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Abstract. Most of the systems that rely on the solution of shortest path
problem or constrained shortest demand real-time response to unexpected real
world events that affect the input graph of the problem such as car accidents,
road repair works or simply dense traffic. We developed new incremental
algorithm that uses data already present in the system in order to quickly update
a solution under new conditions. We conducted experiments on real data sets
represented by road graphs of the cities of Oldenburg and San Joaquin. We test
the algorithm against that of Muhandiramge and Boland [1] and show that it
provides up to 50% decrease in computation time compared to solving the
problem from scratch.
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1 Introduction

With graph databases being one of the central representations of big data, we focus our
attention on their dynamic version in the form of dynamic road graphs. Calculating a
pathway between two points is an essential combinatorial optimization problem not
only as a stand-alone problem, but also as a subtask for a series of other more complex
optimization problems. The list of examples includes the travelling salesman problem
and its counterpart – vehicle routing problem [2, 3]. In the latter problem a route is
constructed from several points of interest. In case these points are represented by some
graph nodes, it is almost always assumed that the distance between two points is
designated by the graph shortest path between them. Other problems include detecting
arbitrage opportunities in currency markets, pathfinding problems that are used, for
instance, by AI (artificial intelligence) to plot routes or by video game engines to assist
users in plotting route.

Several complex applications of shortest path problem require to approach real life
conditions and to consider the resource constrained shortest path problem (RCSPP),
where graph edges, besides edge cost, are also associated with the resource, which is
consumed upon travelling through this edge. The solution path summary resource
consumption should fall within the range of 0;WL½ �. A wide set of problems which
require solving constrained shortest path as a subtask include problems of long-haul
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aircraft and truck routing [4], military path planning under resource constraints [5],
crew scheduling problems [6], pipeline and valve location [7], designing telecommu-
nication network with relay nodes [8]. RSCPP was extended by Smith et al. [9],
introducing replenishment edges, which reset consumed resource to zero upon trav-
elling a replenishment edge. Such setting is convenient and used in aircraft routing.

To get even closer to real life conditions we decided to consider constrained
shortest path problem applied to real traffic events that may occur on the road. These
events may include regular traffic jams, car accidents, road line repair works, road
closures etc. We assume that we have calculated (by using an algorithm that we will
refer to as the baseline algorithm, which implies that we will propose another one that
in some way improves this baseline algorithm) a constrained shortest path from desired
a source to a desired destination and then one (or several) of the mentioned events take
place. All of these events imply that car flow through this road is impaired, that is the
number of cars that pass through this segment of road per particular unit of time as well
as average speed of travelling through the segment are reduced.

To model this behavior of the system we use resource constrained shortest path
setting, where the cost of the edge denotes L2 distance of the road segment and the
weight of the edge represents traffic flow with inverse proportion (the greater the
weight of the edge – the less is the flow through this edge). This means that we have to
recalculate our solution path from the source to the destination but now taking into
account that some of the edges have increased their weight. In cases where the changes
in graph edge weights are not heavy (i.e. only a small amount of edges have changed
their weights) but still affect our optimal solution it may prove highly inefficient to
perform all calculations from scratch. With that in mind, we developed new incre-
mental algorithm to utilize data obtained during the initial run of the baseline algorithm.

Our algorithm is influenced by the algorithm of Muhandiramge and Boland [1] and
utilizes the similar preprocessing method, when the solving of Lagrangian dual is
integrated with network reduction. Moreover, we combine the above-mentioned
algorithm with modified version of the algorithm of Pallottino and Scutella [10] for
reoptimizing shortest path trees. This will allow us to use already calculated trees to
find new trees with changed edge weights.

