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Abstract. On-tree fruit detection in orchards is important for yield estimation,
mapping and automatic harvesting in modern agriculture. This paper proposes a
real-time detection framework for on-tree mango based on SSD (Single shot
Multi Box Detector) network, a state-of-the-art object detection algorithms
based on deep learning. The mango image dataset used in this paper was
gathered from outdoor mango orchards. Firstly, the dataset was annotated and
converted to a trainable dataset for SSD network. Secondly, the author designed
new sampling strategies and image distortions at the image pre-processing stage
to optimize data augmentation techniques. Moreover, the default box proposal
methods of SSD network were improved by redesigning the shapes of default
boxes on multiple feature maps according to our own dataset. Finally, to explore
which classification network is most suitable for mango detection, an experi-
ment was presented to compare the detection performance of SSD network with
the VGG16 and ZFNet as base network respectively. Almond dataset was also
used to verify our proposed method. Experimental results demonstrated that,
with optimization of data augmentation techniques and default box proposals,
our improved VGG16-based SSD network can achieve higher performance than
Faster R-CNN in on-tree mango detection, with F1 score of 0.911 at 35 FPS for
400 � 400 input image, which is a real-time detection.
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1 Introduction

Nowadays, on-tree fruit detection in orchards for yield estimation and mapping plays a
more and more important role in modern agriculture with the rapid development of
computer vision techniques. Compared to manual counting, vision-based automated
detection methods are more efficient and save human resource [1]. With the help of
computer vision technology, we can get more accurate information about on-tree fruit,
like its size, maturity, location and so on. Once obtain this information, we can estimate

© Springer Nature Switzerland AG 2018
Z. Chen et al. (Eds.): ICIRA 2018, LNAI 10985, pp. 423–436, 2018.
https://doi.org/10.1007/978-3-319-97589-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97589-4_36&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97589-4_36&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97589-4_36&amp;domain=pdf


crop yield and harvest automatically using robots [2]. In this paper, we focus on on-tree
mango detection in outdoor orchard.

There are many prior works related to fruit detection. Handcraft features was used
to encode visual attributes and extract features for mango detection in [3]. In fact,
feature encoding is unique to a specific dataset and image quality. Based on computer
vision techniques, segmentation technique was utilized in [1] to segment the fruit
region from the input image and counted fruits. This approach is tested on apples
images with large size and colorful appearance collected from different websites.
Fusion data of multiple sensors and machine vision algorithms were employed for
feature detection and extraction in [4].

Recently, deep convolutional neural networks (CNNs) based methods have
achieved the state-of-the-art results for object detection [5–7], both with high accuracy
and detection speed.

The dataset we used was released by [8] and contained more than 1,900 images
with on-tree mangoes in outdoor orchard. There are many challenges with our mango
dataset: (1) there are so many mangoes that are blocked by branches, leaves or man-
goes. (2) Most images are pretty dark and mangoes are similar to the background.
(3) Compared to an input image, with the resolution of 500 � 500, mangoes are too
small and the resolution of the largest is about 70 � 70. These reasons made it more
difficult to detect on-tree mangoes with traditional methods. Figure 1 presents
examples.

To address these issues, we applied deep-learning-based SSD network [7] to detect
on-tree fruits. Our main contributions are summarized as follows:

i. We deployed the state-of-the-art object detection framework, SSD, for on-tree
mango detection in orchards and got high performance both in the aspects of
accuracy and speed.

ii. We demonstrated how to optimize data augmentation techniques and default box
proposals of SSD network to improve detection performance.

Fig. 1. Examples of mango images. We annotated the ground truth boxes of mangoes in blue.
Image (a) shows the instances that mangoes are blocked by leaves or mangoes. Image (b) shows
the instances of dark images in which mangoes are pretty similar to background and mangoes
overlapping between each other. Mangoes are too small in image (c). (Color figure online)
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iii. We relabeled the dataset and transformed it to a trainable dataset in VOC2007
style. The updating dataset is available here: https://pan.baidu.com/s/
1pdTyVq9PlbhkR2k_4Tl5zA.

The rest of the paper is organized as follows: Sect. 2 introduces the related works
for object detection. Section 3 describes the methodology details. The details of our
experiment are in the Sect. 4 and the results are in the Sect. 5. We make a conclusion in
Sect. 6.

