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Abstract. In this paper, we propose a novel variable-gain formation
algorithm to steer a group of unicycle type vehicles moving in straight
lines or circular orbits with three types of phase configurations (synchro-
nized, balanced and stabilization of the average linear momentum). The
algorithm design is carried out from the viewpoint of optimization theory
to guarantee that control gains are variable. Specifically, a step length
search algorithm used in optimization methods is employed to update
the control gain at each iteration. The implementation details of the rec-
tilinear/circular formation algorithm are given to show that the three
types of phase configurations can be reached by utilizing correspond-
ing well-designed objective functions. Furthermore, global convergence
properties of the formation algorithm are analyzed. Both the results of
simulations and experiments show good performance of the proposed
formation algorithm.
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1 Introduction

A team of mobile robots moving in rectilinear and circular formation have been
widely used in both military and civilian scenarios such as ground cleaning,
battlefield surveillance and source seeking [1–3]. In recent years, those formation
control problems have been investigated with various robot models, among which
unicycle models are frequently used in describing Unmanned Aerial Vehicles
(UAVs) and Wheeled Mobile Robots (WMRs) [4].

A brief review of formation control of unicycle type robots is provided as
below. In [5], the authors assume that both the orientation and the speed of
each unicycle can be controlled, which increases the complexity of controlling
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robots. In [6], oscillatory control is applied to control constant-speed unicy-
cle robots. However, the speeds of all the robots are required to be identical.
Ref. [7] focuses on the patterns of formation. Several final formation patterns
are generated by a centralized Hungarian algorithm for optimizing the robots’
goal positions. The disadvantage of it is that all the robots can not keep moving
with the final formation patterns. A more complex formation control problem is
discussed in [8–12], where all the robots not only move in desired circular orbits,
but also maintain a particular phase configuration. [8,9] focus on achieving syn-
chronized and balanced phase configuration for a group of robots with all-to-all
and limited communication, respectively. In synchronized phase configuration,
all the robots move in a common direction, while in balanced phase configura-
tion, the sum of the phasors of all the robots is zero. In [10,11], the authors
propose suitable feedback control laws for achieving particular type of circular
formation with synchronized or balanced phase configuration. It should be noted
that all the methods proposed in refs. [6,8–11] are based on the assumption that
the speeds of all the robots are identical. Under this assumption, many practi-
cal formation patterns can not be achieved for a group of robots with identical
angular frequencies such as concentric circular formation with different radii.
This assumption is removed in [12] and another phase configuration is defined
as the stabilization of the average linear momentum, which means that the aver-
age position of all the robots stabilize on a fixed point. However, the control gains
designed in all of the above-mentioned control schemes are fixed, which decreases
the usability of these methods since selecting appropriate control gains manually
is very time-consuming.

From the above discussion, we know that both the identical speeds and
fixed control gains have many limitations in practice. Motivated by these facts,
it is more realistic to propose a variable-gain formation algorithm for multi-
ple unicycle type mobile robots with nonidentical speeds. In this paper, we
design a variable-gain Rectilinear/Circular Formation Algorithm (RCFA) based
on Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [13], in which all the
robots are required to move in straight lines or circles with three types of phase
configurations (synchronized, balanced and stabilization of the average linear
momentum). Those formation patterns have several potential applications such
as crops harvesting and spying work in adversarial areas. The main contributions
of this paper are listed as follows:

1. Unlike these existing control methods, we solve the rectilinear and circular
formation control problems from the viewpoint of optimization theory. In
this case, three types of phase configurations can be reached by solving corre-
sponding optimization problems and the rectilinear/circular motion of robots
can be achieved by utilizing particular control laws. In particular, we intro-
duce a step length search algorithm into RCFA to update the control gain
at each iteration. Thus, the formation algorithm proposed in this paper has
variable control gains.

2. The control input designed in this paper contains only the angular fre-
quency and there is no requirements for the speeds of robots. Thus, RCFA
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acquires more flexibility than other methods. Furthermore, global convergence
of RCFA can be ensured while subject to some mild assumptions.

The remainder of this paper is organized as follows. Section 2 describes the
system model used in this paper. RCFA and global convergence of it are pre-
sented in Sect. 3. In Sect. 4, the algorithms are illustrated by simulations and
experiments. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 System Model

In this section, we represent the kinematic model of the unicycle type mobile
robots in the form of discrete-time integration [14]. Consider a group of N uni-
cycle robots, the kinematic model of the robot m is described by

xm,k+1 = xm,k + vm cos θm,kΔt (1a)
ym,k+1 = ym,k + vm sin θm,kΔt (1b)
θm,k+1 = θm,k + um,kΔt (1c)

where k denotes the kth iteration and θm is the orientation of robot m and
xm, ym ∈ R are the coordinates in the plane, for m = 1, . . . , N . The robot m
has a positive constant speed vm > 0 and um ∈ R is the control input (angular
frequency). Note that Δt is the sampling interval and it will be neglected in the
following analysis without loss of generality.

