)

Check for
updates

PolyMap: A 2D Polygon-Based Map
Format for Multi-robot Autonomous
Indoor Localization and Mapping

Johann Dichtl®) | Luc Fabresse, Guillaume Lozenguez, and Noury Bouraqadi

IMT Lille-Douai, Douai, France
johann.dichtl@gmail.com

Abstract. Autonomous exploration is an important tasks in many
robotic fields such as disaster response scenarios. In time critical situ-
ations, the use of multiple robots can reduce the time to create a com-
plete map of the environment. However among the most popular map
formats in use today, none are ideal for the multi-robot autonomous
indoor localization. In terms of memory usage, visualization, and usabil-
ity in navigation and exploration tasks, all formats have some strengths
and weaknesses.

In this paper we introduce PolyMap, a map format that is based on
simple polygons. Since the polygons are based on line segments, this is
a special case of vector-based map formats. This format provides advan-
tages in terms of memory footprint over occupancy grids, while not falling
behind in visualization. Its sparse nature is also an advantage for naviga-
tion tasks, in particular when the map needs to be shared over a wireless
network connection. Additionally the explicit modeling of frontiers helps
with autonomous exploration.

Keywords: Vector maps - Indoor mapping - Exploration
Multi-robot systems

1 Introduction

In many indoor applications, robots have to autonomously map an environment
without human assistance. For example, fire fighters can use robots to build a
map before entering a building that caught fire. Rapid exploration is critical in
such scenarios to minimize damage and maximize survival chances of victims.
This is why it is interesting to rely on multiple robots to explore the environment
and collaboratively build a map.

Currently popular 2D map formats have various shortcomings for this tasks.
Occupancy grids, the most commonly used format, have a large memory foot-
print, which is particularly limiting when relying on wireless network connec-
tivity to share maps between robots. Feature-based maps tend to not model
the shape of obstacles, making navigation and visualization for human use diffi-
cult or impossible. Furthermore they don’t define frontiers, making autonomous

© Springer Nature Switzerland AG 2018
Z. Chen et al. (Eds.): ICIRA 2018, LNAT 10984, pp. 120-131, 2018.
https://doi.org/10.1007/978-3-319-97586-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97586-3_11&domain=pdf

PolyMap: A 2D Polygon-Based Map Format 121

exploration more difficult. Vector-based map formats also don’t have frontiers,
and often have gaps between vectors, making it impossible to clearly distinguish
explored space from unknown space.

In this paper, we investigate 2D map formats that are the most appropriate
for such applications. Starting from our reference scenario we draw a list of
requirements (Sect.2), that exhibit the shortcomings of the state of existing
map formats (Sect.3). We then introduce PolyMap (Sect.4), a 2D map format
that represent the environment as a collection of polygons. We also evaluate
PolyMap by showing how it addresses our requirements. The paper ends with a
conclusion (Sect. 5) that summarizes our contributions and sketches some future
work.

2 Requirements

To speed up mapping by using a robotic fleet, robots have to spread and explore
different parts of the environment. This means that they have to somehow decide
which one goes where. This decision relies on frontiers [14] between explored
space and the unknown one. Each reachable frontier is assigned to one or more
robots. Robots then navigate towards their respective target frontiers, which
lead to exploring new areas of the environment. Each robot then shares its local
map with others to build a bigger map gathering all explored areas. The list of
frontiers is updated and again assigned to robots. This process is repeated until
we get a map with no reachable frontier left.

From the above description, we can infer that a map format for autonomous
exploration and mapping should meet the following requirements:

Explicit Exploration Frontiers. Explicit frontiers enable collaboration.
They materialize the exploration tasks assigned to each robot. This is why
the map format should allow representing frontiers.

Support for Path Planning. To evaluate frontiers’ reachability, as well as
the cost to reach them, robots should be able to perform path planning. The
map format should then unambiguously distinguish free navigable areas from
obstacles.

Lightweight. To cover large areas, robotic fleets can include many robots, pos-
sibly dozens. All these robots need to share their local maps over a wireless
network, to achieve collaborative exploration. The map format should be
lightweight memory wise to save network bandwidth and support large fleets
of robots.