2 Related Works

Over the last decade, fruit detection has utilized hand engineered features to extract
features related to the object in original input image for classification and position
[3, 4]. This type of feature extraction method that requires human intervention heavily
depends on prior knowledge of the feature designer and is inefficiency. Moreover, it’s
difficult to adapt to various datasets gathered from complex environments in reality.

More recently, with the development of deep learning technology, deep convolu-
tional neural networks (CNNs) have been successfully applied to the field of image
classification, detection and so on. The advantage of CNNs is that they can automat-
ically extract features from the input image through self-learning. Deep-learning-based
object detection model can extract more abundant features and its feature expression
ability is stronger.

At present, the object detection methods based on deep learning are mainly divided
into two categories: candidate region based models and regression based models. The
first appeared is detection model based on region candidates, in which the candidate
regions are extracted from the detection region preparing for subsequent procedures of
feature extraction and classification. Typical representatives are: R-CNN [9], SPP-net
[10], Fast R-CNN [11], Faster R-CNN [5], and R-FCN [12]. All the above models have
been developed on the basis of the previous generation, and the accuracy is also getting
higher. But there is still much room for improvements in terms of speed.

So there comes the regression-based detection model. It is necessary to delineate
the default box in a certain way in advance so that the relationship between the
prediction box, the default box, and the ground truth object box can be established and
used for training. Typical representatives are: YOLO [13] and SSD, which is faster than
R-CNN series method. Although the speed has been greatly improved, reaching 45
FPS, YOLO has relatively large classification and positioning errors, and its general-
ization ability is also weak. YOLOv2 [6] has made great improvements in aspects of
data input, network structure and positioning methods and is better than YOLO. SSD
draws on the advantages of both YOLO and Faster-RCNN methods, and gets higher
performance than both, with mAP reaching 74.3% at 59 FPS on VOC2007 dataset.

Previously, object detection model based on deep learning has been applied to fruit
detection. Faster R-CNN was employed to detect fruits in trees in orchard [8]. With the
use of transfer learning and data augmentation, [8] get high accuracy on apple and
mango detection. Similar to this, Faster R-CNN was also used to detect mangos in [14].
Different from [8], Faster R-CNN used in [14] combined with a novel multi-sensor
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framework and a multiple viewpoint approach and got satisfied result on yield esti-
mation. Due to the limitations of Faster R-CNN itself, the detection accuracy and speed
have yet to be improved.

In this paper, we applied SSD network to detect on-tree mangoes in outdoor
orchard. With the high-performance SSD algorithm, our mango detection can be more
accurate and faster.

3 Methodology

3.1 Network Architecture

SSD network uses regression methods for detection, putting the two tasks of posi-
tioning and classification into one network. Besides, Lots of improvements were added
to increase accuracy and speed. On the one hand, compared with Faster R-CNN, SSD
network does not resample pixels or features for bounding box hypotheses, which
makes a great improvement in the aspect of detection speed. On the other hand, SSD
implemented the anchor method of extracting candidate area of Faster R-CNN on
feature maps of various scale and made it more effective and accuracy to detect objects
of various scales. Figure 2 illustrated the SSD network architecture.

Figure 3 shows a brief description of the mango detection process. The input image
passes through multiple convolution layers to obtain feature maps. At each location of
the feature map, the SSD network generates 4 or 6 default boxes and then uses a series
of small convolutions to predict. By setting the overlap rate threshold, a non-maximal
suppression (NMS) method is used to remove duplicate bounding boxes. Finally, we
only keep the bounding boxes that have greater confidence than the threshold, so we
get the final detection results.
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Fig. 2. SSD network architecture. The VGG16 network [15] is used as base network and its
fully connected layers (FC6, FC7) were converted into convolutional layers. Besides, SSD
designed 4 extra feature layers connected to the end of VGG16. Each extra convolutional layer
output a feature map and used as an input for prediction. These extra layers together with
Conv4_3 and FC7 layer predict the offsets to default boxes of various scales and aspect ratios and
their associated confidences by small convolutional filters. When the resolution of the input
image is 300 � 300, we called the network SSD300.
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3.2 Data Augmentation

Sampling Strategies. Data augmentation used in [8] has improved fruit detection
performance greatly with Faster R-CNN network. As for SSD, the network itself uses a
more extensive sampling strategy for data augmentation, which improves 8.8%
mAP. The sampling strategies of SSD are described as following [7]:

– Use the entire original input image.
– Sample a patch so that the minimum jaccard overlap with the objects is 0.1, 0.3, 0.5,

0.7, or 0.9.
– Randomly sample a patch.

