
Efficient Model Repository for Web
Applications

Sergejs Kozlovičs(B)

Institute of Mathematics and Computer Science,
University of Latvia, Raina blvd. 29, Riga 1459, Latvia

sergejs.kozlovics@lumii.lv

Abstract. Many model-based applications have been developed with
standalone usage in mind. When migrating such applications to the
web, we have to think about multiple users competing for limited server
resources. In addition, we encounter the need to synchronize models via
the network for client-side access. Thus, there is the risk that the model
storage could become a bottleneck.

We propose a model repository that deals with these issues by using an
efficient encoding of the model that resembles its Kolmogorov complex-
ity. The encoding is suitable for direct sending over the network (with
almost no overhead); it can also be used “as-is” in memory-mapped files,
thus, utilizing the OS paging mechanism. By adding just 3 automatic
indices, all traverse and query operations can be implemented efficiently.
Our tests show that the proposed model repository outperforms other
repositories concerning both CPU and memory and is able to hold 10,000
and more instances at the same time on a single server.

Keywords: Models · Model repository · Web applications

1 Introduction

In 2018, the growth in internet users has reached 4 billion people constituting
over half of the world’s population [11]. The wide availability of the internet
combined with the development of cloud technologies made it much easier and
cheaper to deploy web applications than it was 20 years ago. The obvious benefit
of web applications is that they are available right away, without the need to
install them. In addition, they are always up-to-date and accessible through-
out the globe from different devices and operating systems. That is why many
standalone applications are now being moved to the web environment. However,
developers of web applications face additional issues such as the presence of net-
work overhead and competition between multiple connected users for limited
server resources.

The scope of this paper lies within classical model-based applications that
have to be moved to the web. By model-based application we mean an application

c© Springer Nature Switzerland AG 2018
A. Lupeikiene et al. (Eds.): DB&IS 2018, CCIS 838, pp. 216–230, 2018.
https://doi.org/10.1007/978-3-319-97571-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97571-9_18&domain=pdf

Efficient Model Repository for Web Applications 217

Fig. 1. An example of multiple mixed meta-levels (dashed lines represent the “instance-
of” relation). The relation “favourite breed” between Person and Breed as well as the
link between Peter and Collie cross two adjacent meta-levels.

that stores data in MOF1-like models and processes these data by corresponding
model transformations [15,17]. We say “MOF-like” models, since in practice
alternative implementations such as Java-based EMF/ECore are used [1,20].
By model transformations we mean not only specific programs written in some
model transformation language (like MOLA, Lx, Epsilon, ATL, VIATRA, etc.),
but also programs written in traditional programming languages (like Java or
C++) and that are able to access MOF-like models via some API (e.g., ECore
API) [7–9,13,21].

In model-based applications models are saved in a storage that we call model
repository. This concept differs from the database concept in the following main
points:

– the repository does not need to be able to perform complex queries- that
is the task of model transformations; the repository just has to implement
simple model traversal and update operations;

– in a repository, the model is usually loaded into memory, since transformations
use the model intensively for both read and write operations; that differs from
databases (not only SQL, but also graph and document databases), which are
optimized for performing queries, while update operations are much slower
(usually involving re-arranging indices)2;

– model repository internal structures and APIs are tailored for storing models,
i.e., both object-level data (objects, their attributes, and links) as well as
meta-data (object types and their properties) can be stored. In some use cases
multiple meta-levels are required (see Fig. 1), thus, model repository should
be able to store them all. Although existing SQL and no-SQL databases can
be tamed for these purposes (e.g., via object-relational mapping, ORM), such
approach is more comprehensive and less efficient than using a true model
repository directly [5,6].

