 10 and q =
1, . . . , r for a standard (with x0 = 1) Pareto distribution with α = 1.1 (note that
such a Pareto r.v. has an infinite variance) and α = 3, in Fig. 2. The nonlinear
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dependence of the cost on replication and quorum parameters is clearly seen
and, as expected from (1)–(2), the cost is monotone both with increasing q (for
a fixed r), and with simultaneous increase in q and r. Moreover, for a fixed q it
can be seen that for r > r0(q) the cost is increasing with r. The points, r0(q),
are marked with squares in those plots. The obtained monotonicity properties
allow one to make the following recommendations with regard to optimal r and
q values that minimizes the cost C(q, r):

– since C(q, r) is monotone in q for a fixed r, it is preferable to have q as small
as possible by taking into account other considerations such as reliability and
properties of the problem under study in the EDG model;

– since the minimum for C(q, r) occurs at r0(q) and since this point (see (9))
depends on α, it is preferable to select r close to r0(q). The monotonicity on
r for a given q is used to arrive at this recommendation.

Fig. 2. Cost of computations for a 100-server EDG model depending on replication
r = 1, . . . , 10 and quorum q = 1, . . . , r, with service times having standard Pareto
distribution with α = 1.1 (left) and α = 3 (right). Squares indicate the points (q, r0(q))
such that C(q, r) is increasing in r for r > r0(q), thus attaining local minimum at r0(q).
Note the logarithmic y axis in the left picture.

2.3 Cost of Computations for Weibull Service Time Distribution

Consider the standard Weibull r.v. S with d.f.

F (x) = 1 − e−xξ

, ξ > 0.

It is known that Weibull distribution has a decreasing (increasing) failure rate
f(x)/F (x) if ξ < 1 (ξ > 1), and reduces to exponential distribution for ξ = 1.
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In this case, we have (see for example, [12,20])

E(Sk
q:r) = q

(
r

q

)
Γ (1+k/ξ)

q−1∑

j=0

(−1)j

(
q − 1

j

)
(r−q+1+j)−1−k/ξ, k > 0. (10)

Note that all moments of Sq:r, as well as original r.v. S, are finite.
Recalling that C(q, r) = rE(Sq:r), analytical expression for the cost of compu-

tations may be obtained. However, it remains unclear if monotonicity properties
of C(q, r) for general q and r can be deduced, and we leave this research for a
future study. Instead, here we focus on the study of C(1, r). It is easy to verify,
from (10), that

C(1, r) = Γ (1 + 1/ξ)r1−1/ξ, r � 1. (11)

Thus, it is easy to see that C(1, r) is increasing (decreasing) in r if ξ > 1 (ξ < 1).
To illustrate the dependence of C(q, r) on q and r, we display the cost of a 100-
server EDG by varying r = 1, . . . , 10 and q = 1, . . . , r for a standard Weibull
distribution with ξ = 0.5 and ξ = 1.5 in Fig. 3. The nonlinear dependence of
the cost on replication and quorum is clearly seen in this case also similar to
the Pareto service times. Like in Pareto case, the cost function for Weibull case
is also monotone both with increasing q for a fixed r, and with simultaneous
increase in q and r. Moreover, for q = 1 the cost is monotone in r, as is to be
expected.

Fig. 3. Cost of computations for a 100-server EDG model depending on replication
r = 1, . . . , 10 and quorum q = 1, . . . , r, with service times having standard Weibull dis-
tribution with ξ = 0.5 (left) and ξ = 1.5 (right). Cost monotonely increases (decreases)
for ξ > 1 (ξ < 1), as expected. Note the logarithmic y axis in the left picture.
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3 Moment Properties of EDG Workload

In this section we study the moment indices of workload vector components of
EDG model. This is based on the results of [18]. We first briefly summarize the
key results from [18] in Sect. 3.1.

3.1 Moment Properties of Multiserver Systems

Consider a classical s-server G/G/s system with general service time distribution
and general renewal input flow. Recall the celebrated Kiefer–Wolfowitz recursion
for the vector Wn = (Wn,1, . . . ,Wn,s) of workload (remaining work) at each
server (in ascending order) at nth task arrival epoch tn is as follows [11]

Wn+1 = R(Wn + eSn − 1Tn)+, (12)

where e = (1, 0, . . . , 0), 1 is the vector of ones, R(·) places vector components in
ascending order, and (x)+ = max(0, x). We stress that the servers are numbered
in the workload ascending order and thus, the number of a server may be changed
at each recursion step. Note that Dn := Wn,1 is the delay of nth task. Denoting
S to be a generic service time, and T to be a generic interarrival time, when the
stability condition:

ρ = E(S)/E(T ) < s,

holds good, then Wn converges in distribution to W := W∞, which is the sta-
tionary workload. An important recent result considering the moment properties
of vector W = (W1, . . . ,Ws) has been obtained in [18]. This result states that
the moment properties of the components of workload vector W vary with the
index (or position) of the components. That is, for index i � �ρ� the following
result holds good.

E
(
S1+β/(s−�ρ�)

)
< ∞ ⇒ E [Wi]

β
< ∞. (13)

On the contrary, if i > �ρ� (if any), then the moment properties depend on the
index of the component:

E
(
S1+β/(s−i+1)

)
< ∞ ⇒ E [Wi]

β
< ∞. (14)

In particular, the following moment property of stationary delay D = W1

holds [17] good.

E
(
S1+β/(s−�ρ�)

)
< ∞ ⇒ E(Dβ) < ∞. (15)

An intuitive explanation of lighter moment conditions (13) resides on the fact
that �ρ� servers (note that ρ gives the average number of servers busy when
the queue is stable) are in fact enough to keep the system stable. On the other
hand, it is most probable that servers with indices (or server numbers) i > �ρ�
are busy with unevenly large tasks [18]. (We recall that the server numbering in
Kiefer–Wolfowitz representation follows the work ascending order.)
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3.2 Moment Properties of Workload Vector of EDG Split-Merge
Model

Now we consider the EDG model of this paper and apply the results of Sect. 3.1.
Recall that our model is equivalent to an G/G/�m/r� -type multiserver model
with general service times whose distribution function is given by the order
statistics Sq:r. The stability condition here is given by

ρ := λE(Sq:r) < �m/r�, (16)

where E(Sq:r) is as given in (4). Then it follows from (4) and (13) that for a
given α, q, r, the moment index β of the workload components Wi, i � �ρ�, is
of the form:

β = α(r − q + 1 − 1/α)
(

�m/r� −
⌊
λx0

r!
(r − q)!

Γ (r − q + 1 − 1/α)
Γ (r + 1 − 1/α)

⌋)
. (17)

and for i > �ρ� (if exists) the moment index is of the form:

β = α(r − q + 1 − 1/α) (�m/r� − i + 1) . (18)

In particular, the maximal component of the workload vector, W�m/r�, has the
following moment index which does not depend on the input rate λ:

β = α(r − q + 1) − 1. (19)

Note that when q = r, (19) reduces to β = α − 1, which extends the classical
result obtained in [18] for r = q = 1 (multiserver system without replication).
In Fig. 4 we display the two measures: the maximal input rate, λ (see (16)), to
guarantee the stability of the queue, and the moment index, β (see (17)), under
various scenarios by varying r = 1, . . . , 10 and q = 1, . . . , r. When dealing with
the moment index, we fix λ = 2. It is seen that in some cases the stability condi-
tion (16) is violated and those scenarios are removed from further consideration.
Note that the sources of (non-linear) dependence are the expected service time
of a task as well as the (step-wise) dependence of the number of servers �m/r� on
replication parameter, r. A quick look at Fig. 4 reveals the following observations
for the maximal input rate λ that guarantees stability.

– For any replication r, the maximal input rate λ is provided when quorum is
set at q = 1.

– For a fixed r input rate may be increased by decreasing the quorum.
– For a fixed q the dependence of maximal input rate on r is non-monotone,

however, for larger values of q, increasing r leads to an increase in λ.
– Whenever q = r (i.e. quorum is obtained after completion of all r replicas),

the maximal input rate monotonically decreases with increasing r.
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Fig. 4. The maximal input rate λ providing stability (left), and the moment index β of
the stationary delay for fixed λ = 2 (right), for a 100-server EDG model depending on
replication r = 1, . . . , 10 and quorum q = 1, . . . , r, with service times having standard
Pareto distribution with α = 1.5.

4 Response Time of an EDG Model

In general there is no closed form expression available for waiting time in a
multiserver system of G/G/-type. Thus, we need to rely on simulation. However,
there are some particular cases that allow explicit expressions. Consider the case
when m = r and let the arrivals be modeled by Poisson process. In this case, the
system is equivalent to an M/G/1 with generic service time Sq:r. Thus, using
the well-known Pollaczek-Khintchine formula, we obtain that the response time
Z(q, r) is equal to

Z(q, r) = E(Sq:r) +
λE(S2

q:r)
2[1 − λE(Sq:r)]

. (20)

Then the Equations (4) and (10) allow one to deduce explicit expressions for
Pareto and Weibull services. The details are omitted for lack of space. Instead,
we illustrate the dependence by plotting C(q, r) and Z(q, r) by fixing r = 10 and
varying q, for both Weibull and Pareto services under various shape parameters.
The results are displayed in Fig. 5.

Finally, we illustrate the dependence of C(q, r) and Z(q, r) on r = 1, . . . , 10
and q = 1, . . . , r, for both Weibull (with ξ = 1.5) and Pareto (with α = 2.5)
services for fixed input rate λ = 5/E(S10:10) to guarantee a fixed load (half
capacity) for most systems. The results are displayed in Fig. 6.
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Fig. 5. The cost C(q, r) vs. response time Z(q, r) for Weibull (left) and Pareto (right)
distributions with various shape parameters, q = 1, . . . , 10 and fixed m = r = 10. Note
the logarighmic y axis.

Fig. 6. The cost C(q, r) vs. response time Z(q, r) for Weibull with shape ξ = 1.5 (left)
and Pareto with shape α = 2.5 (right) distributions for r = 1, . . . , 10 and q = 1, . . . , r
in a 100-server system with load not exceeding 0.5.

5 Conclusion

In this paper, we analyze the effect of replication and quorum in a Split–Merge
multiserver model useful in a Desktop Grid computing system. We focus on the
heavy-tailed distributions like Pareto and Weibull for service times of tasks and
obtain some analytical results using the properties of order statistics. We study
effects of replication and quorum parameters on the key performance measures
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such as response time and cost of a Desktop Grid system. Moment properties of
the workload vector, which play a key role in practical applications, are obtained
as well. We illustrate the results through simulation under a variety system
configuration and system load.
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Abstract. We consider the optimal estimation problem of the states
of synchronous generalized flow of events of the second order with two
states; it is one of the mathematical models for an incoming stream of
claims (events) in digital integral servicing networks and which is related
to the class of Markov chains. The observation conditions for this flow
are such that each event is accessible to observation. We offer the optimal
estimation algorithm for the flow states, where the decision about the
flow state is made by criterion of a posteriori probability maximum. The
results of the analytical calculations of a posteriori probability and the
simulation experiments with numerical results are presented.

Keywords: Synchronous generalized flow of events of the second order
Doubly stochastic flows · States estimation
Accompanying random process · A posteriori probability
Criterion of a posteriori probability maximum

1 Introduction

Recently, when analyzing the situations that arise in economic and logistical
spheres, as well as other spheres of human activity related to organization of
planning and operation of production and consumption processes, to design of
functioning process of automated control systems, to operation of electronic com-
puting systems, terminals, transport networks, to technical and military equip-
ment, it is often to use the mathematical apparatus of queueing theory, as one
of the most intensively developing sections of the theory of random processes,
the subject of which, in particular, are incoming streams of queuing systems.
Random incoming flows of events, as the main elements of queuing systems, are
widely used as mathematical models of real information flows of claims (events)
in telecommunication systems, global computer networks, satellite communica-
tion networks [1,2].

Due to the rapid evolution of digital integral servicing systems, the use of
mathematical models of incoming flows of events in the Poisson flows form has
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 157–171, 2018.
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become difficult due to the inapplicability of such models to describe information
flows. Thus, it became necessary to construct new mathematical models of dou-
bly stochastic flows of events [3–6], adequately describing real information flows.
For such flows, firstly, the moments of occurrence of events are random, and
secondly, the intensity is a fundamentally unobservable random process. Doubly
stochastic flows can be divided into two classes. The first class includes flows
whose intensity is a continuous random process, the second – flows whose inten-
sity is a piecewise constant random process with a finite number of states. The
latter are called MC (Markov chain) flows or MAP (Markovian Arrival Process)
flows [7,8] and are the most used for solving applied problems. A generaliza-
tion of the MAP-flows of events is given in [9], the connection of MC-flows and
MAP-flows is established in [10].

A further research of synchronous generalized flow of events of the second
order, begun in [11], is carried out in this paper. For the considering flow, which
belongs to the class of MC-flows, analytical and numerical results of the optimal
states estimation are given. An optimal estimation algorithm for the flow states
is proposed. The decision about the flow state is made according to criterion of a
posteriori probability maximum, which is the most complete characteristic of the
flow states that can be received from observations of the flow. The criterion also
minimizes the total (unconditional) probability of making a wrong decision [12].

A number of statistical experiments were carried out on the simulation model
of synchronous generalized flow of events of the second order constructed in [11]
and modified in this work to obtain numerical results of the estimation.

2 Problem Statement

We consider a synchronous generalized flow of events of the second order (flow of
events), accompanying random process λ(t) of which, is an unobservable piece-
wise constant process with two states S1 and S2. Hereinafter, it is understood
the ith state of process λ(t) as the state Si, i = 1, 2.

The duration of interval between the flow events at the ith state is deter-
mined by random variable ηi = min(ξ(1)i , ξ

(2)
i ), where random variable ξ

(1)
i is

distributed according to the law F
(1)
i (t) = 1− e−λit, random variable ξ

(2)
i is dis-

tributed according to the law F
(2)
i (t) = 1 − e−αit; ξ

(1)
i and ξ

(2)
i are independent

random variables, i = 1, 2. At the moment when a flow event occurs, process
λ(t) transits from the ith state to the jth either with probability P

(1)
1 (λj |λi), or

with probability P
(2)
1 (λj |λi) depending on the value, which random variable ηi

has taken, i, j = 1, 2, i �= j. At the moment when a flow event occurs, process
λ(t) stays at the ith state either with probability P

(1)
1 (λi|λi), or with probability

P
(2)
1 (λi|λi) depending on the value, which random variable ηi has taken, i = 1, 2.

Here P
(1)
1 (λj |λi)+P

(1)
1 (λi|λi) = 1, P

(2)
1 (λj |λi)+P

(2)
1 (λi|λi) = 1, i, j = 1, 2, i �= j.

Thus, the duration of interval between the flow events at the ith state of process
λ(t) is a random variable with the distribution function Fi(t) = 1 − e−(λi+αi)t,
i = 1, 2.
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In the sequel it is assumed that the state S1 (the first state) of process λ(t)
takes place, if λ(t) = λ1, and the state S2 (the second state) of process λ(t) takes
place, if λ(t) = λ2 (λ1 > λ2 ≥ 0).

Proposition. For synchronous generalized flow of events of the second order a
piecewise constant random process λ(t) is a Markov process.

Indeed, it is not difficult to show that the duration of process λ(t) remains
at the ith state, i = 1, 2, is a random variable with the exponential distribution
function of the form Fi(t) = 1−e−(λiP

(1)
1 (λj |λi)+αiP

(2)
1 (λj |λi))t, i = 1, 2, j = 1, 2,

i �= j. Consequently, process λ(t) is a Markovian.
The infinitesimal characteristics matrices for the process λ(t) have the form

D0 =
∣
∣
∣
∣

∣
∣
∣
∣

−(λ1 + α1) 0
0 −(λ2 + α2)

∣
∣
∣
∣

∣
∣
∣
∣
,

D1 =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1) λ1P

(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)

λ2P
(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2) λ2P

(1)
1 (λ2|λ2) + α2P

(2)
1 (λ2|λ2)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
.

Diagonal elements of the matrix D0 are the intensities of the process λ(t)
output from its states taken with the opposite sign; off-diagonal elements are
the intensities of the transitions from state to state without an event occurrence.
Elements of the matrix D1 are the intensities of the process λ(t) transitions from
state to state upon a flow event occurs.

An example of the arising situation is shown in Fig. 1, where S1, S2 are states
of the random process λ(t), t1, t2, ... denote the moments when events occur in
the considering flow.

Fig. 1. Formation of synchronous generalized flow of events of the second order

Due to the fact that the process λ(t) is fundamentally unobservable (latent
Markov process) and only the time moments of occurrence of events t1, t2, ... are
observed, it is necessary to estimate the process λ(t) (or flow) state at the end
time of the period of observations using only these observable instants of time.
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We consider the stationary operation mode of the flow of events, that is why
at the interval of observations (t0, t), where t0 – is an instant of the beginning the
observations, t – is an instant of its ending or the moment of making a decision
about the process λ(t) state, we neglect transient processes. Thus, without loss
of generality, in steady-state conditions we may take t0 = 0.

To make a decision regarding to the state of the unobservable stationary
random process λ(t) at the time moment t, it is necessary to determine a pos-
teriori probabilities w(λi|t) = w(λi|t1, ..., tm, t), i = 1, 2 (m is the number of
events that occurred during the time period of duration t), that at the moment
of making a decision t the process value λ(t) = λi, i = 1, 2, here obviously
w(λ1|t) + w(λ2|t) = 1. The decision about the process λ(t) state is made by
comparing a posteriori probabilities: if w(λi|t) ≥ w(λj |t), i, j = 1, 2, i �= j, then
estimation of the process state is λ̂(t) = λi, i = 1, 2, otherwise – λ̂(t) = λj ,
j = 1, 2.

3 The Optimal Estimation Algorithm for the States
of Synchronous Generalized Flow of Events
of the Second Order

The moment of making a decision t about the process λ(t) state belongs to some
interval (tk, tk+1), k = 1, 2, ..., between neighboring events of the considering
flow. For the interval (t0, t1) the moment t is between the instant of the beginning
the observations t0 and the time moment when the first flow event occurs t1.

To derive the equations for a posteriori probability w(λ1|t), we use the tech-
nique described in [12].

Let a time t changes discretely with step Δt: t(k) = kΔt, k = 0, 1, ..., at the
interval of observations (0, t). We introduce a bivariate random process (λ(k), rk),
where λ(k) = λ(kΔt) is a value of the process λ(t) at the time moment t(k) = kΔt
(λ(k) = λi, i = 1, 2); rk = r[kΔt] − r[(k − 1)Δt] is a number of flow events
occurred at the interval ((k −1)Δt, kΔt) of duration Δt, rk = 0, 1, .... Denote by
rm = (r0, r1, ..., rm) the sequence of a number of events occurred during a time
period from 0 to mΔt at the intervals ((k−1)Δt, kΔt) of duration Δt, k = 0,m.
Here r0 is a number of events occurred at the interval (−Δt, 0). It is supposed
that r0 = 0 since there was no observation of the flow at that interval. Denote
by λ(m) = (λ(0), λ(1), ..., λ(m)) the sequence of unknown values of the process
λ(kΔt) at the time moment kΔt, k = 0,m (λ(0) = λ(0) = λi, i = 1, 2).

Let us introduce w(λ(m)|rm) – the conditional probability of a value λ(m)

under condition of observability the implementation rm. Similarly, define the
probability w(λ(m+1)|rm+1). The process (λ(k), rk) is a Markov process. Then
for the Markov random process, as shown in [13], the recurrence relation for the
introduced probabilities w(λ(m)|rm), w(λ(m+1)|rm+1) is valid

w(λ(m+1)|rm+1) =

λ2∑

λ(m)=λ1

w(λ(m)|rm)p(λ(m+1), rm+1|λ(m), rm)

λ2∑

λ(m)=λ1

λ2∑

λ(m+1)=λ1

w(λ(m)|rm)p(λ(m+1), rm+1|λ(m), rm)
, (1)
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where p(λ(m+1), rm+1|λ(m), rm) is the probability of the process (λ(k), rk) transi-
tion from state (λ(m), rm) to state (λ(m+1), rm+1) in one step Δt; w(λ(m)|rm) =
= w(λ(m)|t), w(λ(m+1)|rm+1) = w(λ(m+1)|t + Δt).

For synchronous generalized flow of events of the second order the transition
probability p(λ(m+1), rm+1|λ(m), rm), which is included into formula (1), can
be written as p(λ(m+1), rm+1|λ(m), rm) = p(λ(m+1)|λ(m))p(rm+1|λ(m), λ(m+1)).
Then the recurrence relation (1) takes the form

w(λ(m+1)|t + Δt) =

=

λ2∑

λ(m)=λ1

w(λ(m)|t)p(λ(m+1)|λ(m))p(rm+1|λ(m),λ(m+1))

λ2∑

λ(m)=λ1

λ2∑

λ(m+1)=λ1

w(λ(m)|t)p(λ(m+1)|λ(m))p(rm+1|λ(m),λ(m+1))

.
(2)

Remark 1. Based on the definition of synchronous generalized flow of events of
the second order, the variable rk can take only two values: rk = 0 or rk = 1.
The probability that rk = 2, 3, ... is o(Δt).

Let in (2) rm+1 = 0, which corresponds to the case of the absence of flow
events at the interval (t, t + Δt), where t = mΔt, t + Δt = (m + 1)Δt. Taking
into account the matrix D0, we write down the transition probabilities in (2) in
the following form

p(λ(m+1) = λi|λ(m) = λi)p(rm+1 = 0|λ(m) = λi, λ
(m+1) = λi) =

= p(rm+1 = 0, λ(m+1) = λi|λ(m) = λi) = 1 − (λi + αi)Δt + o(Δt), i = 1, 2;
p(λ(m+1) = λj |λ(m) = λi)p(rm+1 = 0|λ(m) = λi, λ

(m+1) = λj) =
= p(rm+1 = 0, λ(m+1) = λj |λ(m) = λi) = 0, i, j = 1, 2, i �= j.

(3)

For definiteness, in (2) we set λ(m+1) = λ1. Then the following lemma holds.

Lemma 1. At time intervals (t0, t1) and (tk, tk+1), k = 1, 2, ..., between neigh-
boring events of the flow a posteriori probability w(λ1|t) satisfies a Bernoulli
differential equation

dw(λ1|t)
dt

= w2(λ1|t)(λ1 + α1 − λ2 − α2) − w(λ1|t)(λ1 + α1 − λ2 − α2), (4)

λ1 + α1 − λ2 − α2 �= 0.

Proof. Substituting (3) into (2), performing the necessary transformations and
proceeding to the limit Δt → 0, we obtain a Bernoulli differential eq. (4). Lemma
is proved.

Suppose that rm+1 = 1 in (2); this corresponds to the case of the observing
one event of the flow at the time interval (t, t + Δt). In (2) we set λ(m+1) = λ1.
We divide the time interval (t, t + Δt) into two adjacent intervals (t, tk) and
(tk, t+Δt) of durations Δt′ = tk − t and Δt′′ = t+Δt− tk, respectively (Fig. 2).
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Fig. 2. The dividing the time interval

Then under the made assumptions (2) takes the form

w(λ1|tk + Δt′′) =

=

λ2∑

λ(m)=λ1

w(λ(m)|tk−Δt′)p(λ(m+1)=λ1|λ(m))p(rm+1=1|λ(m),λ(m+1)=λ1)

λ2∑

λ(m)=λ1

λ2∑

λ(m+1)=λ1

w(λ(m)|tk−Δt′)p(λ(m+1)|λ(m))p(rm+1=1|λ(m),λ(m+1))

.
(5)

For synchronous generalized flow of events of the second order Lemma 2 is
valid.

Lemma 2. At the moment tk when a flow event occurs for a posteriori proba-
bility of the first state of the process λ(t) the conversion formula takes place

w(λ1|tk + 0) =
W

(λ2 + α2) + w(λ1|tk − 0)(λ1 + α1 − λ2 − α2)
, k = 1, 2, ..., (6)

W = λ2P
(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2)+

+w(λ1|tk − 0)[λ1P
(1)
1 (λ1|λ1) + α1P

(2)
1 (λ1|λ1) − λ2P

(1)
1 (λ1|λ2) − α2P

(2)
1 (λ1|λ2)],

w(λ2|tk − 0) = 1 − w(λ1|tk − 0).

Proof. With considering the matrix D1, we receive expressions for the transition
probabilities, which are included into (5), in the form

p(λ(m+1) = λi|λ(m) = λi)p(rm+1 = 1|λ(m) = λi, λ
(m+1) = λi) =

= p(rm+1 = 1, λ(m+1) = λi|λ(m) = λi) =
= (λiP

(1)
1 (λi|λi) + αiP

(2)
1 (λi|λi))Δt + o(Δt), i = 1, 2;

p(λ(m+1) = λj |λ(m) = λi)p(rm+1 = 1|λ(m) = λi, λ
(m+1) = λj) =

= p(rm+1 = 1, λ(m+1) = λj |λ(m) = λi) =
= (λiP

(1)
1 (λj |λi) + αiP

(2)
1 (λj |λi))Δt + o(Δt), i, j = 1, 2, i �= j.

(7)

Substituting (7) into (5), taking into account w(λ2|tk−Δt′) = 1−w(λ1|tk|−Δt′),
and proceeding to the limit Δt → 0 (Δt′ → 0 and Δt′′ → 0 simultaneously), we
obtain the assertion of the lemma. Lemma is proved.
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Remark 2. At the time moment tk, k = 1, 2, ..., of an event occurrence a pos-
teriori probability w(λ1|t) undergoes a discontinuity of the first kind, i.e. a
finite jump takes place. The probability w(λ1|tk + 0) depends on the value of
w(λ1|tk −0), where w(λ1|tk −0) is a value of the probability w(λ1|t) determined
by eq. (4) at the time t = tk when t changes at the interval of time (tk−1, tk)
adjacent to the interval (tk, tk+1), k = 1, 2, .... Thereby, the whole prehistory of
the flow observations starting from the time moment t0 = 0 (the beginning of
the observations) to the moment tk (the moment of event occurrence) is concen-
trated in the value w(λ1|tk + 0).

Let us denote πi(t|t0) an a priori probability that λ(t) = λi at the time
moment t, i = 1, 2, provided that functioning of the flow started at the time t0.

Lemma 3. A priori probabilities πi(t|t0), i = 1, 2 of the process λ(t) states for
synchronous generalized flow of events of the second order satisfy a system of
linear differential equations

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

π′
1(t|t0) = −(λ1 + α1)π1(t|t0) + π1(t|t0)(λ1P

(1)
1 (λ1|λ1)+

+α1P
(2)
1 (λ1|λ1)) + π2(t|t0)(λ2P

(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2)),

π′
2(t|t0) = −(λ2 + α2)π2(t|t0) + π2(t|t0)(λ2P

(1)
1 (λ2|λ2)+

+α2P
(2)
1 (λ2|λ2)) + π1(t|t0)(λ1P

(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)).

(8)

Proof is carried out using the Δt-method.

Lemma 4. A priori probabilities of the states of the process λ(t) for synchronous
generalized flow of events of the second order have the form

⎧

⎪⎨

⎪⎩

π1(t|t0) =
b

a
+ (π − b

a
)e−a(t−t0),

π2(t|t0) =
a − b

a
− (π − b

a
)e−a(t−t0),

(9)

a = λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1) + λ2P

(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2),

b = λ2P
(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2);π = π1(t0|t0).

Proof. Integrating system (8) and using the initial conditions, according to which
at the time moment t = t0 π1(t0|t0) = π, π2(t0|t0) = 1 − π, we arrive at (9).
Lemma is proved.

Corollary. For synchronous generalized flow of events of the second order a
priori final probabilities of the states of the process λ(t) when t→∞ (or t0→−∞)
have the following form

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

π1=
λ2P

(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2)

λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1) + λ2P

(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2)

,

π2=
λ1P

(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1)

λ1P
(1)
1 (λ2|λ1) + α1P

(2)
1 (λ2|λ1) + λ2P

(1)
1 (λ1|λ2) + α2P

(2)
1 (λ1|λ2)

.

(10)
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The results of Lemmas 1 and 2 allow us to formulate the theorem.

Theorem. A posteriori probability w(λ1|t) behavior at the time intervals (t0, t1)
and (tk, tk+1), k = 1, 2, ..., is determined by the explicit formula

w(λ1|t) =
w(λ1|tk + 0)e−(λ1+α1−λ2−α2)(t−tk)

1 − w(λ1|tk + 0) + w(λ1|tk + 0)e−(λ1+α1−λ2−α2)(t−tk)
, (11)

tk < t < tk+1, k = 0, 1, ...; w(λ1|tk + 0), k = 1, 2, ..., is defined in (6),
w(λ1|t0 + 0) = π1, π1 is given by (10).

Proof is carried out by integrating eq. (4) using the conversion formula (6).
The analytical formulas obtained for w(λ1|t) allow us to formulate the algo-

rithm for a posteriori probability w(λ1|t) calculation, as well as the algorithm
for making a decision about the process λ(t) state at any time moment t, i.e.
the optimal estimation algorithm for the states of synchronous generalized flow
of events of the second order:

(1) at the initial instant t0 = 0, a priori probability of the first state π1 of the
process λ(t) is computed according to formula (10) and we put w(λ1|t0+0) =
w(λ1|t0 = 0) = π1;

(2) at any time moment t, t0 < t < t1, where t1 is the moment of observation of
the first flow event, calculations are made for determination of a posteriori
probability w(λ1|t) according to formula (11) for k = 0;

(3) at the moment t1 the probability w(λ1|t) is calculated according to formula
(11) for k = 0, i.e. w(λ1|t1) = w(λ1|t1 − 0), then, k is incremented, and for
k = 1, according to formula (6) a posteriori probability is recalculated at
the time moment t1, w(λ1|t1 + 0) is the initial value for w(λ1|t) at the next
step;

(4) for k = 1, a posteriori probability w(λ1|t) is calculated according to formula
(11) at any time moment t, t1 < t < t2, where t2 is the moment of observation
of the second flow event;

(5) at the time moment t2, for k = 1, w(λ1|t2) = w(λ1|t2 − 0) is calculated
according to formula (11), further, k is increased by one, a posteriori proba-
bility is recalculated according to formula (6) for k = 2 at the time moment
t2, w(λ1|t1 + 0) is the initial value for w(λ1|t) at the next step of the algo-
rithm, etc.

In parallel, during the process of calculating the probability w(λ1|t), a deci-
sion about the process λ(t) state at any time moment t is made according to
criterion of a posteriori probability maximum: if w(λ1|t) ≥ w(λ2|t), then esti-
mation of the process state is λ̂(t) = λ1, otherwise – λ̂(t) = λ2.

4 Results of Numerical Experiments

To obtain numerical results, the algorithm for calculating a posteriori prob-
ability w(λ1|t) has developed using formulas (6), (10), (11). The program is
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implemented by C# programming language in Microsoft Visual Studio 2013
environment. The first stage of calculations assumes the simulation [14] of syn-
chronous generalized flow of events of the second order (the description of the
simulation algorithm is not given here due to the fact that the algorithm does
not contain any special difficulties). The second stage is a direct computation
of a posteriori probabilities w(λ1|t), t0 < t < t1; w(λ1|tk + 0) and w(λ1|t),
tk < t < tk+1, k = 1, 2, ..., and determination of estimates λ̂(t) (according to
method of a posteriori probability maximum) using the obtained sample t1, t2, ...
of the moments of occurrence of events in the observed event flow.

For the values of the flow parameters given in Table 1 and modeling time
T = 100 time units, the calculations were made to find the estimate λ̂(t).

Table 1. Initial data

λ1 = 3 P
(1)
1 (λ1|λ1) = 0, 4 P

(1)
1 (λ2|λ1) = 0, 6

λ2 = 1 P
(1)
1 (λ2|λ2) = 0, 5 P

(1)
1 (λ1|λ2) = 0, 5

α1 = 0, 5 P
(2)
1 (λ1|λ1) = 0, 3 P

(2)
1 (λ2|λ1) = 0, 7

α2 = 0, 8 P
(2)
1 (λ2|λ2) = 0, 2 P

(2)
1 (λ1|λ2) = 0, 8

In Fig. 3, as an illustration, a trajectory of the random process λ(t) (an actual
path of the process) obtained as a result of simulation, is shown, here λ1, λ2 are
the process λ(t) values at the states S1 and S2.

Fig. 3. Implementation of synchronous generalized flow of events of the second order

A trajectory of a posteriori probability w(λ1|t) behavior, which corresponds
to the sequence of the moments of events occurrence t1, t2, ... obtained by simu-
lation modeling, is shown in Fig. 4.

Figure 5 shows a trajectory of the estimation λ̂(t) of the process λ(t), where
λ1, λ2 are the estimation λ̂(t) values. The decision about the process λ(t) state
was made with the step Δt = 0, 001. Time intervals where the values of the
estimation λ̂(t) do not coincide with the actual values of the process λ(t) are
marked on the time axis with hatching (areas of wrong decisions).

To find a frequency of making wrong decisions about the random process λ(t)
state by the observations of the flow of events, a number of statistical experiments
were implemented, consisting of the following stages:
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Fig. 4. Trajectory of a posteriori probability w(λ1|t) behavior

Fig. 5. Trajectory of the estimation λ̂(t) behavior

(1) for a specific set of parameters (λ1, λ2, α1, α2 and various values of the
probabilities P

(1)
1 (λj |λi) and P

(2)
1 (λj |λi) of the process λ(t) transitions from

the ith state to the jth, i, j = 1, 2), the simulation of the flow is made at
the given time interval [0, T ] (the separate kth test);

(2) according to formulas (6), (10), (11), a posteriori probability w(λ1|t) of the
first state of the process λ(t) is calculated at the interval [0, T ];

(3) at any time moment t at the interval [0, T ], the process λ(t) value is estimated
by criterion of a posteriori probability maximum;

(4) the total length dk of the time intervals where the actual values of the process
λ(t) do not coincide with its estimate λ̂(t) is determined (for the separate
kth test);

(5) the fraction of making a wrong decision p̂k =
dk

T
is calculated, where T is a

modeling time (a time of the observing the flow);
(6) steps 1–5 are repeated N times (k = 1, N) to calculate the estimation of

unconditional probability of making wrong decision about the random pro-
cess λ(t) states at the considering time interval [0, T ].

The result of implementation of the described algorithm is a sample of frac-
tions of making wrong decisions p̂1, p̂2, ..., p̂N for N experiments. Using this sam-
ple, we can find a sample average of unconditional probability of making an error

P̂err =
1
N

N∑

k=1

p̂k, as well as a sample variance D̂err =
1

N − 1

N∑

k=1

(p̂k − P̂err)2.

The first statistical experiment establishes the relation between modeling
time T of the flow of events and the estimates P̂err and D̂err with changing the
flow parameters λ1 and α1. Tables 4, 5, 6 and 7 show the results obtained for the
values of the flow parameters presented in Table 2 and N = 100. The first lines of
Tables 4, 5, 6 and 7 contain the values of modeling time T (T = 100, 200, ..., 800
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time units), the second and the third lines contain the numerical values of the
estimates P̂err and D̂err for each T , respectively.

Table 2. Initial data for the first statistical experiment

λ1 = 5; 7 P
(1)
1 (λ1|λ1) = 0, 6 P

(1)
1 (λ2|λ1) = 0, 4

λ2 = 1 P
(1)
1 (λ2|λ2) = 0, 5 P

(1)
1 (λ1|λ2) = 0, 5

α1 = 4; 6 P
(2)
1 (λ1|λ1) = 0, 3 P

(2)
1 (λ2|λ1) = 0, 7

α2 = 1 P
(2)
1 (λ2|λ2) = 0, 8 P

(2)
1 (λ1|λ2) = 0, 2

Analyzing the numerical results given in Tables 4, 5, 6 and 7, we note that:
firstly, the estimate of total (unconditional) probability of making an error P̂err

for all variants of calculations is sufficiently stable for T ≥ 100 time units;
secondly, for the fixed value of modeling time T , the estimate P̂err decreases
with increasing each of the parameter λ1 and α1, which is natural due to the
random process λ(t) states are better distinguishable; thirdly, for all variants of
calculations, the sample variance D̂err is sufficiently small.

In the second experiment we investigate how the estimates P̂err and D̂err

depend on the ratios λ1/λ2 and α1/α2. Tables 8 and 9 show the results obtained
for the initial data given in Table 3, with N = 100 and T = 100. The first lines
of the Tables show the values of the corresponding ratios λ1/λ2 or α1/α2, the
second and the third lines contain the values of the P̂err and D̂err, respectively.

Table 3. Initial data for the second statistical experiment

λ1 = 6 P
(1)
1 (λ1|λ1) = 0, 6 P

(1)
1 (λ2|λ1) = 0, 4

λ1/λ2 = 3; ...; 192 P
(1)
1 (λ2|λ2) = 0, 5 P

(1)
1 (λ1|λ2) = 0, 5

α1 = 6 P
(2)
1 (λ1|λ1) = 0, 3 P

(2)
1 (λ2|λ1) = 0, 7

α1/α2 = 3; ...; 192 P
(2)
1 (λ2|λ2) = 0, 8 P

(2)
1 (λ1|λ2) = 0, 2

The obtained numerical results indicate that better estimation corresponds
to greater values of the ratios λ1/λ2 and α1/α2. In this case, a frequency of
making wrong decisions is reduced due to the distinguishability of the process
λ(t) states improves. We also note that better quality of the states estimation (in
sense of smallness of the estimation of probability of making an error) is provided
with an increase the ratio λ1/λ2, than with an increase the ratio α1/α2. This is
explained by the set of the probabilities of the process λ(t) transitions from the
ith state to the jth, i, j = 1, 2, specified in Table 3.

It is of interest to consider a particular case of setting values of the probabili-
ties of transition of the process λ(t), at which the transitions of the process from
the first state to the second, or conversely, take place at each instant of the flow
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Table 4. Results of the first statistical experiment (λ1 = 5, α1 = 4)

T 100 200 300 400 500 600 700 800

P̂err 0,1403 0,1427 0,1408 0,1414 0,1413 0,1416 0,1421 0,1431

D̂err · 102 0,0408 0,0272 0,0116 0,0104 0,0097 0,0079 0,0092 0,0063

Table 5. Results of the first statistical experiment (λ1 = 7, α1 = 4)

T 100 200 300 400 500 600 700 800

P̂err 0,1248 0,1255 0,1277 0,1273 0,1277 0,1286 0,1280 0,1287

D̂err · 102 0,0368 0,0199 0,0149 0,0091 0,0071 0,0067 0,0062 0,0051

Table 6. Results of the first statistical experiment (λ1 = 5, α1 = 6)

T 100 200 300 400 500 600 700 800

P̂err 0,1177 0,1147 0,1178 0,1159 0,1166 0,1165 0,1162 0,1182

D̂err · 102 0,0271 0,0146 0,0099 0,0088 0,0063 0,0066 0,0043 0,0047

Table 7. Results of the first statistical experiment (λ1 = 7, α1 = 6)

T 100 200 300 400 500 600 700 800

P̂err 0,1075 0,1097 0,1080 0,1088 0,1092 0,1081 0,1080 0,1089

D̂err · 102 0,0229 0,0113 0,0098 0,0074 0,0047 0,0042 0,0029 0,0038

Table 8. Results of the second statistical experiment (for λ1/λ2, α2 = 2)

λ1/λ2 3 6 12 24 48 96 192

P̂err 0,1952 0,1349 0,1056 0,0869 0,0757 0,0717 0,0697

D̂err · 102 0,0465 0,0339 0,0327 0,0209 0,0236 0,0189 0,0185

Table 9. Results of the second statistical experiment (for α1/α2, λ2 = 2)

α1/α2 3 6 12 24 48 96 192

P̂err 0,1969 0,1781 0,1667 0,1603 0,1570 0,1536 0,1515

D̂err · 102 0,0312 0,0424 0,0348 0,0387 0,0335 0,0410 0,0448
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event occurrence. In the third experiment, for the appropriate values of the prob-
abilities and the values of the parameters specified in Table 10 (with modeling
time T = 100 and number of repetitions of the experiment N = 100), calcula-
tions are made to find the trajectory of the process estimation λ̂(t) behavior and
the numerical values of the estimates P̂err and D̂err.

Table 10. Initial data for the third statistical experiment

λ1 = 4 P
(1)
1 (λ1|λ1) = 0 P

(1)
1 (λ2|λ1) = 1

λ2 = 0, 75 P
(1)
1 (λ2|λ2) = 0 P

(1)
1 (λ1|λ2) = 1

α1 = 1 P
(2)
1 (λ1|λ1) = 0 P

(2)
1 (λ2|λ1) = 1

α2 = 0, 45 P
(2)
1 (λ2|λ2) = 0 P

(2)
1 (λ1|λ2) = 1

Corresponding to the set values a trajectory of the random process λ(t)
behavior obtained in one of the tests using the simulation model, is shown in
Fig. 6, where λ1, λ2 are values of the process λ(t), t1, t2, ... are moments of events
occurrence in the considering flow.

Fig. 6. Implementation of synchronous generalized flow of events of the second order

Figure 7 illustrates a posteriori probability w(λ1|t) behavior corresponding
to the obtained sequence of the moments of events occurrence t1, t2, ....

Fig. 7. Trajectory of a posteriori probability w(λ1|t) behavior

A trajectory of the estimation λ̂(t) of the process λ(t) is shown in Fig. 8, here
λ1, λ2 are the estimation λ̂(t) values. The decision about the first or the second
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Fig. 8. Trajectory of the estimation λ̂(t) behavior

state of the process λ(t) was made with the step Δt = 0, 001. Areas of wrong
decisions are indicated with hatching.

The fraction of making a wrong decision is p̂k = 0, 002108 for this particular
test.

In a series of N trials the sample average of unconditional probability of
making an error is P̂err = 0, 006016, and its sample variance is D̂err = 0, 000085.

For comparison, the values of the estimates P̂err and D̂err, calculated for the
same values of the parameters and the probabilities P

(1)
1 (λj |λi) = 0, 5, i, j = 1, 2,

l = 1, 2, are following: P̂err = 0, 202981 and D̂err = 0, 000971. Thus, because
of the probabilistic mechanism of transition of synchronous generalized flow of
events of the second order from state to state at each moment of an event occur-
rence [11], the constructed optimal estimation algorithm provides the sample
average of unconditional probability of making an error for the values of the
probabilities of transition given in Table 10, close to zero. The sample variance
is sufficiently small (an order of smallness decreases by at least 10 times in com-
parison with the situation that arises for the same set of parameters, but other
values of the probabilities of transition of the process λ(t)).

5 Conclusion

In this paper, the optimal estimation algorithm for the states of synchronous gen-
eralized flow of events of the second order is developed, also numerical results of
a number of experiments that demonstrate a sufficiently good quality of estima-
tion of the states of the flow (in sense of smallness of the estimation of probability
of making an error) using only results of current observations of it during some
period of time, were presented.

The formula (11) for calculating a posteriori probability of the first state at
the time intervals between the moments of occurrence of the flow events, the con-
version formula (6), valid at the time moments of the events occurrence, and the
expression (10) for a priori probability of the first state of the process, which are
necessary for the estimation of the states of the considering flow, were obtained
explicitly, so there was no need to use numerical methods. The very algorithm for
optimal estimation provides a minimum of unconditional probability of making
an error.



States Estimation of Synchronous Generalized Flow of the Second Order 171

References

1. Dudin, A.N., Klimenok, V.I.: Queueing Systems with Correlated Flows. BSU,
Minsk (2000)

2. Basharin, G.P., Gaidamaka, Yu. V., Samouylov, K.E.: Mathematical theory of
teletraffic and its application to the analysis of multiservice communication of
next generation networks. Autom. Control Comput. Sci. 2(47), 62–69 (2013)

3. Gortsev, A.M., Leonova, M.A., Nezhel’skaya, L.A.: Joint probability density of the
duration of intervals of asynchronous generalized flow of events with unextendable
dead time. Tomsk State Univ. J. Control Comput. Sci. 4(21), 14–25 (2012)

4. Gortsev, A.M., Kalyagin, A.A., Nezhel’skaya, L.A.: Joint probability density of the
duration of intervals of semisyncronous generalized flow of events with unextend-
able dead time. Tomsk State Univ. J. Control Comput. Sci. 2(27), 19–29 (2014)

5. Gortsev, A.M., Nissenbaum, O.V.: Estimation of dead time period of asynchronous
alternative flow of events with unextendable dead time period. Russ. Phys. J. 10,
35–49 (2005)

6. Gortsev, A.M., Leonova, M.A., Nezhel’skaya, L.A.: Comparison of ML- and MM-
estimates of dead time period in asynchronous generalized flow of events. Tomsk
State Univ. J. Control Comput. Sci. 4(25), 32–42 (2013)

7. Basharin, G.P., Kokotushkin, V.A., Naumov, V.A.: On the equivalent substitutions
method for computing fragments of communication networks. Proc. USSR Acad.
Sci. Tech. Cybern. 6, 92–99 (1979)

8. Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16, 764–779
(1979)

9. Nezhel’skaya, L.A.: Joint probability density of the intervals duration in modulated
MAP event flows and its recurrence conditions. Tomsk State Univ. J. Control
Comput. Sci. 1, 57–67 (2015)

10. Gortsev, A.M., Nezhel’skaya, L.A.: On connection of MC flows and MAP flows of
events. Tomsk State Univ. J. Control Comput. Sci. 1(14), 13–21 (2011)

11. Nezhel’skaya, L.A., Sidorova, E.F.: Simulation modeling of synchronous generalized
flow of events of the second order. Proc. TSU Ser. Phys. Math. 299, 104–109 (2016)

12. Khazen, E.M.: Methods of Optimal Statistical Decisions and Problems of Optimal
Control. Soviet Radio, Moscow (1968)

13. Gortsev, A.M., Nezhel’skaya, L.A.: The optimal nonlinear filtration of Markovian
flow of events with commutation. Commun. Tech. Ser. Telecommun. Syst. 7, 46–54
(1989)

14. Sobol’, I.M.: Numerical Monte Carlo Methods. Science, Moscow (1973)



Asymptotic Sojourn Time Analysis
of Finite-Source M/M/1 Retrial Queuing
System with Two-Way Communication

Anatoly Nazarov1, János Sztrik2(B), and Anna Kvach1

1 National Research Tomsk State University,
36 Lenina ave., Tomsk 634050, Russia

nazarov.tsu@gmail.com, kvach as@mail.ru
2 University of Debrecen, Debrecen, Hungary

sztrik.janos@inf.unideb.hu

Abstract. The aim of the present paper is to investigate a retrial queu-
ing system M/M/1 with a finite number of sources and two-way com-
munication. Each source can generate a request after an exponentially
distributed time and will not generate another one until the previous
call return to the source. If an incoming customer finds the server idle
its service starts. Otherwise, if the server is busy an arriving (primary
or repeated) customer moves into the orbit and after some exponen-
tially distributed time it retries to enter the server. When the server
is idle it generates an outgoing call after an exponentially distributed
time with different parameters to the customers in the orbit and to the
sources, respectively. The service times of the incoming and outgoing
calls are exponentially distributed with different rates. Applying method
of asymptotic analysis under the condition of unlimited growing num-
ber of sources it is proved that the limiting sojourn/waiting time of the
customer in the system follows a generalized exponential distribution
with given parameters. In addition, the asymptotic average number of
customers in the orbit is obtained.

Keywords: Finite-source queuing system · Retrial queues
Call centers · Two-way communication · Asymptotic analysis
Sojourn time distribution

1 Introduction

Modeling retrial queueing systems with two-way communication has been
becoming more and more popular topic of investigations for the last years. The
main reason is that in many applications, for example in call centers where the
agents could make outgoing calls to advertise, promote and sell packages and
services of the center, it is important to increase the utilization the server, see
for example [1,2,5,10,17,20]. The main feature of two-way communication is
that and idle server can generate outgoing calls to the source (primary calls) or
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 172–183, 2018.
https://doi.org/10.1007/978-3-319-97595-5_14
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to the orbit (retrial calls). If a primary outgoing call finds the server busy it is
lost in infinite source case or returns to the source in finite-source case. If at the
arrival of a retrial outgoing request the server is busy it goes back to the orbit
and can generate a retrial call. The first results on infinite source retrial queue-
ing systems with two-way communication was published by Falin [9], followed
by some recent ones, see for example [3,4,6,7,13,14,16,18,19].

Finite-source retrial queueing systems with two-way communication has not
been investigated intensively, yet. To the best knowledge of the authors only
the paper of Dragieva and Phung-Duc [8] dealt with this problem. They investi-
gated an M/M/1//N retrial model with exponentially distributed retrial times
where the primary and retrial outgoing call generation and service times are
also exponentially distributed. Recursive formulas for computing the steady-
state distribution of the system state were derived as well as expressions for the
main performance macro characteristics in terms of the server utilization were
obtained. Numerical examples were presented. It is easy to see that by choosing
parameters in an appropriate way the previous results for one-way communica-
tion and as limiting case for infinite source models two-way communication can
be obtained.

In their Conclusion the authors mentioned studying waiting time process
among others. Hence it was our main motivation to investigate the distribution
of the waiting and response time distribution of primary incoming calls by using
asymptotic methods similar to [11,12,15]. Assuming that the number of sources
N tends to infinity it is proofed that the response/waiting time distribution
of primary incoming customers in the system/orbit can be approximated by
a generalized exponential distribution with given parameters. In addition, the
asymptotic average number of customers in the system and in the orbit are
obtained. The results are validated by the Little-formula.

The rest of the paper is organized as follows. In Sect. 2 description of the
model is given, the corresponding 2-dimensional Markov process is defined. In
Sect. 3 the mean normalized number customers in the orbit is obtained. Section 4
deals with the distribution of the response and waiting time of calls. Finally, the
paper ends with a Conclusion and some future plans are highlighted.

2 Model Description and Notations

Let us consider a retrial queuing system of type M/M/1//N with two-way com-
munication. The number of sources is N and each of them can generate a primary
request with rate λ/N . A source cannot generate a new call until the end of the
successful service of this customer. If incoming (primary or retrial) customer finds
the server idle, it enters into service immediately, in which the required service
time is exponentially distributed random variable with parameter μ1. Otherwise,
if the server is busy, an arriving (primary or repeated) customer moves into the
orbit. The retrial times of requests are assumed to be exponentially distributed
with rate σ/N . We suppose that if the server is idle, it generates an outgoing call
in an exponentially distributed time with rate α/N for outgoing call to the orbit
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Fig. 1. Retrial queuing system of type M/M/1//N with two-way communication

and with rate β/N for primary outgoing calls. The service times of outgoing
calls are assumed to be exponentially distributed random variable with parame-
ter μ2. All random variables involved in the model construction are assumed to
be independent of each other.

Our main aim is to find the sojourn time distribution of the customers in the
system and in the orbit, respectively. The method of asymptotic analysis is used
in the condition of an unlimited growing number of sources.

First, we will find the first order asymptotic mean normed number of cus-
tomers in the orbit, the results of which we will apply later on to study the
sojourn time distribution of the customer in the system.

3 First Order Asymptotic for the Number of Customers
in the Orbit

Let Q(t) be the number of customers on the orbit at time t, C(t) be the server
state at time t, that is

C(t) =

⎧
⎨

⎩

0, if the server is idle,
1, if the server is busy by an incoming call,
2, if the server is busy by an outgoing call.

Thus, we will investigate the Markov process {C(t), Q(t)}.
Let us define the stationary probabilities as follows:

Pk(n) = lim
t→∞ P{C(t) = k,Q(t) = n}.
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For the stationary probability distribution Pk(n) by using standard methods we
can obtain the following system of Kolmogorov equations, namely

−
[
λ + β + (σ + α − λ − β)

n

N

]
P0(n) + μ1P1(n) + μ2P2(n) = 0,

−
[

λ + μ1 − λ
n + 1

N

]

P1(n) + λ
(
1 − n

N

)
[P0(n) + P1(n − 1)]

+σ
n + 1

N
P0(n + 1) = 0,

−
[

λ + μ2 − λ
n + 1

N

]

P2(n) + β
(
1 − n

N

)
P0(n) + α

n + 1
N

P0(n + 1)

+λ
(
1 − n

N

)
P2(n − 1) = 0.

(1)

In paper [8] although the notations are different basically this system was
solved by using a recursive numerical algorithm. Since our aim is to get the
sojourn time distribution of the customers we follow an asymptotic method
because to obtain the exact distribution we need rather complicated approach.
Let us denote the partial characteristic functions as

Hk(u) =
N∑

n=0

eiunPk(n),

where i =
√−1 is imaginary unit, then system (1) will be rewritten in the form

− (λ + β) H0(u) + μ1H1(u) + μ2H2(u) + i
[σ + α − λ − β]

N
H

′
0(u) = 0,

λH0(u) +
[

λ
(
eiu − 1

)
(

1 − 1
N

)

− μ1

]

H1(u)

+i
(λ−σe−iu)

N H
′
0(u) + i

λ(eiu−1)
N H

′
1(u) = 0,

βH0(u) +
(

λ
(
eiu − 1

)
(

1 − 1
N

)

− μ2

)

H2(u)

+i
(β−αe−iu)

N H
′
0(u) + i

λ(eiu−1)
N H

′
2(u) = 0.

(2)

Summarizing equations of system (2) we receive an additional equality of the
form

λ
(
eiu − 1

)
(

1 − 1
N

)

[H1(u) + H2(u)] + i
(α + σ)

(
1 − e−iu

)

N
H

′
0(u)

+i
λ(eiu−1)

N

[
H

′
1(u) + H

′
2(u)

]
= 0.

(3)

We will solve system (2) and (3) by the method of asymptotic analysis in the
condition of an infinitely increasing number of sources N → ∞.
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Theorem 1. Let Q be the number of customers in the orbit then

lim
N→∞

Eexp
{

iw
Q

N

}

= exp {iwκ} , (4)

where value of parameter κ is the positive solution of the equation

λ(1 − κ) [R1(κ) + R2(κ)] − (α + σ)R0(κ)κ = 0. (5)

Here the stationary distributions of probabilities Rk(κ) of the service state k
depends on κ and can be obtained as follows

R0(κ) =
{

1 +
1
μ1

[λ(1 − κ) + σκ] +
1
μ2

[β(1 − κ) + ακ]
}−1

,

R1(κ) =
1
μ1

[λ(1 − κ) + σκ]R0(κ),

R2(κ) =
1
μ2

[β(1 − κ) + ακ] R0(κ).

(6)

Proof. Designating
1
N

= ε, in systems (2−3) let us introduce the following
replacements

u = εw, Hk(u) = Fk(w, ε), (7)

then systems (2−3) can be rewritten as

− (λ + β) F0(w, ε) + μ1F1(w, ε) + μ2F2(w, ε)

+i [σ + α − λ − β] ∂F0(w,ε)
∂w = 0,

λF0(w, ε) +
[
λ

(
eiεw − 1

)
(1 − ε) − μ1

]
F1(w, ε)

+i
(
λ − σe−iεw

) ∂F0(w,ε)
∂w + iλ

(
eiεw − 1

) ∂F1(w,ε)
∂w = 0,

βF0(w, ε) +
[
λ

(
eiεw − 1

)
(1 − ε) − μ2

]
F2(w, ε)

+i
(
β − αe−iεw

) ∂F0(w,ε)
∂w + iλ

(
eiεw − 1

) ∂F2(w,ε)
∂w = 0,

λ (1 − ε) [F1(w, ε) + F2(w, ε)] + i(α + σ)e−iεw ∂F0(w, ε)
∂w

+iλ
[

∂F1(w,ε)
∂w + ∂F2(w,ε)

∂w

]
= 0.

(8)
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Denoting lim
ε→0

Fk(w, ε) = Fk(w), let us execute this limiting transition in

system (8) and as result we will obtain

− (λ + β) F0(w) + μ1F1(w) + μ2F2(w) + i [σ + α − λ − β] F
′
0(w) = 0,

λF0(w) − μ1F1(w) + i (λ − σ) F
′
0(w) = 0,

βF0(w) − μ2F2(w) + i (β − α) F
′
0(w) = 0,

λ [F1(w) + F2(w)] + i(α + σ)F
′
0(w) + iλ

[
F

′
1(w) + F

′
2(w)

]
= 0.

(9)

We show that the solution of the system (9) can be written in the following form

Fk(w) = RkΦ(w), (10)

where Rk the limiting probability distributions of the service state k under con-
ditions N → ∞ and Φ(w) is the limiting characteristic function of the normalized
number of customers in the orbit. Substituting solution (10) in (9) we obtain

− (λ + β) R0 + μ1R1 + μ2R2 + i [σ + α − λ − β] R0
Φ

′
(w)

Φ(w)
= 0,

λR0 − μ1R1 + i (λ − σ)R0
Φ

′
(w)

Φ(w)
= 0,

βR0 − μ2R2 + i (β − α) R0
Φ

′
(w)

Φ(w)
= 0,

λ [R1 + R2] + i {(α + σ)R0 + λ (R1 + R2)} Φ
′
(w)

Φ(w)
= 0.

(11)

From the form of equations of system (11) it follows that quantity
Φ

′
(w)

Φ(w)
does

not depend on w, then we can conclude that function Φ(w) has a form

Φ(w) = exp (iwκ), (12)

coinciding with equality (4).
Now, to find κ let us substitute the explicit form of the function Φ(w) in the

equations of system (11) and we obtain the following system

− (λ + β) R0 + μ1R1 + μ2R2 − [σ + α − λ − β] R0κ = 0,

λR0 − μ1R1 − (λ − σ)R0κ = 0,

βR0 − μ2R2 − (β − α) R0κ = 0,

λ(1 − κ) [R1 + R2] − (α + σ)R0κ = 0.

(13)
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The quantity κ is the solution of the fourth equation of system (13), which
coincides with (5) showing a probabilistic interpretation that the mean arrival
rate to the orbit is equal to the mean departure rate from the orbit. From the
second and third equations of system (13) taking into account the normalization
condition, it is not difficult to obtain expressions for the quantities R0, R1 and
R2. Let us note that since Rk is the solution of system (13) whose coefficients
depend on κ, then Rk = Rk(κ) and their form coincides with (6).

The theorem is proved. ��

4 Sojourn Time Distribution of the Customer
in the System

Let T be the total sojourn time of the tagged customer in the system and T (t)
is the time length from moment t until the end of the service of the tagged
customer. The total sojourn time T is simply expressed through the residual
sojourn time T (t).

Let S(t) describe the server state at time t as follows

S(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, server is free,
1, server is busy by incoming (not tagged) customer,
2, server is busy by outgoing (not tagged) customer,
3, server is busy by incoming tagged customer,
4, server is busy by outgoing tagged customer.

We will define the conditional characteristic functions in the form

Gk(u, n, t) = E
{

eiuT (t)|S(t) = k,Q(t) = n
}

.

Assuming that the system is operating in steady-state, it is not difficult to write
the following system of Kolmogorov equations[

iu − (λ + β)
N − n

N
− (σ + α)

n

N

]
G0(u, n) + λ

N − n

N
G1(u, n)

+σ n−1
N

G1(u, n − 1) + β N−n
N

G2(u, n) + α n−1
N

G2(u, n − 1)

+ σ
N

G3(u, n − 1) + α
N

G4(u, n − 1) = 0,

[
iu − λ

N − n − 1

N
− μ1

]
G1(u, n) + λ

N − n − 1

N
G1(u, n + 1)

+μ1G0(u, n) = 0,

[
iu − λ

N − n − 1

N
− μ2

]
G2(u, n) + λ

N − n − 1

N
G2(u, n + 1)

+μ2G0(u, n) = 0,

[
iu − λ

N − n − 1

N
− μ1

]
G3(u, n) + λ

N − n − 1

N
G3(u, n + 1) + μ1 = 0,

[
iu − λ

N − n − 1

N
− μ2

]
G4(u, n) + λ

N − n − 1

N
G4(u, n + 1) + μ2 = 0.