The size of each sampled patch and minimum jaccard overlap are important, especially
for the small object detection. After passing through a series of convolution and
pooling layers of VGG16 network, the size of feature map becomes 1/16 of the size of
the original image. It’s harmful for our mango detection, because the sizes of most
mangoes are smaller than 64 � 64 pixels, which is 4 � 4 pixels after passing through
VGG16. So if we set a small sample ratio and minimum jaccard overlap, mangoes can
be better highlighted after the sampled patch being reset to a fixed size.

First of all, we calculated the distribution of mangoes’ shapes on the training
dataset and found out the extreme values of mangoes’ sizes. Then we set the minimum
and maximum sampling ratio according to the extreme values and the sizes of the input
images. We designed a total of six groups of sampling ratios. Each group has the same
minimum and maximum sampling ratios in general, but the overlap thresholds are
different.

Table 1 summarized our configurations of sampled patch. Min ration and max ratio
are the minimum and maximum sampling ratio respectively and overlap is the mini-
mum jaccard overlap. Numbers 1 to 6 indicate different groups. The groups with
smaller overlap threshold can be used to sample small mangoes. In contrast, the groups
with larger overlap threshold can be used to sample large mangoes. In addition, the
overlap thresholds should be selected so that each sampling ratio can obtain positive
examples, which can also reduce the difference in quantity between the positive and
negative examples.

input image           feature map SSD output            detec on result

convolu on layers predic on+NMS           confidence

Fig. 3. Forward process of mango detection.
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SSD network keeps the overlapped part of the ground truth box if the center of it is
in the sampled patch and used them for training. The objects in images in the VOC
dataset are larger, so these default parameters are set to be relatively large. As our
mangoes are small, we need small sampling ratios and overlap rates. The design of
different-scale sampled patches and multiple minimum jaccard overlap rates makes it
more effective to detect objects of various scales with SSD network.

Distortions. Some photo-metric distortions are also used in SSD, including brightness,
contrast and saturation. When we use SSD network to detect a specific dataset, we can
adjust relative parameters to improve detection performance. For example, most images
in our fruit dataset are dark, we can change brightness and contrast according to our
own dataset, which can help to extract more abundant features.

In addition to the original distortion methods of the SSD network, we also added
Gaussian blur method in the image preprocessing stage, which makes the detection
model more robust.

Each distortion item has a parameter representing the probability of being imple-
mented. We set the probability threshold to 0.5, which means that each input image has
a probability of 0.5 to be implemented distortion operations.

3.3 Default Box Proposals

SSD network generates default boxes of various scales and aspect ratios from different-
scale feature maps (Conv4_3, FC7, Conv6_2, Conv7_2, Conv8_2 and Conv9_2 in
Fig. 2). For each default box out of k at a given location, we predict c class scores and 4
offsets relative to the original default box shape using small convolution filters with the
kernel of 3 � 3. For layer Conv4_3, Conv8_2 and Conv9_2, there are 4 boxes at a
given location, and 6 boxes in other layers. Finally, there are a total of cþ 4ð Þk filters
for each specific location and cþ 4ð Þkmn outputs for a m� n feature map.

SSD network matches the default box to ground truth box by setting the overlap
threshold. The minimum and maximum sizes of the default boxes generated from
different feature maps are different, which is contributing to detect more objects of
various scales. The minimum and maximum sizes of the default boxes for each feature
map are set by the scale ratio parameter. The scale ratio of default boxes is defined as:

sk ¼ smin þ smax � smin

m� 1
k � 1ð Þ; k 2 1;m½ �: ð1Þ

Where smin is 0.2 and smax is 0.9 by default, meaning the lowest layer has a scale of
0.2 and the highest layer has a scale of 0.9, and all layers in between are regularly

Table 1. The configurations of sampled patch.

