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Abstract. In this brief, we study the hunting problem for a group of
underactuated surface vehicles (USVs), in which the vehicles converge
to the target as the center, as well as maintain the desired relative dis-
tance to the target when rotating around the target at the same speed.
A approach based on the cyclic matrix is delivered. The overall control
objectives are divided into two subobjectives, where the first is target
circling that all vehicles rotate a circle around the target, and the sec-
ond is that the vehicles are eventually evenly spaced on the circle. The
former part is based on the cyclic estimation of target to get close to
the target, the latter is designed by also cyclic pursuit strategy using
the relative angle between the neighbors. An important feature of the
controller is that not all vehicles know the target’s position. For hunting
with obstacle avoidance, artificial potential method and label’s change
strategy between neighbors are also applied to guarantee obstacle avoid-
ance. Numerical simulations are given to verify the effectiveness of the
proposed controller.
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1 Introduction

Recent decades witnesses the rapid development of distributed control of multi-
agent systems. It is partially due to the increasing need to perform more difficult
and complex tasks, where it contributes to increasing efficiency, reducing the
system cost and providing the redundancy against individual failure. In partic-
ular, hunting behavior where multi agents enclose the target in a certain area,
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has attracted much attention recently. For example, In [15], a feedback control
method was first taken into account to make multi robots round up the target
robot into a certain area. In [11], the neural network method and the methods
of dynamic alliance was studied for the pursuit and capture behavior. In [12,14],
the author performed the case where the unicycles form a circular formation
under all-to-all communication with unit constant velocity or nonidentical con-
stant velocity.

Then, formation under the cyclic pursuit strategy was further studied. In [9],
a cyclic controller for the desired pursuit pattern of moving target in 3D space
was developed. In particular, there are many case where the target is given and
known to all the vehicles. In [2], the limited visibility of the onboard sensors
were took into account in the cyclic pursuit strategy. In [7], the author studied
the case where a rigidity of graphs was utilized in the spaced formation of circle.
A hybrid control law of the cyclic enclosing formation was introduced in [10].
It was shown in [16] that a distributed dynamic control law for circle formation
of unicycles when the target is just known to one cycles was developed. In [17],
the cycle formation is only based on the bearing-only measurement. Further-
more, it is some work of circle formation with more general networks. In [13],
a balanced graph condition was considered in designing the dynamic controller.
A controller is studied for circle formation with even a jointly connected net-
work was proposed in [3,4]. In [5], the author developed the case of which cyclic
pursuit formation with a hierarchical controller.

Compared with the existing result, the main contribution of this brief are
listed in the following four aspects. First, the aforementioned results on hunting
problem almost consider the case of unicycles where the target is known to all the
vehicles. Our proposed controller is based on the information of estimation and
neighbors via cyclic communication network G. Second, a hierarchical structure
of the controller is to solve the underactuated and nonlinear characters. Third,
artificial method and label-change strategy are considered to avoid collision,
space evenly and rotate around the target.

The rest of this paper is organized as follows: Sect. 2 introduces some pre-
liminaries and gives definition of hunting problem. Section 3 presents the dis-
tributed hunting controller based on the cyclic estimation and pursuit strategy.
Some computer simulation results are presented in Sect. 4. Section 5 concludes
the article.

Notation: Throughout the paper, Rn denotes the n-dimensional Euclidean Space.
‖·‖ denotes the Euclidean norms. (·)ij denotes the element of (·) in row i, column
j. λmin(·) denotes the smallest eigenvalues of a square matrix (·).

2 Problem Formulation

First, consider a group of N underactuated surface vehicles represented by the
dynamics found in [6] with kinematics and kinetics:{

η̇i = J(ψi)vi

Miv̇i + Civi + Divi = τi
(1)
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with
ηi = [xi, yi, ψi]T ,vi = [ui, vi, ri]T , τi = [τiu, 0, τir]T

Mi =

⎡
⎣m11i 0 0

0 m22i 0
0 0 m33i

⎤
⎦ ,Ci =

⎡
⎣ 0 0 c13i

0 0 c23i

c31i c32i 0

⎤
⎦

Di =

⎡
⎣d11i 0 0

0 d22i 0
0 0 d33i

⎤
⎦ ,J =

⎡
⎣cos(ψi) − sin(ψi) 0

sin(ψi) cos(ψi) 0
0 0 1

⎤
⎦ .