(14)
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The method of asymptotic analysis, see [11] is applied to prove the following
theorem

Theorem 2. Let T be the total sojourn time of the customer in the system then

lim
N→∞

E exp
{

iw
T

N

}

= R0 + (1 − R0)
(α + σ)R0

(α + σ)R0 − iw
. (15)

Proof. Let us denote
1
N

= ε. Executing the following substitutions in

system (14)
u = εw, εn = x, Gk(u, n) = gk(w, x, ε), (16)

we obtain this system in the following form

[iεw − (λ + β) (1 − x) − (σ + α) x] g0(w, x, ε) + λ(1 − x)g1(w, x, ε)

+σ(x − ε)g1(w, x − ε, ε) + β(1 − x)g2(w, x, ε)

+α(x − ε)g2(w, x − ε, ε) + σεg3(w, x − ε, ε) + αεg4(w, x − ε, ε) = 0,

[iεw − λ(1 − x − ε) − μ1] g1(w, x, ε) + λ(1 − x − ε)g1(w, x + ε, ε)

+μ1g0(w, x, ε) = 0,

[iεw − λ(1 − x − ε) − μ2] g2(w, x, ε) + λ(1 − x − ε)g2(w, x + ε, ε)

+μ2g0(w, x, ε) = 0,

[iεw − λ(1 − x − ε) − μ1] g3(w, x, ε) + λ(1 − x − ε)g3(w, x + ε, ε)
+μ1 = 0,

[iεw − λ(1 − x − ε) − μ2] g4(w, x, ε) + λ(1 − x − ε)g4(w, x + ε, ε)
+μ2 = 0.

(17)

Denoting lim
ε→0

gk(w, x, ε) = gk(w, x), we carry out limiting transition under con-

dition ε → 0 in the system (17) and the we get

− [(λ + β) (1 − x) + (σ + α) x] g0(w, x) + [λ(1 − x) + σx] g1(w, x)

+ [β(1 − x) + αx] g2(w, x) = 0,
μ1 [g0(w, x) − g1(w, x)] = 0,
μ2 [g0(w, x) − g2(w, x)] = 0,
μ1 [1 − g3(w, x)] = 0,
μ2 [1 − g4(w, x)] = 0.

(18)

From the obtained system it follows that functions g3(w, x) and g4(w, x) are
equal to unity, and functions g0(w, x), g1(w, x) and g2(w, x) are coincide.
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Designating by g(w, x) their common value we can write

g(w, x) = g0(w, x) = g1(w, x) = g2(w, x).

Thus, the solution of the system (17) can be written in the form of decomposition

gk(w, x, ε) = g(w, x) + εfk(w, x) + O(ε2), k = 0, 2,

which we substitute into the first three equations of the system (17) and as a
result we obtain

[iεw − (λ + β) (1 − x) − (σ + α) x] g(w, x) + σεg3(w, x) + αεg4(w, x)

−ε [(λ + β) (1 − x) + (σ + α) x] f0(w, x) + ε [λ(1 − x) + σx] f1(w, x)

+ [λ(1 − x) + σ (x − ε)] g(w, x) + [β(1 − x) + α(x − ε)] g(w, x)

+ε [β(1 − x) + αx] f2(w, x) − ε(σ + α)x∂g(w,x)
∂x = O(ε2),

[iεw − μ1] g(w, x) − εμ1f1(w, x) + μ1g(w, x) + εμ1f0(w, x)

+ελ(1 − x)
∂g(w, x)

∂x
= O(ε2),

[iεw − μ2] g(w, x) − εμ2f2(w, x) + μ2g(w, x) + εμ2f0(w, x)

+ελ(1 − x)
∂g(w, x)

∂x
= O(ε2).

(19)

After performing simple transformations in system (19) and taking into account
that g3(w, x) = g4(w, x) = 1 we get

− [(λ + β) (1 − x) + (σ + α) x] f0(w, x) + [λ(1 − x) + σx] f1(w, x)

+ [β(1 − x) + αx] f2(w, x) = [σ + α − iw] g(w, x) − (σ + α)

+(σ + α)x∂g(w,x)
∂x = 0,

μ1 [f0(w, x) − f1(w, x)] = −iwg(w, x) − λ(1 − x)
∂g(w, x)

∂x
= 0,

μ2 [f0(w, x) − f2(w, x)] = −iwg(w, x) − λ(1 − x)
∂g(w, x)

∂x
= 0.

(20)
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Multiplying the first equation of system (20) by R0, the second equation by R1,
the third by R2 and then adding them we receive the following equality

[− (λ + β) R0 − (σ + α − λ − β) R0x + μ1R1 + μ2R2] f0(w, x)

+ [λR0 − (λ − σ)R0x − μ1R1] f1(w, x)

+ [βR0 − (β − α)R0x − μ2R2] f2(w, x) = [(σ + α)R0 − iw] g(w, x)

−(σ + α)R0 + {(σ + α)R0x − λ(1 − x)(R1 + R2)} ∂g(w,x)
∂x = 0.

(21)

From Theorem 1 it follows that
n

N
= κ. By virtue of the substitutions (16)

carried out earlier, namely x = nε we can conclude that x = κ.
Let us perform the substitution x = κ in the equations of system (21) and

taking into account system (13), we can find that the multipliers for functions

f0(w, x), f1(w, x), f2(w, x) and
∂g(w, x)

∂x
are equal to zero.

As a result equality (21) can be rewritten in the form

[(σ + α)R0 − iw] g(w) = (σ + α)R0,

from which it obviously follows that

g(w) =
(σ + α)R0

(σ + α)R0 − iw
. (22)

Thus we obtain the characteristic function of the probability distribution of the
normalized residual sojourn time T(t)/N. The using the law of total probabil-
ity we can receive the characteristic function of the probability distribution of
the normalized total sojourn time T/N of the customers in the system in the
following form

lim
N→∞

E exp
{

iw
T

N

}

= R0g3(w) + R1g1(w) + R2g2(w)

= R0 + (R1 + R2)g(w) = R0 + (1 − R0)
(σ+α)R0

(σ+α)R0−iw ,
(23)

which coincides with (15).
The theorem is proved. ��

In addition let us perform in Eq. (23) reverse replacement w =
u

ε
= uN and

denoting by q = 1 − R0 and γ = (σ + α)R0/N we receive

E exp {iuT} ≈ R0 + (1 − R0)
(σ + α)R0/N

(σ + α)R0/N − iu
= 1 − q + q

γ

γ − iu
,

which is the prelimit value, that is for fixed N .
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Thus we obtain that the sojourn time of the customer in the system follows
a generalized exponential distribution with parameters q and γ.

Consequently the mean response time can be approximated by (1−R0)
(σ+α)R0/N .

Since the service time of a primary incoming customer is bounded then the
limiting distribution of the normalized response time and the waiting time is
coincide. Similarly, the limiting distribution of the normalized number of cus-
tomers in the system and in the orbit are the same.

Hence the mean arrival rate to the system is λ(1 − κ).
We will use the Little-formula to check our results, namely we have

λ(1 − κ)
(1 − R0)

(σ + α)R0
= κ

which is equivalent to Eq. 5 from which κ was determined.

5 Conclusion and Future Work

In this paper a finite-source retrial queuing system of type M/M/1//N with
two-way communication was considered. The research has been performed by
the method of asymptotic analysis under the condition of unlimited growing
number of sources. As the result of the analysis it was shown that the limiting
sojourn/waiting time of the customer in the system has a generalized exponential
distribution with given parameters. The authors plan to continue their research,
among others modeling finite-source retrial queuing systems with two-way com-
munication for the case of generally distributed service times.

Acknowledgments. The work/publication of A.A. Nazarov is supported by grant
RFBR (Russian Foundation for Basic Research), the Agreement number 18 01 00277.

References
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Abstract. An open exponential network with a single class of demands
and unreliable queueing systems is considered. System faults occur
sequentially with exponential times per fault. When a fault occurs at a
system, all the demands there are destroyed immediately. A key perfor-
mance measure (quality of service measure) of the network is its response
time, which is a stochastic process. When a value of the response time
exceeds the preset threshold value activation of renewal mechanism of the
failed systems takes place. Recovery time has an exponential distribution
which does not depend on the number of failed systems. A method, which
allows to obtain performance characteristics, was developed. Finally,
some numerical examples and a section of conclusions commenting the
main research contributions of this paper are presented.

Keywords: Queueing networks · Markov chains
Unreliable queueing systems
Degradable structure of queueing network

1 Introduction

Queueing networks with unreliable systems [1,4,7,8,20] are used as models for
the analysis and control of unreliable discrete stochastic systems with network
structure.

Article [22] considers generalized Jackson networks with single-server sta-
tions, where nodes may have an infinite supply of work. Assume there are simul-
taneous breakdown of servers.

An approximate decomposition method for the analysis of production lines
with multiple stations is presented in [15]. The machines are unreliable and have
exponential operation, failure, and repair processes. Intermediate buffers between
different stations are all with finite capacities. Similar models are studied also
in [14].

Article [23] presents limiting distributions for multichannel systems and open
queueing networks with unreliable elements: nodes, paths between nodes, and
channels at nodes.
c© Springer Nature Switzerland AG 2018
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Different applications of unreliable queueing networks are presented in [3,6,
11,13,16,21].

Queueing models for satellite networks are studied in [6]. In [3], discuss an
extension of Markov reliability models to include parametric sensitivity analysis.

Paper [2] studies the stationary dynamics of a processing system comprised
of several parallel queues and a single server of constant rate. The connectivity of
the server to each queue is randomly modulated, taking values 1 (connected) or 0
(severed). At any given time, only the currently connected queues may receive
service.

Article [16] considers optimal load balancing in a distributed computing envi-
ronment with several homogeneous unreliable processors that have limited state
information. Processors may fail, with arbitrary failure and repair processes that
are also independent of the state of the system. Optimal rate allocation in unre-
liable production networks are considered in [12]. In [9], discuss dynamic routing
in heterogeneous unreliable queueing networks.

In [5], the problem of routing packets through several unreliable outgoing
links to the same destination is investigated. Paper [18] considers information
transfer processes in computer network with centralized control and unreliable
outgoing links. To analyze the performance of multimedia service systems with
unreliable resources and to estimate the required capacity of the systems, we
used article [19] which is devoted to capacity planning model with using open
queueing network. Article [24] offers the approximate analysis and application
of an unreliable closed queueing network to model the performance of flexible
manufacturing systems. The results of this article can be used to analyze flexible
production systems with unreliable elements.

In this article, we consider an open exponential queueing network with a
single class of demands and unreliable finite-server systems. Operable periods
of systems are exponentially distributed random variables. From the moment of
system failure the route matrix of queueing network changes so that demands do
not arrive to this system. We assume that as soon as the average response time of
network exceeds the limit value because of consecutive failure of systems all failed
devices of systems begin to restore. All systems are restored during some time
with an exponential distribution. Random process of breakdowns and repairs
of systems is presented as Markov chain with continuous time. In addition, we
use the absorbing Markov chain for time determination between the moments
of repairs of systems. Stationary characteristics of unreliable systems and also
average time between the moments of network repairs are obtained.

2 Queueing Network with Unreliable Systems

Consider open queueing network Γ with L systems and a single class of demands.
System Si is a finite-server queueing system with κi servers, service-time distri-
bution at each server of Si is exponential with rate μi, i = 1, . . . , L.

The customers arrive from the external source S0 according to a Poisson
process with arrival rate λ0. The network topology is defined by the adjacency
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matrix W = (wij), i, j = 0, . . . , L, which corresponds to network of directed
graph. Transitions of demands between systems are defined by the routing matrix
Θ = (θij), i, j = 0, . . . , L.

We assume that queueing systems fail independently of each other. Times
between system failures Si, i = 1, . . . , L, have exponential distributions with
parameters γi. When a fault occurs at a system, all the demands there are
destroyed immediately. At the same time the adjacency matrix W and, therefore,
the routing matrix Θ, changes so that demands do not arrive to this system.

Let b = (bi), i = 1, . . . , L, be the structure vector of queueing network Γ ,
where bi = 1, if systems Si is failed, or bi = 1 otherwise. Let Θ(b) be the routing
matrix of network Γ provided that the structure of network is defined by vector b.

Let structure vector b convert to a vector b̃, and routing matrix Θ(b) – to
matrix Θ(b̃) at the time of system Sm failure, m ∈ {1, . . . , L}. Elements of matrix
Θ(b̃) are given by

θmk(b̃) = 0, k = 0, . . . , L, k �= m,

θim(b̃) = 0, i = 0, . . . , L, i �= m,

θmm(b̃) = 1,

θik(b̃) = θik(b)/(1 − θim(b)), i, k = 0, . . . , L, i, k �= m.

The state of queueing network Γ is vector n = (ni), i = 1, . . . , L, where ni

denotes the number of demands in system Si, then nm = 0 at the time of failure
of system Sm.

We will consider an expected value of response time τ0(b). The value is
the main performance measure defining quality of network Γ functioning with
structure b and τ̂0, the threshold value of response of network Γ .

Now we describe the process of network evolution with non-stationary struc-
ture. Systems fail independently of each other, causing changes in structure b of
network Γ . Times between failures of systems have an exponential distribution.
If τ0(b) < τ̂0, then the broken systems are not restored. If τ0(b) ≥ τ̂0, then it
is supposed that all disabled systems begin to restore, also including systems
which will fail from the moment of the beginning of process of repair. The recov-
ery time of the group of failed systems is an exponential random variable with
parameter δ. It is supposed that recovery time of the group of systems does not
depend on the group sizes.

It is required to find stationary performance measures of queueing network Γ .

3 Analysis Method of Queueing Network

The evolution of network Γ is represented as a set of realization of subnets Γ (b).
Each realization of a subnet is unambiguously defined by structure b and route
matrix Θ(b). Other parameters of realization of subnets coincide.

We will designate the subnet Γ (b) with the connected configuration if the
route matrix of a set of serviceable (efficient) systems is irreducible.
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Let B be the set of all possible structures b, B = D ∪ F ∪ G, where D, is the
subset of structures b, forming subnets of Γ (b) with a connected configuration,
for which

τ0(b) < τ̂0, (1)

F is the subset of structures b, forming subnets of Γ (b) with a connected con-
figuration, for which there is a steady-state condition and

τ0(b) ≥ τ̂0, (2)

G is the subset of structures b, forming subnets of Γ (b) with violation of con-
nectivity and without the steady-state condition, for this subset we assume
τ0(b) = ∞.

Evolution of network Γ can be considered as proceeding in two parallel ways:
the process of breakdowns of systems with their further restoration when the
condition is satisfied (2) and the process of service and transitions of demands
for networks enclosed in it between the working systems.

Changing of network structure leads to arising of a transition process. We
assume that its duration is significantly less than the duration of functioning of
network before the next change of structure. Therefore we will neglect transition
process and to consider that the network Γ (b) instantly changes into the steady-
state condition. Stationary performance measures of networks Γ (b), at fixed
b ∈ D, can be received by known methods [17].

Renumber states of a set D so that b(1) be the structure of network at which
all systems are efficient, numbering of other structures is random. Further, if
it is clear from the context what state it is the numbering of states will go
down. Let D̃ ⊂ D, be the subset of structures b(i) ∈ D, from which transition
to a subset is possible. Let us determine b(i) ∈ D̃ and C ⊂ B\D, through
ZC = {b ∈ C : ‖b − b(i)‖ = 1}. Then rate α(b(i), C) of transition from b(i) ∈ D
in subsets C = F and C = G is equal to

α(b(i), C) =

⎧
⎪⎪⎨

⎪⎪⎩

∑

b∈C
‖b(i)−b‖=1

L∑

k=1

γk(b
(i)
k − bk), if ZC �= ∅,

0, otherwise.

Rate α(b(i), b(j)) of transitions from b(i) ∈ D in b(j) ∈ D

α(b(i), b(j)) =

⎧
⎨

⎩

L∑

k=1

γk(b
(i)
k − b

(j)
k ), if ‖b(i) − b(j)‖ = 1,

0, otherwise,

and rate α(b(i)) of exiting the state

α(b(i)) =
L∑

k=1

γkb
(i)
k .
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The stochastic process of systems failures with the their subsequent group
restoration subject to the condition (2) can be described by continuous time
Markov chain M with the state space {1, . . . , d, d + 1, d + 2}, where d = |D|, the
state d + 1 corresponds to a set F , d + 2 – to a set G.

Denote by A = (aij), i, j ∈ {1, . . . , d + 2}, the infinitesimal operator of the
Markov chain, where

aij = α(b(i), b(j)), b(i), b(j) ∈ D, i �= j, i, j = 1, . . . , d,

ai,d+1 =

{
α(b(i), F ), ZF �= ∅,

0, otherwise,

ai,d+2 =

{
α(b(i), G), ZG �= ∅,

0, otherwise,

aii = −α(b(i)), i = 1, . . . , d.

For i = d + 1, d + 2 we can write

aij =

{
δ, j = 1,

0, j �= 1,

aii = −δ.

The stationary distribution π = (πi), i ∈ {1, . . . , d+2} of the Markov chain, is
the solution of the equation πA = 0 with the normalization condition

∑
πi = 1.

Then for queueing network Γ with connected configuration and with sta-
tionary distribution of states conditional stationary characteristics of systems
are defined by

χk =
1

πd+2

(
∑

b(i)∈D

χk(b(i))πi + πd+1

∑

b∈F

χk(b)

)

, k = 1, . . . , L,

where χk is the conditional integrated characteristic of system Sk, χk(b) – is
integrated characteristic of system Sk of queueing network Γ (b) with structure b,
and conditional expectation of response time of network Γ

τ0 =
1

πd+2

(
∑

b(i)∈D

τ0(b(i))πi + πd+1

∑

b∈F

τ0(b)

)

.

Time interval from the moment of the end of repair and until the beginning of
the following renewal process of the network corresponds to the duration of stay
of this network in the set of structures D. To calculate the expected duration
of network stay in a set of structures D we will consider the absorbing Markov
chain of M∗ with a set of states {1, . . . , d + 1}, where d + 1 is the absorbing
state corresponding to a set of structures B\D. Duration of stay in a set of
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structures D corresponds to time before absorption of a chain M∗ in state d+1.
Infinitesimal operator A∗ of a chain M∗ has the following form:

A∗ =
[
S S1

0 0

]

,

where S1 is the vector of absorption rate with size d×1, S = (aij), i, j = 1, . . . , d,
is the subgenerator, matrix of transition rates in a set of irretrievable states with
a size d × d, 0 is the zero vector with a size 1 × d. Initial distribution of a chain
M∗ is β = (βi), i = 1, . . . , d, where β1 = 1, and βi = 0, i = 2, . . . , d.

It is known [10] that time before absorption of a chain M∗ has phase distri-
bution with the expected value

g = −βS−11,

where 1 is the identity vector column.

4 Numerical Results

We will consider an open exponential network with L = 9 queueing systems
and a single class demands. The parameters of unreliable systems are given in
Table 1, the rate of repair for the failed systems δ = 0.5.

Table 1. Parameters of queueing systems

Number of system, i 1 2 3 4 5 6 7 8 9

κi 2 1 1 2 1 1 1 2 1

μi 1.00 1.90 1.80 1.00 1.70 2.00 1.90 1.00 1.80

γi 0.01 0.02 0.07 0.03 0.05 0.02 0.005 0.01 0.06

Route matrix of the network: θ02 = 0.3, θ03 = 0.4, θ04 = 0.3, θ14 = 0.7,
θ15 = 0.3, θ25 = 0.8, θ26 = 0.2, θ36 = 1, θ47 = 1, θ57 = 0.1, θ58 = 0.8, θ59 = 0.1,
θ69 = 1, θ70 = 1, θ80 = 1, θ90 = 1.

The network research with absolutely reliable systems and unreliable systems
in dependence on rate of the entering flow is conducted.

In the first case the threshold value for unreliable network was defined as
τ̂0 = 10.

The composition of a set D does not change in the value range λ0, as the
threshold value τ̂0 = 10 exceeds τ0 a network with unreliable systems in case of
the maximum entering flow of requirements in a network.

The function τ0 for network with unreliable systems, shown in Fig. 1, repre-
sents the smooth ascending curve.

The network research with unreliable systems in case of threshold value
τ̂0 = 5 and τ̂0 = 3 depending on λ0 are conducted. From results of the experi-
ments provided in Figs. 2 and 3 it is clear that τ0 piecewise continuous function
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0.2 0.4 0.6 0.8 1 1.2 1.4

2

3

4

5

6

λ0

τ 0

Fig. 1. Dependence of τ0 on λ0 at τ̂0 = 10 for reliable network (dashed line) and
unreliable network (solid line)
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Fig. 2. Dependence of τ0 on λ0 at τ̂0 = 5 for reliable network (dashed line) and unre-
liable network (solid line)
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Fig. 3. Dependence of τ0 on λ0 for τ̂0 = 3 for reliable network (dashed line) and
unreliable network (solid line)

(Fig. 4). In discontinuity points the reduction of number of states from set D is
made because of states in which τ0 becomes greater, than τ̂0.

Figure 5 illustrates dependence of the expected value g on τ̂0. Figure 6 illus-
trates dependence of the expected value g on λ0.

0.2 0.4 0.6 0.8 1 1.2 1.4

100

150

200

250
τ̂0 = 10
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τ̂0 = 3

λ0

|D
∪

F
|

Fig. 4. Dependence of the cardinality of the set D ∪ F on λ0 for unreliable network



192 I. E. Tananko and N. P. Fokina

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

15

20

25

30

τ̂0

g

Fig. 5. Dependence of g on τ̂0
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Fig. 6. Dependence of g on λ0

5 Conclusion

The open queueing network with consistently disconnected multiserver systems
is considered in the paper.

System faults occurs sequentially with exponential times per fault. When a
fault occurs at a system the structure vector is changed. For each structure of
the network defined the expectation of response time. Systems are not restored
until the expectation of response time for the network exceeds the set threshold
value. The recovery time of all failed systems is an exponential random variable.
It is necessary that during recovery time any other systems do not fail.

The method is developed for the analysis of the queueing network. Average
performance measures of systems and expectation of duration between the recov-
ery moments of systems are obtained. The method can be used for the analysis
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and maintenance of information transfer networks with unreliable elements. In
these networks the repair of failed elements begins after the response time of
networks reaches critical level.
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Abstract. In the present paper the infinite-server MMAPk|Gk|∞
queueing model with random resource vector of customers, marked MAP
arrival and semi-Markov (SM) arrival of catastrophes is considered. The
joint generating functions (PGF) of transient and stationary distribu-
tions of number of busy servers and numbers of different types served
customers, as well as Laplace transformations (LT) of joint distributions
of total accumulated resources in the model at moment and total accumu-
lated resources of served customers during time [0, t) interval are found.
The basic differential and renewal equations for transient and stationary
PGF of queue sizes of customers are found.

Keywords: Marked MAP · Infinite-server queue model
Catastrophe · Resource vector

1 Introduction

From the time of Erlang’s pioneering research [1], queueing models with many
servers, in particular, the infinite-server models, have been widely used for mod-
elling and performance evaluation of wired and wireless computer and telecom-
munication networks [2]. As shown by large number of measurements the traffic
of modern computer networks has self-similar nature and can be characterized by
the heterogeneousness, the non-stationarity, the burstiness, and the correlations
[3]. Network traffics in queue are generally described by traffic models based
on finite Markovian Processes: Markov Arrival Process (MAP), Batch MAP
(BMAP), Marked MAP (MMAP) and their generalizations [3,4]. The MMAP
and MAP arrivals properties and their applications are presented in [4–6] and
are not duplicated here.
c© Springer Nature Switzerland AG 2018
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The BMAP |G|∞ model studied by [7,8]. By using semi-Markov processes
(SMP), matrix analytic methods the PGF of the number of busy servers and
its moments are considered. The models with phase type arrival PH|G|∞ and
Markov modulated arrival MMPP |G|∞ are considered in [9,10]. The queueing
model Mk|Mk|∞ with correlated k heterogeneous customers in a batch and
exponential service time is studied by [11]. The joint PGF of the number of
type k customers being served in the system is derived explicitly by solving
partial differential equations. The generalization of this model for general service
time Mk|Gk|∞ Poisson arrival of customers and BMk|Gk|∞ with k correlated
heterogeneous customers in a batch is considered in [12,13]. In steady state, the
joint PGF of queue length of customers by using collective mark method CMM
and conditional expectations is derived in [13]. The model MAPk|Gk|∞ with the
structured batch arrival of k types of customers is considered in [14]. In steady
state, the differential equations for PGF of queue length and its moments are
obtained. The first and second order asymptotes of queue length for the models
MAP |G|∞, MMPP |G|∞, G|G|∞ based on supplementary variable method are
studied in [15].

To evaluate the impact of network environment on networks performance
metrics the infinite server models in the random environment (RE) are applied.
The queue size distribution of the model M |G|∞ in semi-Markov (SM) envi-
ronment is studied in [16–19]. By the method of supplementary variable first
and second order asymptotes of queue size distribution are obtained [16]. The
stochastic decomposition formula for queue length distribution is obtained in
[17]. The queue M |G|∞ in random environment with clearing mechanism is
studied in [17,18]. The environmental clearing process is modeled by an m-state
irreducible SMP. The transient and steady-state queue length distributions by
using renewal arguments are obtained. The MMAPk|Gk|∞ queue in SM envi-
ronment and catastrophes is studied in [20]. The PGFs of joint distributions of
queue size and number of served customers by using renewal arguments and dif-
ferential equations are found. The infinite-server queue MMAPk(t)|Gk|∞ with
Poisson stream catastrophes and nonhomogeneous marked MAP arrival of cus-
tomers is studied in [21]. The PGF of queue length of different types of cus-
tomers is obtained. The model M |M |∞ with disasters in steady-state is studied
in [22,23].

In many applications of queueing models such as computer and communi-
cation networks and systems, production systems, transportation systems, eco-
nomics, finances and insurance systems the customers characterize by vector of
requesting resources which components can be deterministic or random quan-
tities. For instance one component can describe number of servers necessary to
serve the customer, second amount of time necessary to serve the customer, next
the volume of space to save the customer and so on. Also the customers must
have some features necessary to be accepted by system. Some components of
resource vectors can be discrete (number of servers, amount of parts) and others
can be continuous (space-volume to save, amount of finances, power). Despite
importance of resource models of customers in queuing theory, there are very
few works devoted to research such kind of models, see for example [20,24–29].
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The main methods to study the infinite-server queues are: supplementary
variables method [30], the method which based on conditional expectations
[30,31], and collective marks method (CMM) method [30,32,33]. The last
method is also called “supplementary event” [30] or “catastrophes” method
[32,33] and has been used successfully for queue models with priorities [33].
CMM have been used for infinite-server models in [13] for BMk|Gk|∞ queue
with Poisson arrival of batches and in [34] for M |SM |∞ queue. In [34] the
method is mentioned but does not used to obtain some results.

In this paper we consider some generalizations of [17,20,24] results for
infinite-server MMAPk|Gk|∞ queue in random environment and catastrophes.
The joint PGF of transient and stationary distributions of number of busy servers
and numbers of served customers, as well as the LT of joint distributions of
total accumulated resource in the model and total accumulated resource vectors
of served customers during time interval are found. The renewal equations for
transient and stationary PGF of queue sizes of different types of customers are
found as well. All results are obtained using CMM and renewal process methods.

2 Model Description

We consider an infinite server MMAPk|Gk|∞ queue model in random envi-
ronment (RE) with K types of customers and catastrophes. The RE operates
according to stationary, irreducible semi-Markov process (SMP) ξ(t), t ≤ 0 with
finite state space S =

{
1, 2, . . . , k

}
. The SMP is given by the vector of initial

distribution p0 =
{
pi
0, i ∈ S

}
and SM matrix Q(t) = ||Qij(t)||, t ≥ 0, 1, j ∈ S.

Customers arrive according to homogeneous marked MAP which is given by
the sequence of characteristic matrices

{
D0,Dh, h ∈ C0

}
. Here C0 is a finite or

counting set of arriving batches h = (h1, h2, . . . , hk),h ∈ C0, and hr is a number
of type r customers, 0 ≤ h, 1 ≤ r ≤ K in a batch. D0 is a non-singular matrix
with negative diagonal elements and Dh are non-negative matrices, h ∈ C0. The
phase process (PP) J(t) of MMAP is an irreducible Markov process (MP) with
generating matrix (GM) D and finite set of states E. D is a matrix of m × n
size.

D = D0 +
∑

h∈C0

Dh, De = 0, πD = 0, πe = 1,

where e is the column vector with all components one, π is the vector of station-
ary distribution π = (π1, .., πm) of PP J(t).

The service of arriving customers begins immediately. Let the random vari-
able (r.v.) γr be a service time of type r customers, and γ = (γ1, γ2, . . . , γk) is
a vector of service times. The components of γ are independent, identically
distributed (i.i.d.) r.v.s which depend on type of the customer and state of
environmental SMP. R.v. γr has Br(t) = P (γr < t) general distribution and
finite mean value γ̄r, 1 ≤ r ≤ K. Each arriving customer is characterized by
k-dimensional random volume (resource) vector ξr = (ξ1r, . . . , ξkr) and each
departing customer is characterized by random vector σr = (σ1r, . . . , σkr) with
non-negative components 1 ≤ r ≤ K. Let Cr(x) = P(ξ1r ≤ x1, . . . , ξkr ≤ xk)
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and Gr(x) = P(σ1r ≤ x1, . . . , σkr ≤ xk) be the joint distributions of resource
vectors ξr and σr, where x = (ξ1, . . . , ξk). We assume that the service time vector
γ and the resource vectors ξr = (ξ1r, . . . , ξkr), σr = (σ1r, . . . , σkr) are mutually
independent.

When SMP ξ(t), t ≤ 0 jumps from state i to the state r all customers in
the model are instantly flashed out and the model jumps into empty state.
Let consider the related with MMAP counting processes N(t), Ns(t),M(t):
N(t) = (N1(t), N2(t), . . . , Nk(t)), Ns(t) = (N1s(t), N2s(t), . . . , Nks(t)), M(t) =
(M1(t),M2(t), . . . , Mk(t)), where Nr(t) and Mr(t) are the number of type r cus-
tomers arriving and serving in time interval [0, t), and Nrs(t) is the number
of customers being in service at moment t. Let β(t) = (β1(t), . . . , βk(t)) and
α(t) = (α1(t), . . . , αk(t)) be the vectors of total resource served during interval
[0, t) and accumulated in the model at moment t. The components of β(t), α(t),
Ns(t) and Ms(t) vectors are defined as:

βr(t) =
Mr(t)∑

i=1

σri, αr(t) =
Nr(t)∑

i=1

ζri,

Nrs(t) =
∑

h∈C0

Ns
hr

(t), Mr(t) =
∑

h∈C0

Mhr
(t), r = 1, 2, ..,K.

Suppose that at initial time t = 0 the model is empty, N(0) = 0, M(0) = 0,
α(0) = 0, and β(0) = 0.

3 The Counting Process

Let consider the counting process (CP)
{
N(t), J(t), t ≤ 0

}
with the matrix

P (n, t) of transition probabilities: P (n, t) = ||pij(n, t)||, pij(n, t) = P (N, t) =
n, J(t) = j|J(0) = i, 1 ≤ i, j ≤ m, where n = (n1, . . . , nk): ni are non-negative
integers. Let define the following generating functions (GF) D(z), P (z, t),

D(z) = D0 +
∑

h∈C0

zhDh, |zr| ≤ 1, 0 ≤ r ≤ K, |z| ≤ 1, 0 ≤ r ≤ K,

P (z, t) =
∑

n≥0

znP (n, t),

where z = (z1, z2, . . . , zk) and zh = (zh1
1 , zh2

2 , . . . , zhk

k ).

Theorem 1. The PGF of counting process
{
N(t), J(t), t ≥ 0

}
P (z, t) satisfies

the basic differential equation

∂

∂t
P (z, t) = D(z)P (z, t), |z| ≤ 1, (1)

with initial conditions P (z, 0) = 1. The solution of differential equation Eq. (1)
is given by

P (z, t) = eD(z,t)t. (2)
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Proof. The transition probabilities
{
P (n, t), n ≤ 0

}
of CP N(t) satisfy the

following Kolmogorov backward differential equations

d

dt
P (n, t) = P (n, t)D0 +

∑

h≤n, h∈C0

P (n − h, t)Dh, n ≥ 0.

with initial condition Pi(n, 0) = 0, n > 0, Pi(0, 0) = 1, i = 1, 2, . . . , k. Pre-
multiplying each equation by corresponding zn after summation we get differ-
ential equations for PDF P (z, t). The solution of this equation in matrix expo-
nential form is given by Eq. (2).

By Theorem 1, we can find moments of CP
{
N(t), J(t), t ≥ 0

}
. For example,

the mean E[Nh(t)] and variance V [Nh(t)] of CP N(t) can be found explicitly

E[Nh(t)] = λht + θ(eDt − I)(D − eπ)−1Dhe, t ≥ 0,

where θ is a initial distribution of PP J(t), λh = πDhe is the stationary arrival
rate of type h batches.

V ar[Nh(t)] = [λh − 2λ2
h − 2πDh(D − eπ)−1Dhe]t

+2πDh(D − eπ)−1(eDt − I)(D − eπ)−1Dhe, t ≥ 0.

If as an initial distribution use vector π then for stationary arrival rate of all
batches of customers we get E[Nh(t)] = λht. The stationary arrival rate of all
types of customers is given by λ = ΣhDhe. The stationary arrival rates of type
r customers and all customers regardless of type arriving in [0, t) are given by

E[Nr(t)] = λrt, E[N(t)] = λt =
K∑

r=1

λrt,

where λr =
∞∑

n=1
n

∑

h∈C0, hr=n

πDhe.

4 Thinning MMAP

Let consider the following Bernoulli thinning process of MMAP. Each type r
customer which arrives at moment t can join to main stream by probability
pr(t) and can be ignored by probability 1 − pr(t). It can be shown (see e.g.
[5,34]), that the main stream is an MMAP process with characteristic matrices
D0,T (t), Dh,T (t).

Lemma. The thinned process is a MMAP which counting process has matrix
GF DT (z, t) and PGF PT (z, t), which are defined as follow

DT (z, t) =
∑

h1≥0

∑

h2≥0
h1+h2+...+hk≥1

. . .
∑

hr≥0

Dh

k∏

r=1

[1 − pr(t) + zrpr(t)]hr , (3)
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PT (z, t) = e

t∫

0
DT (z,t)dx

.

The proof of the lemma is based on Theorem 1, MMAP properties and Bernoulli
thinning operation properties [5,34]. Let just interpret the GF DT (z, t) by CMM.
Let each type r customer of thinned stream marks red with the probability zr and
marks blue with probability 1−zr. Then the left side of Eq. (3) is the total rate of
not blue customers at moment t. Right side means the batch h = (h1, h2, . . . , hk)
arrives with rate Dh at moment t. In this batch each type r customer is red with
probability 1 − pr(t) + zrpr(t) and all hr type r customers in this batch are red
with probability [1 − pr(t) + zrpr(t)]hr . The probability that in arriving batch

h are not any blue customers is
k∏

r=1
[1 − pr(t) + zrpr(t)]hr . Then the product

Dh

k∏

r=1
[1 − pr(t) + zrpr(t)]hr is a rate of red batch of size h arriving at time t.

Taking the sum over all possible batches arriving at moment t we obtain DT (z, t)
the rate of not blue customers arriving at moment t.

The subject of our interest is the joint distribution

P (n,m, x, y, t) = P (Ns(t) = n, M(t) = m, α(t) ≤ x, β(t) ≤ y).

5 Model Analysis

Let suppose that the environmental SMP ξ(t), t ≥ 0 is in state i ∈ S and
consider the dynamic of the model during time interval [u, t). Each type r
customer arriving at moment u will be in service at moment t by probabil-
ity 1 − Bri(t − u) and will finish its service before moment t by probability
Bri(t − u). Let Ai

jk(n,m, x, y, u, t) be the joint probability that n customers
are in service at moment t, and m customers are already served in [u, t), total
accumulated resources in the model at moment t is α(t) ≤ x and the total
accumulated served resource during interval [u, t) is β(t) ≤ y, PP J(0) is in
phase i ∈ E under condition that at initial moment t = 0 the model was
empty, and PP J(0) was in phase k ∈ E: Ai

jk(n,m, x, y, u, t) = P (Ns
i (u, t) =

n, Mi(u, t) = m, α(t) ≤ x, β(t) ≤ y, J(u) = j|N0
i = 0, Mi(0), J(0) = k).

Let be Ãi(z1, z2, s1, s2, u, t) = ||Ãi
jk(z1, z2, s1, s2, u, t)|| the matrix which ele-

ments are Laplace–Stieltjes transformation (LST) and z transformation of
Ai

jk(z1, z2, s1, s2, u, t); F̃ i
ri(s1) and G̃i

ri(s1) be the LST of F i
ri(s1) and Gi

ri(s1).
For homogeneous model we have Ãi(z1, z2, s1, s2, t) = Ãi(z1, z2, s1, s2, u, t), e.g.
see [7].

Ãi(z1, z2, s1, s2, t) =
∞∑

n=0

∞∑

m=0

zn
1 zm

2

∞∫

0

∞∫

0

e−s1x−s2yAi(n,m, dx, dy, t),

|z1| ≤ 1, |z2| ≤ 1,
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F̃ i
ri(s1) =

∞∫

0

e−s1xdFri(x), G̃i
ri(s2) =

∞∫

0

e−s1ydGri(y).

For the PGF Ai(z1, z2, s1, s2, t) of the model MMAPr|Gr| can be proved the
following result (e.g. see [20,35,36]).

Theorem 2. The PGF Ãi(z1, z2, s1, s2, t) satisfy the following basic differential
and integral equations

Ãi(z1, z2, s1, s2, t) = eD0(i)t+
∫ t

0

eD0(i)uS̃i(z1,z2,s1,s2,u)Ãi(z1, z2, s1, s2, t − u)du, (4)

∂

∂t
Ãi(z1, z2, s1, s2, t) = [D0(i)+S̃i(z1, z2, s1, s2, t)]Ãi(z1, z2, s1, s2, t), i ∈ S, (5)

with initial conditions Ãi(z1, z2, s1, s2, t) = I.
Here

S̃i(z1, z2, s1, s2, t) =
∞∑

h=1

Dhi

K∏

r=1

[zr2G̃ri(s2)Bri(t) + zr1F̃ri(s1)(1 − Bri(t))]hr .

The proof of Eq. (4) can be done by using the method of collective marks
[32] or renewal arguments [35–37]. For the proof of Eq. (4) we can use Eqs. (1)
and (3). Let consider the proof by the CMM. First of all let note that each
type r customer which arrivs at moment u will be served up to moment t with
probability Br(t − u) or will be in the model at moment t with probability
1−Br(t−u). We mark each served type r customer red or blue with probabilities
z2rG̃r(s2) and 1−z2rG̃r(s2) resp. Alike, we mark each serving in the model type
r customer “red” or “blue” with probabilities z1rF̃r(s1) and 1 − z1F̃1r(s1) resp.
Then on the left side of Eq. (4) Ãi(z1, z2, s1, s2, t) is the probability that at
moment t in the model there are not blue customers. This event is possible if
either the model is free and during interval of time [0, t) there are not any arrivals
of customers (with probability eD0(i)u) or at moment u a batch h arrives (with
probability eD0(i)uDh(i)du), all customers in the batch are red (with probability
ΠK

r=1[zr2G̃ri(s2)Bri(u) + zr1F̃ri(s1)(1 − Bri(u))]hr ), and in interval t − u in the
model are not any blue customers (with probability Ãi(z1, z2, s1, s2, t−u)). After
using the total probabilities rule we derive the Eq. (5).

Theorem 3. The solution of Eqs. (4) and 5 is given by

Ai(z1, z2, s1, s2, t) = exp{
t∫

0

[D0(i) + S̃i(z1, z2, s1, s2, u)]du}, (6)

|z1| ≤ 1, |z2| ≤ 1.

The proof is based on thinning lemma.



202 K. Kerobyan et al.

When z2 = 1, s2 = 0 from Theorem 3 we obtain the LST of PGF joint
distribution number of busy servers and total accumulated resources in the model
at moment t: ˜̄P (z1, s1, t, i) = Ãi(z1, 1, s1, 0, t),

˜̄P (z1, s1, t, i) = exp

⎧
⎨

⎩

t∫

0

[
D0(i) + S̃i(z1, s1, u)

]
du

⎫
⎬

⎭
,

where S̃i(z1, s1, t) =
∞∑

h=1

Dhi

K∏

r=1

[
Bri(t) + zriF̃ri(s1)(1 − Bri(t))

]hr

. When z1 =

1, s1 = 0, from (6) we obtain the LST of PGF joint distribution number of served
customers and total served resources during interval [0, t):

W̃ i(z2 = 1, s2, t) = e

t∫

0
[D0(i)+S̃i(z2,s2,u)]du

,

where S̃i(z2, s2, t) =
∞∑

h=1

Dhi

K∏

r=1

[
zr2G̃ri(s2)Bri(t) + (1 − Bri(t))

]hr

.

If we suppose that at time t = 0, there are h0 = (h01, h02, ..., h0k) initial
customers in the model then for Ãi(z1, z2, s1, s2, t) we get

Ãi(z1, z2, s1, s2, t) =
K∏

r=1

[
zr2G̃ri(s2)Bri(t) + (1 − Bri(t))

]h0r ·

e

t∫

0
[D0(i)+S̃i(z1,z2,s1,s2,u)]du

.

Using Theorem 3 we can find particular cases of PGFs for PH|G|∞ and
BMAP |G|∞ models [7,9].

Let consider an infinite-server queue BGk|Gk|∞ with general distributed
interarrival time of batches and K types of customers. Let A(t) be the DF of
interarrival epochs between batches, and Br(t) is a service time DF of type
r customers. In each inter-arrival epoch by a(n) = a(n1, . . . , nK) probability
generates a batch n with n1 customers of type 1, ..., nK customers of type
K, where

∑

n1

∑

n2

. . .
∑

nk

a(n1, n2, . . . , nk) = 1, a(0, 0, . . . , 0) = 0. Then for PGF

Ã(z1, z2, s1, s2, t) of the model BGk|Gk|∞ we can prove the result below.

Theorem 4. The PGF Ã(z1, z2, s1, s2, t) satisfies the following basic integral
equations

A(z1, z2, s1, s2, t) = 1 − A(t)

+

t∫

0

S̃(z1, z2, s1, s2, u)Ã(z1, z2, s1, s2, t − u)dA(u), (7)

where

S̃(z1, z2, s1, s2, u) =
∞∑

n=0
n1+n2+...+nk=1

a(n)
K∏

r=1

[
zr2G̃r(s2)Br(t)
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+zr1F̃r(s1)(1 − Br(t))
]nr

.

Proof. Let mark the customers as in case of Theorem 2. Then Ã(z1, z2, s1, s2, t)
in left side of (7) is the probability of event “no blue customers was served in the
model during interval of time [0, t) no blue customer is serving in the model at
moment t”. This event can be realized in two mutually independent ways: either
“the first customer arrives into empty model after time t ” (with probability 1−
A(t)) or “first batch of customers arrives at moment u, u < t ” (with probability
dA(u)),“this batch includes customers of different types and all customers in the

batch are red” (with probability
K∏

r=1
[zr2G̃r(s2)Br(t) + zr1F̃r(s1)(1 − Br(t))]nr ).

Then applying the total probabilities rule we get the result.

Remark. Let consider the service policy when we do not distinguish the cus-
tomers of different batches and all customers in the batch serve together as one
customer. In this case the MMAP transforms into equivalent MAP with char-
acteristic matrices D0 = C, D1 =

∑

h∈C0
Dh. Let the r.v. γ0 be a service time of

batches of customers with general distribution B0(t) and mean value γ̄01. Denote
by N(t) number of batches which arrive in interval [0, t) and by J(t) the PP of
MAP with generator matrix D = D0+D1. P (n, t), n ≥ 0 are m×m size matrices
with elements Pr(n, t, i) = P{Ns(t) = n, J(t) = i|Ns(0) = 0, J(0) = r}, where
Pr(n, t, i) is a conditional probability of having n batches in service at time t
and PP is in state i given that at initial moment model was empty and PP was
in state. If R(z, t) be the PGF of {P (n, t), n ≥ 0}, then it satisfies the following
differential equation

∂

∂t
P (z, t) = P (z, t) [D0 + D1(B0(x) + z(1 − B0(x)))] , |z| ≤ 1, (8)

with initial condition P (z, 0) = I.
The solution of Eq. (8) in matrix exponential form is:

P (z, t) = e

t∫

0
[D0+D1(B0(t)+z(1−B0(t)))]dx

.

Remark. Let consider the service policy when we do not distinguish the cus-
tomers of the same batch, i.e. all they have the same serve time. The arrival
process is a MMAP with characteristic matrices D0, D(n) =

∑

h1+h2+...+hK=n

Dh,

where matrix D(n) correspond to arrival of the batch with customers. In this
case MMAP transforms to ordinary BMAP [36,37] with characteristic matrices
{D0, D(n), n > 0}. The service time of customers has general distribution B(t)
and mean value γ̄1. Thus for this model PGF we get

P (z, t) = e

t∫

0

[

D0+
∞∑

n=1
D(n)(B(x)+z(1−B(x)))n

]

dx
= e

t∫

0
[D0+D(B(x)+z(1−B(x)))]dx

,

where D(z) =
∞∑

n=1
D(n)(B(x) + z(1 − B(x)))n is a rate GM of BMAP.
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6 MMAPk|Gk|∞ Model with Catastrophes

Let consider the general homogeneous Markovian model under influence of SMP
generated catastrophes. As in [17], after every transition of environmental SMP
the model jumps into the special state, let say 0-state, and then works from
that state. When the SMP is in i state all parameters of the model are related
to that state: DF of inter-arrival time of customers, DF and rates of service
time of customers, their resource vectors. Let P̄ (n, t, i) and P (n, t, i) defined the
probabilities of having in the model n = (n1, n2, . . . , nk) customers at moment t
when environmental SMP is in state i, for the models without catastrophes and
with catastrophes, resp. The following theorem gives the connection between
these two models probabilities,

Theorem 5. The probabilities P (n, t, i) satisfy the following integral equations

P (n, t, i) = (1 − Fi(t))P̄ (n, t, i) +
∑

j∈S

t∫

0

P (n, t − u, j)dQij(u), i ∈ S.

The solution of the previous equations can be found

P (n, t, i) = (1−Fi(t))P̄ (n, t, i)+
∑

j∈S

t∫

0

(1−Fi(t−u))P̄ (n, t−u, j)dHij(u), i ∈ S,

where F (t) = {Fi(t), i ∈ S} is a sojourn time distribution vector of SMP:
Fi(t) =

∑

j∈S

Qij(t), i ∈ S. H(t) = ||Hij(t)|| is a renewal matrix of SMP which

components satisfy the following equations

Hij(t) = 1 − Fi(t) +
∑

k∈S

t∫

0

Hkj(t − u)dQik(u).Hi(t) =
∑

j∈S

Hij(t), i, j ∈ S.

The proof can be done by using standard renewal arguments (see for exam-
ple [38]). Let P̃ (z, t, i) and ˜̄P (z, t, i) be the PGFs of P (z, t, i) and P̄ (z, t, i),
respectively.

Theorem 6. The PGF satisfy the following integral equations

P̃ (z, t, i) = (1 − Fi(t)) ˜̄P (z, t, i) +
∑

j∈S

t∫

0

P̃ (z, t − u, j)dQij(u), i ∈ S,

which solution is

P (z, t, i) = (1−Fi(t)) ˜̄P (z, t, i)+
∑

j∈S

t∫

0

(1− Fj(t − u)) ˜̄P (z, t− u, j)dHij(u), i∈ S.

The proof can be done by using standard renewal arguments or by CMM (e.g.
see [38]).
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Theorem 7. The limiting distributions of P (n) and P̃ (z) are given by

P (n) = lim
t→∞ P (n, t, i) =

∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u))P̄ (n, u, j)du, i ∈ S,

P̃ (z) = lim
t→∞ P̃ (z, t, i) =

∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u)) ˜̄P (z, u, j)du, i ∈ S, (9)

where η̄i =
∞∫

0

(1 − Fi(u))du, qi = η̄iρi∑

r∈S

η̄rρr
,

∑

r∈S

qr = 1, ρi =
∑

r∈S

priρr,
∑

r∈S

ρr =

1, pri = Qri(∞), r, i ∈ S.

Let f̂(s) denote the Laplace Transformation of a function f(x), f̂(s) =
∞∫

0

e−suf(u)du. The transient and stationary moments Lr(t) and Lr of P (n, t, i)

can be found as

L1r(t) =
∂P̃ (z, t, i)

∂zr

∣
∣
∣
∣
∣
z1=...=zk=1

, L2r(t) =
∂2P̃ (z, t, i)

∂z2r

∣
∣
∣
∣
∣
z1=...=zk=1

,

L1r = lim
t→∞ L1r(t), L2r = lim

t→∞ L2r(t).

Corollary. When Fi(t) = 1−e−vi , i ∈ S then for LT of P (n, t, i), PGF P̃ (z, t, i)
and their limiting values we get

P̂ (n, s, i) = ˆ̄P (n, s + vi, i) +
1
s

∑

j∈S

ˆ̄P (n, s + vj , j)Ĥij(s), i ∈ S,

ˆ̃P (z, s, i) =
ˆ̄̃
P (z, s + vi, i) +

1
s

∑

j∈S

ˆ̄̃
P (z, s + vj , j)Ĥij(s), i ∈ S,

P̃ (z) =
∑

i∈S

qivi
ˆ̄̃
P (z, vi, i), P (n) =

∑

i∈S

qivi
ˆ̄P (n, vi, i).

Let consider the infinite-server models MMAPk|Gk|∞ with catastrophes. In
this model the environmental SMP can be considered as a catastrophes pro-
cess. After every transition of this SMP all customers in the model are flushed
out instantly, the model jumps into empty state, and then continues its work
from this state. If SMP is in state i at moment t all parameters of the model
arrival process and service time distributions of customers, are function of i. Let
L(n, x, t, i) is a matrix, L(n, x, t, i) =

∥
∥Ljr(n, x, t, i)

∥
∥, where Ljr(n, x, t, i) is the

probability of event “in the model there are n = (n1, n2, . . . , nK) customers at
moment t, PP J(t) is in the phase j, total accumulated resource is x and SMP
ξ(t) is in state i under condition that at initial moment t = 0 the model was
empty, and PP J(0) was in phase r ∈ S,

Ljr(n, x, t, i)= P (Ns
i (t)= n, α(t) ≤ x, J(t)= j, ξ(t)= i|Ns

i (0)= 0, J(0) = r) .

Let L(n, s, t, i) be the LST of L(n, x, t, i).
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Theorem 8. The probabilities L(n, s, t, i) be the LST of L(n, s, t) satisfy the
following renewal equations

L(n, s, t, i) = (1 − Fi(t))P̄ (n, s, t, i) +
∑

j∈S

t∫

0

L(n, s, t − u, j)dQij(u),

which solutions are given by

L(n, s, t, i) = (1−Fi(t))P̄ (n, s, t, i)+
∑

j∈S

t∫

0

(1−Fj(t−u))P̄ (n, s, t−u, j)dHij(u),

L(n, s, t) =
∑

i∈S

p0i (1 − Fi(t))P̄ (n, s, t, i) +
∑

j∈S

t∫

0

(1 − Fj(t − u))P̄ (n, s, t − u, j)dHj(u),

where Hj(t) =
∑

k∈S

p0kHkj(t). The theorem can be proved by using properties of

renewal arguments [38].
If SMP ξ(t), t ≥ 0 is an irreducible, ergodic process then for L̃(n, s, t) when

t is tending toward +∞ by means key renewal theorem from Eq. (9) we derive
following asymptotic result

L(n, s) = lim
t→∞ L(n, s, t) =

∑

i∈S

qi

η̄i

∞∫

0

(1 − Fi(u))P̄ (n, s, u, i)du. (10)

Let L̃(z, s, t) be PGF of L(n, s, t) ,L̃(z, s, t) =
∞∑

n=0
znL(n, s, t), and L̃(z, s) =

lim
t→∞ L̃(z, s, t). Thus for L̃(z, s, t) and L̃(z, s) we derive

L̃(z, s, t) =
∑

i∈S

p0i (1 − Fi(t))
˜̄P (z, s, t, i) +

∑

j∈S

t∫

0

(1 − Fj(t − u)) ˜̄P (z, s, t − u, j)dHj(u),

L̃(z, s) =
∑

i∈S

qi

η̄i

∞∫

0

(1 − Fi(u)) ˜̄P (z, s, u, i)du.

By substitution the expression for ˜̄P (z, s, t, i) into Eq. (10) the expression for
PGF of joint distribution of number of busy servers and total accumulated
resources in the model at moment t given that at t = 0 SMP was in state i
for the model with catastrophes and its limiting value we get

Theorem 9. The PGFs L̃(z, s, t, i), L̃(z, s, t) and its limiting value L̃(z, s) are
given by

L̃(z, s, t, i) = e

t∫

0
[D0(i)+S̃i(z,s,u)]du

(1 − Fi(t))
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+
∑

r∈S

t∫

0

e

t−u∫

0
[D0(r)+S̃r(z,s,x)]dx

dQir(u), i ∈ S,

which solutions are

L̃(z, s, t, i) = e

t∫

0
[D0(i)+S̃i(z,s,u)]du

(1 − Fi(t))

+
∑

r∈S

t∫

0

(1 − Fr(t − u))e

t−u∫

0
[D0(r)+S̃r(z,s,x)]dx

dHir(u), i ∈ S,

L̃(z, s, t) =
∑

i∈S

p0i e

t∫

0
[D0(i)+S̃i(z,s,u)]du

(1 − Fi(t))

+
∑

r∈S

t∫

0

(1 − Fr(t − u))e

t−u∫

0
[D0(r)+S̃r(z,s,x)]dx

dHr(u),

L̃(z, s) = lim
t→∞ L̃(z, s, t, r) =

∑

i∈S

qi

η̄i

∞∫

0

(1 − Fi(x))e

x∫

0
[D0(i)+S̃i(z,s,u)]du

dx, r ∈ S.

Corollary. When Fi(t) = 1 − e−vi , i ∈ S then for LT of PGF L̃(z, s, t, i) and
their limiting values we get

L̃(z, s, s, i) = ˜̄P (z, s, s + vi, i) +
1
s

∑

r∈S

˜̄P (z, s, s + vr, r)Ĥir(s), i ∈ S,

L̃(z, s) =
∑

r∈S

˜̄P (z, s, vr, r)qrvr. (11)

If SMP is a simple renewal process with exponential distributed renewal time
F (t) = 1− e−vt then by Eq. (11) we get the results for homogeneous model [20].
For example, for L̃(z, s) and L̃(z, s, s) we obtain

ˆ̃L(z, s, s) =
(
1 +

v

s

) ˆ̄̃
P (z, s, s + v), L̃(z, s) = v

ˆ̄̃
P (z, s, v).

7 Performance Evaluation of the Model

Let ω1r(t), ω1r denote the transient and steady state mean of queue length of
type r customers. Then for ω1r(t) and ω1r we get

ω1r(t) = lim
s1→0

ω1r(s1, t), ω1r(s1, t) =
∂L̃(z1, s1, t)

∂z1r

∣
∣
∣
∣
∣
z1r=1,z11=z12=...=z1k=1

,
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ω1r = lim
s1→0

ω̄1r(s1), ω̄1r(s1) =
∂P̃ (z1, s1)

∂z1r

∣
∣
∣
∣
∣
z1r=1,z11=z12=...=z1k=1

,

ω1r(s1, t) =
∑

i∈S

p0i (1 − Fi(t))ω̄1r(s1, t, i)

+
∑

j∈S

t∫

0

(1 − Fj(t − u))ω̄1r(s1, t − u, j)dHj(u),

ω1r(s1) =
∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u))ω̄1r(s1, u, j)du.

Where ω̄1r(s1, t, i) is a transient mean queue length of r type customers of the
model without catastrophes when the SMP is in state i.

Let δr(t), δr, r = 1, 2, . . . ,K, be the transient and steady-state mean values
of accumulated type r resources in the model and δ be a total accumulated
resources in the model.

δr(t) = πδr(t)e, δr(t) = lim
s1→0

∂L̃(z1, s1, t)
∂s1r

∣
∣
∣
∣
∣
z11=z12=...=z1k=1

,

δr(t) =
∑

i∈S

p0i (1 − Fi(t))δ̄r(t, i) +
∑

j∈S

t∫

0

(1 − Fj(t − u))δ̄r(t − u, j)dHj(u),

δr =
∑

j∈S

qj

η̄j
λjr c̄1r(j)

∞∫

0

u∫

0

(1 − Fj(u))(1 − Bjr(x))dxdu,

where δr =
∑

j∈S

qj
η̄j

λjr c̄1r(j)
∞∫

0

u∫

0

(1 − Fj(u))(1 − Bjr(x))dxdu, c̄1r(j) is a mean

value of DF Cjr(x).

δ =
K∑

r=1

δr =
K∑

r=1

∑

j∈S

qj

η̄j
λjr c̄1r(j)

∞∫

0

u∫

0

(1 − Fj(u))(1 − Bjr(x))dxdu.

If Llosr denote the steady state mean number of destroyed type r customers,
then

Llosr = lim
s1→0

πLlosr(s1)e,

where Llosr(s1) =
∑

j∈S

qj
η̄j

∞∫

0

ω̄1r(s1, u, j)dFj(u).

Llosr =
∑

j∈S

qj

η̄j
λjr

∞∫

0

u∫

0

(1 − Bjr(x))dxdFj(u).
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If Llos is the steady-state total mean number of destroyed customers of all
types, then

Llos =
K∑

r=1

Llosr =
K∑

r=1

∑

j∈S

qj

η̄j
λjr

∞∫

0

u∫

0

(1 − Bjr(x))dxdFj(u).

Let Lqr and Lq be the steady state mean number of type r and all types cus-
tomers in the model. Then

Lqr = πω̃1re =
∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u))π ˜̄ω1r(u, j)edu

=
∑

j∈S

qj

η̄j
λjr

∞∫

0

u∫

0

(1 − Fj(u))(1 − Bjr(x))dxdu,

Lq =
K∑

r=1

Lqr =
K∑

r=1

∑

j∈S

qj

η̄j
λjr

∞∫

0

u∫

0

(1 − Fj(u))(1 − Bjr(x))dxdu.

Suppose that MMAP is defined by following matrices D0(i) = −αiI, Dh(i) =
αip(h1, . . . , hK)I; i ∈ S, h ∈ C0, where I is an identity matrix. Then for
P̄ (n, t, i), L(n, t), L(n), and Llosr we obtain

D̃i(z, u, t) =
∞∑

n=0

p(n1, n2, ..., nK)
K∏

r=1

[zri(1 − Gri(t − u)) + Gri(t − u)]nr},

˜̄P (z, t, i) = e
−αi

t∫

0
{1−D̃i(z,u,t)}du

, (12)

L̃(z, t) =
∑

j∈S

p0i (1 − Fi(t))e
−αi

t∫

0
{1−D̃i(z,u,t)}du

+
∑

j∈S

t∫

0

(1 − Fj(t − u))e
−αj

t−u∫

0
{1−D̃j(z,u,t−u)}du

dHj(u),

L̃(z) =
∑

i∈S

qi

η̄i

∞∫

0

(1 − Fi(u))e
−αj

t∫

0
{1−D̃i(z,u,t)}du

du,

Llos =
K∑

r=1

∑

j∈S

qj

η̄j
λjr

∞∫

0

u∫

0

(1 − Bjr(x))dxdFj(u),

where λir = αi

∞∑

n1=0
...

∞∑

nK=0
nrp(n1, n2, . . . , nK).

Equation (12) is a known result for Mr|Gr|∞ model (see for example [13]
formula (4)).
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8 Conclusion

We consider infinite-server MMAPk|Gk|∞ queue in SM random environment,
marked MAP arrival of customers, random resource vector of each type of cus-
tomers and catastrophes. The joint PGF of transient and stationary distribu-
tions of number of busy servers and numbers of served customers, as well as
the LT of joint distributions of total accumulated resource in the model and
total accumulated resource vectors of served customers during time interval are
found. The renewal equations for transient and stationary PGF of queue sizes
and resource vectors of different type of customers are found for MMAPk|Gk|∞
and BGk|Gk|∞ queue models. For homogeneous Markov model in SM random
environment and catastrophes the transient and limiting distributions renewal
equations and their solutions are found. All results are obtained using CMM
and renewal process methods. The obtained results may be applied for com-
puter system and network performance metrics evaluation, as well as for design
of optimal strategies of resource management of a wide class of subsystems of
New Generation Networks, whereas the queue MMAPk|Gk|∞ may be used as
a model of these subsystems.
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Abstract. In this paper, we consider a single server queueing model
M/GI/GI/1/1 with two types of calls: incoming calls and outgoing calls.
Incoming call enters the system and goes into service if the server is free.
If the server is busy, call instantly goes to orbit, after which the call
retries to go into service. The server makes an outgoing call in its idle
time. We will be reviewing a system with unreliable server. In a free
state and while servicing outgoing calls the server is reliable and unable
to crash. If while servicing incoming call the server crashes, the incom-
ing call stays at the server and as soon as server recovers the call goes
into afterservice. For that system we’ve obtained probability distribu-
tion of server states, condition for the existence of a stationary mode
and probability distribution of a number of incoming calls in the system.