Visualization for Human Use. In many scenarios, a human supervises the
robots’ mission or uses the built map to perform some task. For example,
responders might use the map built by robots to go rescue trapped humans.
The map format should then be usable by humans to identify different areas
of the explored environment.

122 J. Dichtl et al.

3 State of the Art

The purpose of a map varies from use case to use case. Therefore it is of no
surprise, that different map formats emerged to satisfy different use cases. The
two major classifications that are of interest to us are metric and topological map
formats. Metric maps model geometric information of the environment such as
obstacles and free space, in some form of coordinates that allow to measure
distances. Topological maps model connectivity between different locations. As
shown in Fig. 1, metric maps can be further split into three sub-groups: occu-
pancy grids, feature-based, and vector-based.

metrc e
2D map .~ Maps ~— = hybrid
geometric ——

formats
\topological ’

maps

Fig. 1. Map formats families

Occupancy Grid. The dominating 2D map format is the occupancy grid, also
called grid map [12]. An occupancy grid is a matrix, where each cell contains the
estimated probability that the space it represents is traversable. In this context
traversable only means that the space has been observed (i.e. it is not unknown
space) and is not occupied by an obstacle. This probability is typically quantized
into three possible states: traversable/free, occupied, and unknown/unexplored.
Figure2 shows an example of a three-state grid map. This quantization
reduces the required resources to create the map and distribute it in a network.
This format is easy to visualize for human use (as seen in Fig.2), and can
also be used for navigation purposes. This makes the map format very versatile.
It is however relatively expensive in terms of CPU and memory requirements,
which limits the maximum size of the created maps. The map resolution (i.e.
how big a single cell is) influences both resources as well. The overall size of the
matrix storing the grid is limited by the hardware, and if it needs to be shared
between multiple robots/computers, by the available network bandwidth.
Topological information is embedded only implicitly, by treating the grid as
a big graph. Here we have edges between two neighboring cells if and only if both
cells are marked as traversable space. This results in a relatively large graph that
is not optimized for navigation tasks. Therefore, occupancy grids are only used
for navigation tasks in relatively small environments, e.g. in an office building.

Feature-Based Maps. The second map format family is the feature- or landmark-
based map format. This map format stores distinct features or landmarks of the
environment (e.g. corners or artificial beacons) with their relative position. For

PolyMap: A 2D Polygon-Based Map Format 123

; =
s A s Ealan L

Fig. 2. A 3-state occupancy grid created Fig.3. An example of a landmark-based

from the Intel Research Lab data set. The map from the Victoria Park data set. The

cell states are: free (white), unexplored red crosses show the detected landmarks,

(gray), and occupied (black). Image and while the robot’s estimated trajectory

data set source: http://www2.informatik. is displayed in blue. The black lines

uni-freiburg.de/~stachnis/datasets.html indicate at which position (i.e. which
keyframe) the landmark was observed.
Image source: https://sourceforge.net/p/
slam-plus-plus/wiki/Compiling%20and
%20running/?version=14 (Color figure
online)

example Castellanos et al. [2] uses line segments as features. Unlike the occupancy
grid, this is a sparse representation of the environment (see Fig. 3).

The advantages of this format stem from the sparse nature of the landmarks,
typically translating into significantly smaller memory footprints and computa-
tion power. This in return allows larger areas to be covered by this map format
before being limited by the computational hardware.

The main disadvantage of this format is, that the transition from traversable
space to unexplored space is not modeled. In particular, frontiers are not part
of the map format, so frontier-based exploration is not possible. Furthermore,
features don’t necessarily model obstacles, even though some examples exist that
use vectors as features, e.g. [2,8,10]. If visualization is meaningful with this map
format depends on whether the chosen feature models obstacle shapes.

Vector Maps. The third and currently least used map format family of the three
is a parametric representation of the environment. Parametric in this context
refers to parametric curves (splines and bezier curves), and line segments.