1 MOF (Meta-Object Facility) is a standard developed by OMG (Object Management
Group) for describing formal models [15].

2 For example, MongoDB write operations can be up to 10 times slower than read
operations.

218 S. Kozlovičs

While migrating model-based applications to the web, there is the risk that
the model repository could become a bottleneck, since model transformations
use it intensively to implement business logic of model-based applications. Exist-
ing model repositories revealed two extremes: either a repository was memory-
efficient, but not CPU-efficient (like ECore), or vice-versa (like the “New Repos-
itory” JR presented in 2010 [18]). Moreover, the internal encoding of model
repositories was usually concealed, thus, sending the whole repository content
via the network required to rely on the repository API, which was slower than
if we had access to internal data structures. Thus, there remained a need for a
fast repository that could be used in the web environment.

In this paper we propose a new model repository that is both CPU- and
memory-efficient. It is also designed for fast synchronization via the network.
Besides, the proposed repository has all the necessary functionality for storing
and traversing models at different meta-levels. Our approach relies on a specific
encoding of models.

The next section presents our idea. Section 3 reveals some interesting imple-
mentation details. In Sect. 4 we provide quantitative test results that confirm
the feasibility of our approach. Finally, we discuss the potential of the proposed
repository and conclude the paper (Sects. 5–6).

2 The Main Idea

When deciding which API the upcoming model repository has to implement, we
aimed for an API that would be compatible with existing repositories. However,
we tried to avoid high-level APIs (like Epsilon Model Connectivity Layer or
ATL Model Handler Abstraction Layer), since they are not efficient (e.g., linked
objects can only be set as a list, even when we need to include/exclude just one
object), they conceal internal data structures too much, and they are hard to
use with mixed meta-levels [8,13]. Instead, we focused on a low-level Repository
Access API (RAAPI)3. RAAPI can be viewed as repository assembler, thus, the
sequence of RAAPI calls can be treated as an assembly program for creating the
content of the repository from scratch. This resembles how a sequence of low-
level Turing machine operations results in the given string. We show below that
the sequence of RAAPI operations can be kept short enough, thus, it can be used
as an efficient encoding of a model (this resembles the Kolmogorov complexity
concept with the difference that the sequence of operations results in a model
instead of a string).

An interesting feature of RAAPI is that it was developed with Šostaks’ con-
jecture in mind [14]:

It is difficult for a human to think at more than two meta-levels at a time.
Still, it is fairly easy for a human to focus on any two adjacent meta-levels.

3 We proposed RAAPI in 2013 by combining the best from existing repository APIs.
RAAPI can be mapped to virtually any model repository. The actual version can be
found at http://webappos.org/dev/raapi/.

http://webappos.org/dev/raapi/

Efficient Model Repository for Web Applications 219

Table 1. Some modificating RAAPI functions (actions) and their encodings.

To comply with this conjecture, RAAPI operations are defined for two adja-
cent meta-levels (the model and the meta-model level). However, all repository
elements (objects, classes, attributes, and associations) are identified by 64-bit
references (e.g., numbers or memory pointers) regardless of their meta-level.
Thus, while working with levels i and i+1 we can obtain some element reference
and then use it when working with levels i + 1 and i + 2. We can even mix
references from different levels (e.g., linking an object “Peter” to a class “Collie”
as in Fig. 1).

Certain RAAPI operations modify the state of the repository. We call them
modificating actions. Some of them are mentioned in Table 1, Column 1 (besides
create-actions there are also corresponding delete-actions, which are not men-
tioned). Other operations are read-only operations for querying/traversing the
repository (see Table 2, Column 1).

Now, to encode the model we use a sequence of RAAPI modificating actions.
Each modificating action is assigned an integer code. Action code as well as other
non-string values (numbers, references, and booleans from action arguments as

220 S. Kozlovičs

Table 2. A representative set of RAAPI operations for querying/traversing the repos-
itory

Efficient Model Repository for Web Applications 221

well as the return value) are encoded as numbers stored as 64-bit IEEE doubles
(see Table 1, Columns 2 and 3). The two main reasons for such encoding are:

– IEEE double is the only type for numbers supported by JavaScript in most
browsers, thus, when using doubles, we can synchronize these numbers with
the browser directly, without the conversion;

– the whole sequence of actions can then be stored in a single actions array,
where each action occupies from 2 to 6 elements (thus, the actions array is
in fact an array of variable-length mini-arrays).