Keywords: Retrial queueing system · Incoming and outgoing calls
Unreliable server

1 Introduction

Retrial queueing systems are characterized by the fact that in case the server
is busy a new call that comes into the system at that time is not lost, instead
it goes to the orbit and tries to enter service again later. This scene appears
in various communication systems with random access where several users are
using the same communication channel together. These situations also appear
in service systems such as call-centers where clients who can not connect to the
operator call back later [1,2]. In cellular communication systems return visit
is also common and thus taking it into account is crucial in designing such
systems [3,4].

In service systems such as call-centers due to optimization operator’s down-
time should be minimized in order to increase productivity. This is the founding
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reason for creating mixed call-centers where operator not only does receive calls
from outside, but also makes outgoing calls in his downtime [5–8]. These sit-
uations are modeled by retrial queueing systems with outgoing calls in which
server handles both incoming and outgoing calls.

This type of models was first proposed by Falin [9], who studied the model
where the service intensities of both incoming and outgoing calls are the same.
Thus in his work Falin obtained integral formulas for partial generating functions
and some explicit expressions for characteristics of retrial queue M/G/1/1 with
two-way communication. Artalejo and Resing [10] expanded Falin’s model for
M/G/1/K retrial queueing systems. Falin et al. [11] obtained first moments
for the queue length of retrial queue system M/G/1/1 where service times of
outgoing and incoming calls differ. Martin and Artalejo in their work [12] studied
the queueing system M/G/1/1 with two-way communication where calls from
orbit are going into service in order after an exponential delay.

Artalejo and Phung-Duc [7] are studying the queueing system M/M/1/1
with two-way communications and distinct service times of incoming and out-
going requests. In this work the authors obtained an explicit solution for a two-
dimensional probability distribution of server states and a number of calls on the
orbit. Additionally, the factorial moments were obtained, based on which the pro-
posed numerical and recurrent algorithms may be applicable. Nazarov et al. [13]
derive asymptotic results for the same model in [7] under slow retrial rate.

Along with the potential to make outgoing calls the situations could occur
where operation of the server could be interrupted by a crash then the repair
takes place for some time (recovery period).

Systems with unreliable servers are commonly the subjects of modern
research [14]. Work [15] studied systems with calls going to orbit and repeated
service. Results in [15] can be applied to work with multimedia applications. In
addition, systems with crashing servers in one form or another are commonly
occurring while analysing transport systems [16].

In this work we are reviewing retrial queueing system M/GI/GI/1/1 with
two-way communication, unreliable server and afterservice of interrupted calls.
For that system we’ve obtained probability distribution of server states, condi-
tion for the existence of a stationary mode and probability distribution of the
number of calls in the system.

Our model reflects a real situation in cognitive radio networks where sec-
ondary users utilize the licensed channel of primary users when the primary user
is not present in the system. Secondary users in cognitive networks correspond
to incoming calls in our model. The service of incoming calls may be interrupted
by primary calls. This feature is reflected in the breakdown mechanism where
the breakdown event corresponds to the arrival of a primary user. The service
time of primary user corresponds to the time to repair in our model. The unique
feature of this paper is we provide a buffer for the interrupted secondary user so
that its service is restarted upon the departure of the primary user.

The rest of our paper is organized as follows. In Sect. 2, we present the model
description and definitions of parameters. Section 3 shows the set of Kolmogorov
equation describing the dynamics of the system. Section 4 derives the probability
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distribution of the state of the server while Sect. 5 shows the characteristic func-
tions of the joint queue length distribution of the number of calls in the orbit
and the state of the server. Section 6 demonstrates some numerical examples and
concluding remarks are presented in Sect. 7.

2 Model Description and Problem Definition

We consider a single server queueing model with two types of calls: incoming calls
and outgoing calls. Incoming calls arrive at the system according to a Poisson
process with rate λ.

Incoming call enters the system and goes into service if the server is free,
server then starts service for a time duration, distributed with a function B1(x).
If at the moment of entering system the server is busy, call instantly goes to
orbit and stays there for a exponentially distributed duration of time with a rate
σ, after which the call retries to go into service.

If the server is idle (empty) it starts making outgoing calls to the outside
(not from the orbit) with rate α, service time of which has distribution function
B2(x).

We will be reviewing a system with unreliable server [17], which crashes with
intensity γ and recovers with intensity μ while servicing incoming calls. In a free
state and while servicing outgoing calls the server is reliable and unable to crash.

If while servicing incoming call the server crashes, the incoming call stays at
the server and as soon as server recovers the call goes into afterservice. When
the server is servicing an incoming call or the server is recovering, incoming calls
are going to the orbit.

Let’s denote process i(t) as a number of incoming calls in the system at the
moment of time t.

Research tasks in this work:

1. Find condition for the existence of a stationary mode in a reviewed retrial
queue.

2. Find characteristic function and stationary probability distribution

P (i) = P {i(t) = i} . (1)

3 Kolmogorov System of Equations

Let’s denote:
the server states at the moment of time t as k(t): 0 if the server is free, 1

if the server is busy serving an incoming call, 2 if the server is busy serving an
outgoing call, 3 if the server is in a state of recovery;

z(t) - remaining time of service, when k = 1, 2, 3.
Let’s also denote probabilities

P {k(t) = k, i(t) = i, z(t) < z} = Pk(i, z, t), k = 1, 2, 3,
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P {k(t) = k, i(t) = i} = Pk(i, t), k = 0. (2)

Since the random process {k(t), i(t), z(t)} , k = 1, 2, 3; {k(t), i(t)} , k = 0 with a
variable number of components is a Markov process, then we have to compose
a system of Kolmogorov equations for the probability distribution (2).

We denote Pk(i,∞, t) = Pk(i, t), k = 1, 2. When k = 3 z(t) is remaining time
of servicing a call, that is waiting for the recovery of the server to complete its
service.

System of Kolmogorov equations for the probability distribution

{P0(i, t), P1(i, z, t), P2(i, z, t), P3(i, z, t)} :

−(λ + α + iσ)P0(i, t) +
∂P1(i + 1, 0, t)

∂z
+

∂P2(i, 0, t)
∂z

=
∂P0(i, t)

∂t
,

∂P1(i, z, t)
∂z

− ∂P1(i, 0, t)
∂z

− (λ + γ)P1(i, z, t) + λP1(i − 1, z, t)

+λB1(z)P0(i − 1, t) + iσB1(z)P0(i, t) + μP3(i, z, t) =
∂P1(i, z, t)

∂t
,

∂P2(i, z, t)
∂z

− ∂P2(i, 0, t)
∂z

−

λP2(i, z, t) + λP2(i − 1, z, t) + αB2(z)P0(i, t) =
∂P2(i, z, t)

∂t
,

− (λ + μ)P3(i, z, t) + λP3(i − 1, z, t) + γP1(i, z, t) =
∂P3(i, z, t)

∂t
. (3)

Let’s write down the last system in stationary mode:

−(λ + α + iσ)P0(i) +
∂P1(i + 1, 0)

∂z
+

∂P2(i, 0)
∂z

= 0,

∂P1(i, z)
∂z

− ∂P1(i, 0)
∂z

− (λ + γ)P1(i, z) + λP1(i − 1, z)

+λB1(z)P0(i − 1) + iσB1(z)P0(i) + μP3(i, z) = 0,

∂P2(i, z)
∂z

− ∂P2(i, 0)
∂z

− λP2(i, z) + λP2(i − 1, z) + αB2(z)P0(i) = 0,

− (λ + μ)P3(i, z) + λP3(i − 1, z) + γP1(i, z) = 0. (4)

Let’s introduce partial characteristic functions by denoting j =
√−1:

H0(u) =
∞∑

i=0

ejuiP0(i),

Hk(u, z) =
∞∑

i=1

ejuiPk(i, z), k = 1, 2, 3. (5)
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Rewriting system (4) in the following form:

−(λ + α)H0(u) + jσH ′
0(u) + e−ju ∂H1(u, 0)

∂z
+

∂H2(u, 0)
∂z

= 0,

∂H1(u, z)
∂z

− ∂H1(u, 0)
∂z

+ μH3(u, z)

+(λ(eju − 1) − γ)H1(u, z) + λB1(z)ejuH0(u) − jσB1(z)H ′
0(u) = 0,

∂H2(u, z)
∂z

− ∂H2(u, 0)
∂z

+ λ(eju − 1)H2(u, z) + αB2(z)H0(u) = 0,

(λ(eju − 1) − μ)H3(u, z) + γH1(u, z) = 0. (6)

In the system (6) we’ll do a limit as z → ∞. Denoting

Hk(u,∞) = Hk(u), k = 1, 2,

and after summing the resulting equations we will have a following equation

∂H1(u, 0)
∂z

− λejuH(u) = 0, (7)

where
H(u) = H0(u) + H1(u) + H2(u) + H3(u).

In Eq. (7), let us exclude the first equation in the system (6). Then the system
of equations for partial characteristic functions (6) could be rewritten in the
following form

∂H1(u, z)
∂z

− ∂H1(u, 0)
∂z

+ μH3(u, z)

+(λ(eju − 1) − γ)H1(u, z) + λB1(z)ejuH0(u) − jσB1(z)H ′
0(u) = 0,

∂H2(u, z)
∂z

− ∂H2(u, 0)
∂z

+ λ(eju − 1)H2(u, z) + αB2(z)H0(u) = 0,

(λ(eju − 1) − μ)H3(u, z) + γH1(u) = 0,

∂H1(u, 0)
∂z

− λejuH(u) = 0. (8)

This system will be the main in further research.

4 Probabilities Distribution of the Server States
and Condition of Existence of a Stationary Mode

Let’s prove the following assertion.

Theorem 1. For the considered retrial queue with aftersevice, denoting

b2 =
∫ ∞

0

xdB2(x)

the probabilities rk = P {k(t) = k} of the server states have the form
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r0 =
1

1 + αb2

(
1 − λb1

μ + γ

μ

)
,

r1 = λb1, r2 = αb2r0, r3 =
γ

μ
r1. (9)

Proof. Let’s denote

Hk(0, z) = rk(z), k = 1, 2, 3; H0(0) = r0,

∂Hk(u, 0)
∂z

∣∣∣∣
u=0

= r′
k(0), k = 1, 2, H ′

0(u)|u=0 = jm0, (10)

then substituting u = 0 to (8), we get the following system of equations:

r′
1(z) − r′

1(0) − γr1(z) + μr3(z) + B1(z)(λr0 + σm0) = 0,

r′
2(z) − r′

2(0) + αB2(z)r0 = 0,

−μr3(z) + γr1(z) = 0,

λ − r′
1(0) = 0. (11)

By summing the first and the third equations of the system (11) we’ll get

r′
1(z) = r′

1(0) − B1(z)(λr0 + σm0).

r′
2(z) = r′

2(0) − B2(z)αr0. (12)

From the fourth equation we have

r′
1(0) = λ.

Then we’ll get
r′
1(z) = λ − B1(z)(λr0 + σm0),

r′
2(z) = r′

2(0) − B2(z)αr0. (13)

By tending z → ∞ we have the following equations

λ = λr0 + σm0,

r′
2(0) = αr0.

Then we’ll rewrite system (13) in the following form

r1(z) = λ

∫ z

0

(1 − B1(x))dx,

r2(z) = αr0

∫ z

0

(1 − B2(x))dx. (14)
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Sending z → ∞ we’ll get the following expressions from the equations above and
the third equation of a system (11)

r1 = λb1,

r2 = αb2r0,

r3 =
γ

μ
r1. (15)

We’ll find the probability value r0 from the normalization condition in the form
of a first equation in (9). Theorem 1 is proved.

Corollary. The condition for the existence of the stationary mode in the
reviewed retrial queue with afterservice is the following inequality

λ <
μ

μ + γ
· 1
b1

. (16)

Proof. The condition (12) follows from the positivity of the probability r0 in (9).
The corollary is proved.

Let’s define the system flow capacity S as a maximum average number of calls
that could be serviced in a reviewed system per unit time. By inequality (16)
the value S for a reviewed system with outgoing calls and unreliable server is
defined by the equality

S =
μ

μ + γ
· 1
b1

. (17)

If the value of a parameter λ of an incoming flow is defined by the equality
λ = ρS, then at any values of a parameter 0 < ρ < 1 the stationary mode exists
in the reviewed system, and the probabilities rk from (9) server states could be
written in the following form

r0 =
1 − ρ

1 + αb2
,

r1 = ρ
μ

μ + γ
,

r2 = αb2
1 − ρ

1 + αb2
,

r3 = ρ
γ

μ + γ
, (18)

which does not depend of the form of distribution functions B1(x) and B2(x)
of a service time of both incoming and outgoing calls. When this happens the
intensity λ of the incoming flow linearly depends on S, which by (17) does not
depend on the form of distribution functions B1(x) and B2(x).

Further we find probability distribution P (i) of the number i(t) of calls in
retrial queueing system with afterservice of interrupted calls.
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5 Queue Length Distribution

Let’s denote the Laplace-Stieltjes transform

B∗
k(s) =

∞∫

0

e−sxdBk(s),

H∗
k(u, s) =

∞∫

0

e−szdHk(u, z), k = 1, 2, 3.

Let’s rewrite system (8) in the following form

−∂H1(u, 0)
∂z

+(λ(eju − 1) − γ + s)H∗
1 (u, s) + μH∗

3 (u, s) + B∗
1(s)(λejuH0(u) − jσH ′

0(u)) = 0,

−∂H2(u, 0)
∂z

+ (λ(eju − 1) + s)H∗
2 (u, s) + αB∗

2(s)H0(u) = 0,

(λ(eju − 1) − μ)H∗
3 (u, s) + γH1(u, s) = 0,

∂H1(u, 0)
∂z

− λejuH(u) = 0. (19)

This system will serve as a base in the further researches. Let’s write down the
third equation of the system (19) in the following form

H∗
3 (u, s) =

γ

μ − λ(eju − 1)
H∗

1 (u, s),

and by substituting this expression into the first equation we’ll get

−∂H1(u, 0)
∂z

+ B∗
1(s)

(
λejuH0(u) − jσH ′

0(u)
)

+
{

λ(eju − 1) − γ + s + μ
γ

μ − λ(eju − 1)

}
H∗

1 (u, s) = 0. (20)

Let’s denote
g1(u) = λ(1 − eju) + γ − μ

γ

λ(1 − eju) + μ
,

g2(u) = λ(1 − eju), g3(u) = λ(1 − eju) + μ, (21)

and rewrite system (19) in the following form

−∂H1(u, 0)
∂z

+ (s − g1(u))H∗
1 (u, s) + B∗

1(s)(λejuH0(u) − jσH ′
0(u)) = 0,

−∂H2(u, 0)
∂z

+ (s − g2(u))H∗
2 (u, s) + αB∗

2(s)H0(u) = 0,
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g3(u)H∗
3 (u, s) − γH1(u, s) = 0,

∂H1(u, 0)
∂z

− λejuH(u) = 0. (22)

Substituting s = g1(u) in the first equation and s = g2(u) in the second equation
of the system (22) we’ll get these equations

∂H1(u, 0)
∂z

= B∗
1(g1(u))(λejuH0(u) − jσH ′

0(u)),

∂H2(u, 0)
∂z

= αB∗
2(g2(u))H0(u). (23)

Let’s denote H∗
k(u, 0) = Hk(u), k = 1, 2, 3. Substituting s = 0 in (22), and

considering equalities (23) let’s rewrite system (22) in the following form

−g1(u)H1(u) + {1 − B∗
1(g1(u))} {

λejuH0(u) − jσH ′
0(u)

}
= 0,

−g2(u)H2(u) + αH0(u) (1 − B∗
2(g2(u))) = 0,

g3(u)H3(u) = γH1(u),

∂H1(u, 0)
∂z

− λejuH(u) = 0. (24)

We’ll rewrite the first three equations of system (24) in the form:

H1(u) =
1 − B∗

1(g1(u))
g1(u)

{
λejuH0(u) − jσH ′

0(u)
}

,

H2(u) = α
1 − B∗

2(g2(u))
g2(u)

H0(u),

H3(u) =
γ

g3(u)
H1(u). (25)

By substituting these expressions into the fourth equation of system (25) we’ll
get this equality

0 = λejuH(u) − B∗
1(g1(u))

(
λejuH0(u) − juH

′
0(u)

)

= λeju

[
H0(u)

(
1 + α

1 − B∗
2(g2(u))

g2(u)

)
+ H1(u)

(
1 +

γ

g3(u)

)]

−B∗
1(g1(u))

{
λejuH0(u) − jσH ′

0(u)
}

= λeju

[
H0(u)

(
1 + α

1 − B∗
2(g2(u))

g2(u)

)

+
1 − B∗

1(g1(u))
g1(u)

· g3(u) + γ

g3(u)
(
λejuH0(u) − jσH ′

0(u)
)]

−B∗
1(g1(u))

{
λejuH0(u) − jσH ′

0(u)
}

,
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which we’ll then rewrite in the form

λejuH0(u)
(

1 + α
1 − B∗

2(g2(u))
g2(u)

)

=
(
λejuH0(u) − jσH ′

0(u)
) (

B∗
1(g1(u)) − λeju 1 − B∗

1(g1(u))
g1(u)

· g3(u) + γ

g3(u)

)
.

(26)
Let’s denote

f(u) =
(

1 + α
1 − B∗

2(g2(u))
g2(u)

)

×
(

B∗
1(g1(u)) − λeju 1 − B∗

1(g1(u))
g1(u)

· g3(u) + γ

g3(u)

)−1

, (27)

and rewrite equality (28) in the following form

λejuH0(u)f(u) = λejuH0(u) − jσH ′
0(u), (28)

i.e. in the form of an ordinary differential equation

H
′
0(u) = j

λ

σ
ejuH0(u)(f(u) − 1),

with respect to the function H0(u), satisfying the condition H0(0) = r0. Solution
H0(u) of this equation will have the following form

H0(u) = r0exp

{
j
λ

σ

∫ u

0

ejx(f(x) − 1)dx

}
. (29)

By substituting last equation into (25) we’ll write

H1(u) =
1 − B∗

1(g1(u))
g1(u)

λejuH0(u)f(u),

H2(u) = α
1 − B∗

2(g2(u))
g2(u)

H0(u),

H3(u) =
γ

g3(u)
H1(u). (30)

Thus the following statement is proved.

Theorem 2. Using g1(u) and g2(u) from (22) and also f(u) from (27) then the
characteristic function of a number i(t) of calls in a reviewed retrial queueing
system with afterservice of repeated calls has the following form

H(u) = Meju = H0(u) + H1(u) + H2(u) + H3(u),

in which the partial characteristic functions Hk(u), k = 0, 3 are defined by equal-
ities (29), (30).
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Stationary probabilities distribution P (i) = P {i(t) = i} of a number of calls
in a reviewed retrial queue is defined by the reverse Fourier transform and has
the following form

P (i) =
1
2π

∫ π

−π

e−juiH(u)du, (31)

in which the expression for a characteristic function H(u) is defined in the Theo-
rem 2 formed above. The numerical realization of probabilities distribution P (i)
from (31) is effortless at any values of initial parameters α, γ, μ, σ, λ and of dis-
tribution functions B1(x) and B2(x) that satisfy the condition (16) of existence
of a stationary mode in a reviewed retrial queueing system.

6 Comparison of Two Types of Interruption

For retrial queueing system M/GI/GI/1/1 with two-way communication, unre-
liable server and servicing of interrupted calls again, system flow capacity S1 is
defined by the equation

S1 =
μ

μ + γ
· γB∗

1(γ)
1 − B∗

1(γ)
.

In this system while servicing incoming call the server crashes, the incoming call
goes into the orbit. Servicing of call again, at the repeated receipt of call on a
server.

For retrial queueing system M/GI/GI/1/1 with two-way communication,
unreliable server and afterservice of interrupted calls system flow capacity S2

defined by the equations for

S2 =
μ

μ + γ
· 1
b1

.

Thus system flow capacities differ slightly at low γ values and even coincide at
γ → 0 and differ significantly at high γ values.

For parameters in the gamma distribution α1 = β1,

B∗
1(γ) =

(
β1

β1 + γ

)α1

,

consider the ratio S1/S2 at the values of the parameter α1 = 0.5; 1; 2 and the
values of the parameter γ (Table 1).

Table 1. A comparison of retrial queueing systems M/GI/GI/1/1 with two-way com-
munication, unreliable server and afterservice of interrupted calls and servicing inter-
rupted calls again

γ 0.01 0.1 1 10 100

α1 = 0.5 1.005 1.048 1.366 2.791 7.589

α1 = 1 1.000 1.000 1.000 1.000 1000

α1 = 2 0.998 0.976 0.800 0.286 0.038
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7 Conclusions

In this paper, we have considered retrial queue M/GI/GI/1/1 with two-way
communication, unreliable server and afterservice of interrupted calls. We have
found probability distribution of server states, the condition for the existence
of a stationary mode and probability distribution of a number of calls in the
system.
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Abstract. In the present work there has been made an attempt to give
the complex description of queuing systems with limited queuing delay
of claims, allowing to simplify the majority of the intermediate calcula-
tions. The mathematical basis is the introduction of Mittag-Leffler func-
tion review. Obtained on this basis, the unified, internally bound sys-
tem of rather compact formulas allows to describe adequately all main
characteristics of steady-state conditions of such multiserver QS. This
is probability of system shutdown, load coefficient, queue mean length.
And also this system of formulas allow to calculate time characteristics
corresponding to these numerical characteristics.

Keywords: Queuing system (QS) · Queuing theory
Numerical characteristic of QS

1 Introduction

The queuing systems (QS) with limited mean queuing delay of claims are the
most commonly encountered in applications queuing systems, therefore the cal-
culation of their numerical characteristics is of great practical interest. It is
known, however, that this calculation is often rather laborious, and the Marko-
vian models describing steady-state conditions of such queuing systems, as a
rule, are poorly adapted for the use in applications as they contain the sums of
infinite series which do not reduce to geometrical progressions [1–3] as the final
result.

In the present work there has been made an attempt to give the complex
description of queuing systems with limited queuing delay of claims, allowing to
simplify the majority of the intermediate calculations. The mathematical basis
is the introduction of Mittag-Leffler function review

Eρ(z, μ) =
∞∑

k=0

zk

Γ
(
μ + k

ρ

)

c© Springer Nature Switzerland AG 2018
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(Γ - gamma function), well-known by experts in the field of complex vari-
able theory and integral representations, but, as it appeared to be, insufficiently
demanded by experts in the field of the applied theory of queuing system.
Obtained on this basis, the unified, internally bound system of rather compact
formulas allows to describe adequately all main characteristics of steady-state
conditions of such multiserver QS - probability of system shutdown p0, load
coefficient n, queue mean length l, and also to calculate time characteristics
corresponding to these characteristics.

2 Multiserver QS with the Homogeneous Infinite Simple
Stream of Claims and Queue of Unlimited Length

Let us assume that we have a multiserver QS with the homogeneous infinite
simple stream of claims and queue of unlimited length. Let the intensity of
claims stream be equal to λ, and the service rate, i.e. the average number of
claims which are served by the device per unit time be μ. The service stream
will also be considered as the simple one (with μ intensity).

Let us assume now that the number of places in queue is still not limited,
but the staying time of one claim in the queue is limited by some random time
t with the mean value t. Thereby, each claim in the queue is impacted by some
kind of a departure stream with the intensity of ν = 1

/
t.

It is clear, that if this stream has the simplest character, then the process
proceeding in QS, will be the Markovian process. Let us find probabilities of
steady-state conditions for it.

If there are n claims in the queue, then the total intensity of claims departure
from the queue is, apparently, equal to nν, and then the state graph of the
corresponding multi-server queuing system is as it is represented in Fig. 1 (death
and reproduction process).

Fig. 1. State graph of queuing system with the limited mean response time of a claim
in the queue

Applying general expressions [4] for the probabilities of limit (steady-state)
conditions in this scheme, we will obtain

p1 =
λ

μ
p0; p2 =

λ2

2μ2
p0; p3 =

λ3

3!μ3
p0;
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pm =
λm

m!μm
p0; pm+1 =

λm+1

m!μm (mμ + ν)
p0;

pm+2 =
λm+2

m!μm (mμ + ν) (mμ + 2 ν)
p0;

pm+3 =
λm+3

m!μm (mμ + ν) (mμ + 2 ν) (mμ + 3 ν)
p0

or in designations ρ = λ/μ (the presented intensity of claims stream, i.e. the
mean number of claims entering the system during one claim mean service time
in it) and β = ν/μ (the mean number of claims leaving the queue without
service during one claim mean service time in it)

p1 = ρ p0; p2 =
ρ2

2
p0; p3 =

ρ3

3!
p0;

pm =
ρm

m!
p0; pm+1 =

ρm+1

m! (m + β)
p0;

pm+2 =
ρm+2

m! (m + β) (m + 2 β)
p0;

pm+3 =
ρm+3

m! (m + β) (m + 2 β) (m + 3β)
p0.

As a result we have the following formulas for pk:

pk =
ρk

k!
p0 at k ≤ m;

pk =
ρk

m! (m + β) (m + 2β) · · · [m + (k − m) β]
p0 (1)

The formulas record (1) for pk can be simplified. Really, we will divide the
numerator and the denominator of the second one of these ratios by βk − m. Then
we will obtain

pk = ρk

k! p0 at k ≤ m; pk = ρm

m!
αk−m

(m/β+1)k−m
p0 at k ≥ m,

where (a)k = a (a + 1) (a + 2) . . . (a + k − 1); (a)0 = 1 – Pochhammer sym-
bol [5]. α = ρ /β = λ/ν value obviously shows what mean number of claims
enters the system during the mean response time of one “impatient” claim stay-

ing in the queue. In this case, due to the normalization requirement
∞∑

k =0

pk = 1

we have

p0 =
{

em−1 (ρ) +
ρm

m !

[
1 +

α

m/β + 1

+
α2

(m/β + 1) (m/β + 2)
+

α3

(m/β + 1) (m/β + 2) (m/β + 3)
+ · · ·

] }−1
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=
{

em−1 {ρ} +
ρm

m !

[
1 +

α

(m/β + 1)1
+

α2

(m/β + 1)2
+ · · ·

]}−1

=

[
em−1 (ρ) +

ρm

m!

∞∑

k=0

αk

(m/β + 1)k

]−1

(2)

em (ρ) = 1 + ρ
1 ! + ρ2

2 ! + ... + ρm

m ! – non-complete exponential function (non-
complete exponential), and e0 (ρ) = 1, and at m < 0 we suppose em (ρ) = 0. It
is clear that em (ρ) → eρ at m → ∞.

Let us consider more closely the sum in the formula (2). The corresponding
relations of the M/M/m (the multi-server unit according to Kendall’s classifica-
tion) and M/M/m/K (model with queue of finite length) models, as we know,
contain the sums of infinite or finite numbers of summands reduced to the sums
of infinite or finite geometrical progressions respectively. In contrast to these
classical cases, the formula (2) contains the sum of the infinite series which is
not a progression of this kind. Therefore we will act in the following manner.

Observing that according to the definition

(a)k =
Γ (a + k)

Γ (a)
,

where Γ - gamma-function, we will rewrite the sum that interests us as

S = Γ (m/β + 1)
∞∑

k=0

αk

Γ (m/β + 1 + k)
(3)

and then

p0 =
[

em−1 (ρ) +
ρm

m!
Γ (m/β + 1) E1 (α;m/β + 1)

]− 1

where

E1 (z; ξ) =
∞∑

k=0

zk

Γ (ξ + k)
(4)

– Mittag-Leffler function of the first order (synthesis of the exponential function
exp z). This function is well-known to experts in the field of complex variable
theory and integral transformations [6,7]. Expression (4) in its turn can be
simplified even more. From formula (4) we obviously have

E1 (z; ξ + 1) =
∞∑

k=0

zk

Γ (ξ + 1 + k)
=

∞∑

k=1

zk−1

Γ (ξ + k)
=

1
z

∞∑

k=1

zk

Γ (ξ + k)

=
1
z

[ ∞∑

k=0

zk

Γ (ξ + k)
− 1

Γ (z)

]
,
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so that
E1 (z; ξ) =

1
Γ (ξ)

+ z 1 (z; ξ + 1) (5)

– the recurrence formula for E1(z, ξ), and then from the relation (3) with regard
to a well-known recurrent relation Γ (ξ + 1) = ξ Γ (ξ) it follows

S = Γ (m/β + 1)
β

ρ

[
1 (α;m/β) − 1

Γ (m/β)

]

=
m

ρ
Γ (m/β)

[
E1 (α;m/β) − 1

Γ (m/β)

]
=

m

ρ
[ Γ (m/β) 1 (α;m/β) − 1 ] .

As a result, the relation (4) gives the following formula for p0:

p0 =
[
em−2 (ρ) +

ρm−1

(m − 1) !
Γ (m/β) 1 (α;m/β)

]−1

(6)

(let us remind that e0(ρ) = 1 and em(ρ) = 0 for all m < 0). For single-
server QS (m = 1) the formula (2.5.7) has an especially simple view

p0 =
1

Γ (1/β) 1 (α; 1/β)
.

In particular, at β = 1 (i.e. in the case when ν = μ) 1 (z; 1) = ez, and then
p0 = e−ρ.

The limit β → 0 corresponds to the case of an ordinary multi-server unit
(M/M/m model), and in this case the formula (6) predictably passes to a known
relation [4]

p0 =
[
1 +

ρ

1 !
+

ρ2

2 !
+ ... +

ρm−1

(m − 1) !
+

ρm

(m − 1) ! (m − ρ)

]−1

or

p0 =
[
em−1 (ρ) +

ρm

(m − 1) ! (m − ρ)

]−1

=
[
em (ρ) +

ρm+1

(m − 1) ! (m − ρ)

]−1

.

3 Numerical Characteristic of Steady-State Operating
Conditions

The waiting probability, i.e. the probability that the arriving claim will find all
servers engaged (no matter if it waits for the service or not)

pw =
∞∑

k=m

pk =
ρm p0
m !

∞∑

k=m

αk−m

(m/β + 1)k−m

=
ρm p0
m !

∞∑

k=0

αk

(m/β + 1)k
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=
ρm p0
m !

Γ (m/β + 1)
∞∑

k=0

αk

Γ (m/β + 1 + k)

=
ρm p0

(m − 1) !β
Γ (m/β) E1 (α;m/β + 1)

=
ρm−1 p0
(m − 1) !

Γ (m/β)
[

E1 (α;m/β) − 1
Γ (m/β)

]

=
ρm−1 p0
(m − 1) !

[ Γ (m/β) E1 (α;m/β) − 1 ] (7)

Applying standard procedures, it is possible to show that at small values of
the parameter β, close to zero, this value acts like

pW (β) ≈ pW (0)

[
1 − ρ

(m − ρ)2
β +

ρ (m + 2ρ)
(m − ρ)4

β2

]
(8)

or

pW (0) − pW ≈ ρ pW (0)
(m − ρ)2

[
β − m + 2ρ

(m − ρ)2
β2

]
.

pW (0) =pW (β = 0) = ρm p0
(m−1) ! (m−ρ) - is Erlangian classical formula for the

M/M/m model. As we see, at β �= 0 pW is strictly less pW (0).
The mean number of claims under service (the mean number of engaged

servers),

m̄ =

m∑

k=0

k pk +

∞∑

k=m+1

m pk = p0

m∑

k=0

k
ρk

k !
+

ρm p0

(m − 1) !

∞∑

k=m+1

αk−m

(m/β + 1)k−m

= ρ p0

m∑

k=1

ρk−1

(k − 1) !
+

ρm p0
(m − 1) !

∞∑

k=1

αk

(m/β + 1)k

= ρ p0 em−1 (ρ) +
ρm p0

(m − 1) !

[ ∞∑

k=0

αk

(m/β + 1)k

− 1

]

= ρ p0

[
em−2 (ρ) +

ρm−1

(m − 1) !
Γ (m/β + 1) E1 (α;m/β + 1)

]

= ρ p0

{
em−2 (ρ) +

ρm−1

(m − 1) !
[ Γ (m/β) E1 (α;m/β) − 1 ]

m

ρ

}
,

according to the recurrence relations (5). As due to (6)

em−2 (ρ) =
1
p0

− ρm−1

(m − 1) !
Γ (m/β) E1 (α;m/β) ,
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thereof it follows

m̄ = ρ p0

{
1
p0

+
ρm−1

(m − 1) !
m − ρ

ρ
Γ (m/β) 1 (α;m/β) − ρm−1

(m − 1)!
m

ρ

}

= ρ − ρm−1

(m − 1) !
[ m − (m − ρ) Γ (m/β) 1 (α;m/β) ] p0

or

m̄ = ρ − (m − ρ)
[

ρm

(m − 1) ! (m − ρ)
p0 − pW

]

= ρ − (m − ρ) [ pW (0) − pW ] (9)

due to the relation (7). QS load coefficient of this type

l.c. = ρ/m − (1 − ρ/m)
[

ρm

(m − 1) ! (m − ρ)
p0 − pW

]

= ρ/m − (1 − ρ/m) [ pW (0) − pW ] ,

shutdown coefficient

s. c. = (1 − ρ/m) [ 1 + pW (0) − pW ] .

Let us note that l. c. < l. c. (0) , then s. c. > s.c. (0), that is apparent. At
small values of parameter β

m ≈ ρ − β
ρ pW (0)
m − ρ

≈ ρ − β l (0) .

According to the common formula, the mean number of claims in queue
(queue mean length)

l̄ =
∞∑

k=m+1

(k − m) pk =
ρm

m!

∞∑

k=m+1

(k − m)
αk−m

(m/β + 1)k−m

p0

=
ρm p0
m!

∞∑

k=1

k
αk

(m/β + 1)k

=
ρm+1 p0
m !β

d

dα

∞∑

k=1

αk

(m/β + 1)k

=
ρm+1 p0

m!β
d

dα

∞∑

k=0

αk

(m/β + 1)k

=
ρm+1 p0

m!β
d

dα
[ Γ (m/β + 1) E1 (α;m/β + 1)]

=
ρm+1 p0

(m − 1) !β2
Γ (m/β)

d

dα
E1 (α;m/β + 1)
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due to the relation (3). On the other hand, it follows from the same formula

E′
1 (z; ξ) =

d

dz

∞∑

k=0

zk

Γ (ξ + k)
=

∞∑

k=0

k
zk−1

Γ (ξ + k)

=
1
z

∞∑

k=0

(k − ξ + ξ)
zk

Γ (ξ + k)

=
1
z

∞∑

k=0

(ξ + k)
zk

Γ (ξ + k)
− ξ

z

∞∑

k=0

zk

Γ (ξ + k)

=
1
z

[ ∞∑

k=0

(ξ + k − 1 + 1)
zk

Γ (ξ + k)
− ξ

∞∑

k=0

zk

Γ (ξ + k)

]

=
1
z

[ ∞∑

k=0

(ξ + k − 1)
zk

(ξ + k − 1) Γ (ξ + k − 1)

+
∞∑

k=0

zk

Γ (ξ + k)
− ξ

∞∑

k=0

zk

Γ (ξ + k)

=
1
z

[ ∞∑

k=0

zk

Γ (ξ + k − 1)
− (ξ − 1)

∞∑

k=0

zk

Γ (ξ + k)

]

=
1
z

[ E1 (z; ξ − 1) − (ξ − 1) E1 (z; ξ) ] ,

from where

l̄ =
ρm po

(m − 1) !β
(m/β) [ 1 (α;m/β) − m/β1 (α;m/β + 1) ]

=
ρmpo

(m − 1) !β
Γ (m/β)

{
1 (α;m/β) − m/ρ

[
1 (α;m/β) − 1

Γ (m/β)

]}

=
ρm−1 po

(m − 1) !β
[ (ρ − m) Γ (m/β) 1 (α;m/β) + m ]

=
ρm−1 po

(m − 1) !β
[m − (m − ρ) Γ (m/β) 1 (α;m/β) ]

=
(m − ρ)

β
[ pW (0) − pW ] (10)

At small values of parameter β in accordance with formula (8)

l ≈ ρ pW (0)
m − ρ

[
1 − m + 2 ρ

(m − ρ)2
β

]
= l (0)

[
1 − m + 2 ρ

(m − ρ)2
β

]
.
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Further, as we know, every claim in the queue is impacted by some kind of
the “departure stream” with the intensity, and this, in its turn, means that in
average ν - so-called “impatient” unserviced claims will leave the mean number
of claims l in the queue per unit time. Thereby, in total the system will serve
per unit time

A = λ − ν l̄

claims (A – an absolute system flow capacity). In this case, the relative system
capacity of such QS, i.e. a share of served claims among all entered the system,
will apparently be

q = A
λ = λ − ν l̄

λ = 1 − ν
λ l̄ or q = 1 − l

/
α.

The mean number of engaged servers m, as usual, can be obtained by the
division of an absolute flow capacity A by one claim service speed μ, there comes
the connection

m =
A

μ
=

λ − ν l̄

μ
= ρ − β l̄,

which is easy to verify by the relations (9) and (10) obtained above.
In this case the mean number of claims in the system is on the whole

k = m + l = ρ +
1 − β

β
(m − ρ) [ pW (0) − pW ] = ρ + (1 − β) l.

Time characteristics corresponding to the numerical characteristics obtained
above, i.e. the claim mean staying time in the queue and its service mean time,
as well as models, are defined by corresponding Little’s formulas

t
l
= l

A = l
λ−ν l

and t
n

= n
A = n

λ−ν l
= 1

μ ,

then, one claim total staying time in the system is t
k

= k
A .

It is easy to check that at β → 0 the obtained in this work system of formulas
pass to the corresponding relations of the M/M/m model. Thus, it should be
noted, however, the following fundamental difference between these two queuing
systems.

In the M/M/m system the steady-state limiting mode exists only in the case
when ρ < m, as at ρ ≥ m the geometrical progressions in common ratios of
this model formulas diverge, physically it corresponds to the unlimited queue
growth at t → ∞.

On the contrary, in QS with “impatient” claims all the claims leave the queue
sooner or later (either as a result of being serviced, or without being serviced)
and therefore, the steady-state mode of service at t → ∞ in it is always reached,
independently of the given intensity of claims stream ρ. From the point of view
of mathematics, it follows from the fact that series in corresponding formulas
denominators in this case meet at any positive values of ρ and β. Let us also
note that for QS with “impatient” claims, the concept of refusal probability does
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not make sense as every claim entering the system stands in the queue, but it
can be unserviced if it leaves the queue before its due time.

In conclusion we will note that this model formalization can be carried out
with the application of Kummer’s confluent hypergeometric function [8]

1F 1 (a; b; z) =
∞∑

k=0

(a)k

(b)k

zk

k !
,

from where 1F1 (1; b; z) = Γ (b) E1 (z, b), as (1)k = k !. In this case we
obviously have

S = 1F 1 (1;m/β + 1;α) =
m

ρ
[ 1F1 (1;m/β;α) − 1 ] ,

so that

p0 =
[
em−2 (ρ) +

ρm−1

(m − 1) ! 1F 1 (1;m/β;α)
]−1

;

pW = 1 − em−1 (ρ) p0 =
ρm−1 p0
(m − 1) !

[ 1F 1 (1;m/β;α) − 1 ] .

and all other formulas remain unchanged.
It is also easy to see that relations obtained above remain true for the open

queuing system model with the claim limited mean staying time in the system on
the whole (i.e. both in queue, and under service) as well. The obvious replacement
thus consists in the replacement of μ for μ + ξ, where ξ = 1/τ , and τ is the
mean staying time of one unserved or not fully served claim in the system. It is
clear, that in the obtained above relations ρ should be replaced for �

ρ = λ
μ+ ξ ,

β for
�

β = ξ
μ+ ξ and α for �

α = λ
ξ .

The first of these values obviously means the mean number of claims entering
the system during the mean time when the claim is in the system (including
served, unserved and not fully served claims). The second value is the mean
number of claims leaving the system unserviced during the same time, including
not fully served claims. The third is the mean number of claims entering the
system during the mean staying time of one unserved or not fully served claim
in the system.

In the future we plan to study the use of Mittag-Leffler function to the
problem of queues in queuing systems of multicomponent flows, presented in a
series of works [9–15].
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Abstract. The goal of this paper is to investigate the two-way commu-
nication by the help of finite source retrial queuing systems. Incoming
calls from sources (primary calls) arrive to the server according to a Pois-
son process. If an incoming call finds the server idle, its service starts.
Otherwise, if the server is busy, an arriving (primary or secondary - from
the orbit) call moves into the orbit and after some exponentially dis-
tributed time it retries to enter to the server. When the server is idle it
generates an outgoing call after an exponentially distributed time with
different parameters to the calls in the orbit and in the sources, respec-
tively. The service time of the incoming and outgoing calls are exponen-
tially distributed with different rates. Results on two-way communication
assume, that after the service an outgoing call (primary or secondary)
is sent back to the source. The novelty of this paper is investigating two
cases. In Case 1 the secondary outgoing call is sent back to the orbit,
thus the pending incoming call will not be lost. In Case 2 after service of
the secondary outgoing call its incoming service request will be started
immediately. This means a two-phase service. The balance equations are
solved by the help of MOSEL-2 tool. Graphical results and comparisons
of the cases are presented.

Keywords: Finite-source queuing system · Retrial queues
Call centers · Two-way communication

1 Introduction

This paper deals with investigations on systems with two-way communication.
These systems can be modeled effectively by the help of retrial queueing systems.
The research on two-way communications has been becoming more and more
popular topic of investigations for the last years. The main reason is that there
are a many application fields which can be modeled by this type of systems.
For example, in business organizations, e.g. in call centers where the agents
could perform outgoing calls to sell, advertise and promote products and services
of the business. It is very important to increase the utilization the server, see
for example [1,2,8,13,17,20]. The most important characteristics of two-way
c© Springer Nature Switzerland AG 2018
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communication is that and idle server can look for calls inside and outside of
the system. In other words, it can perform outgoing calls to the source (primary
calls) or to the orbit (secondary calls). The first results on infinite source retrial
queueing systems with two-way communication was published by Falin [12],
followed by some recent ones, see for example [3,6,9,10,14–16,18,19].

Authors has been investigated the case, when a secondary outgoing call after
servicing is sent back to the source [11]. The novelty of this paper is, that a more
realistic case is considered regarding secondary outgoing calls from the orbit.
A call being in the orbit implies that the call still has an unserved incoming
request. So far, the server makes a secondary outgoing call from the orbit, serves
the request, and sends back the call to the source. In this case the original
incoming request of this call remains unserved. In the model presented here the
served secondary outgoing call (an outgoing call from the orbit) is sent back
to the orbit again, where the call is able to retry his request for servicing the
original incoming call. In addition, in this model an other operational mode
is investigated. When a secondary outgoing call from the orbit arrives to the
server, after serving the outgoing call, the pending incoming request will be
served immediately, as well. When this two-phase service is finished, the call is
sent back to the source.

The rest of the paper is organized as follows. In Sect. 2 description of the
model is given, the corresponding 2-dimensional Markov process is defined. In
Sect. 3 the most interesting results obtained by MOSEL-2 tool are presented.
Finally, the paper ends with a Conclusion.

2 Model Description and Notations

This paper deals with a finite source retrial queueing model with one server. The
work low of the model can be seen on Fig. 1.

In the source there are N calls. Each call can make a primary incoming
call (incoming calls in the system) towards the server. The inter-request times
are exponentially distributed with parameter λ1. When the server is idle, it
starts serving the call immediately with an exponentially distributed service
time with parameter μ1. After the service is finished, the call goes back to the
source. When the incoming call finds the server busy, it is forwarded to the
orbit. This secondary incoming jobs from the orbit may retry their requests for
service after a random waiting time. The distribution of this period is exponential
with parameter ν1. In the other hand, the idle server after some exponentially
distributed period can make an outgoing calls towards the sources (outgoing
calls in the system). Two types of outgoing calls are distinguished:

– After an exponentially distributed idle period with parameter λ2 the server
may call a call from the source to be served (primary outgoing call),

– The server is able to make a call from the orbit, as well (secondary outgo-
ing call). It is performed after an exponentially distributed idle period with
parameter ν2.
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Fig. 1. A retrial queue with components

The outgoing calls (primary and secondary) are served at the server in an
exponentially distributed service period with parameter μ2. A primary outgoing
call (called from the source) goes back to the source after the service. When an
outgoing call comes from the orbit (secondary outgoing call), two cases can be
considered.

– Case 1. The call came from the orbit, which means this call has an unserved
incoming request. After the outgoing call is served, this incoming request
remains unserved. This call is sent back to the orbit after the outgoing service
is finished, thus the call will be able to retry its incoming call,

– Case 2. As in the previous case, after the outgoing call is processed, it has an
unserved primary call. In this case the server is able to serve the incoming
request immediately after the outgoing job was finished. That means a two-
phase service. First the outgoing call is served, after the incoming one. When
both of the service phases has been finished, the call is sent back to the source.

It is assumed that the arrivals of primary incoming calls, retrial intervals of
secondary incoming calls, service times of incoming and outgoing calls, and the
time to make outgoing calls are mutually independent.

We denote the number of calls in orbit and the server state at time t by O(t)
and S(t), respectively.

Obviously, when the server is busy the number of calls in the orbit cannot
be equal to N , i.e. O(t) < N . As stated above in Case 2, after the service
both incoming and the two-phase outgoing calls go to a free state. This means
that when the server is idle, there will be at least one call in free state, i.e.
again O(t) < N . Thus, the state space of the process (S(t), O(t)) is the set of
{0, 1, 2} × {0, 1, 2, ..., N − 1}. In Case 1 after the service the secondary outgoing
call goes back to the orbit. This means that when the server is idle, the source
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can be empty. Thus, the state space of the process (S(t), O(t)) is the set of
{0, 1, 2} × {0, 1, 2, ..., N}.

Because of the finite state space these two-dimensional Markov processes are
always stable.

Let us define the state of the server by S(t), that is

S(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, when the server is idle
1, when an first order request is in service
2, when a second order request from source is in service
3, when a second order request from orbit is in service

.

The used numerical values of the parameters can be seen in Table 1. Some
special values of the parameters in the model described above give back models
which have been investigated earlier by authors.

– λ2 = ν2 = 0 provides a classical single server retrial queue studied by e.g.
[4,5].

– λ2 = 0, μ2 = μ1 provides a single server retrial queue with two-way com-
munication with search of the customers from the orbit. The reason of the
outgoing calls is to shorten the idle period of the server.

– μ2 = μ1 provides a single server retrial queue with two-way communication
with search of the customers. The reason of the outgoing calls is again to
shorten the idle period of the server.

Table 1. Numerical values of model parameters

Parameter Symbol Value

Number of calls in source N 10

Incoming generation rate λ1 [0.1..5.1]

Outgoing generation rate λ2 0.2

Incoming retrial rate ν1 0.1

Outgoing generation rate from orbit ν2 0.2

Incoming service rate μ1 1

Outgoing service rate μ2 1

It is not difficult to see that the system of balance equations for the stationary
probabilities in Case 1 are

pi,j = lim
t→∞ P (S(t) = i, O(t) = j), i = 0, 1, 2, 3 and j = 0, 1, ..N

[(N − j)(λ1 + λ2) + j(ν1 + ν2)] p0,j = μ1p1,j + μ2p2,j + μ2p3,j−1

[(N − j − 1)λ1 + μ1] p1,j = (N − j)λ1p0,j + (j + 1)ν1p0,j+1 + (N − j)λ1p1,j−1

[(N − j − 1)λ1 + μ2] p2,j = (N − j)λ2p0,j + (N − j)λ1p2,j−1
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[(N − j − 1)λ1 + μ2] p3,j = (j + 1)ν2p0,j+1 + (N − j)λ1p3,j−1

with p1,−1 = p2,−1 = p3,−1 = 0.
Similarly, the system of balance equations for the stationary probabilities in

Case 2 can be written as

pi,j = lim
t→∞ P (S(t) = i, O(t) = j), i = 0, 1, 2, 3, 4 and j = 0, 1, ..N − 1

[(N − j)(λ1 + λ2) + j(ν1 + ν2)] p0,j = μ1p1,j + μ2p2,j

[(N − j − 1)λ1 + μ1] p1,j =
= (N − j)λ1p0,j + (j + 1)ν1p0,j+1 + (N − j)λ1p1,j−1 + μ2p3,j

[(N − j − 1)λ1 + μ2] p2,j = (N − j)λ2p0,j + (N − j)λ1p2,j−1

[(N − j − 1)λ1 + μ2] p3,j = (j + 1)ν2p0,j+1 + (N − j)λ1p3,j−1

with p0,N = p1,−1 = p2,−1 = p3,−1 = 0.
As soon as we have calculated the distributions defined above (by the help

of MOSEL-2 tool, see the next section), the most important steady-state system
performance measures can be obtained in the following way.

– Utilization 1

U1 =
N∑

o=0

P (1, o)

– Utilization 2

U2 =
3∑

s=2

N∑

o=0

P (s, o)

– Average number of jobs in the orbit

O =
3∑

s=0

N∑

o=0

oP (s, o)

– Average number of active primary users

M = N − O − U1 − U2

– Average generation rate of primary users

λ1 = λ1M

– Mean time spent in orbit by using Little-formula

W =
O

λ1
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3 Numerical Results

Investigating the functionality and the behavior of the system several numerical
calculations were performed. Solving the system balance equations described
above the MOSEL-2 tool was used. For Markov-processes it is a very efficient
tool. MOSEL-2 is a model description language and are equipped with several
model translators. Using these translators third-party performance evaluation
tools can be used. For obtaining the stationary system probabilities, here the
SPNP tool is used. SPNP performs numerical calculations instead of simulation
(see in [7]). From the probabilities the well known system characteristics are
also be calculated. The most interesting performance characteristics obtained
by these tools are graphically presented in this section. On the figures the lines
represent different working assumptions or cases. The applied values for the
parameters are listed in Table 2.

Table 2. Numerical values of model parameters

Case studies

No. N λ1 λ2 ν1 ν2 μ1 μ2 CW C1 C2 CP

Figure 2 10 0.1..5.1 0.2 0.1 0.2 1 1

Figure 3 10 0.1..5.1 0.2 0.1 0.2 1 1

Figure 4 10 0.1..5.1 0.2 0.1 0.2 1 1

Figure 5 10 0.1..5.1 0.2 0.1 0.2 1 1

Figure 6 10 0.1..5.1 0.2 0.1 0.2 1 1 100 10 10 1

Figure 7 10 0.1..5.1 0.2 0.1 0.2 1 1 100 10 10 1

On Figs. 2, 3, and 4 the mean waiting time of the calls are represented in
function of the incoming generation rate for Case 1, Case 2 and comparing the
two cases, respectively.

On the first two figures four cases are displayed. “No outgoing” means, that
there are only incoming calls in the system. This is a common finite source retrial
system. “Outgoing - Only from source” is for the case, when only primary outgo-
ing calls are performed. The line “Outgoing - Only from orbit” is for secondary
outgoing calls only. The fourth line represents the investigated Case 1. The sim-
ilar lines are on the figure for Case 2. Note that, the “No outgoing” lines are the
same. The reason of the virtual deviation is the different scale of axes y.

For these values of parameters except the “Outgoing - Only from source” case
an interesting maximum value of the mean waiting time can be observed. When
we consider a simple retrial queueing system, it can be found a parameter setting,
where this maximum feature can be observed. This is a general characteristics
of the retrial queues. With slightly modifications of the parameters the same
maximum effect also appears here. On Fig. 4 the Case 1 and Case 2 are compared
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Fig. 2. Mean waiting time (Case 1) vs. λ1

Fig. 3. Mean waiting time (Case 2) vs. λ1
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Fig. 4. Mean waiting time vs. λ1

with all of the incoming and outgoing calls. This figure reflects and ensures the
expected behaviour of Case 1 and 2.

Figure 5 displays the probability of the busy server in Case 1. That means,
the server state can be S(t) = 1, 2, 3. The running parameter is the incoming
arrival rate, λ1 again. Pairs of lines can be observed on this figure. One pair is
the outgoing and outgoing from orbit only lines, while the other pair is the no
outgoing and the outgoing from source only lines. For this set of parameters for
smaller values of λ1 the first pair while for larger values of λ1 the second pair
has larger values, i.e. higher server utilization.

In this type of service or production systems the waiting time of calls and
the utilization of the server are singular quantities. They cannot be optimized at
the same time. Optimizing the server utilization will increase the waiting time of
calls. Some balance or some combined indicator has to be involved. The following
expected loss E(L) function enables the “fair” investigation of the system.

E(L) = Cw(1 − U1 − U2) + C1μ1U1 + C2μ2U2 + CP (E(O) + U1 + U2).

The first component is the loss on idle state of the system. The second and
the third components are the cost of servicing incoming and outgoing calls,
respectively. Here the speed of the service has to be taken into consideration,
thus beside the cost weights the service rates are present as multiplicative factors.
The last component states the loss of the system not in production from the point
of view of the calls, i.e. it is the sojourn time of the call: it is under service or it
is in the virtual waiting facility (orbit). For a given set of parameters (listed in
Table 2) the shape of loss functions can be seen on Figs. 6 and 7.
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Fig. 5. Probability of server is busy vs. λ1

Fig. 6. The loss function in Case 1 vs. λ1
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Fig. 7. The loss function in Case 2 vs. λ1

In Case 1 and Case 2 it can be observed that E(L) values are much lower in
the two-way cases, especially when the orbit is involved. In Case 1 these values
are higher than in Case 2. It is the effect of the two-phase service of the calls. For
the one-phase service (Case 1) it is interesting, that large values of the incoming
rate implies lower values of loss functions for incoming only and outgoing from
source only cases (see the line intersections on Fig. 6). The same effect can be
seen on Fig. 5, as well. The reason of this similar behavior is that the first three
components of the loss function contain the effect of the utilizations, and these
components have large weights.

4 Conclusion

This paper gives a contribution to the model described in [11]. The original model
stated, that a secondary outgoing call is sent back to the source after service.
Let’s consider a bank, where the calls are called to give some signature sample
(outgoing calls). These calls can be outside the bank (in free state) or inside the
bank, waiting for some transaction (incoming calls in the orbit). When the call
connected from the orbit for the outgoing call, it is quite natural not send it
outside the bank but keep it inside (Case 1) or after the signature perform its
original transaction request (Case 2). The numerical results proof that in Case
2 the most important performance measures (waiting time, utilization etc.) are
better than in Case 1. A loss function keeping balance between utilization and
waiting times has been also introduced. In the future it would be interesting to
investigate the sensitivity of the loss function to the parameter changing.
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Abstract. Approximate steady state probability distribution of the
stock level for the single product production-inventory system when the
demand is a Markov-modulated Poisson process (MMPP) with finite
number of states under the on/off production rate control is obtained.
The control causes the stock level to fluctuate around a given value by
reducing the production rate when the stock exceeds this value. The
asymptotic distributions of the stock-out and overproduction periods
are also obtained. Exact steady state distribution of the stock level for
MMPP demand arrivals with two states and exponential batch size dis-
tribution is compared with the approximate one.

Keywords: Production-inventory system · On/off control
Markov-modulated Poisson process demand arrivals
Steady state distribution

1 Introduction and Problem Statement

A systematic study of inventory models incorporated uncertainly and dynamics
began in the early 50s from the works by Arrow et al. [1] and Dvoretzky et al. [2].
Nowadays a set of stochastic models are available to solve the inventory control
problem under various conditions encountered in practice, for example, Ross [3],
Chopra and Meindl [4], Beyer et al. [5], Nazarov and Broner [6].

The purpose of this paper is to stabilize a supply system performance by
regulating the production rate.

Let S(t) be a stock level at time t, the product flow (input flow) be continu-
ous with rate C(S), the demand (output flow) be a Markov-modulated Poisson
process (MMPP), i.e. the intensity of a Poisson process of the customers arrivals
is defined by the state of a Markov chain with n states: if at time t the Markov
process has value i = 1, 2, ..., n then the customers are arriving according to
a Poisson process with intensity λi > 0. The amounts required at each arrival
are distributed according to probability density function (PDF) ϕ(·) and are
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independent of everything else. Denote the first and second moments of the
distribution respectively as a1 and a2.

MMPP processes submit a flexible way of modeling demand for inventory
systems, see, for example, Abhyankar and Graves [7]. A collection of results about
Markov-modulated Poisson processes is given in Fischer and Meier-Hellstern [8].
Here we are going to consider MMPP only in the steady state.

Denote Q = [qij ] an infinitesimal generator of a n-state continuous-time
Markov chain determining the customers’ arrival rate in a Poisson process, here
qij ≥ 0, if i �= j, and

n∑

j=1

qij = 0. (1)

Let γi, i = 1, n be simple eigenvalues of Q, γn = 0, γi < 0, i = 1, n − 1.
Then system

n∑

i=1

qijπi = 0, (2)

π1 + π2 + ... + πn = 1. (3)

has an unique solution that gives us the steady state distribution of the Markov
chain.

Suppose that for some reasons we are interested in keeping the stock level near
some base-stock level S0. Let us consider the on/off control of the production
rate, that is, the product flow has constant rate C0, if the inventory level S(t)
is below S0; otherwise, we decrease the rate of product flow to C1 < C0.

Thus

C(S) =
{

C0, S < S0,
C1, S ≥ S0.

(4)

The aim of such type of control is maybe to avoid the overflow (S(t) � S0)
and stock-out (S(t) < 0).

Let us denote λ0 =
n∑

i=1

λiπi and assume that

C0 > λ0a, C1 < λ0a. (5)

The condition C0 > λ0a means that if the inventory level is below the base-stock
level then the stock level is replenished in the mean, that is, the resources are
accumulated, and the second inequality means that if the inventory level is above
the base-stock level then the resources are expended. Under these conditions a
stock level S(t) is a stationary process.

2 Approximate Stationary Distribution of the Stock
Level

Let us denote

Pi(s, t)ds = P {s < S(t) ≤ s + ds; λ(t) = λi} , i = 1, n.
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Consider time interval Δt � 1. Let at time t + Δt the system is in state i, i.e.
the intensity of the customers’ flow is λi, and S(t + Δt) = s. Then following
backward scenarios are possible:

1. The intensity of the customers’ flow have not changed and we have had no
purchases at time interval Δt. The probability of the event is equal to 1 +
(qii − λi)Δt + o(Δt).

2. The intensity have changed, suppose that λ(t) = λj �= λi, and we have had
no purchases at time interval Δt. The probability of the event is equal to
qjiΔt + o(Δt).

3. The intensity have not changed and we have had a purchase x at time interval
Δt. The probability of the event is equal to λiΔtϕ(x)dx + o(Δt).

4. The rest possibilities have probabilities o(Δt) as Δt → 0 .

So, we get equation

Pi(s, t + Δt) = (1 + (qii − λi) Δt)Pi(s − C(s)Δt, t)

+
∑
j �=i

qjiPj(s − C(s)Δt, t)Δt + λiΔt
∞∫
0

Pi(s − C(s)Δt + x, t)ϕ(x)dx+o(Δt).

Using the Taylor expansion, dividing the equation by Δt and tending Δt to zero,
we get

∂Pi(s, t)
∂t

+C(s)
∂Pi(s, t)

∂s
= −λiPi(s, t)+

∑

j �=i

qjiP (s, t)+λi

∞∫

0

Pi(s + x, t)ϕ(x)dx.