Configuration 1 2 3 4 5 6

Min ratio 0.05 0.05 0.05 0.05 0.1 0.2
Max ratio 0.6 0.6 0.6 0.6 06 0.6
Overlap 0.02 0.05 0.1 0.3 0.5 1
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spaced. M indicate m feature maps, here m is 6. For a specific feature map, the scale
ratios are between sk and skþ 1. The minimum sizes and maximum sizes of default
boxes for each feature map are defined as:

sizemin ¼ dimmin �sk; ð2Þ

sizemax ¼ dimmin � skþ 1; k 2 1;m½ �: ð3Þ

Where dimmin is the minimum dimension of input image and it’s 300. Note that the
Eqs. (1) to (3) is suitable for layer FC7 to Conv9_2. For layer Conv4_3, the minimum
scale ratio and the maximum scale ratio is 0.1 and 0.2 respectively.

For objects with small changes in size, we can adjust these default boxes to achieve
better detection performance. The mangoes we want to detect are generally small, so
the default box should be set smaller. In the previous section, we have calculated the
distribution of fruits’ shapes. We use these statistics to calculate the size of the default
box on each feature map. For layer Con4_3, which is mainly used to detect most of
mangoes, we set the minimum and maximum sizes of the default boxes to 20 and 60
pixels respectively, which covers most sizes of fruits. For other layers, we set smin to 0.1
and smax to 0.6 in Eq. (1). Thus these default boxes can match more ground truth
bounding box and increase positive examples.

3.4 Loss Function

The overall objective loss function of SSD network is a weighted sum of the local-
ization loss (loc) and the confidence loss (conf), which is defined as following:

L x; c; l; gð Þ ¼ 1
N

Lconf x; cð Þþ aLloc x; l; gð Þ� �
: ð4Þ

Where N is the number of matched default boxes, c is the number of class, and a is
the weight term of localization loss. The localization loss is a Smooth L1 loss between
the predicted box (l) and the ground truth box (g) parameters.

For small object detection, the confidence loss is more important than localization
loss. By default, the weight term a is set to 1 by cross validation. Here we set it to 0.5 to
adapt our fruit dataset. Our experimental results proved that the F1 score can increase
by 0.3% by decreasing the weight term.

4 Experimental Setup

4.1 Dataset

The mango dataset we trained and tested is a part of dataset released by [8], which
contain apple, mango and almond datasets. The original images in mango dataset were
in 48-bit format. We converted the images to 24-bit format with the image processing
software, ImageJ, so that we can train the images in SSD network. Although the dataset
was annotated and tested with Faster R-CNN by [8], there were still some errors with
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annotations. In addition, many images don’t contain any mango. Annotation errors can
affect not only training but also detection result.

In order to minimize the impact of annotation errors, we removed the images
without any mango and relabeled the mango dataset with the annotation software [16].
We found that the main annotation error is missing ground truth annotations of man-
goes, especially those in dark images, which is difficult even for human to identify.
Therefore, we increased contrast of images during the annotation process. When
annotated the mangoes that missing annotation, we added training samples, in fact,
which is extremely beneficial to the training model. And for testing stage, the evalu-
ation results is more accurate. In this paper, all detection results were obtained from test
dataset.

4.2 Evaluation Criteria

In the evaluation system of object detection, there is a parameter called IOU
(intersection-over-union), which is the intersection of the test results and ground truth
over their union. IOU is defined as:

IOU ¼ area Pð Þ \ area Gð Þ
area Pð Þ [ area Gð Þ : ð5Þ

Where area (P) is the area of the bounding box of prediction, while area (G) is the
area of the bounding box of ground truth.

When the IOU of detection result and ground truth bounding box is greater than the
threshold, we regard the detection result as ground truth and call it true positive, which
represent those instances that are originally mangoes and are predicted as mangoes. On
PASCAL-VOC challenges, the threshold is set to 0.5. In this paper, however, we set
the threshold to 0.2, which is sufficient for small object detection and a fruit mapping
application [8]. Figure 4 shows the different result between 0.2 and 0.5 of IOU on the
same detection model.