ηi ∈ R
3 is the position vector in the earth-fixed reference frame; vi ∈ R

3 is
the velocity vector in the body-fixed reference frame; Mi ∈ R

3×3 is the inertia
matrix; Ci ∈ R

3×3,Di ∈ R
3×3 denote the coriolis and centripetal matrix damp-

ing matrix, respectively; τi ∈ R
3 is control vector with τiu the surge force and

τir the yaw moment.

Fig. 1. Distributed hunting behavior (USVs which are initially located in plane forms
a circle formation and rotate the target).

Figure 1 illustrates a group of N , underactuated surface vehicles perform the
distributed hunting behavior for a preset target P ∗. Given sense radius R > 0,
if ||Pi − P∗|| ≤ R, vessel i get the position P∗. For ease of expression, we label
the vehicles as follows:

Remark 1. The label are sorted first in ascending order in a counterclockwise
manner based on the angle θi, 0 ≤ θi ≤ 2π and θi ≤ θi+1, i = 1, 2, . . . , N − 1
between their position and estimation of target.

θi = atan2(xD
i , yD

i )
= atan2

(
(xQ

i − xP
i ), (yQ

i − yP
i )

) (2)
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where Pi(xP
i , yP

i )T , Qi(x
Q
i , yQ

i )T is the position of vessel i and the estimation i of
the target. Di � ||Pi − Qi|| is the relative position from vehicle i to estimator i.

Consider the vehicles’ communication networks are described by θi as G =
(ν, ε), where ν = {1, 2, . . . , N} and ε = {(1, 2), (2, 3),. . . , (N − 1, N), (N, 1)}. It
means that vehicle i only gets the information from neighbor i + 1 that are in
front of itself.

Now, we are ready to provide two problems of distributed hunting problem
as below:

Problem 1: Collective Hunting Problem: Given n vessels defined as (1), design
a distributed control law:

ui = f(Pi, Qi, θi, θi+1), i ∈ ν

such that n vehicles perform the collective hunting behavior by spacing evenly
on the same circle and rotating around the target, as follows.

⎧⎨
⎩

Di = r,
(θi+1 − θi)mod(2π) = 2π

n

θ̇i = θ̇j ,
(3)

where i �= j and i, j ∈ ν. When i = n, i + 1 = 1. r is defined as the hunting
radius.

Note that, in real application, USV is a rigid-body system with its body and
length, the control problem becomes a collective control problem with obstacle
avoidance, as follows.

Problem 2: Collective Hunting with Obstacle Avoidance Problem: Given n
vessels defined as (1), design a distributed control law:

ui = f(Pi, Pj , Qi, θi, θi+1), i ∈ ν, j ∈ Ni

where Ni = {j, j ∈ ν|(||Pi − Pj || ≤ 1
2R)}. Such that n vehicles achieve not only

the above objectives but also the obstacle avoidance as below.

Pi(t) �= Pj(t) �= P∗(t) (4)

where i �= j, i, j ∈ ν at any time t.
In this brief, we focus on the problem of collective hunting with obstacle

avoidance. The following section will give the control law to achieve the above
all objectives.

3 Cyclic Estimation and Pursuit Hunting Controller
Design

From the practical viewpoint, it is important to achieve the desired global hunt-
ing behavior through only local information. Figure 2 illustrates the structure of
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distributed hunting controller, which consists two parts, namely, hunting behav-
ior control and vehicle kinetic control. The immediate control signal ud

i , ψ
d
i are

only based on the estimator Qi and relative angle θi+1, θi. Then discuss and
prove the stability of the closed system. Finally, the surge force τiu and the
sway force τir of the hunter vehicle i are derived via the PID controller. Some
assumptions are given before designing the control law.

