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Abstract. The ARMAX model-based monitoring method is proposed for chatter
detection in thin wall turning operation. ARMAX modelling is deduced to fit the
cutting force for the time varying dynamic process caused by the stiffness varia‐
tion of thin wall workpiece. Residuals closely connected with chatter are extracted
and monitored by control charts in real time. Cutting experiments for two different
depth of cuts are performed for verification, from which it is found that the
ARMAX model-based monitoring process has lower false alarm rate than the
typical ARMA modelling. In addition, the model parameters affected by the
varying stiffness is also time dependent, so the RELS parameter estimation algo‐
rithm is employed. The forgetting factor in the RELS algorithm is optimized
through experiments to further reduce the false alarm rate. It is observed that the
RELS ARMAX model-based algorithm with forgetting factors between 0.85 and
0.9 has the best monitoring performance with zero false alarms.
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1 Introduction

Three different types of mechanical vibrations, known as free vibrations, forced vibra‐
tions and self-excited vibrations, are generally found in metal cutting processes.
Researchers have developed several effective techniques to reduce or eliminate the
occurrence of the free and forced vibrations. The self-excited vibration (i.e. chatter) is
mainly caused by the regenerative effect between the cutting tool and the workpiece and
brings the machining process to instability, which is the most threatening and uncon‐
trollable type of vibration. The external reason for regenerative chatter is the lack of
stiffness or damping of the machine tool, the tool holder, the cutting tool and the work‐
piece material, in case of the machining of thin wall workpieces, deep holes and long
overhang workpieces. For this reason, the mechanism analysis, detection and suppres‐
sion techniques of the regenerative chatter have been a popular topic for academic and
industrial research.

The automatic detection of regenerative chatter is of vital significance to avoid
damage to workpieces or machine tools. A number of studies have been reported about
the development of tool condition monitoring (TCM) techniques, which are focused on
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the abnormal state monitoring and diagnosis caused by tool wear, tool breakage as well
as regenerative chatter [1–8]. One of the TCM approaches is time series analysis, in
which a specific time series modelling is employed to the measured signals, such as
cutting forces, vibration, or acoustic emission. A popular solution for linear time series
monitoring involves autoregressive (AR) or autoregressive moving average (ARMA)
modelling.

The AR(1) modelling was used to the acoustic emission signal for online tool wear
monitoring. The AR parameters and power of the AR residual signals were selected as
features and found to be effective in tool condition monitoring [9]. A time series based
tooth period modelling technique was proposed for detecting tool breakage by moni‐
toring a cutting force or torque signal, which can also be used for chatter detection or
tool wear evaluation as stated [10]. A tool breakage detection algorithm was developed
after removing the transient process by AR(1) filtering [11]. The AR(5) model was fitted
to the cutting forces and it was found that the power of the residual signal was most
effective and consistent. The AR parameters classified by pattern recognition technique
had showed distinct response towards tool wear [12]. The AR(1) model was deduced to
the amplitudes of the relevant frequencies of the drilling torque signals, while chatter
vibration was detected with respect to the residual signals based on a ranked EWMA
control chart [13]. The relationship between the mechanical model of cutting process
and its corresponding time series model was discussed, in which the ARMA(4,3) model
was derived to deal with the acceleration vibration signals [14]. The ARMA modelling
was employed to the tool vibration signals in a turning process. The ARMA distance
calculated based on eigenvalues of the tool/holder system, was applied in an online tool
wear estimation algorithm [15].

The time series modelling had been widely investigated for TCM, but few researches
have focused the time dependent property of the model used in case of flexible cutting
tool or workpiece. In this work, the ARMAX modelling is developed based on the time
varying depth of cut caused by stiffness variation and dynamic vibration of the thin wall
workpiece. This model is more appropriate and more accurate to describe the cutting
process after considering the exogenous input of stiffness. In addition, the RELS param‐
eter estimation algorithm is employed to further increase the accuracy for online model
identification. At last, the ARMAX modelling with residual control chart is performed
for thresholding or decision-making online.

2 Time Series Modelling of Thin Wall Turning Operation

2.1 Stiffness Variation

The experimental setup is shown in Fig. 1, where the turning experiments are performed
on a CK 6150A lathe and the cutting force signal is recorded with a Kistler 9257B
dynamometer sampled at 20 kHz. The thin wall disc workpiece with two-stepped shape
is shown in Fig. 2. As the cutting tool moves along the feed direction from inner to outer
of the free-end, the axial stiffness is debilitated due to the cantilever structure of thin
wall workpiece. In addition, the removal of workpiece material causes the stiffness
variation slightly.
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Fig. 1. Turning experimental setup.
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Fig. 2. Thin wall disc workpiece (All dimensions are in mm).

