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Abstract. This note is concerned with input-to-state stability analy-
sis of discrete-time switched nonlinear time-varying (DSNTV) systems.
Some sufficient conditions are derived for testing input-to-state stability
(ISS) of discrete-time nonlinear time-varying (DNTV) systems. ISS of
DSNTV systems is further studied. The main feature of these obtained
results is that the time-difference of Lyapunov functions of subsystems
is allowed to be indefinite. Globally uniformly asymptotically stability
(GUAS) and globally uniformly exponentially stability (GUES) concepts
are utilized for analysis stability of general DNTV and DSNTV systems.
An numerical example demonstrate the effectiveness of the proposed
approaches.
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1 Introduction

Switched systems are a class of important systems composed of many sub-
systems, which have received extensive attention from researchers in the past
decades. The application of the switched systems are very extensive, such as
artificial intelligence systems, power systems, and economic systems. Because
switching is widespread in practical systems, switched systems have received
great attention in the control community and a large number of results have been
reported (see [3,6,10,17,18,20,21] and the reference therein). Particularly, sta-
bility analysis of switched system is the most important and fundamental prob-
lem in these results. Various stability concepts such as asymptotic stability [23],
input-to-state stability (ISS) [13], and finite time stability have been thoroughly
investigated for both continuous and discrete systems by exploiting Lyapunov’s
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second method. For this stability analysis method, unlike the well-established
time-invariant system stability theory, stability analysis of time-varying systems
is full of challenges. This is also true for discrete nonlinear time-varying (DNTV)
systems and discrete switched nonlinear time-varying (DSNTV) systems.

ISS means that the bound of the system response can be determined by the
bounds of disturbance input and system initial state. ISS has proved to be very
effective in describing the external disturbance input of the control system, and
has attracted more and more attention of researchers since the pioneering result
[15]. As mentioned earlier, ISS analysis can be applied on both continuous-time
and discrete-time systems. For continuous-time systems, ISS analysis was studied
in [15,16,19]. However, when V (t, x) ≥ ρ(|u|), the time derivative of Lyapunov
functions along the trajectories of the considered system in these documents
must be negative. Recently, an improved ISS analysis method based on Lya-
punov function is studied in [3,12,14,22,24], which allows the time derivative
of Lyapunov functions to be indefinite. For discrete-time systems, ISS analysis
was studied in [6,8,10,11]. Whereas, the time-shift of the ISS-Lyapunov function
needs to be negative under some additional condition on u. [7] improved these
results, and proposed two methods.The advantage of this method is that the
time-difference of the Lyapunov functions are allowed to be indefinite. Inspired
by these existing work, in this paper, we continue to extend the method in
[3,7,22,24] to the ISS analysis of DNTV and DSNTV systems.

Lyapunov’s second method has been recognized as a very powerful tool in
stability theory, especially the time-invariant systems. However, stability anal-
ysis for time-varying systems is more challenging than time-invariant systems.
Therefore, stability analysis methods for time-varying systems still need to be
further studied. For both continuous systems and discrete systems, the classi-
cal Lyapunov stability analysis method requires the derivative or difference of
the Lyapunov function to be negative (see [2,4,5] and the reference therein).
Recently, we have established a stability analysis method for several kinds of
time-varying systems in [22–25] that allows the time derivative (time difference)
of Lyapunov functions to be indefinite. Meanwhile, a similar stability analy-
sis method was also used in the ISS analysis for continuous nonlinear time-
delay systems by Ning et al. [13] and switched systems by Chen and Yang [3],
respectively.