In the context of SLAM line segments are often also called vectors. They are
the only ones used for SLAM [5], since they are significantly easier to handle for
computations such as collision control.

http://www2.informatik.uni-freiburg.de/~stachnis/datasets.html
http://www2.informatik.uni-freiburg.de/~stachnis/datasets.html
https://sourceforge.net/p/slam-plus-plus/wiki/Compiling%20and%20running/?version=14
https://sourceforge.net/p/slam-plus-plus/wiki/Compiling%20and%20running/?version=14
https://sourceforge.net/p/slam-plus-plus/wiki/Compiling%20and%20running/?version=14

124 J. Dichtl et al.

Line segment based maps model the borders between traversable space and
obstacles via line segments. This representation has been used since early robotic
Localization and Mapping research [3]. The resulting maps is very usable by
humans, since it allows them to identify obstacles in the environment.

Compared with occupancy grids, line segment based maps are sparse in
nature, since only the boundaries are explicitly modeled. This sparse nature
makes vector map lightweight and hence very appropriate for sharing over
wireless.

Existing vector-based map formats [1,4,6,8-11] suffer from two major limita-
tions. First, they lack a representation of frontiers between explored and unex-
plored spaces. Besides, the resulting map is not always navigable because of
possible gaps between vectors representing boundaries of the same obstacle. A
notable exception is the map format of TvSLAM [4], where segments delimiting a
given obstacle are always connected. However, likewise all other vector-based for-
mat, TvSLAM maps don’t distinguish between unexplored areas from explored
traversable ones.

-~
e e]

Fig. 4. A small vector map created with edge-extraction from point clouds. Long vec-
tors are colored red, shorter vectors are blue. Source: [6]. (Color figure online)

Hybrid Maps. Hybrid map formats, as indicated in Fig.1, are a mix of two or
more maps formats. They are not explicitly included in Table 1, because their
properties can be deduced from the type of maps that they are composed of.
Two examples for hybrid map formats are: Ravankar et al. [10] and Lv et al. [§],
both combining feature-based and vector-based maps.

Summary. Table 1 summarizes our evaluation of map format families with regard
to requirements of Sect. 2.

Explicit Exploration Frontiers. Occupancy grids make it easy to make fron-
tiers explicit. Unexplored space is well differentiated from free space and
obstacles. Thus, frontiers are free cells that have neighboring unexplored cells.

PolyMap: A 2D Polygon-Based Map Format 125

Table 1. Evaluation of existing map formats

Occupancy grids | Feature-based | Vector-based
Exploration frontiers | Yes No No
Path planning Yes Not always® | Not always®
Lightweight No Yes Yes
Visualization Yes Not always® | Yes

®The map needs to embed topological information to support path
planning since features alone typically are not sufficient to model
traversable space.

bPath planning can be challenging if there are gaps between vectors.

“In general, feature-based maps don’t model obstacle shapes, and are
not suitable for visualization. However exceptions exist, e.g. [8,10]

The classic feature-based map format does not contain any frontiers. Vector-
based map formats could model frontiers via vectors that are marked as such,
but we are currently not aware of any implementations that make use of this.
Support for Path Planning. Typically, the first step for path planning is to
create a topological graph of the environment. Building this graph from an
occupancy grid is technically not needed since the format already implicitly
contains such a graph: each free cell represents a node in the graph, and
two neighboring cells are connected if both are free. This method however
is relatively expensive in terms of computational and memory requirements
for path finding, since the graph is relatively large. Hence, often a dedicated
topological map is created from the metric map instead. Feature based maps
do not allow to create topological maps. Vector maps do not allow to build
topological maps. One reason are the gaps between the vectors (as shown for
example in Fig. 4). Path planning is also challenging with vector maps, since
there is no clear distinction between free space and unexplored space.
Lightweight. Occupancy grids have the highest memory requirements among
the discussed formats. The memory depends only on the size of the area
covered by the map and the chosen resolution. It does not depend on the
number of obstacles, or the shape of the obstacles. Feature-based maps have
a low memory consumption which correlates with the number of features in
the environment/map. As a result, the memory consumption can be altered
by choosing a different feature detector, or tweaking the parameters of the
selected feature detector. Vector-based map formats are sparse representation
of the environment, and as such have low memory requirements. Furthermore,
the number of line segments in both formats depends on the amount of obsta-
cles (and their shape), but not on the size of the environment.
Visualization for Human Use. All presented map formats except feature-
based maps are considered suitable for visualization. For feature-based maps,
it depends on the type of feature: those that do model the position and shape
of obstacles are suitable for visualization, the rest is not. Occupancy grids
can easily be exported as bitmaps (typically in the portable network graphic