2 Related Work

Resource constrained shortest path problem has been extensively studied for several
past decades. In most of the works the optimal solution for RCSPP is obtained in three
step approach: preprocessing, network reduction and gap closing. The work by Aneja
et al. [11] was published in 1983 and is considered to be the first to utilize prepro-
cessing. Its main idea lies in removing nodes and edges that cannot be a part of optimal
solution by checking for feasibility every path through considered node or edge.
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Several more recent papers use the above-mentioned three step approach. Beasly
and Cristofides [12] apply the similar preprocessing procedure but also perform node
checks with reduced cost and best lower bound obtained by solving the Lagrangian
dual. Dumitrescu and Boland [13] used the same preprocessing but considered regular
costs instead of Lagrangian relaxed costs. They conducted testing on sparse network
and achieved heavy reductions in the size of the graph. Mehlhorn and Ziegelmann [14]
suggest an algorithm with more effective preprocessing due to obtaining better upper
bound.

Muhandiramge and Boland [1] were the first to suggest an algorithm that combines
preprocessing and Lagrangian dual solving in one step, thus offering a two-step
approach. To solve Lagrangian dual Kelley’s Cutting Plane Method (KCPM) is used
on the set of all Lagrange multipliers. In the gap closing phase a modified version of
Carlyle’s and Wood’s [15] enumeration is utilized and represents a depth-first branch
and bound search that uses shortest path trees for optimal Lagrange multiplier to
perform tests and fathom branches. Muhandiramge and Boland [1] also offer an SPT
reoptimization algorithm that recalculates SPT if it is necessary. Their reoptimization
algorithm employs Dijkstra’s shortest path algorithm, starting from some advanced
point and does not consider changes in edge weights.

As for incremental approaches in regular and constrained shortest path, several
algorithms have been suggested in the past 30 years. Gallo [16] proposed the first
algorithm to recalculate shortest paths but only for particular cases when the source
vertex has changed or exactly one edge has lowered its cost. Ramalingam and Reps
[17], King and Thorup [18], Demetrescu [19] provided several reoptimization algo-
rithms for cases when exactly one edge change its weight (in any direction). Pallotino
and Scutella [10] devised a method to reoptimize single-source shortest path tree in
two-phase approach, dealing with edges that increase and decrease their weights sep-
arately. The work by Zhu [20] provides reoptimization algorithm for shortest path tree
in an acyclic graph. They consider a case where RCSPP is a subproblem in column
generation, i.e. edges change their costs instead of weights as in our problem definition.
Our algorithm also deals with graph reductions that is when we need to update shortest
path tree on the graph with different number of vertices.

3 Problem Definition

Let G ¼ ðV ;AÞ be a directed graph, where V is the set of nodes and A is the set of
edges. We give every node a label i 2 Z þ - a set of positive integers, so every edge by
default gets labeled as ði; jÞ with i being the source and j being the target of the edge.
We denote with s and t the source and target for the whole problem.

Every edge of the graph is associated with two real non-negative values: cost and
weight. This can be described with functions C : A ! Rþ and W : A ! Rþ . We note
here that our algorithm can be easily applied to the case with W : A ! ðRþ Þn.

Path p from node i1 to node ik is a sequence of edges i1; i2ð Þ; . . .; ik�1; ikð Þ s.t.
il�1; ilð Þ 2 A; 8l ¼ 1; . . .; k. We refer to the cost and weight of the path p as C pð Þ and
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W pð Þ respectively. If we denote with PG the set of all paths from s to t then the regular
RCSPP would imply the search for such path p� that

C p�ð Þ ¼ minp2PG C pð Þ ð1Þ
s.t: W pð Þ�WL ð2Þ

where WL is the global weight limit for the path, designated by problem input.
Next, we suppose that constrained shortest path problem was solved with weight

function W and we have to apply now the new weights to graph edges. Due to the way
the definitions are set, we don’t have to apply changes to the graph itself in order to
introduce incrementality, but can rather say that we still have the same graph G and
new weight function W

0
: A ! Rþ . Considering real life everyday traffic events, we

utilize the following statement:

8e 2 AW
0
eð Þ�WðeÞ: ð3Þ

The main idea of incremental RCSPP is formulated as follows. Suppose we solved the
RCSPP problem stated with weight function W with some baseline algorithm. We
propose a new incremental algorithm for RCSPP to solve the problem under new
weight function W 0 using data obtained with the baseline algorithm. The proposed
algorithm is faster than the one that solves the new problem from scratch.