Some of the modificating actions take also strings as arguments. We can assume
that there is at most one string for each action (2 strings can be concatenated
into one by using a delimiter, e.g., ‘/’, see createAssociation in Table 1). All such
strings are stored in the strings array in the same order as string-containing-
actions (string-actions) from the actions array, thus, we can infer which string
is associated with each actions just from the order of elements. When synchro-
nizing, all the strings from the strings array are concatenated by some other
delimiter and sent as one string.

An interesting fact is that our encoding stores only create-actions. When
some repository element is deleted, instead of adding a new delete-action, we
just delete the corresponding create-action from the actions arrays (and the
corresponding string from the strings array, if any). Thus, the length of the
sequence always corresponds to the size of the model.

Note. Of course, this is a simplified view on the encoding. In fact, append-
ing elements to and deleting them from an array is not trivial. Moreover,
we also need some indexing to be able to iterate throughout these arrays
while skipping unnecessary actions. As the next section shows, all these
operations can be efficiently implemented (and the memory increases just
linearly).

The server-side repository works directly with the actions and strings arrays
(using a few helper arrays for efficient iterating), thus, minimizing memory con-
sumption. The client-side repository (running in the browser) can convert the
received actions and strings arrays to less efficient, but more convenient encod-
ing using native JavaScript objects, since there is only one user at the client-side,
controlling all the browser resources.

3 Implementation

The actions and strings arrays are implemented as classical resizable arrays with
the amortized constant-time add and delete operations. Delete-actions are not
deleted right away (which could result in shifting the arrays) – they are marked
as deleted instead. When too many actions have been marked as deleted, or
when there is no space for storing a new create-action, one or both arrays are
re-arranged (this operation is rare compared to the cumulative number of add

222 S. Kozlovičs

and delete operations). The re-arrange operation compacts the given array by
shifting the elements and eliminating delete marks. Then the array length is
multiplied by 0.5, 1, or 2 depending on the number of free elements in the end
of the re-arranged array.

Our experiments with RAAPI show that the length of the actions array is
approximately 10 times the length of the strings array. We have chosen ini-
tial lengths of 10,000 and 1,000. The arrays can grow independently up to
1,310,720,000 and 131,072,000, respectively, unless lower limits are specified4.

3.1 Additional Data Structures

To be able to traverse the model, we introduce 3 indexing data structures
(indices). The first 2 are:

– the action-to-string map a2s (one action can have at most one associated
string);

– the inverse string-to-action multimap s2a (the same string can be found in
multiple actions, e.g., different objects can have the same attribute value).

They allow us to implement read-only RAAPI operations that return strings
(e.g., getClassName, getAttributeValue) or look up for a reference given a string
(e.g., findClass, findAttribute, or getIteratorForObjectsByAttributeValue).

Each action is identified by a corresponding index in the actions array. Each
string is identified by an index in the strings array (however, string comparison
is performed not on indices, but on the actual string values from the strings
array).

The third indexing structure is the reference-to-action multimap r2a (the
same reference, e.g., object reference, can be found within multiple actions).
This map allows us to traverse only actions where the given reference is used.
We do not need the inverse map, since, given an index in actions array, we can
instantly access the corresponding mini-array containing the action code along
with all references used as action arguments5.

Notice that all 3 indices increase memory consumption just linearly (a2s and
s2a sizes are comparable to the length of the strings array; r2a size is comparable
to the actions length). However, when re-arranging actions and strings, we have
to rebuild the indices (but that still keeps the amortized time for add and delete
operations constant, since re-arrange is rare operation).

4 The first number is the maximum length of actions that does not cause integer
overflow (231 − 1), which allows us to use 4-byte integers to encode positions in the
actions array. The actions array then can occupy up to 10 GB (not counting strings),
which we consider quite liberal for a single model accessed by a single user via a web
application.