Denote stationary distributions of the stock level below and above the base
level

P 0
i (s) = lim

t→∞ Pi(s, t), s < S0, P 1
i (s) = lim

t→∞ Pi(s, t), s ≥ S0. (6)

Functions P 0
i (s) and P 1

i (s) are satisfied the equations

C1Ṗ
1
i (s) = −λiP

1
i (s) +

n∑

j=1

qjiP
1
j (s) + λi

∞∫

0

P 1
i (s + x)ϕ(x)dx, s ≥ S0, (7)

C0Ṗ
0
i (s) = −λiP

0
i (s) +

n∑
j=1

qjiP
0
j (s) + λi

S0−s∫
0

P 0
i (s + x)ϕ(x)dx

+λi

∞∫

S0−s

P 1
i (s + x)ϕ(x)dx, s < S0,

(8)

given that
S0∫

−∞
Pj

0(s)ds +

∞∫

S0

P 1
j (s)ds = πj (9)
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and
C0P

0
i (S0) = C1P

1
i (S0), (10)

which can be obtained by integrating the Eqs. (7) and (8) in the domain of their
definition.

Let us consider the case

C0 = (1 + θ)λ0a, C1 = (1 − αθ)λ0a, (11)

were α > 0 and 0 < θ � 1, λ0a is an average product amount selling in time unit.
Thus, process S(t) will oscillate around S0 and approximately we can consider
S(t) as a diffusion process.

Diffusion methods have been applied in a variety of domains; see Janssen
et al. [9]. In inventory modelling beginning with the papers by Bather [10] and
Puterman [11], the Brownian motion process is one of the most commonly used
demand processes; see, e.g. Rao [12], Rudi et al. [13], and Avinadav [14]. Benkh-
erouf et al. [15] consider a demand process as a Brownian motion in an inventory
system with deterioration.

On/off control model has been investigated in Livshits and Ulyanova [16,17],
Kitaeva [18] and Kitaeva et al. [19], where the stock level process has been
considered asymptotically as a diffusion process and its stationary distribution
has been obtained. There single-product inventory model with both random and
controllable demand and continuous uncontrolled production rate under finite
storage capacity has been considered.

But here we are going to consider the other method of obtaining the station-
ary distribution of the stock level process.

To solve system (7) and (8) let us use the similar method to the one in
Livshits and Bublic [20,21].

Consider the case s > S0. Let us find the solution in the following form

Pi(s) = θfi(αθs, θ), (12)

where fi(z, θ) is twice differentiable function with respect to z, except, maybe,
point z0 = θS0. Let S0 = S0(θ) and S0(θ) → ∞ as θ → +0 such a way that

lim
θ→0

θS0(θ) = z0. (13)

Substituting (12) into (7), after the change of variables z = αθs we get for
z ≥ αz0

C1αθḟi(z, θ) = −λifi(z, θ) +
n∑

j=1

qjifj(z, θ) + λi

∞∫

0

fi(z + αθx, θ)ϕ(x)dx. (14)

It follows from (14) for θ → 0 that

n∑

j=1

qjifj(z, 0) = 0. (15)
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Therefore, we can take the functions of interest, taking into account (1), in the
following form:

fj(z, 0) = πjf(z), (16)

where f(·) is some function, which will be defined below.
Define fj(z, θ) as follows:

fj(z, θ) = πjf(z) + hj(z)θ + o(θ). (17)

Substituting (17) into (14) and using the linear Taylor expansions of functions
fj(·, θ), we get as θ → 0

n∑

j=1

gjihj(z) = −(λi − λ0)aπiḟ(z). (18)

Let
fj(z, θ) = πjf(z) + hj(z)θ + gi(z)θ2 + o(θ2). (19)

Substituting (19) into (14), using the quadratic Taylor expansions of functions
fj(·, θ), and taking into account (16) and (18), we obtain as θ → 0

−
n∑

j=1

gjigj(z) =
λia2

2
πif̈(z) + (λi − λ0)aḣi(z) + λ0aπiḟ(z). (20)

If we sum up equations (20) taking into account (1), we get

λia2

2
f̈(z) + λ0aḟ(z) −

n∑

j=1

(λi − λ0)aḣi(z) = 0. (21)

It follows from (18) that
n∑

j=1

gjiḣj(z) = −(λi − λ0)aπif̈(z). (22)

Consider
V = QT = RγP, (23)

where R = [Rij ] is matrix of eigenvectors of V , P = [Pij ] = R−1, γ =
diag(γ1, γ2, ..., γn−1, 0) is a diagonal matrix of eigenvalues of V . From (2) fol-

lows that Rin = πi and from relations (23) and (1) we get
n∑

k,j=1

RjkγkPki = 0.

Since the columns of P are linearly independent, it follows that
n∑

j=1

Rjk = 0 for

k = 1, n − 1. Elements of the n-th row of P satisfy the equations
n∑

j=1

PnjRjk = 0, k = 1, n − 1,

n∑

j=1

Pnjπj = 1,

and it follows that Pnk = 1, k = 1, n.
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Thus, (22) can be written as

γk

n∑

j=1

Pkj ḣj(z) = −
n∑

i=1

Pki(λi − λ0)πiaf̈(z)

or
n∑

j=1

Pkj ḣj(z) = − 1
γk

n∑

i=1

Pki(λi − λ0)πiaf̈(z), k = 1, n − 1,

n∑

i=1

Pniḣi(z) = c(z),

where c(·) is some function. It follows that

ḣi(z) =
n−1∑

k=1

Rik
1
γk

n∑

j=1

Pkj(λ0 − λj)πjaf̈(z) + πic(z). (24)

Now we can write an equation for function f(·) by substituting (24) into (21):

A2f̈(z) + A1ḟ(z) = 0, (25)

where
A1 = λ0a, (26)

A2 =
λ0a2

2
− a2

n−1∑

k=1

1
γk

n∑

i=1

(λ0 − λi)Rik

n∑

j=1

Pkj(λ0 − λj)πj . (27)

Let us show that the following quadratic form is negative definite

W =
n−1∑

t=1

1
γt

n∑

i=1

(λ0 − λi)Rit

n∑

j=1

Ptj(λ0 − λj)πj .

Denote xt =
n∑

i=1

(λ0 − λi)Rit, then λ0 − λj =
n∑

t=1
xtPtj ; and we can rewrite W

as following

W =
n−1∑

t=1

xt

γt

n∑

k=1

xkωtk =
n−1∑

t=1

xt

γt

n−1∑

k=1

xkωtk,

where ωtk =
n∑

j=1

PtjPkjπj and ωtn = 0 since Pnj = 1 and
n∑

j=1

Ptjπj = 0, t �= n.

Since matrix P is not degenerate and πj ≥ 0,
∑
j

πj = 1, it follows that ω =

[ωij ] > 0, that is, all the principal minors of this matrix are positive. Denote
Δk(ω) the minor of the k-th order of ω, then the minors of the k-th order of

form W we can wright as Δk =
k∏

j=1

1
γj

Δk(ω). Since γk < 0, the signs of the

minors Δk alternate. Therefore, quadratic form W is negative definite.
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Solution (25) has the form

f(z) = B1 + Be− A1
A2

z,

where B1 and B2 are some constants. Since lim
z→+∞ f(z) = 0, we have

f(z) = Be
−

A1

A2
(z − z0)

, z ≥ αz0. (28)

Thus, for s > S0

P 1
i (s) = Bπiθe

−
A1

A2
αθ(s − S0)

+ o(θ). (29)

Consider the case s < S0. Let us find the solution of (8) in the same form as
in the previous case. Substituting (12) into (8), we get

C0θḟi(z, θ) = −λifi(z, θ) +
n∑

j=1

qjifj(z, θ) + λi

∞∫
0

fi(z + θx, θ)ϕ(x)dx

+λiRi(z, θ),
(30)

where

Ri(z, θ) =

∞∫

z0−z
θ

fi(z + θx, θ)ϕ(x)dx−
∞∫

z0−z
θ

[
Bπiθe

− A1
A2

α(z−z0+θx) + o(θ)
]
ϕ(x)dx.

Since functions fi(z, θ) are bounded and the second moment of distribution ϕ(·)
exists,

∞∫

z0−z
θ

fi(z + θx, θ)ϕ(x)dx ≤
∞∫

z0−z
θ

ϕ(x)dx · max
z

fi(z, θ)

≤ θ2

(z0 − z)2

∞∫

z0−z
θ

x2ϕ(x)dx · max
z

fi(z, θ) < o(θ2)

as θ → 0. Analogously, the second terms in Ri(z, θ) tend to zero faster then θ2

as θ → 0. Neglecting the last term in (30), analogously the first case, we obtain
that for z < z0

fi(z, θ) = Dπie

A1

A2
(z − z0)

+ O(θ)

and

P 0
i (s) = Dπiθe

A1

A2
θ(s − S0)

+ o(θ) (31)
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where D is a constant Since C0P
0
i (S0) = C1P

1
i (S0), it follows that D = B.

Taking into account the normalization condition (9) we get the stationary dis-
tribution of the stock level

Pi(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

πi
A1α

A2(1 + α)
θe

−
A1

A2
αθ (s − S0)

+ o(θ), s ≥ S0,

πi
A1α

A2(1 + α)
θe

−
A1

A2
θ(S0 − s)

+ o(θ), s < S0.

(32)

3 Exact Stationary Distribution of the Stock Level
for MMPP Two-State Demand with Exponential Batch
Size’s Distribution

Here we compare the exact stationary distribution for MMPP two-state demand
and an exponential batch size distribution of the purchases with the approximate
one, which are obtained above. Thus, the amounts required at each arrival (batch
sizes) are i.i.d. random variables with exponential distribution

ϕ(x) =
1
a

exp
(
−x

a

)
, x ≥ 0.

It can be shown that the exact distribution is defined by the following way

Pi(s) =
{

Ai1e
−α1s + Ai2e

−α2s, s > S0,

Bi1e
−β1s + Bi2e

−β2s, s ≤ S0,
(33)

where i = 1, 2; α1 and α2 are positive roots of equation

f(z) = z

(
C1 − λ1a

1 + az

) (
C1 − λ2a

1 + az

)
+ (q11 + q22)

(
C1 − λ0a

1 + az

)
= 0,

and β1 and β2 are positive roots of equation

f(z) = z

(
C0 − λ1a

1 − az

) (
C0 − λ2a

1 − az

)
− (q11 + q22)

(
C0 − λ0a

1 − az

)
= 0.

Constants Aij and Bij are defined by system

A2i = −A1i

q21

(
q11 + C1αi − λ1aαi

1 + aαi

)
, B2i = −B1i

q21

(
q11 +

λ1aβi

1 − aβi
− C0βi

)
,

2∑

j=1

Bij

exp
(

βja − 1
a

S0

)

βj − 1
+

2∑

j=1

Aij

exp
(

−1 + aαj

a
S0

)

1 + aαj
= 0,

and normalization equations (9).
Figures 1 and 2 illustrate a quality of the approximation. Here the solid line

corresponds to the exact stationary distribution derived from (33):

P (s) = π1P1(s) + π2P2(s),

and the dashed line corresponds to the approximate distribution (32).
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Fig. 1. Exact (solid line) and approximate (dashed line) PDF of the stock level for
MMPP two-state demand with exponential batch size distribution; θ = 0.5 and 0.1,
α = 1, q11 = q22 = −5, λ1 = 15, λ2 = 10, a = 1, S0 = 0.

Fig. 2. Exact (solid line) and approximate (dashed line) PDF of the stock level for
MMPP two-state demand with exponential batch size distribution; θ = 0.1, α = 5,
q11 = q22 = −5, λ1 = 15, λ2 = 10, a = 1, S0 = 0.

4 The Stationary Distribution of the Duration
of an Overproduction Situation (S > S0)

Let us find asymptotic conditional distribution u(·) of the length of time ti(s)
when S > S0 given that at the beginning of the period of overproduction λ(t) =
λi and S = s(t). Denote conditional moment generating function of the period

Hi(u, s) = E
{

e−uti(s)
}

(34)

Consider time interval Δt � 1. It follows

Hi(u, s) = e−uΔt
[
(1 + qiiΔt)EΔs {Hi(u, s + Δs)}

+
∑
j �=i

qijΔtEΔs {Hj(u, s + Δs)} ]
+ o(Δt). (35)
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Taking expectation with respect to Δs, tending Δt to zero, and taking into
account that if the value of the purchase x is greater than the difference s − S0

then the period of overproduction is over and, therefore, Hi(u, s − x) = 1, we
obtain the following system of equations

−C1
∂Hi(u, s)

∂s
= −(λi + u)Hi(u, s) +

n∑

j=1

qijHj(u, s)

+λi

s−S0∫
0

Hi(u, s − x)ϕ(x)dx + λi

∞∫

s−S0

ϕ(x)dx

(36)

To solve (36), consider again the case C1 = (1 − αθ)λ0a, where 0 < θ � 1.
Here and farther we will consider the case α = 1. The solution will be found in
the form

Hi(u, s) = fi

( u

θ2
, θs, θ

)
, (37)

where fi(ω, z, θ) are twice differentiable functions with respect to z and uniformly
continuous with respect to ω and θ; also lim

θ→0
θS0(θ) = z0.

Substitute (37) into (36) and denote ω =
u

θ2
, z = θs, z0 = θS0. Rewrite (37)

in the following form

C1θ
∂fi(ω, z, θ)

∂z
= (λi + ωθ2)fi(ω, z, θ) −

n∑

j=1

qijfj(ω, z, θ)

−λi

∞∫

0

fi(ω, z − θx, θ)ϕ(x)dx + Ri(z, θ)
(38)

where

Ri(z, θ) = λi

∞∫

z−z0
θ

fi(ω, z − θx, θ)ϕ(x)dx + λi

∞∫

z−z0
θ

ϕ(x)dx

Analogously the previous, we get that Ri(z, θ) < o(θ2) as θ → 0 for z > z0. So,
we can neglect this term in (38).

From (38) we get as θ → 0
n∑

i=1

qijfj(ω, z, 0) = 0. (39)

Since Rang Q = n − 1 and
n∑

j=1

qij = 0, it follows that

fj(ω, z, 0) ≡ f(ω, z), (40)

where f(ω, z) is some function.
Let’s

fi(ω, z, θ) = f(ω, z) + hi(ω, z)θ + o(θ) (41)

as θ → 0.
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From (38), we get

n∑

j=1

qijhj(ω, z) = (λi − λ0)aḟz(ω, z). (42)

Now consider

fi(ω, z, θ) = f (ω, z) + hi(ω, z)θ + gi(ω, z)θ2 + o(θ2) (43)

as θ → 0.
From (38), we have as θ → 0

λia2

2
f̈z(ω, z) − λ0a1ḟz(ω, z) − ωf (ω, z)

−(λi − λ0)a1ḣi,z(ω, z) =
n∑

j=1

qijgj(ω, z).
(44)

Multiplying equations of system (44) to πi and summing them up, we get

λ0a2

2
f̈z(ω, z) − λ0a1ḟz(ω, z) − ωf (ω, z) =

n∑

i=1

(λi − λ0) πia1ḣi,z(ω, z). (45)

From (42), it follows

n∑

j=1

qij ḣj(ω, z) = (λi − λ0)a1f̈z(ω, z)

or taking into account that Q = PT γRT ,

γt

n∑

j=1

Rjtḣj,z(ω, z) =
n∑

i=1

Rit(λi − λ0)a1f̈z(ω, z).

Note, that the last equation of the above system is satisfied by any sum
n∑

i=1

Rinḣi,z(ω, z) because Rjn = πj and γn = 0. Thus, we obtain the system of

equations
n∑

j=1

Rjtḣj,z(ω, z) =
1
γt

n∑

i=1

Rit(λi − λ0)a1f̈z(ω, z) t = 1, n − 1,

n∑

i=1

Rinḣi,z(ω, z) = c(z),

where c(·) is any function.
Since Pnk = 1, it follows from the above that

ḣk,z(ω, z) =
n−1∑

i=1

Pik
1
γi

n∑

j=1

Rji(λj − λ0)a1f̈z(ω, z) + c(z),
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and
n∑

i=1

(λi − λ0)πiaḣi,z(ω, z) = a1
2

n∑

k=1

(λk − λ0)πk

n−1∑

i=1

Pik

γi

n∑

j=1

Rji(λj − λ0)f̈zω, z).

Thus, function f(z, ω) satisfies equation

A2f̈z(ω, z) − A1ḟz(ω, z) − ωf(ω, z) = 0, (46)

where A1 and A2 are defined by (26) and (27). Roots of the characteristic equa-
tion for (46) are

t1(ω) =
A1 +

√
A2

1 + 4A2ω

2A2
, t2(ω) =

A1 −
√

A2
1 + 4A2ω

2A2
, (47)

therefore,
f(ω, z) = D1(ω)et1(ω)(z−z0) + D(ω)et2(ω)(z−z0).

Since |Hi(u, s)| ≤ 1, it follows that |f(ω, z)| ≤ 1 for z ≥ z0. Therefore, D1(ω) = 0
and

f(ω, z) = D(ω)et2(ω)(z−z0). (48)

Let’s find D(ω). For z = z0, it follows from (36) that

C1θ
∂fi(ω, 0, θ)

∂z
= (λi + ωθ2)fi(ω, 0, θ) −

n∑

j=1

qijfj(ω, 0, θ) + λi = 0. (49)

From the above we get that D(ω) = 1 as θ → 0 and

Hi(ω, s) = et2(
ω
θ2 )θ(s−S0) + O(θ). (50)

For s > S0, stock level S is distributed according the following PDF

P (s |S > S0 ) =
P (s)

P {S > S0} =
θA1

A2
e
−

θA1

A2

(s − S0)

Taking expectation with respect to the Markov chain’s state and the stock level,
we obtain unconditional moment generating function

H(ω) =
n∑

i=1

πi

∞∫

S0

Hi(ω, s)P (s|S > S0) ds =
β

1 +
√

1 + βω
, (51)

where
β =

4A2

θ2A2
1

(52)

Finding the inverse Laplace transform (Bateman and Erdely [22]), from the
above we get PDF of the period of overproduction

u(t) =
2√
πβt

e
− t

β − 2
β

Erfc

(√
t

β

)
. (53)



260 K. Livshits et al.

5 The Stationary Distribution of the Duration
of a Stock-Out Situation (S(t) < 0)

Let us find asymptotic conditional distribution v(·) of the length of time τi(s)
when S(t) < 0 (the stock-out period) given that at the beginning of the period
λ(t) = λi and S = s(t) < 0. Denote conditional moment generating functions of
the period

Ψi(u, s) = E
{

e−uτi(s)
}

. (54)

Analogously the previous part we obtain the system of equations with respect
to Ψi(·, ·)

C0
∂Ψi(u, s)

∂s
= (λi + u)Ψi(u, s) −

n∑

j=1

qijΨj(u, s)−λi

∞∫

0

Ψi(u, s − x)ϕ(x)dx. (55)

To solve (55), consider the case C0 = (1 + θ)λ0a, where 0 < θ � 1, and the
following form of the solution

Ψi(u, s) = fi

( u

θ2
, θs, θ

)
. (56)

Analogously the previous, we obtain that fj(ω, z, 0) ≡ f(ω, z) satisfies the
following equation

A2f̈z(ω, z) + A1ḟz(ω, z) − ωf(ω, z) = 0 (57)

where A1 and A2 are defined by (26) and (27).
The solution of (57)

f(ω, z) = D1(ω)e−t1(ω)z + D2(ω)e−t2(ω)z,

where t1(ω) and t2(ω) are defined by (47). Since |f (ω, z)| ≤ 1 for z < 0, it
follows D1(ω) = 0. Thus

f(ω, z) = D2(ω)e−t2(ω)z. (58)

From Ψi(ω, 0) = 1 it follows that f(ω, 0) = 1, therefore, D2(ω) = 1. Thus,

Ψi(ω, s) = e−t2( ω
θ2 )θs + O(θ). (59)

Giving S < 0 stock level S is distributed according the following PDF

P (s |S < 0) =
P (s)

P {S < 0} =
θA1

A2
e

A1θ

A2
s
.

Taking expectation with respect to the Markov chain’s state and the stock level
we receive unconditional moment generating function

Ψ(ω) =
n∑

i=1

πi

0∫

−∞
Ψi(ω, s)P (s |S < 0)ds =

β

1 +
√

1 + βω
,
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where β is defined by (52). Finding the inverse Laplace transform (Bateman and
Erdely [22]), we get from the above that PDF of the period of stock-out

v(t) =
2√
πβt

e
− t

β − 2
β

Erfc

(√
t

β

)
. (60)

Thus, the asymptotic distributions of the durations of the periods of overpro-
duction and stock out coincide. That is quite natural because of the symmetric
changes of the production rate for α = 1 when the threshold is crossed.

6 Conclusion

Thus, the main part of the stationary distribution of the stock level of the
production-inventory system under consideration has been found. We assume
that the difference between the rate of production and mean sale per time unit
is a small value θ, which is positive, if the stock is below the base stock level S0

and negative, otherwise. Also we assume that S0 � 1 as θ � 1 so that θS0 keeps
a constant value. Under the same assumptions, the approximate distributions of
the durations of the period of overproduction and the period of unmet demand
were obtained.

The similar approximate method can be used for analysis of more complex
systems, for example, to simultaneously account for the dependence of the inten-
sity of the customer’s flow on the retail price. Other challenging problems are
maximization the approximate expected profit, investigation its sensitivity to
the parameters of the model, and giving recommendations to practitioners.
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Abstract. The paper deals with a single server, finite-source retrial
queue where the server serves two types of customers, called regular
customers and subscribed customers. The service times of both types
customers follow two distinct arbitrary probability distributions. In addi-
tion, the subscribed customers do not join the orbit of repeated regular
customers if the server is busy at the time of their arrival. Instead, such
an unsuccessful subscribed customer waits till the current regular ser-
vice is over, and then is accepted for service. Using the supplementary
variable approach and the discrete transformations technique we derive
formulas for computing the stationary joint distribution of the server
state and the orbit size.

Keywords: Finite queue · Retrials · Subscribed customers

1 Introduction

Queueing systems with finite source and retrials combine two features of great
practical importance. In the queueing models with finite source (also called closed
queueing models) it is assumed that the server/servers service a finite number of
customers as it is in most of the real situations. Each of these customers produces
its one flow of demands which means that the generalized input flow depends on
the number of customers able to produce demands, i.e. the customers not being
under service or not waiting for service. These models have been used to ana-
lyze the performance of telephone, computer, communication and other systems
[4,5,7,15,16]. The characteristic feature of queueing systems with retrials con-
cerns the behavior of those unsuccessful demands whose service cannot start at
the moment of their arrival. In the models with retrials it is assumed that these
customers are not lost or allowed to queue. Instead, they repeat their attempts
for service until find the server idle. Between trials the customers are said to
be in the orbit, or to be sources of repeated (secondary) calls, secondary sub-
scribers. Retrial queues arise in diverse real situations including our daily activ-
ity, telephone switching systems, telecommunication and computer networks,
call centers, cellular and local area networks, etc. [1,3,6,8,20,21] A systematic
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 263–273, 2018.
https://doi.org/10.1007/978-3-319-97595-5_21
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account of the fundamental methods and the latest results, as well as an clas-
sified bibliography on this topic can be found, for example in [3,11,12,17], and
references therein. Single server retrial queue with a finite number of customers
has been studied in a number of articles by a number of authors: Ohmura and
Takahashi [19], Falin and Artalejo [13], Amador [2], Dragieva [9] and others.
Recently, such models, extended with different additional features of the service
have been extensively studied. This includes, service with an unreliable server
[22,24], service with two phases of the service times [23], service with collisions
[18], service with random access [14], service with two-way communication [10],
etc. To the best of our knowledge there are no investigations about a retrial queue
with one server that serves a finite number of customers, some of which have
a special status and are called subscribed or special customers. The motivation
for studying such model are many real situations like call centers, repair centers,
or medical centers. Usually in these centers along with the regular customers
there is a special group of subscribed customers, or customers (patients) under
special care whose service consists mainly of preventive activities, initiated by
the server (operator) when being idle. In addition, we assume in our model that
if a special customer arrives and finds the server busy with a regular customer
service, the special customer waits till the end of the current service and then is
immediately accepted for service.

Further the paper is organized as follows. In Sect. 2 we describe the model
in detail. Section 3 contains the main results of the paper, namely formulas for
calculation of the stationary joint distribution of the server state and the orbit
size. Section 4 closes the paper and presents some possible further investigations.

2 Model Description and Notations

We consider in this article a queueing model with one server (an operator, or a
company) that serves customers of two types - regular customers, and subscribed
customers that also will be called special customers. The numbers of both types
customers are fixed - K regular and (N − K) subscribers, K < N . Each of
these customers produces a Poisson flow of demands with intensity λ1 and λ′

2,
respectively.

At any time t the server can be in one of three possible states - idle, busy with
service of a regular customer (regular service) or busy with a special customer
(special service). This will be indicated by the variable C(t), equal to 0, 1 or 2,
respectively.

If the server is idle at the time of a regular customer arrival, the customer
starts to be served. Otherwise it enters a virtual waiting room, called orbit and
after an exponentially distributed interval repeats its attempt for service. These
attempts are repeated until the customer finds the server idle. Thus, each regular
customer in the orbit produces a Poisson flow of demands with intensity μ. The
customers in the orbit are called secondary or repeated customers, while those
that are outside it - primary regular customers or regular customers in free
state. The service duration of primary and secondary regular customers follows
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the same arbitrary law with common probability distribution function B1(x),
hazard rate function b1(x) = B′

1(x)[1 − B1(x)]−1, Laplace-Stieltjes transform
β1(s) and mean 1/ν1. After the service is over the regular customers of both
types (primary or secondary) move to a free state, i.e. can produce a Poisson
flow of demands with intensity λ1.

The behaviour of the subscribed customers is as follows. If the server is idle
at the time t of a subscribed customer arrival, C(t) = 0, the service of this cus-
tomer starts. If C(t) = 1, i.e. if the server is busy with a regular service, then
the subscribed customer waits till the current regular service is over and then
is accepted immediately for service. We assume that no more than one special
customer is allowed to wait for the next service, i.e. if at the time moment of
a special customer arrival, C(t) = 1 and if one special customer is waiting, the
system state does not change. Finally, if the server is busy with a subscribed
service, and a subscribed customer arrives, the system state does not change,
i.e. we assume that the rejected subscribed customers do not join the orbit. The
service duration of subscribers follows an arbitrary law with common probability
distribution function B2(x), hazard rate function b2(x), Laplace-Stieltjes trans-
form β2(s) and mean 1/ν2. After the service any subscribed customer is free to
produce his/her usual demands that form a Poisson flow with intensity λ′

2.
Thus, the flow of subscribed customers demands can be either with intensity

(N − K)λ′
2 (when the server is idle or serving a regular customer and no sub-

scriber is waiting for the next service) or (N −K −1)λ′
2 (when a subscribed cus-

tomer is under service or waiting for the next service). Since the last flow does not
change the system state it is convenient to accept that the subscribed customers
arrive in the system according to a Poisson flow with intensity λ2 = (N −K)λ′

2.
Introducing a supplementary variable z(t), equal to the elapsed service time,

the state of the system at time t can be described by the Markov process

X(t) = {C(t), R(t), z(t)}

where C(t) denotes the server state at time t and R(t) is the number of repeated
regular customers at time t.

3 Steady State Analysis

Because of the finite state space of the Markov process X the stationary regime
exists and we can define the limiting probabilities (densities)

pi,j(x)dx = lim
t→∞ P {C(t) = i, R(t) = j, x ≤ z(t) < x + dx} , i = 1, 2,

pi,j = lim
t→∞ P {C(t) = i, R(t) = j} , i = 0, 1, 2, j = 0, 1, . . . ,K.

In a general way we obtain the equations of statistical equilibrium

p0,n [(K − n) λ1 + λ2 + nμ]
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= (1 − δn,K)
∫ ∞

0

p1,n(x)b1(x)e−λ2xdx +
∫ ∞

0

p2,n(x)b2(x)dx, (1)

dp1,n(x)
dx

= − [(K − n − 1) λ1 + b1(x)] p1,n(x) + (K − n) λ1p1,n−1(x), (2)

dp2,n(x)
dx

= − [(K − n) λ1 + b2(x)] p2,n(x) + (K − n + 1) λ1p2,n−1(x), (3)

p1,n(0) = (K − n) λ1p0,n + (1 − δn,K) (n + 1) μp0,n+1, (4)

p2,n(0) = λ2p0,n + (1 − δn,K)
∫ ∞

0

p1,n(x)b1(x)(1 − e−λ2x)dx, (5)

n = 0, 1, ...,K, with p1,−1(x) = p2,−1(x) = p1,K(x) = p0,−1 = 0. Here e−λ2x is
the probability that during a time interval x no subscribed call arrives, (1−e−λ2x)
is the probability that during a time interval x at least one subscribed call arrives.
To solve Eqs. (2) and (3) we apply the discrete transformations method, common
in the investigation of finite queues [9,13,16,19,22–24]. To this end we write the
equations in a matrix form,

[θiIi − Ai] pi(x) = 0,

where θi are given as,

θi = bi(x) +
d

dx
,

Ii is the identity matrix of order K − 2 + i, Ai are constructed from (2) and (3),
respectively in the usual way and pi(x), (i = 1, 2) is the column vector of the
unknown functions pi,j(x),

pi(x) = (pi0(x), ..., pi,K−2+i(x))T
.

Then we find the matrices Yi and Λi, such that Y −1
i AiYi = Λi. Thus, applying

the transformation pi(x) = Yiqi(x),in the equation [θiI − Ai] pi(x) = 0 we obtain
it in the form θiqi(x) = Λiqi(x) which is easy to solve.

The matrices Y1 and Λ1, which simplify Eq. (2) are well known in the
theory of finite source queues [13,16,19,23]. Λ1 is a diagonal one, Λ1 =
diag{0,−λ1, ...,− (K − 1) λ1} where the diagonal elements are exactly the eigen-
values of A1 with corresponding eigenvectors

y
(k)
1 =

(
y
(k)
1,0 , ..., y

(k)
1,K−1

)
,

where

y
(k)
1,n =

{
(−1)k−(K−n−1) (

k
K−n−1

)
, for k + n ≥ K − 1,

0, otherwise.
(6)

The matrix A2 is of the same type as A1, but of order K + 1, while A1 is of
order K. This means that Λ2 = diag{0,−λ1, ...,−Kλ1} and the corresponding
eigenvectors

y
(k)
2 =

(
y
(k)
2,0, ..., y

(k)
2,K

)
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with entries

y
(k)
2,n =

{
(−1)k−(K−n) (

k
K−n

)
, k + n ≥ K,

0, otherwise.
(7)

Thus, with the help of transformations

p1,n(x) =
K−1∑
k=0

y
(k)
1,nq1,k(x)

=
n∑

m=0

(−1)m

(
K − 1 − (n − m)

m

)
q1,K−1−(n−m)(x), (8)

n = 0, ...,K − 1,

p2,n(x) =
K∑

k=0

y
(k)
2,nq2,k(x) =

n∑
m=0

(−1)m

(
K − (n − m)

m

)
q2,K−(n−m)(x), (9)

n = 0, ...,K,

we can solve (2) and (3), and then, using (1), (4) and (5) we can derive formulas
for the densities pi,n(x), i = 1, 2 and the corresponding probabilities pi,n and
p0,n, n = 0, ...,K. This is obtained in the following proposition.

Proposition 1. The stationary joint distribution of the server state and the
orbit size can be calculated according to the following formulas:

pi,n(x) =

K−2+i∑
k=K−n−2+i

(−1)k−(K−n−2+i)

(
k

K − n − 2 + i

)
qi,k(1 − Bi(x))e−kλix, (10)

pi,n =
K−2+i∑

k=K−n−2+i

(−1)k−(K−n−2+i)

(
k

K − n − 2 + i

)
qi,k

1 − βi,k

kλi
, (11)

i = 1, 2,

((K − n) λ1 + λ2 + nμ) p0,n =
K∑

k=K−n

(−1)k−(K−n)

(
k

K − n

)
q2,kβ2,k+

(1 − δn,K)
K−1∑

k=K−n−1

(−1)k−(K−n−1)

(
k

K − n − 1

)
q1,kβ12,k, (12)

where
βi,k = βi (kλi) (i = 1, 2), β12,k = β1 (kλ1 + λ2) , (13)

1 − βi,k

kλi
=

1
νi

for k = 0.

The quantities qi,k are connected by the linear equations

K−1∑
k=K−n−1

q1,kAn,k + q1,K−n−2 (n + 1) γK−n−2μ =
K∑

k=K−n−1

q2,kBn,k, (14)
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n = 0, ...,K − 1,

K−1∑
k=K−n−1

q1,kCn,k =
K∑

k=K−n

q2,kDn,k, (15)

n = 0, ...,K,

where

An,k = (−1)k−(K−n−1)

{(
k

K − n − 1

)
[λ2 + γk (K − n) λ1]

− (1 − δn,K−1) (n + 1) γkμ

(
k

K − n − 2

)}
,

Bn,k = (−1)k−(K−n)

(
k

K − n − 1

)
[λ1 (k + n + 1 − K) − (n + 1) μ] ,

Cn,k = (−1)k−(K−n−1)

(
k

K − n − 1

){
[(K − n) λ1 + nμ] γk + λ2β12,k

}
,

Dn,k = (−1)k−(K−n)

(
k

K − n

)[
(K − n) λ1 + nμ + λ2

(
1 − β2,k+1

)]
,

with
γk = β1,k − β12,k,

q1,−1 = 0.

Proof. As stated above, applying in (2) and (3) transformations (8) and (9),
respectively we get them in the simpler form

dq1,m(x)
dx

= − [mλ1 + b1(x)] q1,m(x), m = 0, ...,K − 1,

dq2,m(x)
dx

= − [mλ2 + b2(x)] q2,m(x), m = 0, ...,K,

with solutions

q1,m(x) = q1,m(0) (1 − B1(x)) exp {−mλ1x} ,

q2,m(x) = q2,m(0) (1 − B2(x)) exp {−mλ2x} .

This leads to the following expressions for the functions pi,n(x), (i = 1, 2, n =
0, ...,K − 2 + i)

pi,n(x) =
K−2+i∑

k=0

y
(k)
i,n qi,k(1 − Bi(x))e−kλix, (16)

where qi,k = qi,k(0). Substituting according to these equations in (1) we express
p0,n in terms of the quantities qi,k

p0,n =

K−1∑
k=0

(
y
(k)
1,nq1,kβ12,k + y

(k)
2,nq2,kβ2,k

)
+ y

(K)
2,n q2,Kβ2,K

(K − n) λ1 + λ2 + nμ
, (17)
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where β12,k, βi,k (i = 1, 2, k = 0, ...,K) are determined by (13). Formulas (16)

and (17), compared with formulas (7) and (6) for y
(k)
i,n (i = 1, 2, n+k ≤ K−2+i)

prove (10) and (12). Formulas (11) follow from the relations

pi,n =
∫ ∞

0

pi,n(x)dx, i = 1, 2.

Now, using the initial conditions (4) and (5) we can derive a system of lenear
equations for qi,k. Substituting in (4) and (5) pi,n(x) according to (16) we obtain

K−1∑
k=0

y
(k)
1,nq1,k = (K − n) λ1p0,n + (n + 1) μp0,n+1,

n = 0, ...,K − 1,

K∑
k=0

y
(k)
2,nq2,k = λ2p0,n + (1 − δn,K)

K−1∑
k=0

y
(k)
1,nq1,k

(
β1,k − β12,k

)
, (18)

n = 0, 1, ...,K.

Excluding p0,n we get to the following equations

λ2

K−1∑
k=0

y
(k)
1,nq1,k = (K − n) λ1

[
K∑

k=0

y
(k)
2,nq2,k −

K−1∑
k=0

y
(k)
1,nq1,k

(
β1,k − β12,k

)]

+ (n + 1) μ

[
K∑

k=0

y
(k)
2,n+1q2,k − (1 − δn,K−1)

K−1∑
k=0

y
(k)
1,n+1q1,k

(
β1,k − β12,k

)]
,

which can be also written in the form

K−1∑
k=0

q1,k

{
y
(k)
1,n

[
λ2 + (K − n) λ1

(
β1,k − β12,k

)]

+ (1 − δn,K−1) (n + 1) μ
(
β1,k − β12,k

)
y
(k)
1,n+1

}

=
K∑

k=0

[
(K − n) λ1y

(k)
2,n + (n + 1) μy

(k)
2,n+1

]
q2,k,

n = 0, ...,K − 1.

Substituting here y
(k)
i,n according to (7) and (6) we obtain the equations

K−1∑
k=K−n−1

q1,k

{
(−1)k−(K−n−1)

(
k

K − n − 1

)[
λ2 + (K − n) λ1

(
β1,k − β12,k

)]

+ (1 − δn,K−1) (n + 1) μ
(
β1,k − β12,k

)
(−1)k−(K−n−2)

(
k

K − n − 2

)}

+q1,K−n−2 (n + 1) μ
(
β1,K−n−2 − β12,K−n−2

)
= (n + 1) μq2,K−n−1
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+
K∑

k=K−n

[
(K − n) λ1 (−1)k−(K−n)

(
k

K − n

)

+ (n + 1) μ (−1)k−(K−n−1)

(
k

K − n − 1

)]
q2,k,

n = 0, ...,K − 1,

which after some transformations prove formulas (14).
Another relations between these quantities come from Eqs. (17) and (18):

[(K − n) λ1 + λ2 + nμ]
{

K−1∑
k=0

[
y
(k)
2,nq2,k − y

(k)
1,nq1,k

(
β1,k − β12,k

)]
+ y

(K)
2,n q2,K

}

= λ2

[
K−1∑
k=0

(
y
(k)
1,nq1,kβ12,k + y

(k)
2,nq2,kβ2,k

)
+ y

(K)
2,n q2,Kβ2,K

]
,

which can be simplified to the form

K∑
k=0

y
(k)
2,nq2,k

[
(K − n) λ1 + nμ + λ2

(
1 − β2,k+1

)]

=
K−1∑
k=0

y
(k)
1,nq1,k

{
[(K − n) λ1 + nμ + λ2] β1,k − [(K − n) λ1 + nμ] β12,k

}
.

Here we apply formulas (7) and (6) for y
(k)
i,n and obtain formulas (15). This

finishes the proof of the proposition.

Proposition 1 provides convenient formulas for calculation of the probabili-
ties pi,n (i = 0, 1, 2, n = 0, ...,K). We can see that all variables qi,k (i = 1, 2)
(consequently and the probabilities pi,n) are proportional to q2,K . Indeed, from
Eq. (15) for n = 0 we can express q1,K−1 in terms of q2,K ,

q1,K−1 = q2,K

D0,K

C0,K−1
.

Then, from (14) for n = 0 we express q1,K−2 in terms of q1,K−1 (and conse-
quently of q2,K) and of q2,K−1,

q1,K−2γK−2μ = q2,K−1B0,K−1 + q2,KB0,K − q1,K−1A0,K−1,

and, substituting with this expression in (15) for n = 1 we can express q2,K−1

in terms of q2,K :

q2,K−1

(
D1,K−1 − C1,K−2B0,K−1

γK−2μ

)

= q1,K−1

(
C1,K−1 +

C1,K−2A0,K−1

γK−2μ

)
− q2,K

(
D1,K − C1,K−2B0,K

γK−2μ

)
.

Thus, using (14) and (15) for n = 0, and (15) for n = 1 we express q1,K−1,
q1,K−2 and q2,K−1 in terms of q2,K .
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Further we continue in the same way: if suppose that all quantities q1,k

(k = K − n − 1, ..., K − 1) and q2,k (k = K − n, ..., K) have been expressed
in terms of q2,K , then from (14) for n we express q1,K−n−2 by the following
equation:

q1,K−n−2 (n + 1) γK−n−2μ =
K∑

k=K−n−1

q2,kBn,k −
K−1∑

k=K−n−1

q1,kAn,k.

Then we substitute with this expression in (15) for n + 1, which allows to
express q2,K−n−1 in terms of qi,k (i = 1, 2, k = K − n + i − 2, ...,K + 2 − i), i.e.
in terms of q2,N :

q2,K−n−1

(
Dn+1,K−n−1 − Cn+1,K−n−2Bn,K−n−1

(n + 1) γK−n−2μ

)

=
K−1∑

k=K−n−1
q1,k

(

Cn+1,k +
Cn+1,K−n−2An,k

(n + 1) γK−n−2μ

)

−
K∑

k=K−n

q2,k

(

Dn+1,k − Cn+1,K−n−2Bn,k

(n + 1) γK−n−2μ

)

.

Thus, repeating this procedure for n = 0, ...,K − 1 we can see that all quantities
qi,k are proportional to q2,K . The coefficients of proportionality can be recur-
sively computed from the above described procedure by putting q2,K = 1. Then
q2,K can be found with the help of (11), (12 ) and the normalization condition

P0 + P1 + P2 = 1

where Pi, (i = 0, 1, 2) is the stationary server state distribution,

Pi = lim
t→∞ P (C(t) = i) .

Once the probabilities pi,n have been computed we can calculate the main sta-
tionary macro characteristics of the system performance:

• server state distribution, Pi,

Pi =
K∑

n=0

pi,n, i = 0, 1, 2, p1,K = 0;

• mean orbit size,

E [R] = lim
t→∞ E [R (t)] =

2∑
i=0

K∑
n=0

npi,n;

• mean rate of generation of primary regular calls,

Λ = (K − E [R] − P1) λ1;
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• mean waiting time of an regular customer in the orbit,

E [W ] =
E [R]

Λ
;

• the blocking probability PB that one regular customer will find the server
busy at the time of its arrival and will join the orbit

PB =
∑K−2

n=0 (K − n − 1)λ1p1,n +
∑K−1

n=0 (K − n)λ1p2,n∑K−2
n=0 (K − n − 1)λ1p1,n +

∑K−1
n=0 (K − n)λ1 (p0,n + p2,n)

.

4 Conclusions

In this paper we derive formulas for computing the joint distribution of the
server state and the orbit size in one single server retrial queue where the server
serves a finite number of customers of two types - K regular and (N − K)
subscribed. The service times of both types follow two distinct arbitrary laws
with common probability distributions. The obtained formulas allow to extend
further the investigation of this system by studying the influence of the system
input parameters on the macro characteristics of the system performance, on the
basis of numerical examples. We also plan to consider the waiting time process,
the busy period distribution and other descriptors of the system performance.
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5. Biro, J., Bérczes, T., Kőrösi, A., Heszberger, Z., Sztrik, J.: Discriminatory processor
sharing from optimization point of view. In: Dudin, A., De Turck, K. (eds.) ASMTA
2013. LNCS, vol. 7984, pp. 67–80. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39408-9 6

6. Choi, B., Shin, Y.W., Ahn, W.C.: Retrial queues with collision arising from unslot-
ted CSMA/CD protocol. Queueing Syst. 11(4), 335–356 (1992)

7. Cooper, R.: Introduction to Queueing Theory, 2nd edn. Edward Arnold, London
(1981)

8. Deslauriers, A., L’Ecuyer, P., Pichitlamken, J., Ingolfsson, A., Avramidis, A.:
Markov chain models of a telephone call center with call blending. Comput. Oper.
Res. 34, 1616–1645 (2007)

9. Dragieva, V.: A finite source retrial queue: number of retrials. Commun. Stati.
Theory Methods 42(5), 812–829 (2013)

https://doi.org/10.1007/978-3-540-78725-9
https://doi.org/10.1007/978-3-642-39408-9_6
https://doi.org/10.1007/978-3-642-39408-9_6


Finite-Source Retrial Queue with Subscribed Customers 273

10. Dragieva, V., Phung-Duc, T.: Two-way communication M/M/1//N retrial queue.
In: Thomas, N., Forshaw, M. (eds.) ASMTA 2017. LNCS, vol. 10378, pp. 81–94.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61428-1 6
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Abstract. A model of a multi-link homogeneous transport connection
with limited buffer storage in transit nodes as a network of queuing
systems with discrete time is proposed. An estimate of the lower bound
of the capacity of the transport connection throughput is obtained. The
effect of a set of successive absolutely reliable data links located between
two nondeterministic retransmission sections of a given quality on the
operational characteristics of a transport connection is found.

Keywords: Transport connection · Transport protocol
Limited buffer storage · Operating characteristics
Network of QS with discrete time

1 Introduction

The most important operational characteristics of multi-link virtual channels
are their throughput and average end-to-end delay of protocol data units. These
figures are determined not only by the reliability of data transmission in each
section of the retransmissions, but also the number of buffer storages for receiv-
ing data packets at transit nodes. Known approaches to the analysis of these
performance indicators and the results in this area [1–9] are focused on mod-
els of QS networks with continuous time for given distributions of input flows
and transmission time of protocol data units that do not take into account the
specifics of linear control protocols. These methods lead to approximate results,
obtained, as a rule, by time-consuming numerical calculations. Modeling using
models with discrete time is performed in [10–13], but the results are obtained
only at the linear level for a two-link data transmission path. Since the algo-
rithms with decisive feedback are the basis of the control procedures for the
linear and transport level protocols, systems with discrete time are the more
adequate description of real information transfer processes [11,13]. However,
analysis of QS networks with discrete time is a nontrivial task, since the out-
put flows of discrete Markov QS in most cases lose Markov properties [14]. The
model proposes a data transmission path model consisting of several retransmis-
sions sites with limited storage in transit nodes, taking into account the discrete
nature of the information transfer process.
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 274–289, 2018.
https://doi.org/10.1007/978-3-319-97595-5_22
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2 The Model of the Path in the Form of an Open QS
Network

Consider a data transmission path consisting of D consecutive links. We will
assume that the exchange in each link is performed by complete information
packets in accordance with the start-stop protocol procedure. The duration of
the transmission cycle of the packet t from the beginning of its output to the
communication line until confirmation of the receipt will be assumed to be the
same on all the retransmission sections, and the buffer stores of the transit nodes
of the path are bounded by the sizes Kd, d = 1,D − 1.

We also believe that the reliability of packet transmission in the d link is
Fd, and the number of retransmissions due to distortions of information packets
and acknowledgments, as well as buffer memory locks is not limited. At the
same time, the error-free transmission time of a packet for each link is a random
variable that is a multiple of t and has a geometric distribution law with the
parameter Fd. We assume, in addition, that the transmitting node of the first
link always has packets for sending along the considered path, and in transit
nodes “external” flows are not added to the main traffic. Then the behavior of
the multilinked data transmission path is described by an open Markov network
of D − 1 discrete QS [13], the intensity of the input flow to which is determined
by the value Fd, and the service intensity in each d QS (d = 1,D − 1) is the
value of Fd+1.

Since we are considering a path with limited queue sizes in transit nodes, the
output streams of each discrete QS will not be Markovs [14]. Therefore, such a
network cannot be analyzed as a collection of independent Markov discrete QS,
but should be described by an enclosed Markov chain in a D − 1-dimensional
space with the number of states equal to the product

∏D−1
d=1 (Kd + 1).

We denote by πB
A the transition probabilities of the Markov chain from the

state A to the state B, where A = iD−1iD−2 . . . i1; B = jD−1jD−2 . . . j1; id =
0,Kd; jd = 0,Kd; d = 1,D − 1 — (D − 1) are the bit numbers of the initial
and changed states of the Markov chain in a (D −1)-dimensional space with the
cardinality of the set of values in d digit (d dimension of space) equal to Kd + 1,
and PA are the probabilities of states of the Markov chain. The throughput of
a path of length D, is denoted by ZD(K1, . . . ,KD−1), and the average end-to-
end delay — TD(K1, . . . ,KD−1). Since the model in question assumes that the
sender always has packets to transmit, this operational indicator corresponds to
the average upper limit of the delay. The throughput of the multi-link path is
determined by the average value of the acknowledged (serviced) flow:

ZD(K1, . . . ,KD−1) = FD

K1∑

i1=0

. . .

KD−2∑

iD−2=0

KD−1∑

iD−1=1

PiD−1...i1 .

The indicator of the average end-to-end packet delay, measured in durations
of t, is composed of the time of entry into the QS network (the transmission time
at the first link) and the service time in the QS network (the transmission time for
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the remaining links before reaching the destination node of the D section of the
retransmitting taking into account the presence of queues in transit nodes) [4]:

TD(K1, . . . ,KD−1) =
1 + K̄D

ZD(K1, . . . ,KD−1)
,

where K̄D is the average number of packets in all transit nodes of the data path
(in the QS network):

K̄D =
K1∑

i1=0

· · ·
KD−1∑

iD−1=0

D−1∑

d=1

idPiD−1...i1 .

3 Analysis of the Three-Link Path

Lets start with the data transfer path, which consists of three retransmission
areas with buffers of arbitrary size in transit nodes. The type of transition prob-
abilities of the Markov chain describing the transport process along such a path
is given in Table 1.

Table 1. Transitional probabilities for a three-link path

πj2j1
i2i1

i2 i1 j2 j1

F1 0 0 0 1

F1(1 − F2) 0 1, K1 − 1 0 i1 + 1

F2(1 − F1) 0 1, K1 1 i1 − 1

F1F2 0 1, K1 1 i1

F3(1 − F1) 1, K2 0 i2 − 1 0

F1(1 − F3) 1, K2 0 i2 1

F1(1 − F3) K2 1, K1 − 1 K2 i1 + 1

F1F3 1, K2 0 i2 − 1 1

F3(1 − F1)(1 − F2) 1, K2 1, K1 − 1 i2 − 1 i1

F3(1 − F2) 1, K2 K1 i2 − 1 K1

F2F3(1 − F1) 1, K2 1, K1 i2 i1 − 1

F2(1 − F1)(1 − F3) 1, K2 − 1 1, K1 i2 + 1 i1 − 1

F1F2(1 − F3) 1, K2 − 1 1, K1 i2 + 1 i1

F1(1 − F2)(1 − F3) 1, K2 − 1 1, K1 − 1 i2 i1 + 1

F1F3(1 − F2) 1, K2 1, K1 − 1 i2 − 1 i1 + 1
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For K1 = K2 = 1, the solution of the system of local equilibrium equations
for the Markov chain describing the three-link transport connection has the form:

P00 =
F2F

2
3 (1 − F1)2

F3

(
F1 + F3(1 − F1)

)(
F1 + F2(1 − F1)

)
+ F 2

1 F2(1 − F3)
;

P01 = P00

F1

(
F1(1 − F2) + F3(1 − F1)

)

F2F3(1 − F1)2
;

P10 = P00
F1

F3(1 − F1)
; P11 = P00

F 2
1

F 2
3 (1 − F1)2

.

The throughput of the three-link path is determined by the value:

Z3(1, 1) =
F1F2F3

(
F1 + F3(1 − F1)

)

F3

(
F1 + F3(1 − F1)

)(
F1 + F2(1 − F1)

)
+ F 2

1 F2(1 − F3)
.

Let us consider particular cases of this solution. It is not difficult to see
that for two absolutely reliable channels (F1 = F2 = 1, or F2 = F3 = 1, or
F1 = F3 = 1), the throughput of a three-link path is determined by the reliability
of the transmission in the third (F3, or F1, or F2, respectively).

For the case when the first retransmission area is absolutely reliable (F1 = 1),
the throughput assumes the form coinciding with the expression of this indicator
for the two-link path [12]:

Z3(1, 1) =
F2F3

F2 + F3(1 − F2)
. (1)

With the statistically homogeneous second and third links of the data transfer
path (F2 = F3 = F ), this relation is transformed to the form:

Z3(1, 1) =
F

2 − F
. (2)

The throughput of the path with the deterministic average channel (F2 = 1)
takes the following form:

Z3(1, 1) =
F1F3

(
F1 + F3(1 − F1)

)

F3

(
F1 + F3(1 − F1) + F 2

1 (1 − F3)
) .

In this case the values F1 = F3 = F lead to the relation:

Z3(1, 1) =
F (2 − F )

1 + 2(1 − F )
. (3)

For F3 = 1 we have

Z3(1, 1) =
F1F2

F1 + F2(1 − F1)
.

It is not difficult to see that this relation is exactly the same as (1). The
comparison (2) and (3) shows that (3) exceeds (2) by Δ = F (1−F )2

(3−2F )(2−F ) , assuming
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the maximum value when F = 0.468. This fact is easily explained by the fact
that the absolutely reliable channel of the second link of data transfer serves as
an additional buffer for storing packets between the first and third sections of
the retransmission, thereby reducing the probability of blocking buffer memory.
For a statistically homogeneous data transmission path (F1 = F2 = F3 = F ) we
have:

Z3(1, 1) = F
1 + (1 − F )

1 + 3(1 − F ) + (1 − F )2
. (4)

In this case, the indicator of the average end-to-end packet delay expressed in
the transmission cycle duration of the t packet will be

T3(1, 1) =
3 + 6(1 − F ) + (1 − F )2

F
(
1 + (1 − F )

) .

Now let us consider a statistically homogeneous path for K1 = 1 and an
arbitrary K2. For a given K2, writing out the equilibrium equations, taking into
account the normalization condition, one can find the state probabilities and
operational parameters of the path. For K2 = 2, 5, the throughput values and
average end-to-end delay are as follows:

Z3(1, 2) =
F

{
3 + 3(1 − F ) + (1 − F )2

}

3 + 7(1 − F ) + 4(1 − F )2 + (1 − F )3
;

Z3(1, 3) =
F

{
7 + 8(1 − F ) + 4(1 − F )2 + (1 − F )3

}

7 + 16(1 − F ) + 12(1 − F )2 + 5(1 − F )3 + (1 − F )4
;

Z3(1, 4) =
F

{
15 + 20(1 − F ) + 13(1 − F )2 + 5(1 − F )3 + (1 − F )4

}

15 + 36(1 − F ) + 33(1 − F )2 + 18(1 − F )3 + 6(1 − F )4 + (1 − F )5
;

Z3(1, 5) = F
{

31 + 48(1 − F ) + 38(1 − F )2 + 19(1 − F )3 + 6(1 − F )4

+ (1 − F )5
}/{

31 + 80(1 − F ) + 86(1 − F )2 + 57(1 − F )3

+ 25(1 − F )4 + 7(1 − F )5 + (1 − F )6
}

;

T3(1, 2) =
10 + 15(1 − F ) + 6(1 − F )2 + (1 − F )3

F
{
3 + 3(1 − F ) + (1 − F )2

} ;

T3(1, 3) =
25 + 37(1 − F ) + 21(1 − F )2 + 7(1 − F )3 + (1 − F )4

F
{
7 + 8(1 − F ) + 4(1 − F )2 + (1 − F )3

} ;

T3(1, 4) =
56 + 89(1 − F ) + 63(1 − F )2 + 29(1 − F )3 + 8(1 − F )4 + (1 − F )5

F
{
15 + 20(1 − F ) + 13(1 − F )2 + 5(1 − F )3 + (1 − F )4

} ;

T3(1, 5) =
{

119 + 209(1 − F ) + 180(1 − F )2 + 101(1 − F )3 + 38(1 − F )4

+ 9(1 − F )5 + (1 − F )6
}/

F
{

31 + 48(1 − F ) + 38(1 − F )2

+ 19(1 − F )3 + 6(1 − F )4 + (1 − F )5
}

.
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Under the assumption that K1 is arbitrary and K2 = 1 it is easy to obtain the
values Pij and the ratios for the throughput that satisfy the equality

Z3(K1, 1) = Z3(1,K2) (5)

if k1 and K2 coincide here. Thus, the throughput rate is invariant to the order of
transit nodes with buffer storage of different volumes along a statistically homo-
geneous data path. At the same time, the average end-to-end delay is dependent
on this order:

T3(2, 1) =
11 + 20(1 − F ) + 10(1 − F )2 + 2(1 − F )3

F
{
3 + 3(1 − F ) + (1 − F )2

} ;

T3(3, 1) =
31 + 61(1 − F ) + 43(1 − F )2 + 17(1 − F )3 + 3(1 − F )4

F
{
7 + 8(1 − F ) + 4(1 − F )2 + (1 − F )3

} ;

T3(4, 1) =
{

79 + 173(1 − F ) + 153(1 − F )2 + 81(1 − F )3 + 26(1 − F )4

+ 4(1 − F )5
}/

F
{

15 + 20(1 − F ) + 13(1 − F )2

+ 5(1 − F )3 + (1 − F )4
}

;

T3(5, 1) =
{

191 + 465(1 − F ) + 488(1 − F )2 + 317(1 − F )3 + 136(1 − F )4

+ 37(1 − F )5 + 5(1 − F )6
}/

F
{

31 + 48(1 − F ) + 38(1 − F )2

+ 19(1 − F )3 + 6(1 − F )4 + (1 − F )5
}

.

Numerical analysis shows that with the growth of k2, the throughput of the
three-link path Z3(1,K2) rapidly tends to the theoretical limit Z2(1). A study
of a homogeneous path with K1 = K2 = 2 shows that operational characteristics
are determined by expressions:

Z3(2, 2) = F
{

24 + 26(1 − F ) + 17(1 − F )2 + 9(1 − F )3

+ 2(1 − F )4
}/{

24 + 46(1 − F ) + 35(1 − F )2 + 21(1 − F )3

+ 8(1 − F )4 + (1 − F )5
}

;

T3(2, 2) =
{

96 + 140(1 − F ) + 96(1 − F )2 + 55(1 − F )3 + 17(1 − F )4

+ (1 − F )5
}/

F
{

24 + 26(1 − F ) + 17(1 − F )2

+ 9(1 − F )3 + 2(1 − F )4
}

.

With the further increase of k1 and K2, the structural complexity of the ana-
lytical solution is rapidly increasing. A comparative analysis of the throughput
of Z3(K1,K2) with different relations between k1 and k2 shows that the uni-
form distribution of buffers along the data path provides the best values of this
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operating characteristic. This fact should be considered when building multi-link
connections.

Assume now that f1 = 1, F2 = F3 = F , and k1 and k2 are arbitrary. Then
the set of probable States is formed by a set of two adjacent geometric figure:
rectangle (i = 0, 1; j = 1,K2) and line segment (i = 0,K1; j = K2). Operational
indicators thus have the following form:

Z3(K1,K2) =
F

{
K1 + K2 − F

}

1 + K1 + K2 − 2F
; (6)

T3(K1,K2) =
K1(3 + K1 + 2K2) + K2(3 + K2) + 2 − 4F − 2F 2

2F
{
K1 + K2 − F

} .

It follows from relation (6) that for an unbounded growth of K1 or K2, the
throughput of Z3(K1,K2) tends to the value F .

4 Analysis of the Multi-link Path

Consider a virtual connection with the number of packet storage locations in
transit nodes equal to one. Because of this, the condition numbers of Markov
chain represent the binary number with number of digits equal to D1. Since each
link of the path is controlled by a start-stop protocol procedure, the permissible
state changes correspond to a single shift to the left of a subset of the bits
of the initial Markov chain state number. In this case, the “non-transmission”
of the data package (as a result of distortion in the communication channel)
from one transit node to the next leads to the effect of “blocking” (locking) the
package located in the previous node. Transition probabilities of the Markov
chain that describes the transportation process in the transmitting tract of the
four units have a dependency on the parameters of the inter-nodal sections of
the retransmission that are listed in the Table 2.

