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Abstract. Chatter is known as a main factor that limits the machining quality
and efficiency, and one universal solution is to predict occurrences of chatter via
calculating the stability lobe diagram (SLD), such as time-domain methods,
which are relatively time-consuming. Thus, based on time-domain methods, a
boundary auto-location algorithm for the prediction of SLD in milling is
proposed. In the proposed method, by setting a series of judgements based on the
state of the transition matrix of the dynamic system, the calculation trajectory
automatically surrounds the stability boundary line except isolated islands. Only
the points on and around the stability boundary were calculated to draw SLD. The
contrast simulations were conducted to verify the calculation efficiency of the
given algorithm. And the results show that the computational time of the proposed
method was cut down significantly than that of the traditional method.
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1 Introduction

Prediction of stability lobe diagram is a vital method to avoid chatter that limits the
quality and efficiency of manufacturing. However, the calculation of the stability predic‐
tion relate to plenty of parameters, such as modal parameters, cutting parameters and so
on. It is time-consuming to calculate all of the points’ stability of the parameters space,
like the robotic milling. Therefore, a boundary auto-location algorithm is proposed to
solve this issue in the prediction of SLD.

With respect to the prediction of cutting stability, so far there are two major methods:
one is the frequency-domain method [1, 2], which is characterized by high-computa‐
tional-efficiency and relatively low prediction accuracy [3]; another is time-domain
method [4, 5], which is time-consuming and has higher prediction accuracy than the
former. For the cutting system, the stability can be predicted by solving its feature equa‐
tion in the former method and the time-periodic delayed-differential equation in the later
method. Many efforts have been devoted to improving the prediction accuracy and
efficiency in the previous literatures.
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Altintas and Budak [1] proposed zero-order method that used the average of the
Fourier series of the dynamic milling force to approximate the milling force variation,
but is not capable in low radial immersion milling. Merdol and Altintas [2] solved this
issue via developing multi-frequency method considering the harmonics of the tooth-
passing frequencies. Insperger et al. [4] firstly proposed semi-discretization method
(SDM), in which the time-delayed term is discretized. And it is widely adopted to predict
the stability of linear-variant time-delayed milling system in time domain. Then, some
novel and improved algorithms were proposed to improve the computational efficiency,
like full-discretization method (FDM) presented by Ding et al. [5], numerical integration
method (NIM) [7], linear approximation of acceleration method (LAAM) [8], Runge-
Kutta-based complete discretization method(RKCDM) presented by Li et al. [9], and so
on [10, 11]. Also, Li et al. [12] proposed a fast-straight forward method to plot SLD
using modal parameters of milling system, but with a relatively low accuracy. In this
paper, based on the time-domain methods, a fast algorithm of SLD prediction was
developed without consideration of the special SLD contour that called stability isolated
islands mentioned in Ref. [13].

All of the time-domain methods focus on the stability calculation of certain cutting
parameters, like revolution speed and cut depth which are generally used to represent
two-dimension SLD. Therefore, in the traditional method, SLD is given by calculating
stabilities of all the points in the discretized cutting parameters space. It is a huge work
and time-consuming. In this paper, by setting a series of judgements based on the state
of the transition matrix of the dynamic system, only the points on and around the stability
boundary were automatically calculated to draw SLD.

The remaining part of this paper is organized as follows: Sect. 2 proposes the boun‐
dary auto-location algorithm for prediction of the SLD; Sect. 3 gives the comparisons
of computational efficiency between the proposed method and traditional methods. And
in Sect. 3 this paper is concluded.

2 The Proposed Algorithm

2.1 The Stability Prediction Model in Milling Process

The milling system can be simplified as a two-DOF dynamic system, as shown in
Fig. 1, the dynamic model is a time-periodic delayed-differential equation and can be
expressed in the form of Eq. (1), as follow:
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where M, C, K, Kc(t) is the mass, damping, stiffness matrices and the cutting force
coefficient matrix of dynamic system respectively. x(t) − x(t − T), y(t) − y(t − T) repre‐
sent the dynamic displacement of the cutter between the previous and current revolution
on the X, Y  direction. T  is the tooth-passing period.

300 M. Zhang et al.



cy ky

cx

kx

X

Y

vf

Fig. 1. The two-DOF dynamic model of milling system

By using one of the time-domain methods in the references, the Eq. (1) can be solved
and the transition matrix 𝛷 of the dynamic system can be obtained. And then according
to the Floquet theory, the system is judged as stable when the maximum absolute value
of the eigenvalues of the transition matrix 𝛷 is less than 1. The following deduction
process is developed based on this criterion.