5 We could also embed the a2s map into the actions array by appending a string
index to mini-arrays of string-actions. However, that would mix the actions array
with the auxiliary a2s array. In addition, the length of the actions array and, hence,
the amount of data synchronized with the client would increase.

Efficient Model Repository for Web Applications 223

Having just these 3 maps/multimaps we can implement efficiently all read-
only RAAPI operations as well as certain auxiliary internal operations such as
cascade delete. The following subsections provide more detail.

3.2 Querying/Iteration

Table 2 mentions a representative subset of read-only RAAPI operations and
reveals which indices and keys are used to implement them. Each key is used
to obtain a list of actions from some index (r2a or s2a). Then these actions are
checked against the conditions mentioned in Column 3 (sometimes a2s is used
there to check equality of strings).

As Column 2 shows, sometimes we have to look at multiple lists of actions at
the same time. For some RAAPI operations (e.g., isDirectSubClass) we just need
to get the first action that belongs to all the given lists and meets the criteria,
while for other (e.g., getIteratorForLinkedObjects) we have to iterate through all
such actions.

Good news is that all lists of actions turn out to be sorted, since each time
a new action is added, it is appended to the end of the actions array (perhaps,
after re-arrange), where the index of the new action is greater than the index
of all previous actions. Then this action and its arguments are added to the
corresponding indices r2a, a2s, and s2a. Thus, we can use the “merge” approach
when traversing actions that must belong to multiple lists (see the listing below).
To make the search within multiple lists more efficient, we implemented the
nextGreaterOrEqual operation via binary search.

f i n d F i r s t A c t i o nW i t h i n (l i s t s) {
// i n i t i a l i z i n g i t e r a t o r s and g e t t i n g f i r s t e l ement s o f
// the l i s t s (i t e r a t o r s r e t u r n INFINITY , i f t h e r e a r e no
// more e l ement s)
f o r (i =0; i< l i s t s . l e n g t h ; i++) {
i t e r a t o r s [i] = l i s t s [i] . i t e r a t o r () ;
v a l u e s [i] = i t e r a t o r s [i] . f i r s t () ; // INFINITY , i f empty

}
m = max(v a l u e s) ;
whi le (m<INFINITY and not a l l v a l u e s equa l m) {

// moving fo rwa rd a l l i t e r a t o r s u n t i l each o f them
// p o i n t s to an e lement >=m or to the end o f the l i s t
f o r (i =0; i< l i s t s . l e n g t h ; i++)

v a l u e s [i] = i t e r a t o r s [i] . n ex tG rea t e rOrEqua l (m) ;
m = max(v a l u e s) ;

}
re tu rn m; // INFINITY , i f a t l e a s t one l i s t ended

}
The indices are used not only for queries/iterations, but also in modificating
actions for validating the arguments. For example, in setAttributeValue we have
to check that the given object exists and the given attribute reference is legitime,
i.e., the object belongs to a class that has that attribute defined. In addition, we
have to find and delete the previous attribute value, if any.

224 S. Kozlovičs

3.3 Cascade Delete

When a delete-operation is called, we find the corresponding create-operation
in the actions array and mark it as deleted (for string actions we also mark
strings[a2s(action)] as deleted). However, in certain cases cascade delete is
required. For example, when deleting a class, all its objects have to be deleted as
well. Thus, not only the createClass action (0x01) has to be marked as deleted,
but also all subsequent createObject operations (0x02) having the same class ref-
erence as the first argument. When deleting an object, all corresponding attribute
values (0x04) and links (0x06) have also to be deleted (marked). All such marked
actions will be cleaned up during re-arrange.

To implement cascade delete we use the same r2a multimap as for query-
ing/iteration. For instance, when we mark the createClass operation as deleted,
we obtain the class reference rClass. Then we obtain the list r2a(rClass) and
iterate through it to find actions with code 0x02 (createObject) and reference
rClass. For each such action we obtain the object argument rObject and then
iterate though the r2a(rObject) list and mark all its elements as deleted (since
rObject is being deleted, any action that was stored after this createObject and
referencing the same rObject must be marked as deleted; this will delete 0x04,
0x06, and, perhaps, other actions having rObject somewhere as an argument).