The main purpose of this paper is to establish stability theorems to discrete-
time time-varying systems by using improved Lyapunov functions developed
in [3,24]. The main contributions of this paper are highlighted as follows: (1).
With the help of the scalar stable function [23,25] and an improved comparison
lemma, some sufficient conditions are derived for testing ISS of DNTV systems.
(2). Extend the results from Item 1 to DSNTV systems. (3). Studied the globally
uniformly asymptotically stability (GUAS) and globally uniformly exponentially
stability (GUES) of the previous two kinds of systems. The time-difference of
Lyapunov functions in all these methods is allowed to be indefinite under some
additional condition, which is more easily satisfied than the conditions in [6,8].
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Notation: In this paper, R, R+, and Rn denote the set of real numbers, non-
negative real numbers, and n-dimensional Euclidean space respectively. For p,
q ∈ J with p ≤ q, I[p, q] is the set {p, p + 1, . . . , q} and I[p,∞) is the set
{p, p + 1, . . .}. Let J = I[0,∞) and Πk

j=k0
H(k) = In, ∀k < k0, k0 ∈ J . Denote

lm∞ = {f(k) : J → Rm, | supk∈J{|f(k)|} < ∞}. For a, b ∈ J , and a function f ,
we denote |f |I[a,b] = sup{|f(s)|, s ∈ I[a, b]}. The function ψ : R+ → R+ is a
K function, if ψ is continuous and strictly increasing and ψ(0) = 0. If ψ ∈ K
and moreover lims→∞ ψ(s) = ∞, then it is denoted by ψ ∈ K∞. The function
ψ(s, k) : R+×R+ → R+ is a KL function, if ψ(·, k) ∈ K for a fixed k, and ψ(s, ·)
is decreasing with limk→∞ ψ(s, k) = 0 for a fixed s. For a positive constant x,the
function �x	 denotes the largest integer not greater than x.

2 Problem Formulation and Preliminaries

2.1 Systems Description

We first consider the following discrete nonlinear time-varying system (DNTV)

x (k + 1) = f (k, x(k), u (k)) , x(k0) = x0, k ≥ k0, (1)

where initial time k0 ∈ J , the state of the system x (k) : J → Rn, the input
u(k) : J → Rm is assumed to be locally essentially bounded. We also assume
that f : R+ ×Rn ×Rm → Rn is locally essentially bounded with f(k, 0, 0) = 0.

For futher use, we introduce the following definition, which characterize sev-
eral stability notions for system (1).

Definition 1. The system (1) is said to be:

1. Input-to-state stable (ISS) if there exist a KL-function σ and a K-function γ
such that, for each u ∈ lm∞, and k ≥ k0, k0 ∈ J , (see [8])

|x(k)| ≤ σ(|x0|, k − k0) + γ(|u|I[k0,k−1]);

2. Globally uniformly asymptotically stable (GUAS) (with u ≡ 0), if there exists
a KL-function σ such that, for any k ≥ k0, k0 ∈ J , (see [1,9])

|x(k)| ≤ σ(|x0|, k − k0);

3. Globally uniformly exponentially stable (GUES) (with u ≡ 0), if there exist
two positive constants α and β < 1 such that, for any k ≥ k0, k0 ∈ J , (see
[1,9])

|x(k)| ≤ αβk−k0 |x0|.
We next consider the following discrete-time switched nonlinear time-varying
(DSNTV) systems:

x (k + 1) = fϑ(k) (k, x(k), u (k)) , x(k0) = x0, k ≥ k0, (2)
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where initial time k0 ∈ J , the state of the system x(k) ∈ Rn, the input u(k) ∈
Rm is assumed to be locally essentially bounded, and switching signal ϑ : J →
Q = {1, 2, . . . , q}. Let k1 < k2 < · · · < kt, t ≥ 1, denote the switching instants of
ϑ(τ) for k0 < τ < k and {x(k0) : (i0, k0), (i1, k1), . . . , (it, kt), . . . , |it ∈ Q, t ∈ J}
denote the switching sequence. When k ∈ [kj , kj+1), the ijth subsystem is active.
For each i ∈ Q, fi : R+ × Rn × Rm → Rn is locally essentially bounded with
fi(k, 0, 0) = 0. Moreover, system (1) and system (2) have the same stability
definition. Let κ(a, b) denote the number of switches occurring in the interval
I[a, b]. Throughout this paper, we assume that x(k) is a single-valued function.