In this work, the stiffness variation of workpiece is obtained offline by finite element
simulation before machining. An axial moving unit static force is imposed at the tool
nose as the cutting goes on. The axial static deformation is simulated, then the axial
stiffness is calculated. However, only integral locations on the machined surface are
considered due to the time-consuming process of simulation, and the whole stiffness
curve is obtained by spline interpolation. The axial stiffness for different depth of cuts

Fig. 3. Axial stiffness for different depth of cuts (a) 0.05 mm; (b) 0.1 mm.
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is shown in Fig. 3, from which it is observed that the axial stiffness is reduced severely
as the cutting tool moves along the feed direction.

2.2 ARMAX Modelling of the Cutting Force

It was reviewed that the cutting force was the best signal for chatter detection compared
with acoustic emission and acceleration signals, and the characteristic patterns of cutting
force variation make it possible to clearly distinguish chatter [16]. Apart from chatter,
the cutting forces are also sensitive to other cutting conditions such as cutting parame‐
ters, temperature, hardness of material and dynamics behavior of cutting tool, making
correlation with chatter more complicated. In this work, time varying process dynamics
of the thin wall turning operation due to stiffness variation of the workpiece is mainly
considered, in order to obtain the key information which is closely connected with
chatter.

A simple and widely accepted equation of the cutting force is expressed as [17]

Fy = Kyah (1)

where Fy and Ky are the cutting force and the cutting coefficient in the axial direction,
respectively. a and h are the depth of cut and the feed rate, respectively.

Chatter will occur even under low cutting parameters at the free-end of the thin wall
disc. Thus, a small axial depth of cut, which is far less than the tip radius, is assumed to
analysis the tool displacement. The cutting tool is regarded as rigid and the workpiece
is flexible in the axial direction. It is noticed that the actual depth of cut is varying during
cutting process. When the second revolution starts, there are undulations, caused by
chatter vibration and weak stiffness, both in the inner machined surface of current revo‐
lution and the outside surface of previous revolution. As shown in Fig. 4, the cutting
area ah is changed to the gray part, which can be expressed as

ah ≈
∑

ΔSi = h0

[
a0 −

(
yt−𝜏 + 2yt−𝜏+1 +⋯ + 2yt−𝜏+1 + yt

)

2n

]

(2)

where a0 and h0 are the selected depth of cut and feed rate, respectively. n is the number
of sampling points in one revolution period τ. yt is the feed displacement at time t.

The axial workpiece displacement is assumed to be divided into two parts, i.e. the
static deflection and the dynamic vibration.

yt = yd
t
+ ys

t (3)

here

ys
t
=

Ft

kt

(4)
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where the superscripts, s and d represent the static deflection and the dynamic vibration.
kt is the axial workpiece stiffness at current time.

The workpiece trajectory from A to B is nonlinear due to the time varying dynamics
of thin wall turning operation. For simplification, the sum of tool displacements in
Eq. (2) may be represented only by the displacements at present time and one spindle
revolution period before, which can be expressed as

ah ≈ h0

[
a0 −

(
p1ys

t−𝜏
+ p2yd

t−𝜏
+ p3ys

t
+ p4yd

t

)

2

]

(5)

where pi are the unsolved parameters. Substituting Eqs. (3–5) into Eq. (1) and rear‐
ranging the result as

(
2

Kch0
+

p3

kt

)
Ft +

(
p1

kt−𝜏

)
Ft−𝜏 = 2a0 − p2yd

t−𝜏
− p4yd

t (6)

As mentioned, the cutting force signals usually contain some detrimental compo‐
nents due to external cutting conditions such as stiffness variation in this case. It can
surely influence the performance of common used chatter detection methods. In contrast,
the model in Eq. (6) can extract the significative information hiding in the complex
cutting force signals. In the stable state, the dynamic vibration is assumed to be normally
distributed as white noise, thus time series modelling can be performed [18]. Previous
observations are substituted by current data using the shaft operator q as

Ft−𝜏 = q−1Ft, yd
t−𝜏

= q−1yd
t (7)

Substitution Eq. (7) into Eq. (6) yields
[

1+
p1

Ptkt−𝜏

q−1
]

Ft =
2a0Kch0kt

2kt + p3Kch0
+

(
−

p2

Pt

q−1 −
p4

Pt

)
et (8)
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Fig. 4. Dynamic cutting process of thin wall turning in one revolution period.
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here

Pt =
2

Kch0
+

p3

kt

, et = yd
t (9)

where –p4/Pt is assumed to be 1 and other parameters will be estimated by model fitting.
Then it is observed that Eq. (8) has the same structures to the ARMAX model

(AutoRegressive Moving Average with eXogenous input) whose general form is

A(q)yt = B(q)ut + C(q)et

A(q) = 1+a1q−1
⋯ + anaq−na

B(q) = b1 + b2q−1
⋯ + bnbq−nb+1

C(q) = 1 + c1q−1
⋯ + cncq

−nc

(10)