For Fd = F , d = 1, 4, the probabilities of states of a given Markov chain are
determined by the relations:

P000 =
(1 − F )3

1 + 6(1 − F ) + 6(1 − F )2 + (1 − F )3
;

P001 = P000
3

1 − F
; P010 = P000

2
1 − F

; P100 = P000
1

1 − F
;

P011 = P000
3

(1 − F )2
; P101 = P000

2
(1 − F )2

;

P110 = P000
1

(1 − F )2
; P111 = P000

1
(1 − F )3

.
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Table 2. Transitional probabilities for a four-link path for K1 = K2 = K3 = 1

πj3j2j1
i3i2i1

i3 i2 i1 j3 j2 j1

F1 0 0 0 0 0 1

F2(1 − F1) 0 0 1 0 1 0

F1F2 0 0 1 0 1 1

F1(1 − F3) 0 1 0 0 1 1

F3(1 − F1) 0 1 0 1 0 0

F1F3 0 1 0 1 0 1

F3(1 − F2) 0 1 1 1 0 1

F2F3(1 − F1) 0 1 1 1 1 0

F1F2F3 0 1 1 1 1 1

F4(1 − F1) 1 0 0 0 0 0

F1F4 1 0 0 0 0 1

F1(1 − F4) 1 0 0 1 0 1

F4(1 − F2) 1 0 1 0 0 1

F2F4(1 − F1) 1 0 1 0 1 0

F1F2F3 1 0 1 0 1 1

F2(1 − F1)(1 − F4) 1 0 1 1 1 0

F1F2(1 − F4) 1 0 1 1 1 1

F4(1 − F1)(1 − F3) 1 1 0 0 1 0

F1F4(1 − F3) 1 1 0 0 1 1

F3F4(1 − F1) 1 1 0 1 0 0

F1F3F4 1 1 0 1 0 1

F1(1 − F4) 1 1 0 1 1 1

F4(1 − F3) 1 1 1 0 1 1

F3F4(1 − F2) 1 1 1 1 0 1

F2F3F4(1 − F1) 1 1 1 1 1 0

Dependence of operational indicators on the parameters of the data transmission
path has the form:

Z4(1, 1, 1) =
F

{
1 + 3(1 − F ) + (1 − F )2

}

1 + 6(1 − F ) + 6(1 − F )2 + (1 − F )3
; (7)

T4(1, 1, 1) =
4 + 18(1 − F ) + 12(1 − F )2 + (1 − F )3

F
{
1 + 3(1 − F ) + (1 − F )2

} .
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Table 3. Transitional probabilities of the Markov chain for the four-link data path for
F2 = F3 = 1

πj3j2j1
i3i2i1

i3 i2 i1 j3 j2 j1

F1 0 0 0 1 0 0

1 − F1 0 0 1 0 1 0

F1 0 0 1 0 1 1

1 − F1 0 1 0 1 0 0

F1 0 1 0 1 0 1

1 − F1 0 1 1 1 1 0

F1 0 1 1 1 1 1

F1(1 − F4) 1, K3 0 0 i3 0 1

F4(1 − F1) 1, K3 0 0 i3 − 1 0 0

F1F4 1, K3 0 0 i3 − 1 0 1

F4(1 − F1) 1, K3 0 1 i3 − 1 1 0

F1F4 1, K3 0 1 i3 − 1 1 1
(1 − F1) ×
(1 − F4)

1, K3 0 1 i3 1 0

F1(1 − F4) 1, K3 0 1 i3 1 1

F4(1 − F1) 1, K3 1 0 i3 0 0

F1F4 1, K3 1 0 i3 0 1
(1 − F1) ×
(1 − F4)

1, K3 − 1 1 0 i3 + 1 0 0

F1(1 − F4) 1, K3 − 1 1 0 i3 + 1 0 1

F4(1 − F1) 1, K3 1 0 i3 1 0
(1 − F1) ×
(1 − F4)

1, K3 − 1 1 1 i3 + 1 1 0

F1(1 − F4) 1, K3 − 1 1 1 i3 + 1 1 1

F1(1 − F4) K3 1, K2 0 K3 i2 1

F4(1 − F1) K3 1, K2 0 K3 i2 − 1 0

F1F4 K3 1, K2 0 K3 i2 − 1 1

F4(1 − F1) K3 1, K2 1 K3 i2 0
(1 − F1) ×
(1 − F4)

K3 1, K2 − 1 1 K3 i2 + 1 0

F1(1 − F4) K3 1, K2 − 1 1 K3 i2 + 1 1

F1(1 − F4) K3 K2 1, K1 − 1 K3 K2 i1 + 1

F4(1 − F1) K3 K2 1, K1 K3 K2 i1 − 1

Let us consider a transfer path at F2 = F3 = 1, F1 = F4 = F , and arbitrary
Kd, d = 1, 3. The space of probable states is formed by the combination of
three adjacent geometric figures: rectangular parallelepiped (i = 0, 1; j = 0, 1;
k = 0,K3), the rectangle (i = 0, 1; j = 0,K2; k = K3) and line segment
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(i = 0,K1; j = K2; k = K3). The transient probabilities of Markov chain for
this path are given in Table 3.

The probability of states are determined by the following dependencies:

P000 =
(1 − F )3

1 + K1 + K2 + K3 − 3F
; PK3K2i = P000

1
(1 − F )3

, i = 1,K1;

Pk00 = P000
1

1 − F
, k = 1,K3; Pk01 = P000

F

(1 − F )2
, k = 1,K3;

Pk10 = P000
F

(1 − F )2
, k = 1,K3 − 1; Pk11 = P000

F 2

(1 − F )3
, k = 1,K3 − 1;

PK3j0 = P000
1

(1 − F )2
, j = 1,K2; PK3j1 = P000

F

(1 − F )3
, j = 1,K2 − 1.

For throughput and end-to-end delay, its fair

Z4(K1,K2,K3) =
F

{
K1 + K2 + K3 − 2F

}

1 + K1 + K2 + K3 − 3F
; (8)

T4(K1,K2,K3) =
{

K1(3 + K1 + 2K2 + 2K3) + K2(3 + K2 + 2K3)

+K3(3 + K3) + 2 − 6F − 6F 2
}/

2F
{

K1 + K2 + K3 − 2F
}

.

Let us consider a data path of length D = 5 with a single buffer storage size
in transit nodes. The rules for constructing transient probabilities of Markov
chain describing such a path correspond to the principles given above. These
probabilities for states with 0000 to 0111 coincide with transient probabilities
for a path of length D = 4 (see Table 2) given that the shift to the left of the
third bit of the state number at D = 5 is not lost, but remains within the bit
grid. For the remaining states, the transition probabilities of Markov chain are
given in Table 4.

For Fd = F , d = 1, 5, the probability states are:

P0000 =
(1 − F )3

1 + 10(1 − F ) + 20(1 − F )2 + 10(1 − F )3 + (1 − F )4
;

P0001 = P0000
4

1 − F
; P0010 = P0000

3
1 − F

;

P0100 = P0000
2

1 − F
; P1000 = P0000

1
1 − F

;

P0011 = P0000
6

(1 − F )2
; P0101 = P0000

5
(1 − F )2

;

P0110 = P0000
3

(1 − F )2
; P1001 = P0000

3
(1 − F )2

;

P1010 = P0000
2

(1 − F )2
; P1100 = P0000

1
(1 − F )2

;
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Table 4. Transitional probabilities for a five-link path for Kd = 1, d = 1, D − 1

π
j4j3j2j1
i4i3i2i1

i4 i3 i2 i1 j4 j3 j2 j1

F1F2F3F4 0 1 1 1 1 1 1 1

F5(1 − F1) 1 0 0 0 0 0 0 0

F1F5 1 0 0 0 0 0 0 1

F1(1 − F5) 1 0 0 0 1 0 0 1

F5(1 − F2) 1 0 0 1 0 0 0 1

F2F5(1 − F1) 1 0 0 1 0 0 1 0

F1F2F5 1 0 0 1 0 0 1 1

F2(1 − F1)(1 − F5) 1 0 0 1 1 0 1 0

F1F2(1 − F5) 1 0 0 1 1 0 1 1

F5(1 − F1)(1 − F3) 1 0 1 0 0 0 1 0

F1F5(1 − F3) 1 0 1 0 0 0 1 1

F3F5(1 − F1) 1 0 1 0 0 1 0 0

F1F3F5 1 0 1 0 0 1 0 1

F1(1 − F3)(1 − F5) 1 0 1 0 1 0 1 1

F3(1 − F1)(1 − F5) 1 0 1 0 1 1 0 0

F1F3(1 − F5) 1 0 1 0 1 1 0 1

F5(1 − F3) 1 0 1 1 0 0 1 1

F3F5(1 − F2) 1 0 1 1 0 1 0 1

F2F3F5(1 − F1) 1 0 1 1 0 1 1 0

F1F2F3F5 1 0 1 1 0 1 1 1

F3(1 − F2)(1 − F5) 1 0 1 1 1 1 0 1

F2F3(1 − F1)(1 − F5) 1 0 1 1 1 1 1 0

F1F2F3(1 − F5) 1 0 1 1 1 1 1 1

F5(1 − F1)(1 − F4) 1 1 0 0 0 1 0 0

F1F5(1 − F4) 1 1 0 0 0 1 0 1

F4F5(1 − F1) 1 1 0 0 1 0 0 0

F1F4F5 1 1 0 0 1 0 0 1

F1(1 − F5) 1 1 0 0 1 1 0 1

F5(1 − F2)(1 − F4) 1 1 0 1 0 1 0 1

F2F5(1 − F1)(1 − F4) 1 1 0 1 0 1 1 0

F1F2F5(1 − F4) 1 1 0 1 0 1 1 1

F4F5(1 − F2) 1 1 0 1 1 0 0 1

F2F4F5(1 − F1) 1 1 0 1 1 0 1 0

F1F2F4F5 1 1 0 1 1 0 1 1

F2(1 − F1)(1 − F5) 1 1 0 1 1 1 1 0

F1F2(1 − F5) 1 1 0 1 1 1 1 1

F5(1 − F1)(1 − F4) 1 1 1 0 0 1 1 0

F1F5(1 − F4) 1 1 1 0 0 1 1 1

F4F5(1 − F1)(1 − F3) 1 1 1 0 1 0 1 0

F1F4F5(1 − F3) 1 1 1 0 1 0 1 1

F3F4F5(1 − F1) 1 1 1 0 1 1 0 0

F1F3F4F5 1 1 1 0 1 1 0 1

F1(1 − F5) 1 1 1 0 1 1 1 1

F5(1 − F4) 1 1 1 1 0 1 1 1

F4F5(1 − F3) 1 1 1 1 1 0 1 1

F3F4F5(1 − F2) 1 1 1 1 1 1 0 1

F2F3F4F5(1 − F1) 1 1 1 1 1 1 1 0
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P0111 = P0000
4

(1 − F )3
; P1011 = P0000

3
(1 − F )3

;

P1101 = P0000
2

(1 − F )3
; P1110 = P0000

1
(1 − F )3

;

P1111 = P0000
1

(1 − F )4
.

The structure of the solution of the system of local equilibrium equations has
the form of the relation of the integer coefficient to the probability of distortion
of the data 1 − F , raised to the power equal to the number of requirements in
the network QS (the number of units in the state number). Unknown integer
coefficients are easily determined by direct substitution of the solution into equi-
librium equations. Under this scheme, you can define a probability distribution
for an arbitrary length path with a single buffer pool at transit nodes.

The throughput of a statistically homogeneous five-link path is defined by
the expression:

Z5(1, 1, 1, 1) =
F

{
1 + 6(1 − F ) + 6(1 − F )2 + (1 − F )3

}

1 + 10(1 − F ) + 20(1 − F )2 + 10(1 − F )3 + (1 − F )4
, (9)

and the average end-to-end delay — by dependency:

T5(1, 1, 1, 1) =
5 + 40(1 − F ) + 60(1 − F )2 + 20(1 − F )3 + (1 − F )4

F
{
1 + 6(1 − F ) + 6(1 − F )2 + (1 − F )3

} .

For F2 = F3 = F4 = 1, F1 = F5 = F , the probabilities of states take the
form:

P0000 =
(1 − F )3

5 − 4F
; P0001 = P0010 = P0100 = P0000

F

1 − F
;

P1000 = P0000
1

1 − F
; P0011 = P0101 = P0110 = P0000

F 2

(1 − F )2
;

P1001 = P1010 = P0000
F

(1 − F )2
;

P1100 = P0000
1

(1 − F )2
; P0111 = P0000

F 3

(1 − F )3
;

P1011 = P0000
F 2

(1 − F )3
; P1101 = P0000

F

(1 − F )3
;

P1110 = P0000
1

(1 − F )3
; P1111 = P0000

1
(1 − F )4

.

Operating indicators in this case are determined by the relation:

Z5(1, . . . , 1) = F
1 + 3(1 − F )
1 + 4(1 − F )

, (10)

T5(1, . . . , 1) =
5 + 4(1 − F ) + 6(1 − F 2)

F
{
1 + 3(1 − F )

} .
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For data transmission paths consisting of 6 and 7 retransmission sections,
transition probabilities, probabilities of states of Markov chain and operational
parameters are obtained in a similar way:

Z6(1, . . . , 1) = F
{

1 + 10(1 − F ) + 20(1 − F )2 + 10(1 − F )3

+ (1 − F )4
}/{

1 + 15(1 − F ) + 50(1 − F )2 + 50(1 − F )3

+ 15(1 − F )4 + (1 − F )5
}

; (11)

Z7(1, . . . , 1) = F
{

1 + 15(1 − F ) + 50(1 − F )2 + 50(1 − F )3

+ 15(1 − F )4 + (1 − F )5
}/{

1 + 21(1 − F ) + 105(1 − F )2

+ 175(1 − F )3 + 105(1 − F )4 + 21(1 − F )5 + (1 − F )6
}

; (12)

T6(1, . . . , 1) =
{

6 + 75(1 − F ) + 200(1 − F )2 + 150(1 − F )3

+ 30(1 − F )4 + (1 − F )5
}/

F
{

1 + 10(1 − F ) + 20(1 − F )2

+ 10(1 − F )3 + (1 − F )4
}

;

T7(1, . . . , 1) =
{

1 + 126(1 − F ) + 525(1 − F )2 + 700(1 − F )3

+ 315(1 − F )4 + 42(1 − F )5 + (1 − F )6
}/

F
{

1 + 15(1 − F )

+ 50(1 − F )2 + 50(1 − F )3 + 15(1 − F )4 + (1 − F )5
}

for Fd = F , d = 1,D and

Z6(1, . . . , 1) = F
1 + 4(1 − F )
1 + 5(1 − F )

; (13)

Z7(1, . . . , 1) = F
1 + 5(1 − F )
1 + 6(1 − F )

; (14)

T6(1, . . . , 1) =
6 + 5(1 − F ) + 10(1 − F 2)

F
{
1 + 4(1 − F )

} ;

T7(1, . . . , 1) =
7 + 6(1 − F ) + 15(1 − F 2)

F
{
1 + 5(1 − F )

}

in case Fd = 1, d = 2,D − 1, F1 = FD = f . View relations for throughput
(2), (3), (10), (13) and (14) allows to generalize them by a single entry for the
path of arbitrary length D, containing D − 2 consecutive transit deterministic
links of data transfer, located between two non-deterministic sections of the
retransmission with a single volume of the drive in transit nodes:

ZD(1, . . . , 1) = F
1 + (D − 2)(1 − F )
1 + (D − 1)(1 − F )

.
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In addition, considering the type of dependencies (6) and (8) the throughput
of the path consisting of deterministic channels between two non-deterministic
sections of the retransmission, with an arbitrary number of buffers in transit
nodes, will be rewritten as follows:

ZD(K1, . . . ,KD−1) = F

∑D−1
d=1 Kd − F (D − 2)

1 +
∑D−1

d=1 Kd − F (D − 1)
.

Hence it is not difficult to conclude that when building network data trans-
mission paths consisting of a large number of retransmission sites, reliable com-
munication channels should be evenly distributed between links with a high
level of distortion. Thus, these retransmission sites will play the role of addi-
tional buffers between unreliable links and reduce the negative locking factor of
the buffer memory Table 5.

From the form of the dependencies for the probabilities of states of Markov
chain and throughput of the statistically homogeneous data transmission path
(4), (7), (9), (11) and (12), we can construct the lower bound of throughput
indicator Z∗

D(1, . . . , 1) ≤ ZD(1, . . . , 1):

Z∗
D(1, . . . , 1) = F

D−2∑

d=0

(1 − F )d
(
D−2
d

) {
1 +

(
D−2
d

)}

D−1∑

d=0

(1 − F )d
(
D−1
d

) {
1 +

(
D−1
d

)}
. (15)

For D ≤ 4 this estimate coincides with the exponent Z∗
D(1, . . . , 1). Numerical

studies confirm that for D ge5 the dependence (15) approximates well from
below the throughput of the multilinked data transmission path, which decreases
monotonically with increasing of its length for F ≤ 1. A similar upper bound

Table 5. The distribution of the throughput values and its estimates on the reliability
of the packet transmission for paths with buffer pools of unit length

F Z5(1, ., 1) Z6(1, ., 1) Z7(1, ., 1) Z∗
5 (1, ., 1) Z∗

6 (1, ., 1) Z∗
7 (1, ., 1)

0.1 0.035 0.033 0.032 0.034 0.032 0.030

0.2 0.074 0.070 0.068 0.072 0.067 0.064

0.3 0.118 0.113 0.109 0.116 0.108 0.102

0.4 0.169 0.161 0.156 0.166 0.154 0.146

0.5 0.228 0.218 0.211 0.224 0.209 0.198

0.6 0.299 0.286 0.276 0.294 0.275 0.261

0.7 0.387 0.370 0.358 0.382 0.358 0.341

0.8 0.504 0.483 0.468 0.499 0.471 0.449

0.9 0.676 0.651 0.633 0.673 0.643 0.618
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for the average end-to-end delay T ∗
D(1, . . . , 1) ≥ TD(1, . . . , 1) has the form:

T ∗
D(1, . . . , 1) =

D−1∑

d=0

(1 − F )D−1−d(d + 1)
(
D−1
d

) {
1 +

(
D−1
d

)}

F
D−2∑

d=0

(1 − F )d
(
D−2
d

) {
1 +

(
D−2
d

)}
.

5 Conclusion

Discrete models of a multi-link data transmission path are proposed, which dif-
fer by taking into account the blocking factor of the limited buffer memory of
transit nodes. The proposed models allow analyzing the effect of storage capacity
on transport protocols performance indicators. The invariance of the throughput
index to the order of transit nodes with buffer storage of different capacities along
a statistically homogeneous data path is found, and the dependence of the aver-
age end-to-end delay of the packet on this order is insignificant. The expediency
of the uniform distribution of the buffer space among the transit nodes along the
multi-link path, ensuring the best performance of the transport connection, is
established. It is shown that when constructing network data transmission paths
consisting of a large number of retransmission site, reliable communication chan-
nels should be evenly distributed between links with a high level of distortion.
In this way, these retransmission sites act as additional buffers between unre-
liable links and reduce the negative blocking factor of the buffer memory. An
analytical estimate of the lower limit of throughput and an upper estimate of
the average end-to-end delay of the multi-link data path corresponding to the
minimum number of buffers in the transit nodes are obtained.

References

1. Basharin, G.P., Bocharov, P.P., Kogan, Y.A.: Analysis of Queues in Computer
Networks. Theory and Methods of Calculation. Nauka, Moscow (1989)

2. Boguslavskii, L.B.: Data Flow Control in Computer Networks. Energoatomizdat,
Moscow (1984)

3. Zhozhikashvili, V.A., Vishnevsky, V.M.: Networks Queuing. Theory and Applica-
tion to Computer Networks. Radio and Communication, Moscow (1988)

4. Vishnevsky, V.M.: Theoretical Bases of Designing of Computer Networks. Techno-
sphere, Moscow (2003)

5. Ivnitsky, V.A.: Theory of Queuing Networks. Phys.-Mat. lit, Moscow (2004)
6. Walrand, G.: Introduction to the Theory of Queuing Networks. Mir, Moscow (1993)
7. Moiseev, A.N., Nazarov, A.A.: Infinitely Linear Systems and Queuing Networks.

Publishing House NTL, Tomsk (2015)
8. Zorkaltsev, A.V.: Analysis of local flow control in packet switching node. J. Autom.

Control Comput. Eng. 4, 20–27 (1992)
9. Zorkaltsev, A.V.: Analysis of procedures flow control in a switching node of the

network with virtual channels. J. Autom. Control Comput. Eng. 4, 35–42 (1993)



Modeling of a Multi-link Transport Connection 289

10. Mikheev, P.A.: Analyzing sharing strategies for finite buffer memory in a router
among outgoing channels. J. Autom. Remote Control 75, 1814–1825 (2014)

11. Suschenko, S.P.: The influence of buffer overfilling on the speed of synchronous
data-transmission control procedures. J. Autom. Remote Control 60, 1460–1468
(1999)

12. Suschenko, S.P.: On the effect of locking the buffer memory to the operational
characteristics of a link data transmission. J. Autom. Control Comput. Eng. 6,
27–34 (1985)

13. Mikheev, P.A., Suschenko, S.P.: Mathematical Models of Networks of Access Level.
Nauka, Novosibirsk (2015)

14. Ivanovsky, V.B.: On properties of output flows in digital service systems. J. Autom.
Remote Control 45, 1413–1419 (1984)



Estimation of Prioritized Disciplines
Efficiency Based on the Metamodel
of Multi-flows Queueing Systems

V. N. Zadorozhnyi1, T. R. Zakharenkova1(B), and D. A. Tulubaev2

1 Omsk State Technical University, Omsk, Russia
zwn2015@yandex.ru, ZakharenkovaTatiana@gmail.com

2 OOO Dalnefteprovod, Khabarovsk, Russia

Abstract. The metamodel of control systems, representing a general-
ized queueing system with a large number of request classes and the
classes parameters as random variables, is proposed. Crucial measurable
control object characteristics determining the feasibility of prioritized
service disciplines development and implementation are indicated.

Keywords: Complex control object · Queuing system · Metamodel
Service discipline · Optimal priority assignment

1 Introduction

At the present time Queueing Theory, as theory adequately describing the prob-
lems of multiple-access to limited resources and developing new methods for
solving these problems, holds an important position in operational research
[1–4] and has numerous applications. Particularly, Queueing Theory has proved
its practical value and it continues to be highly demanded in the field of computer
networks design at the system level [5–7].

In large-scale control objects (CO) such as electrical power systems, air-
dromes, main oil pipelines, large plants and organizations, it is natural to regard
the cumulative signal (request) flow processed by control system as Poisson flow,
which is confirmed by the measurements [8]. However, the assumption about
exponential service time distribution (where the coefficient of variation (c.v.) is
equal to 1) no longer seems so natural. A complex large-scale object gives rise to
a set of request classes varying in labor-intensity of their services, arrival rate,
losses caused by service delay, and etc. Different request classes can be described
by various distributions of service time: it may be close to a constant, i.e. with
the c.v. being close to zero or highly exceeding 1 due to splittings contained in
a processing algorithm. Therefore, as far as queuing theory is concerned, we will
study the systems with a big amount of Poisson request flows (classes) that can
be significantly diverse in terms of service time properties or other parameters.
If some request classes arrive in queueing system (QS), one should take into
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consideration the constraints on request waiting times given for the classes and
find service disciplines that allow us to consider the constraints in the best way.

In addition, for service disciplines to be optimized by existing methods one
must specify the numerical parameters of QS: a mean and c.v. for service time
of different class requests, cost of waiting times constraints violation, flow inten-
sities, etc. This leads to widespread occurrence of prioritized disciplines in digi-
tal control system, but not in organizational and technical systems. It results in
widespread lack of such effective resource as queuing control optimization and
makes the problem of optimization technique development based on qualitative
data for complex objects the most urgent one. To solve this problem, the paper
describes and analyzes the metamodel of prioritized QS with a large number of
request classes. Moreover, the definition is given for crucial qualitative characteris-
tics of CO allowing the potential of service disciplines [1–5,7,9,10] to be estimated
and the corresponding steps for their implementation to be undertaken.

2 Standard Cost Model for the Quality of Service

Let us consider QS with n Poisson request flows (classes) having λ1, . . . , λn

intensities. Suppose the request service time of the kth class is characterized
by average request service time bk and a second moment b

(2)
k , and a penalty

on request waiting time unit is ck nominal units (k = 1, . . . , n). The service
efficiency is estimated by an average penalty per time unit

F =
∑

k

λkckwk, (1)

where wk is steady-state average waiting time of the kth class requests.
If we consider non-prioritized service, time wk for any k is the same and

defined by the Pollaczek-Khinchine formula:

wk = W =
ΛB(2)

2(1 − R)
=

ΛB2(1 + V 2)
2(1 − R)

=
Λ−1R2(1 + V 2)

2(1 − R)
, k = 1, . . . , n, (2)

where Λ = λ1 + · · · + λn is intensity of cumulative requests flow,
R = ΛB = ρ1 + · · · + ρn < 1 is an aggregated load coefficient.
ρk = λkbk is a system load coefficient of the kth class requests,
B = Λ−1

∑
k

λkbk is average request service time (general),

B(2) = Λ−1
∑
k

λkb
(2)
k a second moment of request service time,

V is a c.v. of request service time. It can be derived from the formula

V 2 =
Λ−1

∑
k

λkb
(2)
k

(
Λ−1

∑
k

λkbk

)2 − 1. (3)
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If we look at non-prioritized service, the penalty will be given by the equation

F = F0 =
∑

k

λkckwk = W
∑

k

λkck =
Λ−1R2(1 + V 2)

2(1 − R)

n∑

k=1

λkck. (4)

While using prioritized servicing, each kth flow is given the priority pk ∈
{1, 2, . . . , n} (different flows have different priorities). The priority pk of the kth

flow will be assumed higher than priority pi flow, if pk > pi. The wk time is
given by the following formula for the discipline with relative priorities [7,10]

wk = w1,k =

n∑
i=1

λib
(2)
i

2(1 − Rk−1)(1 − Rk)
=

ΛB(2)

2(1 − Rk−1)(1 − Rk)
, (5)

where
Rk =

∑

i∈P(k)

ρi, Rk−1 = Rk − ρk

and the set of indices P(k) includes the numbers of flows with priorities no less
than pk. Using the absolute priority discipline (with afterservicing of interrupted
requests):

wk = w2,k =
Rk−1bk

1 − Rk−1
+

∑
i∈P(k)

λib
(2)
i

2(1 − Rk−1)(1 − Rk)
. (6)

The penalty F = F1 at relative priorities and the penalty F = F2 at absolute
priorities are defined by formula (1) when wk are given by formulas (5) and
(6) correspondingly. To construct techniques allowing comparison of prioritized
discipline efficiency by means of qualitative data, further, we will formulate and
explore a corresponding QS metamodel.

3 Metamodel of Prioritized QS

3.1. Let us define a prioritized QS as the triplet

S =< Ω,α, γ >, (7)

where Ω are parameters of CO, α is server processing speed, γ ∈ {0, 1, 2} is an
index of service discipline (γ = 0 indicates non-prioritized service, γ = 1 is for
relative priorities discipline and γ = 2 is for absolute priorities discipline).

We define parameters Ω as the quintuplet

Ω =< n,Λ,Ψ,V,C >, (8)

where n is the number of request classes,
Λ = (λ1, . . . , λn) are intensities of requests flows corresponding to 1, . . . , n,

classes,
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Ψ = (ψ1, . . . , ψn) are average service labor-intensities (volumes) for requests
of classes 1, . . . , n,

V = (v1, . . . , vn) are the c.v. for volumes of requests belonging to 1, . . . , n,
classes,

C = (c1, . . . , cn) are penalties of the classes per request waiting time unit.
An arrival flow of any class is Poisson one by default.
Obviously, with processing speed α given in (7), the volume vector Ψ deter-

mines all bk = ψk/α and, along with vector V, all b
(2)
k = (1 + v2

k)ψ2
k/α2. Pro-

cessing speed α must lie within the range of α > αmin, where αmin pends on
the condition of steady-state regime existence R =

∑
k

λkbk ≤ 1, from which
∑
k

λkψk/α ≤ 1, α ≥ ∑
k

λkψk = αmin are follow. If α > αmin, then R < 1.

In order to reveal the general patterns of prioritized service unrelated to
exact values of Λ,Ψ,V and C parameters, these parameters will be considered
as random vectors.

At the first approximation, all scalar components of the same vector can be
considered as having the same probability distribution and being independent
continuous nonnegative random variables (r.v.). For instance, in this case, vector
Λ consists of n independent r.v. λ1, . . . , λn described by common probability
density function (pdf) fλ(t). Similarly, vectors Ψ, V and C can be specified by
pdf fψ(t), fv(t) and fc(t) respectively. In a number of promising cases, one can
introduce dependencies between the parameters of the same request class. We
impose the condition 0 ≤ vk ≤ 2 on the vk components of vector V. As a typical
pdf fv(t), one will use the triangular one in the interval (0, 2) having the mode
in the t = 1 point.

We will look for estimates of prioritized service efficiency (when γ > 0)
under an optimal prioritization condition providing the minimum penalty for
waiting. Characteristics ξ1 and ξ2 for efficiency of using relative and absolute
(with afterservicing) priorities are denoted by

ξ1 = F0/F1 and ξ2 = F0/F2, (9)

As functions of random vectors, characteristics ξ1 and ξ2 represent r.v. To explore
the mathematical expectations (m.e.) of ξ̄1, ξ̄2 and other characteristics, we will
use the simulation along with analytical methods. In the latter case, when n is
stated, one realization of Λ,Ψ,V and C parameters defines the corresponding
realization of characteristics W,w1,k, w2,k, F0, F1, F2, ξ1 and ξ2 which represent
the functions of processing speed α in the range α > αmin, i.e., for all R < 1.
Averaging the values of the characteristics W,w1,k, w2,k, F0, F1, F2, ξ1 and ξ2 over
the set of realizations of Λ,Ψ,V and C parameters, we get estimates of their
m.e. W̄ = W̄ (R), . . . , ξ̄1 = ξ̄1(R) and ξ̄2 = ξ̄2(R).

The parameter n in (8) represents a variable that may take sufficiently large
values in complex CO.
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3.2. From the definition of ξ1, taking into account formulas (1), (2) and (5), we
conclude that it is independent of V:

ξ1 =
F0

F1
=

W
∑
k

λkck

∑
k

λkckw1,k
=

ΛB(2)

2(1−R)

n∑
k=1

λkck

n∑
k=1

λkck
ΛB(2)

2(1−Rk−1)(1−Rk)

=

n∑
k=1

λkck

n∑
k=1

(1−R)λkck
(1−Rk−1)(1−Rk)

.(10)

Analysis of the latter expression in (10) shows that for any constant h > 0
at fixed R (defined by corresponding value α) the replacement of vector C=
(c1, . . . , cn) by vector hC= (hc1, . . . , hcn) does not lead to changes of character-
istic ξ1. Thus, ξ1 is invariant to scale transformations of the vector C. Conse-
quently, in terms of ξ1 all pdf fc(t), coinciding up to the accuracy of their scale
transformations, are equivalent. Similar statement holds for vectors Λ, Ψ and
their pdf fλ(t), fψ(t). One of the possible interpretations of r.v. Λ, Ψ, C scale
transformations and corresponding scale transformations of pdf fλ(t), fψ(t),
fc(t) is the changing of units for measuring time, volume and cost. Without
doubt, it has no effect on dimensionless characteristic ξ1.

The analysis of ξ2 leads to a similar conclusion apart from it depending on
V (which is also dimensionless). Further we consider the invariance of ξ1 and ξ2
with respect to scale transformations of pdf fλ(t), fψ(t) and fc(t) by normalizing
(whenever possible) the pdf under the condition of E(λ) = E(ψ) = E(c) = 1,
when their m.e. are equal to one (such independent normalizing of λ, ψ and c,
generally, takes place when they are statistically independent). Expression for
ξ2 has the following form

ξ2 =

Λ−1R2(1+V 2)
2(1−R)

∑
k

λkck

n∑
k=1

λkck

[
Rk−1ψk/α
1−Rk−1

+

∑

i∈P(k)
λiψ2

i (1+v2
i )/α2

2(1−Rk−1)(1−Rk)

] . (11)

The proposed metamodel of multiflow QS allows us to find the key parameters
of complex CO and to optimize algorithms of real-time operations control in
incomplete information terms. The metamodel is based on the cost model of
request service [6,7,9].

The triangular pdf fv(t) in (0 ≤ t ≤ 2) having the mode in the t = 1 point
is usually used in metamodel.

The form of sums in (3), (10) and (11), similar to the form of moment esti-
mation expressions that are defined by vectors (as by samples) Λ, Ψ, V and C,
enable us to relate characteristics ξ1 and ξ2 with moments of λ, ψ, v and c ran-
dom variables. Such relations open new and surprising opportunities for finding
key parameters of CO that allow us to evaluate the feasibility of using prioritized
disciplines under conditions of absence of complete information that is necessary
for applying the classical results of prioritized discipline theory [2,3,5,6,10].

The feasibilities of using the proposed metamodel for obtaining nontrivial
analytical results will be demonstrated by following example detecting service
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features when the number n of request classes is large. Let all ck from the formula
of penalty for non-prioritized systems F0 = W

∑
k

λkck are equal to one. Then,

considering (2), and also the definition of intensity Λ and Little’s formula [7], we
obtain F0 = WΛ = L = (1 + V 2)R2/(1 − R)/2, where L – the average length
of aggregated request queue. From this it follows that, values of F0 and L with
fixed R can be arbitrary large if the c.v. V is arbitrary large.

4 Region with Wide Variations of Average
Labor-Intensities

Let us demonstrate the technique for detecting CO key parameters by means of
the metamodel. If all ck = 1 in the expression (4) of penalty F0, then

F0 =
Λ−1R2(1 + V 2)

2(1 − R)

n∑

k=1

λk =
Λ−1R2(1 + V 2)

2(1 − R)
Λ =

R2(1 + V 2)
2(1 − R)

. (12)

Further, in terms of the metamodel it is easy to establish that penalty F0

for any fixed load R may be arbitrary large although all c.v. vk are bounded by
narrow limits (for example, 0 < vk < 2, k = 1, . . . , n).

Actually, considering the components of vectors Λ and Ψ as independent
samples from fλ(t) and fψ(t) distributions when n → ∞, taking into account
(3), we get

V 2+1=
Λ−1

∑
k

λkb
(2)
k

(
Λ−1

∑
k

λkbk

)2 ≥
Λ−1

∑
k

λkb2k
(

Λ−1
∑
k

λkbk

)2 =

Λ
n

1
n

∑
k

λkψ2
k

(
1
n

∑
k

λkψk

)2 → E(λ)E(λψ2)
E2(λψ)

,

from this it follows that the probability of holding inequality:

V 2 + 1 ≥ E(λ)E(λψ2)
E2(λψ)

, or V 2 ≥ E(λ)E(λψ2)
E2(λψ)

− 1 (13)

converges to one with growing n. When λ and ψ are independent it can be
simplified:

V 2 ≥ E(λ)E(λ)E(ψ2)
E2(λ)E2(ψ)

− 1, V 2 ≥ E(ψ2)
E2(ψ)

, V 2 ≥ E(ψ2) − E2(ψ)
E2(ψ)

= v2
ψ,

i.e., inequality (13), certain in the limit when n → ∞, takes the form:

V 2 ≥ v2
ψ, (14)

where vψ is c.v. of distribution fψ(t) of average request volumes. From (14) and
(12) when n → ∞ it follows that if v2

ψ → ∞, then V 2 → ∞ and F0 → ∞.
The ranges of the values for vectors Λ, Ψ and C, where F0 → ∞ when

n → ∞, will be referred to as the critical region of QS parameters. The critical
region v2

ψ → ∞ established a moment before will be called a region with wide
variations of average labor-intensities.
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5 Region with Inverse Power-Law Dependence λ and ψ

Now let us consider the case when λ and ψ are dependent. Let the components
of Λ and Ψ vectors be known as related by the formula λkψk = A, where A > 0
is some constant (it is the situation when ρk are equal). Then λ = A/ψ in (13),
and with great probability for large n the following inequality will be fulfilled

V 2 ≥ E(A/ψ)E((A/ψ)ψ2)
E2((A/ψ)ψ)

− 1 =
A2E(ψ−1)E(ψ)

A2
− 1 = E(ψ−1) − 1. (15)

Here the normalizing condition E(ψ) = 1 is taken into account. But

E(ψ−1) =
∞∫
0

t−1fψ(t)dt, and, consequently, if pdf is continuous on the right and

fψ(t) = fψ(0) > 0 with t = 0, then E(ψ−1) = ∞. Therefore, (15) implies that
relation λkψk = A leads to unlimited increase of V with growing n, and, thus, to
unlimited increase of F0, for a wide variety of distributions fψ(t). Accordingly,
the relation λkψk = A determines one more critical region.

In reality, this region is far more wider and involves the relations in the form
of λk = Aψ−β

k with β ∈ (1, 3). Indeed, when λk = Aψ−β
k the inequality (13) can

be expressed in the form

V 2 ≥ E(Aψ−β)E(Aψ−βψ2)
E2(Aψ−βψ)

− 1 =
E(ψ−β)E(ψ2−β)

E2(ψ1−β)
− 1 = G(β) − 1. (16)

Considering for simplicity only the case of distributions fψ(t) specified in
finite interval 0 ≤ t ≤ g and assuming pdf fψ(t) = fψ(0) > 0 with t = 0 as
continuous on the right, from (16) we derive:

– when β ≤ 0 all m.e. E(ψ−β), E(ψ1−β) and E(ψ2−β) are positive and finite,
G(β) is finite, and, therefore the estimate (16) does not cause the unlimited
increase of V 2 when n → ∞;

– when 0 < β < 1 the m.e. E(ψ1−β) and E(ψ2−β) are positive and finite,

E(ψ−β) =
g∫
0

t−βfψ(t)dt = lim
ε↓0

g∫
ε

t−βfψ(t)dt is also positive and finite, there-

fore the estimate (16) here does not cause the unlimited increase of V 2 when
n → ∞; however, when β ↑ 1 we get E(ψ−β) → ∞, G(β) → ∞, i.e., when
n → ∞ and β ↑ 1 the estimate (16) causes the unlimited increase of V 2;

– when 1 ≤ β < 2 the m.e. E(ψ1−β) and E(ψ2−β) are positive and finite,

however, E(ψ−β) = lim
ε↓0

g∫
ε

t−βfψ(t)dt = ∞, therefore G(β) → ∞, and, thus,

the estimate (16) causes the unlimited increase of V 2 when n → ∞;
– when 2 ≤ β < 3 the m.e. E(ψ2−β) is positive and finite, but E(ψ−β) = ∞

and E(ψ1−β) = ∞. Eliminating the ∞/∞ indefinite form that arises in (16)
for G(β), we have G(β) = ∞, and, consequently, the estimate (16) causes the
unlimited increase of V 2 when n → ∞;

– when β ≥ 3 the m.e. E(ψ−β), E(ψ1−β) and E(ψ2−β) are equal to infinity and
eliminating the indefinite form in (16) gives the finite value for G(β).
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Therefore, considering the critical region, i.e., the region with inverse power-
law dependence λ and ψ, involves the relations in the form of λk = Aψ−β

k with
β ∈ [1, 3). In practice, according to simulation modeling, similar inverse power-
law dependence with a high probability already results in large values of V 2 and
F0 at the number of flows n within ten, even though the dependence describes
(approximately) the relation just between parameters λk and ψk.

6 Region of Stochastic Inverse Proportionality λ and ψ

Under sufficiently general conditions, the conclusion about the unlimited increase
of V 2 with growing n, is also extended to the cases of stochastic relations λk =
x/ψk where independent r.v. x > 0.

Let, for example, r.v. x and ψ be independent and uniformly distributed in
(0, 2) then pdf fλ(t) of r.v. λ = x/ψ has the following form:

fλ(t)=

∞∫

0

ufx(tu)fψ(u)du =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2

2∫

0

ufψ(u)du, if t ≤ 1

1
2

1/t∫

0

ufx(tu)du, if t > 1,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u2

8

∣∣∣∣
2

0

=
1
2
, t ≤ 1,

u2

8

∣∣∣∣

2
t

0

=
1

2t2
, t > 1.

Power-law asymptotics of pdf fλ(t) with index of power “2” causes the infinite
m.e. E(λ). Inserting E(λ) = ∞, E(λψ2) = E(λψψ) = E(xψ) = E(x)E(ψ) = 1
and E2(λψ) = E2(x) = 1 into inequality (13) we obtain inequality

V 2 ≥ ∞,

resulting in unlimited increase of V 2 and F0 when n → ∞. When independent
x and ψ have exponential distribution with parameters μ1 and μ2, we obtain a
similar result. In this case

fλ(t) =

∞∫

0

ufx(tu)fψ(u)du =

∞∫

0

uμ1e
−μ1tuμ2e

−μ2udu

=
μ1μ2

μ1t + μ2

∞∫

0

u(μ1t + μ2)e−(μ1t+μ2)udu

=
μ1μ2

μ1t + μ2

∞∫

0

u(μ1t + μ2)e−(μ1t+μ2)udu =
μ1μ2

(μ1t + μ2)2
.

Here we used the integration by parts formula. The integration bounds having
been substituted, the indefinite form 0 × ∞ was eliminated. Again, we obtained
for r.v. λ = x/ψ the pdf with power-law tail, with E(λ) = ∞, and again V 2 → ∞,
F0 → ∞ when n → ∞.
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7 Region with Correlating λ and c Having Large c.v

Using the metamodel, we will show the existence of one more critical region of
parameters. Let the growth factors of c.v. V for F0 in (4) with fixed R be absent
with growing n (suppose, for example, V = const for any n). Then from (4) we
have

F0 =
Λ−1R2(1 + V 2)

2(1 − R)

n∑

k=1

λkck =
R2(1 + V 2)
2(1 − R)Λ/n

1
n

n∑

k=1

λkck

→ R2(1 + V 2)
2(1 − R)

E(λc)
E(λ)

=
R2(1 + V 2)
2(1 − R)

E(λc), (17)

(where arrow for r.v. means convergence in probability). If λ and c are inde-
pendent, then E(λc) = E(λ)E(c) = 1. In this case, from (17) we state that the
penalty F0 with growing n converges in probability to a constant defined by
fixed R and V . But for dependent λ and c, from the following formula

r(λ, c) =
E(λc) − E(λ)E(c)

σλσc
=

E(λc) − 1
σλσc

=
E(λc) − 1

vλvc
, (18)

we have
E(λc) = 1 + r(λ, c)vλvc, (19)

where r(λ, c) is the correlation coefficient of λ and c;
σλ, σc are mean squared deviations of λ and c;
vλ, vc are variation coefficients of λ and c.

From (19) and (17) it follows that penalty F0 can be growing unlimitedly
with growing n when λ and c are positively correlated and vλ and/or vc are
equal to infinity. For example, if λ = Ac we have r(λ, c) = 1 and vλ = vc (here
A > 0 is some constant). In practice, vλ and vc may be arbitrary large, and then
with growing n the F0 will also be increasing due to the growth of multiplier

Λ−1
n∑

k=1

λkck that converges to M(λc) = 1 + r(λ, c)vλvc.

Notice that the positive correlation between flow intensity and penalty per
waiting time unit are quite natural.

8 Analysis of c/b Rule Efficiency in Absolute Prioritizing.
Technique of the Best Transpositions

It is known that relative prioritizing is optimal when priorities pk of the kth flow
are increasing with the order of ck/bk characteristic growth (“rule c/b”). The
c/b rule which is also called as cμ-rule was proposed firstly in [9]. In the case
of absolute priorities, the c/b rule is optimal only when the service times have
the exponential distributions, but it can be used with general distributions of
service times as a fairly good heuristics.

To estimate the heuristics c/b acceptability, we compare it to a more pre-
cise absolute prioritizing rule. Realization of the precise rule (calculation of the
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penalty F2 for all n! appointments of priorities and choosing the best appoint-
ment) for n, which is several orders of magnitudes, is near-impossible. There-
fore, further, an approximate optimization technique, i.e. the best transposi-
tions technique (TT) having the effectively constrained enumeration of priority
appointment, is proposed and applied. Consider the step-by-step description of
the technique.

Step 1. For given Λ, Ψ, V, C when α = 2(λ1ψ1 + · · · + λnψn), i.e., when
R = 0.5 all bk = ψk/α and b

(2)
k = (1 + v2

k)ψ2
k/α2 are calculated. The absolute

priorities are appointed according to c/b rule and the penalty F2 is calculated.
Step 2. Among all pairs of n flows, one must find such pair (k, i) that the

exchanging (transposition) of priorities pk and pi in this pair will lead to the
greatest penalty reduction.

Step 3. If not a single transposition leading to penalty F2 reduction has been
found, proceed to step 4. Otherwise, perform the found priority transposition,
and calculate the penalty F2 for the found appointment, then go to step 2.

Step 4. Obtained appointment is taken as the result of optimization.

Estimation of c/b efficiency consist of the multiple random realization of param-
eters Λ, Ψ, V and C, optimization of priority appointment for each realization
with TT and comparison of obtained penalty F2 values with those obtained with
the c/b heuristics.

The Results of Comparing TT and the Heuristics c/b. Parameters Λ,
Ψ, V, C were repeatedly generated from different sets of pdf fλ(t), fψ(t), fv(t),
fc(t) with different n, the rule c/b ing compared to TT. We get the following
results.

1. The c/b heuristics on average gives the result that can be improved (i.e. the
penalty F2 can be reduced) just by (0.1–1.5)% with TT.

2. In particular cases, the result of using c/b euristics can be improved by 24%
and more by means of TT.

3. In any case, priority distribution obtained by c/b rule with TT is not dete-
riorated, therefore, TT can be applied in all cases of absolute priority distri-
butions.

4. When the number of flows n is around 15–20, the TT almost always improves
the results of using c/b heuristics.

5. The characteristics ξ1 and ξ2 of penalty reduction in critical regions of CO
parameters increase manifold.

The latter result suggests that question about feasibility of prioritized ser-
vice in critical regions of CO parameters in many practical cases should have a
positive answer.

9 Analysis of Feasibility of Prioritized Disciplines
in Critical Regions of Control Object Parameters

Using the metamodel, hundreds of thousands of multi-flow QS were generated
and the characteristics ξ1 and ξ2 of prioritized service efficiency with optimal
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prioritizing were defined. Consider the most important results obtained in the
current research.

1. The penalties F0, F1, F2 increase unlimitedly with growing n (with fixed R,
fλ, fψ, fv, fc) in critical regions of parameters, whereas in non-critical regions
the growth of penalties is bounded from above.

2. At the intersections of critical regions, the rate of F0, F1 and F2 penalties
growth with growing n may be increased by several orders of magnitude.

3. Characteristics ξ1 and ξ2 increase with growing n, but are bounded from
above (both in non-critical region, and critical regions of CO parameters).

4. Applying the prioritized disciplines when R → 0 is not relevant, when R → 1
it is marginally useful.

Statistical experiments show that determined key parameters Λ of CO, usu-
ally, affect queuing control efficiency far greater than the form of distributions
for parameter vectors does. In view of this, the experimental data given below
are for the exponential pdf fλ, fψ, fc and the triangular fv one.

The asymptotic properties found above for n → ∞ began to reveal themselves
even at small n. As an example, the average values of L (average length of
aggregated request queue), V 2 and ξ1, ξ2 for independent components of Λ, Ψ,
V and C vectors and for two kinds of relation between λk and ψk are given in
Table 1. These results are obtained under optimal prioritizing condition.

Table 1. The dependence of efficiency parameters of prioritized disciplines on n

n Independent parameters λk = A/ψk λk = A/(ψk)
1.2

L̄ V̄ 2 ξ̄1 ξ̄2 L̄ V̄ 2 ξ̄1 ξ̄2 L̄ V̄ 2 ξ̄1 ξ̄2

2 0.79 2.18 1.23 3.31 3.22 11.9 1.30 3.79 2.28 8.11 1.27 1.82

10 0.97 2.87 1.50 4.70 5.50 21.0 1.60 11.1 11.8 46.5 1.57 5.62

20 1.01 3.04 1.54 4.90 6.79 26.1 1.65 14.5 16.4 64.7 1.63 8.98

50 1.05 3.19 1.57 4.98 7.13 27.5 1.71 15.2 22.7 89.7 1.71 16.4

100 1.06 3.25 1.59 5.21 7.65 29.6 1.76 17.5 28.8 114.3 1.78 32.3

Conditions, under which the numerical results are obtained, are stated in
Table 1 and illustrated by Figs. 1, 2 and 3 Straight lines on the Figs. 1, 2 and
3 are trend lines derived from least square method. Figures 2 and 3 also illus-
trate the equations of power-law regression. The straightness of lines for relevant
power-law equations can be explained by logarithmic scale of both coordinate
axes. Figure 4 shows changes (with growing n) of characteristics ξ2 for efficiency
absolute prioritizing discipline, which correspond to the conditions illustrated
above. Therefore, considering vectors of flow parameters as samples from dis-
tributions of r.v., we will find arithmetic mean of the parameters, their squares,
products for parameters of different vectors, obtaining thereby the values of rel-
evant sample moments. For example, the numerator of (3) contains arithmetic
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Fig. 1. Elements of intensities vector Λ and labor-intensities vector Ψ are almost
independent (the first set of columns in Table 1)

Fig. 2. Elements of intensities vector Λ are inversely proportional to the elements of
labor-intensities vector Ψ (the second set of columns in Table 1)

Fig. 3. Elements of intensities vector Λ and labor-intensities vector Ψ are connected
with power-law dependence λk = A/(ψk)

1.2 (the third set of columns in Table 1)

mean of all b2k and the denominator contains arithmetic mean of all bk. The
derived sample moments are the approximate values of expressions included in
the right parts of (3), (10) and other formulas determining the feasibility of
applying the prioritized service disciplines. Considering the parameters of multi-
flow system as r.v. we simplify the calculation of characteristics for efficiency
and at early stages of CO designing we can make a reasoned decision on the
appropriateness of applying various prioritized disciplines. At the same time,
it is not necessary to make an exact measurement of all parameters for a large
number of request flows, it is sufficient to obtain just some representative sample
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Fig. 4. Dependence of the characteristics ξ2 for efficiency absolute prioritizing discipline
on n (the curves 1–3 are obtained for the cases illustrated by Figs. 1, 2 and 3)

of parameters. To define weather the sample belongs to one of the considered in
the article critical region of parameters space or not, the high precision of the of
measurements is not required.

Practically-wide limiting case of the considered multi-flow system is the case
when the number of flows goes to infinity so that instead of discrete probability
distribution qk = λk/Λ, which implies the belonging of some request to the kth

class, it is reasonable to use a continuous distribution with density q(λ). Here,
the service time density of any request is the corresponding continuous mixture
of service time densities of requests from the different classes. For example, if the
service time densities are exponential and shifted to the right on K > 0, then
the density q(λ) is exponential, but the service time of any request will have the
Pareto distribution, i.e., the distribution with heavy tail. The investigation of QS
with heavy tails belong to the relevant special section of Queueing Theory [12–
14]. Multi-flow systems can be considered as a class of systems between classical
QS and QS with heavy tails. In particular, as was shown above, considering
multi-flow systems we have to deal with unlimited c.v. of service time. Such c.v.
is typical for QS with heavy tails.

10 Conclusion

Operation of large-scale objects under current conditions despite the continuous
increase of automation level is characterized by substantial damage caused by
delayed or wrong reaction of CO in normal or emergency regimes. Practical
application of the metamodel proposed in the article enables estimating the
economic impact which can be obtained by optimization of service disciplines.
Thus, average values of characteristics ξ1 and ξ2 calculated in Table 1 show how
many times the damage might be reduced by using corresponding disciplines.
Information aggregated in industry databases allow the metamodel to be adapted
and formalized as a well-structured industry-based mathematical model.

The condition of effective application relative and absolute priorities is mod-
erate load of server (which is not close to zero or one).
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Using the metamodel one can calculate objective importance estimates for
a number of qualification characteristics of operating and dispatching personnel
(percentage of actions performed correctly, wrong or with delay and etc. [11]).
Estimates of importance allow optimizing the scenarios of academic studies by
computer simulators [8]. The results derived from the application of metamodel
enable formulating the recommendations for designers of automated control sys-
tems. The optimal prioritizing technique for appointment relative and absolute
priorities is developed when the distributions of service times differ from expo-
nential, with the “rule c/b” tested on a large amount of metamodel realizations
with different values of the key parameters. It is established that in solutions
with c/b rule the characteristic ξ2 differ from the optimal one by average (0.1–
1.5)%. At the same time, in particular cases, the result of using c/b uristics can
be improved by 24% and more with the developed technique.

In general, critical regions identified in the article for the parameters CO are
the regions with the most effective application of relative and absolute priorities.
The obtained results allow the feasibility of applying the prioritized service dis-
ciplines at early stages of CO designing to be estimated with using the sample
estimates of request flow intensities of different classes, average service labor-
intensities (volumes) and their variation coefficients, and sample estimates of
penalties per waiting time unit in these classes.
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Abstract. In this paper the model of an infinite-server MAPk|Gk|∞
queue in random environment with catastrophes is considered. The tran-
sient and limiting probability generating functions (PGF) of joint distri-
butions of number of busy servers and numbers of served customers,
the joint distributions of total resource in the model and total served
resource are found. All results are obtained by using collective marks
method (CMM) and renewal processes.

Keywords: Markov arrival process · Infinite-server queue model
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1 Introduction

The distinguishing characteristic of New Generation Networks (NGN) is the
integration of heterogeneous resources, applications, technologies, customers and
data into one united information infrastructure which is ubiquitous and acces-
sible anytime and anywhere. This integration process includes all layer of NGN
and makes its QoS metrics guaranteeing more challenging [1]. To solve the NGN
optimal design and performance providing problems the methods of statisti-
cal simulation and modeling are widely used. However the application of these
methods and tools even for several elements of NGN (for example a protocol,
a server, or a canal) is complicated because of networks statistical processes
(traffic and service) nature [2]. As shown by large number of measurements the
traffic of modern IP networks can be characterized by the heterogeneousness,
the non-stationarity, the burstiness, the short-range and the long-range depen-
dence. These factors make the modeling and performance evaluation of modern
networks more challenging [3]. Network traffics in queueing theory are gener-
ally described finite Markov Processes traffic models: Markov Arrival Process
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A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 305–320, 2018.
https://doi.org/10.1007/978-3-319-97595-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97595-5_24&domain=pdf


306 K. Kerobyan et al.

(MAP), Batch Markov Arrival Process (BMAP), Marked Markov Arrival Pro-
cess (MMAP) and their generalizations [4]. The MAP arrivals properties and
their applications are presented in [5,6] and are not duplicated here. To evaluate
the network canals performance main parameters: capacity, delay and packet
loss probability, the infinity server queue models are widely used.

An infinite-server model M |SM |∞ with a Poisson arrival process and with
semi-Markovian (SM) service times. The transient and asymptotic results for
PGF of queue-length process is obtained by means of CMM [7]. The infinite-
server queue BMk|Gk|∞ with k correlated heterogeneous customers in a batch
is studied in [8]. In steady state, the joint PGF of queue length of customers
is derived by using CMM and conditional expectations. The generalization of
the model for the queue BMAPk|Gk|∞ with structured batch arrival of k types
of customers is considered in [9]. In steady state, the differential equations for
PGF of queue length and its moments are obtained. The first and second order
asymptotes of queue length for the models MAP |G|∞, MMPP |G|∞, G|G|∞
based on supplementary variable method are studied in [10].

To evaluate the impact of network environment on networks performance
metrics the infinite-server models in the random enviroment (RE) are applied.
The queue size distribution of the model M |G|∞ with semi-Markov (SM) envi-
ronment under asymptotic condition of high arrival rate and frequent environ-
ment transitions is studied in [11]. By the method of supplementary variable
and the original method of dynamic screening first and second order asymptotes
of queue size distribution are obtained. The queue M |G|∞ in random environ-
ment with clearing mechanism is studied in [12]. The environmental clearing
process is modeled by an m-state irreducible SMP. The transient and steady-
state queue length distributions by using renewal arguments are obtained. The
MMAPk|Gk|∞ queue in SM environment and catastrophes is studied in [13].
The PGFs of joint distributions of queue size and number of served customers
by using renewal arguments and differential equations are found.

In many applications of queue models such as computer and communica-
tion networks, transportation systems customers characterize by the vector of
requesting resources which components can be random quantities. Despite the
importance of the queueing models and their applications, there are very few
works devoted to research of queue resource models, see e.g. [13–19].

The main methods to study the infinite-server queues are: supplementary
variables method [20], the method which based on properties of exponential
distribution and conditional expectations [21], and Collective Marks Method
(CMM) [22,23]. The last method is also is called “supplementary event or catas-
trophes” method [22] and has been used successfully for queue models with
priorities [23]. CMM have been used in [8] for infinite-server model with Poisson
arrival of batches. In [7] the method is mentioned but does not used to obtain
some results.

In this paper we consider some generalizations of [12,13,15] results for
infinite-server MAPk|Gk|∞ queue. The PGFs of joint distributions of number
of busy servers and numbers of served customers, the joint distributions of total



Analysis of an Infinite-Server Queue MAPk|Gk|∞ in Random Environment 307

resource in the model and total served resource are found. All results are obtained
by using CMM and renewal processes methods.

2 Model Description

We consider an infinite server MAPk|Gk|∞ queue model in RE with K
types of customers and catastrophes. The RE operates according to station-
ary, irreducible semi-Markov process (SMP) ξ(t), t ≤ 0 with finite state space
S =

{
1, 2, . . . , k

}
. The SMP is given by the vector of initial distribution

p0 =
{
pi
0, i ∈ S

}
and SM matrix Q(t) = ||Qij(t)||, t ≥ 0, 1, j ∈ S. Differ-

ent type of customers arrive according to homogeneous MAP which is given by
the characteristic matrices

{
D0r,D1r, 1 ≤ r ≤ K

}
. Here D0r is a non-singular

matrix with negative diagonal elements and D1r is non-negative matrix corre-
sponding to the type r of customers. The phase process (PP) Jr(t) of MAP is
an irreducible Markov process (MP) with generating matrix Dr and finite set of
states Er. Dr is a matrix of mr × mr size.

Dr = D0r + D1r, Drer = 0, πrDr = 0, πrer = 1, 1 ≤ r ≤ K,

where er is the unit column vector, πr is the vector of stationary distribution
πr = (π1, . . . , πmr

) of PP Jr(t).
Instead of independent MAPs we will consider the superposed arrival process.

It is known [6] that superposition of finite number of MAPs is a MAP as well. Let

m be
K∏

r=1
mr. To distinguish arrivals of one type from the others, we introduce

the following m × m matrices:

D0 = D01 ⊕ D02 ⊕ . . . ⊕ D0K , Dr = I1 ⊗ . . . ⊗ Ir−1 ⊗ D1r ⊗ Ir+1 ⊗ . . . ⊗ IK ,

r = 1, . . . , K,

D = D0 + D1, De = 0, πD = 0, πe = 1, π = π1 ⊗ π2 ⊗ . . . ⊗ πK ,

where ⊗ (resp. ⊕) denotes the Kronecker product (resp. the Kronecker sum) and
Ir denotes the identity matrix of order mr, π is a vector of size m.

For superposed MAP (SMAP) the stationary arrival rate of customers is
given by

λ =
K∑

r=1

πDre =
K∑

r=1

λr, λr = πDre

where λr is the stationary arrival rate of type r customers.
The service of arriving customers begins immediately. Let the random vari-

able (r.v.) τr be a service time of type r customers, and τ = (τ1, τ2, . . . , τk) is
a vector of service times. The components of τ are independent, identically dis-
tributed (i.i.d.) r.v.s which depend on type of the customer and state of environ-
mental SMP. R.v. τr has Br(t) = P (τr < t) general distribution and finite mean
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value τ̄r, 1 ≤ r ≤ K. Each arriving and departing r type customer is character-
ized by k-dimensional random volume (resource) vectors ξr = (ξ1r, . . . , ξkr) and
σr = (σ1r, . . . , σkr) resp., which have non-negative components 1 ≤ r ≤ K. Let
Fr(x) = P (ξ1r ≤ x1, . . . , ξkr ≤ xk) and Gr(x) = P (σ1r ≤ x1, . . . , σkr ≤ xk) be
the joint distributions of resource vectors ξr and σr, where x = (ξ1, . . . , ξk). We
assume that the service time vector τ and the resource vectors ξr = (ξ1r, . . . , ξkr),
σr = (σ1r, . . . , σkr) are mutually independent.

When SMP ξ(t), t ≤ 0 jumps from state i to the state r all customers in
the model are instantly flashed out and the model jumps into empty state. Let
consider the related with SMAP counting processes (CP) N(t), Ns(t),M(t) :
N(t) = (N1(t), N2(t), . . . , NK(t)), Ns(t) = (N1s(t), N2s(t), . . . , NKs(t)), M(t) =
(M1(t),M2(t), . . . , MK(t)), where Nr(t) and Mr(t) are the number of type r
customers arriving and serving in time interval [0, t), and Nrs(t) is the number
of customers being in service at moment t. Let β(t) = (β1(t), . . . , βK(t)) and
α(t) = (α1(t), . . . , αK(t)) be the vectors of total resource served during interval
[0, t) and accumulated in the model at moment t, resp. The components of β(t),
α(t), Ns(t) and Ms(t) vectors are defined as:

βr(t) =
Mr(t)∑

i=1

σri, αr(t) =
Nr(t)∑

i=1

ζri.

Suppose that at initial time t = 0 the model is empty, N(0) = 0, M(0) = 0.

3 The Counting Process

Let consider the CP
{
N(t), J(t), t ≤ 0

}
with the matrix P (n, t), n =

(n1, . . . , nk) of transition probabilities: P (n, t) = ||pij(n, t)||, pij(n, t) =
P (N, t) = n, J(t) = j|J(0) = i, 1 ≤ i, j ≤ m.

