
Scalable Hadoop-Based Infrastructure
for Big Data Analytics

Irina Astrova1, Arne Koschel2, Felix Heine2, and Ahto Kalja1(✉)

1 Department of Software Science, School of IT, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia

{irina,ahto}@cs.ioc.ee
2 Faculty IV, Department of Computer Science,

Hannover University of Applied Sciences and Arts,
Ricklinger Stadtweg 120, 30459 Hannover, Germany

akoschel@acm.org, felix.heine@hs-hannover.de

Abstract. Cloud architectures are being used increasingly to support Big Data
analytics by organizations that make ad hoc or routine use of the cloud in lieu of
acquiring their own infrastructure. On the other hand, Hadoop has become the
de-facto standard for storing and processing Big Data. It is hard to overstate how
many advantages come with moving Hadoop into the cloud. The most important
is scalability, meaning that the underlying infrastructure can be expanded or
contracted according to the actual demand on resources. This paper presents a
scalable Hadoop-based infrastructure for Big Data analytics, one that gets auto‐
matically adjusted if more computing power or storage capacity is needed.
Adjustments are transparent to the users – the users seem to have nearly unlimited
computation and storage resources.

Keywords: Big Data · Cloud computing · Hadoop

1 Introduction

Big Data are big in two different senses. They are big in the quantity and variety of data
that are available to be stored and processed. They are also big in the scale of analysis
(or analytics) that can be applied to those data. Both kinds of “big” depend on the exis‐
tence of supportive infrastructure. Such an infrastructure is increasingly being provided
by the cloud like OpenStack or Amazon EC2.

The DC4C (Data Cloud for Cities) project was initiated at Hannover University of
Applied Sciences and Arts. The primary goal of the DC4C project was to create a cloud-
based infrastructure for Big Data analytics. An initial step toward this goal was to build
a high-level architecture for such an infrastructure. A next step forward was to implement
a low-level architecture based on Hadoop clusters running in the cloud.

© Springer Nature Switzerland AG 2018
A. Lupeikiene et al. (Eds.): DB&IS 2018, CCIS 838, pp. 233–242, 2018.
https://doi.org/10.1007/978-3-319-97571-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97571-9_19&domain=pdf


2 Motivation

A Hadoop [1] cluster or more specifically HDFS (Hadoop Distributed File System)
cluster consists of a NameNode to store the HDFS metadata and an arbitrary number of
DataNodes that store data. Data are split into blocks and then replicated at multiple
DataNodes to ensure high availability and performance. For data processing, Hadoop
employs the MapReduce programming model, where a master node coordinates a
number of WorkerNodes that do the actual processing.

The virtualization of a Hadoop cluster has many benefits. If a Hadoop cluster runs
in the cloud, the physical hardware can be shared with other components like a web
server or a relational database server to utilize the full performance of the hardware.
Another advantage of a virtualized Hadoop cluster is that the setup of the cluster can be
simplified by creating templates of the virtual machines, which can be easily started and
stopped, thus avoiding the need of a time-intensive installation routine. This comes in
conjunction with yet another benefit – a virtualized Hadoop cluster can be rapidly
expanded or contracted depending on the current demand on resources.

Furthermore, all general benefits of the cloud can be applied to a virtualized Hadoop
cluster like the high-availability of virtual machines or the ability to clone images for
using them as a backup or node instances. On the other hand side, Hadoop is designed
to offer things like reliability and high-availability by default but other things like the
full utilization of the hardware by sharing them with other components bring a real
benefit. Finally, not only the hardware could be shared with different components but
also with another Hadoop distribution. The benefits are quite appealing but it also brings
some challenges, which need to be addressed.

3 Challenges

The cloud computing technology is based on the concept of virtualization. However,
the virtualization of a Hadoop cluster is a challenging task. Unlike most common server
applications, Hadoop has some special requirements for a cloud architecture. In partic‐
ular, Hadoop requires for topology information about the utilized infrastructure. Hadoop
then uses this information to manage replications in HDFS. If the infrastructure consists
of more than one cluster, Hadoop ensures that at least one replication is stored in a
different hardware cluster than the other replications to allow for data access even when
the whole cluster is unavailable. Moreover, Hadoop tries to perform computing tasks
near the required data to avoid network transfers, which are often slower than local data
access.