2.2 The Algorithm for Locating the Original Point on the Stability Boundary

Firstly, it is necessary to evenly discretize the cutting parameters space of SLD. Here,
the revolution speed and cut depth are used to configure the two-dimension SLD. The
revolution speed and cut depth interval are divided into m and n discrete values as
follows:

⎧⎪⎨⎪⎩
Si =

i

m
(Smax − Smin), i = 1, 2,… , m

dj =
j

n
(dmax − dmin), j = 1, 2,… , n

(2)

where S, d respectively represent the revolution speed and cut depth.
Then, along the revolution speed incremental direction i = 1 → m, the limitation

value of cut depth dchatter related to each discrete revolution speed Si can be sequentially
obtained via the algorithm in this paper.
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For the proposed boundary auto-location algorithm, there is an initial condition: the
original point on the stability boundary should be determined, like the point A shown
in the Fig. 2. To locate this original point, the Algorithm I is also developed based on
the bisection method.

Fig. 2. The original point A on the stability boundary

As shown in the Fig. 2, SLD is divided into stable and unstable zone by the stability
boundary, and this discrimination method could be formulated as the follow:
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{
E𝜙

(
Si, dj

)
≥ 1, system is unstable

E𝜙

(
Si, dj

)
< 1, system is stable

(3)

where E𝛷

(
Si, dj

)
 refers to the maximum absolute value of the eigenvalues of the transi‐

tion matrix 𝛷 under the cutting parameters of 
(
Si, dj

)
.

Note that E𝛷

(
Si, dj

)
 of all the points on the stability boundary are equal to 1. There‐

fore, the boundary point 
(
Si, dchatter

)
 of current discrete revolution speed Si can be located

rapidly based on the bisection method.
This bisection method iterates from i = 1 to i = m until finding the first boundary

point, which one would be identified as the original point A for the next algorithm. Each
iteration start with an initial subscript interval of cut depth [a, b] = [1, n], and then a and b

would be updated corresponding to the value of E𝛷

(
Si, dj

)
 as follow:

{
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)
< 1 (4)

Where j =
[
(a + b)∕2

]
, and the bracket [ ] is a sign operator which means rounding

down the number.
There exist the boundary point among interval [a, b] when (E𝛷

(
Si, da

)
− 1) ⋅

(E𝛷

(
Si, db

)
− 1) ≤ 0. And then the cutting parameter 

(
Si, dchatter

)
 of the boundary point

can be approximated by some interpolation methods, such as Lagrange Approximation.
Here, the boundary point is given by Eq. (5) as follow:
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(5)

The detailed algorithm can be summarized as Algorithm I. Meanwhile, it is worthy
to be mentioned, in general, if there exist one boundary point among subscript interval
[a, b], the relationship that b = a + 1 is satisfied. This attribute would be useful for the
boundary auto-location algorithm.

2.3 The Boundary Auto-Location Algorithm

As can be seen in Fig. 2, generally, the stability boundary is a contour line, which is
known for its continuity and equivalence. Therefore, once one boundary point has been
founded, like the aforementioned point A 

(
Si, dchatter

)
, the next boundary point(

Si+1, dchatter

)
 can be determined in the neighborhood of it. Based on this it is unnecessary

to calculate all the points among 
[
d1, dn

]
 to determine the next dchatter, only the points on

and around the latest stability boundary point are needed.
Assume that, under the current discrete revolution speed Si, the dchatter locate in the

subscript interval [a, b] with b = a + 1, such as point A. And the next iteration should
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start from j = b or j = a under the next discrete revolution speed Si+1, in other words,
directly calculating the value of the E𝛷

(
Si+1, db

)
 or E𝛷

(
Si+1, da

)
. Then same as the Algo‐

rithm I above, the Eq. (5) also can be used to determine the stability boundary point. But
different from the update forms of the parameters a, b and j that used in Eq. (4), here,
those parameters are updated in the form of Eq. (6).

{
b = j, E𝜙

(
Si, dj

)
> 1

a = j, E𝜙

(
Si, dj

)
< 1 (6)

In this method, the calculation process would been proceeding along the incremental

direction of cut depth when the current point 
(
Si, dj

)
 is judged as stable and along the

decremental direction in the unstable zone. Only a few steps are performed for this
process to locate the new stability point, because the attributes of continuity and equiv‐
alence of the contour line. The whole trajectory of the calculation process closely
surround the stability boundary, just like automatically keep following the tangential
direction of the boundary line as can be seen in Fig. 3. The method of this part can be
summarized as Algorithm II. Note that, in a special case where the system is stable in
whole given cut depth interval 

(
dmin, dmax

)
 under current revolution speed, the algorithm

would proceed along dmax until entering into the unstable zone.