4 Lagrangian Dual and Baseline Algorithm

Our incremental algorithm utilizes the data obtained by the initial run of the base
algorithm of Muhandiramge and Boland [1] to give preprocessing a head start. It ini-
tializes the problem from advanced point and then continues with solving the Lagrangian
dual. This section will provide a brief overview of the Muhandiramge and Boland
algorithm in order to explain what data from baseline algorithm run we use and how we
do it. For more detailed exposition the reader is referred to [1]. As we mentioned earlier,
the algorithm of [1] consists of only two phases – solving the Lagrangian dual and gap
closing – since preprocessing (or network reduction) is integrated in the first phase.

4.1 Simple Node Elimination

As for the first phase of [1], there are several options for network reduction. We
decided to dwell on the basic part of it called Simple Node Elimination (SNE) and to
create its incremental counterpart.

To set up a Lagrangian dual problem for RCSPP a relaxed weight constraint
function is introduced

L k; pð Þ ¼ C pð Þþ kðW pð Þ �WLÞ; ð4Þ
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where coefficient k� 0 is known as Lagrange multiplier. For the sake of brevity the
reduced cost function is sometimes introduced as

K k; að Þ ¼ Cþ kWð Þ að Þ ð5Þ

for every edge a 2 A and

K k; pð Þ ¼
X

a2p Cþ kWð Þ að Þ ð6Þ

for every path p.
Next L k; pð Þ is minimized over p 2 PG to obtain Lagrangian dual function

UG kð Þ ¼ minp2PG K k; pð Þ � kWL: ð7Þ

It is known that for every k� 0 Lagrangian dual function provides a lower bound
for the value of the target primal function, hence we want to maximize UG kð Þ over all
non-negative lambdas to obtain greatest lower bound. For a particular value of k the
value of UG kð Þ can be calculated by solving unconstrained shortest path problem. By
construction, UG kð Þ is a piecewise concave function so the authors of [1] rely on
modified Kelley’s cutting plane method (KCPM). They introduce the convenience
notation of minimum cost path form i to j with respect to reduced cost function K,
found by shortest path calculator, and denote it as Qk

ij. Q
1
ij denotes the minimum weight

path. Detailed discussion on KCPM is provided in [1].
To combine preprocessing and solving of the Lagrangian dual Muhandiramge and

Boland [1] integrate KCPM with network reduction in the following way.
First, an initialization procedure is performed that sets kþ ¼ 0 and k� ¼ 1

(values, maintained by KCPM) and for each value calculates its forward and reverse
shortest path tree. Forward shortest path tree (SPT) is a tree that stores a shortest path
from source vertex (vertex s) to every other vertex in the network, reverse SPT stores
paths from every vertex to target vertex (vertex t). This procedure not only verifies that
the problem is feasible and non-trivial but finds a feasible solution (if there are any)
represented by minimum weight path. Since every feasible solution provides an upper
bound whereas Lagrangian dual value provides a lower bound, network reduction can
be performed for every node independently. Suppose we have PG;k – a set of all paths
from s to t through vertex k. Now let us consider current problem upper bound U and a
Lagrangian dual

UG;k kð Þ ¼ minp2PG;k K k; pð Þ � kWL: ð8Þ

If for some k� 0 it appears that UG;k kð Þ�U then node k can be eliminated from the
graph with all of its adjacent edges. It is important to note that for a certain value of k
its forward and reverse SPTs provide all shortest paths through each vertex of the graph
(to get such a path through k we can concatenate the one from s to k. obtained from
forward SPT with that from k to t obtained from reverse SPT).
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The algorithm inserts the elimination checks for every vertex after calculation of
knew and its SPTs. To increase elimination efficiency, this step is preceded by traversing
the graph in search of feasible paths at every node in an attempt to improve current
upper bound. Then lower bound is calculated for every node and the elimination checks
are performed.