2.2 Scalar Stable Functions and Comparison Lemma

To build our results, we need the following basic concepts recalled from [23,25].
Consider the following scalar discrete linear time-varying (DLTV) system

y (k + 1) = μ (k) y (k) , k ∈ J, (3)

where μ (k) : J → R+ and y ∈ R.

Definition 2. [23,25] The function μ (k) is a uniformly stable (US) function if
system (3) is US, a asymptotically stable (AS) function if system (3) is AS, and
a uniformly asymptotically stable (UAS) function if system (3) is UAS.

By noting that the state transition matrix φ1(k, k0) for system (3) is [23,25]

φ1 (k, k0) =
k−1∏

i=k0

μ (i) ,∀k ≥ k0, k0 ∈ J. (4)

We have the following result.

Lemma 1. [23,25] The function μ (k) : J → R+ is

1. US if and only if there exists a number χ ≥ 1 such that, for any k ≥ k0, k0 ∈ J ,
φ1(k, k0) ≤ χ is satisfied;

2. AS if and only if limk→∞ φ1 (k, k0) = 0;
3. UAS if and only if there exist two numbers χ ≥ 1 and λ ∈ (0, 1) such that

φ1 (k, k0) ≤ χλk−k0 ,∀k ≥ k0, k0 ∈ J. (5)

To obtain the ISS stability theorem, we need the following comparison lemma.

Lemma 2. Let y(k) be a function satisfying

y (k + 1) ≤ μ (k) y (k) , whenever y (k + 1) ≥ ψ (k) , (6)

where μ(k) is a US function and ψ(k) : J → R is a sequence (which can be
dependent on y). Then, the following inequality is established

y (k) ≤ max
{

φ1 (k, k0) y (k0) , χ |ψ|I[k0,k−1]

}
. (7)
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Proof. We consider the following inequality in two cases,

y (s + 1) ≥ ψ (s) . (8)

Case 1: For all s ∈ I[k0, k − 1], (8) holds. By using (4), (6) and Gronwall
inequality, we have

y (k) ≤ φ1 (k, k0) y (k0) . (9)

Case 2: For some s ∈ I[k0, k − 1], (8) does not hold true. Let k∗ ∈ I[k0, k − 1]
be the maximal number such that y (k∗ + 1) < ψ (k∗). Then we have either
k∗ < k − 1 or k∗ = k − 1. If k∗ < k − 1, then (8) holds for all s ∈ I[k∗ + 1, k − 1],
which implies y (s + 1) ≤ μ (s) y (s), and thus

y (k) ≤ φ1 (k, k∗ + 1) y (k∗ + 1) < χψ (k∗) ≤ χ |ψ|I[k0,k−1] . (10)

If k∗ = k − 1, then by the definition of k∗ and (6), we have

y (k) = y (k∗ + 1) < ψ (k∗) ≤ χ |ψ|I[k0,k−1] . (11)

Now, combining (9), (10) and (11), we conclude that (7) is true.

3 Main Results

3.1 Improved ISS Analysis for DNTV Systems

We first establish an improved ISS analysis for DNTV system (1).

Theorem 1. Assume that there exist two functions u1, u2 ∈ K∞, a function
ρ ∈ K, a AS and US function μ(k), and a function V (k, x) : J ×Rn → R, such
that, for all k ∈ J and x ∈ Rn, the following conditions hold:

(A). u1(|x|) ≤ V (k, x(k)) ≤ u2(|x|).
(B). V (k + 1, x(k + 1)) ≤ μ (k) V (k, x(k)) if V (k + 1, x(k + 1)) ≥ ρ (|u (k)|) .

Then the DNTV system (1) is ISS.