Fig. 2. Structure of distributed hunting controller

Assumption 1. R ≥ r and vessel i get the global position of P∗ if target is in the
sense radius R.

Remark 2. R ≥ r means that all vehicles eventually sense the position of posi-
tion of target, which is a necessary condition for solving the collective hunting
problem. USV equips with the differential GPS and millimeter wave radar, which
can calculate the global position of P∗ if ||Di|| ≤ R.

Assumption 2. The vehicle i needs to know the initial label of its own.

Remark 3. Label-change strategy contribute to the obstacle avoidance between
the vessels during the hunting. The following section give the reason.

3.1 Cyclic Estimation of the Target for Balanced Hunting

In this section, a decentralized estimator of the target’s position Qi is designed
for vehicle i to get close to the target. The vehicles exchange their estimation
via the cyclic communication graph G. Before giving the form of estimator, a
lemma of circular matrix is introduced.

Lemma 1. Every circular matrix C ∈ R
n×n can be represented as in [9]:

C = circ(c1, c2, . . . , cn)
= c1In + c2Πn + c3Π

2
n + · · · + cnΠn−1

n
(5)

where Πn = circ(0, 1, 0 . . . , 0) ∈ R
n×n. Further, the circulant’s representer is

defined as:
pc(λ) = c1 + c2λ + c3λ

2 + · · · + cnλn−1 (6)

Since C = pc(Πn). Then, the eigenvalues of C are λi = pc(ωn−1), where ω =
ej2π/n with j =

√−1 and i = 1, 2, . . . , n. �
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From the lemma above, we will have the dynamic equation of estimator Q
as follows:

Q̇i = k1((Qi+1 − Qi) + sgn+(Δi)(P ∗ − Qi)) (7)

where Qi is vehicle i’s estimation of target when i = 1, 2, . . . , n−1. When i = n,
estimator Qi+1 is equal to Q1. k1 > 0 is a positive constant, which determines the
convergence speed of estimators. Δi = R − ‖Di‖2 represents difference between
the sense radius R and relative distance ‖Di‖2 to the target. sgn+(·) is a sign
function defined as follows:

sgn+(x) =
{

1, x ≥ 0
0, x < 0

Further, the initial value of the Qi is based on the sense radius R of the equip-
ment, just like radar, which is calculated as follows:

Qi(0) = sgn+(Δi)P ∗(0) (8)

for all i ∈ n. P ∗(0) denotes the initial position of the target.
In order to analysis the overall estimation of the multi underactuated surface

vehicles, we will rewrite the (7) in the following vector form:

Q̇(t) = AQ(t) + B(t)(1 ⊗ P ∗ − Q(t)) (9)

with A = circ(−k1, k1, 0, . . . , 0) ∈ R
n×n, B ∈ R

n×n is a matrix where the
diagonal terms bii = 0, or, k1, the other term bij = 0, i �= j. Where Q =
[Q1, Q2, . . . , Qn]T ∈ R

n and cir denotes the circular matrix. 1 represents a col-
umn vector [1, 1, . . . , 1]T . Then we will give the theorem for the estimation.

Theorem 1. Suppose that estimation Q of the target based on the cyclic com-
munication network G uses the form of (9) with the initial conditions (8), one
has limt→∞(Q(t) − 1 ⊗ P ∗) = 0,∀i ∈ n. �

Proof: First, we introduce the estimation error eQ = Q − 1 ⊗ P ∗, which is
also a column represented eQ = [eQ

1 , eQ
2 , . . . , eQ

n ]. Take the derivative of eQ and
substitute the (9), we will have the following dynamics:

ėQ(t) = Q̇
= AQ(t) + B(1 ⊗ P ∗ − Q(t))
= (A − B)(eQ + 1 ⊗ P ∗) + B(1 ⊗ P ∗)
= (A − B)eQ + A(1 ⊗ P ∗) − B(1 ⊗ P ∗) + B(1 ⊗ P ∗)
= (A − B)eQ