We state here full pseudo-code of SNE as provided by Muhandiramge and Boland.
We use steps from 3 to 8 (as well as incremental SPT update) to continue solving
KCPM for our incremental preprocessing, described in Sect. 7.

The Algorithm for Constrained Shortest Path Problem 365



Step 7 is necessary since all of the calculated SPTs (except knew) become obsolete
after the reduction of the network in step 4, which for the new graph may result in
U

0
G k�ð Þ[ 0 or U

0
G kþ� �� 0. To address this issue the authors of [1] make use of the

ordered set L of all lambdas for which SPTs were calculated. This allows to keep kþ

and k� correct throughout the algorithm. For additional clarifications on Simple Node
Elimination the reader is referred to the original article [1].

4.2 Gap Closing

For the second phase, which is supposed to close the gap between lower and upper
bounds, Muhandiramge and Boland chose to utilize the depth-first branch and bound
approach facilitated by fathom tests. This method starts from the source vertex and
iterates through graph with a depth-first approach, building a path from visited edges.
The fathom test is applied to every branch (the branch is represented by a certain edge)
under consideration and depending on the outcome of the test the branch is pruned, i.e.
is removed from further considerations since it cannot be in the optimal path. If dfbb
(depth-first branch and bound) managed to reach the target vertex the algorithm checks
the cost of the path, which was used to reach the target, and, if necessary (i.e. the cost
of this path is less than current upper bound), updates upper bound and the result path.

The fathom test uses a procedure similar to KCPM’s search for optimal Lagrange
multiplier. Keeping in mind that U kð Þ is concave and having the ordered set L ¼
k0; . . .; k1ð Þ of lambda values for which we have SPTs the algorithm performs a bisection
search to find the best available lambda (for which U kð Þ is the greatest). The explicit
pseudo-code for fathom test as well as the gap closing phase is given in [1].
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5 Incremental SPT Update

As a starting point we assume that the baseline algorithm finished its work, reduced the
network and found an optimal path. As the problem statement claims, we need to apply
now the new weight function to our graph (that is, to increase the weights of some
edges). Because of this, the reduction of some nodes and edges may prove invalid. That
means we cannot use the current graph and have to perform new network reduction on
the initial full graph. For the reasons stated above in this research we focus our attention
on the first phase in an attempt to perform fast network reduction and optimal Lagrange
multiplier search based on the data computed in the course of the baseline algorithm.
Due to the article size limitations we omit detailed discussions on the gap closing phase.

As we may infer, the largest computational overhead of SNE lies in computing and
recomputing shortest path trees. A* (or Dijkstra’s) is suggested as a default SPT
calculator, but, for example, Dijkstra’s Oð Aj j þ Vj j log Vj jÞ for a single SPT calculation
can prove inefficient for big graphs, considering the fact that all calculations have to be
performed in real time and provide solutions as fast as possible. It is important to notice
that the authors of [1] also provide their own algorithm for updating SPT. However,
this algorithm is designed to only recalculate SPTs after network reduction. This can be
regarded as the special case of changing edge weight, when edge weight is set to be
equal to 1 (i.e. delete the edge). For that reason such algorithm cannot be applied to
general case of edge weight increase. To address this issue we decided to use slightly
modified version of Pallottino and Scutella [10] algorithm for reoptimizing shortest
path tree. Below, we will provide a brief overview of the algorithm.

5.1 Incremental SPT Update Algorithm

Since the algorithm operates only with unconstrained edge costs, it is convenient to
denote a cost of an edge i; jð Þ as cij keeping in mind that every SPT is tied to a certain
value of k, so cij ¼ C i; jð Þþ kW i; jð Þ. Dijkstra algorithm also provides us with the
potential pi of each node (the weight of the shortest path from SPT root r to this node)
as well as reduced cost cij ¼ cij þ pi � pj.