A cloud architecture abstracts the physical hardware to hide the infrastructure details
from the hosted instances. Furthermore, shared storage pools are often used to store
instances instead of having a dedicated storage in every computing node. Shared storage
pools and missing topology information of the Hadoop instances might lead to multiple
HDFS replications onto the same physical storage pool. Also Hadoop’s paradigm to
avoid network traffic by allocating computing tasks near the data storage would be
broken, since shared storage pools are often connected via a network. As a consequence,

234 I. Astrova et al.



the performance of cluster would probably be massively decreased due to unnecessary
replications and increased network traffic.

4 High-Level Architecture

Figure 1 gives an overview of the high-level architecture. This architecture is multilay‐
ered – different layers allocate the different responsibilities of Big Data software. An
upper layer uses a lower layer as a service.

Fig. 1. High-level architecture

The architecture comprises the following layers:

• Hardware (or physical) clusters: This is the bottom layer. It is composed of all
physical machines that are wired together either by the Internet or by a direct network
connection. A physical cluster is abstracted by means of virtualization.

• Virtual machines: This layer is composed of all virtual machines.
• Distributed file system: This layer is composed of a distributed file system used for

storing Big Data (typically in the range of gigabytes to terabytes) that are distributed
across the virtual machines.

• NoSQL databases: This layer is composed of NoSQL databases like HBase. Being
installed on the top of the distributed file system, NoSQL databases make it easy to
create, retrieve, update and delete data using an SQL-like language. In addition, some
NoSQL databases can be installed directly on the virtual machines.

Scalable Hadoop-Based Infrastructure for Big Data Analytics 235



• Cluster resource manager: This layer is responsible for managing both the physical
and virtual clusters using an API (Application Programming Interface).

• Big Data analytics models and algorithms: This is the application layer that is
responsible for Big Data analytics.

• Parallel programming models: The applications implement algorithms that are
parallelized using programming models like MapReduce [2] and Giraph Pregel [3].

• Visualization and GUI: This is the top layer of the architecture. A graphical user
interface (GUI) provides simple and easy access to Big Data. Furthermore, visuali‐
zation improves the understanding of the results of Big Data analytics.

5 Low-Level Architecture

Figure 2 gives an overview of the low-level architecture.

Fig. 2. Low-level architecture

The architecture comprises the following layers:

• Hardware (or physical) clusters: This layer is composed of five servers (Quad core
Xeon, 16 GB RAM, 3 TB HDD) and three servers (Quad core Xeon, 128 GB RAM,
3 TB HDD).

• Virtual machines: On top of the hardware clusters, we installed virtual machines to
form a hardware abstraction layer. A virtual machine acts like a physical computer
except that software running on the virtual machine is separated from the underlying
hardware resources. This layer is managed by OpenStack, which eases the manage‐
ment of virtual machines by a standardized API.

236 I. Astrova et al.



• Distributed processing frameworks and databases: This layer is composed of
Hadoop, HDFS, HBase, MapReduce, Giraph Pregel and Cloudera. Cloudera is a
distribution, which delivers many Apache products, including Hadoop and HBase.

• Jobs and algorithms for Big Data analytics: On this layer, we implemented many
algorithms like Google’s PageRank, Shortest Paths and Word Count.

• Management and monitoring of the infrastructure: On this layer, we imple‐
mented Janus, which monitors and tracks the virtual machines to react to storage or
computing capacity bottlenecks. Janus provides an API to automate the launching,
management and resizing of Hadoop clusters.

6 Implementation

It could be beneficial to co-locate the allocations of a job on the same rack (affinity
constraints) to reduce network costs, but spread the allocations across machines (anti-
affinity constraints) to minimize resource interference. If multiple Hadoop instances
(viz., DataNodes) are placed on the same machine, replicated data will be-come unavail‐
able if that machine fails.

Janus has to take care of the anti-affinity of Hadoop instances as well as to monitor
both clusters (the physical cluster as well as the virtual cluster, which runs inside the
physical cluster). The physical cluster is controlled by OpenStack whereas the virtual
cluster is controlled by Cloudera Manager. To perform these tasks, Janus has to work
with both managers. One virtual machine host should never run more than one instance
from the same Hadoop cluster. This would endanger the redundancy of HDFS and might
decrease the general performance with unnecessary replications. Instances forming a
Hadoop cluster are anti-affine to all other instances of the same cluster but not anti-affine
to instances of other Hadoop clusters. This means that one host system could generally
run more than one Hadoop instance, but they cannot be from the same Hadoop cluster.