3.4 Memory-Mapped Files

Although we can use standard data structures (such as Java arrays and
hashmaps) for the actions and strings arrays as well as for the indices, such
implementation quickly leads to high dynamic memory consumption (and even
to out-of-memory exception, if more than 110 middle-sized repositories are open,
see below). This is undesirable for the web server. Our approach is to rely on
memory-mapped files, a mechanism, which is available in most operating sys-
tems. The OS automatically swaps memory pages, while the programmer can
access the data via a single pointer as if the data were always loaded into mem-
ory. With memory-mapped files, server memory is not limited to the size of the
physical RAM, and the OS does all the low-level job automatically and efficiently
(for instance, files are loaded into memory in lazy manner, thus attaching a file
as a pointer is fast). The shortcoming is that memory-mapped files, in essence,
are arrays. While the actions array can be mapped directly to a file, other data
structures (indices and strings) have to be mapped to arrays manually.

To be able to store strings in a memory-mapped file, we use 2 arrays: chars
and strings2. The first one is for appending characters of each new string (we
use UTF-8 character encoding); the second one stores the start index in the chars
array and the string length (in bytes). The re-arrange functions works only on
the relative short strings2 array, thus, characters are not moved6.

6 The chars array is much longer than strings2. Thus, to save time during re-arrange,
the chars array can be left “as is”, without removing characters of deleted strings
(still, it can be compacted occasionally, e.g., during save).

Efficient Model Repository for Web Applications 225

The r2a, a2s, and s2a indices are implemented as arrays of keys and values.
The lengths of these arrays are prime numbers that depend on the lengths of
the actions and strings2 arrays. Prime lengths allow us to use these arrays as
hash tables with open addressing and double hashing 7 [12]. Since r2a and s2a
are multimaps, we modify traditional hashing approach: for multi-valued keys
we store a negative number −(k + 1) in a hash table, where k is the number of
values already stored for this key (including the collisions). Thus, to append a
new value for the given key, we first skip (k + 1) elements and try to append
the value as usual. Our experiments show that the number of collisions for such
multimaps (when working on a repository containing data from a real use case)
is 2.28 in average.

While deleting elements from a hash table may be non-trivial, our approach
is simple: we just mark elements as deleted (when the corresponding actions
are marked as deleted). During re-arrange, hash tables are rebuilt from scratch.
However, this approach introduces a new issue: when traversing the values of
a multimap, we can encounter such marked-as-deleted elements. If we need to
iterate through all elements, we can just ignore these marked elements. How-
ever, the function nextGreaterOrEqual mentioned above won’t work any more,
since the sorted list of values now can contain deleted (marked) values, and
the binary search algorithm won’t work as expected. Generally speaking, the
binary search has to be replaced with linear search8. However, since the number
of marked elements is small (otherwise, the array is re-arranged), we introduce
the following modification of the binary search operation: when we encounter a
marked-as-deleted element that should become a new middle element, we look
for the next non-marked element linearly. Then the search continues as ordinary
binary search. This modification proved to be very fast in practice (it boosted
model transformations by 60.56% compared to fully linear implementation of
nextGreaterOrEqual).

4 Feasibility

In this section we provide details on CPU and memory benchmarks. We also
give some notes on synchronization overhead.

4.1 CPU Benchmark Tests

Table 3 provides averaged CPU benchmark data for the proposed repository AR
(acronym for “Actions Repository”) in comparison with Ecore and JR [18,20].
7 The first hash is modulo p, the second is modulo (p−2)+1, which is always co-prime

with p. For strings we use Java built-in hashCode function. However, since it returns
0 on empty strings, and since the second hash calculates to 1, all empty strings would
be stored in the beginning of the hash table, thus, drastically increasing the number
of collisions (up to 2.85x in our experiments). We avoid such inefficient hash values
by appending a constant dummy text to every string before calculating its hash.