Let define the following generating functions (GF) D(z), P (z, t),

P (z, t) =
∑

n≥0

znP (n, t), D(z) = D0 +
∑

h∈C0

zrDr, |zr| ≤ 1, 0 ≤ r ≤ K, |z| ≤ 1,

where z = (z1, z2, . . . , zk) and zn = (zn1
1 , zn2

2 , . . . , znk

k ).

Theorem 1. The PGF P (z, t) of counting process
{
N(t), J(t), t ≥ 0

}
satisfies

the basic differential equation

∂

∂t
P (z, t) = D(z)P (z, t), |z| ≤ 1, (1)

with initial conditions P (z, 0) = 1. The solution of differential equation Eq.(1)
is given by

P (z, t) = eD(z,t)t. (2)
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Proof. The transition probabilities
{
P (n, t), n ≤ 0

}
of CP N(t) satisfy the

following Kolmogorov backward differential equations

d

dt
P (n, t) = P (n, t)D0 +

K∑

r=1

DrP (n − er, t), n ≥ 0,

with initial condition Pi(n, 0) = 0, n > 0, Pi(0, 0) = 1, i = 1, 2, . . . , k, where
er = (0, . . . , 0, 1, 0, . . . , 0) is a vector with 1 in rth position. Pre-multiplying each
equation by corresponding zn after summation we get differential equations for
PDF P (z, t). The solution of this equation in matrix exponential form is given
by Eq. (2).

4 Thinning MAP

Let consider the following Bernoulli thinning process (TP) of MAP. Each type
r customer which arrives at the time t can join the main stream by probability
pr(t) and can be ignored by probability 1 − pr(t).

Lemma. The thinned process is a MAP which counting process has matrix GF
DT (z, t) and PGF PT (z, t), which are defined as follow

DT (z, x) = D0 +
K∑

r=1

Dr[1 − pr(x) + zrpr(x)],

PT (z, t) = e
∫ t
0 DT (z,t)dx.

The first part of lemma is a consequence of more general result for Markov-
additive processes of arrivals [21]. The resulting thinned MAP characteristic
matrices are

DT0 = D0 +
K∑

r=1

Dr[1 − pr(x)], DTr = Drpr(x), r = 1, 2, ...,K.

The subject of our interest is the joint distribution

P (n,m, x, y, t) = P (Ns(t) = n, M(t) = m, α(t) ≤ x, β(t) ≤ y).

5 Model Analysis

Let suppose that the environmental SMP ξ(t), t ≥ 0 is in state i ∈ S and
consider the dynamic of the the model during time interval [u, t). Each type r
customer arriving at moment u will be in service at moment t by probability
1−Bri(t−u) and will finish its service before moment t by probability Bri(t−u).

Let Ai
jk(n,m.x, y, u, t) be the joint probability that n customers are in service

at moment t, and m customers are already served in [u, t), total resources in the
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model at time t is α(t) ≤ x and the total served resource during interval [u, t)
is β(t) ≤ y, PP J(u) is in phase i ∈ E under condition that at initial moment
t = 0 the model was empty, and PP J(0) was in phase k ∈ E.

Let denote by Ãi(z1, z2, s1, s2, u, t) the matrix which elements are Laplace–
Stieltjes transformation (LST) and z transformation of Ai

jk(z1, z2, s1, s2, u, t)
and by F̃ri(s1), G̃ri(s1) denote the LST of Fri(x) and Gri(y). For homogeneous
model we have Ãi(z1, z2, s1, s2, t) = Ãi(z1, z2, s1, s2, u, t), e.g. see [22].

F̃ri(s1) =

∞∫

0

e−s1xdFri(x), G̃ri(s2) =

∞∫

0

e−s1ydGri(y),

Ãi(z1, z2, s1, s2, t) =
∞∑

n=0

∞∑

m=0

zn
1 zm

2

∞∫

0

∞∫

0

e−s1x−s2yAi(n,m, dx, dy, t),

with |z1| ≤ 1, |z2| ≤ 1. By using CMM we can prove the following result.

Theorem 2. The PGF of the model MAPr|Gr|∞ Ãi(z1, z2, s1, s2, t) satisfy the
following basic differential and integral equations

Ãi(z1, z2, s1, s2, t) = exp{
t∫

0

[D0(i) + S̃i(z1, z2, s1, s2, u)]du}, |z1| ≤ 1, |z2| ≤ 1,

where

S̃i(z1, z2, s1, s2, t) =
K∑

r=1

Dri

[
z2rG̃ri(s2)Bri(t) + z1rF̃ri(s1)(1 − Bri(t))

]
.

Proof. The queueing process in the model can be considered as a CP of some
special TP. According to Theorem 1 the CP of that TP has matrix exponential
form for every state of environmental SMP. Let define the rate of that matrix
exponential function by using CMM. Suppose that a customer of type r arrives
at moment u with rate Dr. This customer will be served up to moment t with
probability Br(t − u) or will be in the model at moment t with probability
1 − Br(t − u). Let mark each served type r customer red by z2rG̃r(s2) or blue
by 1 − z1rF̃r(s1) with probabilities. Alike, we mark each serving in the model
type r customer red by z1rF̃r(s1) or blue by 1 − z1rF̃r(s1) with probabilities.
Then Dr[z2rG̃r(s2)Br(t−u)+ z1rF̃r(s1)(1−Br(t−u))] is the rate of red type r
customers arriving at moment u and the common rate of red (all types) customers
arriving at moment u is S̃i(z1, z2, s1, s2, u). Finally, the common rate of red (all
types) customers arriving in [0, t) is

t∫

0

[
D0(i) + S̃i(z1, z2, s1, s2, u)

]
du.

Recall that D0(i)t is no customer arrivals rate in[0, t) interval.
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Theorem 3. The PGF Ãi(z1, z2, s1, s2, t) satisfy the following basic differential
and integral equations

Ãi(z1, z2, s1, s2, t) = eD0(i)t

+

t∫

0

eD0(i)uS̃i(z1, z2, s1, s2, u)Ãi(z1, z2, s1, s2, t − u)du. (3)

∂

∂t
Ãi(z1, z2, s1, s2, t) = [D0(i)+S̃i(z1, z2, s1, s2, t)]Ãi(z1, z2, s1, s2, t), i ∈ S, (4)

with initial conditions Ãi(z1, z2, s1, s2, 0) = I.
When z2 = 1, s2 = 0 from Eqs. (3) and (4) we obtain the PGF of joint

distribution of number of busy servers and total accumulated resources in the
model P̃ (z, s, t, i) = Ãi(z1,1, s1,0, t).

6 MAPk|Gk|∞ Model with Catastrophes

Let consider the general homogeneous Markovian model under influence of SMP
generated catastrophes. As in [14], after every transition of environmental SMP
the model jumps into the special state, let say 0-state, and then works from that
state. When the SMP is in ith state all parameters of the model are related to
that state: DF of inter-arrival time of customers, DF and rates of service time
of customers, their resource vectors.

Let ˜̄P (n,m, s1, s2, t, i) and P̃ (n,m, s1, s2, t, i) defined the LST of probabil-
ities of having in the model n = (n1, n2, . . . , nk) customers at moment t and
having m = (m1,m2, . . . , mk) served customers in the interval of time [0, t)
when environmental SMP is in state i, for the models without catastrophes and
with catastrophes, resp.

The following theorem gives the connection between these two models
probabilities.

Theorem 4. The P̃ (n,m, s1, s2, t, i) satisfies the following integral equation

P̃ (n,m, s1, s2, t, i) = (1 − Fi(t)) ˜̄P (n,m, s1, s2, t, i)

+
∑

j∈S

t∫

0

P̃ (n,m, s1, s2, t − u, j)dQij(u), i ∈ S. (5)

The solution of equations Eq. (4) can be found

P (n,m, s1, s2, t, i) = (F̄i(t)) ˜̄P (n,m, s1, s2, t, i)

+
∑

j∈S

t∫

0

F̄j(t − u) ˜̄P (n,m, s1, s2, t − u, j)dHij(u), (6)
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where F̄ (t) = 1 − F (t) and F (t) = {Fi(t), i ∈ S} is a sojourn time distribution
vector of SMP: Fi(t) =

∑

j∈S

Qij(t), i ∈ S.

H(t) = ||Hij(t)|| is a renewal matrix of SMP which components satisfy the
following equations

Hij(t) = 1 − Fi(t) +
∑

k∈S

t∫

0

Hkj(t − u)dQik(u), i, j ∈ S.

The proof of Eqs. (4), (6) can be done by using standard renewal arguments (see
for example [22]).

Let P̃ (z1, z2, s1, s2, t, i) and ˜̄P (z1, z2, s1, s2, t, i) be the PGFs of P̃ (n,m, s1,

s2, t, i) and ˜̄P (n,m, s1, s2, t, i), respectively. Then we get from Eqs. (4), (6)

P̃ (z1, z2, s1, s2, t, i) = (1 − Fi(t)) ˜̄P (z1, z2, s1, s2, t, i)

+
∑

j∈S

t∫

0

P̃ (z1, z2, s1, s2, t − u, j)dQij(u), i ∈ S, (7)

which solution is

P̃ (z1, z2, s1, s2, t, i) = F̄i(t) ˜̄P (z1, z2, s1, s2, t, i)

+
∑

j∈S

t∫

0

F̄j(t − u) ˜̄P (z1, z2, s1, s2, t − u, j)dHij(u). (8)

The proof can be done by using CMM or standard renewal argument (see for
example [23]). Let consider the proof by CMM. We mark each type r customer in
the model red or blue color with probabilities zr and 1−zr resp. Then left side of
Eq. (7) is a probability of event “in the model with catastrophes there are no blue
customers at moment and the SMP is in state”. This event can be realized either
“the SMP is in state i at moment t given that at initial time t = 0 it was in state
i and in the model without catastrophes there are no blue customers in interval
[0, t)” and in the model there are no blue customers at moment or “SMP jumps
from state i into state j in [u, du)”, u ≤ t (with probability dQij(u)), the model
jumps into 0-state and from that state “in the model are not blue customers
in interval” (with probability P (z, t − u, j)). In the proof of Eq. (8) we have to
paraphrase second term of right side: “SMP jumps into state ji in [u, du)”, u ≤ t
(with probability dHi(u), the model jumps into 0 state and “SMP will stay in
the state j during interval of time [t−u, t) and in the model without catastrophes
starting from 0-state (empty state) are not blue customers in interval of time
[t − u, t)” (with probability F̄j(t − u) ˜̄P (z1, z2, s1, s2, t − u, j)).”
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Theorem 5. The distributions of P̃ (n,m, s1, s2, t, i) and P̃ (z1, z2, s1, s2, t, i)
have the limits

P̃ (n,m, s1, s2) = lim
t→∞

∑

i∈S

p0i P̃ (n,m, s1, s2, t, i)

=
∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u)) ˜̄P (n,m, s1, s2, u, j)du, i ∈ S,

P̃ (z1, z2, s1, s2) = lim
t→∞

∑

i∈S

p0i P̃ (z1, z2, s1, s2, t, i)

=
∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u)) ˜̄P (z1, z2, s1, s2, u, j)du, i ∈ S,

where

η̄i =

∞∫

0

(1 − Fi(u))du, qi =
η̄iρi∑

r∈S

η̄rρr
,

∑

r∈S

qr = 1, ρi =
∑

r∈S

priρr,

∑

r∈S

ρr = 1, pri = Qri(∞), r, i ∈ S.

Let f̃(s) denote the Laplace Transformation of a function f(x) , f̃(s) =
∞∫

0

e−suf(u)du.

Corollary. When Fi(t) = 1 − e−vit, i ∈ S then for LT of P̃ (n,m, s1, s2, s, i),
PGF P̃ (z1, z2, s1, s2, s, i) and their limiting values we get

P̃ (n,m, s1, s2, s, i) = ˜̄P (n,m, s1, s2, s + vi, i)

+
1
s

∑

j∈S

˜̄P (n,m, s1, s2, s + vj , j)H̃ij(s), i ∈ S,

P̃ (z1, z2, s1, s2, s, i) = ˜̄P (z1, z2, s1, s2, s + vi, i)

+
1
s

∑

j∈S

˜̄P (z1, z2, s1, s2, s + vj , j)H̃ij(s), i ∈ S,

P̃ (z1, z2, s1, s2) =
∑

i∈S

qivi
˜̄P (z1, z2, s1, s2, vi, i),

P̃ (n,m, s1, s2) =
∑

i∈S

qivi
˜̄P (n,m, s1, s2, vi, i).
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Let consider the infinite-server models MAPk|Gk|∞ with catastrophes.
Assume that P̃ (z1, s1, t) is a LST of PGF joint distribution of number of

busy servers and total accumulated resources in the model at moment t given
that at t = 0 SMP is in state i for the model with catastrophes and P̃ (z1, s1) is
its limit value.

Theorem 6. The PGFs P̃ (z1, s1, t) and its limit value P̃ (z1, s1) are given by

P̃ (z1, s1, t) =
∑

i∈S

p0i P̃ (z1, s1, t, i),

where {p0i , i ∈ S} is a vector of initial distribution of SMP, and P̃ (z1, s1, t, i)
satisfies the following integral equations

P̃ (z1, s1, t, i) = F̄i(t)e

t∫

0
[D0(i)+S̃i(z1,s1,u)]du

+
∑

r∈S

t∫

0

P̃ (z1, s1, t−u, r)dQir(u), i ∈ S,

which solutions are

P̃ (z1, s1, t, i) = F̄i(t)e

t∫

0
[D0(i)+S̃i(z1,s1,u)]du

+
∑

r∈S

t∫

0

F̄r(t − u))e

t−u∫

0
[D0(r)+S̃r(z1,s1,x)]dx

dHir(u), (9)

P̃ (z1, s1) = lim
t→∞

∑

i∈S

p0i P̃ (z1, s1, t, i)

=
∑

i∈S

qi

η̄i

∞∫

0

F̄i(x)e

x∫

0
[D0(i)+S̃i(z1,s1,u)]du

dx, i ∈ S.

Corollary. From above model when catastrophes occur according to Poisson
distribution with parameter ν then by Eq.(9) we get the results for homogeneous
model [24].

For example, for P̃ (z1, s1) and P̃ (z1, s1, s) we obtain

P̃ (z1, s1, s) = ˜̄P (z1, s1, s + ν)[1 +
ν

s
], P̃ (z1, s1) = ν ˜̄P (z1, s1, v), (10)

where

˜̄P (z1, s1, ν) =

∞∫

0

e−νxe

x∫

0
[D0(i)+S̃i(z1,s1,u)]du

dx,

˜̄P (z1, s1, s + ν) =

∞∫

0

e−(ν+s)xe

x∫

0
[D0(i)+S̃i(z1,s1,u)]du

dx.
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This result can be interpreted by the CMM. Let consider flow of event A
which has exponentially distributed inter event time with parameter s. First, let
Eq. (10) write in the form sP̃ (z1, s1, s) = ˜̄P (z1, s1, s + ν)[s + ν], then it can be
interpreted as follow: sP̃ (z1, s1, s) is a probability of the event event A appears
when in the model with catastrophes no blue customers at moment but it is the
same as happens the event sum of the event A and catastrophes appears when in
the model without catastrophes no blue customers at moment. The probability
of this event is ˜̄P (z1, s1, s + ν)[s + ν].

Remark. Let consider the model MAPr|Gr|∞ in which after transition of envi-
ronmental SMP and flashing out of all customers the model jumps into the
recovery station. The recovery time ϑ of the model has general distribution
U(t) = P (ϑ ≤ t) with finite mean value ϑ̄1. To define the model performance
metrics we can use formulated for above MAPr|Gr|∞ model theorems. Let
T (t) = ||Tij(t)|| is a SM matrix of new model SMP with state space S. The
elements of T (t) SM matrix Tij(t) are define as convolution of Qij(t) and DF
U(t): Tij(t) = Qij(t) ∗ U(t), i, j ∈ S. For example the transient probabilities of
the model P̃ (n, s1, t, i) and P̃ (z1, s1, t, i) satisfy the following integral equations

P̃ ((n, s1, t, i) = (1 − Ti(t)) ˜̄P ((n, s1, t, i) +
∑

j∈S

t∫

0

P̃ ((n, s1, t − u, j)dTij(u), i ∈ S,

P̃ (z1, s1, t, i) = (1 − Ti(t)) ˜̄P (z1, s1, t, i) +
∑

j∈S

t∫

0

P̃ (z1, s1, t − u, j)dTij(u), i ∈ S,

where Ti(t) =
∑

j∈S

Tij(t), i ∈ S.

The corresponding limiting values are given by

P̃ (n, s1) = lim
t→∞

∑

i∈S

p0i P̃ (n, s1, t, i) =
∑

j∈S

q∗
j

η̄j + ϑ̄1

∞∫

0

(1 − Fj(u)) ˜̄P (n, s1, u, j)du,

P̃ (z1, s1) = lim
t→∞

∑

i∈S

p0i P̃ (z1, s1, t, i)

=
∑

j∈S

q∗
j

η̄j + ϑ̄1

∞∫

0

(1 − Fj(u)) ˜̄P (z1, s1, u, j)du, i ∈ S

where q∗
i = (η̄i+ϑ̄)1ρi∑

r∈S

(η̄r+ϑ̄1)ρr
,

∑

r∈S

q∗
r = 1,

q∗
j

η̄j+ϑ̄1
.
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7 Performance Measures of the Model

Let ω1r(t), ω1r and V ar1r(t), V ar1r denote the transient and steady state mean
and variance of queue length of type r customers. Then for ω1r(t) and ω1r we get

ω1r(t) = lim
s1→0

ω̃1r(s1, t), ω̃1r(s1, t) =
∂P̃ (z1, s1, t)

∂z1r

∣
∣
∣
∣
∣
z1r=1, z11=z12=...=z1k=1

,

ω1r = lim
s1→0

ω̃1r(s1), ω̃1r(s1) =
∂P̃ (z1, s1)

∂z1r

∣
∣
∣
∣
∣
z1r=1, z11=z12=...=z1k=1

,

ω̃1r(s1, t) =
∑

i∈S

p0i (1 − Fi(t))˜̄ω1r(s1, t, i)

+
∑

j∈S

t∫

0

(1 − Fj(t − u))˜̄ω1r(s1, t − u, j)dHj(u),

ω̃1r(s1) =
∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u))˜̄ω1r(s1, u, j)du,

where ˜̄ω1r(s1, t, i) is a transient mean queue length of r type customers of the
model without catastrophes when the SMP is in state i. The transient and steady
state variance of queue length for type r customers V ar1r(t) and V ar1r we get

V ar1r(t) = ω2r(t) + ω1r(t)(1 − ω1r(t)), V ar1r = ω2r + ω1r(1 − ω1r)

ω2r(t) = lim
s1→0

ω̃2r(s1, t), ω̃2r(s1, t) =
∂2P̃ (z1, s1, t)

∂z21r

∣
∣
∣
∣
∣
z1r=1, z11=z12=...=z1k=1

,

ω2r = lim
s1→0

ω̃2r(s1), ω̃2r(s1) =
∂2P̃ (z1, s1)

∂z21r

∣
∣
∣
∣
∣
z1r=1, z11=z12=...=z1k=1

,

ω̃2r(s1, t) =
∑

i∈S

p0i (1 − Fi(t))˜̄ω2r(s1, t, i)

+
∑

j∈S

t∫

0

(1 − Fj(t − u))˜̄ω2r(s1, t − u, j)dHj(u),

ω̃2r(s1) =
∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u))˜̄ω2r(s1, u, j)du.
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Let δr(t), δr, r = 1, 2, . . . ,K, be the transient and steady-state mean values
of accumulated type r resources in the model and δ be a total accumulated
resources in the model.

δr(t) = πδr(t)e, δr(t) = lim
s1→0

∂P̃ (z1, s1, t)
∂s1r

∣
∣
∣
∣
∣
z11=z12=...=z1k=1

,

δr(t) =
∑

i∈S

p0i (1 − Fi(t))δ̄r(t, i) +
∑

j∈S

t∫

0

(1 − Fj(t − u))δ̄r(t − u, j)dHj(u),

δr = lim
t→∞ δr(t), δr =

∑

j∈S

qj

η̄j
λjr c̄1r(j)

∞∫

0

u∫

0

(1 − Fj(u))(1 − Bjr(x))dxdu,

where δ̄r(t, j) = λjr c̄1r(j)
t∫

0

(1−Bjr(x))dx, c̄1r(j) is the mean value of DF Cjr(t).

δ =
K∑

r=1

δr =
K∑

r=1

∑

j∈S

qj

η̄j
λjr c̄1r(j)

∞∫

0

u∫

0

(1 − Fj(u))(1 − Bjr(x))dxdu.

If Llosr denote the steady state mean number of destroyed type r customers,
then

Llosr = lim
s1→0

πL̃losr(s1)e,

where L̃losr(s1) =
∑

j∈S

qj
η̄j

∞∫

0

˜̄ω1r(s1, u, j)dFj(u),

Llosr =
∑

j∈S

qj

η̄j
λjr

∞∫

0

u∫

0

(1 − Bjr(x))dxdFj(u).

If Llosr is the steady-state total mean number of destroyed customers of all types,
then

Llos =
K∑

r=1

Llosr =
K∑

r=1

∑

j∈S

qj

η̄j
λjr

∞∫

0

u∫

0

(1 − Bjr(x))dxdFj(u).

Let Lqr and Lq be the steady state mean number of type r and all types cus-
tomers in the model. Then

Lqr = πω̃1re =
∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u))π ˜̄ω1r(u, j)edu =

∑

j∈S

qj

η̄j
λjr

∞∫

0

u∫

0

(1 − Fj(u))(1 − Bjr(x))dxdu,
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Lq =
K∑

r=1

Lqr =
K∑

r=1

∑

j∈S

qj

η̄j
λjr

∞∫

0

u∫

0

(1 − Fj(u))(1 − Bjr(x))dxdu.

Suppose that MAP is defined by following matrices D0(i) = −αiI, Dr(i) =
αirI, r = 1, 2, ..,K, i ∈ S, where I is an identity matrix. Then for
P̄ (n, t, i), P (n, t), P (n), ω1r(t, i) and Llosr we obtain

˜̄P (z, s, t, i) = e
−

t∫

0

k∑

r=1
λir(1−Bir(x))(1−zirC̃ir(s))dx

, P̄ (n, t, i) =
K∏

r=1

air(t)
nr

nr!
e−ai(t)

P (n, t) =
∑

j∈S

p0i (1 − Fi(t))
K∏

r=1

air(t)
nr

nr!
e−ai(t)

+
∑

j∈S

t∫

0

(1 − Fj(t − u))
K∏

r=1

air(t − u)nr

nr!
e−ai(t−u)dHj(u),

P (n) =
∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u))
K∏

r=1

ajr(u)nr

nr!
e−aj(u)du,

ω1(t) =
∑

j∈S

p0j (1 − Fj(t))aj(t) +
∑

j∈S

t∫

0

(1 − Fj(t − u)) aj(t − u)dHj(u),

ω1 =
∑

j∈S

qj

η̄j

∞∫

0

(1 − Fj(u))aj(u)du,

Llos =
∑

j∈S

qj

η̄j

∞∫

0

aj(u)dFj(u),

where air(t) = αir

t∫

0

(1 − Bir(u))du, i ∈ S.

8 Conclusion

In this paper we consider the infinite-server MAPk|Gk|∞ queue in random envi-
ronment with resource vectors of customers, subject to catastrophes. The tran-
sient and steady state PGFs of joint distributions of number of different types
customers at moment and number of served different types of customers in inter-
val [0, t), the joint distributions of total resource in the model and total served
resource are found. All results are obtained by using CMM and renewal processes
methods. The obtained results may be applied for evaluating the performance
metrics, as well as for finding the optimal strategies of managing resources for a
wide class of computer systems and networks, whereas the queue MAPk|Gk|∞
may be used as a model.
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Abstract. The trading company model with two levels of discount is
considered in the paper. The problem of choosing the optimal discount
values is solved. The mathematical model of the company is formu-
lated in the form of an infinite-server queueing tandem with feedback
at the second stage. The analytical form of generating function of multi-
dimensional joint probability distribution of the number of purchases is
obtained. Analytical expressions are found for the mean and variance
of the company’s profit. Optimal discount values are obtained for the
case when the probabilities of repeated purchases linearly depend on the
value of discounts.

Keywords: Discount · Infinite-server queue · Feedback · Optimization

1 Introduction

The goal of any trading company is to receive the maximal profit. To achieve this,
companies use various methods of sales stimulation. There are a large number
of such methods. One of them is a stimulation by reducing the price or in other
words, giving a discount. Techniques for implementing discounts are different:
sales, discount cards, special promotions. An important issue for the company
is the problem of assigning the discount value in order to stimulate the market
of the company’s products and receive the maximal profit [1–5].

The work of a trading company looks as a sequence of transactions with
customers. These transactions are performed at different time moments and the
mathematical models of transaction flows are widely used for their analysis [6–
8]. The sequences of transactions can be considered as random processes and we
may apply the methods of the theory of random processes [9] and the queueing
theory [10] to their description and study. We can consider an unlimited number
of potential customers of the company. In addition, each customer has the oppor-
tunity to reapply to this company. Due to these features, we can use queueing
systems with an infinite number of servers and feedback [11–16] as mathematical
models of considered processes.

In this paper, we consider the influence of discounts’ values on the profit of
the trading company that uses two levels of discounts. We solve the problem of
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 321–332, 2018.
https://doi.org/10.1007/978-3-319-97595-5_25
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finding such values of discount parameters that ensure maximum profit for the
trading company.

The paper is organized as follows. The problem statement and the mathe-
matical model are formulated in Sect. 2. We construct the system of Kolmogorov
differential equations for the probabilities of the system states in Sect. 3. Further,
the generating function of the process is introduced and the analytic expression
is obtained for it. Expressions for the main average characteristics affecting the
profit of the trading company are obtained in Sect. 4. Solution of the problem
of finding optimal values for discounts of both discount levels for given depen-
dencies of repeated customer flows on these values is presented in Sect. 5. An
example of calculating these values for specific parameter values from practice is
presented in this section too. In Conclusion, we discuss main results and further
studies.

2 Problem Statement and Mathematical Model

Consider the trading company that uses two levels of cumulative discount to
stimulate sales of its products. That is, the customer who applied to the company
for the first time receives a discount card with a discount (1− δ1) for the second
purchase. We denote by r1 the probability that the customer will return to the
store for the second purchase. Obviously, r1 depends on many factors, including
the value of provided discount. If the customer buys goods during the second
visit his or her discount card is given a new status and the discount becomes
equal to (1 − δ2). Also, it is obvious that the condition δ2 < δ1 should take
place. The probability of subsequent visits to the store r2 depends on the value
of δ2. In this paper, we assume that the discount value does not change after
the subsequent purchases. In addition, we suppose that after each purchase, a
customer does not need goods of this trading company during some period. The
goal of the study is to determine the most profitable conditions for the trading
company to carry out this kind of marketing policy. In other words, the problem
is to find such values of δ1 and δ2 that give the maximal profit.

We use the following queueing system (Fig. 1) as a mathematical model for
solving the problem. The system is a tandem with two stages and an infinite
number of servers at each stage. Incoming flow of customers (new customers who
make purchases for the first time) is a stationary Poisson process with rate λ. A
new customer arrives at the first stage of the tandem. He or she stays there for a
random time distributed exponentially with parameter μ1. This period models
the time interval when the customer does not need the goods of the trading
company. After the end of this period, the customer may leave the system with
probability (1 − r1) or may go to the second stage of the tandem (return for the
second purchase) with probability r1. The customer stays at the second stage
during a random period distributed exponentially with parameter μ2. After that,
he or she may go to the second stage again with probability r2 or may leave the
system with probability (1−r2). Thus, in terms of queueing theory, we construct
a mathematical model of the company in the form of a two-stage infinite-server
queueing tandem with feedback at the second stage.
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Fig. 1. A model of the company in the form of the queueing system.

Let the initial time moment be t0 = 0. We introduce the following notation:

i1(t) is the number of customers at the instant t at the first stage of the
system,
i2(t) is the number of customers at the instant t at the second stage of the
system,
l(t) is the total number of customers arriving at the first stage from the
incoming flow up to the instant t (the total number of primary purchases),
n1(t) is the total number of customers arriving at the second stage of the
system directly from the first stage up to the instant t (the total number of
secondary purchases),
n2(t) is the total number of customers that arrive at the second stage after the
second stage up to the instant t (the total number of the third and subsequent
purchases).

A profit of the trading company is formed as a result of the purchases of
customers. Let us consider the profit from each sale as random variables with
identical distributions, then the total number of purchases l(t) + n1(t) + n2(t)
is crucial for calculating of the total profit from all sales up to the time
moment t. Unfortunately, neither the process l(t) + n1(t) + n2(t) nor the pro-
cess {l(t), n1(t), n2(t)} are Markovian. Therefore, we study the five-dimensional
Markov process {l(t), n1(t), n2(t), i1(t), i2(t)}.

3 Kolmogorov Differential Equations and Generating
Function of the Process

In this section, we study the process {l(t), n1(t), n2(t), i1(t), i2(t)} by construct-
ing and solving Kolmogorov differential equations for its generating function

G(z, y1, y2, x1, x2, t) =
∞∑

l=0

∞∑

n1=0

∞∑

n2=0

∞∑

i1=0

∞∑

i2=0

zlyn1
1 yn2

2 xi1
1 xi2

2 P (l, n1, n2, i1, i2, t).

(1)
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Here P (l, n1, n2, i1, i2, t) = P{l(t) = l, n1(t) = n1, n2(t) = n2, i1(t) = i1, i2(t) =
i2}. Using an analytical expression for the generating function, you can obtain
any characteristics of the process. At the end of the section, we derive the expres-
sion for the generation function of the process {l(t), n1(t), n2(t)} which is under
the main interest of the study.

First we solve the auxiliary problem of deriving an expression for the gen-
erating function of the process {i1(t), i2(t)}. For the probability distribution of
this process P (i1, i2, t) = P{i1(t) = i1, i2(t) = i2}, we can write the following
equations:

P (i1, i2, t + Δt) = P (i1, i2, t)(1 − λΔt)(1 − i1μ1Δt)(1 − μ2Δt)
+P (i1 − 1, i2, t)λΔt + P (i1 + 1, i2 − 1, t)(i1 + 1)μ1Δt r1+
P (i1 + 1, i2, t)(i1 + 1)μ1Δt(1 − r1) + P (i1, i2, t)i2μ2Δt r2

+P (i1, i2 + 1, t)(i2 + 1)μ2Δt(1 − r2).

for i1, i2 = 0, 1, 2, . . . Then we derive the following system of Kolmogorov differ-
ential equations:

∂P (i1, i2, t)
∂t

+ (λ + i1μ1 + i2μ2 − i2μ2r2)P (i1, i2, t) = λP (i1 − 1, i2, t)

+(i1 + 1)μ1r1P (i1 + 1, i2 − 1, t) + (i1 + 1)μ1(1 − r1)P (i1 + 1, i2, t)
+(i2 + 1)μ2(1 − r2)P (i1, i2 + 1, t)

(2)

The initial condition is as follows:

P (i1, i2, 0) =
{

1 if i1 = i2 = 0,
0 otherwise.

Consider the generating function of the process {i1(t), i2(t)}

g(x1, x2, t) =
∞∑

i1=0

∞∑

i2=0

xi1
1 xi2

2 P (i1, i2, t). (3)

Substituting this expression into Eq. (2), we obtain the following partial differ-
ential equation of the first order for the function g(x1, x2, t):

∂g(x1, x2, t)
∂t

+ μ1 (x1 − 1 + r1(1 − x2))
∂g(x1, x2, t)

∂x1

+μ2(1 − r2)(x2 − 1)
∂g(x1, x2, t)

∂x2
= λ(x1 − 1)g(x1, x2, t)

(4)

with the initial condition
g(x1, x2, 0) = 1. (5)

Using the method of characteristics [17], we can reduce Eq. (4) to the follow-
ing system of differential equations:

dt

1
=

dx1

μ1[x1 − 1 + r1(1 − x2)]
=

dx2

μ2(1 − r2)(x2 − 1)
=

dg(x1, x2, t)
λ(x1 − 1)g(x1, x2, t)

.
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This system has three independent first integrals, and the general solution of the
system has the form

F (C1, C2, C3) = 0.

Integrating the equality
dt

1
=

dx2

μ2(1 − r2)(x2 − 1)
, we derive one integral of

the system:
x2 − 1 = C1e

μ2(1−r2)t, (6)

or
C1 = (x2 − 1)e−μ2(1−r2)t. (7)

Substituting (6) into the equation
dt

1
=

dx1

μ1[x1 − 1 + r1(1 − x2)]
and inte-

grating it, we derive

x1 − 1 = C2e
μ1t +

C1μ1r1
μ1 − μ2(1 − r2)

eμ2(1−r2)t. (8)

Taking into account (7), we obtain the second integral of the system:

C2 =
[
x1 − 1 − μ1r1(x2 − 1)

μ1 − μ2(1 − r2)

]
e−μ1t. (9)

Finally, integrating the equality
dt

1
=

dg(x1, x2, t)
λ(x1 − 1)g(x1, x2, t)

and taking into

account expression (8), we obtain

g(x1, x2, t) = C3 exp
[
λC2

μ1
eμ1t +

C1μ1r1
μ1 − μ2(1 − r2)

· eμ2(1−r2)t

μ2(1 − r2)

]
.

Hence, the general solution of Eq. (4) has the form

g(x1, x2, t) = Φ(C1, C2) exp
[

λ

μ1
(x1 − 1) +

λr1
μ2(1 − r2)

(x2 − 1)
]

, (10)

where Φ(C1, C2) is some differentiable function, C1 and C2 are determined by
expressions (7) and (9).

Function Φ(C1, C2) can be found using initial condition (5). Substituting
t = 0 into (10), we obtain

g(x1, x2, 0) = Φ
(
x2 − 1; x1 − 1 − μ1r1(x2−1)

μ1−μ2(1−r2)

)

× exp
[

λ
μ1

(x1 − 1) + λr1
μ2(1−r2)

(x2 − 1)
]

= 1.

Denoting U = x2−1 and V = x1−1− μ1r1(x2 − 1)
μ1 − μ2(1 − r2)

, we derive the expression

Φ(U, V ) = exp
[
− λ

μ1
V − λr1μ1U

μ2(1 − r2) (μ1 − μ2(1 − r2))

]
.
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Then, taking into account initial condition (5) and after performing all the nec-
essary transformations, we obtain the following solution of Eq. (4)

g(x1, x2, t) = exp
[

λ

μ1
(x1 − 1)

(
1 − e−μ1t

)
+ λr1(x2 − 1)

×
(

1
μ2(1 − r2)

− e−μ1t

μ2(1 − r2) − μ1
+

μ1e
−μ2(1−r2)t

μ2(1 − r2) (μ2(1 − r2) − μ1)

)]
.

(11)

If we let t → ∞, we obtain the following expression for the generating function
of the stationary distribution:

g(x1, x2) = exp
[

λ

μ1
(x1 − 1) +

λr1
μ2(1 − r2)

(x2 − 1)
]

. (12)

Let us return back to the five-dimensional process {l(t), n1(t), n2(t), i1(t),
i2(t)}. For its probability distribution P (l, n1, n2, i1, i2, t) we can write down the
system of Kolmogorov differential equations

∂P (l, n1, n2, i1, i2, t)
∂t

+ (λ + i1μ1 + i2μ2)P (l, n1, n2, i1, i2, t)

= λP (l − 1, n1, n2, i1 − 1, i2, t) + (i1 + 1)μ1r1P (l, n1 − 1, n2, i1 + 1, i2 − 1, t)
+(i1 + 1)μ1(1 − r1)P (l, n1, n2, i1 + 1, i2, t) + i2μ2r2P (l, n1, n2 − 1, i1, i2, t)

+(i2 + 1)μ2(1 − r2)P (l, n1, n2, i1, i2 + 1, t)
(13)

for l, n1, n2, i1, i2 = 0, 1, 2, . . . The initial condition for this system is as follows:

P (l, n1, n2, i1, i2, 0) =
{

q(i1, i2) if n1 = n2 = l = 0,
0 otherwise, (14)

where q(i1, i2) is the joint probability distribution of the number of customers at
the stages of the system at the initial time moment. For purposes of our study, we
use the joint probability distribution of the number of customers at the stages of
the system in the steady state regime. Its generating function has the form (12).

Consider the generating function (1) of the distribution P (l, n1, n2, i1, i2, t).
From problem (13)–(14), we obtain the following linear partial differential equa-
tion of the first order for the function G(z, y1, y2, x1, x2, t):

∂G(z, y1, y2, x1, x2, t)
∂t

+ μ1(x1 − r1x2y1 − 1 + r1)
∂G(z, y1, y2, x1, x2, t)

∂x1

+μ2(x2 − r2x2y2 − 1 + r2)
∂G(z, y1, y2, x1, x2, t)

∂x2
= λ(x1z − 1)G(z, y1, y2, x1, x2, t)

(15)

with the initial condition

G(z, y1, y2, x1, x2, 0) = g(x1, x2). (16)
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Solving the problem (15)–(16), we obtain the following expression for the
generating function G(z, y1, y2, x1, x2, t) of the multidimensional Markov process
{l(t), n1(t), n2(t), i1(t), i2(t)}:

G(z, y1, y2, x1, x2, t) = exp
{

λ

μ1
(x1 − 1)

[
z(1 − e−μ1t) + e−μ1t

]

+λr1(x2 − 1)
[
e−μ2(1−r2y2)t

μ2(1 − r2)
+

y1(z − 1)
μ2(1 − r2y2) − μ1

(
e−μ2(1−r2y2)t − e−μ1t

)

− y1z

μ2(1 − r2y2)

(
1 − e−μ2(1−r2y2)t

)]
+ λ

r1
μ1

(z − 1)
(

1 − 1 − r2
1 − r2y2

y1

)

× (
1 − e−μ1t

)
+ λt

[
z

(
1 − r1

(
1 − 1 − r2

1 − r2y2
y1

))
− 1

]}
.

(17)
Then the expression for the generating function of the three-dimensional

process {l(t), n1(t), n2(t)} is as follows:

G(z, y1, y2, t) = G(z, y1, y2, 1, 1, t) = exp
{

λt

[
z − 1 − r1z

(
1 − 1 − r2

1 − r2y2
y1

)]

+λ
r1
μ1

(z − 1)
(

1 − 1 − r2
1 − r2y2

y1

)(
1 − e−μ1t

)
+

λr1r2(y2 − 1)
1 − r2y2

×
[
1 − e−μ2(1−r2y2)t

μ2(1 − r2)
− y1(z − 1)

μ2(1 − r2y2) − μ1
− y1z(1 − e−μ2(1−r2y2)t)

μ2(1 − r2y2)

]}
.

(18)

4 Numerical Characteristics of Company’s Profit

For the correctness of the further presentation from the view of the problem
domain, we assume that parameters (1 − δ1) and (1 − δ2) are discounts on the
profit from one sale of a product, and not on the price of the product. If we obtain
values of these parameters, then the discount on the price can be calculated in
easy way.

Suppose that the company receives a profit in the amount ξ from the first
customer’s purchase (this is a profit without any discounts). Let ξ be a random
variable with finite moments E[ξ] = a1 and E

[
ξ2

]
= a2. Taking into account that

the customer has discount (1 − δ1) after his or her first purchase, the company’s
profit from the second purchase of this customer is equal to ξδ1. Similarly, from
the third and subsequent purchases of the same customer, the company receives
profit ξδ2. Hence, the total profit of the company from all customers’ purchases
up to the time moment t is equal to

S(t) =
l(t)∑

k=0

ξk +
n1(t)∑

m=0

ξ(1)m · δ1 +
n2(t)∑

p=0

ξ(2)p · δ2.

Here ξk, ξ
(1)
m and ξ

(2)
p are implementations of the random variable ξ for primary,

repeated and subsequent customers’ purchases respectively.
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Consider the function H(α, t) = E
[
e−αS(t)

]
. We can write

H(α, t) = E

[
exp

{
−α

l(t)∑
k=0

ξk − α
n1(t)∑
m=0

ξ
(1)
m · δ1 − α

n2(t)∑
ν=0

ξ
(2)
ν · δ2

}]

=
∞∑

l=0

∞∑
n1=0

∞∑
n2=0

(
E

[
e−αξ

])l · (
E

[
e−αδ1ξ

])n1 · (
E

[
e−αδ2ξ

])n2
P (l, n1, n2, t),

where P (l, n1, n2, t) = P{l(t) = l, n1(t) = n1, n2(t) = n2}. Denoting E
[
e−αξ

]
=

ϕ(α), E
[
e−αδ1ξ

]
= ψ1(α), E

[
e−αδ2ξ

]
= ψ2(α), we obtain

H(α, t) =
∞∑

l=0

∞∑

n1=0

∞∑

n2=0

[ϕ(α)]l [ψ1(α)]n1 [ψ2(α)]n2 P (l, n1, n2, t).

Considering the generating function G(z, y1, y2, t) of the process
{l(t), n1(t), n2(t)}, we obtain

H(α, t) = G(ϕ(α), ψ1(α), ψ2(α), t).

From (18) it follows that
H(α, t) = G(ϕ(α), ψ1(α), ψ2(α), t)

= exp

{
λt

[
ϕ(α) − 1 − r1ϕ(α)

(
1 − 1 − r2

1 − r2ψ2(α)
ψ1(α)

)]

+λ
r1

μ1
(ϕ(α) − 1)

(
1 − 1 − r2

1 − r2ψ2(α)
ψ1(α)

) (
1 − e

−μ1t
)

+
λr1r2(ψ2(α) − 1)

1 − r2ψ2(α)

×
[
1 − e−μ2(1−r2ψ2(α))t

μ2(1 − r2)
− ψ1(α)(ϕ(α) − 1)

μ2(1 − r2ψ2(α)) − μ1
− ψ1(α)ϕ(α)(1 − e−μ2(1−r2ψ2(α))t)

μ2(1 − r2ψ2(α))

]}
.

(19)

Since
∂H(α, t)

∂α

∣∣∣∣
α=0

= −E[S(t)], then differentiating (19) with respect to α,

calculating the resulting expression for α = 0 and taking into account that
ϕ(0) = ψ1(0) = ψ2(0) = 1, ϕ′(0) = −a1, ψ′

1(0) = −a1 · δ1, ψ′
2(0) = −a1 · δ2,

we obtain the mean of the total profit of the trading company up to the time
moment t:

E[S(t)] = a1λt ·
(

1 + r1δ1 +
r1r2

1 − r2
δ2

)
. (20)

The variance of the company’s total profit can be calculated using the expres-
sion Var[S(t)] = E

[
S2(t)

] − (E[S(t)])2.

Taking into account that
∂2H(α, t)

∂α2

∣∣∣∣
α=0

= E
[
S(t)2

]
and ϕ′′(0) = a2,

ψ′′
1 (0) = a2 · δ21 , ψ′′

2 (0) = a2 · δ22 , we obtain

Var[S(t)] = a2λt

(
1 + r1δ

2
1 +

r1r2
1 − r2

δ22

)

+a2
1

{
2λtr1
1 − r2

[
δ1 + r2δ1δ2 + r2δ2 +

r2δ
2
2

(1 − r2)2

]

+
2λr1r2δ2
1 − r2

[
e−μ1t − e−μ2(1−r2)t

μ2(1 − r2) − μ1
− 1 − e−μ2(1−r2)t

μ2(1 − r2)

(
1 + δ1 +

r2δ2
1 − r2

)]

+
2λr1

μ1(1 − r2)
(r2δ1 − r2δ2 − δ1)

(
1 − e−μ1t

)}
.

(21)



Optimization of Two-Level Discount Values 329

Thus, expressions (20) and (21) allow direct calculations of the mean and
variance of the trading company’s profit over a time interval of length t.

5 Optimal Values of Discount

We formulate an optimization problem as obtaining a maximum of the average
value of the total profit of the trading company:

E[S(t)] → max .

Analyzing expression (20), we can conclude that the company’s profit has the
maximal value when the function f(δ1, δ2) = r1δ1+ r1r2

1−r2
δ2 reaches its maximum.

Obviously, in real life, the likelihood that a customer will reapply to the
trading company depends on the offered discounts. Therefore, parameters r1
and r2 depend on parameters δ1 and δ2:

r1 = r1(δ1), r2 = r2(δ2).

Using the necessary extremum condition for the function of two variables
f(δ1, δ2), we obtain the following system of equations for determining δ1 and δ2:

⎧
⎪⎨

⎪⎩

r1 + r′
1

(
δ1 +

r2
1 − r2

δ2

)
= 0,

r2 +
1

1 − r2
r′
2δ2 = 0.

(22)

To solve this system, we should make certain assumptions about the dependen-
cies r1(δ1) and r2(δ2). Let us suppose that the dependences are linear and have
the form ⎧

⎨

⎩
r1(δ1) = r

(1)
0 +

(
r
(1)
1 − r

(1)
0

)
(1 − δ1),

r2(δ2) = r
(2)
0 +

(
r
(2)
1 − r

(2)
0

)
(1 − δ2).

(23)

Here r
(1)
0 is the probability of the customer’s repeated purchase if δ1 = 1 (without

any discount after the first purchase); r
(1)
1 is the probability of the customer’s

repeated purchase if δ1 = 0 (after the first purchase, discount is equal to 100%);
values r

(2)
0 and r

(2)
1 are the similar probabilities of the customer’s third and

subsequent purchases if δ2 = 1 and δ2 = 0 respectively.
Substituting expressions (23) into system (22), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

r
(1)
0 +

(
r
(1)
1 − r

(1)
0

)
(1 − δ1) +

(
r
(1)
1 − r

(1)
0

) (

δ1 +
r
(2)
0 +

(
r
(2)
1 −r

(2)
0

)
(1−δ2)

1−r
(2)
0 −

(
r
(2)
1 −r

(2)
0

)
(1−δ2)

δ2

)

= 0,

r
(2)
0 +

(
r
(2)
1 − r

(2)
0

)
(1 − δ2) −

(
r
(2)
1 −r

(2)
0

)
δ2

1−r
(2)
0 −

(
r
(2)
1 −r

(2)
0

)
(1−δ2)

= 0.

(24)
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Solving this system of equations and taking into account the sufficient extremum
condition, we derive that the function f(δ1, δ2) reaches its maximum at the point

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ1 = r
(1)
1

2
(

r
(1)
1 −r

(1)
0

) −
(
1−

√
1−r

(2)
1

)2

2
(

r
(2)
1 −r

(2)
0

) ,

δ2 =

√
1−r

(2)
1

(
1−

√
1−r

(2)
1

)
(

r
(2)
1 −r

(2)
0

) .

(25)

In addition, we should take into account that

0 ≤ δ2 < δ1 ≤ 1. (26)

Thus, the function f(δ1, δ2) reaches its maximum value at the point (25)
when conditions (26) hold.

Example

Let us consider the following example. Let the flow of new customers have the
intensity λ = 20 (customers per day), the average profit from one sale without
discounts is equal to a1 = 10 (in some monetary units – MU), the observation
time is t = 30 days, the probabilities of repeated purchases are determined by
formulas (23) with the following values of parameters: r

(1)
0 = 0.40, r

(1)
1 = 0.65,

r
(2)
0 = 0.45, r

(2)
1 = 0.95.

Using formulas (25), we calculate: δ1 = 0.697, δ2 = 0.347. Therefore, to
obtain the highest average profit from sales, you should set the discount on the
profit from one sale equal to 30.3% after the first customer purchase, and 65.3%
after the second one. If we suppose that the company sells a product with price
130 MU where 30 MU is a clear profit of the company, then we should set the
price equal to 120.92 MU for secondary purchases (7% discount on the price)
and 110.42 MU for the third and subsequent purchases (15.1% discount on the
price). The average total profit over the considered period t will be equal to
11,636 MU.

6 Conclusion and Discussion

We have considered the problem of the discount values’ influence on the profit of
a trading company when a two-level discounting system is used. A mathematical
model of this trading company has been constructed in the form of a two-stage
queueing tandem with an unlimited number of servers and a feedback at the
second stage. Analytical expressions are found for the mean and variance of the
company’s total profit. Also, analytical expressions are found for the optimal size
of discounts for obtaining the maximal profit in the case of linear dependences
of the probabilities of repeated purchases on the discounts values.

Let us discuss the possible ways of future research. Firstly, in the paper we
have considered only the stationary regime of the company’s functioning, that is,
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the company has been working for a long time. In particular, it is assumed that
the initial condition corresponds to the stationary distribution of the number
of customers at the stages of the system (Sect. 3). In addition, in the model,
the intensity of new customers does not change during time. This will not be
the case for the companies that are just starting their work or are working in
unsteady conditions (for example, selling seasonal stock).

Further, formulas (23) look natural and simple, but cover only the linear
dependencies of the probabilities of repeated purchases on the size of discounts.
In addition, even in this simple case, determining the values of parameters r

(1)
0 ,

r
(1)
1 , r

(2)
0 , r

(2)
1 for a real life example is quite difficult.

The development of the model is possible in the direction of increasing the
number of the discounts levels, as well as taking into account the number of
purchases that is necessary to move to the next level of discounting. Also, further
studies may be related to the analysis of possible risks by studying the influence
of discounts values on the total profit variance (21).

So, the paper may be also considered as a base for the further studies in
the optimization problems of discounts’ assigning using the queueing theory
approach.
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Abstract. This paper deals with the analysis of an M/G/1 retrial
queueing system with general retrial and setup times. The customers
are served under the preemptive resume priority last-come, first-service
(LCFS-PR) discipline and only the customer at the head of the orbit
queue is allowed to access the server. The necessary and sufficient condi-
tion for the system to be stable is investigated. Using the generating func-
tions technique, the joint steady-state distribution of the server states
and the number of customers in the orbit are obtained along with some
interesting and important performance measures. Finally, some numer-
ical examples to illustrate the effect of system parameters on several
performance characteristics are carried out.

Keywords: Retrial queue · Setup time · LCFS-PR · Ergodicity
Steady-state distribution

1 Introduction

In recent years, there has been a keen interest in the study of retrial queueing
systems. In view of the network complexity and increasing the amount of incom-
ing flows, the retrial phenomenon may have a significant impact on the computer
network performance. Retrial queueing systems are described by the feature that
the customers (or data, packet) who find the server busy, do not wait in an ordi-
nary queue. Instead of that they join a pool of unsatisfied customers, called
orbit/retrial group, trying to obtain service after a random amount of time in a
random order. Apart from theoretical interests, retrial queues have been success-
fully and widely applied in designing of telephone switching systems, telematic
devices, call centers and several computer network systems. A comprehensive
overview of the literature and discussion of practical situations where retrial
queues arise can be found in the classical bibliographie by Artalejo [2], in the
survey article by Falin [8] and in the monographs by Falin and Templeton [9]
and Artalejo and Gomez-Corral [3].
c© Springer Nature Switzerland AG 2018
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Recently several researchers have investigated intensively the retrial queueing
systems where the retrial time has a general distribution and only the customer
at the head of the orbit queue is allowed to retry for service. Due to applications
in teletraffic theory, computer communication protocols, and local area network
systems, retrial queues with general and non-exponential retrial time distribu-
tions have drawn more attention in recent years. Choi et al. [5] have discussed an
M/M/1 retrial queue where the retrial times are generally distributed. Later on,
Gomez-Corral [12] investigated an M/G/1 retrial queue with general retrial time
distribution where only the customer at the head of the orbit queue is allowed
to retry for service. Since the work of Gomez-Corral, many retrial queueing sys-
tems have been studied and his analysis has been extended to the systems with
additional characteristics. For related literature on the general retrial time dis-
tribution with additional features and applications, one can refer to Atencia and
Moreno [4], Ke and Chang [15], Krishna Kumar et al. [16], Gao and Wang [10]
and Li and Zhang [14] and references therein.

In the complex communication and control systems with waiting lines, it is
attractive to always focus the service resource on the job that has waited least.
This leads to a LCFS (last-come, first-service) queue discipline which can be
implemented preemptively, where a newly arrived job immediately enters ser-
vice and the one in service goes on standby. Later, the interrupted job has to be
restored and processed from scratch, so that the previous service effort expanded
on that job is lost. Further, it is assumed that every time the job is restarted,
the remaining service is identical to its initial service requirement. This kind
of service rule, the so-called “last-come, first-service preemptive-repeat identi-
cal” (LCFS-PR) service discipline, has been investigated in telematic devices
and communication packet switching systems (Conti et al. [6] and Harchol-
Balter [13]).

Many queueing systems containing “mechanical parts” need a setup period to
serve the customers. The server’s setup period corresponding to the preparatory
work of the server which is needed before starting each busy period. Potential
applications of such kinds of queueing models can be found in switched virtual
connection (SVC)- based virtual local area network (LAN), in internet protocol
(IP) over asynchronous transfer mode (ATM) networks and in power saving data
centers (Sakai et al. [19], Niu and Takahashi [17] and Gebrehiwot et al. [11]).

In this paper, we develop an analysis of the preemptive priority LCFS single
server retrial queueing system with general distributions for both retrial time
and setup time. Our system is more suitable for the control switching nodes in
the information systems (Agalarov [1] and Zayats et al. [22]). In a communication
switching node retrial transmission system, when a message (data, packets) is
being processed, a new information coming to the server is more actual than the
one on service. In this situation, the message is moved to another place (orbit),
if the contained information is valuable and that can be processed later on or
if the information is not valuable any more, it is deleted and in both cases the
message under service is interrupted. Further the server requires the warm-up
time (setup time) before starting of each busy period. We can view such system
as the LCFS-PR retrial queueing system with setup time.
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2 Model Description of the System

We consider a single server retrial queueing system with setup time and LCFS-
PR discipline. Customers arrive at the server according to a Poisson process
with intensity λ > 0. The server provides service to all arriving customers and
the service times of customers are independent and identical random variables
Bi ∼ B with cumulative distribution function (cdf) B(x), probability density
function (pdf) b(x) and E(B) and E(B2) as the finite first two moments. In
addition, we assume that B(0) = 0, i.e., the service times cannot be zero and
B∗(s) =

∫ ∞
0

e−sx dB(x) is the Laplace-stieltjes transform (LST) of B(x).
If an arriving primary customer who finds the server free upon arrival imme-

diately begins its service. Otherwise, the arriving primary customer either dis-
places the customer that is currently being served to the orbit with probability
θ, (0 < θ < 1), or the primary customer expels the customer who is currently
being served out of the system with complementary probability 1−θ and begins
its own service immediately. From the description, it is clear that the preemp-
tion of the services of customers occur only when the server is busy with the
customers.

After a service completion without preemption, if there is at least one cus-
tomer in the system, the server will stay idle until either a customer from the
orbit or a new primary customer to arrive. On the other hand, if there is no cus-
tomer in the orbit after a service completion, i.e., the system becomes empty, the
server will be turned off at once. A new arriving primary customer can reactivate
the off server and occupy it. The off server needs some setup period to turn on
(i.e., the setup time is activated upon an arrival of a new primary customer) in
order to serve the waiting customer at the server. The time of setup is a random
variable ‘S’ with cdf S(x), pdf s(x), LST S∗(s) and finite first two moments E(S)
and E(S2). During the setup period, arriving new primary customers enter the
orbit and behave the same as other customers in the orbit.

Further, it is assumed that, due to preemption or duration of the setup time,
the customers who enter the orbit form a virtual queue in accordance with an
FCFS queueing discipline. Thus it is clear that at any service completion instant
without preemption, the server becomes free and in such a case, a possible new
primary arrival and the one (if any) at the head of the orbit queue compete
for service. The attempt time of the retrial customer, say H, is a generally
distributed random variable with cdf H(x), pdf h(x), LST H∗(s) and the finite
first two moments E(H) and E(H2). All the stochastic processes involved in the
system under study are assumed to be independent of each other.

Based on the model description, the stochastic behaviour of the system can
be described by {N(t); t ≥ 0} = {(C(t), X(t), ξ(t)); t ≥ 0} where C(t) denotes
the server state (0, 1 or 2, according as the server is idle, the server is busy or
the server is in setup process, respectively), X(t) corresponds to the number of
customers in the orbit and ξ(t) represents the supplementary variable at any
time t. If C(t) = 0 and X(t) > 0, ξ(t) represents the elapsed retrial time, if
C(t) = 1 and X(t) ≥ 0, ξ(t) denotes the elapsed service time and if C(t) = 2
and X(t) ≥ 0, ξ(t) stands for the elapsed setup time.
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Thus, the process {N(t); t ≥ 0} = {(C(t), X(t), ξ(t)); t ≥ 0} is a Markov
process. In what follows, we neglect ξ(t) and consider only the pair (C(t), X(t))
whose state space is E = {0, 1, 2} × Z+. In addition, we define the functions
β(x), η(x) and α(x), respectively, as the conditional completion rates/hazard
rates at times x for service, for retrial attempt and for setup process; i.e.,
β(x) b(x)

1−B(x) , η(x) = h(x)
1−H(x) and α(x) = s(x)

1−S(x) .

2.1 Ergodicity Condition

In order to establish a criterion for the existence of the limit distribution, we
first analyze the ergodicity of the system by using embedded Markov chain at
departure epochs of customers immediately after completion of services without
preemption. Since the stability condition of the system concerns only the situ-
ation where the number of customers in the orbit is large enough, the effect of
setup time can be ignored.

To this end, let ηk be the time epoch of the kth customer’s departure after a
non-interrupted service completion when the server is free. The next customer
begins its service at epoch ξk = ηk−1 + Tk where Tk denotes the random time
during which the server is free. Define Xk = X(ηk+) to be the number of cus-
tomers in the orbit immediately after instant ηk. Thus the random sequence
{Xk; k ∈ N} forms a discrete time Markov chain which is embedded in our
continuous time retrial queueing system. It can be seen that {Xk; k ∈ N} is
irreducible and aperiodic on state set Z+. Moreover, for the random variable
Xk, the following state equation is valid:

Xk = Xk−1 − Bk + Ak, (1)

where Ak is the number of preempted customers that enter into the orbit during
the time ηk − ξk and Bk = 0, if the customer that begins its service at time ξk is
a primary customer and Bk = 1, if the head of retrial customer starts its service.
Thus, the conditional probability distribution of the Bernoulli random variable
Bk is defined as

P (Bk = 0/Xk−1 = n) = 1 − U(n)H∗(λ), P (Bk = 1/Xk−1 = n) = U(n)H∗(λ), (2)

where U(n) denotes the heaviside unit function. It is evident that, for k ∈ N,

ηk − ξk =
n∑

j=1

Vj + B, n = 1, 2, 3, . . . (3)

where n is the number of customers preempted from service and Vj is the pre-
empted service time of the jth customer due to the arrival of a new primary
customer before completing service and B is a non-interrupted service time. As
the primary customers arrive according to a Poisson process with intensity λ,
the probability that there is no interruption during a service time is

B∗(λ) =
∫ ∞

0

e−λx dB(x). (4)
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Next, we shall determine the probability distribution of the random variable Ak

as follows:
By the total probability argument, we have

P (Ak = n) =
∞∑

j=0

P (Ak = n, M = n + j)

=
∞∑

j=0

P (Ak = n/M = n + j)P (M = n + j) (5)

where the random variable M represents the total number of preemptions (inter-
ruptions) occurred to customers that are being served due to the arrivals of new
primary customers. Consequently, the random variable M is geometrically dis-
tributed and its probability mass function is given by

P (M = m) = (1 − B∗(λ))mB∗(λ), m = 0, 1, 2, . . . . (6)

By applying the binomial probability law, the conditional probability

P (Ak = n/M = n + j) =
(

n + j

n

)

θn (1 − θ)j , where 0 < θ < 1. (7)

Taking into account of (6) and (7), (5) yields

P (Ak = n) =
∞∑

j=0

(
n + j

n

)

θn (1 − θ)j (1 − B∗(λ))n+j B∗(λ),

whence

P (Ak = n) =
B∗(λ)[(1 − B∗(λ))θ]n

[1 − (1 − B∗(λ))(1 − θ)]n+1
, n = 0, 1, 2, 3, . . . (8)

and the corresponding mean

E(Ak) =
∞∑

n=0

nP (Ak = n) =
θ[1 − B∗(λ)]

B∗(λ)
. (9)

Theorem 1. The inequality
θ[1 − B∗(λ)]

B∗(λ)
< H∗(λ) is a necessary and sufficient

condition for the retrial queueing system under discussion to be stable.