Algorithm also receives as input an SPT Tr ¼ ðV ;ArÞ as well as new costs c
0
ij. For

Tr to be a shortest path tree it has to satisfy a complementary slackness condition
(CSC), that is cij ¼ 0; 8 i; jð Þ 2 Ar. If the new edge costs c0ij satisfy CSC for every
i; jð Þ 2 Ar then the problem is trivial and Tr is returned as an updated SPT.

Otherwise, forest Fr ¼ N;AFð Þ is obtained from Tr by removing all edges that do not
satisfy CSC (c0ij [ 0Þ. That means that AF ¼ i; jð Þ 2 Ar : cij ¼ 0

� �
. Root subtree T rð Þ ¼

N rð Þ;A rð Þð Þ contains SPT root r and does not need reoptimization. Other subtrees are
reconnected to TðrÞ through a series of “hanging operations” described below.

Consider a cut N rð Þ;N rð Þ� �
of the vertex set, where N rð Þ ¼ NnN rð Þ. Hanging

operation defines two sets:

Aþ ¼ i; jð Þ 2 A : i 2 N rð Þ; j 2 N rð Þ� �
; ð9Þ
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known as the set of border edges, and

AE ¼ i; jð Þ 2 A : i 2 N rð Þ; j 2 N rð Þ� �
; ð10Þ

known as the set of external edges.
For every node j 2 N rð Þ, the following values are calculated

dj ¼ min c0ij : i; jð Þ 2 In jð Þ \Aþ
n o

aj ¼ min c0ij : i; jð Þ 2 In jð Þ \AE
n o

dþ
j ¼ min di : i 2 N þ jð Þf gd�j ¼ min di : i 2 N� jð Þf g

aþ
j ¼ min ai : i 2 N þ jð Þf ga�j ¼ min ai : i 2 N� jð Þf g;

where In jð Þ denotes a set of all incoming edges of j, N þ ðjÞ and N� jð Þ denote sets of
nodes which are ancestors and descendants of j respectively. These values are assumed
to be 1 if the corresponding set is empty.

Next, gap D is defined for the cut N rð Þ;N rð Þ� �
as

D ¼ min dj : j 2 N rð Þ� � ð11Þ

and node w for which dw ¼ D.
Finally, node v is considered hangable if it satisfies the following inequalities:

dv �min dþ
v ; d�v

� � ð12Þ

and

dv �Dþmin aþ
v ; a�v

� � ð13Þ

If the conditions are true, node v and its subtree T vð Þ ¼ N vð Þ;A vð Þð Þ are hanged to
the root subtree TðrÞ through the edge u; vð Þ 2 Aþ , such that c0uv ¼ dv. After the
hanging we have:

N rð Þ := N rð Þ [N vð Þ ð14Þ

A rð Þ := A rð Þ [A vð Þ [ ðu; vÞ ð15Þ

pi := pi þ dv; 8i 2 T vð Þ ð16Þ

Not only a set of hangable nodes is never empty, it can also contain multiple
vertices and their subtrees can be hanged in parallel.

After hanging all currently hangable vertices, the values of alphas and deltas are
updated and new hanging operations can be performed. The algorithm stops when all
vertices are in the root subtree. More detailed discussions on SPT update and hanging
operations can be found in [21, 22].
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6 Incremental SPT Update Complexity in the Scope
of RSCPP

Now if we return to RSCP problem and try to apply SPT update algorithm in the form
stated above, we may face the following difficulty. The current graph on which we
want to have an updated SPT can have different set of vertices, compared to the graph
on which input SPT has been calculated. This can happen if either of the graph has
undergone reduction in the course of KCPM. Since it will cause problems in the entire
algorithm logic, we have to address this issue by considering two cases. First case
represents an event when new graph does not contain all the vertices from the old
graph, that is 9i 2 Vold : i 62 Vnew. Second case represents the opposite event when
9i 2 Vnew : i 62 Vold . There is actually a third option for the case when both graphs were
reduced and now contain different sets of vertices. However, this case is just a com-
bination of the first two and does not require to be handled independently.