(10)

Since A is circular matrix, its representer is pA(λ) = −k1(1 + λ) and the eigen-
values are given as λi = pA(ωi−1), i = 1, 2, . . . , n, from Lemma 1. Then, the
eigenvalues can be rewritten in complex form as:

λi = k1[cos( 2π(i−1)
n ) − 1] + jk1 sin(2π(i−1)

n )
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where i = 1, 2, . . . , n. Since k1 > 0. The matrix A always has a zero eigenvalue,
λ1, while the remaining n − 1 eigenvalue λi, i = 2, 3, . . . , n, lies in the left-half
complex plane. Based on the Gersǧorin disk theorem [8], all the eigenvalues of
A = [aij ] are located in the disks as follows:

Di = {z ∈ C : |z − aii| ≤ ∑
j∈A,j �=i

aij} (11)

Then the eigenvalues of matrix A are all located in the circle centered at (−k1, 0)
with the radius of k1. Since matrix B only changes the center of the disk for A.
The eigenvalues of matrix (A − B) are also located in the disk as follows.

D′
i = {z ∈ C : |z − aii − bii| ≤ ∑

j∈A,j �=i

aij} (12)

where bii is equal to 0 or k1, which is determined by whether the vehicle i can
sense the target’s position or not. So the eigenvalues of (A − B) are located in
the circle D′, where the radius is the same as A and center of the disk may moves
left a distance of k1.

Therefore, Q(t) converges to the stable and invariant. Based on (9), it is easy
to get that Q1(t1) = Q2(t1) = · · · = Qn(t1) when t = t1. From Assumption 1,
if the estimation Q converge stable in the circle but not the center of the circle,
which means that there is s static error between the estimation Qi and the target
P ∗. There must be at least one vehicle can sense the target’s position, which
means that the feedback of the target’s position for estimation. Then estimation
exchange their information via cyclic communication network to finally eliminate
the error between estimation and target. Finally, Theorem 1 is proved. �

3.2 Rotation and Cyclic Pursuit

In this section, we design the hierarchical controller for the hunting problem with
obstacle avoidance via the information of estimation of target and neighborhood.
The first step is to derive the immediate signal to get close to the target and
rotate around the target.

u = ur + uθ (13)

where u ∈ R
n is a column vector controller defined as [u1,u2,u3, . . . ,un]T . It

is consists of two parts: ur ∈ R
n is a feedback control law determining D. The

second part uθ ∈ R
n denotes the cyclic pursuit law determining θ, which is to

space evenly and rotate around the target.
Then, Qi and Di are seen as the center of the circle and radius respectively,

the immediate signal directly determine Di and θi, given the kinematics between
the vehicle i and estimator i as below.{

Ḋi = ur
i

θ̇i = uθ
i

(14)

Then we give the detailed control law for ur and uθ to control D and θ.

ur = k2(1 ⊗ r − D); (15)
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where k2 is the positive constant. D = [D1,D2,D3, . . . , Dn]T is a column denot-
ing the relative distance from vehicles to the estimation.

Theorem 2. Suppose that the control part ur based on the estimation of target
uses the form of (15), all vehicles asymptotically converge to the circular obits
of the target. �

Proof: Define a Lyapunov function V =
n∑

i=1

1
2 (r −Di)2, take derivative of V and

substitute (14) and (15):

V̇ = −
n∑

i=1

(r − Di)Ḋi

= −(1 ⊗ r − D)T Ḋ
= −k2(1 ⊗ r − D)T (1 ⊗ r − D)
≤ 0

(16)

where it notes that V is equal to zero only when D1,D2,D3, . . . , Dn is equal to
r. Since Vi = 1

2 (r − Di)2 ≥ 0, so from the Lyapunov theorem, It is easily to see
that D asymptotically converges to 1 ⊗ r with control law ur. �

The second step is to make vehicles rotate around the target and space evenly
by the control law uθ, which is in the form:

uθ = k3(Cθ + P ) (17)

where C = circ(−k3, k3) ∈ R
n×n, θ = [θ1, θ2, . . . , θn]T ∈ R

n, P =
[0, 0, . . . , 2π]T ∈ R

n.

