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Abstract. In this work, a method based on position predicting, velocity
filtering and self adaptive parameter tunning is addressed for state esti-
mation and control for swarm of mini unmanned aerial vehicles (UAVs),
in order to deal with random noise and data dropout appeared during
flights. Under conditions of random data dropout rates and communica-
tion latencies, the presented algorithm gives position prediction based on
filtered velocity estimation and it fuses the prediction with sensor data.
At the same time it corrects the prediction by the error between predic-
tion and measurement of the previous step. The algorithm is designed for
tracking mini UAVs with identical marker configuration, and the prin-
ciples refered is in potential of serving to state estimation in various
circumstances. Based on this localization algorithm, a cascade nonlinear
control model is developed for swarm UAV control. This work contributes
mainly to the object localization and control in a multi-agent system in
which all the agents are considered to be in an identical form, hoping
that this work will be the testbed for more complicated swarm robot con-
trol experiments. Comparison results of state estimation are presented
by implementing experiments with or without data dropout.
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1 Introduction

1.1 Swarm UAV

In the recent years, unmanned aerial vehicles (UAVs) swarm has been attracting
lots of attention. The deployment of an UAVs swarm is able to accomplish much
more complex and difficult tasks than a single vehicle. Considerable promis-
ing applications are expanded in both military and civil areas. For example,
UAV swarms can operate within military missions under a mission-based frame-
work [1]. UAV swarms can also be deployed for patrolling and monitoring an
area of people [2] or an area of wild-life [3]. As for post-disaster management,
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UAVs can play a crucial role in disaster response by mapping terrain, estimat-
ing damage, etc. [4] Several applications in agriculture domain are also presented
recently. Loayza et al. performs a sowing seeding task using a centralized UAVs
swarm [5], and a swarm of collaborating UAVs are designed for field coverage
and weed mapping by Albani et al. [6]. In general, UAVs swarm includes var-
ious technologies and theories, such as robot sensing, data fusing, cooperative
optimization, information network and so on. Especially with the development
of drone markets, UAVs swarm are highly regarded by different research areas.

Over the last few years, many multi-robot systems have been presented,
which can be classified into two typical types according to the global informa-
tion accessibility [7]. One is the robotic swarms whose agents only have access
to local information and limited communication ability. The other type is called
general multi-robot system and its agents are able to obtain global informa-
tion and all-to-all communication. Another sorting principle is based on the
communication structure. Under this principle, multi-robot systems are divided
into three subclasses, i.e., centralized systems, decentralized systems, and semi-
centralized system (semi-centralized systems are also known as leader-follower
structure [8]). Some quick conclusions can be drawn from two classifications
above. 1. All of the robotic swarms are decentralized. It requires every robot to
have at least one active position sensor so that they can build up the system. 2.
A general multi-robot system can either be centralized or decentralized. Since
decentralized algorithms can be transformed into a variety of centralized algo-
rithms by employing a systematic methodology in the all-to-all communication
condition [9], both active and passive position sensors are feasible for general
multi-robot systems.

In this paper, we mainly discuss the centralized general multi-robot system.
One major problem of this type of systems is data dropout and many compen-
sation solutions have been put forward.

1.2 Related Work

For indoor state estimation, different methods and solutions have been proposed.
A decentralized localization system using ultra-wideband radio triangulation [11]
is introduced but with error in position (about 10 cm) that is not tolerable by
swarm formation flights. James A. Preiss et al. introduce an Iterative closest
point (ICP) frame-to-frame tracking method to track uavs [12], which provides a
method to register a newly obtained point cloud to a previous one. This method
considers the compensation for temporary communication latencies by imple-
menting an Extended Kalman filter (EKF) to fuse data from motion capture
system and IMU measurement, which requires the completeness of information
in each frame obtained (with no point dropout) during flying. Though simi-
lar in key components, the work mentioned in this paper differs from previous
works in the way that it utilizes the geometry characteristic of the markers and
fuses the estimated velocity and acceleration to serve for prediction of the state
estimation in the next frame by which it can compensate for possible noise and
data dropouts. Random marker dropout (easily caused by overshadowing among
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agents in tightened formations) and other noisy conditions (random occurrence
of reflections which are visible to the motion-capture cameras, etc.) reduces the
robustness of the state estimations if not taken into considerations.

2 State Estimation

Compared to outdoor circumstances, indoor motion capture systems such as
vicon provides much higher precision in position estimation [10], which allows
the realization of complicated and precise control algorithms. However, typical
tracking systems provides only the precisely measured markers. In presence of a
multiple objects, most tracking systems fail to provide robust single-point object
tracking algorithms. Furthermore, when facing with multiple objects, main exit-
ing tracking software systems require different configurations for every single
agent. These two aspects give rise to a mounting complexity of experiment imple-
mentation when the number of objects amounts. In this section an algorithm to
track all the uavs is developed, basing on an uniform marker configuration used
for every uav.