Figure 3 shows an overview of Janus architecture.

Fig. 3. Architecture of Janus [6]

Scalable Hadoop-Based Infrastructure for Big Data Analytics 237



The architecture mainly consists of the following components:

• Host manager: This component is represented by a Host-Mgr class with the
following methods:
– getHadoopClusters() returns a list of all currently used Hadoop clusters.
– launchHadoopCluster() creates a new Hadoop cluster with a given

number of nodes.
– extendHadoopCluster() adds a given number of new nodes to the Hadoop

cluster.
– shrinkHadoopCluster() removes a given number of nodes.

• Cloud manager: This component is represented by an iCloud interface with the
following methods:
– getHosts() returns a list of all physical machines.
– getInstances() returns a list of all virtual machines.
– createInstance() creates a new virtual machine.
– deleteInstance() deletes the virtual machine.

• Hadoop manager (which connects the two other managers): This component is
represented by a Hadoop-Mgr interface with the following methods:
– getServices() returns a list of all services.
– getServiceDetails() returns information on a given service.
– addNode() creates a new node.
– deleteNode() deletes the node. This includes the decommissioning of all the

services running on that node and only then the deletion of the node itself.
– getNodeStatus() returns the status of a given node.

Janus is a link between the cloud manager of OpenStack and the Cloudera Manager.
It connects both sides by utilizing classes, which implement two abstract interfaces:
iCloud and Hadoop-Mgr. This is done to ensure that the core logic of Janus will not
be altered even if cloud providers are added or removed. On the cloud management side,
these are the classes of OpenStack or Amazon EC2, which implement the iCloud
interface. On the Hadoop cluster management side, these could be the Hortonworks
Ambari Manager Wrapper or the Cloudera Manager Wrapper classes, which implement
the Hadoop-Mgr interface.

In Hadoop, there are several different roles, including DataNode and WorkerNode.
A role is an instance of the service that is bound and executed on a host. As the names
suggest, the DataNode’s role is to store incoming data, the WorkerNode’s role is to
process the data. In most cases, these roles are combined into one node. To react dynam‐
ically to the fluctuation of the amount of incoming data, which a Hadoop cluster receives,
nodes have to be created or deleted on demand. For example, when HDFS runs out of
space, Janus executes the appropriate methods of the iCloud interface to initiate the
creation of a new node with the two roles. Janus makes a synchronous call and waits for
the result of the method call. If the new node is created successfully, it will execute the
appropriate methods of the Hadoop-Mgr interface to initiate the addition of the new
node to the appropriate cluster of the Cloudera Manager.

238 I. Astrova et al.



To start the roles, we used a predefined template. This template was created manually
on the Cloudera Cluster setup so it can be used to create new nodes. The template was
named DC4C-Default-HDFS-MR and included two roles: mapreduce, which is
the WorkerNode, and HDFS, which is the DataNode. The template has to be called by
its name and is passed to the addNode method of the ClouderaManagerRe-
source class as a parameter. The call of the method applies the template to the newly
created host and starts the roles.

To avoid the need of an additional database, Janus enforces a strict naming scheme
for the Hadoop instances, which allows for the mapping only by the hostnames. Upon
start up, Janus loads information about all hosts in its managed clouds via API calls to
the OpenStack masters and maps the currently running instances to the hosts. Host‐
names, which do not fit the naming schema, are ignored so that additional instances for
other purposes can be managed manually.

7 Application Scenarios

We identified two major application scenarios for the implemented architecture. One
was about the storage capacity offered to the users. If the storage capacity becomes
scarce, the infrastructure will automatically increase the size of the HDFS. If the physical
storage limit of the hardware gets reached, the infrastructure will automatically contact
another cloud provider. This could be a private cloud provider like another university
or partner organization or a public cloud provider like Amazon. The users get the possi‐
bility to define prioritization of external clouds to minimize the expenses, which arise
when commercial public clouds are used. Whenever a Hadoop cluster needs to be
extended, Janus searches for a new suitable host system in all managed the OpenStack
clouds. Thereby currently used clouds are preferred, so that a Hadoop cluster will only
be extended into a new cloud as a last resort. Within each managed cloud, Janus searches
for hosts, which are currently not used by the Hadoop cluster that should be expanded.
If more than one host system could run a new instance, the host with the lowest count
of running instances is selected. In either case, such expansion should be considered as
a temporal and rapid solution to prevent data loss, which would occur if the cloud could
not store any further data. In the long term, it would be necessary to buy additional
hardware to offer more storage capacity within the cloud to release expensive public
cloud instances.