2.2 Problem Formulation

In this paper, we investigate the rectilinear and circular formation control prob-
lems from the viewpoint of optimization theory. In particular, a novel variable-
gain formation algorithm are proposed to make a group of robots keep moving
in rectilinear/circular formation with three types of phase configurations. There
are two major issues to be tackled in the design of the formation algorithm. The
first issue is that how to make the phase angles of robots reach a desired phase
configuration, and the other is that how to make all the robots keep moving in
straight lines or circles with one of the three types of phase configurations.

3 Main Results

3.1 Achieving Rectilinear/Circular Formation with Synchronized
and Balanced Phase Configuration

For the synchronized and balanced phase configuration, there is a so-called order
parameter defined as

pθ =
1
N

N∑

m=1

eiθm . (2)
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to measure the synchrony in the networks of N coupled oscillators [15]. When
all phase angles of robots are synchronized, all the robots have a common phase
angle. We have |pθ| = 1. The balanced phase configuration means that the sum
of the phasors of N coupled robots is zero, i.e., |pθ| = 0.

We solve the first issue by defining the corresponding objective functions. In
order to make a group of N robots reach the synchronized or balanced phase
configuration, the objective function fpθ

(θ) : RN → R is defined as

fpθ
(θ) = γ

N

2
|pθ|2 (3)

where θ = [θ1, . . . , θN ]T and γ = ±1. Each element of θ is the phase angle of
each robot. From the definitions of the synchronized and balanced phase config-
uration we know that fpθ

(θ) reaches its unique minimum when all phase angles
of robots are synchronized (for γ = −1) or balanced (for γ = 1). Thus, the phase
control problem is successfully transformed into an unconstrained nonlinear opti-
mization problem by defining the above objective function, i.e., the synchronized
and balanced phase configuration can be achieved by minimizing fpθ

.
The second issue can be tackled by utilizing particular control laws in RCFA.

RCFA is designed based on BFGS method to minimize the predefined objective
function. BFGS is an iterative method for solving unconstrained nonlinear opti-
mization problem. It begins with an initial state of the parameter θ and gener-
ates a sequence of improved estimates along descent direction. Finally, they will
stop iterating when the minimum of the objective function is found. Thus, the
main work of us is that designing appropriate descent directions, control laws
and the rule of updating step length according to the principles of the general
optimization methods.

The descent direction of the BFGS method at the kth iteration is defined as

dk = −B−1
k gk (4)

where Bk is an approximation of the true Hessian Hk of the objective function
and is a symmetric positive definite matrix and gk is the gradient of fpθ

(θk). dk

is a descent direction (gT
k dk < 0). Bk will be updated at every iteration by the

following

Bk+1 = Bk − Bksksk
T Bk

sk
T Bksk

+
ykyk

T

yk
T sk

(5)

where sk = θk+1 − θk, yk = gk+1 − gk.
In order to achieve rectilinear formation with synchronized and balanced

phase configuration, the control law is designed as

uk = αkdk (6)

where αk is the step length (control gain). Thus, when the objective function
fpθ

reaches its unique minimum, the control inputs will be zero, i.e., all the
robots will move in straight lines and meanwhile synchronized and balanced
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phase configuration can be achieved by setting fpθ
with γ = −1 and γ = 1,

respectively.
For the circular formation pattern, we change the control law into

uk = αkd̃k = αkdk + 1(−∞,0](‖gk‖)ωd (7)

where 1Ω(x) is the indicator function, i.e., 1Ω(x) = 1 if x ∈ Ω, and 1Ω(x) =
0, otherwise. ωd = [ω1, . . . , ωN ]T , the elements of ωd denote desired angular
frequencies of the robots and are constant values. It is not difficult to show that
d̃k is always a descent direction. When fpθ

reaches its unique minimum, we
have uk = ω0, i.e., all of the robots will move in circles with synchronized (for
γ = −1) and balanced (for γ = 1) phase configuration.

3.2 Achieving Rectilinear/Circular Formation with Stabilization
of the Average Linear Momentum

The average linear momentum is needed to measure the average position of the
robots, which is defined as

Ż =
1
N

N∑

m=1

vmeiθm . (8)

Apparently, the average position of all the robots stabilize on a fixed point if
and only if Ż = 0.