8 Grover’s algorithm on a real quantum computer could take sub-linear time, but the
proposed repository is intended for classical computers.

226 S. Kozlovičs

Table 3. CPU benchmark (all values are in milliseconds per repository)

AR and ECore are implemented in Java, while JR—in plain C (until now, JR
proved to be the fastest repository we ever used in our model-based tools).

In our tests we were interested in 3 variations of AR: using Java standard
data structures (Java arrays, HashMaps, and ArrayLists), using hash tables
implemented manually via in-memory arrays, and using hash tables stored in
a memory-mapped file. In all cases we used a transformation borrowed from
the ontology editor OWLGrEd (http://owlgred.lumii.lv). The transformation
we chose performs a set of actions (such as creating a dialog window from a
model, storing the input in the repository, and refreshing the diagram from the
updated model) that represent a real usage step of a graphical model-based
tool. We measured not only CPU clock for each of the repositories, but also the
overhead added by wrappers, which map universal RAAPI to native repository
APIs (operations not provided by native APIs were implemented in wrappers).
We can infer from Table 3 that AR outperforms both ECore and JR. Logically,
memory-mapped files are a bit slower than direct in-memory hash tables. Java
built-in data structures show the best CPU benchmark rates (but not the best
memory rates, as is shown below).

4.2 Memory Benchmark Tests

Table 4 provides averaged memory benchmark for the repository, on which the
transformation mentioned above was executed.

We measured not only memory consumption, but also repository load time.
For memory-mapped files we split our tests into 2 groups: tests from the first
group were executed, when there were no memory-mapped files on disk (thus,
they had to be created by the OS and filled with data by AR); tests from the
second group just opened existing memory-mapped files. As Table 4 shows, AR
with memory mapped files was the only repository that could handle 10,000
models at the same time with significant room for scaling (and the OS reserved
just 54 MiB of RAM for all of them, if we do not count the files on disk amounting
to 122 GiB in total). We have to admit that our tests did not include heavyweight

http://owlgred.lumii.lv

Efficient Model Repository for Web Applications 227

Table 4. Repository memory usage (MiB/repository) and open time (ms/repository)

parallel processes or intensive usage of memory by multiple users with inevitable
competition for processor cache (these tests are subject to additional research).
Nevertheless, current results look promising.

4.3 Synchronization

CPU and memory efficiency is not enough for a repository with web-based usage
in mind. We have to be able to synchronize the repository efficiently between the
client and the server. Our solution relies on using web sockets, a standardized pro-
tocol with low overhead (when set up properly, web sockets can hold 1,000,000 con-
nections, and even more). Since web sockets can be used to transmit both binary
and string data, the actions and strings can be synchronized efficiently. The client
and the server can modify the repository independently, each on its side. We use
the following trick to avoid collisions in references: when new repository elements
(objects, classes, associations...) are created, the server assigns even references
for them, but the client assigns odd. Modifications are exchanged asynchronously

228 S. Kozlovičs

(both at the server and at the client side), thus, a separate thread is busy with
that, while the original thread running a model transformation continues without
any delay (delay can only be caused by network buffers overflow). To optimize the
synchronization process, we collect several modifications within a small time inter-
val and then send them in bulk. Modifications are sent using the encoding of the
actions and strings arrays with an exception that modifications can contain also
delete-actions. When received, modifications are re-executed on the receiving side
as if they occurred right there.

5 Discussion

Currently, AR iterators over repository elements are not thread-safe internally.
We deal with this issue by synchronizing public RAAPI calls and copying the
required elements each time an iterator is returned via RAAPI. In the future,
to boost iterators, we could switch to the copy-on-write pattern (where copying
is done only if a parallel modification is performed).