Proof. We choose y(k) = V (k, x(k)) = |y(k)|, ψ(k) = ρ (|u (k)|). Then (B) is
just in the form of (6) and it follows from Lemma 2 that, for any k ≥ k0 ∈ J ,

y (k) ≤ max
{

Θ(k), χ |ψ|I[k0,k−1]

}
≤ Θ(k) + χ |ψ|I[k0,k−1] ,

where Θ(k) = φ1(k, k0)y(k0). Hence, by using α(a + b) ≤ α(2a) + α(2b), α ∈
K, a ≥ 0, b ≥ 0 and condition (A), we get, for any k, k0 ∈ J , with k ≥ k0,

|x(k)| ≤ u−1
1 (y (k)) ≤ u−1

1 (2Θ(k)) + u−1
1

(
2χ |ψ|I[k0,k−1]

)
. (12)

We next construct a KL-function σ1(|x0| , k−k0) satisfying 2Θ(k) ≤ σ1(|x0|, k−
k0). Since μ(k) is AS, namely, limk→∞ φ1(k, k0) = 0, there exists a sequence
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{ki}, satisfying, for k, i ∈ J , ki → ∞, i → ∞, such that 2Θ(k) ≤ 2χy(k0)
i+1 ≤

2χu2(|x0|)
i+1 , k ≥ ki. Then KL-function σ1 is defined as, for all j ≥ 1,

σ1 =

{
2χu2(|x0|)

j

(
1 − k−kj

(j+1)(kj+1−kj)

)
, k ∈ I [kj , kj+1) ,

2χu2(|x0|) , k ∈ I [k0, k1) .

From which and (12), we have

|x(k)| ≤ u−1
1 (σ1(|x0| , k − k0)) + u−1

1

(
2χ |ψ|I[k0,k−1]

)
,

which shows that the system (1) is ISS. The proof is finished.

From Example 1 in [23], it is easy to know that we can find a scalar stable
function μ(k) that is US and AS but is not UAS. But, if scalar stable function
μ(k) is UAS, then it is a AS and US function. Therefore, we can get the following
corollary, which seems more concise.

Corollary 1. [7] Assume that there exist two functions u1, u2 ∈ K∞, a function
ρ ∈ K, a UAS function μ(k), and a function V (k, x) : J × Rn → R, such that,
for all k ∈ J and x ∈ Rn, (A) and (B) are satisfied, then the DNTV system (1)
is ISS.

We mention that Theorem 1 and Corollary 1 can be viewed as the discretization
of Theorem 2 in [3] and Theorem 3 in [24] respectively. In addition, Theorem1
and Corollary 1 are an extension of Lemma 3.5 in [8]. Because, under condition
V (k + 1, x(k + 1)) ≥ ρ(|u(k)|), the time-shift of Lyapunov functions can take
both negative and positive values. DLTV (researched in [z]) is a special case of
DNTV.

3.2 Improved ISS Analysis for DSNTV Systems

We then can provide the following ISS stability theorems for system (2).

Theorem 2. Assume that there exist two functions u1, u2 ∈ K∞, a function
ρ ∈ K, a US function μi(k), two positive constants b ≥ 1, B, and a function
Vi(k, x) : J × Rn → R, such that, for all k ∈ J and x ∈ Rn,

(C) u1(|x|) ≤ Vij
(k, x(k)) ≤ u2(|x|).

(D) Vij
(k + 1, x(k + 1)) ≤ μij

(k)Vij
(k, x(k)) if Vij

(k + 1, x(k + 1)) ≥ ρ(|u(k)|).
(E) Vij+1 (k, x(k)) ≤ bVij

(k, x(k)) , ∀ij ∈ Q.

(F) lim
k→∞

m(k) = 0 and n(k) < B,

where m(k) = bκ(k0,k)φ2(k, k0) and n(k) = Σk0<ks<k(bκ(ks,k)φ2(k, ks)). Then
the system (2) is ISS.
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Proof. We also choose yij
(k) = Vij

(k, x(k)) = |yij
(k)|, ψ(k) = ρ (|u (k)|). The

state transition matrix for μi(k), denoted by φ2(k, k0), is given by

φ2 (k, k0) =
k−1∏

s=k0

μϑ(s) (s) ,∀k ≥ k0, k0 ∈ J. (13)