Theorem 3. Suppose that the control part uθ based on cyclic pursuit strategy
uses the form of (17), all vehicles asymptotically space evenly and rotate around
the target.

Proof: The theorem is achieved based on a similar idea used in [9]. The previous
parts implies θ̇ = uθ. Then substitute (17) and take the derivative of θ̇, then we
have θ̈ = Cθ̇. Since C is circular matrix, its representer is pC(λ) = −k3(1 + λ)
and the eigenvalues are given as λi = pC(ωi−1), i = 1, 2, . . . , n, from Lemma 1.
Then, the eigenvalues can be rewritten in complex form as matrix A. There-
fore, the matrix C always has a zero eigenvalue, λ1, while the remaining n − 1
eigenvalue λi, i = 2, 3, . . . , n, lies in the left-half complex plane, which means
that θ̇ converges to the null space {σ|σIn, σ ∈ R}, In = [1, 1, . . . , 1]T ∈ R

n,
which corresponds to the λ1 = 0; i.e.. θ̈(t1) = [θ̇1(t1), θ̇2(t1), . . . , θ̇n(t1)]T sat-
isfies θ̇1(t1) = θ̇2(t1) = · · · = θ̇n(t1) = σ in the steady state. Furthermore,
we have:

n∑
i=1

θ̇i(t) = 2k3π for all t ≥ 0 (18)

Therefore, we have θ̇i(t1) = 2k3π
n = k3(θi+1(t1) − θi(t1)). From (17), we will

derive that: {
θi+1(t1) − θi(t1) = 2π

n ; i = 1, 2, . . . , n − 1
θ1(t1) − θi(t1) + 2π = 2π

n ; i = n
(19)



Distributed Hunting for Multi USVs 109

Therefore, we proof the Theorem 3. Finally, the circular formation of vehicles
and space evenly and rotation around the target are formed.

3.3 Collision Avoidance and Change the Label Between Vehicles

In the previous part, we achieve the objectives of the hunting problem. Note that
during the forming of the circular formation, the label of vehicles is set by the
initial different estimations of the target, it maybe break rule of Remark 1. For
example, the label of vehicles maybe first set as 1, 2, 4, 3, but the actual label
around the target should be 1, 2, 3, 4. It may cause serious problems such as
the communication network G is not cyclic network again. Here, we propose the
artificial potential method and the strategy of changing label between neighbors.
The artificial potential methods are stated as follows:

ζi =

⎧⎪⎨
⎪⎩

(
1
2
R − Di)2, Di ≤ 1

2
R

0, Di >
1
2
R

(20)

where ζi is a potential function. R is the sense radius of the vehicle. ζi is set as
repulsive function added to the immediate signal.

Combining the kinetics and kinematics of USV (1), the desired surge velocity
ud

i and sway velocity vd
i by the immediate signal. Transform it into the earth

framework, we can finally get the desired velocity of vehicle i:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vx
id = ur

i cos θi − uθ
i sin θi +

n∑
j∈Ni

ζj cos �j

vy
id = ur

i sin θi − uθ
i cos θi +

n∑
j∈Ni

ζj sin �j

(21)

where vx
id, v

y
id is the desired velocity in the earth framework. �j denotes the

vehicles whose angle from vehicle i to vehicle j, which is in the following form:

�i = atan2((yP
i − yP

j ), (xP
i − xP

j ))

For the USV vehicle, the surge velocity ud
i and ψd

i can be derived from (refCon-
trol.20),

ud
i =

√
vx

id × vx
id + vy

id × vx
id, ψd

i = atan2(vy
id, v

x
id) (22)