In order to make a group of N robots stabilize on a fixed average position,
the objective function fŻ(θ) : RN → R is given by

fŻ(θ) =
N

2
|Ż|2. (9)

Thus, fŻ(θ) reaches its unique minimum when the stabilization of the average
linear momentum is achieved.

Based on the same principles described in Sect. 3.1, the control laws (6) and
(7) can also be utilized to achieve the rectilinear and circular formation with
stabilization of the average linear momentum.

Remark 1: If all the robots have a common unit speeds, all three types of phase
configurations can be achieved by utilizing the order parameter, since pθ can be
interpreted as the derivative of the average position Z = 1

N

∑N
m=1 xm + iym.

However, we assume that all the robots have nonidentical constant speeds so
that pθ and Ż are treated separately in this paper. Note that synchronized
phase configuration can also be reached by maximizing fŻ .

3.3 RCFA: Rectilinear/Circular Formation Algorithm

Based on the discussion above, all the robots can move in straight lines or circular
orbits with three types of phase configurations by minimizing the corresponding
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Algorithm 1. RCFA
1 Set v and ω0 to be constant vectors and B0 = In.
2 Define the objective function by (3) or (9) ;
3 for k = 1, 2, . . . do
4 Compute the descent direction dk by (4);
5 Seek appropriate step length αk according to Algorithm 2;
6 Compute control input according to (6) or (7) ;
7 Compute Bk+1 by means of (5);

8 end

objective functions with particular control laws. The implementation details of
the RCFA are presented in the Algorithm 1.

In order to make the control input acquires variable control gains. The control
gain is searched by using the following Algorithm2. Note that two types of
descent directions dk and d̃k are denoted by dk in this algorithm.

Algorithm 2. Step length search algorithm
1 Choose a1 ∈ (0, 1), α ∈ (0, 1); Set j = 0;

2 repeat until f(θk + αjdk) ≤ f(θk) + a1α
jgT (θk)dk

3 j = j + 1;
4 end repeat

5 Terminate with αk = αj .

To obtain global convergence of RCFA, the angle θ̃k between dk and −gk is
needed, which is defined by

cos θ̃k =
−gT

k dk

‖gk‖‖dk‖ . (10)

We first show the convergence of Algorithm 2 in the RCFA by the following
lemma.

Lemma 1. Suppose that {θk} is a sequence generated by (6) or (7) with Algo-
rithm1, and f(θk) is bounded below in RN . Assume also that the gradient gk of
f(θk) exists and is uniformly continuous in the level set

L(θ0) = {θk ∈ RN |f(θk) ≤ f(θ0)} (11)

for an arbitrary staring point θ0 ∈ RN . If the descent direction dk satisfies that

0 ≤ θ̃k ≤ π

2
− η, η ∈ (0,

π

2
), (12)

we have ‖g(θ∗)‖ = 0 for any limit point θ∗ of the sequence {θk}.
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Proof. We prove this lemma by contradiction and suppose that θ∗ is a limit
point of the sequence {θk} and ‖g(θ∗)‖ �= 0. Since dk is a descent direction,
{f(θk)} is monotonically decreasing. Also because f(θk) is bounded below, the
limit of f(θk) exists and we obtain that f(θk) − f(θk+1) → 0, f(θk) → f(θ∗).
From Algorithm 2, we have that −a1g

T
k s̃k → 0, gT

k s̃k → 0 where s̃k = αjdk. In

addition, we can also show that cos θ̃k = −gT
k s̃k

‖gk‖‖s̃k‖ , and since cos θ̃k > 0 according
to (12), we have ‖s̃k‖ → 0.

The parameter j used in Algorithm 2 is the least nonnegative integer which
makes the inequality true. Thus for αj−1 = αj/α, we have

f(θk + αj−1dk) − f(θk) > a1α
j−1gT

k dk. (13)

Note that αj−1dk = s̃k/α, we can rewrite (13) as

f(θk +
s̃k

α
) − f(θk) > a1g

T
k

s̃k

α
. (14)

Let pk = s̃k

‖s̃k‖ , then s̃k

α = ‖s̃k‖
α pk. According to ‖s̃k‖ → 0, we have that α′

k =
‖s̃k‖

α → 0 and (14) can be rewritten as

f(θk + α′
kpk) − f(θk)
α′

k

> a1g
T
k pk. (15)

On the one hand, since ‖pk‖ = 1, {‖pk‖} is bounded. Therefore, there exists
a convergent subsequence {‖pk‖} and {‖pk‖} → ‖p∗‖ = 1. By taking the limit
on both sides of (15), we obtain that gT (θ∗)p∗ ≥ a1g

T (θ∗)p∗. Thus,

gT (θ∗)p∗ ≥ 0. (16)

On the other hand, pk = s̃k

‖s̃k‖ = dk

‖dk‖ , we have

− gT
k pk = −gT

k (
dk

‖dk‖ ) = ‖gk‖ cos θ̃k ≥ ‖gk‖ sin η. (17)

By taking the limit of (17), we have −g(θ∗)T p∗ ≥ ‖g(θ∗)‖ sin η > 0, i.e.,

g(θ∗)T p∗ < 0, (18)

which gives a contradiction to (16). Therefore, ‖g(θ∗)‖ = 0. �

In the end, the global convergence of RCFA is presented in the following
theorem.