Meanwhile, Lemma 1 and Lemma 2 remains true for φ2. By using Lemma 2 agian,
we have, for any k ∈ I[kj + 1, kj+1], j ∈ J ,

yij
(k) ≤ φ2 (k, kj) yij

(kj) + χ |ψ|I[kj ,k−1] . (14)

Now, for proving ISS, we need to prove that, for all k ≥ k0,

yϑ(k)(k) ≤ m(k)yi0 (k0) + (1 + n(k)) χ|ψ|I[k0,k−1]. (15)

We prove this by mathematical induction. For k ∈ I[k0+1, k1], (15) follows from
(14), namely,

yi0 (k) ≤ bφ2 (k, k0) yi0 (k0) + χ |ψ|I[k0,k−1] .

We now assume that (15) is true for k ∈ I[kj + 1, kj+1], namely,

yij
(k) ≤ m(k)yi0 (k0) + (1 + n(k)) χ|ψ|I[k0,k−1], (16)

and want to show that (15) is still satisfied for k ∈ I[kj+1 + 1, kj+2]. By using
(E), (14), and (16), we have

yij+1 (k) ≤φ2 (k, kj+1) yij+1 (kj+1) + χ |ψ|I[kj+1,k−1]

≤ bφ2 (k, kj+1) yij
(kj+1) + χ |ψ|I[kj+1,k−1]

≤ bφ2 (k, kj+1)
(
m(kj+1)yi0 (k0) + (1 + n(kj+1)) χ |ψ|I[k0,kj+1−1]

)

+ χ |ψ|I[kj+1,k−1]

≤ bκ(k0,k)φ2 (k, k0) yi0 (k0) + χ |ψ|I[k0,k−1]

×
⎛

⎝1 + bφ2 (k, kj+1) +
∑

k0<ks<kj+1

(
bκ(ks,k)φ2 (k, ks)

)
⎞

⎠

=m(k)yi0 (k0) + (1 + n(k)) χ|ψ|I[k0,k−1].

Therefore, (15) is satisfied for all k ≥ k0, k0 ∈ J . Then, by using α(a + b) ≤
α(2a) + α(2b), α ∈ K, a ≥ 0, b ≥ 0, (C), and (15), we get, for all k ≥ k0

|x (k)| ≤u−1
1 (2u2 (|x0|) m (k)) + u−1

1

(
2 (1 + n (k)) χ |ψ|I[k0,k−1]

)

≤u−1
1 (2u2 (|x0|) m (k)) + u−1

1

(
2 (1 + B)χ |ψ|I[k0,k−1]

)
.

Since limk→∞ m(k) = 0, using a similar method in Theorem 1, we can construct
a KL-function σ2 such that, for all k ∈ J , 2u2 (|x0|) m (k) ≤ σ2(|x0| , k − k0).
Hence, the system (2) is ISS. The proof is finished.



Improved Input-to-State Stability Analysis 139

Corollary 2. Assume that there exist an integer m ≥ 1 and a constant δ̄1 sat-
isfying δj � kj+1 − kj ≥ δ̄1,∀j ≥ m, with j ∈ J , two functions u1, u2 ∈ K∞, a
function ρ ∈ K, a UAS function μi(k), a positive constant b ≥ 1 and a function
Vi(k, x) : J × Rn → R, such that, for all k ∈ J and x ∈ Rn, (C), (D), (E) and

δ̄1
√

bλ < 1, (17)

are satisfied. Then the system (2) is ISS.

Proof. We also choose yij
(k) = Vij

(k, x(k)) =
∣∣yij

(k)
∣∣, ψ(k) = ρ (|u (k)|). More-

over, the state transition matrix for μi(k) is defined in (13). According to the
analysis of the Theorem 2, we have, for all k ≥ k0

|x (k)| ≤ u−1
1 (2u2 (|x0|) m (k)) + u−1

1

(
2 (1 + n (k)) χ |ψ|I[k0,k−1]

)
, (18)

where m(k) = bκ(k0,k)φ2(k, k0) and n(k) = Σk0<ks<k(bκ(ks,k)φ2(k, ks)). We con-
sider two cases:

Case 1: A finite number of switching for system (2).