The output yt is the measured axial cutting force, while the exogenous input ut is
proportional to the cutting coefficient, the depth of cut, the feed rate and the current axial
stiffness as follows.

ut = 2Kca0h0kt (11)

In addition, the orders for polynomials A(q), B(q) and C(q) are 1, 0 and 1, respec‐
tively. The model parameters are also time varying with respect to the stiffness variation
as follows.

a1 =
p1

Ptkt−𝜏

, b0 =
1

2kt + p3Kch0
, c1 = −

p2

Pt

(12)

3 Chatter Detection

3.1 Online Model Identification and Forecast

For the ARMAX model, all parameters to be estimated are arranged in a vector ϑ, while
the relevant input-output data are collected into the regressor vector φ as

𝜗t =
[
a1 ⋯ ana b1 ⋯ bnb−1 c1 ⋯ cnc

]T , 𝜑t =
[
−yt−1 ⋯ − yt−na ut ⋯ ut−nb+1 �̄�t−1 ⋯ �̄�t−nc

]T (13)

where �̄�t = yt − 𝜑T
t
�̂�t represents the residual.

The parameters need to be identified using an appropriate estimation algorithm.
Due to the time varying properties of the process, the adaptive recursive extended
least square (RELS) algorithm may be applied to perform online model identification
[19]. The RELS approach allows the estimate to be updated at each step, by correcting
it by a term proportional to the innovation brought about by the last collected obser‐
vation. In other words, the estimate at time t can be obtained from the estimate at time
t-1, without the need to explicitly reconsider all of the past data. The RELS algorithm
is expressed as
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�̂�t = �̂�t−1 + 𝛾tR
−1
t
𝜑t𝜀t

Rt = Rt−1 + 𝛾t

(
𝜑t𝜑

T
t
− Rt−1

)

𝜀t = yt − 𝜑T
t
�̂�t−1

(14)

where γt is the gain which has a constant value γ in the following algorithm. εt is the
prediction error.

For a time dependent system that changes gradually, the recent measurements are
usually considered more reliable and the older ones are no longer representative of the
process dynamics [20]. In order for the estimation algorithm to progressively “forget”
older data, the most common choice is to take a constant forgetting factor λ. In this way,
the most recent data are given unitary weight in the minimization process, while an
exponentially time decreasing weight is assigned to past measurements. The parameters
will be estimated by minimizing the sum of the exponential weighted least squares of
the prediction errors as follows.

𝜗t = arg min
𝜗

t∑

k=1

𝜆t−k𝜀2
t (15)

The relationship between the loss factor and the constant gain is γ + λ = 1. With a
predefined forgetting factor, all of the autoregressive, moving average and exogenous
parameters can be estimated with the measured cutting force and simulated stiffness.
Then the forecast for residuals is calculated by

�̄�t = Ft + â1Ft−1 − b̂1ut − ĉ1�̄�t−1 (16)

3.2 Thresholding Based on Residual Control Chart

It is crucial to set up an appropriate threshold for decision-making of chatter detection,
while the traditional determination of thresholds is to design preliminary cutting experi‐
ments and find a constant threshold between stable state and chatter state empirically.
However, this method has limitation in choosing the threshold and is less reliable and
less adaptive for variable cutting conditions.

Statistical process control or control charts, which is focused on the inherent char‐
acteristic of data series, are usually used to monitor the statistical state and alarm out-
of-control in quality engineering. The advantage of the statistical process control is to
determine the threshold non-empirically and update it automatically. It should also be
noted that control charts are built based on the basic assumption that the process is
independently and normally distributed. However, this assumption rarely holds in prac‐
tice. In thin wall tuning, any sensor signal acquired during one spindle revolution is
expected to be characterized by some level of autocorrelation due to the time varying
process dynamics. The autocorrelation in axial cutting forces is mainly caused by stiff‐
ness variation, vibration and other reasons include cutting impact, tool wear and temper‐
ature. Control charts should not be used directly, because more false alarms will occur
for data series with high level autocorrelation. An approach that has proved useful in
dealing with autocorrelated data is residual control chart [21]. Firstly, an appropriate

Chatter Detection Based on ARMAX Model-Based Monitoring Method 325



time series model is fitted to the data series to remove the autocorrelation from the data.
Then the control charts like Shewhart charts can be applied to the residuals, where the
control limits or thresholds are calculated as

Upper control limit: 𝜇t + Lt𝜎t

Center line: 𝜇t

Lower control limit: 𝜇t − Lt𝜎t

⎫
⎪
⎬
⎪⎭

(17)

where μt and σt are the mean and standard deviation of the residuals. The width of control
limits Lt is generally constant as 3, which is also well known as the ‘three-sigma’ crite‐
rion.