For better reporting results and comparisons, we used the F1 score, also used in [8],
to report our results. F1 score is a comprehensive evaluation result of accuracy and
recall rate, which is defined as:

F1 ¼ 2� P� R
PþR

: ð6Þ

Where P is the precision rate and R is the recall rate of prediction results. They are
defined as follows:

P ¼ the number of detected mangoes
the number of detected objects

: ð7Þ

R ¼ the number of detected mangoes
the number of ground truths

: ð8Þ
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5 Results

5.1 Optimization

Thanks to the optimization of data augmentation and default box proposals, mango
detection performance has greatly improved. Table 2 reported the detection results of
our optimization. No matter what kind of image input size, the detection accuracy has
improved a lot. Especially for SSD300 network, the F1 score has increased by nearly
10%. The resolution of mango image is 500 � 500. So when we resize the image to
300 � 300, the mangoes have been reduced in size. This further increases the difficulty
of mango detection. The input sizes of SSD400 and SSD500 network are close to that
of original image, so better detection performance can be obtained without optimiza-
tion. Our optimized SSD400 network outperforms the original SSD500 network. The
best F1 score was obtained from our SSD500 network, which is 1% higher than the
original SSD500 network.

To further verify the effectiveness of our proposed method, we made more
experiments on almond dataset, which only contains 572 images with the resolution of
300 � 300. We use 375 images for training, 103 for testing and others for validation.
The results of almond detection are also shown in Table 2. Because there are fewer
training samples, the overall F1 score is relatively low. But the results still reflects the
advantages of our method. Through our optimization, detection performance can be
significantly improved. The accuracy of SSD400 network can nearly reach the level of
SSD500 network.

Fig. 4. Results of different IOU threshold for mango detection. The threshold of the image (a) is
0.2 and the image (b) is 0.5. The image (c) is the original image. Although the predicted
bounding box (red bounding box in the top-left part of image (a)) is pretty different from the
ground truth (blue), we still consider it a true positive (green bounding box in the top-left part of
image (b)). (Color figure online)

Table 2. Performance of our improved SSD network

Network Mango Almond
SSD300 SSD400 SSD500 SSD300 SSD400 SSD500

Original SSD 0.787 0.864 0.903 0.728 0.753 0.771
Our SSD 0.884 0.911 0.912 0.762 0.779 0.783
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To more visually compare the performance of the SSD network before and after the
optimization, we plotted the PR (Precision-Recall) curve of mango detection, as shown
in Fig. 5. We can see clearly that the precision-recall curve of our optimized network
encloses the curve of the original SSD network, which means that our optimized
network is better than the original network. Figure 5 further proved the effectiveness of
our proposed method.

Both SSD400 and SSD500 network are better than SSD300 network. Note that
SSD400 and SSD500 network got similar performance after optimization. In other
words, high performance can be obtained with small input resolution by implementing
our optimization techniques of the detection network. Although the SSD400 and
SSD500 network have the similar accuracy, the SSD400 network has greater advan-
tages in the aspects of speed and memory usage.

SSD network with its default configurations can be used to detect many kinds of
objects of different scales. When we apply SSD network to a specific detection task,
like our fruit detection, the data augmentation techniques and default box proposals can
be optimized to make SSD network work better for the detection task. Here our
experimental results proved it.

5.2 Various Classification Networks

For the image classification tasks based on deep learning, the performance of classi-
fication networks of various structures and depths is also different in the aspects of
detection accuracy and speed. Similarly, when the SSD is connected to different
classification models as base network, different performance will be obtained. In this
paper, we experiment with ZFNet [17] and VGG16 for mango detection, which con-
tains 5 and 13 convolution layers respectively. The results are shown in Table 3.

Fig. 5. Precision-Recall curve of original SSD400 network and our SSD400 network for mango
detection.
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We set the input image size to 400 � 400. The value in parentheses following ZFNet
represents the corresponding confidence threshold.

According to Table 3, although ZFNet is faster than VGG16, the F1 score of ZFNet
is much worse than VGG16. The detection confidence threshold of both ZFNet and
VGG16 is set to 0.5. As we can see, the recall rate of ZFNet is nearly 30% lower than
VGG16, which leads to a very low F1 score of ZFNet. The recall rate of ZFNet
increased by 6%, and the F1 score increased by 4%, when the confidence threshold is
0.4. This also shows that the performance of ZFNet is not as good as that of VGG16 in
fruit detection.