Case 2: An infinite number of switching for system (2).
In Case 1, there exist an integer q and a constant n1 such that the q-th

subsystem is active on I[kq,∞), and

m(k) = bκ(k0,k)φ2(k, k0) ≤ bq+1χλk−k0 ,

n(k) =
∑

k0<ks<k

(
bκ(ks,k)φ2 (k, ks)

)
= n1 < ∞,

from which and (18) it follows that, for all k ≥ k0,

|x (k)| ≤ u−1
1

(
m1u2 (|x0|) λk−k0

)
+ u−1

1

(
2(1 + n1)χ |ψ|I[k0,k−1]

)
,

where m1 = 2χbq+1. Hence, system (2) is ISS in Case 1.
Now consider Case 2. Let k ∈ I[kt + 1, kt+1], t ∈ J . Then we have either

t ≥ m or t < m. If t < m, then we have system (2) is ISS by using the same
approach as Case 1. If t ≥ m, then we have,

κ(k0, k) = m +
t∑

j=m

kj+1 − kj

δj
≤ 1

δ̄1

t−1∑

j=0

(kj+1 − kj) + 2m ≤ 1
δ̄1

(k − k0) + 2m,

from which and condition (17) it follows that, for all k ≥ k0

m(k) = bκ(k0,k)φ2(k, k0) ≤ χb2m
(

δ̄1
√

bλ
)k−k0

,

n(k) =
∑

k0<ks<k

(bκ(ks,k)φ2(k, ks)) ≤
∑

k0<ks<k

(
bκ(ks,k)χλk−ks

)

= n2 +
∑

km≤ks<k

(bκ(ks,k)χλk−ks) ≤ n2 +
bχ

1 − bλδ̄1
,
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where n2 = Σk0<ks<km
(bκ(ks,k)χλk−ks) . Hence, all the conditions in Theorem 2

are satisfied, the system (2) is ISS. The proof is finished.

Theorem 3. Assume that system (2) has an infinite number of switching.
Assume that there exist two functions u1, u2 ∈ K∞, a function ρ ∈ K, a US func-
tion μi(k), a positive constant b ≥ 1, a positive integer p, a constant λ̄ ∈ (0, 1)
and a function Vi(k, x) : J ×Rn → R, such that, for all k ∈ J and x ∈ Rn, (C),
(D), (E) and

bpφ2

(
kp(j+1), kpj

) ≤ λ̄ < 1 (19)

are satisfied. Then the system (2) is ISS.

Proof. According to the analysis of the Theorem2, we also have, for all k ≥ k0,
(18) holds, where ψ(k),m(k) and n(k) are given in Theorem 2 and Corollary 2.
By using (D), (E) and (19), we have limk→∞ m(k) = limk→∞ bκ(k0,k)φ2(k, k0) ≤
limk,z→∞ bp(z+1)φ2(k, kpz)φ2(kpz, k0) ≤ limz→∞ χbpλ̄z = 0, where z = �κ(k0,
k)/p	. Next, we claim that there exists a constant L such that,

n(k) ≤ χ

(
1 +

bpχ

1 − λ̄

) p−1∑

s=0

bs = L < ∞. (20)

For all k ≥ k0, there exist two positive integers j and l, such that k ∈ I[kj +
1, kj+1] ⊆ I[klp + 1, k(l+1)p]. Similarly to the proof of Theorem 5 in [3], we next
consider two cases.

Case 1: l = 0. In this case, we have

n(k) =
∑

k0<ks<k

(
bκ(ks,k)φ2 (k, ks)

)
≤ χ

p−1∑

s=1

bs. (21)

Case 2: l > 0. In this case, we have

n(k) =
∑

k0<ks<k

(
bκ(ks,k)φ2 (k, ks)

)

≤ χ

p−1∑

s=1

bs + bκ(klp,k)χ2

p−1∑

s=0

bs
l−1∑

i=0

λ̄i

≤ χ

(
1 +

bpχ

1 − λ̄

) p−1∑

s=0

bs. (22)

Combining (21) and (22), we can get (20) and n(k) is bounded. Hence, the
system (2) is ISS.