In the DC4C project, we had two separate OpenStack installations, each having one
OpenStack master and several OpenStack computing nodes. The first cloud consisted
of five servers with a quad-core processor and 16 GB RAM. The second cloud consisted
of three servers with a quad-core processor and 128 GB RAM. All the servers were
utilizing a local RAID-0 array as their data storage to ensure highest storage perform‐
ance. Redundancy was achieved by the internal replication mechanisms of HDFS. To
simulate the scaling mechanism into a public cloud, we configured Janus to treat the
second cloud as the public cloud. Janus broke with the anti-affinity of instances in a
Hadoop cluster in the simulated public cloud and launched new instances wherever
resources were available.

Scalable Hadoop-Based Infrastructure for Big Data Analytics 239



Another application scenario concerned the computation power of the cloud. As
more and more different users would use the cloud for their Big Data analytics, a single
job could get really slow if the virtual computing nodes reach their limits. The solution
for this scenario is to start further virtual computing nodes in the cloud to take over
additional analysis jobs. If the physical limits of the hardware also get reached, additional
computation power will be obtained from an external cloud. An important point, which
has to be taken into consideration when expanding into a public cloud, is the storage
location of sensitive data. The users may want not to offer those data to a public cloud
provider just because the infrastructure is running out of storage. In this case, the users
are given the possibility to mark their data as sensitive so that the infrastructure can
avoid the exposure of those data. To realize this scenario, the cloud solution has to move
other non-sensitive data to the public cloud to free storage for the sensitive data.

Based on the application scenarios, we created two rules to react to storage or
computing capacity bottlenecks. Both rules are checked in a cyclic interval. If a rule gets
violated, the defined action will be started and no further checks of any other rule are
done until the violation is fixed. One rule is HdfsCapacityRule. This rule is used
to monitor the free disk space in HDFS; it creates a new Hadoop node if a given threshold
is violated for a given timeframe. Another rule is MapRedSlotsRule. It is triggered
when a given percentage of the available MapReduce slots have already been in use.
When this rule is violated for a given timeframe, a new Hadoop node is created too.

8 Related Work

Cloud providers have started to offer prepackaged services that use Hadoop under the
hood, but do most of the cluster management work themselves. The users simply point
the services to data and provide the services with jobs to run, and the services handle
the rest, delivering results back to the users. The users still pay for the resources used,
as well as the use of the services, but save on all of the management work [5].

Examples of prepackaged services include:

• Elastic MapReduce: This is Amazon Web Services’ solution for managing Hadoop
clusters through an API. Data are usually stored in Amazon S3 or Amazon Dyna‐
moDB. The normal mode of operation for Elastic MapReduce is to define the param‐
eters for a Hadoop cluster like its size, location, Hadoop version and variety of serv‐
ices, point to where data should be read from and written to, and define steps to run
jobs. Elastic MapReduce launches a Hadoop cluster, performs the steps to generate
the output data and then tears the cluster down. However, the users can leave the
cluster running for further use and even resize it for greater capacity.

• Google Cloud Dataproc: It is similar to Elastic MapReduce, but runs within Google
Cloud Platform. Data are usually stored in Google Cloud Storage.

• HDInsight: This is Microsoft Azure’s solution, which is built on top of Hortonworks
Data Platform. HDInsight works with Azure Blob Storage and Azure Data Lake Store
for reading and writing data used in jobs. Ambari is included as well for cluster
management through its API.

240 I. Astrova et al.



Despite their advantages like ready availability and ease of use, prepackaged services
only work on the cloud providers offering them. Some organizations are worried about
being “locked in” to a single cloud provider, unable to take advantage of competition
between the providers. Moreover, it may not be possible to satisfy data security or
tracking requirements with the services due to a lack of direct control over the
resources [5].

In addition to prepackaged services, cloud providers offer Hadoop-as-a-Service
(HaaS) for Big Data analytics [6]. However, HaaS offerings share the same disadvan‐
tages as prepackaged services in terms of moving further away from the open source
world and jeopardizing interoperability. Moreover, since unlike to prepackaged services
they are not explicitly based on Hadoop, there is a separate learning curve for them, and
the effort could be wasted if they are ever discarded in favor of an application that works
on Hadoop or on a different cloud provider [5].