First case does not require much attention since it is rather trivial. During initial
forest Fr and root subtree T rð Þ construction our algorithm deletes not only nodes that
do not satisfy CSC but also nodes that are not contained in new graph vertex set Vnew.
The latter nodes (which are not in Vnew) and there adjacent edges also don’t participate
in hanging operations.

As for the second case, let us consider nodes that are in Vnew but not in Vold . Let us
call them e-nodes (from extra nodes). Obviously such nodes fall into N rð Þ and require
to be hanged. Moreover, if a node i in N rð Þ has an adjacent edge k; ið Þ and node k is an
e-node (node i has an edge incoming from e-node), then node i is deleted from T rð Þ and
is also required to be hanged. The latter action is required to keep optimality of the
SPT, since that adjacent e-node can offer a better shortest path, than the current one for
the node in question.

It is obvious, that the great number of e-nodes can seriously impair computational
efficiency of SPT updated. Default complexity for SPT update through hanging
operations is O mþRnð Þ, where m and n are the numbers of edges and vertices
respectively and R is the number of hanging iterations (remember that each hanging
iteration can hang several subtrees in parallel). For our modified version this would
mean a complexity of O mnew þRnnewð Þ. If there is many e-nodes the number R will be
great as well and in the worst case can be equal to n, making worst case complexity of
O mnew þ n2new
� �

which is worse than computing SPT from scratch with Dijkstra’s
algorithm. However, in practice, Dijkstra’s algorithm outperforms incremental SPT
update only when we are trying to update SPT calculated on heavily reduced graph,
and the new graph being from almost full to non-reduced at all. Of course, we can think
of at least one example when this could happen. As soon as the edge weights have
changed, the first step of preprocessing performs a test for the problem being trivial.
This test is usually done by calculating SPTs for k ¼ 1 (testing if minimum weight
path is feasible, otherwise – the problem is infeasible) and for k ¼ 0 (testing if mini-
mum cost path is feasible, and if so – the optimal solution for the problem is the
minimum cost path). The difficulty may arise if during baseline algorithm SPTs for
k ¼ 1 and k ¼ 0 were recalculated for heavily reduced graph. So, to avoid recalcu-
lation of SPTs calculated on heavily reduced graph and to facilitate the initialization of
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the incremental RCSPP our algorithm stores two additional SPTs for k ¼ 1 and k ¼ 0
and in particular the ones that were computed on non-reduced graph and performs
updates using these SPTs.

Now we can discuss the case, were no e-nodes are present. Of course, in this case we
know that mnew �mold , nnew � nold and complexity of incremental SPT update (the
number of hanging operations R) will depend on the number of edges that has changed
their weight. Worst case complexity is still O mnew þ n2new

� �
, but we have to remember

here that we consider real life events such as car accidents, road line repair works or road
closing etc. Hence, it can be inferred that edge weight changes are not scattered ran-
domly across the graph but rather congregated around particular edges. For incremental
SPT update that means that lots of previously calculated SPT subtrees remain intact
which allows not only to hang subtrees with many nodes to the root subtree but also to
hang many subtrees at once (in parallel) and in the end outperform Dijkstra’s algorithm.
Indeed, if, for instance in some SPT a path from i to j contains three edges with changed
weight and these edges are adjacent, then everything before and after this “congrega-
tion” does not need to be recomputed and will be present as is in the updated SPT.

As experiments show, there are certain thresholds on the amount of edges that
change their weights. These thresholds signify when it is more efficient to use incre-
mental SPT update than to recalculate SPT from scratch. Due to the lack of article
space we shall not dwell on the discussions about exact values for the above-mentioned
thresholds and move to the discussion of the algorithm itself.

7 Incremental Preprocessing Pipeline

In this section we will provide a pseudo-code for the preprocessing step and explain its
general steps.