Since all elements (classes, associations, etc.) in AR are identified by 64-bit
references, we can create classes and objects at different meta-levels and even
mix them. Thus, AR can be used for storing models corresponding to virtu-
ally any meta-modelling standard (e.g., MOF, EMOF, or SMOF) or ontology
language (e.g., OWL or OWL2) [2,3,15,16]. This can lead to interesting use
cases. For instance, we can create meta-meta-level classes corresponding to the
OWL2 standard (OWL:Class, OWL:Property, etc.). Then we can create ordi-
nary metamodel classes and call includeObjectInClass to make them instances
of the meta-meta-level classes (e.g., class Person would become an instance of
OWL:Class). All these operations are legitime and are just added to the actions
array. Then, by using AR indices, we can infer which classes are instances of
OWL2 meta-metamodel, and forward them to a semantic reasoner.

AR can also be used in a NoSQL-manner, where the metamodel is not defined
in advance. This can be implemented in 2 ways:

– by skipping metamodel checks (i.e., not validating action arguments);
– by introducing a wrapper. When some action requiring a metamodel ele-

ment is performed, the wrapper creates a missing metamodel element on-
the-fly. This, however, requires advanced techniques for guessing metamodel
elements (e.g., guessing types of attributes or inheritance relations) and, per-
haps, modifying them dynamically, if eventually we find that the initial guess
was incorrect.

Our tests showed that AR is more efficient than JR. The JR authors showed that
their repository outperforms popular OpenLink Virtuoso. Pacaci et al. showed
that Virtuoso outperforms other graph databases, and Hellerstein et al. showed
that graph databases outperform relational ones [4,19]. While these facts may
seem to be in favor to the proposed repository, we have to admit that the perfor-
mance depends on a particular usage scenario. For instance, Pacaci et al. showed

Efficient Model Repository for Web Applications 229

that traditional relational Postgres database outperformed Virtuoso in several
specific tests [19].

It is hard to compare AR to linked data and their query mechanisms (like
Linked Data Fragments, linkeddatafragments.org), since they are optimized for
single-query usage (where each query can be quite complex), while AR is
designed to serve multiple, but simple queries performed by model transfor-
mations.

6 Conclusion

We presented a model repository that outperforms existing repositories regarding
both CPU and memory. The main idea was to use an efficient encoding of the
model by storing a list of actions (and corresponding strings) that create the
content of the repository (which resembles the Kolmogorov complexity concept).
We added just 3 indexing arrays for implementing RAAPI query and iteration
operations. The proposed encoding, combined with memory-mapped files, can
hold 10,000 repositories (and even more) on a single server. That resembles the
C10K problem (10,000 concurrent connections; that is considered a reasonable
target for web-based applications9) [10]. However, stress tests concerning CPU
cache and context switches still have to be performed.

The proposed repository encoding is used “as is”, when synchronizing the
repository via the network (the encoding even uses the IEEE double as the
only JavaScript-compatible type for numbers). Since we use asynchronous web
sockets, synchronization overhead is negligible (unless the network becomes a
bottleneck).

The repository implements universal RAAPI, where the developer thinks at
two adjacent meta-levels (the model and the meta-model level), but can use any
number of meta-level and even mix them.

We hope the repository will find wide adoption, thus, we release it under
an open-source license10. The repository is written in Java, but a dynamic-link
library for accessing it from native code is available (32-bit and 64-bit versions
for Windows, Linux, and MacOS platforms).

We are working on developing a model-based infrastructure for web applica-
tions (webAppOS), where the proposed repository will be a central component
implementing memory abstraction. A webAppOS-based version of our graphical
ontology editor OWLGrEd is coming soon. OWLGrEd diagrams will be stored
using AR, making the proposed repository a part of the new OWLGrEd file
format for both desktop and web-based versions of OWLGrEd.

Acknowledgments. The work has been supported by European Regional Devel-
opment Fund within the project #1.1.1.2/16/I/001, application #1.1.1.2/VI-
AA/1/16/214 “Model-Based Web Application Infrastructure with Cloud Technology
Support”.