VGG16 contains more convolution layers than ZFNet, making it more capable in
feature abstraction. The higher the layer is, the more semantic it can express, which is
more advantageous for detection and classification tasks. Although the VGG16 net-
work is deeper and requires more computations and higher memory usage, it still
achieves real-time detection with high accuracy.

5.3 Various Detection Networks

Among the object detection algorithms based on deep learning, Faster R-CNN and
SSD are currently the most widely used networks. In this paper, we have also compared
the performance of Faster R-CNN and SSD and used VGG16 as the base network for
both algorithms. We use F1 score and FPS as indicators to compare SSD network and
Faster R-CNN.

Table 4 shows the comparisons between SSD and Faster R-CNN. Both of our
SSD400 and SSD500 network outperform Faster R-CNN in the aspects of accuracy
and speed. As we can see that, Faster R-CNN is the slowest in the aspect of detection
speed, about 14 FPS, which is mainly due to its architecture and anchor mechanism.
SSD300 network performs best in the aspect of speed, but its accuracy is not as good as
other algorithms. In comparison, SSD400 is the best choice because it performs very

Table 3. Mango detection performance of various classification networks.

Network Precision Recall F1 FPS

ZFNet (0.4) 0.947 0.690 0.798 50
ZFNet (0.5) 0.967 0.627 0.761 50
VGG16 0.920 0.903 0.911 35

Table 4. Performance of various detection networks

Method Mango Almond FPS

Faster R-CNN [8] 0.908 0.775 14
Our SSD300 0.884 0.762 50
Our SSD400 0.911 0.779 35
Our SSD500 0.912 0.783 24
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well both in terms of speed and accuracy. With the higher accuracy than Faster
R-CNN, our SSD400 network achieved a real-time detection.

All networks were trained on the single GTX 1080ti GPU, using cuda8.0 and
cuDNN5.1.

Fig. 6. Visualization results of mango detection. Green boxes are true positives, red boxes are
false positives and blue boxes are false negatives. The results of image (a), (b), (e) and (f) are
ideal, without any false positive and false negative. There are many mangoes being detected in
image (b), (c) and (d), which are either blocked by branches, leaves or mangoes, or only partially
captured by the camera. The two mangoes are small in image (e), but they are still detected,
which is largely due to our new sampling strategies. Image (f) presents detection results of dark
image. Image (g), (h) and (i) give the results of almond detection. (Color figure online)

434 Q. Liang et al.



5.4 Visualization of Detection Results

As mentioned in Sect. 1, there are many difficulties in detecting on-tree mangoes. First
of all, because of the differences of the density of the leaves and the degree of camera
shooting angle, which resulting in different light distribution, the obtained images are
also very different. This requires that our detection network have a high generalization
ability and robustness. The blocking problem is also one of the great challenges we
faced with. Under natural conditions, mangoes are blocked by leaves, branches or
between mangoes, which can greatly affect the detection performance and positioning
accuracy. However, we got satisfying results on fruit detection with our improved SSD
network. Figure 6 presents some visualization results of mango and almond detection.

6 Conclusion

In this paper, we present a real-time detection framework for on-tree mango in the
orchard based on the state-of-the-art object detection algorithm, SSD network. Even
though there are many difficulties in our dataset for fruit detection, our method
achieved high detection performance. Compared with the original SSD network, our
proposed framework with the optimization of data augmentation techniques and default
box proposal methods is more accurate in on-tree mango detection. Besides, the mango
dataset was relabeled and converted to the xml format in VOC2007 style. A study of
detection performance of SSD network with various classification networks as base
network illustrates that the VGG16 is more suitable than ZFNet for on-tree mango
detection. Detection results on almond dataset further prove the effectiveness of our
method. Experimental results demonstrate that our method has a more excellent per-
formance than Faster R-CNN and achieves F1 score of 0.911 and real-time detection at
35 FPS with a GPU for mango detection. Note that, however, there are still many
challenges in mango detection, such as the large-area overlapping between mangoes
and mangoes or mangoes and leaves. Future works will focus on these challenges.
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