3.3 Asymptotic Stability Analysis

We finally introduce some crateria for system (1) and (2) with u ≡ 0.
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Corollary 3. [25] Then the system (1) with u ≡ 0 is:

1. GUAS if there exist two functions u1, u2 ∈ K∞, a UAS function μ(k) and a
function V (k, x) : J × Rn → R such that, for all x ∈ Rn, (A), and

V (k + 1, x(k + 1)) ≤ μ (k) V (k, x(k)) ,∀k ∈ J, (23)

are satisfied.
2. GUES if there exist three positive constants u1, u2, π, a UAS function μ(k)

and a function V (k, x) : J × Rn → R such that, for all k ∈ J and x ∈ Rn,
u1 |x|π ≤ V (k, x(k)) ≤ u2 |x|π, and (23) are satisfied.

Corollary 4. The assumption of δ, b, μi(k) and Vi(k, x) : J × Rn → R in
Corollary 2 is still valid. Then the system (2) with u ≡ 0 is:

1. GUAS if there exist two functions u1, u2 ∈ K∞ such that, for all k ∈ J and
x ∈ Rn, (C), (E), (17), and

Vi (k + 1, x(k + 1)) ≤ μi (k) Vi (k, x(k)) , (24)

are satisfied.
2. GUES if there exist three positive constants u1, u2, π, such that, for all k ∈ J

and x ∈ Rn, u1 |x|π ≤ Vi(k, x(k)) ≤ u2 |x|π , (E), (17), and (24) are satisfied.

4 An Numerical Example

Consider system (2) with x(k) ∈ R2, u(k) ∈ R, σ (k) ∈ Q = {1, 2}, and

f1 (k, x(k), u(k)) = (2.1 − 2M(k)) x(k) + u(k),
f2 (k, x(k), u(k)) = (1.3 + M(k)) x(k) + u(k).

where M(k) = cos (kπ/10). Let V1(k, x(k)) = V2(k, x(k)) = |x(k)|, then we
have V1(k + 1, x(k + 1)) ≤ (2.2 − 2M(k))V1(k, x(k)), V2(k + 1, x(k + 1)) ≤
(1.4+M(k))V2(k, x(k)), for Vi(k, x(k)) ≥ 100|u(k)|2, i = 1, 2. Let μ1(k) = (2.2−
2M(k)), μ2(k) = (1.4 + M(k)), ρ(s) = 100s2, u1(|x(k)|) = u2(|x(k)|) = |x(k)|,
and b = 1, we can verify that (C), (D) and (E) are satisfied. Since the equations
μ1(k) and μ2(k) are periodic functions with period 20, we have, for k ∈ I[0, 19],

{
μ2(k) ≤ μ1(k), k ∈ I[5, 15],
μ1(k) < μ2(k), otherwise.

Assume that ϑ(k) = 2 over I[20m + 5, 20m + 16],∀m ∈ J and ϑ(k) = 1 in other
case, then μi(k) is UAS, which implies δ̄1

√
bλ < 1. Hence the system is ISS.



142 T. Zhao et al.

5 Conclusion

This paper has studied the input-to-state (ISS) stability analysis of discrete-
time switched nonlinear time-varying (DSNTV) systems by using Lyapunov’s
second method. The existing ISS approaches were improved and some sufficient
conditions have been proposed to analyze the ISS of discrete-time nonlinear time-
varying (DNTV) systems with the help of the concept of scalar stable function
and an improved comparison lemma. The improved input-to-state stability anal-
ysis approache was applied on a class of DSNTV systems and some criteria are
obtained. The advantage of the conditions obtained is that the time-difference
of improved Lyapunov functions are allowed to be indefinite. Finally, globally
uniformly asymptotically stability (GUAS) and globally uniformly exponentially
stability (GUES) concepts were considered for analysis stability of general DNTV
and DSNTV systems.
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