4 Experimental Validation

The measured axial cutting forces for different depth of cuts are shown in Fig. 5. Larger
forces are noted at the entry point probably due to the impact when the tool cuts into the
workpiece, then in the stable state it appears to be distributed as a white noise. It has a
considerable oscillation around zero when the cutting state turns into chatter. The cutting
forces change dramatically between stable and chatter states. This in-between state is
generally called the onset state when the cutting forces have slight fluctuations and no
visible chatter marks are generated on the workpiece before chatter has fully developed.
These three cutting states can be identified artificially from experiments based on the
noise and the surface appearance. It is observed that chatter occurs about 10 s earlier at
0.1 mm than that at 0.5 mm.

(I) (II) (III) (I) (II) (III)

Fig. 5. Axial cutting forces in real cutting experiments under spindle speed of 220 rpm, feed rate
of 0.1 mm/r, depth of cuts of 0.05 mm (left) and 0.1 mm (right) (I) Stable state; (II) Onset state;
(III) Chatter state.

4.1 ARMAX Model-Based Monitoring

The outputs of the ARMAX model, i.e. measured cutting forces, are extracted in a period
of one spindle revolution about 0.27 s, which means from all sampling points there are
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5455 available groups of data. Different groups make little influence, so the first group
is chosen uniformly for the following algorithm. In contrast to the previous research,
the ARMA model-based monitoring is also performed.

Both the ARMA model and the ARMAX model are identified online by least squares
(LS) algorithm every time a new data is collected. Then the residuals are obtained and
control limits are calculated by the Shewhart chart with the time histories of residuals
from the beginning to the current time. Without other criterions, the process is regarded
as in-control (i.e. stable state) when the observations remain inside the control limits
and out-of-control (i.e. onset state or chatter state) when they fall outside the upper or
lower control limits. The numbers of out-of-control for the Shewhart charts with
ARMAX or ARMA modelling and without modelling are shown in Fig. 6.

Fig. 6. Monitoring processes with and without modelling (a) 0.05 mm; (b) 0.1 mm.

It is found that there are too many false alarms for monitoring process without
modelling, so direct monitoring of the cutting force signal is infeasible in this case.
Although a steep increase of the out-of-control number occurs in the onset state both
with ARMA and ARMAX modelling, the least out-of-control number is observed in the
stable state for the ARMAX model-based monitoring processes.

The false alarm rates are calculated as ratios between the times of out-of-control
number larger than 0 in the stable state and the sampling times of the whole stable state.
The results are shown in Table 1, where the false alarm rates of ARMAX model-based
monitoring processes are reduced substantially to small values under 2%.

Table 1. False alarm rate (%) with and without model-based monitoring processes.

Time series modelling Depth of cut/mm
0.05 0.1

No model fitting 84.34 80.33
ARMAX 1.87 1.64
ARMA 67.47 41.8
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4.2 RELS ARMAX Model-Based Monitoring

As mentioned in Eq. (12), the ARMAX model parameters are also time dependent due
to the stiffness variation, so the RELS algorithm with ‘forget’ capacity may be more
appropriate for parameter estimation. The key coefficient of the RELS algorithm need
to be defined is the forgetting factor. The residuals will be forecasted recursively by the
RELS ARMAX modelling with different forgetting factors, then the cutting process is
monitored by the residual control chart. The compassion of false alarm rates between
RELS ARMAX model-based monitoring processes with different forgetting factors is
shown in Fig. 7.

Fig. 7. False alarm rate (%) of RELS ARMAX model-based monitoring processes with different
forgetting factors.

Enormous differences between the false alarm rates with different forgetting factors
are observed. Zero false alarm rate can be achieved, while large false alarm rates are
also noticed, which means the forgetting factor should be carefully selected. A zone of
optimized forgetting factor, i.e. 0.85 to 0.9, is found through the experimental results of
two depth of cuts. The monitoring performance of the RELS ARMAX model-based
method with optimized forgetting factor is further improved than that of the LS ARMAX
modelling.

5 Conclusion

In the case of thin wall turning operation, an ARMAX model for the cutting force is
deduced by analyzing the dynamic cutting process caused by stiffness variation and
dynamic vibration. The model residuals are monitored and the chatter state is identified
by the residual control charts. The main contribution of this work is summarized as
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1. The residuals from ARMAX modelling of the cutting force are determinant infor‐
mation closely connected with chatter, which are monitored by the residual control
charts. This ARMAX model-based monitoring process shows better performance
than the typical ARMA modelling in real cutting experiments.

2. Base on the time varying properties of the model, time dependent parameters of
ARMAX model are estimated online by the RELS parameter estimation algorithm.
The false alarm rate of the RELS ARMAX model-based monitoring process with
an experimental optimized forgetting factor is further decreased to zero, which may
be an effective chatter detection method for engineering application.
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