Proof. To prove the sufficient condition for ergodicity, we shall use Faster’s crite-
rion (see Pakes [18]) which states that an irreducible and aperiodic Markov chain
{Xk; k ∈ N} is ergodic if there exists a non-negative function f(n), n ∈ Z+ and
ε > 0 such that the mean drift χn = E[f(Xk) − f(Xk−1)/Xk−1 = n] is finite for
all n ∈ Z+ and χn < −ε for all n ∈ Z+, except perhaps for a finite number. In
our case, we consider the function f(n) = n, so that the mean drift

χn = E[Xk − Xk−1/Xk−1 = n] = −E(Bk) + E(Ak),
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so that

χn = −U(n)H∗(λ) +
θ[1 − B∗(λ)]

B∗(λ)
=

{
θ[1−B∗(λ)]

B∗(λ)
if n = 0

−H∗(λ) + θ[1−B∗(λ)]
B∗(λ)

if n = 1, 2, 3, . . . .

Thus, we have |χn| < ∞ for all n ∈ Z+ and if θ[1−B∗(λ)]
B∗(λ) < H∗(λ), then

limn→∞ sup χn < 0, ∀ n ∈ Z+. Hence the condition θ[1−B∗(λ)]
B∗(λ)H∗(λ) < 1 turns out to

be sufficient condition for the ergodicity of the embedded Markov chain.
The same inequality is also necessary for ergodicity. As stated in Sennott

et al. [20], we can guarantee non-ergodicity of the Markov chain {Xk; k ∈ N} ,
if it satisfies Kaplan’s condition, namely χn < ∞ for all n ≥ 0 and there exists
n0 ∈ N such that χn ≥ 0 for all n ≥ n0. Notice that, in our case, Kaplan’s
condition is satisfied because there is a ‘r’ such that pij = 0 for j < i − r and
i > 0, where P = (pij) is the transition probability matrix of {Xk; k ∈ N} .

Then θ[1−B∗(λ)]
B∗(λ) ≥ H∗(λ) implies the non-ergodicity of the Markov chain.

Since the arrival stream of the primary customers is a Poisson process, it can
be shown from PASTA (Poisson Arrival See Time Averages) property (Wolff
[21]) and Burke’s theorem (Cooper [7], pp. 187–188) that the limit distribu-
tion of {N(t); t ≥ 0} = {(C(t),X(t)); t ≥ 0} exists and positive if and only if
θ[1−B∗(λ)]

B∗(λ) < H∗(λ). ��

Remark 1. It must be pointed out that the stability condition does not depend
on the setup time distribution as stated earlier.

3 Steady-State Distribution

We now investigate an analytical solution for the joint stationary distribution of
the number of customers in the orbit and the state of the server of our queueing
system in terms of generating functions.

For the process {N(t); t ≥ 0} , we define the joint state probability

P0(t) = P {C(t) = 0,X(t) = 0} for t ≥ 0

and the joint state probability densities

Pn(x, t)dx = P {C(t) = 1,X(t) = n, x ≤ ξ(t) < x + dx} for t ≥ 0, x ≥ 0, n ≥ 0,

Qn(x, t)dx = P {C(t) = 0,X(t) = n, x ≤ ξ(t) < x + dx} for t ≥ 0, x ≥ 0, n ≥ 1,

Sn(x, t)dx = P {C(t) = 2,X(t) = n, x ≤ ξ(t) < x + dx} for t ≥ 0, x ≥ 0, n ≥ 0.

Fulfillment of the ergodic condition θ[1−B∗(λ)]
B∗(λ) < H∗(λ) yields the existence

of the limiting probability P0 = lim
t→∞ P0(t) and the limiting densities Pn(x) =

lim
t→∞ Pn(x, t) for x ≥ 0, n ≥ 0, Qn(x) = lim

t→∞ Qn(x, t) for x ≥ 0, n ≥ 1 and
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Sn(x) = lim
t→∞ Sn(x, t) for x ≥ 0, n ≥ 0. By the method of supplementary variable

technique, we obtain the system of equilibrium equations as

λP0 =
∫ ∞

0

P0(x)β(x)dx, (10)

dPn(x)
dx

= −(λ + β(x))Pn(x) for x > 0 and n ≥ 0, (11)

dQn(x)
dx

= −(λ + η(x))Qn(x) for x > 0 and n ≥ 1, (12)

dS0(x)
dx

= −(λ + α(x))S0(x) for x > 0, (13)

dSn(x)
dx

= −(λ + α(x))Sn(x) + λSn−1(x) for x > 0 and n ≥ 1. (14)

The boundary conditions of the above system of equations in stationary regime
are

P0(0) =
∫ ∞

0

Q1(x)η(x)dx + λ(1 − θ)
∫ ∞

0

P0(x)dx +
∫ ∞

0

S0(x)α(x) dx, (15)

Pn(0) = λθ

∫ ∞

0

Pn−1(x)dx + λ(1 − θ)
∫ ∞

0

Pn(x)dx +
∫ ∞

0

Qn+1(x)η(x)dx

+
∫ ∞

0

Sn(x)α(x)dx + λ

∫ ∞

0

Qn(x)dx for n ≥ 1, (16)

Qn(0) =
∫ ∞

0

Pn(x)β(x) dx for n ≥ 1, (17)

Sn(0) = λP0δn0 for n ≥ 0, (18)

where δn0 is the Kronecker delta function and the normalization condition is

P0 +
∞∑

n=0

∫ ∞

0

Pn(x)dx +
∞∑

n=1

∫ ∞

0

Qn(x)dx +
∞∑

n=0

∫ ∞

0

Sn(x)dx = 1. (19)

In order to solve the Eqs. (10)–(18), we introduce the following partial generating
functions:

P (x, z) =
∞∑

n=0

Pn(x)zn, Q(x, z) =
∞∑

n=1

Qn(x)zn, S(x, z) =
∞∑

n=0

Sn(x)zn, |z| < 1.

Theorem 2. If
θ[1 − B∗(λ)]

B∗(λ)
< H∗(λ), then the joint steady-state distribution

of {N(t); t ≥ 0} is obtained as
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P (x, z) =
P0λ {zS∗(λ(1 − z)) − [H∗(λ) + z(1 − H∗(λ))]} e−λx−∫ x

0 β(u)du

z − z[1 − B∗(λ)](1 − θ + θz) − B∗(λ)[H∗(λ) + z(1 − H∗(λ))]
, (20)

Q(x, z) =
P0λz {(1 − θ + θz)(1 − B∗(λ)) − [1 − B∗(λ)S∗(λ(1 − z))]} e−λx−∫ x

0 η(u)du

z − z[1 − B∗(λ)](1 − θ + θz) − B∗(λ)[H∗(λ) + z(1 − H∗(λ))]
,

(21)

S(x, z) = P0 λ e−λ(1−z)x−∫ x
0 α(u)du, (22)

with S∗(λ(1 − z)) =
∫ ∞
0

α(x) e− ∫ x
0 α(u)du−λ(1−z)xdx, H∗(λ) =

∫ ∞
0

η(x)
e− ∫ x

0 η(u)du−λxdx and B∗(λ) =
∫ ∞
0

β(x) e− ∫ x
0 β(u)du−λxdx. Here the only

unknown probability P0 of the state (0, 0) can be determined from the normaliza-
tion condition (19).

Proof. The proof follows by some calculus and mathematical manipulations and
thus we omit the details. ��

We now define the partial probability generating functions for the number
of customers in the orbit by suppressing the supplementary variables under the
ergodicity as

P (z) =
∫ ∞

0

P (x, z)dx, Q(z) =
∫ ∞

0

Q(x, z)dx and S(z) =
∫ ∞

0

S(x, z)dx.

(23)
Note that P (z) is the partial probability generating function of the orbit size
when the server is busy, Q(z) is the partial probability generating function of
the orbit size when the server is free during the retrial time, S(z) is the partial
probability generating function of the number of customers in the orbit when
the server is in the setup process, and P0 is the stationary probability that the
server is idle and no customer in the system.

Theorem 3. Under the steady state condition,
θ[1 − B∗(λ)]

B∗(λ)
< H∗(λ), the par-

tial probability generating functions are derived as

P (z) =
P0[1 − B∗(λ)] {zS∗(λ(1 − z)) − [H∗(λ) + z(1 − H∗(λ))]}

(1 − z) {θz[1 − B∗(λ)] − B∗(λ)H∗(λ)} , (24)

Q(z) =
P0z[1 − H∗(λ)] {(1 − θ + θz)(1 − B∗(λ)) − [1 − B∗(λ)S∗(λ(1 − z))]}

(1 − z) {θz[1 − B∗(λ)] − B∗(λ)H∗(λ)} ,(25)

S(z) =
P0[1 − S∗(λ(1 − z))]

(1 − z)
, (26)

where

P0 =
B∗(λ)H∗(λ) − θ[1 − B∗(λ)]

[λE(S) + H∗(λ)][(1 − θ) + θB∗(λ)]
. (27)
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Proof. Taking into account of (23), from (20), (21) and (22), we will get (24),
(25) and (26), respectively. At this point, the only unknown is P0 which can be
determined using the normalizing condition, P0 +P (1)+Q(1)+S(1) = 1. Thus,
setting z = 1 in (24)–(26) and applying L’Hospital’s rule whenever necessary,
after using normalization condition and rearrangement, we get (27). Hence, the
partial probability generating functions are determined explicitly. ��

Corollary 1. If
θ[1 − B∗(λ)]

B∗(λ)
< H∗(λ), then

(1) the probability that the server is busy providing service

PB = lim
z→1

P (z) =
[1 − B∗(λ)]

[1 − θ + θB∗(λ)]
, (28)

(2) the probability that the server is free during the retrial time

PR = lim
z→1

Q(z) =
[1 − H∗(λ)] {θ(1 − B∗(λ)) + λE(S)B∗(λ)}

[λE(S) + H∗(λ)][1 − θ + θB∗(λ)]
, (29)

(3) the probability that the server is in the setup mode

PS = lim
z→1

S(z) =
λE(S) {B∗(λ)H∗(λ) − θ[1 − B∗(λ)]}

[λE(S) + H∗(λ)][1 − θ + θB∗(λ)]
, (30)

(4) the probability that the server is idle or free

PI = P0 + PR + PS =
B∗(λ) − θ[1 − B∗(λ)]

[1 − θ + θB∗(λ)]
, (31)

(5) the probability that the orbit is empty, i.e., no customer in the orbit

P (X = 0) = P0 + S(0) + P (0) + Q(0)

=
{

B∗(λ)H∗(λ) − θ[1 − B∗(λ)]
B∗(λ)[(1 − θ) + θB∗(λ)]

} {
1 + B∗(λ)(1 − S∗(λ))

λE(S) + H∗(λ)

}

.(32)

Remark 2. It can be observed that the probability descriptors PB and PI are
independent of both the inter-retrial time distribution and the setup time dis-
tribution.

Corollary 2. If the condition
θ[1 − B∗(λ)]

B∗(λ)
< H∗(λ) is fulfilled, then

(1) the probability generating function, Φ(z), of the number of customers in the
orbit is given as

Φ(z) = P0 + S(z) + P (z) + Q(z)

=

P0

⎧
⎪⎨

⎪⎩

zB∗(λ)H∗(λ) + zS∗(λ(1− z))[1− B∗(λ)H∗(λ)]
− [H∗(λ) + z(1− H∗(λ))] + θz(1− z)(1− B∗(λ))H∗(λ)

+ (1− S∗(λ(1− z)))[zθ(1− B∗(λ))− B∗(λ)H∗(λ)]

⎫
⎪⎬

⎪⎭

(1− z)[θz(1− B∗(λ))− B∗(λ)H∗(λ)]
(33)

where P0 is given in (27),
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(2) the probability generating function, Ψ(z), of the number of customers in the
system including the customer being served is obtained as

Ψ(z) = P0 + zS(z) + zP (z) + Q(z)

=
{

[B∗(λ)H∗(λ) − θ(1 − B∗(λ))]
[B∗(λ)H∗(λ) − θz(1 − B∗(λ))]

} {
[B∗(λ) + (1 − θ)z(1 − B∗(λ))]

[1 − θ + θB∗(λ)]

}

×
{

z(1 − S∗(λ(1 − z))) + (1 − z)H∗(λ)
(1 − z)[λE(S) + H∗(λ)]

}

. (34)

4 Cyclic Analysis and Performance Measures

We now present some key performance measures for the retrial queueing system
under investigation.

1. Recall that the regeneration cycle, T, of queueing system is the time elapsed
between two consecutive primary customer arrivals finding the system
empty. Thus, the mean length of regeneration cycle of our retrial queue-
ing system is

E(T ) =
1
λ

P0
=

1
λ

{
[λE(S) + H∗(λ)][(1 − θ) + θB∗(λ)]

[B∗(λ)H∗(λ) − θ(1 − B∗(λ))]

}

. (35)

2. The mean length, E(T0), of the system being empty during the regeneration
cycle period is computed as

E(T0) = P0E(T ) =
1
λ

. (36)

3. The mean length, E(T1), of the server’s idle/free state during the regener-
ative cycle period is given by

E(T1) = Q(1)E(T ) =
[1 − H∗(λ)]

λ

{
θ(1 − B∗(λ)) + B∗(λ)λE(S)
B∗(λ)H∗(λ) − θ[1 − B∗(λ)]

}

. (37)

4. The mean length, E(T2), of the server being busy providing the service
during the regenerative cycle period is determined as

E(T2) = P (1)E(T ) =
1
λ

{
(1 − B∗(λ))[λE(S) + H∗(λ)]
B∗(λ)H∗(λ) − θ[1 − B∗(λ)]

}

. (38)

5. The mean length, E(T3), of the server being in the setup period during the
regenerative cycle period is obtained as

E(T3) = S(1)E(T ) = E(S). (39)

6. The busy period, L, of the retrial queueing system is defined as the period
that starts at the epoch when an arriving primary customer finds an empty
system (i.e., the server is free and no customer is in the orbit) and ends at the
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departure epoch after service completion of a customer without preemption
when the system becomes empty again. Thus, the mean length, E(L), of
the system busy period of our retrial queueing system is obtained directly
by the theory of regenerative process as

E(L) =
1

λ

[
1

P0
− 1

]

=
1

λ

{λE(S)[1− θ + θB∗(λ)] + (1− B∗(λ))[H∗(λ) + θ(1− H∗(λ))]}
{B∗(λ)H∗(λ)− θ[1− B∗(λ)]} . (40)

7. The expected number, LQ, of customers in the orbit in stationarity is cal-
culated by differentiating (33) with respect to z and evaluating at z = 1.
Thus

LQ = Φ′(1) =

(
λ2E(S2)

2

λE(S) + H∗(λ)

)
+

(
1 − B∗(λ)H∗(λ)

(1 − θ) + θB∗(λ)

)

×
{

λE(S)

λE(S) + H∗(λ)
+

θ(1 − B∗(λ))

B∗(λ)H∗(λ) − θ(1 − B∗(λ))

}
. (41)

8. The expected number, LS , of customers in the system under steady state
condition is determined from (34) as

LS = Ψ ′(1) =

(
λE(S) + λ2E(S2)

2

λE(S) + H∗(λ)

)

+
(

(1 − B∗(λ)
(1 − θ) + θB∗(λ)

)

×
{

1 +
θ[1 − B∗(λ)H∗(λ)]

[B∗(λ)H∗(λ) − θ(1 − B∗(λ))]

}

. (42)

9. Let WQ denote the average time a customer spends in the orbit under sta-
bility condition. Applying Little’s law leads to

WQ =
LQ

λorbit
, (43)

where λorbit = λθP (1) + λS(1) is the arrival rate of the customer to the
orbit.

10. The average time a customer spends in the system in stationary regime, by
invoking again the Little’s law, is calculated as

WS =
LS

λsystem
, (44)

where λsystem = λθP (1) + λ[S(1) + Q(1) + P0] is the arrival rate of the
customer to the system.

5 Numerical Results and Discussions

In the sequel, we study the effect of the system parameters on the main perfor-
mance measures of our retrial queueing system. Of course, in all the numerical
examples below, the chosen parametric values satisfy the ergodic condition.
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For computational purposes, we assume that the service time, retrial time
and setup time all follow

(i) Exponential distributions:
b(x) = μ e−μx, x > 0, h(x) = ν e−νx, x > 0, s(x) = α e−αx, x > 0.

(ii) 2-stage Erlangian distributions:
b(x) = μ2 x e−μx, x > 0, h(x) = ν2 x e−νx, x > 0, s(x) = α2 x e−αx,
x > 0.

(iii) Hyperexponential distributions:
b(x) = p μ e−μx + (1 − p) μ2 e−μ2x, x > 0,

h(x) = p ν e−νx + (1 − p) ν2 e−ν2x, x > 0,

s(x) = p α e−αx + (1 − p) α2 e−α2x, x > 0, where 0 < p < 1.
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Fig. 1. (a) P0 versus (λ, ν) for (α, μ, θ, p) = (6, 9, 0.5, 0.6), (b) P0 versus (λ, α) for
(ν, μ, θ, p) = (7, 9, 0.5, 0.6), (c) P0 versus (ν, α) for (λ, μ, θ, p) = (3, 9, 0.5, 0.6), (d) P0

versus (θ, ν) for (λ, α, μ, p) = (3, 6, 9, 0.6)
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Fig. 2. (a) WS versus (λ, ν) for (α, μ, θ, p) = (6, 9, 0.5, 0.6), (b) WS versus (λ, α) for
(ν, μ, θ, p) = (7, 9, 0.5, 0.6), (c) WS versus (ν, α) for (λ, μ, θ, p) = (3, 9, 0.5, 0.6), (d) WS

versus (θ, ν) for (λ, α, μ, p) = (3, 6, 9, 0.6)

Figures 1(a)–(d) display the trends of the probability, P0, of the system being
empty. We have presented three surfaces when the service time, retrial time
and setup time all follow either exponential distributions or 2-stage Erlan-
gian distributions or hyperexponential distributions as mentioned before. The
effect of varying values of ν and λ on P0 is displayed in Fig. 1(a) for the
set of parameters (α, μ, θ, p) = (6, 9, 0.5, 0.6). We have noticed that all three
surfaces of the descriptor P0 increase for increasing values of ν whereas they
decrease for increasing values of λ as is to be expected. Referring to Fig. 1(b),
it can be seen that as λ increases, all surfaces of the descriptor P0 appear to
decrease gradually but they appear to increase as α increases where we fix
(ν, μ, θ, p) = (7, 9, 0.5, 0.6). The possible explanation of α effect on P0 is that
a large α results in a short mean setup time E(S) and thus the descriptor P0

increases. Figure 1(c) depicts the influence of ν and α on P0 for the chosen
system parameters (λ, μ, θ, p) = (3, 9, 0.5, 0.6). We see that all three surfaces
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of P0 are increasing apparently for increasing values of α while for increasing
values of μ, they increase at the slower rate. Finally, our next numerical exam-
ple is to illustrate the effect of varying parametric values of θ and ν on P0 by
fixing (λ, α, μ, p) = (3, 6, 9, 0.6). A quick examination of Fig. 1(d) reveals that
three surfaces of the descriptor P0 decrease moderately in θ but they increase
apparently with ν. In addition, in all Figs. 1(a)–(d), the surface for hyperexpo-
nential distribution case appears to be higher than the surfaces for exponential
and 2-stage Erlangian distributions cases.

Next, we turn our attention to the study the behaviour of the average wait-
ing time WS of a customer in the system for varying values of the system
parameters. The impact of λ and ν on measure WS is reported in Fig. 2(a)
for (α, μ, θ, p) = (6, 9, 0.5, 0.6). We can see that the surfaces of WS appear to
increase as λ increases, whereas they appear to decrease as ν increases. The
influence of the parameters λ and α on the measure WS is sketched in Fig. 2(b)
for (ν, μ, θ, p) = (7, 9, 0.5, 0.6). It can be observed from Fig. 2(b) that the surfaces
of WS increase significantly with λ whereas they decrease in α at the slower rate.
Next, examination of Fig. 2(c) reveals, an unsurprising result, that the surfaces
of WS decrease at the slower rate for increasing parametric values of both ν and
α. Finally, the variation of WS with respect to θ and ν is depicted in Fig. 2(d)
by taking (λ, α, μ, p) = (3, 6, 9, 0.6). As a result, all three surfaces of WS increase
with θ but decrease in ν. This is again expected. With regard to this measure,
we also see, by comparison, that the surface for 2-stage Erlangian case appears
to be higher than the surfaces for exponential and hyperexponential cases.

6 Conclusion

In this paper, we analyzed the preemptive priority LCFS single server retrial
queueing system with general retrial and setup times. Using the mean drift
analysis, the necessary and sufficient condition for the system to be stable is
provided. Further, we obtained the joint steady-state distribution of the server
states and the number of customers in the orbit along with some important
system performance measures through the supplementary variable technique.
Numerical illustrations are also presented to show effect of the system parameters
on the system characteristics.
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Abstract. In the paper, we consider a polling system with a cyclic adap-
tive polling order. The server polls the queues in a cyclic way but skips
(does not visit) those that were empty when polling them in the previ-
ous cycle. We apply the generating function method to derive first and
second order moments of the stationary state distribution of the queue
length at the polling moments that allows calculating the mean delay in
queues. Also we provide numerical results.
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1 Introduction

Polling systems are queuing systems with multiple queues (or multiple flows of
customers) attended by a single server (or multiple servers). The server visits
(polls) the queues according to a certain polling rule and serves their customers.
The systematization and generalization of theoretical results obtained in the
field of polling systems research prior to 1985 was carried out in the monograph
by Takagi [1], the classification of polling systems is also presented in [2]. The
further development of theoretical results of polling system analysis up to 1995
is presented by Borst in [3], and the papers published in 1996–2009 are reviewed
in [4,5]. The book [6] is devoted to the generalization and systematization of
models and methods for studying stochastic systems with cyclic polling and
their application to design the broadband wireless networks.
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Depending on the number of queues in the system, the polling systems may
be discrete (the number of waiting places is finite or countable) and continuous
(the number of waiting places is more than countable). In the latter case, con-
sideration is given to the systems where the customers are located on a circle or
in an n-dimensional domain.

Discrete polling systems are characterized by the number of queues, their
capacity (the number of the waiting places), the number of servers, the pro-
cesses of customer arrival and service, durations of server switchover between
the queues, and also the order and discipline of queue service. We assume that
all queues are numerated from 1 to N where N ≥ 2 is the number of queues in
the system. The queue with the number i = 1, N will be denoted by Qi.

The polling order or visit order is the rule used by the server to choose the
next queue. The polling order can be either static or dynamic. With the static
order, the rule of choosing queues remains invariable in the entire course of
system operation. With the dynamic order, the queue is chosen for service at
certain decision-making moments on the basis of complete or partial information
about system state.

The static order can be

1. Cyclic order where the server polls the queues in the order Q1, Q2, . . . , QN ,
Q1, Q2, . . . , QN , . . . . These polling systems are called the cyclic systems.

2. Adaptive cyclic order where a server polls the queues in a cyclic way but skips
(does not visit) those that were empty when polling them in the previous
cycle.

3. Periodic order where the server polls the queues in the order QT (1),
QT (2), . . . , QT (M), QT (1), QT (2), . . . , QT (M), . . . which is characterized by
the so-called polling table (T (1), T (2), . . . , T (M)) of length M (M ≥ N),
T (i) ∈ {1, . . . , N}, i = 1,M . It is assumed that the polling table comprises
the numbers of all system queues.

4. Random order where the queue Qi is taken for service with the probability pi,

i = 1, N ,
N∑

i=1

pi = 1. Feasible is another variant of choosing the queue where

after polling the queue Qi the server switches over to Qj with the probability

pij , i, j = 1, N ,
N∑

j=1

pij = 1, i = 1, N .

5. Priority order where the system has queues of different priorities and some
queue may be served only if all higher-priority queues have no customers.

Time periods called cycles are specified in operation of the cyclic or periodic
polling system. For the cyclic polling systems, the cycle is the time required for
the server to serve the queues from Q1 to QN . For the periodic polling systems,
the cycle is the time required to serve queues from QT (1) to QT (M).

The queue service discipline is the number of customers served by the server
in one polling. Within the queue, the customers are served in the order defined
by the customer service discipline which most frequently lies in serving them in
the arrival order. The classical service disciplines of the queue (say Qi) are the
following:
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1. Exhaustive, where the server serves customers until the queue is emptied.
2. Gated, where the server serves only those customers that waited in the queue

at its polling instant. If the server serves only those customers which waited
in the queue by the beginning of the cycle, this discipline is called the globally-
gated discipline.

3. li-limited, where the number of customers that can be served by the server
is limited by li, li ≥ 1. Limited disciplines can be of exhaustive or gated
type. Under the limited exhaustive discipline, a server serves customers in
the queue until either li customers are served or the queue becomes empty
whichever occurs first. The limited gated discipline implies that the queue is
served until either li customers are served or all customers which were present
at the queue polling moment are served whichever occurs first. The partial
case li = 1 is often called non-exhaustive service in the literature.

4. li-decrementing, where the server serves queued customers until the queue
length is decremented by li as compared to the polling instant, li ≥ 1. It can
also be exhaustive or gated as described above. The case li = 1 is often called
semi-exhaustive service.

5. T -limited service when the time the server spends in the queue is limited.
6. Threshold service when the server visits the queue if its length exceeds the

given level (threshold).
7. The random discipline when the number of customers that can be served by

the server in the queue Qi is defined by the value of the discrete random
variable ξi with the distribution law {ai

j , j ≥ 1} which can vary with each
visit to the queue. Some of the random disciplines are:
(a) Binomial discipline with the random variable ξi having the binomial dis-

tribution with the parameters Xi and pi, where Xi is the number of
customers queued in Qi at the polling instant and pi is some number,
0 < pi ≤ 1. For this discipline, aj

i = Cj
Xi

pj
i (1 − pi)Xi−j , j = 1,Xi, aj

i = 0
for j > Xi.

(b) Bernoulli discipline where the first customer queued in Qi is served with
the probability 1 and each subsequent customer, with a given probabil-
ity pi. The server leaves the queue with the probability 1 − pi. For this
discipline, aj

i = pj−1, j ≥ 1.

2 Adaptive Cyclic Polling

An adaptive cyclic polling of queues was presented in paper [7]. For such a polling
order, a server polls the queues in a cyclic way but skips (does not visit) those
that were empty when polling them in the previous cycle. All queues skipped in
the current cycle will be visited by the server in the next cycle of polling. The
analysis of such a discipline, or the polling order, requires information about
the state of queues in the previous cycle which considerably complicates the
analysis, and in [7] we proposed only an approximate algorithm for calculating
the characteristics of adaptive polling systems. Below we provide exact analysis
by means of the PGF (Probability Generating Function) method, see [8–11], and
for the sake of brevity, we consider the case of gated service only.
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Consider a polling system with a single server attending N queues of M/G/1-
type with gated service. The ith queue Qi has a Poisson input of arrivals of inten-
sity λi. The service time in the queue has the distribution function Bi(t) with
the first and second initial moments bi =

∫ ∞
0

tdBi(t) and b
(2)
i =

∫ ∞
0

t2dBi(t),
and the Laplace-Stieltjes transform (LST) B̃i(s) =

∫ ∞
0

e−stdBi(t). The time the
server switches to queue Qi has the distribution function Si(t) with the first and
second initial moments si and s

(i)
i , respectively, and the LST S̃i(s). We assume

that in case the server meets N queues empty consecutively at their polling
moment (starting from any queue) it stops at the Nth empty queue and takes
a vacation having the distribution function H(t) with the first and second ini-
tial moments β and β

(2)
i and the LST H̃(s). After a vacation, the server leaves

its current position and switches to the next queue. The polling procedure is
repeated again. The service of queues is gated, i.e. the server serves only those
customers that were present in a queue at its polling moment.

The stability condition for the polling system considered is ρ =
∑N

i=1 ρi < 1
where ρi = λibi is the queue Qi load.

The cycle time is supposed to be the time the server spends polling queues
from Q1 and QN including a vacation time (if the server stops polling). The
mean cycle time is given by formula

C =
∑N

i=1 siui + β
∏N

i=1(1 − ui)
1 − ρ

(1)

where ui is the probability that queue Qi is polled in the cycle.
To find the probabilities ui, i = 1, N , we consider the random variables c

(i)
n ,

i = 1, N where c
(i)
n is a status of queue Qi in the nth polling cycle, c

(i)
n = 1 if

the queue is polled in the cycle,and c
(i)
n = 0 if the queue is skipped. The random

variable c
(i)
n changes its values as follows:

c(i)n =
{

0, c
(i)
n = 1 or N

(i)
n−1 = 0,

1, otherwise,
j ≥ 1.

where N
(i)
n is the number of customers in the queue Qi at its polling moment at

the nth cycle.
Denote by x

(i)
kl the probability of the random variable c

(i)
n one-step transition

from state k to state l, k, l = 0, 1,

x
(i)
00 = 0, x

(i)
01 = 1,

x
(i)
10 = P{N

(i)
n−1 = 0} = π

(i)
0 , x

(i)
11 = P{N

(i)
n−1 �= 0} = 1 − π

(i)
0

where π
(i)
0 is the probability that the queue Qi is empty when it is polled.

The stationary state probability ui = limn→∞ P (c(i)n = 1) that the ith queue
is polled in an arbitrary cycle can be calculated from the balance equation

ui = uix
(i)
01 + (1 − ui)x

(i)
11



352 O. V. Semenova and D. T. Bui

which results in

ui =
1

1 + π
(i)
0

.

Note however, that for the second approach to calculating the probability ui

we need to know exactly or estimate the value π
(i)
0 . In the present paper, we

suppose that π
(i)
0 = 1 − eλiC .

ui =
1

1 + e−λiC
, i = 1, N. (2)

Equations (1)–(2) give the system to find the mean cycle time and the probabil-
ities ui, i = 1, N .

3 Method of Probability Generating Functions

Let Xj
i be the number of customers present in the queue Qj when server polls

the queue Qi, i, j = 1, N , Ai(T ) be the number of Poisson arrivals to the queue
Qi during a random time interval of length T , Bik be the service time of the kth
customer in the queue Qi, Si be switchover time to Qi, i = 1, N , and V be a
vacation time.

For the gated service, the evolution of the system state is given by

Xj
i+1

∣
∣M

(0)
i+1 =

⎧

⎨

⎩

Xj
i + Aj

(
∑Xi

i
k=1 Bi,k + Si+1

)

, i �= j,

Aj

(
∑Xi

i
k=1 Bi,k + Si+1

)

, i = j,

Xj
i+1

∣
∣M

(1)
i+1 =

⎧

⎪⎪⎨

⎪⎪⎩

Xj
i−1 + Aj

(
∑Xi−1

i−1
k=1 Bi−1,k + Si+1

)

, i − 1 �= j,

Aj

(
∑Xi−1

i−1
k=1 Bi−1,k + Si+1

)

, i − 1 = j,

Xj
i+1

∣
∣M

(2)
i+1 =

⎧

⎪⎪⎨

⎪⎪⎩

Xj
i−2 + Aj

(
∑Xi−2

i−2
k=1 Bi−2,k + Si+1

)

, i − 2 �= j,

Aj

(
∑Xi−2

i−2
k=1 Bi−2,k + Si+1

)

, i − 2 = j,

...

Xj
i+1

∣
∣M

(N−1)
i+1 =

⎧

⎪⎪⎨

⎪⎪⎩

Xj
i−N+1 + Aj

(
∑Xi−N+1

i−N+1
k=1 Bi−N+1,k + Si+1

)

, i − N + 1 �= j,

Aj

(
∑Xi−N+1

i−N+1
k=1 Bi−N+1,k + Si+1

)

, i − N + 1 = j,

Xj
i+1

∣
∣M

(N)
i+1 =

⎧

⎪⎪⎨

⎪⎪⎩

Xj
i−N + Aj

(
∑Xi−N

i−N

k=1 Bi−N,k + Si+1 + V

)

, i − N �= j,

Aj

(
∑Xi−N

i−N

k=1 Bi−N,k + Si+1 + V

)

, i − N = j,
(3)

where M
(j)
i+1 is the event that the server skipped exactly j queues before polling

the current queue Qi+1, i.e. the previously polled queue was Qi−j if i > j, and
Qi−j+N otherwise, j = 0, N . If i − k < 0 we assume that Xj

i−k = Xj
i−k+N .
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For the fixed i, the probabilities of M
(j)
i+1, j = 0, N are calculated as follows:

P{M
(0)
i+1} = ui,

P{M
(1)
i+1} = (1 − ui)ui−1, ...,

P{M
(i−1)
i+1 } = (1 − ui)(1 − ui−1) · · · (1 − u2)u1,

P{M
(i)
i+1} =

i∏

k=1

(1 − uk)uN , (4)

P{M
(i+1)
i+1 } =

i∏

k=1

(1 − uk)(1 − uN )uN−1, ...

P{M
(N)
i+1 } =

i∏

k=1

(1 − uk)(1 − uN ) · · · (1 − ui−1) =
N∏

k=1

(1 − uk).

It is easy to see that
N∑

j=0

P{M
(j)
i+1} = 1.

Let pi(r1, r2, . . . , rN ) be the stationary probability that Qj has rj customers
at the polling instant of Qi, rj ≥ 0, i, j = 1, N . Consider the probability gener-
ating functions (PGFs).

Fi(z) = Fi(z1, z2, · · · , zN ) =
∞∑

r1=0

∞∑

r2=0

· · ·
∞∑

rN=0

pi(r1, r2, . . . , rN )zr1
1 · · · zrN

N .

They can be also presented as

Fi(z) = E

⎡

⎣
N∏

j=1

z
Xj

i
j

⎤

⎦ , i = 1, N,

where E is the expectation. While using (3), we get

Fi(z) = uiE

[
N∏

j=1

z
X

j
i+1

j

∣
∣
∣
∣
∣
M

(0)
i+1

]

+ (1 − ui)ui−1E

[
N∏

j=1

z
X

j
i+1

j

∣
∣
∣
∣
∣
M

(1)
i+1

]

+ ...

+ (1 − u1) · · · (1 − uN )E

[
N∏

j=1

z
X

j
i+1

j

∣
∣
∣
∣
∣
M

(N)
i+1

]

= uiM
(0)
i+1(z) + (1 − ui)ui−1M

(1)
i+1(z) + ... + (1 − u1) · · · (1 − uN−1)uNM

(N−1)
i+1 (z)

+ (1 − u1) · · · (1 − uN )M
(N)
i+1 (z) (5)

where ui−N = ui, Fi−N (z) = Fi(z), M
(l)
i+1(z) = E

[
∏N

j=1 z
Xj

i+1
j

∣
∣
∣
∣ M

(l)
i+1

]

,

l = 0, N.
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Here we have

M
(l)
i+1(z) = E

[
N∏

j=1

z
X

j
i+1

j

∣
∣
∣
∣
∣
M

(l)
i+1

]

= EXi

⎡

⎢
⎣

N∏

j=1

z
X

j
i

j E

⎡

⎢
⎣

N∏

j=1

z
Aj

(∑Xi
i

k=1 Bi,k

)

j

∣
∣
∣
∣
∣
∣
∣

Xi

⎤

⎥
⎦

⎤

⎥
⎦

× E

[
N∏

j=1

z
Aj(Si+1)

j

]

(6)

where Xi = (X1
i ,X2

i , ...,XN
i ),E[·|Xi] is the conditional expectation.

Now we find the expectation of the random variable z
Aj(T )
j where T is a

random variable with distribution function D(T ):

E
[
z

Aj(T )
j

]
=

∫ ∞

0

E
[
z

Aj(T )
j

]
dD(t) =

∫ ∞

0

∞∑

k=0

P (Aj(t) = k)zk
j dD(t)

=
∫ ∞

0

∞∑

0

(λjt)k

k!
e−λjtzk

j dD(t) =
∫ ∞

0

e−λjt(1−zj) dD(t) = D̃(λj(1 − λj))(7)

where D̃(w) is the LST of D(t). Then we have

E
[
z

Aj(T )
j

]
= D̃

⎛

⎝
N∑

j=1

λj(1 − λj)

⎞

⎠ . (8)

With formulas (4) and (8), we get the functions M
(l)
i+1(z), l = 0, N as follows:

M
(l)
i+1(z) = Fi−l

⎛

⎝z1, z2, ..., zi−l−1, B̃i−l

⎛

⎝
N∑

j=1

λj(1 − zj)

⎞

⎠ , zi−l+1, ..., zN

⎞

⎠

× S̃i−l+1

⎡

⎣
N∑

j=1

λj(1 − zj)

⎤

⎦ , l = 0, N − 1,

M
(N)
i+1 (z) = Fi−N

⎛

⎝z1, z2, ..., zi−N−1, B̃i−N

⎛

⎝
N∑

j=1

λj(1 − zj)

⎞

⎠ , zi−N+1, ..., zN

⎞

⎠

× S̃i−N+1

⎡

⎣
N∑

j=1

λj(1 − zj)

⎤

⎦ H̃

⎛

⎝
N∑

j=1

λj(1 − zj)

⎞

⎠ . (9)

The mean number of customers fi(j) = E[Xj
i ] in queue Qj at a polling

moment of Qi is given by

fi(j) = E
[
Xj

i

]
=

∂Fi(z)
∂zj

∣
∣
∣
∣
z=1

(10)

where 1 = (1, 1, ..., 1).
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First, we differentiate equations (9) at z = 1 for l = 0, N − 1. Denote by

ν =
N∑

j=1

λj(1 − zj) then from (9) we have

∂M
(l)
i+1(z)

∂zj

∣
∣
∣
∣
∣
z=1

=
d

dzj
Fi−l

(

z1, . . . , zi−l−1, B̃i−l(ν), zi−l+1, . . . , zN
)∣
∣
z=1

S̃i−l+1(0)

+ Fi−l

(

z1, . . . , zi−l−1, B̃i−l(ν), zi−l+1, . . . , zN
) d

dzj
jS̃i−l+1(ν)

∣
∣
z=1

.

Then,

∂M
(l)
i+1(z)
∂zj

∣
∣
∣
∣
∣
z=1

=
[

∂

∂zj
Fi−l

(
z1, . . . , zi−l−1, B̃i−l(ν), zi−l+1, . . . , zN

)
(11)

+
∂

∂B̃i−l

Fi−l

(
z1, . . . , zi−l−1, B̃i−l(ν), zi−l+1, . . . , zN

) dB̃i−l(ν)
dν

∂ν

∂zj

]∣
∣
∣
∣
∣
z=1

× S̃i−l+1(0)

+ Fi−l+1

(
z1, . . . , zi−l−1, B̃i−l(ν), zi−l+1, . . . , zN

) dS̃i−l+1(ν)
dν

∂ν

∂zj

∣
∣
∣
∣
z=1

.

Note that Fi(1) = 1, ν(1) = 0 and B̃i(0) = S̃i(0) = 1. Also

dB̃i(ν)
dν

∣
∣
∣
∣
v=0

= −
∫ ∞

0

te−νtdBi(t) = −bi,
∂ν

∂zi

∣
∣
∣
∣
z=1

= −λi, i = 1, N.

Then using the equations above, the relation (11) takes the form

∂M
(l)
i+1(z)
∂zj

∣
∣
∣
∣
∣
z=1

= fi(j) + λjbifi(i) + λjsi+1, j �= i,

∂M
(l)
i+1(z)
∂zi

∣
∣
∣
∣
∣
z=1

= λibifi(i) + λisi+1. (12)

The case l = N is considered similarly.
Differentiating equations (5) by means of (12), we get the following system

of linear algebraic equations for fi(j), i, j = 1, N :

fi+1(j) = ui [ki,jfi(j) + λjbifi(i) + λjsi+1]

+ (1 − ui)ui−1 [ki−1,jfi−1(j) + λjbi−1fi−1(i − 1) + λjsi+1] + ...

+ (1 − u1) · · · (1 − uN ) [ki−N,jfi−N (j) + λjbi−Nfi−N (i − N) + λj(si+1 + β)] (13)

where ki,j = 0 if i = j and ki,j = 1 if i �= j. This system has the unique solution
and can be solved numerically for N2 unknowns.
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The second order moments of the random variables Xj
i , i, j = 1, N are cal-

culated as

fi(j, k) = E
[
Xj

i Xk
i

]
=

∂2Fi(z)
∂zj∂zk

∣
∣
∣
∣
z=1

, (14)

fi(i, i) = E
[
Xi

i (X
i
i − 1)

]
=

∂2Fi(z)
∂z2j

∣
∣
∣
∣
∣
z=1

. (15)

By differentiating (5), we get

fi+1(j, k) =

[

ui

∂2M
(0)
i+1(z)

∂zj∂zk
+ (1 − ui)ui−1

∂2M
(1)
i+1(z)

∂zj∂zk
+ ...

+ (1 − u1) · · · (1 − uN )
∂2M

(N)
i+1 (z)

∂zj∂zk

]∣
∣
∣
∣
∣
z=1

(16)

where
∂2M

(l)
i+1(z)

∂zj∂zk
, l = 0, N are calculated as

∂2M
(0)
i+1(z)

∂zj∂zk

∣
∣
∣
∣
∣
z=1

= λjλks
(2)
i+1 + si+1λkfi(j) + si+1λjfi(k)

+ fi(i)λjλk[2bisi+1 + b
(2)
i ] + fi(i, i)λjλkb2i + fi(i, j)biλk

+ fi(i, k)biλj + fi(j, k), i �= j, i �= k,

∂2M
(0)
i+1(z)

∂zj∂zk

∣
∣
∣
∣
∣
z=1

= λiλjs
(2)
i+1 + si+1λifi(j) + fi(i)λiλj [2bisi+1 + b

(2)
i ]

+ fi(i, j)biλi + λiλjb
2
i fi(i, i), i �= j,

∂2M
(0)
i+1(z)

∂zj∂zk

∣
∣
∣
∣
∣
z=1

= λ2
i s

(2)
i+1 + fi(i)λ

2
i [2bisi+1 + b

(2)
i ] + λ2

i b
2
i fi(i, i), i, j, k = 1, N. (17)

...

∂2M
(N)
i+1 (z)

∂zj∂zk

∣
∣
∣
∣
∣
z=1

= λjλk(s(2)i+1 + β(2)) + (si+1 + β)λkfi(j)

+ (si+1 + β)λjfi(k) + fi(i)λjλk[2bi(si+1 + β) + b
(2)
i ] + fi(i, i)λjλkb2i

+ fi(i, j)biλk + fi(i, k)biλj + fi(j, k), i �= j, i �= k,

∂2M
(N)
i+1 (z)

∂zj∂zk

∣
∣
∣
∣
∣
z=1

= λiλj(s
(2)
i+1 + β(2)) + (si+1 + β)λifi(j) + fi(i, j)biλi

+ fi(i)λiλj [2bi(si+1 + β) + b
(2)
i ] + λiλjb

2
i fi(i, i), i �= j,

∂2M
(N)
i+1 (z)

∂zj∂zk

∣
∣
∣
∣
∣
z=1

= λ2
i (s

(2)
i+1 + β(2)) + fi(i)λ2

i [2bi(si+1 + β) + b
(2)
i ]

+ λ2
i b

2
i fi(i, i), i, j, k = 1, N.
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The relations (14)–(17) give the system of linear algebraic equations to calculate
the second-order moments fi(j, k), i, j, k = 1, N which allow to find the mean
waiting time Wi in queue Qi by formula (see [8]).

Wi =
fi(i, i) − fi

2λifi
(1 + ρi), i = 1, N. (18)

4 Numerical Results

To illustrate the results obtained, we shortly present the numerical results com-
pared to the simulation.

Let the system have two queues. The service time has an exponential distri-
bution and the average service time is b = 0.01, the server switching time has
an exponential distribution and the average time to switch between queues is
s = 0.001, the vacation time has an exponential distribution and the average
vacation time of the server can be β = 0 or β = 0.002, the Poisson flow to each
queue has a varying rate from λ2 = λ1 = 5 to λ2 = λ1 = 40. We compare the
mean waiting time in the system obtained from formula (18) and the simulation
(see Tables 1 and 2).

Table 1. β = 0

Arrival rate Formula (18) Simulation Relative error, %

5 0.013 0.0128 1.5

10 0.0146 0.0144 1.4

15 0.0167 0.0164 1.8

20 0.0194 0.0192 1

25 0.0233 0.0230 1.3

30 0.0292 0.0289 1

35 0.0389 0.0384 1.3

40 0.0583 0.0576 1.2

Consider the case where the Poisson input to the first queue has a varying
rate from λ1 = 5 to λ1 = 40 and the Poisson input to the second queue with a
constant rate λ2 = 40. The results obtained are presented in Table 3.

Now consider the system of N = 3 queues with exponential distribution of
the service time with b = 0.01 (the parameter inverse), β = 0.002, λ1 = 30,
λ2 = 20 and the variable parameter λ3 (from 2 to 16). The results obtained
for the mean waiting times Wi in queues i = 1, 3 calculated by (18) and the
simulation results are presented in Table 4.
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Table 2. β = 0.002

Arrival rate Formula (18) Simulation Relative error, %

5 0.0137 0.0140 2.1

10 0.0154 0.0156 1.3

15 0.0177 0.0176 0.6

20 0.0206 0.0204 1

25 0.0247 0.0242 1.2

30 0.0309 0.0298 3.6

35 0.0411 0.0395 3.9

40 0.0612 0.0585 4.4

Table 3. β = 0.002

Arrival rate to
the first queue

Formula (18) Simulation results Relative error, %

Q1 Q2 Q1 Q2 Q1 Q2

5 0.0216 0.0228 0.0221 0.0221 2.3 3.1

10 0.0239 0.0251 0.0239 0.0242 0 3.6

15 0.0268 0.0279 0.0262 0.0268 2.2 3.9

20 0.0303 0.0313 0.0293 0.0301 3.3 3.8

25 0.0348 0.0356 0.0333 0.0344 4.3 3.4

30 0.0408 0.0413 0.039 0.04 4.4 3.2

35 0.0490 0.0493 0.0467 0.0471 4.7 4.5

40 0.0612 0.0612 0.0585 0.0585 4.4 4.4

Table 4. The mean waiting time

λ3 Formula (18) Simulation Relative error, %

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

2 0.0239 0.0263 0.0318 0.0236 0.0260 0.0305 1.3 1.1 4.1

4 0.0247 0.0273 0.0321 0.0242 0.0268 0.0314 2 1.8 2.2

6 0.0256 0.0284 0.0328 0.0254 0.0281 0.0323 0.8 1.1 1.5

8 0.0267 0.0296 0.0337 0.0263 0.0291 0.0333 1.5 1.7 1.2

10 0.0279 0.0311 0.0347 0.0274 0.0305 0.0342 1.8 1.9 1.4

12 0.0292 0.0327 0.0358 0.0288 0.0321 0.0355 1.4 1.8 0.8

14 0.0308 0.0345 0.0371 0.0303 0.0338 0.0366 1.6 2 1.4

16 0.0325 0.0366 0.0386 0.0321 0.0358 0.0379 1.2 2.2 1.9
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5 Conclusion

In the paper we presented the method of probability generating functions to
analyse the polling system with adaptive cyclic polling and gated service. The
method allows to obtaining the system of linear algebraic equations for the first
moments of the number of customers in the queues at the polling moments which
can be used to calculated the mean waiting times. For the sake of brevity, we
presented the results for the gated service only but the case of exhaustive service
can be analysed in a similar way.
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Abstract. In this paper we consider a single server retrial queue with
two orbits of which the first orbit is occupied by primary customers who
on arrival find the server busy or interrupted. The other orbit has finite
capacity and consists of customers whose service get interrupted due to
server breakdown. Interrupted customers are picked up with probability
p by the server at the epoch at which he/she becomes free either by the
successful completion of a service or by completion of repair. Also there
arises a competition between primary customers, retrial customers from
the first and the second orbit to access the server. Failed retrials result in
the customers returning to the respective orbits. The primary customers
arrive according to a Markovian arrival process (MAP), the interruption
occur according to a Poisson process. Fixing of interruption takes a ran-
dom duration having phase type distribution. The service time follows
phase type distribution. Stability condition of the system is established.
Steady-state system size distribution is obtained. Performance charac-
teristics of the system are evaluated.

Keywords: Retrial queue · Server interruption · Repair
Orbital search

1 Introduction

Retrial queues play a vital role in the study of queueing models. This class of
queues is characterized by the following feature: a customer on arrival, when
all servers are busy leaves the service area but after some random time repeat
his demand. This field have many applications in computer and communication
networking, aircraft landing and take-off, and in several other areas. The first
mathematical result about retrial queues were published in 1950s and applica-
tions in teletraffic theory were presented in the monograph of L. Kosten. Both
single-server, multi-server retrial queueing models, their methods of analysis and
results are described in [7,15]. The bibliographical information about retrial
queues are given in [3–5]. Steady state solution of a single-server queue with
linear repeated requests are described in [9]. Literature about retrial queues are
referred in [14,30]. In the retrial queueing system customers arriving to a busy
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 360–371, 2018.
https://doi.org/10.1007/978-3-319-97595-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97595-5_28&domain=pdf
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system join a group of blocked customers called orbit and try to capture a free
server after a random amount of time. Neuts and Ramalhoto in [23] introduces
the idea of search for customers in classical queue. In retrial queues each service
is preceded and followed by an idle period until a primary or secondary customer
get absorbed into the service. However a concept of orbital search is introduced
in [6] to minimize the idle time of the server. The mechanism is described as:
On every service completion epoch the sever picks up a customer from the orbit
with a probability pj when there are j customers in the orbit and consequently
the server remains idle with probability 1 − pj . In this model there are two
objectives one is to introduce retrial queue with orbital search as an appropriate
stochastic model for some practical repair models and the other is to provide a
link between M/G/1 retrial queue and the standard M/G/1 queue. This is pos-
sible by choosing the recovery factor pj = r as 0 and 1. Chakravarthy et al. [10]
considered a multi-server retrial queue with orbital search in which primary cus-
tomers arrive according to MAP. A retrial queueing system with orbital search
and Batch Markovian Arrival Process (BMAP) is analyzed in [13].

This is a retrial queueing model with server interruption. White introduced the
queueing system with service interruption as a preemptive priority system in [12].
The term service interruption means that the service of a customer is interrupted
either by a server vacation, breakdown of the server or by service of any priority
customer. Aissani in [1] considered an unreliable M/G/1 retrial queue and redun-
dancy problem. Aissani discussed a retrial queueing system with breakdown in
[2]. Krishnamoorthy et al. in [19] proposed service interruption as disaster to the
unit undergoing service. In [11] Choi discussed queueing system with feedback and
Artalejo et al. considered retrial queueing system with two types of interruption in
[8]. Li and Zhang in [22] considered an M/G/1 retrial G-queue with general retrial
times, in which the server is still working in a low service rate even if the system is
in breakdown and repair process starts immediately. Gaver in [17] studied a queue-
ing problem with interruption in which on completion of interruption either the
service can be repeated or resumed. But Krishnamoorthy et al. in [20] discussed
queues with interruptions and repeat or resumption of service by setting a thresh-
old clock, with Markov arrival process, phase type distributed interruption and
phase type service time distribution. Many studies have been done about queues
with interruption in random environment. Queues with service interruptions in an
alternating random environment is discussed in [27]. Queueing systems with dis-
ruptive and non-disruptive interruption have been taken into consideration in [16].
Krishnamoorthy discussed queues with interruption in which service phases are
divided into protected and unprotected groups where no more interruption affects
the protected phases. But queues with customer induced interruption was taken
for study by Krishnamoorthy et al. in [28]. Retrial queue with server breakdowns
and repairs are analyzed using reliability theory in [29]. Neuts in [24] developed
the theory of PH - distributions and related point processes. In stochastic mod-
elling, PH-distributions lend themselves naturally to algorithmic implementation
and have nice closure properties with a related matrix formalism that makes them
attractive for practical use.
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In this model we consider a single server retrial queueing system with two
orbits in which the service is interrupted by server breakdown. A primary cus-
tomer finding a busy server enter into an orbit of infinite capacity and attempt
to retry for service. A customer whose service interrupted enter into another
orbit of finite capacity from where they can make retrials. At every service com-
pletion epoch or after an exponential duration of repairing time the server pick
an interrupted customer with a search probability p. Steady-state probabilities
are computed using Matrix Geometric Methods in [25] and [26] by Neuts. The
rate matrix is computed using Ramaswami’s Logarithmic Reduction Algorithm
by Latouche and Ramaswami in [21].

In Sect. 2 we described the model. Stability condition is derived in Sect. 3.1
and computation of steady-state vector have been done in Sect. 3.2. Some per-
formance measures are evaluated in Sect. 4.

2 Model Description

We consider a single server retrial queue with two orbits say orbit I and orbit II.
Orbit I is of infinite capacity and orbit II of finite capacity say N . We assume
that the server undergoes interruption only when it is busy. Primary customers
enter into orbit I either by finding a busy or an interrupted server. A customer
whose service get interrupted can enter into orbit II whenever orbit size is less
than or equal to N and when capacity is full, further interrupted customers are
considered as lost forever. Whenever the server is interrupted, repairing pro-
cess starts immediately. Retrials of customers are also possible from both the
orbits. Interrupted customers are picked up with probability p by the server at
the epoch at which he is free either by the successful completion of a service
or repair. Primary customers arrive according to a Markovian arrival process
(MAP) with representation (D0,D1) of order n. An arriving customer enter into
service immediately when the server is free. The service time is assumed to fol-
low phase distribution with representation PH(α, T ) of order l. The vector T 0

is given by T 0 = −Te. Interruption occurs according to a Poisson process with
parameter γ. Consequently, repairing process starts immediately with a phase
type distributed amount of time with representation PH(β, S) of order m. The
vector S0 is given by S0 = −Se. At every service completion epoch or after
repairing the server goes for search for interrupted customers with probability p
and remains idle with probability 1− p. Search time is assumed to be negligible.
Retrials of customers from orbit I and II are assumed to be exponential with
rates μ1 and μ2 respectively. We assume that the server can get into interruption
any number of times and service of an interrupted customer repeat identically.
We intend to optimize p to minimize the idle time of the server, also to find an
optimum capacity of finite orbit to accommodate the interrupted customers.

The MAP, a special class of tractable Markov renewal process, is a rich class
of point processes that includes many well-known processes such as Poisson,
PH-renewal processes, and Markov-Modulated Poisson Process (MMPP). One
of the most significant features of the MAP is the underlying Markov structure
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and fits ideally in the context of matrix-analytic solutions to stochastic models.
Matrix analytic methods were first introduced and studied by Neuts. Poisson
processes are the simplest and most tractable one used extensively in stochastic
modelling. The idea of the MAP is to significantly generalize the Poisson pro-
cesses and still keep the tractability for modelling purposes. In many practical
applications, mainly in communications engineering, production and manufac-
turing engineering, the arrivals do not usually form a renewal process. So, MAP
is a convenient tool to model both renewal and non-renewal arrivals. The cus-
tomers arrive to the system with a stochastic process {νt, t ≥ 0} with a state
space {0, 1, 2,...W}. The sojourn time of the chain in the state i is exponen-
tially distributed with the positive finite parameter λi. When the sojourn time
in the state i expires, with probability p0(i, j), the process νt jumps to the state j
without generation of customers where i, j = {0, 1, 2, ...W}; i �= j and with prob-
ability p1(i, j) the process νt jumps to the state j with generation of customers
where i, j = {0, 1, 2, ...W}.

The MAP process is completely characterized by the matrices D0 and D1

defined by

(D0)i,i = −λi, i = 0, 1, 2, ...W
(D0)i,j = λip0(i, j); i, j = 0, 1, 2, ...W, i �= j
(D1)i,j = λip1(i, j); i, j = 0, 1, 2, ...W

The point process described by the MAP is a special class of Semi-Markov
processes with transition probability matrix given by

∫ x

0

e(D0t)dtD1

By assuming D0 to be a non-singular matrix, the inter arrival times will be finite
with probability one and the arrival process does not terminate. Hence, we see
that D0 is a stable matrix. The matrix D(1) = D0 +D1 represents the generator
of the process {νt, t ≥ 0}. The average arrival rate λ is given by

λ = θD1e

where θ is the invariant vector of the stationary distribution of the Markov chain
{νt, t ≥ 0}. The vector θ is the unique solution to the system

θD(1)e = 0,θe = 1.

Here e is a column vector of appropriate size consisting of 1’ s and 0 is a
row vector of appropriate size consisting of zeros. The squared integral coef-
ficient of variation of intervals between successive arrivals is given by Cvar =
2λθ(−D0)−1e − 1.



364 D. Babu et al.

Notations

Let

– e be a column vector all one’s of appropriate order
– O be a zero matrix of appropriate order
– Ir be an identity matrix of dimension r
– ⊗ Kronecker product of two matrices
– If A is a matrix of order m×n and if B is a matrix of order p× q, then A⊗B

will denote a matrix of order mp × nq whose (i, j)th block matrix is given by
aijB

– N1(t) be the number of customers in the orbit I at time t
– C(t) be the status of the server

C(t) =

⎧⎪⎨
⎪⎩

0, if the server is idle
1, if the server is in service
2, if the server is under repair

– N2(t) be the number of customers in the orbit II at time t
– J1(t) be the phase of the service process at time t
– J2(t) be the phase of the repair process at time t
– J3(t) be the phase of the arrival process at time t

The above model can be represented by the Markov process

X∗ = {X(t)/t ≥ 0} = {(N1(t), C(t), N2(t), J1(t), J2(t), J3(t)); t ≥ 0}

The state space is

Ω = l∗ ∪ l(i) where l∗ = {(i, 0, k, r) : i ≥ 0, 1 ≤ k ≤ N, r = 1, 2, ...n}

and

l(i) = {(i, 1, k, p, r) ∪ (i, 2, k, q, r); i ≥ 0, 1 ≤ k ≤ N, p = 1, 2, ...l,

q = 1, 2, ...m, r = 1, 2, ...n}

This model is a level independent quasi birth and death process (LIQBD).
Quasi birth death process can be conveniently and efficiently solved by the clas-
sical matrix analytic method.

3 Steady-State Analysis

Enumerating the states of a continuous time Markov chain in lexicographic order,
the infinitesimal generator of the Markov chain is of the form:
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Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B A0

A2 A1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where B,A0, A1, A2 are square matrices of order K where K = n[(N + 1)(l +
1) + Nm].

B =

⎛
⎝B(0,0) B(0,1) O

B(1,0) B(1,1) B(1,2)

B(2,0) B(2,1) B(2,2)

⎞
⎠

B(k,k∗) - represents the matrix corresponding to the transitions in level 0 when
server status changes from k to k∗, where k, k∗ ∈ {0, 1, 2}.

B(0,0) =

⎛
⎝D0 O O

O D0 − μ2In O
O O D0 − μ2In

⎞
⎠

B(0,1) =

⎛
⎝ α ⊗ D1 O O

μ2α ⊗ In α ⊗ D1 O
O μ2α ⊗ In α ⊗ D1

⎞
⎠

B(1,0) =

⎛
⎝T 0 ⊗ In O O

O (1 − p)T 0 ⊗ In O
O O (1 − p)T 0 ⊗ In

⎞
⎠

B(1,1) =

⎛
⎝T ⊕ (D0 − γIn) O O

pT 0 ⊗ α T ⊕ (D0 − γIn) O
O pT 0 ⊗ α T ⊕ (D0 − γIn)

⎞
⎠

B(1,2) =

⎛
⎝ (γβ ⊗ In) ⊗ e O

O (γβ ⊗ In) ⊗ el
O (γβ ⊗ In) ⊗ el

⎞
⎠

B(2,0) =
(

O (1 − p)S0 ⊗ In O
O O (1 − p)S0 ⊗ In

)

B(2,1) =
(

pS0α ⊗ In O O
O pS0α ⊗ In O

)
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B(2,2) =
(

S ⊕ D0 O
O S ⊕ D0

)

A0 =

⎛
⎝O O O

O IN+1 ⊗ (In ⊗ D1) O
O O IN ⊗ (In ⊗ D1)

⎞
⎠

A0 - represents the transition matrix corresponding to the arrival of primary
customer to the first orbit.