To perform efficient preprocessing using the data obtained by baseline algorithm,
we would like to start from some advanced point, that is, we would like to use some
good upper and lower bounds and use them in network reduction.

We start with checking a problem for being feasible or trivial. Normally we would
have to do that by updating SPTs for k ¼ 1 and k ¼ 0 using SPTs calculated on the
full graph. We can notice though, that an update for k ¼ 0 does not have to happen
here, if the global weight limit stays the same. This is true because minimum cost path
stays the same even after weight changes. Since we work with weight increases, we can
infer that new problem is non-trivial if the old problem is non-trivial. The reverse
statement, however, is not true. Looking for an upper bound we can always rely on
minimum weight path, provided it is feasible, if we have recalculated SPTs for k ¼ 1.
However, to obtain better upper bound and to possibly avoid recalculation of SPTs we
suggest the following procedure.

During the gap closing phase of baseline algorithm, the depth-first branch and
bound (dfbb) approach is used to traverse the graph in search of feasible solutions.
Every feasible solution found by dfbb is stored for the use in incremental prepro-
cessing. After applying new weight function to edges, we can check every solution for
feasibility. We assume that the path with minimum cost out of all feasible solutions
(the one that was optimal for the old graph) is infeasible, because the problem would be
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trivial otherwise, if this path would retain its optimality. However, if any of the
remaining feasible solutions appears to be feasible under new weight function, then we
can use it as an upper bound for preprocessing and as an indication of problem
feasibility. This will allow us to avoid recalculation of SPTs for k ¼ 1 during
initialization.

To perform incremental preprocessing we need to find new optimal Lagrange
multiplier, since it could change after applying new weights to the edges, and then
perform reduction. However, since we have all the information obtained in the course
of baseline algorithm, we have a list of values for k and their, albeit invalid now, SPTs.
For that reason we don’t need to start KCPM from scratch, that is with kþ ¼ 0 and
k� ¼ 1. To give our preprocessing a head start we can recalculate SPTs for a par-
ticular value of kinc from the list of available lambdas, perform network reductions
(since recalculated SPTs will provide us with a lower bound) and continue KCPM
setting kþ ¼ kinc; k

� ¼ 1 or k� ¼ kinc; k
þ ¼ 0 depending on the sign of U

0
kincð Þ.

The question may arise: what value for kinc may be optimal? One seemingly logical
option would be to choose OLM obtained by baseline’s KCPM. However, it may turn
out that SPTs for this value might have been calculated on the graph already heavily
reduced, which renders recalculations of such SPTs highly inefficient due to the large
number of e-nodes. For that reason in our algorithm we were not using OLM obtained
in baseline’s KCPM. In the course of our experiments on SNE, we made an interesting
observation related to values of k and graph reductions. Let us denote as qr the number
of nodes that were removed from the graph during r-th iteration of KCPM. We noticed
that during several initial iterations of KCPM, network reductions can be trivial, i.e. no
nodes and edges are deleted. Next, let us assume that first non-trivial reduction hap-
pened at rnt-th iteration and we removed qrnt nodes. We observed, that in large majority
of cases after rnt-th iteration the amount of nodes removed during network reduction is
always less than qrnt , that is

8r[ rnt; qr\qrnt ð17Þ

It means that the largest number of nodes is deleted during first non-trivial
reduction. Now if we denote as knt the value of lambda, which was used to perform first
non-trivial graph reduction, we can be certain, that for knt baseline algorithm calculates
SPTs on the non-reduced graph. We store these SPTs, as well as the value of knt right
after first non-trivial reduction takes place, since we cannot be sure that these SPTs
would not be recalculated on some reduced version of the graph in the course of
KCPM.