Fig. 3. Diagram of calculation process of the boundary auto-location algorithm
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3 Simulations

The experimental platform is Intel(R) Core(TM) i5-4460, CPU@3.20 GHz, RAM 8 GB,
and all of the algorithms are written and executed in MATLAB R2012a. The transition
matrix 𝛷 of the dynamic system is calculated via using the 2nd-FDM, NIM, and LAAM
in the literatures [6], [7], and [8], respectively. The computational efficiency of the
proposed method is studied and compared with that of the traditional method. Besides,
the SDM in literature [4] is used as a criterion-reference to validate the accuracy of the
calculation results.

Here, SLD of single-DOF milling model is represented by parameters space with
cut depth and revolution speed under 0 mm ≤ d ≤ 4 mm and 5000 rpm ≤ S ≤ 10000
rpm. The quantity of discretization are m = 160 and n = 80. Besides, the tooth-passing
period T, which is also an important parameter and proportional to the prediction accu‐
racy in time-domain method to solve Eq. (1), is divided into 40 time intervals in the first
three methods. And the tooth-passing period T in the last method is divided into 200
time intervals as a criterion-reference.

The other cutting parameters, including tool, cutting force coefficients, etc., and
dynamic parameters, including modal mass, natural frequency, etc., are same as the
benchmark data adopted in the references [4, 6–8], as can be seen in Table 1.

Table 1. The cutting and dynamic parameters for single-DOF milling model.

Radial
immersion
ratio

Tangential
cutting force
coefficient

Normal
cutting force
coefficient

Natural
frequency

Relative
damping

Modal mass

1 6 × 108 N/m2 2 × 108 N/m2 922 Hz 0.011 0.03993 kg
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The calculation results and comparisons of SLD for single-DOF milling model based
on different time-domain methods are shown as Fig. 4. Because the transition matrix 𝛷
of every point of SLD is same in each case, there is minimal difference of the stability
boundary between the proposed fast algorithm and the traditional algorithm. And the
tiny difference here is caused by the calculation method of contour line in MATLAB,
which is used in later. The boundary point of the former is determined by Eq. (5), while
the interpolation method, like Eq. (5), is also used in revolution speed interval to deter‐
mine the boundary point of the later.
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Fig. 4. SLD of the fast algorithm based on: (a) 2nd-FDM (b) NIM (c) LAAM

Meanwhile, in the terms of prediction accuracy the LAAM has the highest agreement
with the criterion-referenced lobe in Fig. 4(c). The 2nd FDM in Fig. 4(a) is inferior to
the former, and the NIM in Fig. 4(b) is lowest.

The comparisons of the computational time of the fast algorithm based on different
method are shown in Table 2. There are three results of each case are given on account
of the fluctuations of computer performance. And the computational efficiency is repre‐
sented by the average of those three times. Compared with the traditional method that
calculates all the points of SLD, the proposed algorithm enhance the computational time
by 18.7 times in the 2nd-FDM-based case, 17.4 times in the NIM-based case and 19.5
times in the NIM-based case.
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Table 2. The comparisons of the computational time.

Algorithm 2nd-FDM-based NIM-based LAA-based
Convention This paper Convention This paper Convention This paper

Time(s) 1 28.14648 1.49503 13.28893 0.75696 6.98059 0.35498
2 28.19411 1.50136 13.29482 0.76778 6.97950 0.35864
3 28.26346 1.51737 13.31026 0.77051 7.00041 0.35882

Average 28.20135 1.50459 13.29802 0.76508 6.98833 0.35748

Therefore, the proposed boundary auto-location algorithm significantly improved
the computational efficiency of the SLD prediction with same accuracy as the time-
domain methods.

4 Conclusions

This paper proposes a boundary auto-location algorithm for the prediction of milling
stability lobe diagram without consideration of stability isolated islands. In the proposed
method, the calculation trajectory automatically follows the tangential direction of the
stability boundary line via setting the judgements based on the state of the transition
matrix of the dynamic system and Floquet theory. Only the points on and around the
stability boundary were calculated, thereby avoiding to calculate all of the points on
SLD. The high-computational-efficiency of the proposed algorithm is validated by the
simulations, in which the computational time is enhanced significantly than that of the
traditional method.
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