9 Conclusion

Big Data analytics requires not just algorithms and data, but also physical platforms
where the data are stored and processed. This class of infrastructure is now available
through the cloud.

The DC4C project was aimed at developing a cloud-based infrastructure for Big Data
analytics, which gets automatically adjusted if more computing power or storage
capacity is needed. One of the main challenges in the development of such an infra‐
structure was the integration of Big Data software framework like Hadoop into a cloud
architecture as both are designed for contrary purposes. Moreover, a Big Data software
framework is usually complex and its usage requires a lot of practice, knowledge and
experience.

The initial result of the DC4C project was a high-level architecture for the infrastruc‐
ture. A major result was the implementation of a low-level architecture based on Hadoop
clusters running in the OpenStack cloud. That architecture enabled to make Hadoop clus‐
ters virtualized and scalable on demand. Furthermore, the architecture was used to eval‐
uate the performance of different persistence layers and computational models for
processing data. More specifically, the persistence layers were evaluated by comparing the
storage of data onto HDFS and HBase, whereas computational models were compared by
executing the PageRank algorithm with MapReduce and Giraph Pregel [4]. Finally, the
architecture was recognized as being worthy of application in the area of Estonian e-
Government, which also needs to deal with Big Data analytics [7, 8].

10 Future Work

In the current version of Janus, rules monitor only a single property of Hadoop cluster
and check if that property violates a certain threshold. These rules were primarily used
to prove that a Hadoop cluster can be automatically adjusted when the CPU usage per
node increases or the HDFS capacity gets too low. A future work could be to extend the
existing rule engine to support rules, which monitor multiple properties. Another

Scalable Hadoop-Based Infrastructure for Big Data Analytics 241



enhancement could be to monitor complex events occurred in a Hadoop cluster, e.g.,
when every Friday night a weekly computation is started and from week to week the
performance gets lower. For this purpose, historical measurements have to be stored and
evaluated.

Acknowledgement. Irina Astrova’s and Ahto Kalja’s work was supported by the Estonian
Ministry of Education and Research institutional research grant IUT33-13.

References

1. White, T.: Hadoop: The Definitive Guide, 3rd edn. O’Reilly Media, Sebastopol (2012)
2. Shook, A.: MapReduce Design Patterns. O’Reilly Media, Sebastopol (2013)
3. Malewicz, G., Matthew, A., Bik, A., Dehnert, J., Horn, I., Leiser, N., Czajkowski, G.: Pregel:

a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, New York, USA (2010)

4. Koschel, A., Heine, F., Astrova, I., Korte, F., Rossow, T., Stipkovic, S.: Efficiency experiments
on Hadoop and Giraph with PageRank. In: Proceedings of 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, Heraklion, Crete, Greece,
pp. 328–331. IEEE (2016)

5. Havanki, B.: Moving Hadoop to the Cloud Harnessing Cloud Features and Flexibility for
Hadoop Clusters. O’Reilly Media, Sebastopol (2017)

6. Astrova, I., Koschel, A., Lennart, M.H., Nahle, H.: Offering Hadoop as a cloud service. In:
Proceedings of the 2016 SAI Computing Conference, London, UK, pp. 589–595. IEEE (2016)

7. Kalja, A., Reitsakas, A., Saard, N.: e-Government in Estonia: best practices. In: Anderson,
T.R., Daim, T.U., Kocaoglu, D.F., Piscataway, N.J. (eds.) Technology Management: A
Unifying Discipline for Melting the Boundaries. pp. 500–506. IEEE (2005)

8. Kalja, A., Robal, T., Vallner, U.: New generations of Estonian e-Government components. In:
Proceedings of the 2015 PICMET, Portland, Oregon, USA, pp. 625–631. IEEE (2015)

242 I. Astrova et al.


	Scalable Hadoop-Based Infrastructure for Big Data Analytics
	Abstract
	1 Introduction
	2 Motivation
	3 Challenges
	4 High-Level Architecture
	5 Low-Level Architecture
	6 Implementation
	7 Application Scenarios
	8 Related Work
	9 Conclusion
	10 Future Work
	Acknowledgement
	References