Theorem 1. Let B0 be any symmetric positive definite initial matrix, and let
θ0 be a staring point for which Assumption 6.1 proposed in [13] is satisfied. Then
the sequence {θk} generated by the RCFA converges to the minimizer θ∗ of fpθ

.

Proof. The theorem follows from the results of Theorem 6.5 in [13] and its proof
is omitted here. �
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4 Simulations and Experiments

In this section, simulations and experiments are performed on a group of WMRs
to verify the feasibility and effectiveness of RCFA.

4.1 Simulation Results

First, a group of five robots modeled by (1) are configured with speeds
v1 = 0.7, v2 = 0.5, v3 = 0.5, v4 = 0.3 and v5 = 0.3. The initial phase angles are
shown in Figs. 1(a) and 2(a), in which θ1 = 0, θ2 = −π/4, θ3 = π/4, θ4 = −π/2
and θ5 = π/2. If we set the objective function as fpθ

(with γ = −1), rectilinear
formation with synchronized phase configuration is achieved by utilizing RCFA
with the control law (6). If we set the objective function to fŻ , as expected, all
the robots can keep moving in rectilinear formation with a fixed average posi-
tion. The motion of robots in the two simulations are shown in Figs. 1(b) and
2(b) (the average position of robots is marked by ⊕), respectively.
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Fig. 1. Rectilinear formation with syn-
chronized phase configuration
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Fig. 2. Rectilinear formation with stabi-
lization of the average linear momentum

Then, a group of three robots are configured with speeds v1 = 1.5, v2 = 1
and v3 = 0.8 to achieve the circular formation pattern by using RCFA with the
control law (7). The initial phase angles are shown in Figs. 3(a) and 4(a), in which
θ1 = 3π/4, θ2 = π/2 and θ3 = π/4. By setting fpθ

as the objective function with
γ = −1 and γ = 1, circular formation with synchronized and balanced phase
configurations are achieved, respectively. The motion of the robots are shown in
Figs. 3(b) and 4(b).

4.2 Experimental Results

Two typical formation experiments are carried out on a group of two PIO-
NEER 3DX mobile robots installed with the Robot Operating System (ROS).
The PIONEER 3DX is equipped with two processors, a laptop (2.2-GHz CPU
and 8-GB memory) for running the algorithm and communicating with other
robots via WIFI, and a 32-bit microprocessor (44.2368 MHz) for motion control.
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Fig. 3. Circular formation with synchro-
nized phase configuration
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Fig. 4. Circular formation with balanced
phase configuration

The position of each robot is estimated by using its on-board motor encoder.
The updating frequency of the algorithm is set as 10 Hz. In the first experiment,
we initialize the phase angles of the two robots to 0 and π/2, respectively. Simi-
larly, we set the initial phase angles of the two robots to 0 and π/4 in the second
experiment, respectively. Rectilinear and circular formation with synchronized
phase configuration are shown in Figs. 5(a) and 6(a), respectively. The complete
moving trajectories of the two robots are recorded in an odometer log and plotted
in Figs. 5(b) and 6(b).

Fig. 5. The snapshots and trajectories of
the rectilinear formation with synchro-
nized phase for a group of two robots.

Fig. 6. The snapshots and trajectories of
the circular formation with synchronized
phase for a group of two robots.

5 Conclusion and Future Work

This paper studies rectilinear and circular formation control problems for mul-
tiple unicycle type vehicles. A novel variable-gain RCFA is proposed based on
BFGS method and global convergence properties can be guaranteed under some
mild assumptions. Furthermore, the control inputs in present paper contain only
the orientations of the robots and the speeds of the robots can be nonidentical.
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Simulation and experiment results verified the feasibility and effectiveness of the
proposed algorithm.

In our future work, we aim to investigate another formation pattern, in
which all the robots are required to move in concentric circular formation (a
common circle or different circles around a common center) with phase synchro-
nization/balancing. This type of formation control problem is more complicated
since it requires both circular orbit control and phase control.
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