9 For more connections or during peek loads, one can borrow virtual cloud servers,
e.g., from Amazon Elastic Cloud.

10 The repository can be downloaded at http://webappos.org/dev/ar.

http://linkeddatafragments.org
http://webappos.org/dev/ar

230 S. Kozlovičs

References

1. Eclipse Modeling Framework (EMF, Eclipse Modeling subproject). http://www.
eclipse.org/emf

2. OWL 2 Web Ontology Language document overview (second edition). http://www.
w3.org/TR/owl2-overview/

3. OWL Web Ontology Language reference. http://www.w3.org/TR/owl-ref/
4. Hellerstein, J.M., et al.: Ground: a data context service. In: Proceedings of CIDR

(2017)
5. Ambler, S.: Mapping objects to relational databases: O/R mapping in detail.

http://www.agiledata.org/essays/mappingObjects.html
6. Anuja, K.: Object Relational Mapping. Ph.D. thesis, Cochin University of Science

and Technology (2007)
7. Barzdins, J., Kalnins, A., Rencis, E., Rikacovs, S.: Model transformation languages

and their implementation by bootstrapping method. In: Avron, A., Dershowitz, N.,
Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 130–145.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78127-1 8

8. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MODELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006).
https://doi.org/10.1007/11663430 14

9. Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA. In:
Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003-2004. LNCS, vol. 3599,
pp. 62–76. Springer, Heidelberg (2005). https://doi.org/10.1007/11538097 5

10. Kegel, D.: The C10K problem. http://www.kegel.com/c10k.html
11. Kemp, S.: Digital in 2018: World’s internet users pass the 4 billion mark. weareso-

cial.com blog. https://wearesocial.com/blog/2018/01/global-digital-report-2018
12. Knuth, D.E.: The Art of Computer Programming, Sorting and Searching, 2nd edn.,

vol. 3. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)
13. Kolovos, D., Rose, L., Paige, R.: The Epsilon Book. http://www.eclipse.org/

epsilon/doc/book/
14. Kozlovics, S.: The orchestra of multiple model repositories. In: van Emde Boas, P.,

Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS,
vol. 7741, pp. 503–514. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35843-2 43

15. Object Management Group: OMG Meta Object Facility (MOF) Core Specification
Version 2.4.1 (2011)

16. Object Management Group: MOF Support For Semantic Structures (SMOF)
(2012). http://www.omg.org/spec/SMOF/

17. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification, Version 1.3. formal/16-06-03 (2016)

18. Opmanis, M., Čerāns, K.: Multilevel data repository for ontological and meta-
modeling. In: Databases and Information Systems VI - Selected Papers from the
Ninth International Baltic Conference, DB&IS 2010 (2011)

19. Pacaci, A., Zhou, A., Lin, J., Özsu, M.T.: Do we need specialized graph databases?:
benchmarking real-time social networking applications. In: Proceedings of the
Fifth International Workshop on Graph Data-management Experiences & Sys-
tems, GRADES 2017, pp. 12:1–12:7. ACM, New York (2017)

20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Upper Saddle River (2008)

21. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3), 187–207 (2007)

http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl-ref/
http://www.agiledata.org/essays/mappingObjects.html
https://doi.org/10.1007/978-3-540-78127-1_8
https://doi.org/10.1007/11663430_14
https://doi.org/10.1007/11538097_5
http://www.kegel.com/c10k.html
https://wearesocial.com/blog/2018/01/global-digital-report-2018
http://www.eclipse.org/epsilon/doc/book/
http://www.eclipse.org/epsilon/doc/book/
https://doi.org/10.1007/978-3-642-35843-2_43
https://doi.org/10.1007/978-3-642-35843-2_43
http://www.omg.org/spec/SMOF/

	Efficient Model Repository for Web Applications
	1 Introduction
	2 The Main Idea
	3 Implementation
	3.1 Additional Data Structures
	3.2 Querying/Iteration
	3.3 Cascade Delete
	3.4 Memory-Mapped Files

	4 Feasibility
	4.1 CPU Benchmark Tests
	4.2 Memory Benchmark Tests
	4.3 Synchronization

	5 Discussion
	6 Conclusion
	References