126 J. Dichtl et al.

(PNQG) format), vector maps are either rasterized as bitmaps or exported in
a vector format such as scaleable vector graphics (SVG). Either provide an
easy-to-understand top-down-view of the covered area.

4 PolyMap

Looking at the previous section, we can see that vector-based map format is
promising. Vector-based maps are both lightweight and appropriate for human
use. In this section, we introduce PolyMap, a vector-based map format that
addresses the two limitations of vector maps. We show that PolyMap is appro-
priate for path planning and for exploration.

4.1 Polygon-Based Map Format

PolyMap represents the environment using simple polygons. Simple polygons are
polygons that consist of non-intersecting line segments that are joined pair-wise
to form a closed path [13].

Formally, a polygon-based map M is defined as:

type : T = {border, frontier} (1)
vector : V = {(z;,t)|1 <i < 2;m; € R%wq # 29} (2)
polygon : P = {v;li > 3;i € V} (3)
map: M ={p|l <i<n;peP} (4)

with P forming a simple polygon, and n being the number of polygons in the
map.
We define two types of line segments:

Obstacles: they represent the outline of obstacles.
Frontiers: they model the transition from free/traversable space to unknown/
unexplored space.

Every line segment has exactly one type, polygons can contain line segments
of different types. The direction of line segments is chosen, so that clockwise
oriented polygons contain traversable space inside. Figure 5 shows an example of
map containing two different types of line segments: red line segments represent
obstacles and green line segments represent frontiers. A map is composed of a
single (clockwise oriented) large polygon that encompasses the entire explored
area. Inside this polygon are typically multiple other polygons with a counter-
clockwise orientation, modeling obstacles.

Using directed line segment like this, has the advantage that it is easy to
determine whether a given point is inside free or unexplored space; a property
that feature-based and vector-based map formats are missing. For this, we only
need to find the closest line segment to the point and look at which side of
the polygon the point is located. Figure6 illustrates this with two points: one
is inside the explored area and the other is outside. This not only helps for
visualization, but also allows localization with particle filters to discard particles
that are inside obstacles or otherwise in unexplored space.

PolyMap: A 2D Polygon-Based Map Format 127

B x
A
%
T >/
s
Fig.5. An example of a map consisting Fig. 6. Two points, one inside free space,
of only simple polygons. Obstacles are the other in unexplored space.
red and frontiers are green. (Color figure
online)

4.2 Evaluation of PolyMap

PolyMap does address all the requirements presented in Sect.3. Being based
on vectors grouped into polygons, a PolyMap has by definition the advantages
of vector-based map format. It is lightweight and can be easily visualized by
humans. The remaining of this section first discusses how PolyMap meets the
two other requirements and then how to build polygon-based maps.

Ezxplicit Exploration Frontiers. The types of line segments of a polygon are either
obstacles or frontiers. Outside a polygon is unexplored space, while inside repre-
sents the explored space. Passages between the two spaces, if any, are represented
thanks to frontier segments.

Support for Path Planning. PolyMaps are suitable for navigation because poly-
gons separate traversable areas and unexplored ones. The sparse nature of this
map format makes it easy to create a topological graph using visibility graphs,
or random sampling points in traversable space [7]. Such topological graphs are
then suitable for navigation and path planning.