3.4 Vehicle Kinetic Control

The following work is to design a control law τiu and τir to make the surge
velocity ui and the sway velocity vi of the hunter i converges to the desired
immediate control signal ud

i and vd
i . Analyse the kinetic equation of the under-

actuated hunter vehicles, the surge velocity ui and the heading angle ψi are
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mainly influenced by control input τiu and τir respectively. So for simplicity of
achievement, a PID controller is proposed to make the goal. Define the surge
velocity error eu

i and the phase angle error eψ
i as:

{
eu
i = ui − ud

i

eψ
i = ψi − ψd

i

(23)

where eu
i and eψ

i are the surge velocity error and heading angle error between
vehicle states and the desired immediate control signal. Based on the PID con-
troller scheme, the control law of hunter vehicle i is obtained as follows:

⎧⎪⎪⎨
⎪⎪⎩

τiu = kpu
i eu

i + kiu
i

∫ t

0

eu
i dt + kdu

i ėu
i

τir = kpp
i eψ

i + kip
i

∫ t

0

eψ
i dt + kdp

i ėψ
i

(24)

where (kpu
i , kiu

i , kdu
i ) and (kpp

i , kip
i , kdp

i ) are positive constant, which represent
proportionality coefficient, integral coefficient and differential coefficient of the
surge velocity and phase angle of hunter vehicle i.

4 Simulation

In this section, we carry out some numerical simulations to demonstrate the
performance of the controller (13) for hunting problem. Consider an underactu-
ated surface vehicle with model parameters just as in [1]: m11 = 1.956,m22 =
2.405,m33 = 0.043, d11 = 2.436, d22 = 12.992, d33 = 0.0564. For the purpose
of comparisons, we suppose the controller is in two cases, which contains label-
change strategy and which is not.

For simulation use, we define one target and five hunters, making the sense
radius is R = 8 m and hunting radius is r = 5 m. Then we give the initial conditions
for the hunting problem as follows: the target position is set P∗ = (−5,−3)T , the
hunter vehicles’ positions and states are set without loss of generality, only one
vessel initially knows the position of target:

P =

⎡
⎢⎢⎢⎢⎣

2 8
8 −2

−2 10
−2 −7.5
4 −10

⎤
⎥⎥⎥⎥⎦ , ψ =

⎡
⎢⎢⎢⎢⎣

arctan 4
arctan 1

7

arctan 1
5

arctan 1
5

arctan 1
5

⎤
⎥⎥⎥⎥⎦ ,v =

⎡
⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦

The control parameter of hunter vehicle i are taken as k1 = 0.5, k2 = 1, k3 =
0.15, kpu

i = 12, kiu
i = 0.7, kdu

i = 0, kpp
i = 0.1, kip

i = 0, kdu
i = 5. Simulation results

are shown in the following figures, and the simulation time is set 50 s.
Figures 3 and 4 show the distributed hunting behavior with label chang-

ing between neighbors. Figure 3 shows that vehicles finally surround and rotate
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Fig. 3. Distributed hunting behavior where label can change between neighbors.

Fig. 4. Distance and relative angle between the angle where label can change between
neighbors

around the target, and the vehicles space evenly around the target. Figure 4 indi-
cates that distance from target and relative angle have oscillations at the begin-
ning, because vehicles change its label between neighbors. But it can asymptot-
ically converges to the desired value. One can conclude the effectiveness of the
controller for distributed hunting by multi USVs.

5 Conclusions

In this paper, we have studied collective hunting problem with obstacle avoidance
for a group of USVs. The problem includes two subobjectives of hunting target,
for which each vehicle maintains the desired distance from target, spaces evenly
and rotates around the target. The controller are based on the cyclic estimation
of target and feedback control law to get close to the target. It is designed
by also cyclic pursuit strategy using the relative angle between the neighbors.
Artificial potential method and strategy of changing label between neighbors are
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also applied to guarantee obstacle avoidance and achieve the goal. It is worth to
mention that the control law guarantee almost collision during the forming the
formation.
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