2.1 Method Overview

Based on identical marker configuration whose geometry characteristic is initially
known, we present in this section an algorithm to track vehicles. The algorithm
fuses the velocity informations to give predictions, in addition to the geometry
characteristic and the relative positions of the markers. After each estimation,
the algorithm uses the absolute value of the error of the previous estimation to
correct the current prediction. The algorithm is offboard and is driven at 50 Hz
on a PC by the ROS node who receives vicon marker ROS message.

2.2 Steps in the Method

The algorithm can be divided into several phases:

1. Prediction:
In the prediction phase it is assumed that the velocity stays constant, and
the prediction is modified in accordance the error of the prediction on last
time step. The prediction phase is presented in the Eq. (1):

x̃k = xk−1 + vk−1 × Δt + ρ × εk−1 (1)

2. Registration of markers to corresponding vehicles1:
In this step, it is assumed that changes in attitude between two time steps
are negligible and there is no command on yaw angle ψ and its rate ω. Exper-
iments show good performance of this assumption at moderate aggressive
flight. When no more than 2 points around the predicted center position of
an uav are detected, a most similar frame comparison (MSFC) algorithm is
implemented. In order to find out in what direction the detected point is,
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Algorithm 1. Marker registration algorithm
Input: Point cloud: vicon markers
Output: Vehicle positions xk

1: algorithm to track object from a given point cloud
2: if the first time detect marker then
3: Initialization: assign the positions x0 and yaw angle ψ for every vehicle, save

the relative vectors r
4: else: at step k
5: for vehicle i do
6: find the set of points close to x̃k,i: Pts = {pt0, pt1, ..., ptn}
7: if |Pts| > 2 then
8: check the geometry relation of the vectors formed by points in Pts
9: if right geometry relation then

10: calculate xk,i using Pts
11: find vehicle i, go to the i + 1 vehicle
12: else
13: Cannot find vehicle i, go to i + 1 vehicle

14: if |Pts| <= 2 then
15: for every ptj in P ts do
16: ri,j = ptj − x̃k,i

17: find the most similar r (note as r�
i,j) to ri,j

18: set the xk as ptj − r�
i,j

19: else
20: Cannot find vehicle, go to the i + 1 vehicle

21: return positions xk

referring to the predicted center, the MSFC algorithm calculates the vector
from the predicted center to the detected point, compares it with the four
original vectors registered at initialization step and selects the most similar
one as the direction the current detected point is in, relative to the predicted
center.

3. Renew the error of the prediction in the step k: in this phase of the algorithm,
the error of the predicted position is recalculated and is used to renew the
weight it takes in the next estimation step.

εk = xk − x̃k (2)

δ = ‖ε‖ (3)

ρ =
δ

δ + λ
(4)

where λ is a hyper-parameter which depends on the average absolute of the
error. We design the expression of the weight ρ as in (4) because it is aimed
to adapt the weight of the prediction in accordance to the norm of its error.
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2.3 UAV Marker Configuration and Its Initialization

In [12] a method of initialization is mentioned with a guess of the yaw angle
for each vehicle. This method requires iterations for the guess of the initial yaw
angles begin from which they converge to their estimated values. This method
provides possibilities of recognition failure and high computational cost. Within
the scope of this paper a square configuration is used as the initialization config-
uration for uav markers, and the center of the squares represents the position of
uavs. For considerations on precision and computational effectiveness, the initial
yaw angles are manually assigned for every vehicle through an opencv interface
each time the experiment is launched. This assignment successfully initializes
the yaw angle of every vehicle in correspond with their true directions related
to the coordinate system in the vicon software. With all these informations, the
initial position of every vehicle and four vectors pointing from the center to the
four markers of the vehicle is obtained. In later discussions, for the purpose of
simplification, it is assumed that there is no command on yaw angle and its
rate; further, it is also assumed that during the flight the changes of attitudes
are negligible.

2.4 Velocity Filtering

As shown in Sect. 4, experiments show that when the rate of marker dropout is
high, the estimation of velocities is accompanied with sharply oscillated noises. A
filtering solution is proposed that, before it is used for prediction in the next esti-
mation step, a first-order low pass filter with self-adapted parameters is designed
and implemented to extract the low frequency component of the raw velocity
v̂k = xk − xk−1 from the noise. The principle of first order low pass filter is
presented in (5):

vk = α × v̂k + (1 − α) × vk−1 (5)

Self-adaptation design of the filter parameter α is based on the principles: (1)
The filter is designed to track the input data when it varies rapidly (if the
variation of the input data is larger than a threshold ε). The agility of the filter
augments with the varying rate of the input data. (2) The filter is designed
to minimize the impact of sharp changes (if the direction of two consecutive
variation changes, the counter and α are reset to zero). (3) The filter is designed
to follow the consecutive augmentation or decrease of the input data (if two
consecutive changes is towards the same direction, we tend to augment α). Here
the design of the self-adapted α is presented in Fig. 1.