How to Build a PolyMap? To use PolyMaps in practice, we need to build such
maps. One idea is to build it from an existing occupancy grid map. Doing so
can be achieved in several ways, for example by extending the approach of
Baizid et al. [1] to form closed polygons. Another possibility would be to utilize
a wall-following strategy to outline the borders of traversable space, creating
closed polygons in the process. Yet another method is to create a vector for
every transition from free space into non-free space, and build polygons from
the collected vectors. We used this idea in our implementation (programmed in

128 J. Dichtl et al.

Data: occupancy grid map G
Result: PolyMap M
create dictionary D
/* create vectors */
foreach cell c € G where c is free space do
foreach neighbor n of ¢ where n is not free space do
/* vector orientation is CCW with respect to c */
if n is obstacle then
| create vector v at border of ¢ and n of type obstacle
else if n is unexplored then
| create vector v at border of ¢ and n of type frontier

end

add vector v to dictionary D with v start point as key

in case of two vectors sharing the same start point, both are stored
alongside

end

end

/* create polygons */
while D is not empty do

create empty polygon P

take random vector v from D

remove v from D

wi=v

while w end point # v start point do

P add w

w := D at key w end point

remove w from D
end

M add P
nd

* aggregate vectors */
oreach polygon P € M do
foreach vector v € P do

w := vector in P where w start point = v end point

if w orientation = v orientation and w type = v type then
set v end point to w end point

remove w from P
end

0]

=5

end
end
Algorithm 1: How to build a PolyMap from a grid map

Pharo!) to build PolyMaps from grid maps. The pseudo-code for this is shown in
Algorithm 1.

Figure 7 shows the result on applying our algorithm to convert a grid map of
the Intel Lab data set? to a PolyMap. Obstacles are shown with red vectors and

! https://pharo.org/.
2 http://ais.informatik.uni-freiburg.de/slamevaluation /datasets.php.

https://pharo.org/
http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php

PolyMap: A 2D Polygon-Based Map Format 129

Fig. 7. Occupancy grid (left), full converted PolyMap (middle) and zoom in the
PolyMap (right) (Color figure online)

frontiers with green vectors. The resulting PolyMap in this example consists of
829 polygons, with a total of 18054 vectors. The right-most figure is a zoomed-
in section of the PolyMap, displaying individual vectors. Interestingly, the size
of the full PolyMap is approximately the size of the compressed grid map. In
this particular example, the grid map (in PNG format) takes about 100 kB, and
the uncompressed PolyMap requires about 160kB. Compressed, the PolyMap
shrinks to approximately 44 kB (ZIP?) and 20kB (7z*). Nevertheless, this algo-
rithm only creates either horizontal or vertical vectors. Further optimization
that allows diagonal vectors could result in even smaller memory footprints of
the maps. Such optimizations will be considered in future work.

Multi-robot Exploration Using PolyMaps. Being a lightweight map format with
a sparse representation of the environment, PolyMaps have low network band-
width requirements. In multi-robot exploration scenarios, this allows us to use
more robots, cover larger areas, or exchange maps more frequently than when
compared with occupancy grids. Also, due to the sparse nature of the map for-
mat combined with explicit frontiers, frontiers can be selected easily and assigned
to individual robots as exploration goals. Priority can be based on size of the
frontier (i.e. length of the vectors) and proximity to the robot. The process of
merging multiple PolyMaps from different robot is an interesting topic for future
work.

5 Conclusion

Polygon-based map formats provide advantages by employing a sparse represen-
tation of the environment while still modeling obstacles with an accuracy that is
comparable to occupancy grids. The reduction in memory consumption allows

3 ISO/IEC 21320-1:2015, https://www.iso.org/standard /60101.html.
4 https://www.7-zip.org/.

https://www.iso.org/standard/60101.html
https://www.7-zip.org/

130 J. Dichtl et al.

to cover larger areas compared to occupancy grids, and helps to do deal with
the bandwidth bottleneck when broadcasting the map over a network. This is
particularly helpful if maps need to be distributed within a robot fleet.

Explicitly modeling frontiers and enforcing closed polygons makes the maps
much more useful for navigation and exploration tasks. Using directed line seg-
ments also makes it easy to determine whether a given point in located in free
or unexplored space.

For future work, we plan to implement a full SLAM application that utilizes
the PolyMap format and to test it in autonomous exploration scenarios. We
further want to use the PolyMap format in multi-robot systems to rapidly explore
an environment with a fleet of robots. This includes merging PolyMaps that have
been created bu different robots in the fleet.