A1 =

⎛
⎜⎝

A
(0,0)
1 A

(0,1)
1 O

A
(1,0)
1 A

(1,1)
1 A

(1,2)
1

A
(2,0)
1 A

(2,1)
1 A

(2,2)
1

⎞
⎟⎠

A
(k,k∗)
1 - represents the matrix corresponding to the transitions in level i when

server status changes from k to k∗ where k, k∗ ∈ {0, 1, 2}.

A
(0,0)
1 =

⎛
⎝D0 − μ1In O O

O D0 − (μ1 + μ2)In O
O O D0 − (μ1 + μ2)In

⎞
⎠

and

A
(0,1)
1 = B(0,1), A

(1,0)
1 = B(1,0)

A
(1,1)
1 = B(1,1), A

(1,2)
1 = B(1,2)

A
(2,0)
1 = B(2,0), A

(2,1)
1 = B(2,1), A

(2,2)
1 = B(2,2)

A2 =

⎛
⎝O IN+1 ⊗ (μ1α ⊗ In) O

O O O
O O O

⎞
⎠

A2 - represents the transition matrix corresponding to the successful retrial of
customer in the first orbit.

3.1 Stability Condition

Let π denote the steady- state probability vector of the generator matrix
A = A0 + A1 + A2 where

A =

⎛
⎝A(0,0) A(0,1) O

A(1,0) A(1,1) A(1,2)

A(2,0) A(2,1) A(2,2)

⎞
⎠

where

A(0,0) = A
(0,0)
1 , A(0,1) = IN+1 ⊗ (μ1α ⊗ In) + A

(0,1)
1

A(1,0) = A
(1,0)
1 , A(1,1) = IN+1 ⊗ (In ⊗ D1) + A

(1,1)
1

A(1,2) = A
(1,2)
1 , A(2,0) = A

(2,0)
1
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A(2,1) = A
(2,1)
1 , A(2,2) = A

(2,2)
1 + IN ⊗ (In ⊗ D1)

We see that A is an irreducible infinitesimal generator matrix and so there exists
the stationary vector π of A such that

πA = 0

and
πe = 1

where the vector π partitioned as

π = (π0,π1,π2)

is computed by solving the equations

π0A
(0,1) + π1A

(1,1) + π2A
(2,1) = 0

π0A
(0,2) + π1A

(1,2) + π2A
(2,2) = 0

π1A
(1,3) + π2A

(2,3) = 0

subject to
π0 + π1 = 1

Solving we get

π0

⎡
⎣N−1∑

i=0

N−1−i∏
j=0

HN−1−j + I

⎤
⎦ e = 1 (1)

where

H1 = −A(0,1)[A(1,1) + H0A
(2,1)]−1 and

H0 = −A(1,2)[A(2,2)]−1

The system X∗ is stable if and only if

πA0e < πA2e

i.e.

π1[IN+1 ⊗ (In ⊗ D1)] + π2[IN ⊗ (In ⊗ D1)] < π0[IN+1 ⊗ (In ⊗ μ1α)]

3.2 Computation of the Steady-State Vector

Let x be the steady-state probability vector of Q. Partition this vector as:
x = (x0,x1,x2, . . . . . . . . . ), where xi = (x(i, 0),x(i, 1),x(i, 2)) for i ≥ 0.

Under the stability condition the steady-state probability vector is
obtained as

xi = xi−1R, i ≥ 1
xi = x0R

i, i ≥ 1
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where R is the minimal non negative solution to the matrix quadratic equation

R2A2 + RA1 + A0 = 0 (2)

R can be obtained by successive substitution procedure R0 = 0 and

Rk+1 = −V − R2
kW

where V = A2A
−1
1 ,W = A0A

−1
1 by Logarithmic Reduction Algorithm developed

by Latouche and Ramaswamy. The vectors x0 and x1 are obtained by solving

x0B + x1A2 = 0
x0A0 + x1A1 + x2A2 = 0

subject to the normalizing condition

x0(I − R)−1e = 1.

4 Performance Measures

1. Probability mass function of the number of customers in orbit I

Pr[ i customers in orbit I]
= x(i)e

2. Probability mass function of the number of customers in orbit II

Pr[ i customers in orbit II]
= xij(k)e

3. Expected Number of customers in orbit I

E[N1] =
∞∑
i=0

ix(i)e

4. Expected Number of customers in orbit II

E[N2] =
N∑

k=0

k

∞∑
i=0

2∑
j=0

xij(k)e

5. Expected Number of customers in the system when the server is idle

E[N0] =
∞∑
i=0

i

N∑
k=0

kxi0(k)e

6. Expected Number of customers in the system when the server is in service

E[N1] =
∞∑
i=0

i

N∑
k=0

kxi1(k)e + 1
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7. Expected Number of customers in the system when the server is under repair

E[N2] =
∞∑
i=0

i
N∑

k=0

kxi2(k)e

8. Expected Number of customers in the system

E[N ] = E[N0] + E[N1] + E[N2]

9. Probability that the server is idle

P0 =
∞∑
i=0

xi(0)e

10. Probability that the server is in service

P1 =
∞∑
i=0

xi(1)e

11. Probability that the server is under repair

P2 =
∞∑
i=0

xi(2)e

12. The probability that an interrupted customer is blocked from entering into
orbit II

Pb =
∞∑
i=0

2∑
j=0

xij(N)e

4.1 Conclusion

We considered a single server retrial queue enhanced with the search mecha-
nism for interrupted customers. Interrupted customers once entered into service
repeat their service identically without getting any protection for further ser-
vice. This model could be extended by providing separate service or protection
for those interrupted customers who reentered into the service by any means i.e.
by successful retrial or by search. Also we can evaluate the expected number of
interruptions occurred to the server and expected number of searches, during a
particular period of time. And so we can address a control problem to optimize
the search probability and the capacity of the finite orbit.

Acknowledgments. The work of the third author is supported by the Maulana Azad
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Abstract. The paper we consider traffic optimization problem for a
model with multi-sided dynamic pricing in the telecommunications mar-
ket with incomplete competition and taking into account congested net-
works. The model consists in the use of mathematical modeling methods,
game theory and queueing theory. It is assumed that telecommunication
companies agree on the rules of incoming and outgoing traffic charging in
pairs, and this charging is built as a function of the tariffs that companies
offer their subscribers for service. Companies are limited the agreement
on mutual rules of reciprocal proportional charging for access traffic at
first, which subsequently determine the tariffs for the network users. The
reciprocity of the rules means that companies are subject to the same
rules for the entire time interval during which the agreement is in force.
Taking into account imperfect competition in the telecommunications
market and using traffic and profit optimization method for each com-
pany the equilibrium tariffs and the volume of services are found with
subject to congestion in multi-service networks. Numerical calculation is
performed to illustrate the results.

Keywords: Queueing theory · Game theory · Optimization methods
Probability theory · Industrial market theory · Economic and
mathematical modeling

1 Introduction

Methods of mathematical modeling in the economy of telecommunications are
developed actively. Jean Tirole considers the impact of telecommunication tech-
nologies on competition in services and goods markets [10–14].

Doganoglu and Tauman [6] presented a model of two competing local
telecommunications networks which are mandated to interconnect. After nego-
tiating the access charges, the companies engage in price competition. Given
the prices, each consumer selects a network and determines the consumption of
phone calls. Using a discrete/continuous consumer choice model, it was shown
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https://doi.org/10.1007/978-3-319-97595-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97595-5_29&domain=pdf


Traffic Optimization and Multi-sided Pricing 373

that a pure strategy equilibrium exists quite generally and satisfies desirable
properties.

Dessein [4] considered network competition in nonlinear pricing, assuming
linear pricing, and had shown that telecommunications networks may use a high
access charge as an instrument of collusion. He showed that this conclusion is
difficult to maintain when operators compete in nonlinear pricing: as long as
subscription demand is inelastic, profits can remain independent of the access
charge, even when customers are heterogeneous and networks engage in second-
degree price discrimination. When demand for subscriptions is elastic, networks
may increase profits by agreeing on an access charge below marginal cost (relative
to cost-based access pricing) and welfare is typically increased by setting the
access charge above marginal cost.

Wouter Dessein argued that the telecommunications industry is a fragmented
of a market, characterized by a tremendous amount of customer heterogeneity
[5]. He showed how such customer heterogeneity dramatically affects nonlin-
ear pricing strategies. If there are unbalanced calling patterns between different
customer types, networks make larger profits on the least attractive customers,
the nature of the calling pattern substantially affects how networks discrimi-
nate implicitly between different customer types. Different customer types often
perceive the substitutability of competing networks differently.

Hahn [7] considered two-way access pricing in a telecommunications mar-
ket where consumers are heterogeneous in their demand for calls and firms are
allowed to use non-linear tariffs. He investigated how the presence of access
charges affects the tariffs offered by firms in symmetric equilibrium and showed
that under certain conditions each firm’s profit is independent of the level of
(reciprocal) access charge and, therefore, collusion using access charges is not sus-
tainable. This result suggests that efficient call-allocations can be achieved under
a minimal regulatory intervention, i.e. recommending firms set access charges
equal to call-termination cost.

Chuna Se-Hak considered optimal access charges for the provision of telecom-
munication network, mobile commerce, and cloud services [17]. Using theoretical
analysis, Chuna Se-Hak investigated, when a regulator can set rational access
pricing, considering the characteristics of access demand. Chuna Se-Hak demon-
strated that optimal access prices depend on whether the final products or ser-
vices are strategic independence or strategic substitutes. The results have impli-
cations for policy makers setting optimal access charges that maximize social
welfare.

Lee, Jeong, Seo [15] considered optimal pricing and capacity partitioning for
tiered access service in virtual networks. They showed that many Internet service
providers offer some forms of tiered access service to meet diverse demands of
users and to improve the efficiency of network resources. They found the opti-
mal pricing and capacity partitioning by addressing the revenue maximization
problem in the tiered service.

Mark Armstrong examined the use of nonlinear pricing as a method of price
discrimination, both with monopoly and oligopoly supply [1].
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Ushchev, Zenou [19] developed a product-differentiated model where the
product space is a network defined as a set of varieties (nodes) linked by their
degrees of substitutability (edges). They located consumers into this network,
so that the location of each consumer (node) corresponds to her “ideal” vari-
ety. It was shown that there exists a unique Bertrand–Nash equilibrium where
prices are determined by both the firms’ sign-alternating Bonacich centralities
and the average willingness to pay across consumers. They also investigated how
local product differentiation and the spatial discount factor affect the equilib-
rium prices. They showed that these effects non-trivially depend on the network
structure. It was found that, in a star-shaped network, the central firm does not
always enjoy higher monopoly power than the peripheral firms.

Cramton, Doyle [2] described an open access market for capacity. Thet
assumed that open access means that in real-time, network capacity cannot
be withheld–capacity is priced dynamically by the marginal demand during con-
gestion. They offered the open access market as a means for managing growing
spectrum demand and as an alternative to naked spectrum sharing.

In a network formation framework, where payoffs reflect an agent’s ability to
access information from direct and indirect contacts. Mohlmeier, Rusinowska,
Tanimura [9] integrated negative externalities due to connectivity associated
with two types of effects: competition for the access to information, and rivalrous
use of information.

Samouylov, Sevastianov, Kulyabov, Gaidamaka, Gudkova and other
researchers built various multiservice models of networks, queuing systems and
considered their dynamics [3,8,16].

This article a mathematical model of pricing for telecommunications services
with overloads in networks is built. It is generalized the model that it was built
earlier [18,20].

It is assumed that telecommunications companies agree in pairs on the rules
of charging for access traffic to the network other, and it is considered as a
function of the tariffs that companies offer their consumers (subscribers) for
services. Thus, these companies have contracts at the first step by agreements on
reciprocal proportional access charge rules (RPACR), which subsequently allow
them to determine the subscription rates. The ambiguity of the rules means
that companies are subject to one and the same rules for the entire time interval
during, which the agreement is valid.

RPACR may be seen as analogous to the regulatory policy of the state of the
telecommunications industry. If telecommunication services, provided by differ-
ent companies, are close substitutes, the use of RPACR by companies it leads to
competitive prices in industry. However, if it is assumed that competing compa-
nies follow the policy of services differentiation, then it is required intervention
of the state to preclude the use by companies of monopoly power.

It is also assumed that the utility function of subscribers consists of determin-
istic and stochastic parts. The deterministic part allows to find a linear function
of subscribers demand for telecommunications services, which has a constant
price elasticity. It allows to avoid unlimited growth of consumption of telecom-
munication services by subscribers at aspiration the corresponding tariffs to zero
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and ensures the existence of a saturation point, i.e., for example, there is time
limits that the subscriber uses for using telecommunication services. The Weibull
distribution is used for the stochastic component of the utility function, which is
convenient for further analysis. It is possible to find equilibrium tariffs and equi-
librium demand for telecommunication services. This equilibrium is equilibrium
in pure strategies and always exists, and the subscription rates are calculated
explicitly. Numerical calculation is performed to illustrate the results.

2 Model of Telecommunications Industry

2.1 Multiservice Network Model

Let consider a network NW (NW =
n⋃

i=1

NWi) consisting of n equivalent mul-

tiservice network (numbered in a certain order multiservice network SR =
m⋃

s=1
SRs) belonging to different telecommunication companies Ti (i = 1, n), and

it is assumed that in between all the networking companies are switching nodes.
Let t ∈ {1, 2, . . . , Tmax} be time intervals (for example, the time period equals

a week, a month or a year) equal to the length of time periods during which
companies Ti independently decide on pricing for their services, and tmax is the
maximum planning horizon.

Let’s assume that the network NW consists of a set of nodes J t =
sj⋃

i=1

J t
i and

a set of channels Lt =
sl⋃

i=1

Lt
i, and NW = J t ∪ lt.

In the time period t each network NWi of the company Ti (i = 1, n) is rep-
resented the set of nodes J t

ij (j = 1, . . . , sJ
i ) and channel set Lt

ij (j = 1, . . . , sL
i ),

numbered in a certain way, where J t
i =

sJ
i⋃

j=1

J t
ij , Lt

i =
sL

i⋃

k=1

Lt
ik and NWi = J t

i ∪Lt
i,

and the total number of nodes is SJ
NW (t) =

n∑

i=1

sJ
i , and the total number of chan-

nels is SL
NW (t) =

n∑

i=1

sL
i for network NW .

Let Ht
ij be a capacity (bits/sec) of j-node (j = 1, JsJ

i
), and St

ik a throughput
(bits/sec) k-link (k = 1, LsL

i
) Ti of network NWi company Ti in the time period t.

Two-point connections can be established to transmit information flows
between the network nodes of network NW . Each connection is characterized
by a route, i.e. a set of network links NW , through which connections are
established.

Let s = {1, . . . , m} be a set of services that offer companies for poten-
tial consumers (subscribers) during the period t ∈ {1, 2, . . . , Tmax}. Let b
(b ∈ (1, 2, . . . , Bt)) be a set of consumers, who want to use the telecommuni-
cations services in the market.
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2.2 Individual Consumer Demand and Network Traffic

Let’s assume that the individual consumer demand function for the service s =
{1, . . . , m} has the form:

Dt
bs(p

t
s) =

rt
bs − pt

s

2st
bs

= at
bs − bt

bsp
t
s, at

bs =
rt
bs

2st
bs

, bt
bs =

1
2st

bs

, (1)

Dt
bs(p

t
s) is a linear function of the price pt

s, and rt
bs > 0 and st

bs > 0 is positive
coefficients, which are determined from the market research services SR in the
period t.

A consumer b generates the traffic loading or the load using the service s in
the period t. Let Y t

bs be an individual traffic volume of a consumer b, and let
Y t

bs = λ̄t
bsh

t
bs be the average value of Y t

bs, where the parameter λ̄t
bs is the average

intensity of the flow of requests and the parameter ht
bs is the average duration

of service in the period t.
We assume that the average load is generated by the consumer b when using

the service s in the period t, linearly depends on the corresponding demand
function for this service s

Y t
bs = λ̄t

bsh
t
bs = θsD

t
bs(p

t
s) = θs

(
at

bs − bt
bsp

t
s

)
, (2)

where θs is the proportionality factor for the s service It links the consumer
demand for telecommunication services and the amount of traffic generated by
this consumer in the network.

The total network traffic volume that it creates by a consumer in the period
t during using the service s, is the sum of consumers network traffic volumes

Y t
s =

Bt∑

b=1

Y t
bs =

Bt∑

b=1

θs

(
at

bs − bt
bsp

t
s

)
= Āt

s − B̄t
sp̄

t
s,

Āt
s =

Bt∑

b=1

θsa
t
bs, B̄t

s =
Bt∑

b=1

θsb
t
bs, (3)

where āt
s, B̄t

s are parameters of the function Y t
s .

The total consumers demand for the service s during the time t is the sum
of all demand functions for the service s of all:

Dt
bs(p

t
s) =

Bt
∑

b=1

Dt
bs(p

t
s) =

Bt
∑

b=1

(at
bs − bt

bsp
t
s) ,

Dt
bs(p

t
s) = (at

s − bt
sp

t
s) , at

s =
Bt
∑

b=1

at
bs, bt

s =
∑

b=1

Btb
t
bs,

(4)

where the parameters at
s � 0 and bt

s � 0 are determined from market research
of services in the period t.

We can get a link between the network traffic volume Y t
s (pt

s) and the demand
function Dt

bs(p
t
s) of the service s during the period t:

Y t
s (pt

s) = Qt
bs(p

t
s)θsD

t
bs(p

t
s) = θs

(
at

s − bt
sp

t
s

)
= At

s − Bt
sp

t
s, (5)
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where Y t
s (pt

s) is linear price functions and At
s = θsa

t
s, Bt

s = θsb
t
s are coefficients.

We can get the network traffic volume that is associated with the consumer
b (b = 1, Bt)

Y t
b =

m∑

s=1
Y t

bs =
m∑

s=1
θs (at

bs − bt
bsp

t
s) � Āt

b − B̄t
bp̄

t,

Āt
b =

m∑

s=1
θs at

bs, B̄t
b =

m∑

s=1
bt
bs, p̄t =

m∑

s=1
pt

s, B̄t
bp̄

t �
m∑

s=1
θsb

t
bsp

t
s.

(6)

where Āt
b � 0, B̄t

b � 0 is parameters load functions Y t
b associated with the

consumer b, and a parameter p̄t is a tariff for services SR (service package)
during the time period t.

A consumer’s b (b = 1, Bt) demand for SR-services in the considered the
time period t has the form:

Qt
b(p

t
b) =

m∑

s=1
Dt

bs(p
t
s) =

m∑

s=1
(at

bs − bt
bsp

t
s) � (at

b − bt
bp̄

t) ,

at
b =

m∑

s=1
at

bs, bt
b =

m∑

s=1
bt
bs, bt

bp̄
t �

m∑

s=1
bt
bsps.

(7)

Aggregating the network traffic volume Y t
s (pt

s) from (5) for all services s =
{1, . . . , m}, we can get the total network traffic volume Y (t) for the period t in
the form:

Y (t) =
m∑

s=1
Y t

s (pt
s) =

m∑

s=1
(at

s − bt
sp

t
s) =

m∑

s=1
θs (as − bt

sp
t
s) = Āt − B̄tp̄t,

Āt =
m∑

s=1
θsa

t
s, B̄tp̄t �

m∑

s=1
θsb

t
sp

t
s, B̄t =

m∑

s=1
θsb

t
s,

(8)

where Āt � 0 and B̄t � 0 are aggregated parameters of function Y (t), and where
function of aggregated demand for services SR (service package) has the form:

D(t) =
m∑

s=1
(at

s − bt
sp

t
s) = āt − b̄tp̄t,

āt =
m∑

s=1
at

s, b̄tp̄t �
m∑

s=1
bst pt

s, b̄t =
m∑

s=1
bt
s,

(9)

where the parameters āt � 0 and b̄t � 0 are aggregated parameters of the
demand function D(t).

2.3 Reciprocal Proportional Access Charge Rules and Multi-sided
Pricing

We can assume that for each company Ti (i = 1, n) has a function of con-
sumer demand for services SR (service package) during the time period t.

Let Dsii (i ∈ {1, . . . , n}) be a demand function of services SR =
m⋃

s=1
SRs

provided by the company Ti using its NWi network resource only, and let
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Dt
sij (i, j ∈ {1, . . . , n}, i �= j) be a demand function of services provided together

with a network NWi of a company Ti and a network NWj of a company
Tj (i, j ∈ {1, . . . , n}, i �= j). Thus, there is a question of access of one com-
pany to resources of a network of other company.

We assume that the companies Ti and Tj to (i, j ∈ {1, . . . , n}, i �= j) agree
on the charges ât

ij and ât
ji, where ât

ij is a charge, which company Ti pays the
company Tj of (i, j ∈ {1, . . . , n}, i �= j) for the use of its network resources in
connection with the service of s ∈ {1, . . . , m} (traffic from the network NWi to
the network NWj or outgoing traffic for the company Ti and incoming traffic
the company Tj), and ât

ji is a corresponding charge at which the company Tj

pays the company Ti (i, j ∈ {1, . . . , n}, i �= j) for the using of network resources
in connection with the provision of a similar service s ∈ {1, . . . , m} (traffic from
the network NWj to the network NWi or outgoing traffic for the company Tj

and incoming traffic the company Ti) during the time period t.
Suppose that any two companies Ti and Tj (i, j ∈ {1, . . . , n}, i �= j) charges

ât
ij and ât

ji depend on tariffs p̄t
i and p̄t

j , and ât
ij = at

i(p̄
t
i, p̄t

j) for any (i, j ∈
{1, . . . , n}, i �= j) and s ∈ {1, . . . , m} at any time t ∈ {1, 2, . . . , Tmax}.

We assume that there is the proportional dependence between ât
ij and p̄t

i,
then ât

ij = at
ip̄

t
i, where the proportionality factor is 0 � at

i � 1 for i ∈ {1, . . . , n}
and s ∈ {1, . . . , m}.

3 Multiservice Demand Function

Suppose that each consumer can use telecommunication multiservice network
of companies Ti (i ∈ {1, . . . , n}) at any time period t. Let’s assume that each
consumer has individual tastes and preferences in relation to these services SR.
We assume that the consumer b (b ∈ {1, . . . , Bt}), which is ready to choose one
service from the set s ∈ {1, . . . , m} of the company Ti (i ∈ {1, . . . , n}), has the
following utility function:

ut
ibs = U t

ibse
ηsεt

ibs = U t
bs(Q

t
bs(p

t
is), pis)eηsεt

ibs , (10)
U t

ibs =
[
rt
bs − st

bsQ
t
bs(p

t
s)

]
Qt

bs(p
t
s) − pt

sQ
t
bs(p

t
s),

where the random parameter εt
ibs characterizes individual tastes and preferences

of the consumer. Let’s consider that εt
ibs has a Weibull distribution. The value

of ηs gives the characteristic measures of the dispersion of tastes and prefer-
ences of the consumers, that is ηs allows us to estimate the substitutability
telecommunication services s ∈ {1, . . . , m} that provide companies Ti and Tj

(i, j ∈ {1, . . . , n}, i �= j). The services s ∈ {1, . . . , m} of companies become total
substitutes with ηs → 0, and it is total complementary with ηs → ∞.

Let each consumer b (b ∈ {1, . . . , Bt}) makes a choice the company Ti and
rejects the company Tj (i, j ∈ {1, . . . , t}, i �= j) at the period t then there is
inequality

U t
ibse

ηsεibs � U t
jbse

ηsεjbs .
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Thus, the probability P t
ibs that the consumer b gives preference to the company

Ti and reject the company Tj (i, j ∈ {1, . . . , n}, i �= j) equals to

P t
ibs = P{U t

ibse
ηsεibs > U t

jbse
ηsεjbs}. (11)

Since the values εibs are independent and have a Weibull distribution we have
that

P t
ibs =

1

1 +
(

Ut
ibs

Ut
jbs

) 1
ηs

=
(rt

bsp
t
is)

τ
s

(rt
bsp

t
is)τ

s + (rt
bs − pt

js)τ
s

, (12)

where τs = 2/ηs. Similarly for the company Tj we have that same

P t
jbs =

1

1 +
(

Ut
jbs

Ut
ibs

) 1
ηs

=

(
rt
bsp

t
js

)τ

s(
rt
bsp

t
js

)τ

s
+ (rt

bs − pt
is)

τ

s

. (13)

Thus, each consumer chooses one service s in the company Ti with probability
pibs and in the company Tj with probability pjbs.

We can generalize this approach for the case when the consumer chooses
one company Ti from the set of companies {T1, . . . , Tn} to obtain the service
s, and we can get the probability in case the consumer gives preference to the
company Ti:

P t
ibs =

(rt
bs − pt

is)
τ
s

n∑

j=1

(rt
bs − pt

js)τ
s

. (14)

The probability that the consumer chooses one company Ti from a set of com-
panies {T1, . . . , Tn} to receive service package SR have the form:

P t
ib =

m∑

s=1
(rt

bs − pt
is)

τ
s

m∑

s=1

n∑

j=1

(rt
bs − pt

js)τ
s

. (15)

The expected value of consumers bi(t) who chooses a company Ti is determined
by the probability P t

ib, which can be considered as the market share mt
i of a

company Ti has form

mt
i = P t

ib =

m∑

s=1
(rt

bs − pt
is)

τ

s

m∑

s=1

n∑

j=1

(
rt
bs − pt

js

)τ

s

,

n∑

i=1

mt
i = 1. (16)

The demand of consumers for services s ∈ {1, . . . , m} of the company Ti (i ∈
{1, . . . , n}) has the form:

Dt
ibs(p

t
is) =

BtP t
ib

2st
bs

(
rt
bs − pt

is

)
=

Btmt
i

2st
bs

(
rt
bs − pt

is

)
. (17)
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Demand function of the consumers Dt
sii who have plan to use the service SR of

a company Ti, which may be implemented within network NWi, and demand
function of the consumer Dt

ij who has plan to use the service SR implemented
with resources of the networks NWi and NWj , have the form:

Dt
sii =

Btmt2
i

2st
bs

(
rt
bs − pt

is

)
, Dt

ijs =
Btmt

im
t
j

2st
bs

(
rt
bs − pt

is

)
, (18)

where the aggregated s-service demand Dt
is has form:

Dt
is = Dt

sii +
n∑

j=1

Dt
sij =

Btmt2
i

2st
bs

(
rt
bs − pt

is

)
+

n∑

j=1;i�=j

Btmt
im

t
j

2st
bs

(
rt
bs − pt

is

)
, (19)

and the total network traffic volume demand Dt
i for company Ti has form:

Dt
i =

m∑

s=1

[

Dt
sii +

n∑

j=1

Dt
sij

]

=
m∑

s=1

[
Btmt2

i

2st
bs

(rt
bs − pt

is) +
n∑

j=1; i�=j

Btmt
im

t
j

2st
bs

(rt
bs − pt

is)

]

,

where

Dt
ii =

m∑

s=1

Dt
sii, Dt

ij =
m∑

s=1

Dt
sij ,

and the total network traffic volume for a company Ti has form:

Y t
i = θDt

i =
m∑

s=1
θsD

t
is

=
m∑

s=1
θs

[
Bt mt2

i

2st
bs

(rt
bs − pt

is) +
n∑

j=1; i�=j

Bt mt
im

t
j

2st
bs

(rt
bs − pt

is)

]

,
(20)

where θ is an “average” linking parameter for function Y t
i and Dt

i .

4 Revenue, ARPU, Profit

Revenue function TRt
i companies Ti (i ∈ {1, . . . , n}) at the period t (t =

1, 2, . . . , Tmax) has the form:

TRt
i =

n∑

i,j=1; i�=j

[
p̄t

iD
t
ii

(
p̄t

i

)
+ (p̄t

i − δt
ij p̄

t
j)D

t
ij(p̄i) + δt

ij p̄
t
iD

t
ji

(
p̄t

j

)]
, (21)

where δt
ij ∈ [0, 1] is a parameter to be defined during negotiations between com-

panies Ti and Tj . We assume that the cost of an access service to the competitor’s
network is a value proportional to the cost of servicing by this company of its
consumers.
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Average revenue per user (ARPU) ARPU t
i companies Ti (i ∈ {1, . . . , n}) at

the period t (t = 1, 2, . . . , Tmax) has the form:

ARPU t
i = TRt

i

Bt mt
i

= (Bt mt
i)

−1
n∑

i,j=1; i�=j

[p̄t
iD

t
ii (p̄t

i) + (p̄t
i

−δt
ij p̄

t
j)D

t
ij(p̄i) + δt

ij p̄
t
iD

t
ji

(
p̄t

j

)
.

(22)

Profit function Πt
i of companies Ti (i ∈ {1, . . . , n}) at the period t (t =

1, 2, . . . , Tmax) has the form:

Πt
i = TRt

i − TCt(wJ
t
ik,Ht

ik, wL
t
ik, ct

ik, F t), (23)

TCt =

⎛

⎝
sJ

i∑

k=1

wJ
t
ikHt

ik +
sL

i∑

k=1

wL
t
ikct

ik

⎞

⎠ + F t,

where TCt is a total costs function and F t is a fix cost.

5 Congested Traffic Networks with RPACR

5.1 Traffic Optimization Problem in Congested Networks with
RPACR

We can formulate an optimization problem for each company Ti (i ∈ {1, . . . , n})
at any time t ∈ {1, 2, . . . , Tmax}:

⎧
⎪⎨

⎪⎩

∂Πt
i /∂pt

i = 0;
∂2Πt

i /∂pt2
i < 0

Y t
i ≤ Ȳ t

i ,

(24)

where Ȳ t
i is the maximum peak of the total network traffic volume for a

company Ti.
The following theorem holds true.
Provided that the parameters θs > 0, āt > 0, b̄t > 0, δt

ij ∈ [0, 1], wJ
t
ij � 0,

wL
t
ij � 0, F t � 0, Ȳ t

i > 0 there is a unique solution of the problem (24) in the
form of the equilibrium value of the tariff for the use of services SR of company
i ∈ {1, . . . , n} during the period t:

p̄∗
it =

⎛

⎝mt
i +

n∑

j=1;i�=j

δt
ijm

t
j

⎞

⎠ āt

2b̄t
.

Proof. Let’s write out the profit function of i company in the form of:

Πt
i =

n∑

i,j;i�=j

[
p̄t

im
t2
i

(
āt − ātp̄t

i

)
+ mt

im
t
j

(
p̄t

i − δt
ij p̄

t
j

) (
āt − b̄tp̄t

i

)

+ δt
ijm

t
jm

t
ip̄

t
i

(
āt − b̄tp̄t

j

)] −
⎛

⎝
sJ

i∑

k=1

wJ
t
ikHt

ik +
sL

i∑

k=1

wL
t
ikct

ik

⎞

⎠ − F t,
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We can calculate the derivatives of p̄t
i and equals them to zero, we obtain a

system of algebraic equations of the form:

mt
i

(
āt − 2b̄tp̄t

i

)
+

n∑

j=1;j �=i

[
mt

j

(
āt − 2b̄tp̄t

i + δt
ij b̄

tp̄t
j

)
+ δt

ijm
t
j

(
āt − b̄tp̄t

j

)]
= 0,

and the equilibrium value of the tariff has form:

p̄∗
it =

⎛

⎝mt
i +

n∑

j=1;j �=i

δt
ijm

t
j

⎞

⎠ āt

2b̄t
.

We can obtain for ∂2Πt
i /∂p̄t2

i ,

∂2Πt
i

∂p̄t2
i

=
∑

i,j;i�=j

[−mt2
i 2b̄t − mt

im
t
j2b̄t − δt

ijm
t
jm

t
i b̄

tp̄t
j

]
< 0.

The theorem is proved.

We can formulate an optimization problem for each company Ti (i ∈ {1, . . . , n})
at any time t ∈ {1, 2, . . . , Tmax} for the tariff value p̄∗

it:
⎧
⎪⎨

⎪⎩

∂Πt
i (p̄

∗
t , δ

t
ij)/∂δt

ij = 0;
∂2Πt

i (p̄
∗
t , δ

t
ij)/∂δt2

ij < 0;
Y t

i ≤ Ȳ t
i ,

which allows maximizing the profit of each company of Ti using the parameter
δt
ij with condition Y t

i ≤ Ȳ t
i .

After substituting the corresponding equilibrium tariffs p̄∗
it in the profit func-

tion, we obtain the following equation

Πt
i =

n∑

i,j; i�=j

āt2mt
i

[
mt

i + mt
j

]

2b̄t
Φ(mt

i,m
t
j , δ

t
ij)

(
1 − 0.5Φ(mt

i,m
t
j , δ

t
ij)

)

−
⎛

⎝
sJ

i∑

k=1

wJ
t
ikHt

ik +
sL

i∑

k=1

wL
t
ikCt

ik

⎞

⎠ − F t,

where

Φ(mt
i,m

t
j , δ

t
ij) = mt

i +
n∑

j=1; j �=i

δt
ijm

t
j ,

and differentiating by δt
ij and equating to zero, we have a system of algebraic

equations, solving which, we obtain an equilibrium value of δ∗
t = 0.5.

The equilibrium tariff p̄∗
it for the services of company Ti, taking into account

the optimal value δ∗
t = 0.5 during the period t, has the form:

p̄∗
it =

(
mt

i + 1
) āt

4b̄t
,
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The equilibrium demand function for the company Ti (i ∈ {1, . . . , n}) services
SR at any t can be represented as follows:

D∗
it (p̄∗

it) = mt
iDt (p̄∗

it) = 0.25mt
iā

t
(
3 − mt

i

)
,

and the total network traffic volume for a company Ti with the equilibrium tariff
has form:

Y t
i = θD∗

it = 0.25θmt
iā

t
(
3 − mt

i

) ≤ Ȳ t
i .

The total equilibrium market demand function D∗
t and the total equilibrium

traffic volume Y ∗
t for services SR at any t has the form:

D∗
t = āt

(

3 −
n∑

i=1

mt2
i

)

, Y ∗
t = θāt

(

3 −
n∑

i=1

mt2
i

)

and we can show that with a uniform distribution of customers between all
companies Ti (i ∈ {1, . . . , n}) the total equilibrium market demand function the
total equilibrium traffic volume for services SR reaches maximum.

If the network bandwidth of companies is less than the traffic volume that
subscribers generate, then companies can manage the overload by creating such
tariffs that reduces the overload on the network.

5.2 Numerical Analysis of Traffic Optimization Problem in
Congested Networks

Let’s consider this model in the case of the oligopoly, when two companies are
present in the market of telecommunication services, using numerical analysis.
Let the duration of the calculations be tmax = 36 then the equilibrium tariff p̄∗

it

for the services of company Ti (i = 1, 2), taking into account the optimal value
δ∗
t = 0.5 during this t = 0, 1, . . . , 36, has the form:

p̄∗
it =

(
mt

i + 1
) āt

4b̄t
, i = 1, 2.

Let’s suppose that the market share between two companies changes in such way
as it is presented (see Fig. 1).

In this case the network traffic volume dynamics for a company Ti (i = 1, 2)
with subject to the equilibrium tariff it is presented at (Fig. 2). We an see that
each company try to increase the capacity of own network. There is fluctuation
of network capacity in the long term, which may be due to the periodic transition
of users from one company to the other and back.
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Fig. 1. Market share dynamics.

Fig. 2. Network traffic volume dynamics.



Traffic Optimization and Multi-sided Pricing 385

6 Conclusions

In this paper a mathematical model of the telecommunications market is con-
structed taking into account congested in networks. It is carried out the analysis
of equilibrium tariffs for telecommunications services for this type of market with
multi-sided pricing.

The applied value of the model is that the use of PACR telecommunication
companies does not require detailed information market telecommunications, as
the number of parameters of the model is optimized. This model proved to be
effective in the analysis the dynamics of the telecommunications market, as it
allows companies to respond flexibly to external changes, which allows timely
to change the strategy. The proposed model can serve as a tool for analyzing
the existence of collusion between companies in the telecommunications industry
market with congested networks. Numerical calculation is performed to illustrate
the results.
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Retrial Queueing System of MMPP/M/2
Type with Impatient Calls in the Orbit
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Abstract. In the paper, the retrial queueing system of MMPP/M/2
type with input MMPP-flow of events and impatient calls is considered.
The delay time of calls in the orbit, the calls service time and the impa-
tience time of calls in the orbit have exponential distribution. Asymptotic
analysis method is proposed for the solving problem of finding distribu-
tion of the number of calls in the orbit under a system heavy load and
long time patience of calls in the orbit condition. The theorem about
the Gauss form of the asymptotic probability distribution of the number
of calls in the orbit is formulated and proved. Numerical illustrations,
results are also given.

Keywords: Two-server retrial queueing system · Orbit
Asymptotic analysis · Impatient calls

1 Introduction

Queueing systems with repeated calls, or Retrial Queueing Systems, are mathe-
matical models widely used for many real objects, systems and processes analy-
sis and optimization, especially telecommunication systems, networks, mobile
networks, call-centres, manufacturing, economics. In these queueing systems
unserved calls are not lost when there are not available service devices (servers
are busy or broken). So, the customers that don’t get a service repeat to occupy
server after a random time.

There are many papers devoted to RQ-systems study [1–14,18,19,22–25].
The main results and comprehensive description of retrial queues are contained
in the books [5,6].

Models with calls leaved RQ-system after failed attempt to get a service was
considered by many scientists [12–17], etc. In these studies, an arriving call joints
the orbit with some probability p and leaves the system with the probability 1−p
when there are not available service devices at the time. Some authors name such
customers as non-persistent or p-non-persistent customers.

We consider a different model which was not been investigated early. So, in
present research impatient customer is a customer in the orbit that can repeat
an attempt to reach the server again or can leave the orbit after a random time
without server recalling.
c© Springer Nature Switzerland AG 2018
A. Dudin et al. (Eds.): ITMM 2018/WRQ 2018, CCIS 912, pp. 387–399, 2018.
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Classical retrial models consist of one server but real telecommunication sys-
tems are usually multiserver retrial queue [9,18–21]. In the proposed paper RQ-
system consisting of two service devices is considered. Applying the Poison input
flow gives a big determination error of the characteristics of the service quality
in real systems. Validity of the models with Markov Modulated Poisson Process
as input flow for multi-server queueing systems description is shown in papers
[22–24]. And we are considering the MMPP input flow with two servers and
impatient calls under system heavy load condition (for example, the problem for
MMPP input flow with one server under system heavy load condition is solved
in [25]).

Asymptotic analysis method is widely applied for RQ-systems research. The
method makes it possible to produce analytical result for different types of queue-
ing systems and networks under given asymptotic condition. More information
about the asymptotic analysis method is provided in [5–7,9,17,26], etc.

The general information about mathematical model of the retrial queue-
ing system discussed in the paper and the problem statement are presented in
the Sect. 2. In the Sect. 3 the detailed derivation of the model and the system
of Kolmogorov equations for the stationary state probabilities are cited. The
Sect. 4 consists of the decision of the problem under study by the asymptotic
analysis method. As a result of the section the Theorem about stationary prob-
ability distribution of the calls number in the orbit for Retrial queueing system
of MMPP/M/2 type with impatient calls in the orbit under a system heavy
load and long time patience of calls in the orbit condition is formulated and
proved. Some numerical results, graphs, that proved the theoretical results, are
performed in the Sect. 5. Section 6 concludes the paper.

2 Mathematical Model

A retrial queueing system consisting of an infinite orbit and two servers is
considered. The input flow is defined by the Markov Modulated Poisson Pro-
cess and it is defined by matrix Q = ||qij ||, i, j = 1, 2, . . . , S, and matrix
Λ = diag {λ1 λ2 . . . λS}. The rate of MMPP-flow is defined as λ = rΛe, where
S-sized vectors r and e are given below. The service times on every of the
two servers are exponentially distributed with parameter μ. A customer which
arrives into the system, when at least one of the two servers is free, instantly
occupies this server. If all of the devices are busy, the call goes to the orbit,
where it stays during a random time distributed exponentially with parameter
σ. After the delay the customer makes an attempt to reach any server again.
If it is free, the call occupies it, otherwise the call immediately joins the orbit.
From the orbit calls (impatient calls) can leave the system after a random time
distributed exponentially with parameter α.

The structure of the model is presented in Fig. 1.
The problem is to get stationary probability distribution of the number of

calls in the orbit for the system under review.
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Fig. 1. Retrial queue MMPP/M/2 with impatient calls in the orbit

3 Process of the System States: Stationary Distribution

Let us consider Markovian process {n(t), s(t), i(t)} determined states of the
Retrial queue MMPP/M/2 with impatient customer in the orbit where the
random process i(t) is the number of calls in the orbit at the moment t,
i(t) = 0, 1, 2, 3, . . . , s(t) is the value of the Markov chain state that specifies
MMPP-flow at the moment t, s(t) = 1, 2, . . . , S, the random process n(t) defines
device state at the moment t and takes one of the following values

n(t) =

⎧
⎨

⎩

0, if all servers are free at the moment t;
1, if only one of two servers is busy at the moment t;
2, if both servers are busy at the moment t.

Denote the probability that, at the moment t, the server (service device) is
in the state n, n = 0, 1, 2, the Markov chain managing the input calls flow is
in the state s, s = 1, 2, . . . , S, and there are i calls in the orbit, i = 0, 1, 2, . . . ,
as P {n(t) = n, s(t) = s, i(t) = i} = Pn(s, i, t). We write the following system of
equations for s = 1, 2, . . . , S

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P0(s, i, t)
∂t

= − (λs + iσ + iα − qss) P0(s, i, t) + (i + 1)αP0(s, i + 1, t)

+μP1(s, i, t) +
S∑

ν=1,
ν �=s

P0(ν, i, t)qνs,

∂P1(s, i, t)
∂t

= − (λs + iσ + iα + μ − qss) P1(s, i, t)+(i+1)σP0(s, i+1, t)

+λsP0(s, i, t) + (i + 1)αP1(s, i + 1, t) + 2μP2(s, i, t) +
S∑

ν=1,
ν �=s

P1(ν, i, t)qνs,

∂P2(s, i, t)
∂t

= − (λs + iα + 2μ − qss) P2(s, i, t) + (i + 1)σP1(s, i + 1, t)

+λsP1(s, i, t)+(i+1)αP2(s, i + 1, t)+λsP2(s, i − 1, t)+
S∑

ν=1,
ν �=s

P2(ν, i, t)qνs.

(1)
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Let the row-vector r is the stationary probability distribution of the under-
lying process s(t) and it is defined as the unique solution of the system

{
rQ = 0,
re = 1,

where e is unit column-vector, 0 is zero row-vector.
Denote the row-vectors Πn(i) = {Πn(1, i) Πn(2, i) . . . Πn(S, i)}, n = 0, 1, 2,

i = 0, 1, 2, . . . , where Πn(s, i) = lim
t→∞ Pn(s, i, t). Then the system of Kol-

mogorov equations for the stationary state probabilities Πn(i) of the process
{n(t), s(t), i(t)} is written as follows

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Π0(i) (−Λ − i(σ + α)I + Q) + μΠ1(i) + (i + 1)αΠ0(i + 1) = 0,
Π1(i) (−Λ − i(σ + α)I + Q − μI) + Π0(i)Λ + (i + 1)σΠ0(i + 1)
+(i + 1)αΠ1(i + 1) + 2μΠ2(i) = 0,
Π2(i) (−Λ − iαI + Q − 2μI) + Π1(i)Λ + (i + 1)σΠ1(i + 1)
+(i + 1)αΠ2(i + 1) + Π2(i − 1)Λ = 0,

(2)

where I is the identity matrix.
We get in (2) the indefinite dimensional system of matrix difference equa-

tions with variable coefficients. In common case it is not possible to produce the
exact solution of this system. To find solution of (2), we will use the method of
asymptotic analysis under a system heavy load and long time patience of calls
in the orbit condition.

4 Asymptotic Analysis Method

We introduce the partial characteristic functions

Hn(s, u) =
∞∑

i=0

ejuiΠn(s, i), Hn(s, 0) =
∞∑

i=0

Πn(s, i) = Rn, (3)

where j =
√−1, n = 0, 1, 2, s = 1, 2, . . . , S, and Rn are stationary state proba-

bilities of the process n(t).
Using (3), row-vectors Hn(u) = {Hn(1, u) Hn(2, u) . . . Hn(S, u)} and

H′
n(u) =

{
∂Hn(1, u)

∂u

∂Hn(2, u)
∂u

. . .
∂Hn(S, u)

∂u

}

, where
∂Hn(s, u)

∂u
=

j
∞∑

i=0

iejuiΠn(s, i), s = 1, 2, . . . , S, n = 0, 1, 2, we can write the system (2) as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j
(
σ + α

(
1 − e−ju

))
H′

0(u) + μH1(u) + H0(u) (Q − Λ) = 0,
j
(
σ + α

(
1 − e−ju

))
H′

1(u) + H1(u) (Q − Λ) − jσe−juH′
0(u) − μH1(u)

+H0(u)Λ + 2μH2(u) = 0,
jα

(
1 − e−ju

)
H′

2(u) + H2(u)
(−2μI + Q − Λ

(
1 − eju

))

+H1(u)Λ − jσe−juH′
1(u) = 0.

(4)
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In adding the third equation by the first and the second equations of (4) we
get the system below

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
(
σ + α

(
1 − e−ju

))
H′

0(u) + μH1(u) + H0(u) (Q − Λ) = 0,
j
(
σ + α

(
1 − e−ju

))
H′

1(u) + H1(u) (Q − Λ) − jσe−juH′
0(u) − μH1(u)

+H0(u)Λ + 2μH2(u) = 0,

jα
(
1 − e−ju

) 2∑

k=0

H′
k(u) + jσ

1∑

k=0

H′
k(u) − jσe−ju

1∑

k=0

H′
k(u)

+
2∑

k=0

Hk(u)Q − (
1 − eju

)
H2(u)Λ = 0.

(5)

The system in (5) is the base system for analysis of Retrial queueing system
of MMPP/M/2 type with impatient calls in the orbit under a system heavy load
(λ � 2μ) and long time patience of calls in the orbit (α → 0) condition.

Theorem 1. Stationary probability distribution of the calls number in the orbit
for Retrial queueing system of MMPP/M/2 type with impatient calls in the orbit
under a system heavy load and long time patience of calls in the orbit condition
can be approximated by the Gaussian distribution with mean and variance equal

to
λ − 2μ

α
and

λ

α
respectively, where λ = rΛe, and Λ is the matrix of the input

calls flow parameters, r is the row-vector of the stationary probability distribution
of the process s(t), e is the unit row-vector, μ, σ, α are the exponential distri-
bution parameters, accordingly, of the calls service time, the calls delay time in
the orbit, the calls leaving the system from the orbit.

Proof. The Theorem 1 proving will carried out in two stages.
Stage 1. Let to denote α = ε, u = εw, H0(u) = ε2F0(w, ε), H1(u) = εF1(w,

ε), H2(u) = F2(w, ε), where Fn(w, ε) = {Fn(1, w, ε) Fn(2, w, ε) . . . Fn(S,
w, ε)}, n = 0, 1, 2, and ε → 0 is infinitesimal.

Since H′
0(u) = ε

∂F0(w, ε)
∂w

, H′
1(u) =

∂F1(w, ε)
∂w

, H′
2(u) =

1
ε

∂F2(w, ε)
∂w

,

where
∂Fn(w, ε)

∂w
=

{
∂Fn(1, w, ε)

∂w

∂Fn(2, w, ε)
∂w

. . .
∂Fn(S,w, ε)

∂w

}

, n = 0, 1, 2,

the equations system (5) can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
(
σ + ε

(
1 − e−jεw

)) ∂F0(w, ε)
∂w

+ μF1(w, ε) + εF0(w, ε) (Q − Λ) = 0,

j
(
σ+ε

(
1−e−jεw

)) ∂F1(w, ε)
∂w

+εF1(w, ε) (Q−Λ)−jσe−jεwε
∂F0(w, ε)

∂w−μεF1(w, ε) + ε2F0(w, ε)Λ + 2μF2(w, ε) = 0,

jε
(
1−e−jεw

) 2∑

k=0

ε1−k ∂Fk(w, ε)
∂w

+jσ
(
1−e−jεw

) 1∑

k=0

ε1−k ∂Fk(w, ε)
∂w

+
2∑

k=0

ε2−kFk(w, ε)Q − (
1 − ejεw

)
F2(w, ε)Λ = 0.

(6)
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The transformation of the first and the second equations of (6) under ε → 0
with Fn(w) = lim

ε→0
Fn(w, ε), n = 0, 1, 2, leads to equations system as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

jσ
dF0(w)

dw
= −μF1(w),

jσ
dF1(w)

dw
= −2μF2(w),

j2εw
2∑

k=0

ε2−k dFk(w)
dw

+ j2σεw
1∑

k=0

ε1−k dFk(w)
dw

+
2∑

k=0

ε2−kFk(w)Q

+jεwF2(w)Λ = 0.

(7)

In multiplying the last equation in the (7) by the unit column-vector e and
using Qe = 0

jεw

2∑

k=0

ε2−k dFk(w)
dw

e + jσεw

1∑

k=0

ε1−k dFk(w)
dw

e + εwF2(w)Λe = 0,

or under ε → 0

j
dF2(w)

dw
e + jσ

dF1(w)
dw

e + F2(w)Λe = 0. (8)

We suggest to find the Eq. (8) solution F2(w) in the form

F2(w) = rΦ(w). (9)

Substituting (9) and (7) in (8) with expression re = 1 we have

F2(w) = R2exp {(λ − 2μ)jw} r, (10)

where λ = rΛe, and R2 is defined above.
Pre-limit characteristic function h(u) is approximately equal to

h(u) = {H0(u) + H1(u) + H2(u)} e = F2

(u

ε

)
e + o(ε) ≈ F2

(u

ε

)
e.

So, the first-order asymptotic characteristic function h(1)(u) of the probabil-
ity distribution of the number of calls in the orbit under the system heavy load
and long time patience of calls in the orbit condition can be presented as

h(1)(u) = F2

(u

ε

)
e = R2exp

{

(λ − 2μ)
ju

ε

}

re = R2exp

{

(λ − 2μ)
ju

α

}

. (11)

Stage 2. Denoting in the base system of Eqs. (5) with (11)

Hn(u) = R2exp

{

(λ − 2μ)
ju

α

}

H(2)
n (u), n = 0, 1, 2, (12)
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and making some transformations with this system we get (13)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
(
σ + α

(
1 − e−ju

))
(

H(2)′

0 (u) + j
λ − 2μ

α
H(2)

0 (u)
)

+μH(2)
1 (u) + H(2)

0 (u) (Q − Λ) = 0,

j
(
σ + α

(
1 − e−ju

))
(

H(2)′

1 (u) + j
λ − 2μ

α
H(2)

1 (u)
)

+ H(2)
1 (u) (Q − Λ)

−jσe−ju

(

H(2)′

0 (u) + j
λ − 2μ

α
H(2)

0 (u)
)

− μH(2)
1 (u)

+H(2)
0 (u)Λ + 2μH(2)

2 (u) = 0,

jα
(
1−e−ju

) 2∑

k=0

[

H(2)′

k (u)+j
λ−2μ

α
H(2)

k (u)
]

−(
1 − eju

)
H(2)

2 (u)Λ

+jσ
(
1 − e−ju

) 1∑

k=0

[

H(2)′

k (u) + j
λ − 2μ

α
H(2)

k (u)
]

+
2∑

k=0

H(2)
k (u)Q = 0.

(13)
Let α = ε2, u = εw, H(2)

0 (u) = ε4F(2)
0 (w, ε), H(2)

1 (u) = ε2F(2)
1 (w, ε),

H(2)
2 (u) = F(2)

2 (w, ε), where ε → 0 is infinitesimal.
Taking into account H(2)′

0 (u) = ε3F(2)′

0 (w, ε), H(2)′

1 (u) = εF(2)′

1 (w, ε),

H(2)′

2 (u) =
1
ε
F(2)′

2 (w, ε), we get the system (13) in the form below

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
(
σ + ε2

(
1 − e−jεw

)) [
ε3F(2)′

0 (w, ε) + j(λ − 2μ)ε2F(2)
0 (w, ε)

]

+με2F(2)
1 (w, ε) + ε4F(2)

0 (w, ε) (Q − Λ) = 0,

j
(
σ + ε2

(
1 − e−jεw

)) [
εF(2)′

1 (w, ε) + j(λ − 2μ)F(2)
1 (w, ε)

]

−jσe−jεw
[
ε3F(2)′

0 (w, ε) + j(λ − 2μ)ε2F(2)
0 (w, ε)

]

+ε2F(2)
1 (w, ε) (Q − Λ) − με2F(2)

1 (w, ε) + ε4F(2)
0 (w, ε)Λ

+2μF(2)
2 (w, ε) = 0,

jε2
(
1 − e−jεw

) 2∑

k=0

(
ε3−2kF(2)′

k (w, ε) + j (λ − 2μ) ε2−2kF(2)
k (w, ε)

)

+jσ
(
1 − e−jεw

) 1∑

k=0

(
ε3−2kF(2)′

k (w, ε) + j (λ − 2μ) ε2−2kF(2)
k (w, ε)

)

+
2∑

k=0

ε4−2kF(2)
k (w, ε)Q − (

1 − ejεw
)
F(2)

2 (w, ε)Λ = 0.

(14)
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In multiplying the equations in the (14) by the unit column-vector e we can
write

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
(
σ + ε2

(
1 − e−jεw

)) [
ε3F(2)′

0 (w, ε)e + j(λ − 2μ)ε2F(2)
0 (w, ε)

]
e

+με2F(2)
1 (w, ε)e + ε4F(2)

0 (w, ε) (Q − Λ) e = 0,

j
(
σ + ε2

(
1 − e−jεw

)) [
εF(2)′

1 (w, ε)e + j(λ − 2μ)F(2)
1 (w, ε)

]
e

−jσe−jεw
[
ε3F(2)′

0 (w, ε)e + j(λ − 2μ)ε2F(2)
0 (w, ε)

]
e

+ε2F(2)
1 (w, ε) (Q − Λ) e − με2F(2)

1 (w, ε)e + ε4F(2)
0 (w, ε)Λe

+2μF(2)
2 (w, ε)e = 0,

jε2
(
1 − e−jεw

) 2∑

k=0

(
ε3−2kF(2)′

k (w, ε) + j (λ − 2μ) ε2−2kF(2)
k (w, ε)

)
e

+jσ
(
1 − e−jεw

) 1∑

k=0

(
ε3−2kF(2)′

k (w, ε) + j (λ − 2μ) ε2−2kF(2)
k (w, ε)

)
e

+
2∑

k=0

ε4−2kF(2)
k (w, ε)Qe − (

1 − ejεw
)
F(2)

2 (w, ε)Λe = 0.

(15)

Let divide each equation of the system (15) by the ε to the minimum power
and then we can obtain (16) by a limiting process ε → 0 in (15) with e±jεw =
1 ± jεw + o(ε2)

⎧
⎪⎨

⎪⎩

σ(λ − 2μ)F(2)
0 (w) − μF(2)

1 (w) = 0,

σ(λ − 2μ)F(2)
1 (w) − 2μF(2)

2 (w) = 0,

σ(λ − 2μ)F(2)
1 (w)e − (λ − 2μ)F(2)

2 (w)e + F(2)
2 (w)Λe = 0,

(16)

where F(2)
n (w) = lim

ε→0
F(2)

n (w, ε), n = 0, 1, 2.

The solving of equations system (15) has the following form

F(2)
n (w, ε) = F(2)

n (w) + jεwfn(w) + o(ε2), n = 0, 1, 2. (17)

Using (16) and (17), Qe = 0 and F(2)′
n (w, ε) = F(2)′

n (w)+jεfn(w)+jεwf ′
n(w),

n = 0, 1, 2, we can write (15) as
⎧
⎪⎪⎨

⎪⎪⎩

σF(2)′

0 (w) + j(λ − 2μ)wσf0(w) + μwf1(w) = 0,

σF(2)′

1 (w) + j(λ − 2μ)wσf1(w) + 2μwf2(w) = 0,(
F(2)′

2 (w) − λwf2(w)
)
e + wF(2)

2 (w)Λe + wf2(w)Λe = 0.

(18)

In adding the second equation by the third equation of the (18) we obtain
the equation for F(2)

2 (w) as follows

F(2)′

2 (w)e + wF(2)
2 (w)Λe + wf2(w) (Λ − λI) e = 0,

and it is easy to get the solution of the equation as F(2)
2 (w) = R2 exp

{−λw2/2
}
r

in suggestion that F(2)
2 (w) = rΦ(w), f2(w) = rφ(w), where λ = rΛe, and R2 is

defined above.
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Pre-limit characteristic function h(u) is approximately equal to

h(u) = {H0(u) + H1(u) + H2(u)} e = R2exp

{

(λ − 2μ)
ju

α

}

F(2)
2

(u

ε

)
e + o(ε)

≈ R2exp

{

(λ − 2μ)
ju

α

}

F(2)
2

(u

ε

)
e.

So, the second-order asymptotic characteristic function h(2)(u) of the prob-
ability distribution of the number of calls in the orbit under the system heavy
load and long time patience of calls in the orbit condition can be presented as

h(2)(u) = R2exp

{

(λ − 2μ)
ju

α

}

F(2)
2

(u

ε

)
e

= R2
2exp

{

(λ − 2μ)
ju

α
+

λ

α

(ju)2

2

}

.
(19)

The Theorem 1 is proved.

5 Numerical Results

In this section, some numerical examples are presented. It demonstrate the appli-
cability area of the asymptotic results depending on parameters of the Retrial
queueing system of MMPP/M/2 type with impatient customer in the orbit.

So, we compare asymptotic and exact distributions for different values of
parameters λ and α using the Kolmogorov distance between respective cumula-
tive distribution functions

Δ = max
0≤i<∞

∣
∣
∣

i∑

ν=0

Dν −
i∑

ν=0

Pν

∣
∣
∣

where Dν and Pν are an exact and an asymptotic probability distributions
respectively.

Let the system parameters be

Λ =

⎛

⎝
5 0 5
0 7.5 0
0 0 2.5

⎞

⎠ , Q =

⎛

⎝
−4 3 1
2 −6 4
5 3 −8

⎞

⎠ , μ = 1, σ = 1, (20)

then parameter λ = rΛe = 5.297 and values of the Kolmogorov distance for
that example is presented in Table 1.

In Fig. 2 there are examples of comparison of the asymptotic and the exact
distribution densities.

Let the system parameters be

Λ =

⎛

⎝
10 0 5
0 15 0
0 0 5

⎞

⎠ , Q =

⎛

⎝
−4 3 1
2 −6 4
5 3 −8

⎞

⎠ , μ = 1, σ = 1, (21)
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Table 1. Kolmogorov distances between asymptotic and exact distributions under
given parameters (20)

α = 2 α = 1 α = 0.5 α = 0.1

λ = 5.297 0.082 0.025 0.021 0.013

Fig. 2. Comparisons of the asymptotic (dashed line) and the exact (solid line) proba-
bility densities when (a) α = 2, (b) α = 1, (c) α = 0.5, (d) α = 0.1

Table 2. Kolmogorov distances between asymptotic and exact distributions under
given parameters (21)

α = 2 α = 1 α = 0.5 α = 0.1

λ = 10.575 0.040 0.019 0.016 0.017
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Fig. 3. Comparisons of the asymptotic (dashed line) and the exact (solid line) proba-
bility densities when (a) α = 2, (b) α = 1, (c) α = 0.5, (d) α = 0.1

then parameter λ = rΛe = 10.575 and values of the Kolmogorov distance for
that example is presented in Table 2.

If we suppose the Kolmogorov distance equal to 0.05 and less as acceptable
accuracy of a result, we can find parameters values in which the approximation
(14) can be applied. Figures 2 and 3 show that increasing of the parameter λ when
parameter α is fixed leads to reduction of the Kolmogorov distances between
asymptotic and exact distributions, and decreasing of the parameter α when
parameter λ is fixed leads to reduction of the Kolmogorov distances between
asymptotic and exact distributions.

6 Conclusion

In the present paper, two servers retrial queueing system of MMPP/M/2 type
with impatient customer in the orbit is considered. It is proved that the proba-
bility distribution of the calls number in the orbit can be approximated by the



398 O. Vygovskaya et al.

Gaussian distribution under the system heavy load and long time patience of
calls in the orbit condition.

Numerical results that allow to draw a conclusion about an applicability area
of the asymptotic result is the purpose of the future studies.
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