3 Control

The controller used in this paper is based on [13], to which augmented a cascade
design (P-PID) for position control with the inner loop is a proportion con-
troller for position-velocity and the outer loop is a PID controller for velocity-
acceleration. Both the inner and outer loop are added with feed forward terms
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Fig. 1. Design of self-adapted low-pass filter

from the trajectory plan. The on-board control input is the attitude setpoints
(φ, θ, ψ̇), and the off-board commander setpoints are position pdes, velocity vdes,
and acceleration ades. Position error is defined as

ep = pdes − p (6)

In the inner loop the velocity is renewed with the position error, and is fused
with the feed forward velocity from the planned trajectory:

ṽ = Kpp × ep (7)

v = ṽ × (1 − ρ) + vdes × ρ (8)

In the outer loop we define velocity error as

ev = v − vdes (9)
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and the velocity error is utilized to renew the acceleration with a PID controller,
fused with the feed forward acceleration from the trajectory plan:

ã = Kp × ev + Ki ×
∫

ev + Kd × Δev (10)

a = ã × (1 − η) + ades × η (11)

where Kpp,Kp,Ki,Kd are positive diagonal matrices.

4 Experiment

All experiments in this paper are conducted with the crazyflie micro uav [14]. A
Vicon motion capture system is used for testing the state-estimation method and
for estimating vehicles’ position and velocity. Onboard gyros and IMU sensors
are used for estimating the vehicles’ attitude. Our software is written in C++
in the ROS kinetic environment. It is running on a PC with Ubuntu 16.04, TM
i7-6700HQ, 2.60 Hz, and 16 GB RAM. We use ROS messages to transmit the
point cloud information between motion-capture system and PC, and also the
state estimation between PC and UAVs.

An experiment is conducted with the command of two vehicles to execute
taking off (two phases: 0.2 m/s and 0.3 m/s) - hovering - circling (two uavs get-
ting to the same radius of 0.8 m and beginning to circling at angular rate of
0.785 rad/s (equivalent to 8 s/r)). The experiment is conducted with the same
command under different conditions: one with low marker dropout rate and the
other with high marker dropout rate.

A. Performance without marker dropout:
In optimal conditions where marker dropout rate stays nearly to zero, the

algorithm presented performs well in the test of circling as shown in Fig. 2. The
results show that the position of the two vehicles follows well the curves of
sinusoid and the velocities without much oscillations.

B. Velocity filtering in presence of data dropout and the position estimation
result.

It is shown in Fig. 2 that the estimation of velocity is obtained with oscil-
lations and noise. Experiments were conducted to try to find out the relation
between noise presented in velocity and data dropout rate. In some extremely
noisy conditions where the estimated velocity of vehicles oscillates violently
added with marker dropout rate staying at a high level, vehicles are easily out
of control even when they are commanded to track simple trajectories. Figures 3
and 4 show the impact of marker dropout rate on the oscillation of estimated
velocity. When the two vehicles were commanded to follow the same trajectory
with the same angular speed, vehicle0 who flies under severe marker dropout
condition has considerable oscillations in the velocity curve while the other vehi-
cle gives back tolerable estimation of velocity. In order to augment the precision
of the position prediction, we implement the Low-Pass filter to the velocity cal-
culated by difference of two consecutive positions, as mentioned in Sect. 2.4.
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Fig. 2. Position of two vehicles commanded circling
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Fig. 3. Number of belonging markers detected for each of the two vehicles

From Figs. 3 and 4 we conclude that while different rates of marker recognition
affects the calculated value of velocity, we can reduce the violent and sharp oscil-
lation of velocities by filtering it with the filter proposed. State estimation with
velocity filter added in the prediction step. Figure 5 shows the result of position
estimation after filtering the velocity.
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Fig. 4. Velocity oscillations under different data-dropout conditions
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Fig. 5. Position and velocity of two vehicles after passing the low pass filter
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5 Conclusion

State estimation is the base and one of the key components in robot control
systems. We have described a method for indoor state estimation of swarm uavs
under influences of random noise and data dropout. In this paper, the state
estimation issue is simplified by utilizing the high precision of measurements
provided by the motion capture systems. Although indoor motion capture sys-
tems provides high resolution in single-point position measurements, our algo-
rithm takes into consideration complex situations met by swarm robot control in
terms of state estimation and object tracking. To achieve robust performances,
we fully utilize the geometry characteristic of the markers on one vehicle, together
with precise prediction of positions based on smooth velocities filtered by a self-
adaptive low pass filter. Experiments show good tracking and filtering results.
The method mentioned in this paper is hoped to serve as the testbed for more
complicated swarm robotic control systems in the future. In future work, it is
planned to include the control on yaw angle and its rate into the prediction
of the position, together with other attitude changes, in order to augment the
capability and robustness of the algorithm in more aggressive flights.
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