Acknowledgment. This work is part of the CPER DATA project that is supported
by Région Hauts de France, and the French state.

References

1. Baizid, K., Lozenguez, G., Fabresse, L., Bouraqadi, N.: Vector maps: a lightweight
and accurate map format for multi-robot systems. In: Kubota, N., Kiguchi, K., Liu,
H., Obo, T. (eds.) ICIRA 2016. LNCS (LNAI), vol. 9834, pp. 418-429. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-43506-0-37

2. Castellanos, J.A., Montiel, J., Neira, J., Tardés, J.D.: The SPmap: a probabilistic
framework for simultaneous localization and map building. IEEE Trans. Robot.
Autom. 15(5), 948-952 (1999)

3. Chatila, R., Laumond, J.P.: Position referencing and consistent world modeling
for mobile robots. In: Proceedings of the 1985 IEEE International Conference on
Robotics and Automation, vol. 2, pp. 138—-145. IEEE (1985)

4. Chen, Y., Qu, C., Wang, Q., Jin, Z., Shen, M., Shen, J.: TVSLAM: an efficient
topological-vector based SLAM algorithm for home cleaning robots. In: Huang,
Y.A., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp.
166-178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_16

5. The Robot Map Data Representation (MDR) Working Group: IEEE standard
for robot map data representation for navigation, sponsor: IEEE robotics and
automation society, June 2016. http://standards.ieee.org/findstds/standard/1873-
2015.html

6. Jelinek, A.: Vector maps in mobile robotics. Acta Polytech. CTU Proc. 2(2), 22-28
(2015

7. LaVal)le, S.M.: Planning Algorithms. Cambridge University Press, New York (2006)

8. Lv, J., Kobayashi, Y., Ravankar, A.A., Emaru, T.: Straight line segments extrac-
tion and EKF-SLAM in indoor environment. J. Autom. Control Eng. 2(3), 270-276
(2014

9. Pﬁste)r, S.T., Roumeliotis, S.I., Burdick, J.W.: Weighted line fitting algorithms for
mobile robot map building and efficient data representation. In: Proceedings of the
IEEE International Conference on Robotics and Automation, 2003, ICRA 2003,
vol. 1, pp. 1304-1311. IEEE (2003)

10. Ravankar, A., Ravankar, A.A., Hoshino, Y., Emaru, T., Kobayashi, Y.: On a
hopping-points SVD and hough transform-based line detection algorithm for robot
localization and mapping. Int. J. Adv. Robot. Syst. 13(3), 98 (2016)

https://doi.org/10.1007/978-3-319-43506-0_37
https://doi.org/10.1007/978-3-319-65298-6_16
http://standards.ieee.org/findstds/standard/1873-2015.html
http://standards.ieee.org/findstds/standard/1873-2015.html

11.

12.

13.

14.

PolyMap: A 2D Polygon-Based Map Format 131

Sohn, H.J., Kim, B.K.: VecSLAM: an efficient vector-based SLAM algorithm for
indoor environments. J. Intell. Rob. Syst. 56(3), 301-318 (2009). https://doi.org/
10.1007/s10846-009-9313-2

Stachniss, C., Grisetti, G., Hahnel, D., Burgard, W.: Improved rao-blackwellized
mapping by adaptive sampling and active loop-closure. In: Proceedings of the
Workshop on Self-Organization of AdaptiVE behavior (SOAVE) (2004)
Toussaint, G.: Efficient triangulation of simple polygons. Visual Comput. 7(5-6),
280295 (1991)

Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceed-
ings of CIRA 1997 (1997)

https://doi.org/10.1007/s10846-009-9313-2
https://doi.org/10.1007/s10846-009-9313-2

	PolyMap: A 2D Polygon-Based Map Format for Multi-robot Autonomous Indoor Localization and Mapping
	1 Introduction
	2 Requirements
	3 State of the Art
	4 PolyMap
	4.1 Polygon-Based Map Format
	4.2 Evaluation of PolyMap

	5 Conclusion
	References