Thus, in our incremental preprocessing we set kinc ¼ ktr and recalculate SPTs using
specific stored ones. After that network reduction is performed using the lower bound
obtained from U kincð Þ, set kþ ¼ kinc; k

� ¼ 1 or k� ¼ kinc; k
þ ¼ 0 depending on the

sign of U
0
kincð Þ, recalculate the necessary invalid SPTs (recalculate SPTs for k ¼ 0 if

U
0
kincð Þ� 0 or recalculate SPTs for k ¼ 1 otherwise) and continue KCPM, using

incremental SPT updates where necessary.
The initial network reduction with kinc gives incremental preprocessing a head start

and allows to avoid recalculating SPTs for the graphs with a great number of e-nodes.
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Next, we provide the pseudo-code for our incremental preprocessing.

Thus, our preprocessing algorithm starts from advanced points, performs necessary
network reductions and stops when either found optimal solution or optimal Lagrange
multiplier for the new problem.

8 Experiments

We conducted extensive experiments on real road graphs of the city of Oldenburg
containing 6000 nodes and 14000 edges and the city of San Joaquin [23] containing
18000 nodes and 46000 edges. We used L2 distance of the edge as its cost. To remain
close to real life cases we decided to apply the edge weights according to real traffic
distribution. We set the edge weight according to the load it is likely to have, which is
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determined by the number of incoming and outgoing edges of the source vertex of the
edge as well as the weights of the outgoing edges, and the number of outgoing edges of
the target vertex of the edge. The rationale behind this is simple. Let us denote as InðiÞ
and OutðiÞ the sets of incoming and outgoing edges of the node i. Now let us consider
the edge i; jð Þ. If there is a lot of edges incoming in i, then there is a lot of traffic
congregated at that vertex i. This traffic is then distributed across outgoing edges.
However, each edge from e 2 In ið Þ “receives” only portion of traffic, determined by the
number of outgoing edges of the target vertex of e. Therefore, for the result formula of
the edge weight we have

W i; jð Þ ¼ In ið Þj j Out jð Þj jP
e2Out ið Þ Out etð Þj j ð18Þ

where et denotes the target vertex of the edge e and �j j denotes cardinality of the set.
Note that OutðjÞ is never empty, since we consider two-way roads, so we can always
make a U-turn. It is possible to implement the edge weight setting in a way to compute
all edge weights in O mð Þ.

We tested our algorithm against that of Muhandiramge and Boland after applying
different amount of changes to the edge weights. The only restriction for weight
changes was keeping the problem non-trivial, that is changed edges were to affect the
solution path. The results are shown in Table 1. Each number represents an average
computation time of several runs with different source and target vertices.

Our incremental version provides up to 50% decrease in computation time com-
pared to Simple Node Elimination combined with gap closing. It is important to
mention that this time decrease can help in keeping the computations in real-time,
which is the purpose of this algorithm. During the day in the big after numerous traffic
events this saved time can accumulate in even more impactful difference. Time save
comes from faster initialization and recalculations of SPTs and depends on the number
of edges that changed their weights.

Table 1. Experimental results with various numbers of e-nodes

Number of
e-nodes

Algorithm used Roads of Oldenburg, s Roads of San Joaquin, s

Small Muhandiramge and Boland 1.34 2.13
Incremental RCSP 0.72 1.18

Medium Muhandiramge and Boland 1.29 2.20
Incremental RCSP 1.14 1.96

Large Muhandiramge and Boland 1.36 1.94
Incremental RCSP 1.88 2.31
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9 Conclusion

In this paper we described a new incremental approach to solving the resource con-
strained shortest path problem by utilizing the data from the baseline algorithm and
starting Lagrangian dual solving from advanced point. We introduced a modified
version of unconstrained SPT update for the cases when the graph has either more or
less vertices as well as different edge weights. We conducted experiments on real road
graphs and achieved decreased computation time compared to recalculating a solution
from scratch.

As a part of future work we intend to focus on the gap closing phase and its
incremental version and publish already existing progress on the topic. We also plan on
analyzing the amount of changes in the graph edge weights. Such analysis can yield
important threshold which would signify whether it is more effective to use incremental
version, recalculate from scratch or maybe even skip preprocessing phase if the number
of changed edges is very low.
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